
Sep 7 17:59 1989 68040Plan Page 1

68040 PORTING PLAN 9/8/89

Attached is an updated plan for porting the current S90 kernel to the
DPM040, based on the latest DPM040 Functional Specification and the
latest information from Motorola, and incorporates revisions from the
earlier design review. Included is an overall functional specification,
a more detailed schedule, the plan for the port, and a more detailed
list of modifications to be made.

Randy

Sep 6 14:32 1989 funcspec Page 1

Introduction

This document discusses the Unix Operating System and associated
software being developed for the Motorola 68040 Dual Processor
Module. This will be used as one of the alternative processor
modules I software sets for the System 90. This specification
is intended to cover functional definitions of the software
interface and related topics, and later issues of design. No
assumptions should be made with respect to functionality or support
not included in this document. If there are areas of support, not
discussed, which are required in this product, they should be
brought to the attention of the writer for inclusion. Throughout
this document the system under discussion will be called the
"System 90/040".

Related Documentation

MC68040 Preliminary Design Specification Revision 6.0

MC68040 Preliminary Design Specification Addendum Revision 6.2

MC68030 User's Manual

"68040 Dual Processor Module Functional Description", by Dan
Peterson, dated 8/25/89

Motorola 68000 Processor Supplement for the System V ABI,
First Industry Review Draft, June, 1989

Design Objectives

The major objective of the System 90/040 project is to create a
software environment which will have the "Look and Feel" of the
68020 based System 90 as it exists at the time of release, but
with all the PM20 boards replaced by a DPM40s. It is intended to
track the functionality and standards compliance of the System 90
as closely as possible. The functional objectives are discussed in
more detail below.

A The System 90/040 will conform to the System V Interface
Definition in the same manner as the most current System
90 software release.

B The System 90/040 will offer the same level of compliance
with the X/Open Portability Guide, System V Specification.
This will reflect the current System 90 compliance.

C The System 90/040 will demonstrate the same functionality
and present the same user interface as the ARIX System 90/020.
The procedures for operation, including the standalone
environment, will be the same as the System 90/020. The System
90/040 will be source code compatible with the System 90/020 for
architecture and compiler independent source code.

Sep 6 14:32 1989 funcspec Page 2

D The 68040 runs better when there is strict alignment of data,
in particular, longs always on long boundaries. On the PM20s,
the superblock (filesystem header) of each filesystem on the
disks has longs on short boundaries. In case of an upgrade
from a PM20 to a DPM040 based system, tthe 68040 superblock
will be incompatible with the existing filesystems. A
standalone utility will need to be run to update the superblocks
on all the filesystems.

E The System 90/040 will not be ABI conformant. In particular,
the ABI specifies a minimum user address space of 3 1/2 Gigabytes,
which cannot be supported by the PM20s making common source code
difficult, and requires a significant software development
effort to implement. This issue can be readdressed in V.4.

F All machine independent S90/020 binaries will run on the
S90/040. The System 90/040 will NOT run AlOOO binaries.

Software Components of the System 90/040

The following is a description of each of the components of the
Arix System 90/040 software.

A System 90/040 Unix Kernel

The initial release of the System 90/040 Unix kernel will
be based upon the most current System 90 kernel source.
At this time, it appears that it will be V.3, rather than
v. 4.

B System 90/040 Language Processors - C Compiler

The SGS for the MC68030 needs to be extended with the
addition of the new 040 instructions. Additionally,
the 68040 will run better if all accesses are on
"correct" boundaries, i.e. shorts on short boundaries
and longs on long boundaries. The compiler will need
to be modified to generate the proper alignment, and
libraries may need to be updated. For compatibility,
a mechanism will be provided in both the 68020 and
68040 SGSs to force a specified alignment in specific
structures. We will probably need to provide a 68020
SGS for third party software, but its general use
should be discouraged.

Machine independent codefiles with the 68020 alignment,
eg. made for the S90/020, will run without modification.
The kernel will be updated to support the differences in
structure and data alignment.

C System 90/040 Unix Utilities

No functional changes to the current System 90 utilities
are required. Some source modification is required for
compilation purposes. The utilities should be recompiled

Sep 6 14:32 1989 funcspec Page 3

due to changes in the alignment of structures and for
better performance.

D CSS Bus Module Support

All modules (except other types of PMs) will run on the
System 90/040. This means that both AlOOO IO and IOPMs
will be supported.

E System 90/040 Communication Products

The full range of AlOOO and IOPM based communication
products offered the System 90 will be supported. By
changing the alignment of items in structures in the 68040
compiler, there will be some porting required.

F Diagnostics

New firmware is required for the DPM040s and the SPM.

General

There will no hard-coded limitations on the number of
processors configurable in the system. Many different areas of
the system must be taken into consideration to determine
the actual physical limitations of the number of processors
including the SPM, configured memory, and backplane priority
arbitration to name a few. Recommendations for the optimal
number of processors will be made later. At this point the
guidelines appear to be:

1 DPM board to 2 MMs (regardless of the size of the MM)
and

3-4 DPMs (dual) per system.
The minimum system will be one PM with a single M68040 processor.

The software will not support reconfiguring of a bad processor
out of a DPM, since the hardware will not continue if either
processor on a DPM fails.

Hardware upgrade from a System 90 will require the replacement of
all of the 68020 PM boards with at least one 040 DPM board.
Software upgrade will require a load of new operating system
software, including kernel, SPM, and bootimage diagnostics.

Floating point and memory management operations are supported on
the M68040 cpu.

Sep 8 10:58 1989 PortingEffort Page 1

Software Porting Effort for the 68040 9/8/89

Kernel (12 - 18 weeks)

4-6 wk modifications for new MMU (new page table entry structure, 3-level
tables, relayout of kernel space, IOPM & AlOOO I/0 interface,
binary compatibility issues)

1 wk redo one PM per slot concepts (new structure, new addressing of
other boards)

1-2 wk replace iomap with memory map

1-2 wk change all PM20 machine dependencies - redo lio.h (cache, led's,
interrupt registers) & startup.c (initialization)

1 wk write new interrupt handlers (eg. level 7)

days redo assembler code for 040 (add MOVE16's and MOVS)

days redo TLB and cache management, check on atomic operations not
covered by CAS's now

1 wk handle alignment issues (include AlOOO I/0)

1 wk miscellaneous (ptrace, signals, etc.)

MOTOROLA DEPENDENCIES:

1 wk add floating point support [ONCE PACKAGE ARRIVES FROM MOTOROLA -
expected in September]

days if get from Motorola [expected Nov./Dec.], 2 wks if not
rewrite bus error handler

SPM (3 weeks)

1 wk redo one PM per slot concepts

2 wk support new MMU & memory map, rest of DPM040 features (eg.
initialization)

? misc.

IOPM (1 - 2 weeks by IOPM group)

redo on PM per slot concepts

Sep 8 10:58 1989 PortingEffort Page 2

support new MMU & memory map

SGS (4 - 6 weeks)

1 wk add the pack pragma to existing C compilers

2 wk redo the assembler (and get the optimizers to recognize new codes)

1 wk change the alignment in the code generator (this should take an
hour - but we should check to see if anything breaks in the process)

1.5-2.5 wk verify alignment in libraries

Utilities (1 - 2 weeks)

update makefiles, etc.

check alignment issues

handle any machine dependent issues (disassemblers)

Project time for initial port:

By kernel group:

Kernel 12 - 18 weeks
SPM 3 weeks
debug 3 weeks (initial debug, prior to receiving DPM040)
integration & utilities

1 - 2 weeks

19 - 26 weeks, or 5 - 6 1/2 months

By IOPM group:

3 weeks

By languages group:

1 - 2 weeks

Sep 7 17:05 1989 Plan Page 1

KERNEL CHANGES:

Changes between the PM20 and DPM040:

1. Dual Processor

Wherever the kernel referenced a CSS slot, we now need an alternate
structure to maintain which CPUs are where, eg. {slot, A/B). This
then gets extended to how the kernel addresses another PM, i.e.
which subslot. The structures and algorithms to maintain this
will not assume at most 2 processors per board.

The architecture of the DPM040 and the System 90 is such that for
dispatched interrupts {i.e. interrupts sent via the dispatcher, like
from the VAM), only CPU A gets them, even though they may be
intended for CPU B. We need to provide a software mechanism for
passing the interrupt from one CPU to the other, probably by
extending the current software interrupt scheme.

2. Memory Map

The 68040 generates 32 bit addresses, but the CSS bus requires a
36 bit address, with the slot id of the destination board as the
high order 4 bits. A memory map has been added to the DPM040
covering 0 - Oxfeffffff (the high order 16 Megabytes is local io
space) . All addresses coming out of the 68040s on the PM board
must go through the memory map. This includes all of what was in
the iomap on the PM20, eg. addressing PMs, ICBs, and IOPMs, plus
all memory references. This scheme was partially implemented for
the 486 (including memory striping). The kernel and SPM routines
for walking through memory (eg. vtop, kmem_to_*) must be totally
rewritten.

Since the PM20 iomap does not appear on the DPM040, we need to
replace all references to it in the kernel with accesses through
the memory map. In particular, the iomap is set up to address
the top Megabyte of each PM so that interrupts from one PM
to another is a simple write to an address in the iomap range;
a similar mechanism needs to be designed. The allocation of
addresses in the memory map for off-board references must be
determined; for example, ICBs could stay at the same addresses as
they did on the PM20 and cpus map in at, say, OxdOOOOOOO in 1
Megabyte chunks.

The initial memory map will be created by the DPM040 firmware
having been passed the relevant information by the SPM. This map
should allow for accessing all of memory and perhaps the SPM. The
procedure for passing the memory map tables to the processor is
described in "DPM040 Interface Between Firmware and OS/Kernel",
August 8, 1989, by Shih-Nan Huang. The memory map is shared by
both processors. This means that during initialization, only
one processor on the board should initialize the rest of the
map.

3. New registers and address spaces {lio.h)

Sep 7 17:05 1989 Plan Page 2

Most significantly, interrupt handling is different. For example,
the format of the interrupt request level register has changed.

We need to account for all the new and different registers, eg. the
DPM status register.

4. Addition of a secondary cache

We need to make sure that there are no coherency issues, plus we
might want to replace the cache validity test in the kernel for the
PM20 with the appropriate one for the DPM040.

5. Interrupts

We now have software interrupts along with hardware interrupts at
most levels. What can be done to use these?

A level 7 interrupt is now one of the following:
ipc register write
snoop fifo overrun
invalid map entry
BUS FREEZE
non-read NMI
snoop error

so on the receipt of a level 7 interrupt, we'll need to decipher
which interrupt was received and handle it appropriately. Since
the DPM040 supports levels 1-6, level 7 does not get cleared by
clearing a hardware interrupt in the 'Clear Interrupt Port', but
rather by clearing the specific NMI in that register. Once in
the NMI handler, all NMis should be serviced before returning
from the handler, that is, the Status Register should be checked
that another condition has not arisen while the first NMI was
being serviced.

The current interrupt layout on a PM20 is

0 - error
1 - software interrupt (timein, runqueues, and iopm response)

* 2 - edt interrupt or iopm interrupt from dispatcher
* 3 - gc & mac interrupts from dispatcher (done at level 4)

4 - software interrupt (redirected level 3)
* 5 - console interrupts from dispatcher
* 6 - clock (SPM writes into interrupt dispatcher)

7 - tdb entry from SPM

where * means that the dispatcher must be cleared as part
of the interrupt handler.

We know that 6 will no longer go through the dispatcher (in the
3.0 kernel release), as the SPM will write it directly to the CPU.
5 can be done the same way, since it also goes through the SPM.
In the case of 2 & 3, it doesn't look like it can be changed,
especially with the introduction of the VAM.

Because CPU A always gets the hardware interrupts, CPU B's

Sep 7 17:05 1989 Plan Page 3

interrupt service routines need not acknowledge the dispatcher.
One way of handling this is to have 2 different sets of interrupt
routines using 2 different trap vectors. Those for A

- determines if it received a hardware or a software interrupt
- clears the interrupt in the Clear Interrupt Register
- if it was a hardware interrupt, acknowledges the dispatcher
- calls the appropriate C level routine.

Those for B just clears the interrupt (it is always a software
interrupt) and calls the C level handler. Although CPU A has
more work to do, CPU B's code is much simpler and faster. Or
one set of routines can be maintained, with tests for which CPU
is running scattered throughout. In the new interrupt scheme to
be introduced in the kernel, the dispatcher is acknowledged at
the C level, so this scheme is somewhat incompatible if we allow
for hardware and software interrupts at the same level.

6. Faults on DPM040

Handling of such errors as a CSS bus error on a delayed write is
TBS. What is known now for NMI handling is:

ipc register write - fatal error since should not occur when UNIX
is running (unless this is used for an SPM tdb interrupt) .

snoop FIFO overrun -

[bus watcher is automatically turned off by interrupt]
clear chip cache
clear CPU tags by writing Os to the whole area
[don't clear bus watcher tags - this forces extra snoops,

but don't have to clear out the other cpu's cache]
clear FIFO full interrupt
[bus watcher is turned on by clearing FIFO full interrupt]

invalid map entry - treat as bus error?

BUS FREEZE (or SPM interrupt) - enter debugger

Sep 7 17:05 1989 Plan Page 4

Changes due to using the MC68040 instead of the MC68020:

There are 4 major areas:

core processor
on-chip floating point
on-chip MMU
on-chip primary cache (although there is a cache on the 020)

1. Core Processor

There is a new instruction, MOVE16, which transfers data in bursts
bypassing the cache. It should be used in the buffer copying
routines in userio.c & useriorfs.c.

The major item here is that "the CAS and CAS2 instructions will
always have at least one write to the effective address, even if
the operand compare is unsuccessful" (MC68040 Design Specification
Revision 6.2, pg. 2). In the current kernel, certain items are
modified both with CAS's and with regular (i.e. non read-modify­
write) assignments. This will result in a race condition, because
read-modify-writes only lock out other read-modify-writes and
the assignment may occur between the read of the CAS and the write
back of its value. [On the PM20, the previous value was not
written back, so at worst the CAS would fail and then succeed when
retried.] The areas of concern are:

a) Software locks

Software locks are cleared just by writing a 0 and not by
an atomic operation. Given two cpus, with the first attempting
to get the lock and the second giving it up, if the first attempts
to get it with a CAS, the original non-zero value is written back
on the failure. If the other clears it by writing 0, the 0 could
be overwritten by the write by the first cpu, leaving the lock
locked forever. All places in the kernel where writing 0 is done
to unlock locks must be changed. In particular, the

clr.w (%a0)
in spin unlock() and exit short er() must be replaced with a
CAS with 0. - -

b) All items modified using the atom xxx routines must be checked
to make sure that all updates done on them are through
atomic operations. For example, in the proc structure,
p special, p flag, and p sig are changed using the atom xxx
routines. All places where p special is changed are fine.
Changes to p flag in sig.c and trap.c are done non-atomically
and must be changed. Likewise p sig is not atomically changed
in ssig() in sys4.c and in various files in the nudnix
directory. Perhaps the omission of the atomic updates on
these fields are bugs in the current source.

Sep 7 17:05 1989 Plan Page 5

The queueing routines for the interrupt queues use CAS to
enqueue items, but not to dequeue them. No CAS is needed for
the dequeue, since the CAS is never to a spot being written
when removing an item from the queue.

Many atomic operations are done on the upkern and should be
checked. For each atomic operation, all the other software
(eg. IOPM or SPM) that may use that field in the upkern
structure must be checked to ensure that those do atomic
updates also. This not only applies to the upkern, but to
any other shared structure.

c) In the code executed when returning from a trap (trap_ret in
trap.s), queueflag is set with a CAS, but cleared with a 0.
This must change if this area is not redesigned.

d) Oracle previously called the kernel to do locking via a CAS
for its synchronization routines (trap 2 in trap.s) but
cleared locks by writing a 0. In the S90 version of Oracle,
the kernel is no longer called to do the locking, and both
the locks and unlocks are done via CAS's. Hence, no changes
are required here. Informix, and perhaps other third party
software, does use trap 2. New libraries should be provided
such that trap 2 is no longer called, and trap2 should be
removed from the 68040 kernel.

Because of the new optimized addressing modes and optimized
instructions, all assembly code should be looked at to see if
any reordering should be done. For example, branches taken
are now the optimized path, rather than branch-not-taken.

One serious matter is the failure of the 68040 to detect aliasing
in its write buffer. The greater problem of aliasing in the
68030 does not occur here, since the 040 has a physical internal
cache. However, the 040, in allowing reads to jump over writes,
checks that there are no collisions using the virtual addresses,
rather than the physical ones. According to the Preliminary Design
Specification, Revision 6.2, page 7, "given that two different
logical addresses map to the same physical address, and a write
to one of these addresses closely precedes a read to the other
address, an undetectable collision will occur. The read can
take place before the write and use the wrong data value." This
is a problem for our kernel (and probably all UNIXs) since we
access the own structure in two different ways. We have
contacted Motorola about this issue.

Another matter which needs to be checked is that, whereas the
68020 uses instruction continuation to support virtual memory,
the 68040 uses a restart exception model and does not support a
virtual machine. The exception handlers (trap.c & buserr.c)
must be examined and updated if necessary.

2. Floating point

The instructions directly supported are a subset of the existing
ones: but the programmer's model is the same. In terms of support

Sep 7 17:05 1989 Plan Page 6

for the on-chip unit rather than another chip, the kernel
need not be changed (eg. o_fpu_loaded).

A useful optimization would be to restore a process' floating
point registers only on demand after a context switch, rather
than automatically when going back to the user from the kernel.
However, there does not seem to be a provision in the 68040 to
put the floating point unit in some state such that a fault will
be generated the first time there is an attempt to execute a
floating point instruction.

The 68040 does not support all the instructions and data types
that are supported by the 68881. According to the 68040 User's
Manual, Revision 6.2, pg. A-2, "Motorola will have available
an emulator software package for unimplemented instructions/data
types." Motorola is sending the package to us in September; we
will need to port it to the kernel and libraries. To
handle the emulation, a new exception vector "unimplemented
floating point data type exception" was added at 55. This is
for packed decimal or a denormalized or unnormalized operand
encountered for a binary floating point data type. The 68040
generates a format $0 stack frame for this. Unimplemented
instructions trap to an F-line exception with a stack format of
$2. The trap handler must then do an FSAVE to get the
unimplemented instruction stack frame. Modifications to state.h
for the stack frames, scb.s for the new exception, trap.s for
support for the vector at 55, and trap.c for the different
F-line exception handling, must be made.

The system interface has been redone on the 68040, so the floating
point unit does not appear to be either a 68881 or a 68882. In
particular, the state identification in the frames saved by a
FSAVE have changed:

68881 68040
version format version format

null 00 00 00 ??/00
idle * 18 * 00
busy * b4 40 60
unimpl 40 28

where '#' is the version number and 'unimpl' is for the unimplemented
instruction exception. The 890 kernel distinguishes state by only
checking the format, since it is unique for all 3 state frames. In
the 68040, there is no difference between the null and idle formats,
so in all the kernel routines which check for the state the version
must be checked also.

The documentation does not specify how to get the mask of the
floating point unit on the chip (nor the processor part either) .
This may matter in the future if there are revisions to the
floating point part.

3. MMU

The 68040 implements a 3-level table rather than the current 2-level

Sep 7 17:05 19B9 Plan Page 7

one on the PM20. A 3-level scheme has already been designed,
implemented, and tested for SPARC. It will need to be ported
to the 040. Of course, since the page table layout is different,
the .h files (eg. immu.h) and the use of macros within the
source files will require a degree of rewrite.

The PM20 has the user address space in the kernel address space
automatically, that is, if the kernel is accessing a user address
(any address less than OxBOOOOOOO), it will use the user root
pointer (urxxt) . The 6B040 cannot do this because it has no
knowledge of what a user address is, only that it is doing a
particular type of access based on the function code registers.
Hence, all the copying routines (copyin/copyout) need to do
'movs' (movsu/movus) [the instruction is already used in the
{f,s}u{byte,word,long} routines]. The code originally had the
'movs' instruction, but was modified for the PM20 as an
optimization; for the 6B040 only, the code needs to be restored.

The MMU can have either 4K or BK page sizes. We have decided
to use 4K for compatibility and because using BK pages would
require an excessively large bitmap to keep track of pages (??) •
The firmware is responsible for the initialization of the
Translation Control Register (TC) for 4K pagesize (P=O) and
translations enabled (E=l), and for flushing the TLB before
transferring control to the kernel.

The new MMU facilitates the implementation of shared memory,
because we can take advantage of the writeable bit in the
level-2 page table (as is done in the original AT&T code) .
[James says it will take very little to change this.] Shared
memory between S90 020 binaries and 040 binaries will be possible
without the problems incurred in the sharing of AlOOO and S90
binaries. However, AlOOO BINARIES WILL NOT BE SUPPORTED.

The general plan for mmu support is:

The layout of a page table entry for the M6B040 is:

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
1 0 9 B 7 6 5 4 3 2 1 0 9 B 7 6 5 4 3 2 1

1
0 9 B 7 6 5 4 3 2 1 0

+--+-+--+--+-+-+-+-+-+-+-+-+
I PHYSICAL ADDRESS IURIGIUllUOISI CMIMIUIWIPDTI
+--+-+--+--+-+-+-+-+-+-+-+-+

Usage

UR - USER RESERVED I none
G - GLOBALLY SHARED I entry not invalidated by certain PFLUSHs
Ul - USER PAGE ATTRIBUTE 11 none
UO - USER PAGE ATTRIBUTE 01 none
S - SUPERVISOR PROTECTED I
CM - CACHE MODE I

00 Cacheable, Write through
01 Cacheable, Copyback
10 Cache Inhibited, Serialized I sequential model of execution
11 Cache Inhibited, Not Serialized

Sep 7 17:05 1989 Plan Page 8

M - MODIFIED
U - USED
W - WRITE PROTECTED
PDT- PAGE DESCRIPTOR TYPE

00 Invalid
01 Resident
10 Indirect
11 Invalid

referenced
read-only page

page is not resident or invalid address
page is resident
descriptor is an indirect descriptor
same as 00

The physical address is the value before going through the memory
map, and does not have the slot id in it as was done on the PM20.

A proposed usage of the bits are:

UR
G

Ul
uo
s
CM

M
u
w
PDT

00
01
10
11

00
01
10
11

I
I
I
I
I
I
I

C'able, Write thrul
C'able, Copyback I
-C'able, Serializdl
-C'able,-Serializdl

Invalid
Resident
Indirect
Invalid

I
I
I
I
I
I
I
I

pg islocked
Use on certain kernel pages to keep
them in the tlb??
Reserved for copy-back
copy-on-write
use as part of permission bits (see below)

CACHEABLE
Not valid
Use for IO mapping
NOT CACHEABLE
MODIFIED
REFERENCED
-PG W

Entry is not a valid descriptor.
PG PRESENT
(Not used. Could it be?)
Page is not resident in memory.

Because many of the bits in the page table entry are inverses of
the bits in the PM20, eg. PG W, or multiple bits map onto a single
PM20 bit, eg. PG PRESENT, the current macros for accessing and
setting the bits-must be reworked.

Moving the software attribute 'locked' into the page table entry
from the disk block descriptor (dbd) can be done now that there
is an available bit. (Both 'locked' and 'needs reference' are in
the ptes in the 386 and 3b2 implementations of UNIX.) It provides
a slightly faster region management code, since the extra access
to the dbd need not be done to get at the bit, at the cost of
maintaining two versions of the same code.

The UO & Ul bits are carried out to the pins of the 68040, but
these are not used now by the DPM040. Ul has been reserved for
future use for implementing copy-back caches.

There are no explicit read or execute bits in the page
descriptor entry as is done on the PM20. Execute permissions are
not necessary, although we lose some flexibility of permissions
(that is, a data/stack section would be executable as well as

Sep 7 17:05 1989 Plan Page 9

writable) . Using the SUPERVISOR PROTECTED and WRITE PROTECTED
bits in the page table entry, the permission encodings will be

S W user I supervisor
------+------+-----------
0 1 I r-x I r-x # for user text
0 0 I rwx I rwx # for user data/stack
1 1 I I r-x # for system text
1 0 I I rwx # for system data

As of now, there is no intended use of the indirect pointer at the
page descriptor level (it could be used for shared memory) .
Additionally, the use of the global bit in the page table has not
been defined. However, it seems reasonable to mark the kernel
code and data as global, so that TLB flushes will not flush it
out. Syssegs data should not be marked as global though.

The layout of the upper level tables is:

lST LEVEL DESCRIPTOR:

31 8 7 6 5 4 3 2 1 0
+-+
I 2nd Level TABLE ADDRESS IXIXIXIXIXIUIWIUDTI
+-+

2ND LEVEL DESCRIPTOR:

31 7 6 5 4 3 2 1 0
+-+
I PAGE TABLE ADDRESS IXIXIXIXIUIWIUDTI
+-+

where
00
01
10
11

UDT- UPPER LEVEL DESCRIPTOR TYPE is
Invalid
Invalid
Resident
Resident

WRITE PROTECT in the level 2 table will be used for shared segments
which are attached both read/write and read-only. This will get
around the problems which appeared in the PM20 implementation.

For optimization purposes, the USED bit in the level 1 table
should always be set by software.

The addition of the extra level of page tables will result in
the 'loadstbl' routine to be modified greatly. In places
where it was called, we now have to check to see if it succeeded,
because it now must allocate a page table which it did not have
to do before. Because of the high degree of machine dependency
of this procedure, it should be moved out and made into a
machine dependent .c file. This has been done in the 386 source
already. Another place which needs to be modified is 'uballoc'

Sep 7 17:05 1989 Plan Page 10

and 'ubfree' in fork.c; these routines depend on descriptors
looking relatively the same at each level, which is true of a
PM20 but not a 68040.

User code file layout:

Machine independent binaries compiled on the S90 should run
unchanged on the 040 because the changes to the instruction
set do not affect user code:

- General coprocessor instructions and module support
(CALLM and RTM) were dropped, but never used

- PLOAD and PMOVE were dropped, but they were PMMU
instructions and as such, never used

- MOVEC was modified, but it is a privileged instruction,
so no user ever used it

- BKPT is now slightly restricted, but it is not used
(sdb uses TRAP 1 for breakpoints)

- PFLUSH and PTEST were modified, but were PMMU
instructions anyway.

Floating point instructions in S90 codefiles will be supported
directly by the 040 or by emulation in the kernel.

Kernel memory layout: (kmem.h)

If we conform to the M68000 ABI, the kernel has only 1/2 Gig
of memory, starting at OxeOOOOOOO. Right now it does not
seem possible to fit the kernel into 512 Megabytes, so we
would have to go to overlapping user and kernel spaces.
The initial release of the kernel on the 68040 is V.3 based
and is not AB! conformant. Hence, there is no need to
radically change the address ranges for user space and kernel
space. The kernel addresses just need to be modified to
include another level of page tables.

Kernel addresses were chosen so that collisions in the TLB
on the PM20 would be minimized. Given the new on-chip TLB,
which is 4-way set-associative with different hashing, new
addresses could be determined.

Page tables (all levels), now fall on "natural" boundaries.
This was not a requirement on the PM20, so certain kernel page
tables started on non-page boundaries (two page tables
were in one page) . This will have to be redone, though it
will be trivial.

TLB: (lio.h)

The mechanism for TLB flushing will need to be redone. Now
we do

*FLUSH TLB = 0 where FLUSH TLB is Oxffe63000 (MTAG FLUSH)
to flush the entire TLB on the PM20. On the 040 there is the
PFLUSHA instruction, which will flush the entire TLB.

Sep 7 17:05 1989 Plan Page 11

Likewise, the mechanism of clearing individual entries from
the TLB, now done when flushing out a user's uarea on a
context switch (swtch.c) and after handling a buserr on a
user address (buserr.c), by resetting the valid bit at the
uarea address in the TLB, can be done with the PFLUSH command.
For example, to flush the uarea out we could do

mov. l
rnovec
mov.l
pf lush

&l, %d0 ; select supervisor data space
%d0, %dfc
&ADDR U, %al
(%al)- flushes ADDR U from TLB

For both cases, either a flush of the whole TLB or just the
flush of an address, new routines should be created for each
processor type with a common interface, eg.

for PM20:
#define flush_whole_tlb() *FLUSH TLB = 0

for DPM040:
#define flush_whole_tlb () asm ("pflusha")

Another possibility would be to use inline procedures
instead of defines. These are available in the current
Motorola compiler. The above example would look like

asm void flush_whole_tlb O
{

pflusha
}

and would appear in an inline.h file to be included by
all the files in the kernel. This seems to be the
direction that the kernel is going, based on inspection
of the latest System V.3.2 from AT&T for the 386.

On the PM20, the TLB is also flushed on a context switch by
setting the user root pointer. To set the user root pointer
on the 040, a

mov.l
movec

<new ptr>, %al
%al, %urp

is done. It is unclear in the current documentation whether
the TLB is flushed also. [In the 030, the PMOVE instruction

pmove <new ptr>, %urp

flushed out the TLB. In the 040, this instruction was removed
and MOVEC was extended to handle its functionality. The
current documentation does not discuss flushing.] It seems
that an explicit flush is necessary.

The TLB flushing instructions provide more control than the
corresponding mechanism on the PM20, eg. flushing out user
entries only by using the Global bit in the page tables for
the kernel. For each TLB flush in the kernel, appropriate

Sep 7 17:05 1989 Plan Page 12

action for the 040 should be taken, i.e. choose which variant
of the PFLUSH instruction should be used.

Bus Error handling:

Formats $a and $b, used on the 68020 for bus errors, are no
longer supported. A new format $7, for access error faults,
has been added. The kernel routines (buserr.c) have to be
rewritten for the new processor board architecture (eg. the
general status register on the PM20 is no longer there for
deciphering bus error information) and for the new handling
of bus error exceptions by the Motorola processor. In
particular, we would need to change

- lio.h for general status register (STATUS_REG & CLR_FAULTS)
- *CLR FAULTS = 0
- state.h for the new format
- add new M68040 directory in the os for the new buserr.c

On the other hand, if we get V.4 for the 040 (there is no
V.3.2) from Motorola, then we just need to port their buserr.c.
The Motorola documentation is unclear exactly how to handle
the buserr and the Software group at Motorola is not planning
on working on this until November. In particular, there are
certain write back data fields in the exception frame
presumably for cache coherency, but how they should be used
is not specified in the preliminary design specifications.

Transparent translation registers:

The 68040 has 2 sets of 2 Transparent Translation Registers,
2 each for data and instructions, for use in bypassing the
TLB. One data register (DTTO) should be used for local io
space and should be initialized by the firmware as follows:

logical
logical
E = 1
s = 01
Ul, UO
CM = 10
w = 0

base address
address mask
enabled

ffOOOOOO
00000000

supervisor accesses only
ignore for now
cache inhibited, serialized
not write protected

(care about all bits)

which turns out to be Oxff00a040 for the initial value.
Because the local io space is mapped via a Transparent
Translation Register, no page tables need to be built for it.
(The firmware could also set up ITTO in the same range, except
with the cache enabled, to speed up its execution during test
and initialization.)

The usage of the other registers is TBS. However, it seems
reasonable to use the other data register for some part of
the system io space (piomap??) .

Cacheability:

Sep 7 17:05 1989 Plan Page 13

Additionally, we have 4 modes for cacheability, including
whether reads can jump over a write (not cacheable, but
either serialized or not serialized), so the kernel page
tables must be set up appropriately by the SPM.

For the purpose of bringing up the system, the CACHE
ENABLE bits in the Control Register for each CPU will be
under software control, so that the primary and secondary
caches can be enabled or disabled prior to initiating the
kernel [as is done currently by the SPM for the PM20]. The
page tables should still be built with the Cache Mode bits
set to 00, for Cacheable and Write Through, regardless of
the initial status of the caches.

4. Primary cache

There are 2 on-chip caches, data and instruction, each 4-way
set-associative and 4K in size. The data cache is either
write-through or copy-back; we will do write-through only
(but could investigate copy-back, especially for stacks, at
some later time) .

According to the 68040 Design Specification, "the data cache is
optimized for byte, word, and longword accesses; therefore, a
misaligned access may result in 2 cache accesses." So, for
performance we want strict alignment. This creates two
problems in the kernel:

(a) We must find and account for misaligned structures,
which especially occur in the areas of AlOOO IO. This
was already done for SPARC. In particular, the files
involved are

fs/sSfilsys.h - for the superblock
dtreq.h, icb.h, and vreg.h.

(b) We must find the incompatibilities between 020 binaries
and the 040 kernel.

- Of the structures passed to a binary from the
kernel, 2 will be misaligned:

stat structure returned by stat() and fstat(), and
statfs structure returned by statfs() and fstatfs().

- Signal may also return a misaligned stack to the user.

Sep 7 17:05 1989 Plan Page 14

OTHER SOFTWARE:

SPM & Other Standalone:

1. The ability to support more than one CPU per board has been provided
by the work that Mark Schultz, Joe Saunders, and Brent Leever have
already done. The implementation is not complete though, because
it seems to assume only one processor type, PM20, is supported, rather
than PM20s and DPM040s. Additionally, certain commands on the menu
will need to include subslots.

2. The SPM must be able to recognize the two new board types (a single
cpu DPM040 has a module id of Ox22 and a dual cpu board is Ox26) and
manage a mixed system of single and dual DPM040s.

3. For the M68040, the following changes need to be made:

- The way that interrupts are sent to a cpu will change, because (1)
the interrupt request register changed on the DPM040 and (2) there
are now subslots to be accounted for [handled above] .

- The routines to walk pagetables will change due to the 3-level
MMU, the different page table entry layout, and the addition of
the memory map.

- The initialization code for the system will change due to
(a) need to start 2 cpus per board
(b) need to build a memory map and have it available to

the IOPMs
(c) one processor per board must load up the memory map

- The disassembler needs the new 68040 instructions.

No significant changes are required in the other areas, eg. the
debugger.

The implementation of the memory map, new memory mapping routines,
and the initiation of the kernel was done for the 486. The support
for 3-level page tables was already done for SPARC. What is needed
is to combine the two.

4. Because of the change in alignments, the superblocks on all the disks
will change. The 'mkfs' routine must generate the new superblock
rather than the superblock for a 68020. The need to change any other
standalone routines is not known at this time.

IOPM:

1. The IOPM walks the kernel page tables. The IOPM group will need
to modify their code to support the new memory management
structures, including the memory map. The SPM and OS must provide
whatever structures are necessary for the IOPM to be able to walk
the page tables. This work was started for the 486, and we've
been working with Craig on his requirements.

Sep 7 17:05 1989 Plan Page 15

2. The IOPM directly interrupts a PM using its slot number and

SGS:

the fixed address for the interrupt request register (PM INT REQ REG)
on the board, for a level 1 IOPMRESPONSE interrupt. This -
will no longer work in a dual PM system. A new mechanism must be
done, possibly based on a mapping of PMs generated by the SPM
and made available to the IOPMs.

1. A new magic number is required to keep the .o's from being combined
and to help the kernel distinguish between S90 020 and 040
executables.

2. Assembler changes:

The new 040 instructions must be added to the 030 assembler, and
the obsolete ones removed.

3. Compiler changes:

To take advantage of the performance improvement by correctly
aligning data, the compiler must change to generate the new offsets.

To support old alignments, the "pack" pragma from the System V/386
compiler should be implemented. The pragma is a directive to change
the type of alignment the compiler will use on a particular set of
data. If we have a structure containing

short x;
long y;

the 020 compiler will start 'y' immediately after 'x', i.e. on a
short boundary and the 040 compiler would place it at the next
long boundary, adding 2 bytes of padding between 'x' and 'y'.
Using the pack pragma, we can force the compiler to do short
alignment via pack(2) and then have it return to long alignment
via pack(4). The above example now becomes

#:pragma pack (2)
short x;
long y;

#:pragma pack(4)

The compiler (in particular the optimizer) must be taught about the
new 040 instructions, so that inline asm directives and inline asm
procedures can include the 68040 specific instructions.

The code generation and optimizer in the compiler should be redone
for the optimized addressing modes and optimized instructions of the
68040.

There may be a reason to generate the new floating point instructions
added in the 68040 for extended precision.

These changes must be done in-house, since Motorola will not be
providing a 68040 compiler which generates COFF files.

4. Linker changes:

Sep 7 17:05 1989 Plan Page 16

The linker no longer needs to round up text sizes to the next page
when the text size is at a page boundary. This was put in to get
around a problem on the PM20 of a prefetch causing a buserr.

5. Libraries:

We should investigate the use of MOVE16 in the mem*() library
routines.

The emulation routines for floating point need to be included in
libm.a.

There may be some changes required for the changes due to the new
alignment, in particular, the alignment of the signal stack.

6. Disassemblers:

The new instructions must be added and the removed ones deleted.

Utilities:

For the non-machine dependent utilities, the 020 binaries could be used;
however, they SHOULD be remade for the 040 for improved performance.

1. All disassemblers, eg. sdb, must be updated.

2. All places where the source has
#if def M68020

we must do
#if defined (m68k)

or
#if M68020 11 M68040

3. M68881 ust be set by default.

4. The alignment changes cause some problems in some utilities, especially
those dealing with AlOOO IO. These have been identified in the work
done for SPARC. The addition of the pack pragma should obviate the
need for source changes.

Diagnostics:

1. The initialization of the DPM needs to be redone. The state of the
board and each cpu when the kernel takes over is yet to be specified.

2. The SPM builds the memory map in memory and passes to the
firmware running on the PM board the slot number, starting location,
and size of the tables. The firmware then fills the on-board
memory map (although only once per cpu on the board) . See
"DPM040 Interface Between Firmware and OS/Kernel", by Shih-Nan Huang,
dated 8/28/89.

Other Software:

Sep 7 17:05 1989 Plan Page 17

1. The change in alignment might affect Ethernet, communications packages,
and database packages. For example, Excelan's Ethernet assumes short
alignment.

2. A standalone utility needs to be provided to convert the existing
superblocks on S90s, since the alignment changes for the 040 causes
the superblock to be incompatible.

3. To facilitate upgrades from 020 binaries to 040 binaries, a Porting
Guide should be provided to handle alignment issues.

Sep 6 11:30 1989 changes Page 1

KERNEL changes:

OS DIRECTORY:

clock.c
use common routine for TLB flush
update reference too update iomap and update my iomap()
redo queueing of TIMEIN interrupt for self: writes to slot and PM20 address
clkstart - scans through sbus_slot_id for SBUS_PM20s

disp.c
p->p running is set to own.a slot; will o slot now be (slot #, A/B)
setrq - looks through list of pm_own up to SBUS NUM SLOT

exec.c
recognize 040 magic numbers in codefile headers in gethead()

fault.c
change in pte bits ? - move lock from dbd to pte
use common routine for TLB flush
redo flush_all_tlbs() and wait_for_tlbs_flushed()

fork.c
redo initialization of segment (page pointer) table for child

getpages.c
possible changes if we move dbd bits to pte

page.c
usual memory changes
redo TLB flush in sptalloc

physio.c
current implementation uses ku_to sbus u32(), kv_to_sbus_u32(), and

pg_sbusaddr. Do we need to change-this?
probe.c

possible changes if we move dbd bits to pte
uses pg_sbusaddr - is this ok?

region.c
3 level memory changes
implement sharing via higher level page tables
move bits from dbd to pte
change TLB flush in loadreg
redo loadstbl (already done for SPARC)
remove AlOOO support via ifdef's ???

sched.c
uses p->p running to set pm own[p->p running]->o runrun - if

is now (slot#, A/B), then it can't be used as an index.
o_slot & p_running need to be rethought

sig.c

o slot
so

ifdef out test on COP MIDINSTR - this doesn't occur on the 68040
check out potential alignment problems
may have some ptrace changes, especially due to the way breakpoints

and interrupts are handled on the 040
change TLB flush in procxmt()

space.c
add any necessary memory management stuff

startup.c
startc()

redo o slot for initializing upkern.up slot ??
possibly redo call on pm_int_req_reg_init
change TLB flush

Sep 6 11:30 1989 changes Page 2

mlsetup ()
potential memory map changes
kernel layout changes
implement 3 level tables
change TLB flush

pm init() - may be a total rewrite
- uses up slot

remove PM20 references or update:
*GREEN LED = PM LED ON
*PERMIT FLT ENBL = Oxff

handle calls on­
iomap init ()
pm_cache_on ()
cpu_get_type ()
fpu get type() - remove
clear_pm_int_req__reg to clear any pending interrupts

pm_cache_on ()
REWRITE

sysseginit ()
add any changes for 3 level memory
handle going through sbus slot id for building own_sptr's

mktables ()
possible changes for 3 level MMU

pOinit ()
p_running is set to o slot

startup()
goes through sbus slot id to find SBUS IOMs

swtch.c
swtch_continue ()

synch.c

redo flush of uarea from TLB
change references to LEDs on PM20

redo stop_all_processors() because scans through spm_mem.sbus_slot_id
looking for SBUS PM20s and sending them a level 7 interrupt

check use of up_slot-in upkern
upkern_level_one() and upkern_level_four() send level 1 and 4 interrupts

to spm_mem.upkern.up_slot
sys3.c

handle alignment problems in stat(), fstat(), statfs(), and fstatfs()
for 020 binaries

sys4.c
verify sending set time interrupt to spm via dispatcher is still valid

sysarix.c
verify sending power margin interrupt to spm via dispatcher is still valid

text.c
3 level memory changes ??

IO DIRECTORY:

ints.c
redo sending interrupts to other PMs

pm iomap.c
- no longer is valid - replace

Sep 6 11:30 1989 changes Page 3

ML DIRECTORY:

userio.s, useriorfs.s
use move16 wherever possible
do movs in copyin/copyout

scb.s
add floating point exception at 55 and remove obsolete ones

trap.s
support new exceptions and redo interrupts
remove trap 2 for Oracle - locking AND UNLOCKING now done by CAS's

in Oracle libraries for the S90 (still used by AlOOO binaries,
but they will not be supported on the 040) .

SYS DIRECTORY:

fs/s5filsys.h
alignment problem in struct filsys (superblock)

dtreq.h
alignment problem in struct pd, use pack(x) pragma

icb.h
alignment problem in struct icbcmdhdr, use pack(x)

lio.h
move to machine dependent directory, rewrite

state.h
add new exception stack frames

sysmacros.h
add alignment macros (use SPARC ones)

vreg.h

pragma

alignment problem in struct bd_desc, use pack(x) pragma

CURRENT MACHINE DEPENDENT DIRECTORIES:

os/M68020:

buserr.c
need totally new one

fpp.c
rewrite to support new state identification (versions and formats)

machdep.c
rewrite, except for backtrace

tdb.c
should be the same, except for turning the on-board cache off

in TDB CMD CHECK TAGS
trap.c - any changes could just be ifdef'ed

add new F-line handler for the floating point emulator
remove obsolete traps

sys/M68020:

immu.h
rewrite, but some should be restructured to save common elements

with PM20
kmem.h

Sep 6 11:30 1989 changes Page 4

rewrite
psl.h, reg.h, spl.h

no changes
trap.h

slight modifications for new floating point traps, etc.

Sep 6 12:07 1989 mmuchanges Page 1

GENERAL MMU CHANGES

Where possible, an estimated number of days work is given in the
left column. "S" in the left column denotes the work has been
already done for spare.

include changes (TOTAL: 5-7days)
2d immu.h -
S modify to include the third level of table. (done)

modify defines to describe table sizes.
modify descriptor structures to reflect bit fields of the PMMU.

ld modify macros to manipulate bit fields of pmmu.
2d kmem.h -

. modify memory layout to reflect new table sizes and cache alignment.
vmem.h -

. some addresses change depending on user size.
S own.h -

. add a pointer to the "private kernel Ssegment table"
param.h -

. NCPS & CPSSHIFT are mmu dependent. If they could move to another
file like immu.h, or be made to symbolically be set according to
constants in immu.h that would be best, otherwise, dont' forget to
change them.

S pfdat.h -
. pf use becomes a ucnt_t type; that is and unsigned short.

s spm mem.h -
.-add an invalid ssde entry.

S types.h - -
. add ucnt t type (unsigned short) for pf_use (alternative?)

iopm changes
Sd? . If the iopm accesses page descriptors without the use of macros

there may need to be changes. Also, there may need to be changes
due to the lack of mode bits.?.
(I talked with craig. He will do any necessary mods. and is trying
to reduce any machine dependencies.)

spm changes (TOTAL 6d)
. General

. address conversion routines need to be modified for new iomap scheme .

. Now Map memory that will go through transparent translation registers.

S .dbug/kdebug.c -
. Rewirte vtop() to include third level of mmu (simplifies routine).

S . local/sbus.c -
. Set Spm Mem->invalid ssde & send ssde value as root ptr, not sde.

6d os/pagetable.c - -
In general, the routines should be "genericized". Much of this
has been done for spare, already. (there were some areas where
sizes were hardwired, or were defined as one thing that should have
been another. No big deal).
PM own() still needs some work .

• ssde to km(), km to ssde() needs to be added.
[psr]de-to km(),-km-to [psr]de need to be genericized and the pde
routine-needs to use some sort of macro or routine to set the mode.

. the underlying *pfn conversion routines need to use the new mapping
scheme to encode a physical address into 20 bits (not 24) of the pde.

Sep 6 12:07 1989 mmuchanges Page 2

PM bad tbls() must now include building a bad sstbl.
PM-stbl() should now build both the sstbl and the required stbl's.
PM-own() needs to be updated to fill the proper tables and lay
them out in memory. (This still needs some cleaning up).

kernel changes (TOTAL: 15d)
Most of the work has been done to add the segment
local io -- transparent translation
loadstbl -- needs some major cleanup

. specific routines to allocate/free the upper level segments.
Modify routines to use pmove, ptest(to look at status), pflush
and to use the pmmu status registers
address conversion routines need to be modified for new iomap scheme

. Set up of transparent translation registers and enable them.
use for upper 4 Mb of address space. (local io)
can it also be used for iopm space, or gc maps?

How to write findpde? Do we walk ourselves or is there a command?
When you turn on the cache, does this also turn on 2ndary cache?

files
2-4d. ml/M68040/mltrap.s -

. are there changes to any findpde, or references to pde bits?
2d os/fork.c -

. clear out sstbl (not stbl) on process creation.
uballoc/ubfree must be rethought. it is no longer allocating a
page size root (sstbl) table (it is now 512 bytes) . it needs to
return an rde, it is kludged right now. maybe it could return
something like +--------+

I sstbl I 512
+--------+
I upage I lk
+--------+
I stack I ??
+--------+

where sstbl and upage are on same physical page. (problem?) upage
would no longer probably be on a page boundary???

S os/page.c -
ASSERTS and otehr tests on pf use must not be signed. pf use is
now an unsigned short. So tests like (pf use>O) become (pf use!=O).
There is one spot where "mode" is OR'd into a long. Since-modes
are now encoded into the remaining bits something like
I= pde mode(mode) must be done, where pde mode makes a pattern for
the appropriate bits according to the mode given.

os/region.c -
S SEOFFMASK define uses Ox200000. This should be PNBPPT (or whatever

means the number of bytes pointed to by a pagetable) .
S test a value returned by loadstbl denoting success or failure.

(loadstbl may fail now since it may need to allocate a table) .
. you may want to move loadstbl to machdep.c since it may differ

greatly from the much simplified two level version.
os/startup.c -

S you may need to set the root process root pointer u.u_;procp->p_urde.
(depending upon how the hw user & supervisor root pointers are used)

S at the spot where you loop through the sysseg tables, referencing
... stbl, you must now reference sstbl.

os/buserr.c -

Sep 6 12:07 1989 mmuchanges Page 3

2d usrxmemflt() - a stack probe may fail@ mid or upper table level,
not necessarily at the page level. rewrite to accomodate and
grow stack properly.

S rewrite findpde to add another level and potentially to denote
failure at an upper level table.

os/M68040/machdep.c -
see spm . logical <-> physical address translation routines must be modified

to accomodate a different mapping since there are only 20 bits in
the pde (not 24) for the physical address.
These routines are common between the spm and the kernel. It
would be nice to break these out into a separate file that could
be shared by the two different programs. In this way, only one
file would need to be maintained.
Other routines are necessary: pde mode() (if it can't be a macro).

4d loadstbl() needs a major overhaul~ It can potentially (de)allocate
an intermediate table (stbl) . So, it must be structured to return
failure if it can't allocate the table. Also, ptalloc has been
used in the past to allocate these tables. Is this a problem?
Should it have its own set of manipulation routines? I have coded
this routine for spare and it could be used as a base for the 040
loadstbl, but it should be reviewed and cleaned up.

io/icb.c -
Sd? it seems that whatever mods are made to the 020 for iopm space

will translate easily to the 040. If iopm space is to be
transparently translatable, it is best if it sits next to the
local io space for each board, that way the transparent translation
register can be made to define just that much bigger space.

M68040/vuifile -
modify it to get its origin and length values from some include
file (this may take some sed'ing) so that it does not need to be
modified by hand with each change of kmem.h.

binary compatibility (see stone)
I don't know what problems there may be here. The segment size
is much smaller than that for the two level table, so alOOO and
s90 text/data segment boundaries should not be a problem.

Shared text?
. I didn't have any problems with this in the spare implementation, but.

