ANL-6888

ANL-6888

Argonne JAational Laboratory
IPL-VC
A COMPUTER SYSTEM HAVING THE
IPL-V INSTRUCTION SET

by

Donald Hodges

ANL-6888
Mathematics and
Computers
(TID-4500, 32nd Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60440

IPL-VC
A COMPUTER SYSTEM HAVING THE
IPL-V INSTRUCTION SET

by

Donald Hodges

Applied Mathematics Division

May 1964

Operated by The University of Chicago
under
Contract W-31-109-eng-38
with the
U. S. Atomic Energy Commission

TABLE OF CONTENTS

ABSTRACT . . . o e i e e e e e e e e e e e e e s e e e e e e e e e
I. INTRODUCTION. i vt ittt e e e s e e e e e e e

II. GENERAL DESCRIPTION 0o
III. USERS' VIEW OF THE SYSTEM oo
Iv. WORD FORMAT AND INSTRUCTIONSET.
V. HARDWARE ORGANIZATION. v v oo
VI. LOGICAL DESIGN OF THE IPL-V PROCESSOR.
VII. IMPLEMENTATION, COST, ANDSPEED
VIII. CONCLUSIONS. o e e e e e e e e e e e e e e e e e
IX. ACKNOWLEDGMENTS i it oo oo oo

REFERENCES . « & v« v o o o e o v o v o ot v oo o s e e o v o e e o s e oo e

11

12

16

16

16

16

LIST OF FIGURES

Title

Block Diagram of IPL-VC System.
Word Formats. o v v v v vt v v oo v
Symbol Interpretation in an Instruction.
Registers in IPL-VC List Processor.
Instruction Sequence Chart.

Typical IPL-VC Operation Phase Sequence Sheet

..........

..........

..........

..........

..........

Page

10

11

13

15

IPL-VC
A COMPUTER SYSTEM HAVING THE
IPL-V INSTRUCTION SET

by

Donald Hodges

ABSTRACT

Shaw et al. (Ref. 1) have described a possible hardware computer,
called IPL-VI, which showed the important features such a machine should
have for its IPL-V instructions, but the input/output and arithmetic in-
structions are not considered. However, with the arrival of the present-
day module concept of arithmetic computer organization, a new possibility
arises for the construction of an IPL-V hardware machine. To convert an
arithmetical computer into an IPL-V system, it could be provided with a
second processor which operates with certain basic IPL-V "J" processes
as its instruction set. The second processor would require direct access
to memory for its data and instructions in order to be able to operate at
as fast a speed as the memory would allow. The instruction set of the sec-
ond processor should be all the basic list operations. The remaining list
operations could be built up as routines from these basic operations. All
the arithmetic and input/output processes would be performed in the orig-
inal arithmetic processor, withthe List Processor taking care of any neces-
sary list "bookkeeping." The necessary data and addresses would be
communicated between the two processors by prelegislation of memory
locations where the processors would find the relevant information when
requested to perform an operation. Thus, there would have to be some
means of transferring control back and forth between the two processors,
presumably some form of interrupt system.

The advantages of such an approach to an IPL-V hardware system
over building a completely new system are as follows:

1. A large, fast memory, as provided with present-day, large,
arithmetic computer systems, would be available.

2. The arithmetic and input/output facilities would be immediately
available and as fast as possible. In addition, the wealth of input/output
devices on a modern, large, arithmetic computer installation is much greater
than could be justified for an IPL-V computer itself.

3. An IPL-V simulator program would be available on the original
computer. The actual IPL-V system presumably would not contain all the

excellent tracing, dumping, and snapshot procedures that are available in
the simulator and are so useful for program debugging.

4. The cost of building a fairly simple List Processor would be
considerably less than that of building a completely new computer.

For such an IPL-V computer to have universal use, its input should
be program cards identical to those used for input to present-day IPL-V
simulators, as specified in the IPL-V reference manual (Ref. 2). This
would, however, require a new assembler to set up the program in stor-
age in a suitable manner for the IPL-V system to be able to execute it.

I. INTRODUCTION

Most work in digital computer engineering has gone into the con-
struction of faster processing units for the performance of normal, nu-
merical arithmetic. However, some classes of problems do not use
conventional arithmetic processors as efficiently (from the point of view
of speed and, in general, the quantity of hardware) as they would use a
special processor built to solve the particular problem. Because of its
commercial applications, only the area of business data processing has
received any serious attention. Another area which is arousing interest
in scientific data processing is that of the heuristic, or gestalt, type prob-
lem. This may in general be classed as artificial intelligence, covering
such areas as learning, pattern recognition, automatic translation, and
problem solving; the game-playing machine is one application most easily
understood by the layman. However, the same techniques developed for
this type of programming now appear to have application in the organiza-
tion of large collections of information, such as large business files and
libraries; details are given in Ref. 3.

In arithmetic computers for the applications described here, it has
been found convenient to define new programming languages which are
classed as Symbol Manipulation Languages. To achieve a working machine
obeying such languages, simulation programs of such machines have been
written on conventional arithmetic computers. Five major languages have
been developed, and these are reviewed in Refs. 4 and 5. They are COMIT,
a system for helping in automatic translation (Ref. 6) and four general
information-processing languages: LISP 1.5 (Refs. 7, 8, 9), FLPL (Ref. 10),
IPL-V (Refs. 2, 11), and SLIP (Ref. 12). Although descriptions of the first
two information languages exist, there is little published work involving
their use. However, with IPL-V, not only the original designers of the
language, but others have used the language as a working tool. The uses
of the language are reviewed by A. Newell in Ref. 13. Other applications
or adaptations of the principles are given in Ref. 3, and a use at Argonne

itself is given in Ref. 14. However, since all these applications use sim-
ulators on machines other than an IPL-V machine, they are slow, and it is
difficult to gather information on their operation.

This report then presents a proposal for the realization of an
information-processing computer having the IPL-V primitives as its in-
struction set. The reader is assumed to have a working knowledge of the
IPL-V language as described in Refs. 2 and 11.

The principles of the equipment described here could well be ap-
plied to most of the present-day large computing systems, such as the AMD
GUS system, IBM 360 series, Burroughs 35000, etc. However, these prin-
ciples will be described in detail for the CDC-3600 system, as owned by
the Argonne National Laboratory, because this would be the most suitable
machine presently at the Laboratory for the attachment of such equipment.
The other alternatives are the IBM-704 system and the Argonne-built GUS
system. The former does not readily lend itself to the type of conversion
to be described, while the latter is handicapped by small memory size,
lack of suitable input-output equipment, and the absence of a written IPL-V
simulator program. The convenience of having a simulator, even on a hard-
ware IPL,-V machine, is obvious to an IPL-V programmer. The simulator
programs contain excellent tracing, dumping, and snapshot procedures.

The reader is assumed to be familiar with the CDC-3600 as described in
Ref. 15. The CDC-3600 has the following convenient features for convert-
ing it into an IPL-V hardware system (henceforth called IPL-VC):

1. A fast (l%—microsecond cycle time), 64,000-word, random-
access memory.

2. Ease of attachment of equipment directly to the memory.
3. Working input-output equipment of all types.

4. A high-speed conventional arithmetic unit, with the provision
of one list-processing instruction already built in, which is all
that is needed in the arithmetic unit itself.

5. An IPL-V simulator program written for the CDC 1604, which
is being converted to be suitable for the CDC-3600.

Several papers have been written proposing the hardware design
of a list-processing computer. Reference 16 describes the possible modi-
fications to the 7090 to make the Fortran List Processing process more
efficient. Reference 17 is a memory organization for a list-processing
computer with no special reference to a particular language. Reference 18
details the complete design of a list-processing machine which is in no real
relationship to any of the previously described languages. References 3
and 19 describe the design of a processor which the authors believe
represents an extension of the fundamental concepts of an associative

memory and the IPL-V language. The main point appears to be the use

of variable-length data and a proposal for a similar piece of equipment,
called ADAM, has been described in Ref. 20. Reference 1, written by the
originators of the IPL-V system, describes a possible computer which
they have called IPL-VI. However, they do not detail the arithmetic and
input-output of IPL-VI. IPL-VC, now to be described, drew much inspira-
tion from Ref. 1 (which appeared as early as 1958).

II. GENERAL DESCRIPTION

To convert an arithmetical computer into an IPL-VC system, a
processor must be provided which operates with certain basic IPL-V
Primitives as its instruction set. This processor requires direct access
to memory for its data and instructions so that it can operate at as fast
a speed as the memory will allow. The basic Primitives that this proc-
essor would perform are the operations on, and testing of, lists. The
remaining list-processing Primitives would be executed in this processor,
built up as routines from the basic Primitives. All the arithmetical and
Input/Output Primitives would be performed in the original arithmetical
processor, the List Processor taking care of any necessary "bookkeeping."
The necessary data and addresses would be communicated between the two
processors by prelegislation of where in memory the processors will find
the relevant information when requested to perform a particular operation.
Thus, there must be some means of transferring control back and forth be-
tween the two processors; it will be assumed to be some form of interrupt
system. While the system may be sophisticated later, the initial assump-
tion will be that only one or the other of the processors will be active dur-
ing a run of a program; i.e., no concurrency of operation will take place.

Having described the system in general terms, we will now describe
the IPL-VC system using a CDC-3600 as the original computer (a block
diagram is shown in Fig. 1). The

CDC-3600 System
CDC-3600 memory system provides

New Equipment M:;'f)ry for the connection of five devices
which are served in a first-come,
I. . ¥ first-served, cyclic order. In the

Prloz:;;;,or C(;rélon;u";‘\;fciit;:n “Control Prggggsor Argonne CDC-3600 system, only

two devices are connected (the
3604 Processor and a 3602 Com-
munication module); thus the attach-

ment of a new device having direct
In/Out Channels

access to memory is immediately
3607 possible with no modification to the
‘ memory system. For the control
Satellite in/Out communication between the two
Coupler Equipment processors, one of the data channels

|
|
|
|
|
|
|
I
1
[
|
|
|
|
I
|
[
I
[
I

could be used, and for programming
Fig. 1. Block Diagram of IPL-VC System convenience,the hardware could be

made to appear like a CDC type 3682 satellite coupler. However, the
actual hardware would be much simpler since no actual data transfer
would take place through the coupler, other than a six-bit piece of informa-
tion which could be carried by the flags. Thus, when the list-processing
processor wished the 3604 processor to do something, it would interrupt
the 3604 processor by an interrupt from a particular equipment on a par-
ticular data channel. By performing a copy status instruction from that
equipment, the 3604 would learn from the bit arrangement of the flags
what it was being asked to do. When the 3604 had finished its operations,
it would effectively interrupt the list-processing processor and tell it to
continue, by setting one of the flags in the satellite coupler with a function

instruction.

III. USERS' VIEW OF THE SYSTEM

The IPL-V programmer would code his program and have his cards
punched identically to the ones used for input to present-day IPL-V simu-
lators, as specified in Ref. 2. The assembler and control programs will
probably have two levels of development. The first will be a two-stage
process in which the assembler program will be run under the SCOPE
monitor job system. The output of the assembler program would be a
listing of the assembled program, with any errors indicated, and a binary
magnetic tape, which would be the complete contents of the magnetic core
memory for the initial state of the IPL-VC machine. This program would
be run without the presence of the SCOPE monitor, and the first record
would be autoloaded into the CDC-3600 memory. This record would then
effectively bootstrap all the actual IPL-V code into memory and start the
List Processor. The starting address would be placed by the 3604 in the
current routine address list H1 (this list starts at a fixed location), and
the 3604 would signal the List Processor (via the satellite coupler) to
start. The 3604 would then halt, and the List Processor would have full
usage of memory. When the List Processor required the attention of the
3604, either to perform a Primitive, or because the end of a program had
been reached, it would interrupt the 3604, which would start running again.
Normally the 3604 would perform what was asked of it before handing con-
trol back to the List Processor and halting itself again. Input and output
of information to and from the outside world would take place just as with
the IPL-V simulator.

The second program development would probably be to incorporate
both the assembler and the running of the actual IPL-V program under one
job in the SCOPE monitor system.

1IV. WORD FORMAT AND INSTRUCTION SET

The formats of the types of words used throughout IPL-V expres-
sions are shown in Fig. 2. The standard IPL word is a Symbol (some
memory address), its type (given by P and Q), and a Link address which
indicates where the next item in the list is to be found. Figure 2a shows
the bit allocation that would be used in the CDC-3600. Eighteen bits are
allowed for addressing, but only the lower 16 bits are needed to address
a 64K memory. The upper two bits will be unused initially, but these bits
may be used later to directly address auxiliary storage, perhaps after the
manner of the Ferranti Atlas computer. Three bits each represent P and
Q, and their labeling of the word type would be the same as in the IPL-V
manual. The other six bits in a word are unused.

a. Standard IPL Word

4 4 4 B 1 0
[Pla] svmeo. [nu] Une |
b. Data Terms
g M4 0
[PTe] DATA
Fig. 2
Q-1
P = 0 Integer
P = 1 Floating point Word Formats
P = 2 Alphanumerical
P - 3 Octal
¢. Instruction
g 440 B 11 0
[PTQ] symeo. [nu] LINK |

P is operation code.

Q is designation code.

Symbol is name of routine or a Primitive.
NU means not used.

A data word allows 39 bits for the data (either integer or floating
point representation allowed), and uses the same P and Q bits as all other
words to indicate the type of data contained in the word.

An instruction word contains the three-bit operation code (P), the
three-bit designator (Q), and the 18-bit Symbol and Link fields. When
P = 0, the Symbol part of the instruction will indicate a Primitive, if it is
less than the address 128, and the name of a routine or a programmed
primitive, if it is 128 or greater. In the IPL-VC hardware, the Primitives
then are divided into the following three groups:

a) 0 to 63: Primitives actually executed by the hardware.

b) 64 to 127: Primitives wholly or partly executed by the
3604 arithmetic processor.

c) 128 upwards: The programmed Primitives and all programmer
routines.

10

In the programmer's punched card input to the assembler, the IPL-V in-
structions would have their normal J notation as designated in the manual.
Internal to the IPL-VC system, the instructions would in general have dif-
ferent numbers to make it easy to detect the type of Primitive. Figure 3
shows the way this decoding would take place within the 18 address bits of

a Symbol.

a 3130 29 4

|]] The J-Primitives described in Ref. 2
are listed in Table I, together with how they
would be executed. H denotes that these Primi-

If bits 41 through 31 are zero and

bit 30 = 0: Basic hardware Primitive

executed in List Processor tives would be executed in the List Processor
bit 30 = 1: Basic Primitive executed as a programmed routine, using those routines
in 3604 Processor designated by H; C denotes execution of a Primi-

tive in the 3604 processor. The double designa-
tion, CH, is used to indicate that some Primitives
will need some list-processing "bookkeeping."

A question mark following an entry indicates

that there is doubt whether this will or should be executed by the IPL-VC
system. The Primitives listed with a question mark fall into the following
two categories:

Fig. 3. Symbol Interpretation
in an Instruction

a) Those that will not be allowed. No monitoring system would
be built into the hardware so that the monitor Primitives
(7147 to J149) would have no meaning.

b) Those that may be allowed. These are the generator house-
keeping Primitives. An individual can program his own sub-
routine processes, and there is some doubt as to the need for
the generator process.

Table I
HOW THE J PRIMITIVES ARE EXECUTED

J1 H J2n P J75 H J114 CH J133 H J152 C
J2 H J3n P J76 P J115 CH J134 H Ji153 C
J3 H J4n P J77 P J116 CH J135 NU Jl54 C
J4 H J5n P J78 H J117 CH J136 H Jis5 C
J5 H J60 H J79 H J118 CH J137 H Jl56 C
J6 H Jj61 P J8n P J119 CH J138 H J157 C ‘
J7 H Je2 P J90 H Ji120 C J139 NU Ji1s8 C
j8 H J63 H I9n(n#0) P Ji21 CH J140 C J159 C
J9 H J64 H J100 ? Jizz C Jlal C J160 C
J10 P Jj65 P J101 9 J123 C J142 C Jl61 C
Jl1 P Je6 P J102 ? J124 C J143 C J162 NU
J12 P J67 P J103 NU J125 C Jl44 C J163 NU
J13 P J68 H J104 NU Jl126 CH J145 C J164 NU
Jl4 P Jj69 P J105-8 ? J127 H J146 C J165 2
J15 P J70 P J109 NU J128 CH J1a7 9 Jle6 2
J16 C J71 P J110 CH J129 CH Jl4a8 ? J167 2
J17 ®° j72 P Jli1 CH J130 H Jl49 ? J168 NU
J18 ? J73 P Jl12 CH J131 H Jis0 C J169 NU
J19 ° J74 P J113 CH J132 H Jis1 C J170 9

H: Hardware executed; P: Program executed; C: 3604 executed; NU: Not used.

11

V. HARDWARE ORGANIZATION

The Register organization of the List Processor is shown in Fig. 4.
This diagram indicates all the registers required, but no control is shown.
There are two 38-bit registers, A and B; the former receives its input
from memory, while the latter transmits its output to memory. Special
single-address registers indicate the head address of the Communication
List HOA, the head address of the Available Space List ASL, the Next
Instruction Address NIA, and a Memory Register MR, which defines the
address at which the current Read or Write operation is to take place.
Two other short registers are required, one to indicate the current hard-
ware Primitive that is being performed; the other would be a single-bit
register which is really H5 and is used to encode and retain test results,

< “Tﬁréwd‘f b g il ,51:5@% b

From Memory
[APQ I AS | AL J38 A Register
[BPQ | BS [L |38 B Register
To Melmory

l Instruction 4[7 l HOA J
16

ASL
L M
H> NIA

L |6

MR

L e

Fig. 4. Registers in IPL-VC List Processor

In practice, the hardware would execute the following functions,
other than the basic hardware Primitives, as if they were Primitives:

1. The operations with P ;/ 0.
2. The special case of P = 3 or 4, and the symbol is HO.
3. Restoring and Preserving of current routine address list HI.

Table II shows the actual instruction set of the list processor.

Table II

INSTRUCTION SET

Octal Memory Octal Memory J No. Octal
Operation Cycles for Operation Cycles for Executed Operation

Miscellaneous Code Execution* J No. Code Execution* in 3604 Code
Restore HI 10 5 0 70 0 16 120
Preserve Hl1 11 4 1 20 2+ 110 130
P =1 01 2 2 21 3 111 131
P =2 02 5 3 71 0 112 132
P =3 03 5 4 72 0 113 133
P = 3HO 12 2 5 73 0 114 134
J8 } 6 22 5 115 135
P =4 04 4 7 74 0 116 136
P = 4HO 13 2 9 23 3 117 140
P =5 05 2 60 24 2,5, 0or 6 118 141
P =56 06 3 63 25 7 119 142
P =7 07 0 64 26 7 or 8 120 160
68 27 5 or 8 121 122

75 30 5 122 161

78 50 3 123 162

79 51 3 124 163

90 31 5 125 164

127 32 4 126 165

130 60 2 128 123

131 52 3 129 166

132 61 2 137 167

133 53 3 140 170

134 62 2 141 171

136 54 2 142 150

138 55 2 143 151

200 75 0 144 172

201 76 0 145 173

202 14 6 146 174

150 152

151 153

152 154

153 155

154 175

155 176

156 143

157 144

158 145

159 146

160 156

*Add one for instruction fetch cycle. 161 157
Add one cycle for Q = 1, and two cycles for Q = 2. 165 121
One cycle = 1-1/2 usec. 166 124
167 167

VI. LOGICAL DESIGN OF THE IPL-V PROCESSOR

The basic principle of the hardware construction would be of the
dc synchronous logic type. The complete sequence that would take place
during the execution of an instruction is shown in Fig. 5. The operations
in Fig. 5 are divided into the following two phases:

12

Start of
Instruction
Sequence

Designator Phase J

|
r Memory Read J
'

[sag-07 je—

Yes No
Is symbol HO? I
l No l Yes
Symbol HOA
to M to M
[Read into A. Reduce Q by 1. |—
[Operation Phase |

!

rWhat is value of P?

| =0 70

Is it an executable

Primitive?
No lYes
Preserve H1 with NIA [which type?
As~ NIA Requires
hardware v
3604 l Action J

Prepare 3604
3604 Program
Action if required

I Fetch Action j

L | SetNIA Hardware

. =0 Restore HI1 not Restore H1
?
to zero xecutable Primitive What is NIA? just done

Restore H1 Tell 3604 that
just done program is ended

\ 4

Fig. 5. Instruction Sequence Chart

14

A. Designator Phase

The IPL-V manual describes how Q in an instruction denotes
the depth of indirect addressing used. Only values of 0, 1, and 2 are al-
lowed (the other values of Q are concerned with monitoring and are mean-
ingless in IPL-VC). In the Designator phase, memory is read using the
contents of the Symbol portion of the instruction as the address, and Q is
reduced by one each time until zero. If Q was initially zero, then no mem-
ory reference would be made and the instruction would pass into the Opera-
tion phase. Whether HO itself is being addressed must be detected; in that
case, HOA is sent to MR. In addition, at the start of the Designator phase,
the Link address of the instruction is sent to NIA.

B. Operation Phase

During the Operation phase, the hardware Primitives are ac-
tually executed, plus some special sequence of events which, to the hard-
ware, look just like other instructions. The following is a list of what may
occur during the Operation phase:

a) The operation called for by P ;-/ 0.
b) The execution of a hardware Primitive if P = 0.

c) The preparation for the 3604, the operation of the 3604,
and any further list "bookkeeping" after the 3604 has finished, if the Primi-
tive was an arithmetic or Input/Output type.

d) The preservation of H1, and the storing away of NIA, if a
routine is named with P = 0.

e) The restoring of Hl and output to NIA, if a routine has just
terminated.

A fetch action occurs at the end of each Operation phase.

The address in NIA would be examined and the appropriate
action taken. The following possibilities arise:

a) NIA = 0, and a "Restore H1" instruction had just been
performed. Then, the List Processor would halt and inform the 3604 that
it had completed the program.

b) NIA = 0, and a "Restore HI1" was not the last instruction.
Then a "Restore H1" instruction would be set up, and the Operation phase
would be re-entered.

c) NIA =ahardware Primitive. NIA would be transferred to the func-
tion register and then setto zero. The Operation phase would be re-entered.

15

d) NIA = no special case. Then NIA is sent to M, the next

instruction is requested, and a new instruction sequence is entered.

The control sequencer would essentially be a two-pulse system in
which the first of the pair of pulses has two functions, namely to move a
byte or bytes of data around in the IPL-V processor and to decide the type
of memory cycle that would be called for by the second pulse. The second
pulse would do one of the following four things:

a)

b)

c)
d)

Request read memory action (memory data sent to Register A).

Request write memory action (contents of Register B written
into memory).

Return to first pulse (A and B unchanged).

Terminate the current phase.

When the memory signalled that a or b was complete, then the first

pulse would reappear; for c and d the first of the pulse pair would reap-
pear some short fixed time after the no-memory-action second pulse oc-
curred. A construction sheet which shows the Operation phase for the
hardware-executed Primitive J6 [reverse (0) and (1)] is shown in Fig. 6.

Instruction: J6

ASL

]

]

LI |

m[[T]

L]

| Before

L1 |

sn s [s[ess] |

Ll

| [alm]

648

729

il:

L]

| Atter

CLI |

Fig. 6

Cycle P1 Action P2 Type

Register A

Register B

Typical IPL-VC

PQ[S |L

PQ

St Operation Phase

Start

o

HOA - M

591 648

Sequence Sheet

AL-M A~B

729

AL - BL

729

729

HOA - M, AS - BS

591

729

AL~ BL

g
|| |m|w| >

648
591 648

@ || > | >

—l=s|m|=s|=o|=

ANNNY

|~ (n]alwro |-~

—
o

11

R Request read memory action
W Request write memory action

N Return to first pulse
T Terminate Operation phase.

16

VIiI. IMPLEMENTATION, COST, AND SPEED

Since the List Processor would be attached to the CDC-3600, the
most convenient method of implementation would be to use the same
printed-circuit card (PCB) as was used to build the CDC-3600 itself. The
Control Data Corporation do not sell their individual PCB, so a realistic
cost of the List Processor is difficult to obtain, but it would probably be
between $20,000 and $100,000.

The speed of the execution of the hardware-executed Primitives is
indicated in Table II; the footnote indicates the extra cycles to be added to
represent the complete instruction time. In general, these speeds represent
at least a tenfold increase in speed of execution of the J Primitives over
that in the IPL-V Simulator on the CDC-3600. / Ay My;}? 47 - 7

7 .A,f A o mre,

VIII. CONCLUSIONS

Although a more useful and efficient information-processing lan-
guage than IPL-V could be developed, it does represent a well-documented,
working language from which much can be learned. The actual physical
realization of an IPL-VC system would provide both an education and an
insight into the area of information processing that would probably lead to
more useful further developments than if such a system were only a paper
design.

IX. ACKNOWLEDGMENT
The patience and explanations of Dr. W. Cowell of the IPL-V lan-
guage during the exploratory period of the design of the IPL-VC system
are gratefully acknowledged.
REFERENCES
1. J. C. Shaw, A. Newell, H. A. Simon, T. O. Ellis, A Command Structure

for Complex Information Processing, Proc. Western Joint Comp. Conf.

(1958).

2. A. Newell, Information Processing Language-V Manual, Prentice Hall,
Inc. (1961).

3. N. S. Prywes and H. J. Gray, The Multi-List System for Real-Time
Storage and Retrieval, IFIP 62 North American Holland (1963).

4, B. F. Green, Computer Languages for Symbol Manipulation, IRE
Trans. on Electronic Computers, EC-10 (Dec. 1961).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

17

D. G. Bobrow and B. Raphael, A Comparisbn of List-Processing Com-
puter Languages, Communs. ACM 7, 4 (April 1964).

V. Yngve, A Programming Language for Mechanical Translation, Mech.
Translation, 5, p. 25 (July 1958).

J. McCarthy, Recursive Functions of Symbolié Expressions and Their
Computations by Machine, Communs. ACM, 3 (April 1960).

P. M.. Woodward and D. P. Jenkins, Atoms and Lists, Computer Journal,

4 (April 1961).

J. McCarthy et al., LISP 1.5 Programmers Manual, MIT Press (Aug.
1962).

H. Gelernter, J. R. Hansen, and C. L. Gerberich, A Fortran - Com~-
piled List-Processing Language, J. ACM, 7, No. 2 (April 1960).

A. Newell and F. M. Tonge, An Introduction to Information Processing
Language-V, Communs. ACM, 3 (April 1960).

J. Weizenbaum, Symmetric List Processor, Communs. ACM 6,9
(Sept 1963).

A. Newell, Learning, Generality and Problem Solving, IFIP.62, North
American Holland (1963).

W. R. Cowell and M. C. Reed, A Checker-Playing Program in IPL-V,
AMD Technical Memorandum No. 57 (Sept 1963).

Control Data 3600 Preliminary Reference Manual, Control Data Cor-
poration, 501 Park Avenue, Minneapolis, Minnesota.

H. Gelernter, A Note on the System Requirements of a Digital Com-
puter for the Manipulation of List Structures, IRE Trans. on Elec-

tronic Computers, EC10 (Sept 1961).

V. O. Muth and A. K. Scidmore, A Memory Organization for an -
Elementary List-Processing Computer, IRE Trans. on Electronic
Computers, EC12 (June 1963).

J. C. Reynolds, A Proposal for a Micro-Programmed List Processor,
AMD Tech. Memo. No. 69 (Feb 1964).

N. S. Prywes and S. Litwin, "The Multi- List Central Processor,"
Chapter 8, Computer Organization, Eds. A. A. Barum and M. A.
Knapp, Spartan (1963).

A. P. Mullery, R. F. Scauer, and R. Rice, ADAM - A Problem-
Oriented Symbol Processor, 1963 Spring Joint Computer Conference.

