ARGONNE NATIONAL LABORATORY
Applied Mathematics Division

IPL-VC
A Proposal for a Computer System
having the IPL-V Instruction Set
Donald Hodges

Technical Memorandum No. 66

January 1964

This report intended for internal distribution only

L
2)
b))
k)
5)
6)
m
8)
9

10)

Contents

Introduction

General Description

Users' View of the System

Word Format and Instruction Set
Hardware Organization

Logidal Design of the IPL-V Processor
Implementation, Cost and Speed
Conclusions

Acknowledgements

References

1. Introduction

In the field of digital computer engineering most work has gone into
the construction of faster processing units for the performance of normal
numerical arithmetic. However, there are classes of problems that do not
use conventional arithmetic processors as efficiently (from the point of
view of speed and, in general, the quantity of hardware) as they would a
special processor built to solve the particular problem. Only one area,
namely business data processing, has received any serious attention, because
of its commercial applications. Another area which is arousing interest in
scientific data processing is that of the heuristic or gestalt type of
problem. This may in general be classed as artificial intelligence, covering
such areas as learning, pattern recognition, automatic translation, and
problem solving; the game playing machine is ocne of the applications most
easily understood by the layman. However, it now begins to appear that the
same techniques developed for this type of programming have application in
the organization of large collections of information such as large business
files and libraries; details are given in ref, 13.

In using arithmetic computers for such applications it has been found
convenient to define new programming languages which are classed under the
name of Symbol Manipulation Languages. In order to achieve a working machine
obeying such languages it has been necessary to write simulation programs of
such machines on conventional arithmetic computers. There have been four
major languages so far developed and these are reviewed in ref. 3. They are
COMIT, a system for helping in automatic translation (ref. 14) and three
general information processing languages, LISP 1.5 (refs. 5,6,7) FLPL
(ref. 4) and IPL-V (refs. 1,2). Although descriptions of the first two
information languages exist there is little published work involving their
use., However, with IPL-V, not only the original designers of the language
but others have used the language as a working tool. A review of the uses
of the language and references to their papers is given by A. Newell in ref,
15. Other applications or adaptations of the principles are given in the
previously mentioned ref. 13, and a use at Argonne itself is given in ref.
16. However, since all these applications use simulators on other machines
(than an IPL-V machine), they are slow and it is also difficult to gather
information on their operation.

This report then presents a proposal for the realization of an information
processing computer having the IPL-V primitives as its instruction set. It
will be assumed that the reader has a working knowledge of the IPL-V language
as described in refs. 1,2,

The principles of the equipment described here could well be applied
to most of the present day large computing systems, such as the AMD GUS
system, IBM 7000 series, UNIVAC-1107, etc., but they will be described in
detail for the CDC-3%600 system as owned by the Argonne National Laboratory

because this would be the most suitable machine presently at the
Laboratory for the attachment of such equipment. The other alternatives
are the IBM-704 system and the Argonne built GUS system. The former

does not readily lend itself to the type of conversion to be described,
while the latter is handicapped by small memory size, lack of suitable
input-output equipment and the absence of a written IPL-V simulator
program. The convenience of having a simulator even on a hardware IPL~-V
machine is very obvious to an IPL-V programmer. The simulator programs
containing excellent tracing, dumping, and snap shot procedures. It will
be assumed that the reader is familiar with the CDC-3600 as described in
ref. 12. The CDC-3600 has the following convenient features for converting
it into an IPL-V hardware system, henceforth called IPL-VC. They are:

1. A fast (1-1/2 microsecond cycle time), 64,000 word random
access memory.

2. Ease of attachment of equipment directly to the memory.

3, Working input=-output equipment of all types.

4, A high speed conventional arithmetic unit with the provision
of one list processing instruction already built in, which
is all that is needed in the arithmetic unit itself,

5. An IPL-V simulator program written for the CDC 1604, which
is in the process of being converted to be suitable for
the CDC-3600.

Several papers have been written on the possibility of the hardware
realization of a list processing computer. Reference 8 describes the
possible modifications to the 7090 in order to make the Fortran List
Processing process more efficient. Reference 9 is a memory organization
for a list processing computer with no special reference to a particular
language. Reference 10 details a complete design of a list processing
machine which 1s in no real relationship to any of the previously described
languages. References 13,17,8 describe the design of a processor which the
authors believe represents an extension of the fundamental concepts of an
associative memory and the IPL-V language. The main point appears to be the
use of variable length data and there has been a proposal for a similar piece
of equipment called "ADAM', described in ref. 19. Reference 11, written by
the original authors of the IPL-V system, describes a possible hardware

computer which they have called IPL-VI. However, they do not detail the
arithmetic and input-output of IPL-VI. IPL=VC, now to be described, drew
much inspiration from this last paper, and it is interesting to note that

it appeared as early as 1958,

2. General Description

To convert an arithmetical computer into an IPL-VC system it is
necessary to provide a processor which operates with certain basic IPL-V
primitives as its instruction set. This processor requires direct access
to memory for its data and instructions in order to be able to operate at
as fast a speed as the memory will allow., The basic primmtives that this
processor would perform are the operations on lists and the testing of them.
The remaining list processing primitives would be executed in this processor,
built up as routines from the basic primitives. All of the arithmetical and
input/output primitives would be performed in the original arithmetical
processor, with the list processor taking care of any "bookkeeping" necessary.
The necessary data and addresses would be communicated between the two
processors by prelegislation of where in memory the processors will find the
relevant information when requested to perform a particular operation. Thus,
there must be some means of transferring control back and forth between the
two processors; it will be assumed to be some form of interrupt system.
While it may be possible to be sophisticated later, it will initially be
assumed that only one or the other of the processors will be active during
a run of a program, i.e., no concurrency of operation will take place.

Having described the system in general terms, we will now describe the
IPL-VC system using a CDC~3600 as the original compu~er; a schematic diagram
is shown in fig. 1. The CDC~3600 memory system all:us for the connection of
five devices which are served in a first-come, firs:c-served cyclic order.
In the Argonne CDC-3600 system only two devices are connected (the 3604
Processor and a 3602 Communication module); thus the attachment of a new
device having direct access to memory is immediately possible with no
modification te the memory system at all, For the control communication
between the two processors one of the data channels could be used, and for
programming convenience the hardware could be made to appear like a CDC type
3682 "satellite coupler", However, the actual hardware would be much simpler
as in this case no actual data transfer would take place through the coupler,
other than a 6-bit piece of information which could be carried by the flags.
Thus, when the list processing processor wished the 3604 processor to do
something, it would interrupt the 3604 processor by an interrupt from a
particular equipment on a particular data channel, By performing a copy
status instruction from that equipment the 3604 would learn from the bit
arrangement of the flags what it was being asked to do. When the 3604 had
finished its operations, it would effectively interrupt the list processing
processor and tell it to continue, by setting of one of the flags in the
satellite coupler with a function instruction,

new equipment

IPL-VC Schematic of Whole System

5
64K
| - Memory CDC-3600 System
[
| i
| |
IPL-V _I Communication |& — — — 360
Processor I - 3602 Module Control Processor,
¥
| [In/Out Channels |
| 3607
Y i y
Satellite | In/Out
Coupler l Equipment

Fig. 1

3, Users' View of the System

The IPL~V programmer would code his program and have cards punched
identical to the ones used for input to present day IPL-V computer simulators
as specified in ref. 2. For debugging and check-out the programmer would
probably wish to use the CDC~3600 simulator of IPL-V in order to allow
himself full use of its monitor system. However, when he was satisfied the
program was satisfactory then the IPL-VC system could be used. Initially an
Assembler program would be in the CDC-3600 to read in the program and adjust
it to be suitable for the IPL-VC system. The starting address would be placed
by the 3604 in the current routine address list H1 (this list starts at a fixed
location) and would then signal the list processor to start via the satellite
coupler. The 3604 would then halt and the list processor would have full usage
of memory. When the list processor required the attention of the 3604, either
to perform a primitive or because the end of a program had been reached, it
would interrupt the 3604, which would start running again. Normally the 3604
would perform what was asked of it before handing control back to the list
processor and halting itself again. Input and Output of information to and
from the outside world would take place just as with the IPL-V Simulator.

4., Word Format and Instruction Set

The formats of the types of words used throughout IPL-V expressions
are shown in fig. 2. The standard IPL word is a SYMBOL (some memory
address), its type, (given by P and Q) and a LINK address which indicates
where the next item in the List is to be found. Fig. 2a shows the bit
allocation that would be used in the CDC-3600. Eighteen bits are allowed
for addressing, whereas only the lower 16 bits are needed to address a 64K
memory. The upper two bits will initially be unused but it may be possible
later to use these bits to directly address auxiliary storage, perhaps after
the manner of the Ferranti ATLAS computer. Three bits each represent P and
Q, and their labeling of the word type would be the same as in the IPL-V
manual. The other 6 bits in a word are unused.

A data word allows 42 bits for the data (either integer or floating
point representation allowed) and uses the same P and Q bits as all other
words to indicate the type of data contained in the word.

An instruction word contains the 3~bit operation code (P), the 3-bit
designator (Q), and the 18-bit Symbol and Link fields. When P = O the
symbol part of the instruction will indicate a Primitive if it is less than
the address 128, and the name of a routine or a programmed primitive if it
is 128 or greater. In the IPL-VC hardware the Primitives then are divided
into three groups, namely: '

a) 0 to 63. Primitives actually executed by the hardware.

b) 64 to 127. Primitives wholly or partly executed by the
3604 arithmetic processor.

¢) 128 upwards. The programmed primitives and all programmer
routines.

In the Programmers Punched Card input to the Assembler the IPL-V instructions
would have their normal J notation as designated in the manual, but internal
to the IPL-VC system they would in general have different instruction numbers
so as to make it easy to detect the type of primitive. Figure 3 shows the way
in which this decoding would take place within the 18 address bits of a Symbol.

A list of the J-Primitives as described in ref. 2 is shown in table 1
together with how they would be realized. H denotes direct hardware execution
in the List Processor, P denotes that these primitives would be executed in
the List Processor as a programmed routine using those routines designated
by H. C denotes execution of a primitive in the 3604 processor. However,
some of these primitives will need some list processing "bookkeeping", hence

LT b b 23 17

P| Q! SYMBOL NU ~ LINK

a. Standard IPL Word

h7lhh 41
PiQ DATA
Q = 1 P = 0 Integer
P = 1 Floating Point
P = 2 Alphanumerical
P=3 Octal
b. Data Terms
M7Th1 41 23 17
P 1Q SYMBOL NU LINK

P is operation code

Q is designation code
SYMBOL is name of Routine or a Primitive

¢. Instruction

Fig. 2 Word Formats

39 thru 32 are zer
and

41 40 39 32 31 30 29 2l

N.U.

bit 31 ~ bit 30

: Basic Hardware Primitive

: Arithmetic or Input Output Primitive
: Programmed Primitive

OO0
=OMO
W

Fig. 3 Symbol Interpretation in an Instruction

10

the double designation CH. A question mark following an entry indicates
that there is some doubt whether these particular Primitives will or
should be executed by the IPL-VC system. There are three classes:

a)

b)

c)

Those that will not be allowed. No monitoring system
would be built into the hardware so that the Monitor
Primitives (J147 to JL49) would have no meaning.
Those thet may be allowed. These are the Generator
Housekeeping Primitives. One can program one's own
Sub=-routine processes and there is some doubt as to
the need for the Generator Process.

Those that may be replaced by new Primitives, in
particular the Input/Output instructions. It is
more than likely that some new primitives will be
introduced into the CDC-=3600 IPL-V Simulator program

and it would then be these that would be executed.

Table 1

How the J Primitives

W -1 Wwn &N+

&
pod ek b ek el feed fed fed el et
OO~ AWK TN O

J 2n
J 3n
J bn
J 5n
J60
61
62
63
6l
65
66

67

L= B M- = =B - L R B B B BERC BRI B o B I B - L B VB D= o e B o e ol o B i i = = e o}

J 8n
J 90
J 9n(n#0)
J100
101
102
103
104
105-8
109
J110
11
12
13
14
15
16
17
18
19

are Interpreted

ooz
texfiia ke <R B« B o ko o i = < ls i < M wo}

.e'.cz::cz:-e-owrumwmmru»ammrdrardmmm

[
H
N
[

OSWYWw~~lIO0Oun FU N~

J13

Jik

WOITANANRFUWPHOWOWOIOAWUFEFWN =

Qo000
mm o =

.-a.e-qu.@w.o.ewzn::nmgmmmm:x:nom

H -
P ... _ Programmed

-, Hardware

11

C- - in 3604 A.U.

[

o
'-I
¥,
o

QO WO~ AU F NN -

J16

CWO=IAWULFWNWND =

J17

2] o0 D) D D D D #mD o) eI D e

EEE

- 22 e D
o

12

5. Hardware Organization

The Register organization of the IPL-V processor is shown in figure
h, This diagram indicates all of the registers required, but no control is
shown., There are two full length 48-bit registers, A and B; the former
receives its input from memory while the latter always tramnsmits its output
to memory, Special single address registers are used to indicate the head
address of the Communication List HO, the head address of the Available Space
List H2, the Next Instruction Address and a Memory Register which defines
the address at which the current Read or Write operation is to take place,
Two other short registers are required, one tc indicate the current hardware
primitive that is being performed; the other would be a single bit register
which is really "H5" and is used to encode and retain test results.

In actual practice the hardware would execute certain functions, other
than the basic hardware primitives, as if indeed they were primitives. They
are as follows:

1. The operations with P#0.

2. The special cases of P = 3 or 4 and the symbol is HO.

3. Restoring and Preserving of Current Routine address list Hl.
Table 2 shows the actual instruction set of the list processor,

Instruction .

| 6

Registers in IPL-VQ,List Processor

from memory

{APQ | As || AL | 48 A Register
[BPq | _Bs] BL | B Register
48
to memory
HOA
' 116
ASL
' | 16
NIA
L | 16
M
L 1 16

Fig, k4

13

Table 2: Instruction Set 1k

Memory Cycles Memory Cycle J No. Executed

Misc Execution¥ J No, - Operation* in 3604
Restore H1l 5 0 - 16
Preserve Hl 4 1 2+ 110
P=1 2 2 3 111
P =2 5 3 - 112
P = ano} 2 5 - 11k
J8 ; 6 5 115
P = Ll-)4- 7 - 116
P = LHO 2 9 3 117
P=235 2 60 2 or 5o0r 6 118
P=6 3 63 7 119
P=7 - 64 7 or 8 120

68 5 or 8 121

75 5 122

78 3 123

79 3 12k

90 5 125

127 L 126

130 2 128

131 3 129

132 2

133 3

134 2

136 2

137 6

138 2

*NOTE: Add 1 cycle for Instruction Fetch
Add 1 cycle for Q = 1 and 2 cycles for Q = 2
1 cycle = 1-1/2u secs.

15

6. Logical Design of the IPL-V Processor

The basic principle of the hardware construction would be of the "d.c.
synchronous logic" type. The complete sequence that would take place during
the execution of an instruction is shown in fig. 5. It will be noticed that
the operations in fig. 5 are divided into three phases, which are:

A. Designator Phase

The IPL-V manual details how "Q" in an instruction denotes the
depth of indirect addressing used. Only values of 0,1,2 are
allowed (the other values of Q are concerned with monitoring and
are meaningless in IPL-VC) and in the designator phase, memory is
read using the contents of the Symbol portion of the instruction
as the address and Q is reduced by 1 each time until zero. If Q
was initially zero then no memory reference would be made and the
instruction would pass into the operation phase, It will be noted
that it must be detected whether HO itself is being addressed; in
that case it is HOA that is sent to the Memory Address register.
Also, at the start of the designator phase the link address of the
instruction is sent to the next instruction address register (NIA).

B. Operation Phase

It is during this phase that the hardware primitives are actually
executed, plus some special sequence of events which to the hardware
look just like other instructions., The following is a list of what
may occur during the operation phase:

a) The operation called for by P#0.

b) The execution of a hardware primitive if P=0.

¢) The preparation for the 3604, the operation of the 3604
and any further list "bookkeeping" after the 3604 has
finished, if it was an arithmetic or Input/Output hardware
primitive,

d) The preservation of Hl and the storing away of NIA if a
routine is named with P=O.

e) The restoring of Hl and output to NIA if a routine has
just terminated.

C. Fetch Phase

The address in NIA would be examined and the appropriate action
taken., The following possibilities arise:

a) NIA=0 and a "restore H1" instruction had just been
performed. Then the list processor would halt and
inform the %604 it had completed the program.

Start of

Instruction
Sequence

16

| Designator

Phase |

/

| Memory Read |

|

rIS Ag = 0 ? f—

Yes

Read into symbol part of A
only reduce Q by 1

| Operation

Phase | |

|what is value of P?|

___________} =0 40
Is it an executable
rimitive
no yes
1
preserve Hl with [which type? |
RIA requireahgrd~
As —> NIA v
| §6Oh| Action |
| _Prepare 3604 |
| 3604 Program |
Y)
l Action if ;eguireh
‘ ‘ '
| Fetch Phase]
Set NIA | [restore Hl not restore H1
Nla:_dwazg__{_ =0 I~
to zero evecutable prim. - What isoﬂIA? l just done ,
thin =
écia !

restore Hl || Tell 3604
just done Progcram ended

Fig. 5 Instruction Sequence Chart

b)

d)

17

NIA=0 and a "restore H1" was not the last instruction,
Then a "restore HI" instruction would be set up and
the Operation phase would be re-entered.

NIA = a hardware primitive. NIA would be transferred
to the function register and then set to zero. The
Operation phase would be re-entered,

NIA = no special case, then NIA is sent to M, the
next instruction requested and a mew instruction
sequence entered,

The--control sequencer would essentially be a two=-pulse system with
the first of the pair of pulses having two functions, namely to move a
byte or bytes of data around in the IPL-V processor and to decide the type
of memory cycle that would be called for by the second pulse. The second
of the two pulses would in fact do one of 4 things only, as follows:

a)
b)

c)
d)

Request Read Memory Action (Memory data sent to
Register A).

Request Write Memory Action (Contents of Register
B written into memory).

No Memory Action (A and B unchanged).

Terminate the current Phase,

When the memory signalled that.a or (b was complete then the first
pulse would reappear, for ¢ and d the first of pulse pair would reappear
some short fixed time after the '"No Memory Action" second pulse occurred.
A construction sheet which shows the Operation Phase for the hardware
executed primitive J6 (reverse (0) and (1)) is shown in fig. 6.

Instruction: J6

Before

HOA ASL 18
591 591 | |A| 648
648 | |p| 720
729
591 591 % B | 648
648 | 14| 729
729
Cycle Pl Action |P2 Type M %88?853r AL §Sgis§er %
| Staxt :
0 HOA —=>M R 591 A | 648
1 | AL-9M, A¥B R 648 B | 729 A |648
2 AL —2>BL W " B | 729 A |729
3 HOA->M, AS>BS R 591 A | 648 B |729
4 | AL—>BL W 591 A | 648 B |648
5 NN, T
6
I
8
9
10
11
R read memory cycle
W write memory cycle
N no action
T terminate operation phase

Fig. 6

IPL-VC Operation Cycle Sequence Sheet

After

19

7. Implementation, Cost and Speed

There are four choices in the type of hardware that might be used
to build the extra list processing processor. They are:

a) Buying PCB's made by a commercial firm,

b) Buying boards and rack mounting equipment from CDC, the
same as that used to build the 3600 computer itself.

¢) Use of the AMD Computer Engineering Section's standard
NOR type circuitry.

d) Although not normally considered from an economical view=
point, to build the system in Micro-logic elements in
order that the group may obtain experience in building
actual systems.

A rough ccunt of the number of standard NORS that would be needed to
implement the system is 2500 to 3000, which at $10. per NOR (this includes
power supplies and cabinets) would run from $25,000. to $50,000. If outside
boards were used (either a or b) then the cost could range from $20,000. to
$50,000. Using Micro-logic elements at this time would probably double the
cost of the system, i.e., it would be in the $40,000. to $100,000. area.

It is of course not practical to quote the costing any more accurately

until more detailed design is performed.

The speed of the execution of the hardware-executed primitives is
indicated in table 2; the footnotes should be consulted as to the extra
cycles to be added to represent the complete instruction time,

One further increase in speed at the expense of more hardware that
is being investigated is the implementation of HO as an actual Hardware
Stack, This would probably involve some limitation to the depth of HO
(probably to 8 entries)

20

8. Conclusions

While it is generally agreed that a more useful and efficient
information processing language than IPL~-V could be developed, it does
represent a well documented, working language that much can be learned
from. The actual physical realization of an IPL~VC system would provide
both an education and insight into the whole area of information preocessing
that would most probably lead to more useful further developments than if
such a system were only a paper design.

%, Acknowledgement

The patience and explanations of Dr. W. Cowell of the IPL~V language
during the exploratory period of the design of the IPL-VC system are very
gratefully acknowledged.

21

10. References

L))

2)

3)

%)

5)

6)

(L

8)

E))

10)

11)

12)

13)

An Introduction to Information Processing Language=V
A. Newell and F. M. Tonge, Communications of the ACM
Vol. 3, April 1960.

Information Processing Language=-V Manual, Allan Newell,
Prentice Hall Inc., 1961.

Computer Languages for Symbol Manipulation, Bert F. Green,
IRE Trans on Electronic Computers Vol. EC-10, Dec. 1961.

A Fortran - Compiled List-Processing Language, H, Gelernter,
J. R, Hansen and C., L. Gerberich, Journal of the ACM Vol. 7
No. 2, April 1960.

Recursive Functions of Symbolic Expressions and Their
Computations by Machine, J. McCarthy, Comm. of the ACM
Vol, 3, April 1960.

Atoms and Lists, P. M, Woodward and D. P. Jenkins, Compufer
Journal Vol. k4, April 1961.

LISP 1.5 Programmers Manual, J, McCarthy and Als., MIT Press,
August 1962,

A Note on the System Requirements of a Digital Computer for
the Manipulation of List Structures, H. Gelernter, IRE Trans
on Electronic Computers Vol. ECLl0, September 1961,

A Memory Organization for an Elementary List-Processing
Computer, V, O. Muth and A. K. Scidmore, IRE Trans on
Electronic Computers Vol., ECl2, June 1963.

Preliminary Design of a Linked List Computer, C. C. Foster
Internal Report, University of Michigan, May 1963,

A Command Structure for Complex Information Processing, J.
C. Shaw, A. Newell, H. A, Simon, T. O. Ellis, Proc. Western
Joint Comp. Conf., 1958,

Control Data 3600 Preliminary Reference Manual, Control Data
Corporation, 501 Park Avenue, Minneapolis, Minnesota.

The Multi~List System for Real-Time Storage and Retrieval,
N. S. Prywes and H. J. Gray, IFIP 62 North American Holland,
1963,

1)

15)

16)

17

18)

19)

22

A Programming Language for Mechanical Translation, V. Yngve,
Mech Translation Vol, 5 p, 25, July 1958,

Learning, Generality and Problem Solving, A, Newell, IFIP. 62
North American Holland, 1963.

A Checker-Playing Program in IPL-V, W. R. Cowell and M. C. Reed,
AMD Technical Memorandum No. 57, September 1963,

The Multi-List Central Processor, N. S. Prywes and S, Litwin,
Chapter 8, "Computer Organization" Eds., A. A, Barum and M.
A, Knapp, Spartan 1963,

A Growing Tree for Descriptor Language Translation, W. I.
Landauer and N. S. Prywes, "Symbolic Languages in Data
Processing", Gordon and Brench 1962,

ADAM~A Problem-Oriented Symbol Processor, A. P. Mullery,
R. F. Schauer and R. Rice, 1963 Spring Joint Computer Conference.

