PROGRAMMING
MANUAL ™

AS| +---+- 210
COMPUTER

S Y S T E M

mm—
MINNEAPOLIS

22,

INSTRUCTION
MANUAL

VOLUME 3

MINNESOTA

INSTRUCTION
MANUAL
VOLUME 3

PROGRAMMING MANUAL
FOR THE

ASI-210 COMPUTER SYSTEM

SECTION 1

SECTION II

August 1962

210-3

ADVANCED SCIENTIFICINSTRUMENTS, INC.
MI NNEAPOLIS 22, MI NNESOTA

VOLUME 3

PROGRAMMING MANUAL

TABLE OF CONTENTS

SECTION I: BASIC PROGRAMMING

Paragraph
Table of Contents ., ., . . . e e e e e e e e e e e e e e .
1.1 Introduction e e e e e e e e e e e
1.2 Programming Fundamentals
1.2.1 Introduction L. ...
1.2.2 Flow Diagrams v v v v v v v v ..
1.2.3 Flow Diagram Symbols
1.2.4 Loops
1.2.5 Subroutines L ...,
1.3 Programming the ASI-210.
1.3.1 Description of the ASI-210 . .,
1.3.1.1 General
1.3.1.2 Principal Registers
1.3.1.3 Memory . .
1.3.1.4 Representation of Numerical Values
1.3.1.5 Arithmetic Operations
1.3.2 Instruction Word
1.3.2.1 Function Code Designator

1.3.2.2 Indirect Address Designator

1.3.2.3 Index Address
1.3.2.4 Operand Address

ii

1-2
1-2
1-3
1-5
1-6
1-7
1-7
1-7

1-7

Paragraph

1.3.3

1.3.

1.3.

Example
Example

Example

Example 4

Example

1

5

5

TABLE OF CONTENTS (CONT.)

Repertoire of Instructions

1.3.3.1 Instruction List. e e e e
1.3.3.2 Symbols and Terms
1.3.3.3 Instruction Operation.
Input/Output Systems v v v v
1.3.4.1 General
1.3.4.2 input/Output Channels Ce e e e e
1.3.4.3 Assembly Register Instruction
1.3.4.4 External Device Instruction .,

1.3.4.5 Assigned External Device Addresses
1.3.4.6 Command Codes for ASI External Devices .

1.3.4.7 External Device Control Words

1.3.4.8 DataFlow.
1.3.4.9 External Device Interrupt
1.3.4.10 Busy Interrupt

1.3.4.11 Permanently Assigned Memory Locations .
Coding Procedures for the ASI-210
1.3.5.1 Writinga Program

1.3.5.2 Mechanics of Coding Programs for the
ASI-210 e e e e e e e e e e .

1.3.5.3 Debugging a Program

..............

..........................

.............................

.............................

iii

iv

TABLE OF CONTENTS (CONT.)

oooooo

oooooo

nnnnnn

.....

oooooo

Paragraph
Example 6 it i
Example 7 0000000 e e .
Example 8,
Example 9 o 00000 e
Example 10 e e e e e
Example 11 0. ..
Example 12 000 e e
SECTION II: ADVANCED PROGRAMMING
2.1 Introduction
2.2 ASI-210 Assembly Program
2.2.1 Introduction
2.2.2 Format of the ASI-210 Assembly Prbgram
2.2.2.1 Location
2.2.2.2 Operation ,
2.2.2.3 Address
2.2.3 Assembly Control Instructions
2.2.4 Data Insertion Operations
2.2.5 Operation Codes for Machine Instruction of the
ASI-210 s
2.2.6 Macro Instructions
2.2.7 Control Words
2.2.7.1 ARCW
2.2,7.2 EDCW.
2.2.8 Standard External Device Numbers .
2.2.9 Assembler Output

1-61

TABLE OF CONTENTS (CONT.)

Paragraph Page
2.2.10 Library Processor v ¢ v v v v v v v v v v v . 2-16
2.2.11 Sample Programs of the Assembly Routine 2-17
2.2.12 Assembly Error Indications 2-26

2, Fortran ICompiler 2-27
2.3.1 General 00 000, 2-27
2.3.2 Representation of Values 2-27
2.3.3 Arithmetic Expressions . ., 2-28
2.3.4 Subscripted Variables 2-29
2.3.5 Functions 2-30
2,3.6 Statement TYPeS v v v v v e e e 2-30
2.3.7 Inputand Qutput 2-34
2.3.8 List Specifications 2-34
2.3.9 Compatability with 704/709/7090 Fortran 2-35
2.3.10 Sample Programs v v 2-37

2. Mathematical Subroutines 2-40

TABLE OF CONTENTS (CONT.)

LIST OF DRAWINGS

SECTION 1II
Figure Page
2-1 Assembly Program Coding Form 2-3

LIST OF TABLES

SECTION I
Table Page
1-1 Instructions v v v v v e e e e e e e e e e e e e e e e 1-62
1-2 Instructions Arranged By Function 1-63
1-3 External Device Addresses v v v v v v v v v w v v . 1-65
1-4 Flexowriter Codes v v v v v v v e e e e e e e e e e 1-66
1-5 Magnetic Tape BCD Codes v v v v .. 1-67
1-6 Line Printer Codes . . . v v v v v v v o o v e e e e e e e e e 1-68
SECTION II
2-1 Artificial Words ¢« v et e e e e e e e e e e e e e e 2-15

vi

1.

1

VOLUME 3

PROGRAMMING MANUAL

SECTION I

BASIC PROGRAMMING

INTRODUCTION

This section of the programming manual was designed to be used
by both the experienced and the inexperienced programmer. For
the experienced programmer this manual contains such necessary
information as instruction lists, breakdown of the instruction word
and use of input/output instructions.

For the inexperienced programmer this manual contains, in addi-
tion to the instruction lists, etc. an explanation of each instruction,
12 sample programs to illustrate instructions and coding procedures
and the mechanics of coding and debugging a program. If the
principles set forth in this manual are correctly applied, the pro-
gramming of the ASI-210 should become, with a reasonable amount

The purpose of the first section of the programming manual is to
give the beginning programmer a foundation upon which to build his
knowledge of programming the ASI-210.

The first area that must be taken into account when programming
is considered. is not what programming is, but why programming
is necessary.

All computers have a language. In the modern digital computers,
this language is usually the binary number system. (The binary
number system is a number system that uses only two characters,
one and zero.) Any instructions to the computer or any number
that is to be used by the computer must be in the format of the
binary number system.

It is the programmer's responsibility to present the problem he
wishes the computer to solve in the language of the computer.
Therefore, his foremost duty is not one of solving complex prob-
lems, but of translating the problem from the language that is
understandable to men, to the language that is understandable to
the computer.

1-1

1.

2

It should be noted that while solving complex problems is not
the programmer's primary duty, it is necessary that he be able
to solve a problem before he can instruct the computer in the
method of solving the problem.

PROGRAMMING FUNDAMENTALS
1.2.1 INTRODUCTION

There are several ''building blocks' that are necessary
to form a good foundation for the study of programming.
These building blocks are (1) flow diagrams, (2) loops
and (3) subroutines.

The following paragraphs will explain each of these build-
ing blocks and illustrate their use in the writing of a
program.

1.2.2 FLOW DIAGRAMS

The first thing a programmer does, after determining
what exactly the problem is and how he will solve it, is

to write a flow diagram of the solution of the problem.

A flow diagram is a pictorial representation of the logical
sequence of the solution of a problem. It is made up of
several different symbols indicating the various functions
that are to be performed by the program. (A list of the
symbols and their explanation will be found in paragraph
1. 2. 3 of this section.)

The preparation of a flow diagram consists of several
steps. The first step is to write a ''general" flow diagram
of the program. The blocks in a general flow diagram
will illustrate the basic operations to be performed.

For example, the general flow diagram of a program

compute the hypotenuse of a triangle would look like the
following:

o+

o

Compute the sum Compute the
| of the squares of »{ square root
the two legs of the result

Note the inclusion of the start and stop commands.

Once the general flow diagram is written, the next step is
to break each block of the general flow diagram down into

blocks that will require only one or two instructions to
the computer. It would probably only require one step
to accomplish this for the problem above but for more
complex problems, it may take several steps to arrive
at the final flow diagram. The number of steps it takes
to break the general flow diagram down is not important
as long as the logical sequence of the solution is main-
tained. The final flow diagram for the above problem
would look like the following:

find the value square the store the result

of the first leg | »{value of the »{in memory -
first leg

add the squared square the find the

values of the |e«—-{value of the|«—{value of the |«

two legs second leg second leg

When the flow diagram is in its final form, it is a fairly
easy task to translate each block of the flow diagram into
instructions to the computer.

1.2.3 FLOW DIAGRAM SYMBOLS

statement, explanation or*assertions

example Add A
and B

1-3

1-4

4.

modified orders

example

®

Shift A
right X times

When X is modi-
fied by some
other instructions
in the program

connector, address modifier or special condition

example —-———-—»@

C

)

decision junction

example

<

AN

>

/

subroutine

example

‘ Does A = zero ?)

No

|

square root

indicates the next
step in the program
will be at point j of
the flow diagram

Yes
p———————

indicates a square
root subroutine

1.

2.4

(-

initial or terminal conditions

example

input/output

example /paper tape
input

""go to'! '"is sent to"
example
Add A
and B
LOOPS

A program loop is a section of a program that is used
more than once in succession during the solution of a
problem. For example, assume during the course of

a program it was necessary to add a series of numbers
together and store the result of this addition so that it
may be used by the remainder of the program. The flow
diagram of this loop would look like the following:

1-5

from first

part of program —» number into A

load the first add the second store the

Y

number and thep—=» result
contents of A

1.2.

1-6

load the result of advance the are all the
the previous - address of je—no numbers added
addition the second together ?
number
yes

go on to the
remainder of
the program

As you have observed, there is always a condition that must
be satisfied to end the loop. In this program, it is the
condition that all the numbers are added together. This is
the primary identifying feature of a loop.

SUBROUTINES

There are many problems that require the same ''sub-
solution' to be found as a part of the total solution. For
example, the sine of an angle. Once these routines are
written they may be used by several programs without
making it necessary to re-write the same program.

These sub-programs are called ''subroutines' and are
usually kept on a master input tape so that any programmer
who has a need for the subroutine may use it. Theare is
also the possibility that the routine will be used more than
once by the same program. In both cases, the subroutine
is stored in a known place in memory and is referenced
by the main program whenever the sub-solution is required.

A subroutine differs from a loop in two ways. First, a
subroutine is not used more than once in succession and
second, a subroutine is a complete program in itself while
a loop is not.

A subroutine is written so that all that is necessary for its
operation is the data or information the subroutine is to work
with and an address in the main program to go to when the
subroutine is completed.

1.3

PROGRAMMING THE ASI-210

1.3.1

DESCRIPTION OF THE ASI-210

1.3.1.1

1.3.1.2

L

The ASI-210 is a general purpose computer that
may be used for engineering and scientific com-
putation, real time system control, data handling
and analysis, management support, and satellite
operation with other machines. It is a stored
program, parallel operation, solid-state machine
with a 21-bit word length. The buffered input/
output channel, with a transfer rate of 30, 000 or
more 21-bit words psr second, expandable to 2
channels, permits simultaneous computation and
data transfer. Data transfer requires no running
time (initiation only).

A single bit in the instruction word of the ASI-210
specifies the operand address of all instructions
as either a direct or indirect address. The three
index words permit successive indirect address-
ing by indexing at each step.

The megacycle operation enables add times of 10
microseconds, multiply times of 54 microseconds,
including memory access time, indexing and input/
output channel memory reference. The entire com-
puter requires less than 1350 watts from a standard
110/220 volt, 60 cycle source. No temperature or
humidity controls are required in normal operating
environments. A paper tape reader and punch are
included with the standard computer. Paper tape is
read at 600 characters per second and punched at
110 characters per second. There are six sense
switches that are available to the programmer for
branching or other operations.

Principle Registers

Register '"A" Accumulator. The results of all
arithmetic or logical operations
will be placed in Register "A",
(21-bits)

Register "E" Auxiliary or extension of Register
"A". Used when the result of an
arithmetic or logical opzsration is
larger than can be contained in
Register ""A'" alone. (2l-bits)

Register ''S" Sequence address register. Contains
the address of the next instruction
to be performed. (13-bits)

Register ""BM" Starting address register. Contains
the starting address of memory that
is to be referenced during an input/
output operation. (13-bits)

Register "BL"' Limit address register Contains
the ending address plus 1 of memory
that is to be referenced during an
input/output operation. (13-bits)

1.3.1.3 Memg_:;y_

The memory unit in the ASI-210 is a magnetic core
array. The 4,096 word memory core stack is made
up of 16 core planes and each plane has a 42 by 128
array. The 8,192 word memory has 32 core planes,
each plane also with a 42 by 128 core matrix. Memory
is organized in a word fashion, rather than a coinci-
dent current fashion. That is, full current flows
through a single word during a read operation with
the usual sense lines available on each bit.

The write system has a partial write current
through one word of memory. An additive digit
current, coincident with the write current, is
used for writing '"'1's'" in the selected bit position
of the word.

The read current is a full current through one word.
The write current is a partial current through one
word plus an additive digit current to write a '"l",
Memory is coincident current in this respect; the
organization, however, is basically ""word organiza-
tion''.

1.3.1. 4 Representation of Numerical Values

The only number system the ASI-210 can recognize
is the binary system, therefore all information
within the computer must be in binary format. An
instruction word in the computer is composed of

21 binary bits, ones or zeros. These 21 ones and
zeros are hard to read and difficult to manipulate
by people who are used to a decimal system. To
make the task of those people who are concerned
with any operation of the computer easier, the
octal number system is used outside the machine.

1.3.1.5

The octal number system uses eight distinct
characters, zero through seven. This system
was chosen because of the relationship between
octal and binary number systems. The relation-
ship is that three binary digits may be repres-
ented by one octal digit. For example:

Binary Octal
000 000 00
000 001 01
000 010 02
000 011 03
000 100 04
000 101 05
000 110 06
000 111 07
001 000 10
001 001 11
001 010 12

The relationship of binary to octal is quite easily
seen in the above example and the advantage of
using octal over binary should also be easily
seen. Therefore, all information and instruc-
tions, when used outside the computer, will be
in the octal number system.

Arithmetic Opzrations

The adder used in the ASI-210 is a closed loop
binary adder using left end-around carry opera-
tion in the one's complement addition. The sign
bit (21) is a zero (0) for positive numbers and a
one (1) for negative numbers. This is useful in
most operations using the entire register A.
However, in certain instances such as indexing,
only a small portion of the adder is used and

provisions to prevent end-around carry are made.

1-9

1-10

Operation is then carried out in the two's
complement addition which gives the correct
answer without carry. A comparison of the
two systems is shown:

Decimal Binary 1's Comp. 2's Comp.
3 011 +3 +3
2 010 +2 +2
1 001 +1 +1
0 000 +0 +0
7 111 - 0% -1
6 110 -1 -2
5 101 -2 -3
4 100 -3 -4

*Minus zero is meaningless. All carries are
forcibly entered in adder so that the number
bzcomes 000 or *O0.

It should be noted that there are several opzra-
tions that will give a result of negative zero.
These operations are:

1. Minus zero * minus zero
(-0) * (-0) = (-0)

2. Plus zero - plus zero
(+0) - (+0) =(-0)

3. Minus zero - minus zero

(-0) - (-0) = (-0)

4, Minus zero - plus zero
(-0) - (+0) = (-0)

5. Subtracting a number from itself
(tk) - (+k) = (-0) and
(-k) - (-k) = (-0)

6. Plus zero X minus zero

(+0) - (-0) = (-0)

7. Any positive number X minus zero
(+k) - (-0) = (-0)

8. Any negative number X plus zero

(-k) - (+0)= (-0)

9. Plus zero —— any negative number
(+0) =—(-k) = (-0)

10. Minus zero — any positive number
(-0) = (+k) = (-0)

11. Any negative number —— any number
when the remainder is zero
(-k1) =— (+k2) where R is 0 =R of (-0)
or (-k1) =— (-k2) when R is 0 = R of (-0)
Examples of the four basic arithmetic operations
follow:

1. Addition

a. Two positive numbers

Binary Octal
1 11 carries 1 carries
030 101 05
+010 011 +23
0T1 000 30

b. Two negative numbers (one's complement

notation)
Binary Octal
111 carries /11 carries
/111 010 (-000 101) ,” 53 (-24)
v +101 100 (-010 011) ! +67 (-10)
“IO0TTI0O (-011 001) \ ZZ (-35)
“~~—] (end around *—-1 (end around
~ carry) carry)
100 111 (-011 000) 43 (-34)

1-11

1-12

c. One positive and one negative number

Binary Octal
<1111 1 carries
/110 010 (-001 101) 45 (-32)
' 4001 111 +27
v T carry 74 (-03)
000 001
“~--»] (end around
—- carry)
000 010
Subtraction

The subtraction process uses the same opera-
tion as the addition except that the subtrahend
is first complemented (changed to the corres-
ponding negative value). For example, to
subtract 23g from 37g the 23 would first be
changed to 54 (-23 in seven's complement
notation) and then the two numbers will be
added.

Multiplication
a. Two positive numbers: -

Binary Octal

001 000 1
X 010 b'd
000 000
0 010 00
00 000 O
00 010 000

™|
o O

b. Two negative numbers (one's complement
notation):

In one's complement notation the significant
bit is the '"zero' bit and not the ''one' bit.
While it is possible to design circuitry
that will recognize the zero as the signifi-
cant bit, it is more convenient to check for
a negative number, and if one is found, to
change the number to a positive number,
(by complementation) do the multiplication

with positive numbers and affix the proper
sign to the result when the multiplication
is complete. This is the procedure that
is used by the ASI-210 and therefore,
examples of multiplying with negative
numbers will not be given.

4, Division

a. Two positive numbers:

Binary Octal
- 0 001 000 10
000 011 [000 000 011 000 3 | 30
000 011 3
000 000 000 00

b. Two negative numbers (one's complement
notation):

In one's complement notation the significant
bit is the '"zero" bit and not the ''one'’ bit.
While it is possible to design circuitry ,
that will recognize the zero as the signifi-
cant bit, it is more convenient to check
for a negative number, and if one is found,
change the number to a positive number,
(by complementation), do the division with
positive numbzrs and affix the proper sign
to the result when the division is complete.
This is the procedure used by the ASI-210
and therefore, examples of dividing with
negative numbers will not be given.

1.3.2 INSTRUCTION WORD

1.3.2.1 Function Code Designator

The function code designator is that portion of the
instruction word that tells the computer what opera-
tion is to be performed. The five highest order bits
of the instruction word comprise the function code
and gives the possibility of 32 separate instructions.
Each instruction is interpreted and performed sep-
arately by the computer.

1.3.2.2 Indirect Address Designator

The indirect address designator specifies whether
the operand address is to be used as the address

1-13

1-14

1.3.2.3

1.3.2. 4

of the operand (direct) or as the address of the
address of the operand (indirect). The indirect
address designator is bit 16 of the instruction
word and indicates an indirect address if it is
set (1).

Index Address

The index address portion of the instruction word
tells the computer whether the operand address of
the instruction is to be modified or not and if the
operand address is to be modified, where the
modifying word will be found. The index address
uses bits 14 and 15 of the instruction word and if
they are both cleared (0's) no modification of the
operand address will take place. If either or both
of the index address bits are set (1's), they indicate
a modification of the operand address is requested
and they also specify the address of the modifying
word.

Operand Address

The operand address of the instruction is the lowest
order 13 bits of the instruction word and contains
the address of the operand that is to be used for
this instruction. The operand address may be
modified as described in paragraphs 1.3.2.2 and
1.3. 2.3 of this section.

1.3.3 REPERTOIRE OF INSTRUCTIONS

1.3.3.1 Instruction List

Time
Octal Code Instruction u sec
00 HALT 8
02 JUMP 8
04 RETURN 12
06 JUMP END INTERRUPT 8
10 ADD 10
12 SUBTRACT 10
14 LOAD A 10
16 LOAD E 12
20 ABSOLUTE VALUE 8
22 MINUS 8
24 ZERO 12
26 STORE A 8
30 MULTIPLY 54
32 DIVIDE 56
34 ROUND 14
36 STORE A ADDRESS 10
40 SKIP A HIGH 14
42 SKIP A EQUAL 14
44 JUMP A LESS THAN ZERO i0
46 STORE E 10
50 AUGMENT INDEX 12
52 SKIP INDEX HIGH 10
54 STORE ADDRESS IN INDEX 12
56 LOGICAL OR 12
60 SHIFT 10+ 2K
62 NORMALIZE A 14+ 2K
64 NORMALIZE A E 14T 2K
66 LOGICAL AND 12
70 TRAP 8
72 SKIP SENSE SWITCH SET 10
74 EXTERNAL DEVICE 16

76 ASSEMBLY REGISTER 20

1-16

1.3.3.2

Symbols and Terms

The following symbols will be used throughout the
remainder of this manual:

Symbols

A

E

(

)

Terms
Register A, Accumulator

Register E, a second major arithmetic
register

Register S, contains the address of
the next instruction to be performed.

Contents of. For example, (A)
signifies the contents of the A register.

Add

Subtract
Multiply
Divide

"'is placed in"

Absolute value. For example, /(A)/
signifies the absolute value of the con-
tents of the A register.

Complement of. For example, (A)
signifies the complement of the con-
tents of the A register.

Logical OR. For example, ()@ (m)
signifies the logical OR of the comple-
ment of the contents of the E register
and the operand.

Logical AND. For example, (E)O (m)
signifies the logical AND of the contents
of the E register and the operand.

Register A designator in the operand
address.

Register E designator in the operand
address.

Symbols Terms

s Shift right designator.

c Shift circular designator.

Gray code to binary shift indicator.

k Shift count.

Iy Bits 13 through 1 of the specified
index location.

M The effective operand address of
the instruction.

m The memory location whose address
is M.

i Address of present instruction.

(m) Opzrand

Unless otherwise indicated the operand address is

subject to indexing and indirect address.

1.3.3.3 Instruction Operation

Code

B]

00

02

04

06

10

1-18

Instruction Opesration
HALT HALT

(m)—>S
Halt and take the next instruction from
the operand address.

JUMP (m)—S

Take the next instruction from the
operand address.

RETURN (S)+ 1—»m 13 thrul

Store the address of the instruction
following the next instruction in bits
13 thru 1l of the operand. Bits 21 thru
14 of the operand will be unchanged.
By letting the operand be a jump in-
struction at the end of a subroutine,
the program can jump into the sub-
routine on the next instruction and
return to the program at the end of
the subroutine.

JUMP END END INTERRUPT
INTERRUPT M—3S

If the condition which specifies that a
priority interrupt routine is in progress

is not present, clear the regular inter-
rupt routine condition. In any case clear
the priority interrupt routine condition.
Take the next instruction from the operand
address.

ADD (A) + (m)— A

Add the operand to the number that is

in register A at the start of this instruc-
tion. The resulting sum will be in
register A at the end of this instruction.
Register E will be unchanged. This
instruction will result in an add overflow
if the sign of the sum is different from the
signs of both commands. 1.18

Code Instruction_ Q_Eeratio_n_

12 SUBTRACT (A) - (m)—A

Subtract the operand from the number
that is in register A at the start of this
instruction. The resulting difference
will be in register A at the end of this
instruction. Register E will be unchanged.
This instruction will result in an add
overflow if the sign of the number which
is in A at the start of this instruction,
is different from both the sign of the
operand and the sign of the resulting
difference.

14 LOAD A (m) —A

Bring the operand to register A.

16 LOAD E (m)—E

Bring the operand to register E.

)
<
x

ol
10)]
Q
t-'l
C

*If bit 2: set the flags
specified by bits 9, 8, 7

*If bit 1: clear the flags
specified by bits 9, 8, 7

If bit 12 of this instruction is a one and
if the number that is in register A at
the start of this instruction is negative,
register A will be complemented (made
positive). If bit 11 of this instruction
is a one and if the number that is in
register E at the start of this instruc-
tion is negative, register E will be com-
plemented. If bit 2 of this instruction
is a one, any flags designated by ones
in bits 9, 8, or 7 of this instruction will

* Not in present machines but will be added
in near future.

1-19

Code Instruction Opzration

be set. If bit 1 of this instruction is
a one, any flags designated by bits

9, 8, or 7 of this instruction will be
cleared. Any combination of ones in
bits 12, 11, 9, 8, 7, 2, and 1 may be
used in this instruction with the single
exception that bits 2 and 1 should not
both be ones in the same instruction.

22 NEGATE If bit 12:
(A)— A

If bit 11:
(E)—E

*If bit 2: set the flags
specified by bits 9, 8,7

*If bit 1: Clear the flags
spzcified by bits 9,8, 7

If bits 12 of this instruction is a one,
register A will be complemented
(negated). If bit 11 of this instruc-
tion is a one, register E will be com-
plemented. If bit 2 of this instruction
is a one, any flags designated by ones
in bits 9, 8, or 7 of this instruction
will be set. If bit 1 of this instruction
is a one, any flags designated by ones
in bits 9, 8, or 7 of this instruction will
be cleared. Any combination of ones
in bits 12, 11, 9, 8, 7, 2, and 1l may
bz used in this instruction with the
single exception that bits 2 and 1 should
not both be ones in the same instruction.

*Not in present machines but will be
added in the near future.
24 CLEAR If bit 12:

0 =——A

If bit 11:

*If bit 9: O=——>A
(Same sign as E)

1-20

Code

26

30

3

Instruction Opesration

*If bit 8: 0—>E
(Same sign as A)

*If bit 7: (A)=> E,
(E)=—> A

If bit 12 of this instruction is a one,
clear register A. If bit 11 of this
instruction is a one, clear register E.
If bit 9 of this instruction is a one,
register A will be set to either plus
zero or minus zero so that the sign

of register A will be the same as the
sign of register E. If bit 8 of this
instruction is a one, register E will

be set to either plus zero or minus
zero so that the sign of register E

will be the same as the sign of register
A. If bit 7 of this instruction is a one,
the number that is in register A at the
start of this instruction will be in
register E at the end of this instruction,
and the number which was in register E
at the start of this instruction will be in
register A at the end of this instruction.
Bits 12 and 11 may both be ones in the
same clear instruction. If bit 9, 8, or
7 is a one in this instruction, no other
address bit should be a one in the same
instruction.

Not in present machines but will be
added in the near future.

STORE A {({A) ——>m

Store the number that is in register A
in the operand address.

MULTIPLY (A) * (m) — AE

Multiply the number that is in A at the
start of this instruction, by the operand.
At the end of this instruction the most
significant bits of the product will be in
register A, and the least significant bits
of the product will be in register E.

1-21

1-22

Code

32

34

Instruction Operation

DIVIDE If Fault;
(AE) + (m)—E

If Fault:
REMAINDER —> A

Divide the double-length number that

is in registers A and E at the start of
this instruction, by the operand. At

the end of this instruction, unless a

fault occurs, the quotient will be in
register E and the remainder will be

in register A. This instruction will
result in a fault if the absolute value

of the number that is in register A at

the start of the instruction, is greater
than or equal to the absolute value of

the operand. If a fault occurs, registers
A and E will be unchanged by this instruc-
tion. A fault will result in a fault inter-
rupt if the fault trap is armed and if the
program is not already in an interrupt
routine.

ROUND If E21- E20:
(A)-1—-A

If E21. E20:
(Al — A

If the number that is in register E is
negative and if bit E20 is a zero, sub-
tract one from the number that is in
register A at the start of this instruc-
tion, and leave the result in register A.
If the number that is in register E is
positive and if bit E20 is a one, add one
to the number that is in register A at

the start of this instruction, and leave
the result in register A. Register E
will be unchanged by this instruction.
This instruction will result in an add
overflow if the sign of register A changes
as a result of the addition or subtraction.

Code

36

490

42

44

46

50

Instruction Operation

STORE ADDRESS (A13 thru Al)
—» m1l3 thru ml

Store the information in bits 13 thru 1l
of register A in the corresponding bits
of the operand address. Register A
will be unchanged by this instruction.
Bits 21 thru 14 of the operand will be
unchanged by this instruction.

SKIP A HIGH If (A)D (m):
Skip 1 instruction

If the number which is in register A

is greater than the operand, skip the
next instruction in sequence. Register
A will be unchanged by this instruction.

SKIP A EQUAL If (A)= (m):
Skip 1 instruction

If the number which is in register A is
B N e QiU 3 P P S Y
€ejual LU LuUg Upcraiu, oSnip wuic ucat
instruction in sequence. Register A
will be unchanged by this instruction.

JUMP A LESS If (A) L O:
THAN ZERO M— S

If the number which is in register A is
less than zero take the next instruction
from the operand address. Register A
will be unchanged by this instruction.

STORE E (E) = m

Store the number that is in register E
in the operand address.

AUGMENT INDEX M+ (L) — I,

Add the operand address to the address
in bits 13 thru l of the index location
specified by bits 15 and 14 of this in-
struction. The sum will be in bits 13

1-23

Code Instruction Operation

thru l of that index location at the end
of this instruction. Bits 21 thru 14 of
that index location will be unchanged
even if an index overflow occurs. Index
overflow will occur if the sum of the
operand address and the address in
bits 13 thru 1 of the specified index
location exceeds 13 bits. The operand
address will not be indexed in this
instruction. If an indirect address is
specified, this address will be indexed
by the index location specified by bits
15 and 14 of the instruction. The index
location which will be augmented will
be the one which is specified by bits

15 and 14 of the word in the final in-
direct address location. Bits 13 thru
1 of the word in this location will not
be indexed and will be used as the
effective operand address of the in-
struction which will be used to augment
the index location.

1-24

Code

54

Instruction Operation

SKIP INDEX HIGH if (I;) > m:
Skip 1 instruction

If the address which is contained in
bits 13 through 1 of the index location
specified by bits 15 and 14 of this in-
struction exceeds the complement of
the operand address of this instruction
the next instruction in sequence will

be skipped. The operand address will
not be indexed in this instruction. If
an indirect address is specified, this
address will be indexed by the index
location specified by bits 15 and 14

of the instruction. The index location
which will be tested will be the one
which is specified by bits 15 and 14

of the word in the final indirect address
location. Bits 13 through 1 of the word
in this location will not be indexed and
will be used as the effective operand
address of the instruction which will
be used to test the index location.

STORE ADDRESS M1
IN INDEX

Store the operand address in bits 13
through 1 of the index location specified
by bits 15 and 14 of the instruction.

The operand address will not be indexed
but it may be indirectly addressed.

The indirect address will not be in-
dexed even if an index address is spec-
ified. Bits 13 through 1 of the word

in the final indirect address location
will be the effective operand address
which will be loaded in the index loca-
tion specified by bits 15 and 14 of the
word in the final indirect address loca-
tion.

1-25

1-26

Code

56

60

Instruction Operation

LOGICAL "OR" (E) "OR"

(m)=—>-A

Form the logical "Or'" of the number
that is in register E and the operand
and load the result in register A. An
example of the bit-for-bit result is
as follows:

(E) 1100
(m) 1010
"ORM 1110

The number that is in register E will
be unchanged.

SHIFT

Instruction Bit 12 {11 |10 | 9| 8
Shift (A) right 1 0 1] 0] 0
Shift (A) left 1 0 0 0] O
Shift (A) left circular | 1 0 0| 110
Shift (E) right 0 1 11010
Shift (E) left 0 1 0 0| O
Shift (E) left circular | 0 1 0] 110
Shift (AE) right 1 1 11 0] 0
Shift (AE) left 1 1 0| 0|0
Shift (AE) left circularj 1 1 0|l 1]0
Convert (E) from gray
code to binary leav- 0 0 001
ing the result in reg-
ister A.

Right shifts are open-ended. Left shifts
may be either open-ended or circular.
In open-ended shifts, the bits introduced
into the register are identical to the
P R T A A g PRI A Ty | T.n
D.LBLL D1t Wnicn reimiains Llll\,lld.llgeu. EREY
circular shifts the sign bit is shifted
along with the number. The number

of shifts is specified by bits 6 through 1

Code Instruction Operation

of the instruction in binary code.

The maximum number of shifts

that may be specified is 63 decimal.
For gray to binary conversion the

gray code number should be in register
E at the start of this instruction with
the most significant bit in E20. The
number of bits to be converted should
be specified by bits 6 through 1 of the
instruction. The binary result will

be in the least significant bits of regis-
ter A with zeros in the unused part of
register A.

62 NORMALIZE A (A) © 2K—>A
until A20 # A21
K+ (m)=—>m

Shift the number that is in register A
at the start of this instruction left leav-
ing the sign bit (21) unchanged until
A2l is not the same as A20. With
each shift the sign bit (A21) will be
entered in the least significant bit

(Al) of register A. The number of
shifts required will be added to the
operand. If the number in register

A at the start of this instruction is
plus or minus zero 19, shifts will
occur and register A will be unchanged
at the end of the instruction.

64 NORMALIZE AE (AE) - 2K—-A
until A20 # A21
K+(m) —»m

Shift the double-length number that is
in registers A and E at the start of

this instruction left leaving both sign
bits unchanged until AZ21 is not the same
as A20. With each shift the sign bit of
the E register (E21) will be entered in

1-27

Code Instruction Operation

the least significant bit of register

E (El) and the most significant bit

of register E (E20) will be entered

in the least significant bits of regis-

ter A(Al). The number of shifts re-
quired will be added to the operand.

If the number that is in register A and
E at the start of this instruction is

plus or minus zero, 39 shifts will occur
and registers A and E will be unchanged
at the end of the instruction.

66 LOGICAL "AND" (E) "AND"
(m) =——— A

Form the logical ""And'" of the number
that is in register E and the operand

and load the result in register A. An
example of the bit-for-bit result is as

follows:

(E) 1100
(m) 1010
TAND" 1000

The number that is in register E will
be unchanged.

1-28

Code

70

Instruction OBe ration

TRAP If bit 13 is a 1:
(Add overflow condition) > A5
(Index overflow condition) > A7

Clear add and index overflow conditions
If bit 12 is a 1:

(External device trap condition)—————— Al

(Busy trap condition) - A2
(Operator trap condition) > A3
(Fault trap condition) > A4

(Add overflow trap condition)———————— A5
(Index overflow trap condition)=————— A7
(Indicator light #1 condition) A8
(Indicator light #2 condition) — A9

a4

If bit 11 is a 1:

Arm the traps and indicator lights
which are specified by bits 9 thru 1l

If bit 10 is a 1:

Disarm the traps and indicator lights
which are specified by bits 9 thru 1

If bit 9 is a 1:
Indicator light #2 is specified

If bit 8 is a 1:
Indicator light #1 is specified

If bit 7 is a 1:
Index overflow trap is specified

If bit 5 is a 1:
Add overflow trap is specified

If bit 4 is a 1:
Fault trap is specified

If bit 3 is a 1:

Operator trap is specified

Code Instruction Operation

70
(Continued) If bit 2 is a 1:

Busy trap is specified
If bit 1 is a 1:
External device trap is specified

If bit 13 of this instruction is a one the
add and index overflow conditions will
be stored in bits 5 and 7 of register A
respectively. All other bits of register
A will remain unchanged if bit 13 is a
one. If bit 12 is a one all trap and
operator light conditions will be stored
in bits 9, 8, 7, 5, 4, 3, 2 and | of register
A as specified above regardless of bits
9 thru 1. All other bits of register A
will remain unchanged if bit 12 is a one.
Bits 13 and 12 should not both be ones in
the same instruction. If bit 11is a one
those traps and indicator lights which
are specified by ones in bits 9 thrul as
indicated above will be armed. If bit

10 is a one those traps and indicator
lights which are specified by bits 9 thru
1 as indicated above will be disarmed.
Bits 11 and 10 should not both be ones in
the same instruction. With the exceptions
specified ahove all combinations of ones
and zeros in bits 13 thru l are allowable.

72 SKIP *if bit 13 is a one and A21 # E21
SENSE *Or if bit 12 and E21 are both ones
SWITCH *Or if bit 11 and indicator light
SET #2 are both ones
*QOr if bit 10 and indicator light
#1 are both ones
*QOr if bit 9 and flag 9 are both ones
*QOr if bit 8 and flag 8 are both ones
*Qr if bit 7 and flag 7 are both ones

*Not in present machines but will be added in near
future.

1-30

Code

72
(Continued)

74

Instruction Operation

Or if bit 6 and sense
switch 6 are both ones
Or if bit 5 and sense
switch 5 are both ones
Or if bit 4 and sense
switch 4 are both ones
Or if bit 3 and sense
switch 3 are both ones
Or if bit 2 and sense
switch 2 are both ones
Or if bit 1 and sense
switch 1 are bcth ones:

Skip 1 instruction

This instruction will result in skipping the
next instruction in sequence if the above
conditions are satisfied. Any combination
of ones and zeroes in 13 thru 1 is allowable
in this instruction.

EXTERNAL
DEVICE

Interpret the operand as an external device
control word (EDCW). Bits 21 thru 16 of the
EDCW specify the address of an external
device. If the device which is addressed is
busy and if the busy trap is armed a busy
interrupt will result from this instruction.
Bits 13 thru 1 of the EDCW specify what the
addressed external device will be instructed
to do if it is not busy. These bits have a
different significance for each external
device. If the addressed external device is
not busy a start signal will be sent. This
start signal will be recognized only by the
addressed external device and will cause it
to commence executing the instruction speci-
fied by the EDCW. The external device's
own logic will sequence events associated
with this instruction until it is completed.

If bit 14 of the EDCW is a one the addressed
external device will be instructed to interrupt
the central computer program when it has com-
pleted what it is instructed to do. For further
details see Input Output Systems, Volume 3,
Section I, paragraphl. 3. 4.

1-31

1-32

Code

76

Instruction Operation
ASSEMBLY
REGISTER

Interpret the operand as an assembly
register control word (ARCW). If bit

19 of the ARCW is a zero this instruction
will be directed to channel zero; if it is a
one this instruction will be directed to
channel one. If the specified channel is
busy this instruction will have no effect
except that a busy interrupt will result

if the busy trap is armed. Bits 13 thru

1 of the ARCW represent an ARCW address
which will be indexed if bits 15 and 14 of

the ARCW are not both zero. Indirect
addressing does not apply to the ARCW
address. If bit 17 of the ARCW is a one,
the memory address register (BM) of the
specified channel will be stored in bits 13
thru 1 of the memory location specified by
the ARCW address. If bit 17 is a 0 and bit
18 is a 1, the ARCW address will be trans-
ferred to the memory address register (BM)
of the specified channel. If both bits 17 and 18
are 0 the ARCW address will be transferred
to the limit address register (BL) of the
specified channel. The memory address
register of each channel is the address of
the next memory location with which that
channel may communicate. After an
external device has completed its communi-
cation with the central memory register BM
will contain the address sequentially following
the last memory address with which the
channel communicated. The limit address
register (BL) contains the address following
the last sequential address with which the
channel is allowed to communicate. If
registers BM and BL of the same channel
contain the same address, that channel can
communicate no information,

1.3.4 INPUT/OUTPUT SYSTEMS

1.3.4.1

1.3.4.2

General Features

All transfer of data to or from the computer
is conducted via input/output channels which
communicate directly with the magnetic core
memory of the ASI-210, The access to the
memory is time-shared between the operating
program and input/output data transfer; in a
typical situation, approximately 15 per cent
of the memory time is available for input/
output data transfer. Since the arithmetic
and control functions of the operating program
do not require access to the memory every
computer cycle, they may proceed simultane-
ously with input/output data transfer with little
or no loss in speed.

The standard ASI-210 is provided with one
input/output channel. An additional channel
may be optionally supplied.

Each piece of on-line peripheral equipment is

known as an ""External Device' (abbreviated,

E. D.). Each external device has an unique
ACT_210 A Arn~AraA An+ up to

S B ML - ~nto
duurcsse. LIIC [1Ul— WiV LaAll avieuviliivamare

64 external devices with two channel operation.

The ASI-210 input/output system is provided
with program interrupt features so that testing
of the condition of the external devices by the
running program is not necessary.

Input/Output/ Channel

The standard mode of input/output data flow
for the ASI-210 is by sequentially transmitted
six-bit octal or alphanumeric characters.
These characters are assembled (or disassem-
bled) into 21-bit computer words by an input/
output assembly register (B), one of which is
employed for each input/output channel. In
addition, each input/output channel is provided
with two 13-bit address registers. These
registers are termed the ""Address register"
(BM) and the "Limit address register' (BL).
(Limit address is the last data address plus

one.)

1-33

In general, BM and BL define the beginning
and limit locations in the main core memory
into (or from) which a block of data is to be
transferred via the particular input/output
channel., The specific function of BM and BL
depends upon the ED addressed. During the
actual input/output data transfer the various
registers are under the control of the ED,

1.3.4.3 Assembly Register Instruction

The AR instruction has the same format as

the other machine instructions. In this case,
the operand is the "Assembly Register Control
Word" (ARCW). The format of the ARCW is
shown below:

bits 21-20 Store BM Index

Unused bit 17 Address
4 I | >bits 15-14
" fogn)

BBEBBB BBEBBBBBBEBBBBBDBBDB,

n'g
Channel Unused AR Operand
bit 19 bit 16 bits 13-1
Register
BM or BL
bit 18

B represents 1 binary digit
Channel (Bit 19)

If this bit is a one channel #1 is
specified.

If this bit is a zero channel #2 is
specified.

PRPULISEVIS o] ~- DT [Dz:s 100\
NEZISIET DML OT D (D1t 10y

If this bit is a one, the Effective
AR Operand will be placed in

1-34

1.3.4.4

BM of the appropriate channel.

If this bit is a zero, the Effective
AR Operand will be placed in BL of
the appropriate channel.

Store BM (Bit 17)

If this bit is a2 one, bit 18 will be
ignored and the contents of BM of

the appropriate channel will be
stored in the operand address portion
of the memory location specified by
the Effective AR Operand.

If this bit is a zero, this provision
will be ignored.

Index Address

This address specifies the same
index locations employed in the
machine instructions. It is the
address of a memory location,
the operand address portion of
which may be added to the AR
Operand to yield the Effective AR
Operand.

AR Operand
Employed as described above.

External Device Instruction

The ED instruction has the same format as
all other machine instructions.

In this case the operand is the ""External
Device Control Word" (EDCW).

1-35

Format of EDCW:

BBBEBBBBBBBBBBBBBB,BBBB
\C = > CZ AL J

h
ED address Number Command Code
bits 21-16 (used by move bits 4-1
commands)
bits 13-5
Unused Interrupt
bit 15 bit 14

B represents one binary digit
ED Address Address of the particular ED

Interrupt The "Interrupt' bit 14 com-
mands the ED to interrupt the
running program when it
has performed the specified

operation.

Command Code These bits specify to the
ED what operation is to be
performed.

1.3.4.5 Assigned ED Addresses
Device Address
Typerwriter 00
Paper Tape Reader 02
Paper Tape Punch 04
Card Reader 06
Card Punch 10
Line Printer 12
Magnetic Tape 1 14
Magnetic Tape 2 16
Magnetic Tape 3 20

1-36

Magnetic Tape 4

22

(Additional Devices will be ass-
igned to locations 00024-00077)

1.3.4.6 Command Codes for ASI External Devices

1.3.4.6.1 Command Codes for the Paper Tape

Reader

Command Code

00

01

Command
Read Packed -

Input to mem-
ory in a packed
mode proceeds
until (BL) =
(BM) or until

a stop code is
read. (BL) -
(BM) words
are input with
first tape chara-
cter on line
going to most
~avanaiflAan A

significant cund
of memory loc-
ation (BM). A
six level infor-
mation code is
used. Lateral
odd parity is
checked. Any
code containing
an eight level
punch is not read.
Unit passes
leader and code
delete.

Read
Character -

Input of all

eight tape levels,
each character or
line going into

a single computer
word, In memory,

1-37

1-38

bits 18
through 21 will
be zeros.

Bits 17 through
10 will be filled
from tape levels
8 through 1, res-
pectively.

All other bits

will be zeros,

No parity is check-
ed and input pro-
ceeds until (BL)
(BM). All codes
enter computer,
leader is not pass-
ed.

All even codes same as 00
All odd codes same as 01

If bits 14 of the EDCW was a ""one' and

if parity failure does not occur, the
Paper Tape Reader will attempt a normal
External Device interrupt. It will
remain '"Busy'' until the interrupt is
recognized (occurs). Thus, if interrupt
is specified and the External Device

trap is not armed the Reader remains
"Busy'' until the trap is again armed,
allowing the interrupt to occur,

Independently of the EDCW interrupt
bit, a parity failure while reading in
the packed mode only will cause the
reader to attempt an External Device
interrupt to the fail address (00003),
A failure inhibits a normal interrupt
if such an interrupt was specified in
the EDCW. The reader remains "Busy'"
until the fail interrupt is recognized.
Thus, if the ED trap is not armed, the
"Reader'' remains '""Busy'' until the
interrupt is allowed. The Assembly
Register is released while the Reader
waits '""Busy" for either interrupt rec-
ognitions, thus allowing use of the AR

1.3.4.6.2

by other ED's.

Command Codes for the ASI-A30

Typewriter

Command Code

00

02

Command

Input -

Input from key-
board is accept-

ed until either

(BL) = (BM)

or until the
"terminate

switch'' is dep-
ressed, First
character is

input to most sig-
nificant end of
memory location
BM. If number

of words input is
odd, the last word
contains a maxi-
mum of three char-
acters. Remaining
three bits will be
zeros.,

Output -

Output to type-
writer occurs

until (BL)=(BM).
First character

is taken from most
significant end of
memory location
(BM). If number
of words output is
odd, the last word
may contain a max-
imum of three char-
acters. Remaining
three bits are ign-
ored,

Any code with bit 2 a "zero'" will be

interpreted as 00,

Any code with bit

2 a "one' will be interpreted as 02.

1-40

1.3.4.6.3

If bit 14 of the EDCW is a "one" a
normal interrupt will occur (if armed)
at the conclusion of the command.

If an interrupt is specified, the type-
writer remains ""Busy' until interrupt
is recognized. Thus, if bit 14 is a
one in an A30 EDCW, and the External
Device trap is not armed, the A30 is
"Busy' until trap is armed causing

the interrupt to be recognized. The
Assembly Register is released while
the ED waits "Busy" for the interrupt
to occur. Thus, other ED's may use
the AR during this time.

Command Codes for the ASI Paper Tape
Punch

Command Code Command
00 Punch Packed -

The contents of
memory from
location (BM)

to (BL) will be
punched on

paper tape. Six
level information
code is used.
Level seven is pun-
ched, as required,
to maintain odd
parity. A stop
code is generated
following the in-
formation. If

an odd number

of words is output,
only the most
significant eight-
een bits of the
last word are
punched.

01 Punch
Character -

Eight bits of

1,3.4.6.4

each of the
memory loc-
ations from
(BM) through
(BL)-1 are
punched in
paper tape.
Bits 17 through
10 are punched
in tape levels
8 through 1,
respectively,
No parity bits
or stop codes
are generated,
Other bits are
ignored.

All even codes same as 00
All odd codes same as 01

If bit 14 of the EDCW was a '"one'' the
punch will attempt a ""normal' interrupt
when the punch is finished., The punch
remains '"Busy'' until the interrupt
occurs (ED trap armed), but the
Assembly Register is released,
allowing use of the AR by other devices.

Command codes for the ASI-All Mag-
netic Tape Unit

Command Code Command
00 Test - End
of Tape -

If the tape unit
has detected an
End of Tape mark-
er (photo-electric,
reflective spot)
or a Load Point
Marker following
the last command
it received, this
command will
cause the All to
effect a "Busy"
interrupt. The
"Busy'" interrupt
must be armed if

1-41

01

02

<
W

1-42

this interrupt

is desired.

The detection
unit is reset

by all commands
except 00, 01, 02
or 03,

Test File Mark-

If the tape unit
has detected a
File Mark on

its last command
(must have been

a ""Read" command)
this command will
cause the All to
effect a "Busy"
interrupt. The
"Busy' trap must
be armed if this
interrupt is de-
sired, The detec-
tion unit is reset
by all commands
except 00, 01, 02
or 03,

Test Fail -

If the tape unit

has detected a
failure on the last
command this com-

B wrsn 1l Aoy oa el o
mand will cause the

All to effect a
""Busy' interrupt.
The "Busy' trap
must be armed for
the interrupt to
occur, The fail
condition is reset
by any command
except 00, 01, 02
or 03,

Not used,

Not used,

05

06

07

Write Alpha -

The contents

of memory loc-
ations from

the memory
addresses spec-
ified by (BM)
through (BL)-1
will be written
on the magnetic
tape with even
lateral parity.
The information
is formatted as a
single record
with longitudinal
parity and a
record gap in-
serted at the end
of the information.
Code translation
occurs (See
listing of ASI
Magnetic Tape
Alphanumeric

P U= PO
\JUUCD}.

Write File
Mark -

This command
will cause a file
mark to be
recorded on the
tape.

Write Binary -

The contents

of memory loc-
ations from the
memory address
specified by (BM)
through (BL)-1
will be written
on the magnetic
tape with odd
lateral parity.
The information
is formatted as

1-43

a single

record with
longitudinal
parity and a
record gap in-
serted at the
end of the in-
formation. All
combinations of
six bits may be
recorded as a
single character.
No code trans-
lation occurs.

10 Move Reverse
n Records -

This command
will cause the

tape to move
reverse n records
(backspace). n
may be any number

from (0), . to
10
(511),.
11 Not Used.
12 Rewind -

This command
causes the tape
to move reverse

5 d
at high speced

until the load
point (leading
end of tape

spot) is detected.

13 Not Used.

14 Move Forward
n Records -

This command
causes the tape
to be moved for-
ward n records.
n may be any
number from

1-44

15

16

17

(O) 0 to
(5111)10.

Read Alpha -

The next com-
plete record on
magnetic tape

will be trans-
ferred to computer
memory starting
with the memory
location specified
by the initial (BM)
and limited by
(BL). If the record
requires more mem-
ory space than
allowed, data trans-
fer will cease when
(BL)=(BM). That
is, memory loca-
tion (BL)-1 will

be the last to be
filled. However,
tape moiion wiil
continue until the
record end is
reached, If (BM

to (BL)-1is more
than sufficient to
hold the record,

the entire operation
is terminated at the
record end. Lat-
eral even parity

is checked. Code
translation occurs
(See listing of ASI
Magnetic Tape
Alphanumeric
Codes).

Not used.

Read Binary -

The next com-
plete record on
magnetic tape

1-45

will be trans-
ferred to com-
puter memory
starting with

the location spe-
cified by the
initial (BM) and
limited by (BL).

If the specified
memory area is
not sufficient

to hold the

entire record,
data transfer
ceases at loc-
ation (BL)-1,

but tape motion
continues to the
end of the record.
If the memory area
specified is more
than sufficient,
the operation
terminates at the
record gap. Lat-
eral odd parity is
checked., No code
translation occurs.

If bit 14 of the EDCW was a "one' and
if a fail (fail, E. O, T., F.M.)
condition does not occur, the tape unit
will attempt an ED interrupt at the
conclusion of its operation (interrupt
bit is ignored for commands 00, 01,
02 and 03). The tape unit remains
"BUSY'" until the interrupt occurs
(trap armed), but the Assembly Reg-
ister is released.

If a fail condition occurs, the All will
attempt an E, D, interrupt to the fail
address. It will remain "BUSY" until
the interrupt, occurs, but will again
release the Assembly Register, A
fail interrupt is not conditional upon
the interrupt bit 14, A fail condiilion
inhibits a normal interrupt.

1-46

While in use, a '""Fail" interrupt
from an ASI Model All magnetic
tape unit may occur as a result of
four different conditions:

1. A parity fail occurs during a
'""read' operation.

2. A parity fail occurs (on echo
check) during a '""write'" operation.

3. A file mark is read during a
""read' operation.

4. An end of tape detection occurs
during a ''read' or "write"
operation.

Conditions three and four may be
Separated from true fails by inter-
rogating the All unit for file mark,
end of tape and fail, These interro-
gations are accomplished by specify-
ing the proper operation code and
addressing the tape unit which caused
the "Fail" interrupt. If the inter-
rogation results in a2 ''yes' answer,
the tape unit will attempt an External
Device Busy interrupt. If this inter-
rupt is armed, the proper branch in a
fail detection subroutine occurs.

Each time a tape unit command other
than 00, 01, 02 or 03 is performed
(unit is not busy when commanded)
The detection circuits for test
conditions will be reset,

1.3.4.7 External Device Control Words

Operation EDCW
Read Alphanumeric 0000000
Typewriter
Write Alphanumeric

0000002

Typewriter

1-47

1-438

Read Binary Paper Tape 0200000
Write Binary Paper Tape 0400000

Read Character Paper

Tape 0200001
Write Character Paper

Tape 0400001
Read Binary Cards 0600000
Write Binary Cards 1000000
Write Alphanumeric

Line Printer 1200000
Read Binary Mag. Tape

1 1400017
Write Binary Mag. Tape

1 1400007
Read Alphanumeric Mag.

Tape 1 1400015
Write Alphanumeric Mag.

Tape 1 1400005
Rewind Mag. Tape 1 1400012
Space forward, Mag. Tape

1, D records 14ddd14
Space backward, Mag. Tape

1, D records 14dd4d10

Write End of File, Mag. Tape ’
1 ' 1400016

End of Tape Test, Mag.
Tape 1 1400000
Test End of File, Mag.
Tape 1 1400001
Test Fail, Mag. Tape 1 1400002

1.3.4.8

1.3.4.9

Data Flow

The transfer of data between ED and the associated
assembly register proceeds under the control of
the ED. The periodic information rate may be

any value less than 62.5 KC. Considerably higher
transfer rates are possible under certain given
conditions. Input/Output channels may transfer
data simultaneously in two channel operation.

The access to main memory from the in/out
channels is made available alternately. This is
provided by a data transfer scanner such that all
memory access for in/out purposes is made avail-
able to the channels requiring transfer. The data
rate and channels active are not restricted except
that the program must not require in/out data trans-
fer which exceeds a peak word rate of 62.5 KC
considered over both in/out channels.

External Device Interrupt

Interrupt provisions have been made to facilitate

the input/output data transfer operations. In the
case of appropriate ED, specification of the
interrupt bit 14 in the EDCW will result in an ED
interrupt at the conclusion of the specified opera-
tion. The interrupt requests of the ED are handled
by the interrupt scanner and are processed in the
sequence of ED address numbers. When an ED
interrupt occurs, the program jump is to the loca-
tion having the same address as the ED. Provisions
for priority and fail interrupts have been made.
When a priority ED makes an interrupt the interrupt
scanner is returned to the lowest number assigned
to the priority ED interrupt block and scans through
the sequence in order to pick up the highest priority
ED seeking interrupt. The highest priority ED are
assigned the lowest numbers. This allows early
access to the computer program for priority ED
even though other ED have previously made interrupt
requests.

1-50

1.3.4.10

1.3.4.11

Busy Interrupt

If a previously specified operation of an ED or in/out
channel is not complete at the time it is given its
next instruction a '""busy interrupt' will occur.

This results in a jump to a fixed location (00106)
which may lead to the busy routine.

Permanently Assigned Memory Locations

Memory Location Assignment
00000 Typewriter Interrupt
00001 Typewriter Fault
00002 Paper Tape Reader Interrupt
00003 Paper Tape Reader Fault
00004 Paper Tape Punch Interrupt
00005 Paper Tape Punch Fault
00006 Card Reader Interrupt
00007 Card Reader Fault
00010 Card Punch Interrupt
00011 Card Punch Fault
00012 Line Printer Interrupt
00013 Line Printer Fault
00014 Magnetic Tape #1 Interrupt
00015 Magnetic Tape #1 Fault
00016 Magnetic Tape #2 Interrupt
00017 Magnetic Tape #2 Fault
00020 Magnetic Tape #3 Interrupt
00021 Magnetic Tape #3 Fault
00022 Magnetic Tape #4 Interrupt
00023 Magnetic Tape #4 Fault
00024

to punassigned
00077
00100 Operator Interrupt
00101 Unassigned
00102 Fault Interrupt
00103 Add Overflow Interrupt
00104 Exponent Overflow Interrupt
0105 Index Overflow Interrupt

00106 Busy Interrupt
0olo07 Unassigned
00110 Interrupt Fixed Address

Mamory Location Assignment

00111

00112 punassigned

00113

00114 Priority ED Interrupt
Fixed Address

00115 Index Address 1

00116 Index Address 2

00117 Index Address 3

1.3.5 CODING PROCEDURES FOR THE ASI-210

1.3.5.1

1.3.5.2

Writing a Program

There are five definite steps that must be performed
when writing a program. They are:

1. Analyze the problem
Write a flow diagram of the solution
3. Write the program in machine language from

the flow diagram
4, Debug the program
5. Run the corrected program

If the programmer uses these five steps in the order
presented he will have the smallest amount of diffi-
culty and will arrive at the solution in the shortest
amount of time.

Mechanics Of Coding Programs For The ASI-210

The first step in coding a program, as was mention-
ed above, is to analyze the problem. This analyz-
ing consists primarily of determining:

1. What the problem is
2. What input and input format will be used
3. What output and output format will be used

Once the problem is analyzed and the best procedure
for solving it is determined, the programmer will
write a flow diagram of the problem. The first

flow diagram will be very general and illustrate only

1-51

the theme and method that will be used to solve
the problem.

After all the basic steps are completed the pro-
grammer will break each step down until each
block in the flow diagram requires only one or
two instructions to the computer.

Once the flow diagram is in this form, it is a
fairly simple matter to translate the blocks of
the flow diagram into instructions to the com-
puter.

When writing the program in machine language,

the address of each instruction is also included.
The format of the absolute machine code will be,
for example:

Mzmory Location Instruction
00120 32 0 02000

When the program is completely written the pro-
grammer will have it typed on a Flexowriter, or
any other appropriate input device, and a "flex"
tape will be prepared. (See Volume 2 for the
format and use of ''flex'" tape.) He will then take
the tape and read it into the machine. When the
program is in the machine the programmer will
run the program. The program may or may not
run correctly. If it does run correctly, it is in
its final form and may be used to solve the problem
anytime it is necessary. If the program does not
run correctly it must be '"debugged''.

1.3.5.3 Debugging a Program

Debugging a program is the process of finding and
correcting any and all errors in the program.
There are definite steps in debugging a program
just as there were definite steps in writing a pro-
gram. These steps are:

1-52

Re-analyze the problem to make sure the
proper solution was used.

Check the flow diagram to insure they
agree with the solution and are in a logical
sequence.

Inspect the machine language program for
coding errors - (wrong operations codes,
indirect address designators, etc.) Most
errors should be found in one of these three
steps. If the program still does not run or
if the program is so long as to prohibit the
first three steps because of the time involved,
another method of debugging may be used.

The second method of debugging is done on the con-
sole of the computer itself.

1.

2.

Check to see if the computer is still running
or if it has stopped.

If the computer is still running, one of the
following two things has probably happened.

a. A loop has been set up within the pro-
gram and there is no way to get out
of the loop.

b. An external device is being used and

the computer is hung up in a '""busy"
routine, (a '""busy' routine is a routine
built into the main program that will
cause the computer to wait for an ex-
ternal device until the external device
is no longer busy.)

The easiest way to determine what is happening

in either of these two cases is to stop the computer
and place the machine in ""one instruction'' mode.
By examining the contents of the various registers
at the end of each instruction it will be possible

to find the error by comparing the actual contents
of the registers with what should be contained in
the registers.

1-53

3. If the computer is stopped one of two things
has happened.

a. The computer has stopped at the normal
halt instructions of the program.

b. The computer has stopped someplace
other than at the normal halt instruc-
tion of the computer.

In either case the easiest way to find the error in
the program is to insert halt instructions at criti-
cal points in the program, usually one for each
block of the general flow diagram, and run the
program in steps. This will cause the program
to be run in a series of short operations and at
the end of each halt instruction the programmer
can determine whether this previous portion of
the program has accomplished what it was de-
signed to accomplish.

1-54

Example 1

BASIC PROGRAMMING

Load A, Add, Subtract, Multiply, Store E, Halt

Problem:

Program:

LOC

03001
03002
03003
03004
03005
03006

Example 2

X=a(b+ c-d), all values are integer

a is in memory location 500
b is in memory location 1030
c is in memory location 607
d is in memory location 501

x to be stored in memory location 0

OPN ADR
14 01030
10 00607
12 00501
30 00500
46 00000
00 03001

EXECUTION RESULT
Bring b to reg. A b
Add c to (A)—> reg. A b+ c

Subtract d from (A)—>> reg. A btc-d

Multiply a . (A), —>reg. AE a (btc-d)

Store (E)—=> location 0 X
Halt—> 3001

Skip A Equal, Skip A High, Jump

Problem: If a< b, transfer program sequence to location 250
If a>Db, transfer program sequence to location 257
If a = b, transfer program sequence to location 300
a is in memory location 600
b is in memory location 610
Program:
LOC OPN ADR EXECUTION
00200 14 00600 Bring a to reg. A
00201 40 00610 Skip the next instruction if a > b
00203 02 00205 a< b, Jump to location 205
00204 02 00257 a>Db, Jump to location 257

1-55

LOC

00205
00206
00207

Example 3

Absolute value,

Problem:

Given:

Program:

LOC

04056
04057
04060
04061
04062
04063
04064

04065

04066

Example 4

OPN ADR EXECUTION

42 00610 Skip the next instruction if a = b
02 00257 a< b, Jump to location 250
02 00300 a = b, Jump to location 300

Minus, Jump A Less than Zero, Store A
If b<< 0, make b> 0

If c=0, make c< 0

+b in location 4766

+c in location 4777

OPN ADR EXECUTION
14 04766 Bring b to reg. A
44 04061 Jump if (A)<< 0
02 04063 b =0, go on
20 04000 b < 0, Make (A) absolute
26 04766 Store (A) in b
14 04777 Bring c to reg. A
44 04100 Jump if (A)< 0, ¢ < 0, go on

22 04000 c=0, Make (A} minus
26 04777 Store (A) in c

Trap, Divide, Jump Disable Interrupt, Load E, Zero, Halt

Problem:

Given:

1-56

x = a/b

If aZb divide fault will occur; interrupt to location 560
If a<b store quotient (x) in location 203, remainder

in location 204, and stop program.

a and b are positive integers

a is in location 170, b is in location 171

Program:
LOC OPN EXECUTION
00120 14 00131 Set fault interrupt location to accept
00121 26 0010} i
00122 70 02010 Arm the fault trap
00123 24 04000 Zero reg. A to sign of dividend
00124 16 00170 Bring dividend (a) to reg. E
00125 32 00171 Divide (AE) by b
00126 46 00203 Store quotient (x) in location 203
00127 26 00204 Store remainder in location 204
00130 00 00120 Halt, go to location 120

00131 06 00560 Jump disable interrupt, transfer to
location 560

nterrupt in the case where a=b

Example 5
Store Address in Index, Augment Index, Skip if Index High
Problem: Zero memory locations 3300 thru 3456, and halt
Program:

LOC OPN ADR EXECUTION

02200 24 04000 Zero register A

02201 54 20000 Store address zero in index 1

02202 26 23300 Store (A) in memory location (3300 + index 1)
02203 50 20001 Add I to index 1

02204 52 37622 Skip if index 1 is higher than 1554

02206 02 02202 (index 1)= 1554, go to location 2202

02207 00 02200 (index 1)>> 1554, halt

Example 6
Shift, Logical Or
Problem: Merge three six-bit characters into register A. The

characters are right justified in three consecutive mem-

ory locations (1031-1033) (00000xx).

1-57

Program:
L.OC OPN ADR EXECUTION
04006 16 01031 Bring first character to reg. E (00000xx)
04007 60 02406 Circular left shift (E) six-bits (000xx00)
04010 56 01032 Logical Or (E) @ (2nd char.)=— A (000xxxx)

04011 26 01000 Transfer (A) to reg. E
04012 16 01000

04013 60 02406 Circular Left shift (E) six-bits (0xxxx00)
04014 56 01033 Logical Or (E) @ (3rd char.)—= A
(Oxxexxxx)
Example 7

Store A Address

Problem: The memory address of a value varies; put the value

in Register E.

Given: The variable address of the value is in location 1003
Program:
LOC OPN ADR EXECUTION
00736 14 01003 Bring to register A the variable address
00737 36 00740 Store the address portion of Register A

into the address portion of location 740

00740 16 XXXXX This instruction now reads, load E, with

value—> E
Example 8
Skip Sense Switch Set
Problem: If Sense Switch 3 is set, go to program sequence starting

at location 5070,

If Sense Switch 3 is not set, go to program sequence start-

ing at location 5476.
Program:
LOC OPN ADR EXECUTION
04700 72 00004 Test Sense Switch 3

1-58

LOC
04701
04702

Example 9

Logical And
Problem:

Given:

Program:
LOC
02000
02001
02002

Example 10

Normalize

Problem:

Given:

Program:
LOC
00200
00201
00202
00203
00204

OPN ADR EXECUTION
02 05476 Not set, go to location 5476
02 05070 Set, go to location 5070

Put zeros in X where there are zeros in y.
X (5252525) is in location 2033
y (2525252) is in location 2036

OPN ADR EXECUTION RESULTS
16 02033 Bring X to reg. E
66 02036 (Xoy), goes toreg. A
26 02033 Store (A) in X 0000000

Xy=P

Retain 20 most significant bits of product.

X is in location 304 and has a scaling factor of 29
y is in location 305 and has a scaling factor of 2°
P is to be stored in location 306

Scaling factor of X is in location 307

Scaling factor of y is in location 310

Scaling factor of P is to be stored in location 311

OPN ADR EXECUTION RESULTS
14 00307 Add the scale factors 9
10 00310 of X and y and store 5
26 00311 the sum in loc. 311 14
14 00304 Bring X to reg. A x.29
30 00305 Multiply (X.y) (X.y). 214

LOC

00205

00206

Example 11

Return

Problem:

Given:

Program:
LOC
00505
00506

00507
00510
00511
00512

00513
00514

00515
00516

00517
00520

1-60

OPN

64

26

ax+b=c

ADR

00311

00306

EXECUTION

Normalize (AE), shift
count is added to (311)

Store (A) in loc. 306

RESULTS

=3 2(14+K)

Solve the preceding equation for Cys €5y C3 using three

variables of x (xl, X5 x3).

The x variables are in consecutive locations 540, 541, 542.

Compute each c by use of a subroutine.

The c values will be stored in locations 560, 561, 562.

a is in location 603

b is in location 607

OPN
14
04

02
26

14
04

02
26

14
04

02
26

ADR
00540
01005

01003
00560

00541
01005

01003
00561

00542
01005

01003
00562

EXECUTION

Bring X, to reg. A

1
Place addr. 510 in
location 01005

Jump to subroutine

Store (A) in <y

Bring x, to reg. A

Place addr. 514 in
location 01005

Jump to subroutine

Store (A) in <,

Bring x5 to reg. A

Place addr. 520 in
loc. 01005

Jump to subroutine

Store (A) in cy

RESULTS

Xy

a,xl+b

Subroutine

01003
01004
01005

Example 12

30 00603 Multiply a.x ax
10 00607 Add ax+b ax+b
02 00000 Jump to addr. put

here by return

instruction

Assembly Register, External Device

Problem:

Given:

06777
07000
07001
07002
07003
07004

Print on the on-line typewriter the words DOG CAT
and stop program.

Memory locations 7003 and 7004 contain the flex codes
for DOG CAT.

OPN ADR EXECUTION

~ L NnN7NnnNnnN Cnt NMDAA e DT 1Y da m o macn A2l

[V vivuv CTL 471vy A" § Ly Ad [~ L ULV N 3 u..u.ls v
content of Loc. 7000

76 07001 Set "BM" or "BL'" according to
content of Loc. 7001

74 07002 Select external device and function
according to content of Looc. 7002

00 06774 Halt, go to 6774

04 07003 Load "BM" with addr. 7003

00 07005 Load "BL" with addr. 7005

00 00002 Write alphanumeric on typewriter

24 46276 Flex codes for DOG CAT

02 32163

1-61

Octal Code

00
02
04
06

10
12
14
16

20
22
24
26

30
32
34
36

40
42

44
46

50
52
54
56

60
62
64
66

70
72
74
76

1-62

Table 1 -1

INSTRUCTIONS

Instruction

HALT

JUMP

RETURN

JUMP DISABLE INTERRUPT

ADD
SUBTRACT
LLOAD A
LOAD E

ABSOLUTE VALUE
MINUS

ZERO

STORE A

MULTIPLY

DIVIDE

ROUND

STORE A ADDRESS

SKIP A HIGH

SKIP-A EQUAL

JUMP A LESS THAN ZERO
STORE E

AUGMENT INDEX

SKIP INDEX HIGH

STORE ADDRESS IN INDEX
LOGICAL OR

SHIFT
NORMALIZE A
NORMALIZE A, E
LOGICAL AND

TRAP

SKIP SENSE SWITCH SET
EXTERNAL DEVICE
ASSEMBLY REGISTER

Time u sec

10
10
10
12

54
56
14
10

14
14
10
10

12
10
12
12

10+2K
14+2K
14+2K
12

10
16
20

Table 1 = 2

INSTRUCTIONS ARRANGED BY FUNCTION

Octal Code
Stop Commands
00
Transfer Commands

14
16
26
36
46
54

Arithmetic Commands

10
12
20
22
24
30
32
34
50
62
64

Logical Commands

56
66

Shift Commands

60

Instruction

HALT

LOAD A

LOAD E

STORE A

STORE A ADDRESS

STORE E

STORE ADDRESS IN INDEX

ADD

SUBTRACT
ABSOLUTE VALUE
MINUS '
ZERO

MULTIPLY
DIVIDE

ROUND

AUGMENT INDEX
NORMALIZE A
NORMALIZE A,E

LOGICAL OR
LOGICAL AND

SHIFT

Time in u sec

10
12

10
10
12

10
10

12
54
56
14
12
14+2K
14+2K

12
12

10+2K

1-63

Skip Commands

40 SKIP A HIGH

42 SKIP A EQUAL

52 SKIP INDEX HIGH

72 SKIP SENSE SWITCH SET

Jump Commands

02 JUMP

04 RETURN

06 JUMP DISABLE INTERRUPT
44 JUMP A LESS THAN ZERO

Input/Output Commands

74 EXTERNAL DEVICE
76 ASSEMBLY REGISTER

Interrupt Recognition Commands

70 TRAP

1-64

14
14
10
10

12

10

16
20

Table 1 - 3

EXTERNAL DEVICE ADDRESSES

Device

Typewriter

Paper Tape Reader
Paper Tape Punch
Card Reader

Card Punch

Line Printer
Magnetic Tape Unit 1
Magnetic Tape Unit Z
Magnetic Tape Unit 3

Magnetic Tape Unit 4

Address

00

02

04

06

10

12

14

20

20

1-65

Table 1 - 4

FLEXOWRITER CODES

Code Character Code Character
uc 1c uc 1c
121 A a - 100) 0
122 B b - 001 - +
023 C c 002 @ 2
124 D d 103 # 3
025 E e 004 $ 4
026 F f 105 % 5
127 G g 106 ! 6
130 H h 007 & 7
031 I i- o010 : 8
141 J j 111 (9
142 K k 076 Tab
043 L 1 032 Shift up
144 M m 034 Shift down
045 N n 136 Backspace
046 O o 156 Carriage return
147 P P 200 Leader
150 Q q 370 Stop
051 R r 377 Delete
062 S s 133 . .
163 T t 073 ’ s
064 U u 020 o +
165 v v 040 i
166 W w 054 ! B
067 X X 013 | =
054 Y y 061 ? /
171 Z z 160 space space

Note: The third bit in the code is a parity bit.

1-66

Table 1 - 5

MAGNETIC TAPE BCD CODES

Code Character Code Character

61 A 31 Z

62 B 12 0

63 C 01 1

64 D 02 2

65 E 03 3

66 F 04 4

67 G 05 5

70 H 06 6

71 I 07 7

41 J 10 8

42 K 11 9

43 L 60 +

44 M 40 -

45 N 20 blank

46 o) 73 .

47 P 53 $

50 Q 54 *

51 R 33 s

22 S 34 (

23 T 74)

24 U 14 '

25 v 13 =

26 w 37 record work
27 X 77 group mark
30 Y 17 tape mark

1-67

Table 1 - 6

LINE PRINTER CODES

Code Character Code Character
21 A 71 Z
22 B 00 0
23 C 01 1
24 D 02 2
25 E 03 3
26 F 04 4
27 G 05 5
30 H 06 6
31 I 07 7
41 J 10 8
42 K 11 9
43 L 20 +
44 M 40 -
45 N 54 *
46 o 61 /
47 P 33 .
50 Q 73 R
51 R 74 (
62 S 34)
63 T 13 =
64 §) 53 $
65 v 60 space
66 W 14 !
67 X 55 #
70 Y 35 &

1-68

2.

2.

1

2

VOLUME 3

PROGRAMMING MANUAL

SECTION II

ADVANCED PROGRAMMING

INTRODUCTION

It is assumed by the authors that the programmer reading this
section has read and understood Section I of the programming
manual.

Advanced Programming was written as a guide to the programmer
in the study of the ASI-210 Assembly Program, Fortran I and the
Mathematical Subroutines. This section will show the programmer
how to write assembly and Fortran programs and gives a list and
function of the mathematical subroutines available.

This section can be treated as three separate parts, the ASI-210
Assembly Program, Fortran I Compiler and Mathematical Sub-
routines. The first two parts contain several examples and sample
programs to help the programmer understand the principles and
procedures outlined in this manual.

ASI-210 ASSEMBLY PROGRAM
2.2.1 INTRODUCTION

The preparation and machine checking of programs in
machine language caused the users of computers to consider
ways in which they might use machine capabilities to do some
of the arduous preparation and checking with fewer errors.
The coding of programs in machine language caused con-
siderable labor not only in checking out the program initially
but in making any changes at a later date. Thus the concept
of relative addressing was conceived so that changes could
be made and programs relocated in storage with greater
ease. Other ideas such as muemonic operation codes and

2-2

symbolic notation were adopted and the assembly programs
which incorporated these concepts became widely accepted.
The first assembly programs enabled the users to write only
machine instructions in their programs. Macro instructions
and pseudo instructions that caused many machine instructions
to be generated were later added so that data and often-used
sub-programs for subroutine libraries could also be assem-
bled.

Thus an assembly program enables a program to be prepared
in a more comprehensive, intelligible language than the under-
lying machine language. The advantages in using assembly
programs are:

1. Faster preparation of programs
2. Ease in making program corrections
3. Ease in segmenting and combining programs

These advantages enable users of computer installations to
utilize their staff and their equipment more efficiently by
obtaining more solutions per dollar.

FORMAT OF THE ASI-210 ASSEMBLY PROGRAM

The format of the ASI-210 Assembly Program is made up of
three 'fields'". The fields are '"location', "OPN'" (operation),
and ""address''. An explanation of each field follows:

NOTE: Figure 2-11is a copy of the coding form used with the
ASI-210 Assembly.

2.2.2.1 "Location'". The location field is an optional field
and is used to identify the instruction, control
word or operand that follows the location symbol.
The maximum length of the location symbol is
seven characters, one of which must be an alphabetic
character. If, for example, the location field
contained the symbol "PETE'", anytime an instruc-
tion referred to "PETE" the information identified
by the location "PETE'" would be taken as the
operand of the instruction, or in the case of a jump,
program control would be transferred to location
"PETE!".

ASI-210 ASSEMBLY CODING

FORM

NAME

PROGRAM

PAGE NO.

ROUTINE

DATE

LOCN

BASE ADDRESS, INDEX

35

(Do not Punch)

73

SEQUENCE

80

1 L 1 b
1 A 1 1
1 1 1 1

1 1
1 1
1 1
.| 1
1 1
1 L
1 A
1 1
i 1
1 i
1 1
1 1
1 1
i 1
£ 1
3 1
1 1
i\ 1

A 1 1 1 i 1

S — L
>

. 2
!

N T N 1
(o)

S S 1
>

I T— § 1

M

b 4 z 1
9

—_— l\') Q 1

I — (@) il
(®]

S o 1

. &
m

R B (@] 1
=]

— g 1

1 1 (- i 1 1

1 1 1 1 1 1

1 1 i 1 L 1

1 1 1. i A 1

1 1 i 1 1 1

-l 1 1 1 R |

1 1 1 1
1 1 1. 1 1 1
i | 1 1 1 1

1

1 L
1 1
1

i |
1 1
. A
i 1

1 1
i 1
1 1

1 1
1 1

1 1

1 1
1 1

1 1

1 1
— 1
1 1
1 1
1 1
1 1

1 1
-1 1
1 1

1 1

1 1

1 1

1 1

1 L
-1 1
1 1

I 1

| S|
.l .

1 1 1 il 1 1 4 L 1
H 1 1 1 1 1 1 1 1
1 1 1 I 1 1 1 1 1
1 1 1 1 1) A 1 1
1 1 1 i H 1 1 1 1
1 1 1 1 1 1 1 1 1
A 1 1 1 1 1 1 1 1
. 1 1 1 1 1 1 1 L
1 1 1 .l 1 1 [} 1 1
i i 1 H 1 1 1 - 1
1 1 1 A 1] 1 1 1
1 1 1 1 Il 1 1 1 1
1 1 1 1 | 1 1 1 1
1] 1 1] [l 1 1 1
1 i 1 1 1 1 1 A 1
Il 1 1 | 1 i) 1 L
} 1 1 i 1 i Lot
1 1 1 1 1 1 1 1 |
1 1 1 1 1 1 1 L 1
1 1 I 1 1 1 i 1 1
1 1 1 1 1 1 L L il

i 1 1 1 1 1 1 I 1
1 1 1 1 1 A 1 1 1

1 1 1 1
1 1 1 I}
1 J. 1 1
L 1 1 1
1 1] 1
1 4 1 1
1 | L L
1 ! 1
I)
H "]
i 1 H
1 L L i
i ! i
i) L i
1 1 i I
H I 1 L
L 1 Il .
1 i 1 1
I I L L
H i 1 1
L H 1 1
L H i

Aer oo 1A~

2-4

2.2.2.2

2.2.2.3

"OPN'". The operation field contains the mnemonic
operation code of the instruction. The length of
this code will be either three or four characters.
The operation code may be followed by an asterisk
to denote indirect addressing or by a "P' to de-
note interrupt in an external device control word.

Examples:

Operation Code Explanation

ADD Normal add instruction

SUB* Subtract instruction
using indirect address

WATYP External device con-
trol word '"write alpha-
numeric on the type-
writer with interrupt."

""Address'. The address field contains the memory

address, of the instruction, data or parameters.

The contents of this field may be symbolic or absolute
and in the case of absolute the value must be express-
ed in decimal, except in the case when the operation
field contains the code "OCT' which indicates the
address field contains an octal value. If the address
field is blank, the assembler will assume the address
field contains zeros.

For most machine or macro instructions, the address
field consists of two parts; an operand address 'y,
and an index address "X'".

The operand address "y'" may be a decimal constant
or a symbol. Itis optionally followed by plus or
minus a constant and/or a comma.

Examples:

PETE
JOE+3
-1347,
MAX-1,

The index address "X'" may be a symbol or a

digit, 0-3.

A comma preceding indicates the

beginning of the index address.

Examples:

NOTE: (1)

(2)

for shift instructions, the shift
count (=X 63) is used in place of
the operand address.

for trap instructions, external device
control words and assembly registers
control words, special symbols are
used in the address field.

2.2.3 ASSEMBLY CONTROL INSTRUCTIONS

Certain operation codes are used to control the assembly

process. An explanation of each code follows:

Operation Code

REM

ORG

Explanation

Informs the assembler that
the contents of the address
field are remarks and are
not part of the assembly pro-
gram. A maximum of 21
characters may be used

with one REM operation
code.

Specifies that the beginning
address of the program being
assembled is in the address
field. The address field may
be symbolic or absolute.

Operation Code

EQU

END

Explanation

Used to equate the symbol
in the location field to the
value of the address field.
The address field may con-
tain a symbol if the symbol
was assigned an absolute
decimal value prior to the
EQU instruction.

Examples:
PETE EQU 1234
JOE EQU PETE

JOE and PETE = the decimal
value 1234

Reserves n number of memory
locations where n is the numer-
ical value of the contents of
the address field. The symbol
in the location field is assigned
to the first reserved location.
The address may contain a
symbol if the symbol was
assigned an absolute decimal
value prior to the RES instruc-
tion.

Signifies the end of the program.

DATA INSERTION OPERATIONS

Several operation codes are used to introduce data words into
the program. For all of these the symbol in the LOCN field
(if present) is assigned to the data; or, for double-precision
insertion, to the first of the two resulting words.

Operation Code

Explanation

Used to insert a one-word
decimal integer or a two-
word floating point value

Operation Code

Explanation

into memory. The address
field will contain the integer
or the floating point value.

(1) Fixed Integer - One to
7 digits; preceding + or -
sign optional; maximum
magnitude 2 0_1_

Examples:

16
-1048575
47

For scaled integers, the
value may be followed by E
and a + or - sign (or no
sign) and a decimal exponent,
and may also be followed by
B and a + or - sign (or no
sign) and a binary scaling.
For example, for 7{ scaled
2+18, the following would

be used:

3.14159E-5B +18

(2) Floating Vzlue - One or
more digits, but must include
decimal point; preceding +
or - sign optional; may be
followed by E and + or -

sign (or E and no sign) and
one or two-digit decimal
exponent of maximum mag-
nitude 76:

Examples:

-352.
3.14159
2.7T18E-2

0.16E52 -

2-8

Operation Code

ocCT

ALF

FLX

GRY

Explanation

Used to insert a one-word
octal value;the value consists
of one to 7 octal digits; pre-
ceding + or - sign optional;

if - sign is used, the seven's
complement of the corres-
ponding digit value is inserted.

Forms two words containing
seven six-bit alphanumeric
codes as specified by charac-
ters 1-7 in the ADR field.

Forms two words containing
seven six-bit Flexowriter
codes, as specified by
characters 1-7 in the address
field.

NOTE: Special codes, such as
carriage return, are
denoted by two-charac-
ter combinations, each
starting with an equal
sign:

=R Carriage return

=U Shift to Upper Case
=L, Shift to Lower Case
=B Backspace

=T Tabulate

== Equal sign

The latter is necessary
because of the use of =
for the special codes.

Forms one word containing a
value in the gray code bit
configuration. The ADR field
contains a maximum of seven
decimal digits.

Operation Code Explanation

PAR Forms one parameter word
containing a 00 operation
code, and an operand address
containing the symbolic
address of the address field.

Two operation codes are used when writing library subroutines,
to specify the subroutine names and entry points. These are
as follows:

NAME One or more of these are
used at the beginning of a
library routine to assign
one or more names. The
name is limited to 6 alpha-
numeric characters, one of
which must be a letter, and
is contained in the address
field.

ENTRY Used immediately before
each entry point, to specify
the location. Each name
corresponds to a name pre-
viously given by a NAME
pseudo-operation.

For example, for a SIN/COS

routine,
NAME SINF
NAME COSF
ENTRY SINF
SIN JIMP Sk
(etc.)
then
ENTRY COSF
COos IMP sk
(etc.)
END

2-9

2.2.5 OPERATION CODES FOR MACHINE INSTRUCTION OF THE

ASI-210

Machine Instruction Operation Code
Integer Add ADD
Integer Subtract SUB
Integer Multiply MPY
Integer Divide DVD
Zero A ZOA
Zero E ZOE
Zero AE ZAE
Minus A MNA
Minus E MNE
Minus AE MAE
Absolute Value A AVA
Absolute Value E AVE
Absolute Value AE AAE
Round RND
Load A LDA
Load E LDE
Store A STA
Store A in Address SAM
Store E STE
Right Shift A RSA
Left Shift A LSA
Left Circ. Shift A CLA
Right Shift E RSE
Left Shift E LSE
Left Circ. Shift E CLE
Right Shift AE RAE
Left Shift AE LAE
Left Circ. Shift AE CAE
Convert Gray to Binary GBN
Normalize A NMA
Normalize AE NAE
Logical And ANA
Logical Or ORA
Store Address in Index SAX
Augment Index AUX
Skip Index High KXH
Return RTN
Jump JMP
Halt HLT
Skip A High KAH

2-10

Machine Instruction Operation Code

Skip A Equal KAQ
Jump if Less than Zero JLZ
Jump End Interrupt JDI

Assembly Register ‘ ASR
External Device EXD

Sense Switch Instructions

KSS m Skip if any of the switches designated

by the corresponding bits of m are set.

(0 < m=>63)
KSSj Skip if switch j set, where j =1-6.

Trap Instructions

Special operation codes are used to form the desired trap
instructions, as follows:

STP Save trap word in A.

SAT t, t, (etc.) Save and arm designated traps.
SDT t,t, (etc.) Save and disarm designated traps.
ATP t,t, (etc.) Arm designated traps.

DTP t,t,(etc.) Disarm designated traps.

STH Save trap indicators for X0 and A0

where t = trap symbol, as follows:
ED = External Device

OP = Operator

FT = Fault

AO = Add Overflow
XO = Index Overflow
BY = Busy

1.1 = Control Light 1
L2 Control Light 2

1

2.2.6 MACRO INSTRUCTIONS

A macro instruction is an item which during assembly causes
more than one machine instruction to be assembled. Cer-
tain preset macros are used to specify double-precision

floating point operations.
to the machine instructions.

These are used in a manner similar
However, the operands for

these each consist of two computer words.

Instruction

Float

Unfloat

Floating Load
Floating Store
Floating Add
Floating Subtract
Floating Multiply
Floating Divide
Floating Absolute
Floating Minus
Floating Skip High
Floating Skip Equal

2.2.7 CONTROL WORDS

Operative Code

Operation

FLT
UFL
FLD
FST
FAD
FSB
FM>
FDV
FAV
FMN
FKH
FKQ

(A) fixed —AE flt.
(AE) flt.—A fixed.
(m)=—>A, (m +1)—>E
(A) —m, (E)=>m+1
(AE) + (m, m +1)—>AE
(AE) - (m, m +1)=—>AE
(AE) - (m, m +1)—>AE
(AE)=~(m, m +1)=—>AE
|(AE)}——AE

- (AE) =———AE

Skip if (AE) > (m)

Skip if (AE) = (m)

2.2.7.1 Assembly Register Control Words

Each of the following forms an ARCW for setting
or saving an assembly register, as follows:

SBMc vy, X

LBMc Vv, X

LBLc y, X

where

¢ = channel number

K<
H

2-12

Store BMc in (m)

Load BMc with address (m)
Load BLc with address (m)

symbolic base address
symbolic index designator

2.2.7.2

External Device Control Words

Each of the following forms an EDCW for initiat-
ing the desired external device operation, as
follows:

RATY Read Alphanumeric Typewriter

WATY Write Alphanumeric Typewriter

RBPT Read Binary Paper Tape (packed)

WBPT Write Binary Paper Tape (packed)

RCPT Read Character Paper Tape

WCPT Write Character Paper Tape

RBCD Read Binary Cards

WBCD Write Binary Cards

RACD Read Alphanumeric Cards

WACD Write Alphanumeric Cards

WALP Write Alphanumearic Line Printer

RBTi Read Binary Magnetic Tape i

WBTi Write Binary Magnetic Tape i

RATi Read Alphanumeric Magnetic Tape i

WATI Write Alphanumeric Magnetic Tape i

RWDi Rewind Magnetic Tape i

SFTi d Space Forward, Magnetic Tape i, d
records

SBTi d Space Backward, Magnetic Tape i, d
records

WEFi Write End of File, Magnetic Tape i

ETTi End of Tape Test, Magnetic Tape i

TEFi Test End of File, Magnetic Tape i

where

i = Tape unit number

d = Decimal Value 0<< d< 511(27-1)

The operation code is followed by a (P), if ED
interrupt action is desired after the operation.

2.2.8 STANDARD EXTERNAL DEVICE NUMBERS

2.2.

2-14

Associated Fixed Locations

Device ED Address
Typewriter 00
Paper Tape Reader 02
Paper Tape Punch 04
Card Reader 06
Card Punch 10
Line Printer 12
Mag. Tape 1 14
Mag. Tape 2 16
Mag. Tape 3 20
Mag. Tape 4 22

=TYP
=PTR
=PTP
=CDP
=LNP
=MT1
=MT2
=MT3
=MT4

00000
00002
00004
00006
00010
00012
00014
00016
00020
00022

Normal Interrupt
Normal Interrupt
Normal Interrupt
Normal Interrupt
Normal Interrupt
Normal Interrupt
Normal Interrupt
Normal Interrupt
Normal Interrupt
Normal Interrupt

(Additional devices are assigned to locations 00024 - 00077)

ASSEMBLER OUTPUT

The assembler produces two principle types of data: '"real

words',

and "artificial words!'.

Associated with each word

is a 5-digit location, and the word consists of a 2-digit
operation code, a one-digit index designator, and a 5-digit
base address, where the digits are all octal.

2.2.9.1

Real Words

Real Words are words that represent instructions
or constants that are to be loaded into the computer.

These are constructed as follows:

Location: 00000 - 17777 if location is fixed.
20000 - 37777 if location is re-
locatable.

Opn Code: 00 - 77

Index Des: 0-3

Base Adr: 00000 - 17777 if fixed.

20000 - 37777 if relocatable positive.
60000 - 777771if relocatable negative.

The significance of relocatable addresses is ex-
plained in the description of the paper tape formats

in Volume 2.

2.2.9.2 Artificial Words

Artificial Words are used by the library processor
to link a main program and its subroutines together.
There are only eight types of these, used as shown

in the following table:

TABLE 2-1

ARTIFICIAL WORDS

PURPOSE

70000 - 70001 used to
identify a library sub-
routine; results from a

NAME pseudo-operation.

70002 - 70004 used to
specify a library sub-
routine entry point;
results from an ENTRY
psuedo-operation.

70005 - 70007 used to
specify a call for a
library subroutine;
results from a RTN and
JM2?> to a non-local sub-
routine.

LOCATION WORD
70000 3-1/2 IBM Characters
70001 3-1/2 IBM Characters
70002 3-1/2 IBM Characters
70003 3-1/2 IBM Characters
70004 00 Code, O index,
relocatable address
70005 3-1/2 IBM Characters
70006 3-1/2 IBM Characters
70007 00 Code, 0 index,
fixed or reloc. address
70010 00 Code, 0 index,

fixed or reloc.

address

Used to denote last location

in routine, plus one.

2-15

2.2.10 LIBRARY PROCESSOR

2-16

The purpose of the Library Processor is to process library
routines referenced by the source program and list them on
the end of the output tape (binary format), with relocatable
locations and addresses modified.

The following action takes place while processing a library
tape:

Step 1 - Processor reads library tape.

For each "name'" on the library tape the processor
searches the Call Table. All the names of refer-
enced library routines have previously been placed
in a Call Table by the Assembler.

Step 2 - If the name on the tape is the same as one of the names
in the Call Table the Processor is set to process
subroutine.

The Processor will find an artificial location (70002,
70003, and 70004) with assigned name of subroutine
and associated with it the relocatable entry address
of library routine, which is inserted in Call Table.

Step 3

Step 4 - The next information to be loaded and processed
will be the subroutine itself. The relocatable load-
ing locations and addresses on each record will be
modified by a constant alpha, which enables the
subroutine to be readily attached to the source pro-
gram. After modifications are made the record

is punched onto the output tape.

If reference to another library routine is made with-
in a library routine, (designated by locations 70005,
70006, and 70007) its name and modified call address
is stored in Call Table. This newly referenced
routine can now be processed when found on the
library tape.

Step 5 - After all library routines have been processed,
patches are punched, as part of the output, to insert
the correct calling addresses at the locations where

the subroutine was first referenced. The correct
addresses and location of call is found in Call
Table.

2.2.11 SAMPLE PROGRAM OF THE ASSEMBLY ROUTINE

2.2.11.1

2.2.11. 2

Introduction

Each of the following sample programs are pre-
sented in two parts; the source program and the
output of the assembly process. Before the pro-
grams are examined, let us review the three fields
of an assembly program.

1. Location Field

The location field contains a symbol that
identifies the instruction or data of the re-
maining fields.

2. Operation

The operation field contains the instruction
code, in mnemonic form, to the assembler or
contains the instruction code in mnemonic form
of the program that is to be assembled.

3. Address

The address field contains the operand address
portion of the instruction, or in the case of a
REM instruction, any remarks the programmer
desires.

Sample Program Using Fixed Point Arithmetic

Y - Z
Equation ZILCH = - + W
X
x =3
y :39
zZ :7
w =20

SOURCE PROGRAM

LOCN OPN ADR

NAME - ZILCH

REM PROGRAM FOR
REM FINDING
REM ZILCH VALUE
ORG 80
START LDA YVAL
MPY ZVAL
DVD XVAL
STE TEMP
LDA TEMP
ADD WVAL
STA ZILCH
HLT START
XVAL DEC 3
ZVAL DEC 39
YVAL OCT 7
WVAL DEC 20
TEMP RES 1
ZILCH RES 1
END START

2-18

ASSEMBLY OUTPUT OF PROGRAM

LOCN OPN ADDRESS LOCN OPN ADDRESS
70000 31 3 11436 NAME ZILCH
70001 37 0 02020
REM PROGRAM FOR
REM FINDING
REM ZILCH VALUE
00120 ORG 80
00120 140 00132 START LDA YVAL
00121 300 00131 MPY ZVAL
00122 320 00130 DVD XVAL
00123 46 0 00134 STE TEMP
00124 140 00134 LDA TEMP
00125 100 00133 ~ ADD WVAL
00126 26 0 00135 STA ZILCH
00127 000 00120 HLT START
00130 000 00003 XVAL DEC 3
00131 000 00047 ZVAL DEC 39
00132 00 0 00007 YVAL OCT 7
00133 00 0 00024 WVAL DEC 20
00134 TEMP RES 1
00135 ZILCH RES 1
END START

RANGE
70010 000 00136

2.2.11.3 Sample Program Using Floating Point Arithmetic

Y Z
Equation ZILCH = + W
X
2.97335 x 10°
1.47350 x 1072

~r
P

z=7.13425
w=10.4213

2-20

SOURCE PROGRAM

LOCN OPN ADR

REM PROGRAM FOR

REM FINDING

REM ZILCH VALUE

ORG
START F1LD YVAL

FMP ZVAL

FDV XVAL

FAD WVAL

FST ZILCH

HLT START

REM CONSTANTS
XVAL DEC 2.97335E +5
YVAL DEC 1.47350E-2
ZVAL DEC 7.13425
WVAL DEC 10.4213

REM VARIABLE STORAGE
ZILCH RES 1

END START

ASSEMBLY OUTPUT OF PROGRAM

LOCN OPN ADDRESS LOCN OPN
REM
REM
REM

20000 ORG

20000 140 20020 START FLD

20001 16 0 20021

20002 04 0 00000 FMP

20003 02 0 00001

20004 00 0 20022

20005 04 0 00000 FDV

20006 02 0 00001

20007 00 0 20016

20010 04 0 00000 FAD

20011 02 0 00001

20012 000 20024

20013 26 0 20026 FST

20014 46 0 20027

20015 000 20000 HLT
REM

20016 22 0 11356 XVAL DEC

20017 00 0 00423

20020 36 0 13261 YVAL DEC

20021 032 03372

20022 342 02274 ZVAL DEC

20023 151 03403

20024 24 3 05732 WVAL DEC

20025 12 0 10404
REM

20026 ZILCH RES
END

SUBROUTINES NOT INCLUDED

70005 66 2 04477

70006 32 0 02020

70007 00 0 20002

70005 66 3 04257

70006 32 0 02020

70007 00 0 20005

70005 66 3 01647

70006 32 0 02020

70007 000 20010

RANGE

70010 000 20027

ADDRESS

PROGRAM FOR
FINDING
ZIL.CH VALUE
YVAL

ZVAL

XVAL

WVAL

ZILCH

START

CONSTANTS
2.97335E +5
1.47350E-2

7.13425

10.4213

VARIABLE STORAGE

1
START

FMP.

FDV.

FAD.

2-21

2.2.11.4 Typical Input/Output Program

Problem: Read a paper tape and punch a duplicate
of that tape.

SOURCE PROGRAM

LOCN OPN ADR
REM TAPE DUPLICATE
REM AND/OR VERIFY
REM SWITCH 1 OFF =
REM DUPL.
REM SWITCH 1 ON =
REM VERIFY
REM CHKSUM APPEARS
REM IN A
ORG 80
START ATP BY
DTP ED
LDA BYJMP
STA =BY
ZOA
STA 0
STA TRLRFL
READ ASR Wl
ASR w2
EXD W3
ASR Wl
LDA CHAR
KAQ ASILDR
JMP *42
JIMP TRLRTS
KAQ ASIDEL
IMP *+2
JMP READ
LDA NEG
STA TRLRFL
LDA 0
ADD CHAR
STA 0
SWTST KSS51
JMP PUNCH
JMP READ
TRLRTS LDA TRLRFL

2-22

LOCN

PUNCH

BYIMP
BUSY

=1
NEG
ASILDR
w1
w2
W3
w4
CHAR
TRLRFL
ASIDEL

OPN

JLZ
JIMP
LDA
HLT
ASR
ASR
EXD
JMP
JIMP
LDA
SUB
SAM
JDI
OCT
OCT
OCT
LBMI
LBLI1
RCPT
WCPT
RES
RES
OCT
END

ADR

42
SWTST

START
Wl
w2
w4
READ
+1
=IP

7000000
200000
CHAR
CHAR+l

1
1
377000

2-23

2-24

ASSEMBLY OUTPUT OF PROGRAM

LOCN OPN ADR LOCN OPN

REM

REM

REM

REM

REM

REM

REM

REM
00120 ORG
00120 70 0 02002 START ATP
00121 700 01001 DTP
00122 14 0 00163 LDA
00123 26 0 00106 STA
00124 24 0 04000 ZOA
00125 26 0 00000 STA
00126 26 0 00200 STA
00127 76 0 00173 READ ASR
00130 76 0 00174 ASR
00131 74 0 00175 EXD
00132 76 0 00173 ASR
00133 140 00177 LDA
00134 42 0 00172 KAQ
00135 02 0 00137 JMP
00136 020 00152 JMP
00137 42 0 00201 KAQ
00140 02 0 00142 JMP
00141 02 0 00127 JIMP
00142 14 0 00171 LDA
00143 26 0 00200 STA
00144 14 0 00000 LDA
00145 100 00177 ADD
00146 26 0 00000 STA
00147 720 00001 SWTST KSsS1
00150 02 0 00157 JMP
00151 02 0 00127 JMP
00152 14 0 00200 TRLRTS LDA
00153 44 0 00155 JLZ
00154 02 0 00147 JMP
00155 14 0 00000 LDA
00156 00 0 00120 HLT
00157 76 0 00173 PUNCH ASR
00160 76 0 00174 ASR
00161 74 0 00176 EXD
00i62 02 0 00127 JMP
00163 020 00164 BYJIMP JMP
00164 140 00110 BUSY LDA
00165 12 0 00170 SUB
00166 36 0 00167 SAM

ADR

TAPE DUPLICATE
AND/OR VERIFY
SWITCH 1 OFF=
DUPLI.

SWITCH 1 ON=
VERIFY

CHKSUM APPEARS
IN A

80

BY

ED

BY JMP

=BY

0
TRLRFL
wl

w2

w3

W1

CHAR
ASILDR
*+2
TRLRTS
ASIDEL
#*+2
READ
NEG
TRLRFL
0

CHAR

0

PUNCH
READ
TRLRFL
*+2
SWTST
0
START
w1l

we

w4
READ
*+1

=1P

=1

*+1

ASSEMBLY OUTPUT OF PROGRAM

LOCN OPN ADR

LOCN

00167 06 0
00170 000
00171 700
00172 020
00173 040
00174 000
00175 020
00176 040
00177

00200

00201 033

RANGE
70010 000

00000
00001
00000
00000
00177
00200
00001
00001

17000

00202

=1

NEG
ASILDR
w1l

w2

w3

w4
CHAR
TRLRFL
ASIDEL

OPN
JD1
OCT
OCT
OCT
LBMI1
LBL1
RCPT
WCPT
RES
RES
OCT
END

ADR

ate ol
b

1
7000000
200000
CHAR
CHAR+1

1
1
377000

2-25

2-26

2.2.12

Assembly Error Indications

Error

Indication

R

r'

o a H

Explanation

Range > 8K

Duplicate Synbol Assignment
Format of M Field

Erroneous Attempt to Indirect
Address

""Name'" Error "Name' should
come first

"Entry' error
Location field error
Index Error

Illegal Flex character
Unidentified Symbol

Operation Code Error

2.

3

FORTRAN I COMPILER

2.

3.

. 3.

1

GENERAL

Source program entries, called ''statements'’, are
translated into object programs in ASI-210 Assembly
language. Statements are entered in the form of Flexo-
writer tape.

On Flexowriter tape, each statement occupies one ''line'’,
which is defined as a maximum of 72 printing characters
or spaces, terminated with a carriage return. A blank
line, produced by pressing the carriage return more
than once for page editing purposes, is ignored.

REPRESENTATION OF VALUES

2.3.2.1 Fixed-Point Constants:

1 to 6 digits; preceding plus or minus sign
optional; maximum magnitude 2“¥_1, except
where used as an index in a DO statement.

Examples:
16
-104857
4756

2.3.2.2 Floating-Point Constants:

Any number of decimal digits; must include
decimal point; preceding plus or minus sign
optional; may be followed by E and option
plus or minus sign and a one or two digit
decimal exponent; maximum magnitude 10'°.

Examples:
-352.
3.1459
2.178E-2
0.16E52

2.3.2.3 Fixed Variables:

1 to 6 characters; first character must be
letter I, J, K, L, M, N; other characters
may be letters or digits.

Examples:
ITEM
JIG17

relative strengths, from strongest to weakest,
are given below:

Function and Coefficient

sl st

exponentation
/ and * division and multiplication
+ and - addition and subtraction

2.3.3.3 Mode Rules:

A fixed-point expression is one containing all
fixed-point values or variables.

A floating-point expression is one containing,
in general, all floating-point values or variables;
however, the permissable exceptions for a float-
ing value are its

(1) subscripts (always fixed)

(2) exponent (floating or fixed)

Example: X(I,J) = Y*%2 + Z%%0,52
An algebraic equation can be fixed on the left and
floating on the right, or vice-versa.

Example: I=X+Y

R

1

I+J - KING

2.3.4 SUBSCRIPTED VARIABLES

Fixed or floating variable names can be defined by a Dimen-
sion statement as one or two dimensional arrays.

In an algebraic expression, or on the left side of an
equation, one element of the array is denoted by the
array name, followed by one, or two fixed-point
expressions, separated by commas and enclosed in
parentheses. The subscripts can be ANY fixed

2,3.5

algebraic expressions.
Example: X(I+2, J-3) = R(I-J/2, K*2)
FUNCTIONS

In an algebraic expression, a value resulting from the execu-
tion of a function is denoted by the function name followed by
one or more argument expressions, separated by commas
and enclosed in parentheses. At present, only the following
functions are ''standard'':

Format Definition

SINF (x) or SIN (x) sine X

COSF (x) or COS (x) cosine x

EXPF (x) or EXP (x) e*

LOGF (x) or LOG (x) logex

SQRTF (x) or SQOR (x) square root of x
ATANF (x) or ATN (x) arc tangent of x

The arguments and results are floating, The alternate names
are supplied for compatibility with IBM 1620 source programs,

Hand-coded subroutines or functions can be added to the as-
sembler library, and can be referred to by means of Fortran,
However, this is a non-standard procedure.

2,3.6 STATEMENT TYPES

C in column 1, Comment
followed by 2 or more blanks

DIMENSION v], V2.0 Specifies certain variables
as arrays; dl and dZ are
where v = name (d;) fixed unsigned constants

specifying the maximum
attainable size of the corres-
ponding array. Each array
must be specified in a
DIMENSION statement bhe-
fore the name is used in

an arithmetic expression,

for one-dim, array
or v = name (dj, dp)
for 2-dim, array

a=b

Example:
X = A + B + SINF(C)

GO TOn

Example:
GO TO 64

GO TO (nl, nz,ooooonm)’i

Example:
GO TO (2,3,17,6), NAN

IF (2) nj, n2, n3

Example:
IF (x-y)17,20,20

IF (SENSE SWITCH i) nj, np

kxample:
IF (SENSE SWITCH 6) 2,4

PAUSE n
Examples:
PAUSE
PAUSE 1707
STOP n
Examples:

STOP
STOP 140

DO ni = mj, mp2, m3

Algebraic statement;
causes variable a to be re-
placed by the results of ex-
pression b,

Go to (jump to, transfer to)
statement n, where n is a
statement number

Go to statement nj, depend-
ing upon the value of fixed
variable i.

Go to statement nj, np, or
n3, corresponding to alge-
braic expression a<0, =0,>0,

Go to statement nj, or n2,
corresponding to sense
switch i ON or OFF; 1= 1

through 6.

Stop, optional octal fixed
constant n is ignored, con-
tinue when START is pressed.

Stop, optional octal fixed
constant n is ignored; do not
continue if START pressed,

Perform following statements,
down to and including state-
ment n, repetitively; for each
execution, use successive
values of unsigned fixed vari-
able i, starting with mj, in-
creasing i each time by m3,
and ending with i >mp; if

2-31

Example:

DO 17 JIG = 2,14,2
A =B + C (JIG)

IF (A - X) 16, 17, 16
16 PRINT, A,X

17 CONTINUE

Example:
DO61I=1, 15
6 X(I)=o0,

CONTINUE

ACCEPT n, list
Example:
ACCEPT, X,Y, (1), JIG

m3 =1, m3 can be omitted
from the statement; mj, mp,
and m3 can be unsigned in-
tegers, or fixed variables.
Statement n must not be of a
type that causes a transfer
(i.e., GO TO, IF,) state-
ment., If the last statement
executed in a loop is a
transfer-type, an additional
CONTINUE statement must
be added, to preserve
proper DO loop indexing.

In this example, values A
and X are to be printed if
(A-X) is not equal to zero.
If (A-X) is equal to zero,
printing is to be eliminated.
The CONTINUE statement
provides an orderly means
of proceeding from the IF
statement to the bottom of
the loop, so that proper JIG
indexing will occur.

This performs statement 6
repeatedly, with values of I
equaltol, 2, 3, ..., 15,
Thus, the "DO loop' clears
15 consecutive values of the
array X,

A dummy statement used as
the last statement in the
range of DO, It merely sat-
isfies the rule that the last
statement in the range of DO
must not be one that can
cause transfer of control,

Accept one or more lines of
fixed and/or floating values
from the input typewriter,
convert to machine represen-

TYPE n, list

Example:
TYPE 14, JIG, X(JIG)

ACCEPT TAPE n, list

PUNCH TAPE n, list

READ n, list

PUNCH n, list

PRINT n, list

tation, and store in the vari-
ables specified by the list
(See LIST SPECIFICATIONS);
nis a FORMAT statement
number and is optional,

Convert values specified by
the list into alphanumeric
fixed and/or floating values,
and type as one or more lines
on the output typewriter; n is
optional and is ignored.

Accept one or more lines of
fixed or floating values from
the paper tape reader, con=-
vert, and store in the vari-
ables specified by the list; n
is optional, and is ignored.

Convert values specified by
the list into alphanumeric
fixed and/or floating values
and punch as one or more
lines on the paper tape punch;
n is optional and is ignored.

Read one or more Hollerith

cards, containing fixed and/
or floating values, and store
as specified by the list; n is

optional, and is ignored,

Convert values specified by
the list into alphanumeric
fixed and/or floating values
and punch onto one or more
Hollerith cards; n is optional
and is ignored,

Convert values specified by
the list into alphanumeric
fixed and/or floating values,
and print as one or more lines

2-33

2.3.7

2.3.8

2-34

on the on-line printer.
FORMAT Ignored
END Terminate program
INPUT AND OUTPUT

Data for object programs is read or written by means of the
input/output statements onto the following media:

. On-line typewriter

. 8-level Flexowriter tape
e« 80-column cards

. Line-printer

B W -

For input, data consists of one or more fixed and/or floating
values, separated from each other by one or more blanks.

The format for these are as specified in Section 2, 3.2, "REPRE-

SENTATION OF VALUES'", paragraphs 2.3.2.1 and 2.3.2.2,
"FIXED-POINT CONSTANTS", and "FLOATING-POINT CON-
STANTS'", One or more cards or lines are read, until the
entire list, accompanying the input statement, is exhausted,

For output, data consists of one or more fixed and/or floating
values, in 16-column (character) fields. Floating values are
printed as a + or - sign followed by a decimal point and 9-digit
fraction, followed by an E and a + or - sign and a two-digit
exponent, The values are right-justified within each field.

LIST SPECIFICATIONS

In any of the input/output statements, the statement is termin-
ated with a '"list'' specifying the items to be read or written,
Each item in the list represents one or more values. Items
are separated by commas,

Subscripts can be used with any variable name, Each non-
subscripted or subscripted name represents a single value,

Example: TYPE, A, B, C,I, F(I+l, J)
No "DO'"-type indexing is permitted in the list, If an array

name is used without subscripts, only the first element of
the array is typed.

2.3.9

COMPATABILITY WITH 704/709/7090 FORTRAN

If it is desired to compile and run on the ASI-210, and to com-
pile and run the same source programs on the IBM 704, 709,
or 7090, certain rules must be followed:

2o

Ce

The source programs should be on cards, in
the following format:

Column 1 C if comment card, Blank
if other statement type

Columns 2-5 Statement number

Column 6 Blank

Columns 7-72 Statement

Columns 73-80 Ignored

Subscripts should be limited to the following
fixed expressions:

variable

constant

variable +

constant * variable

constant * variable + constant

For the arithmetic functions, use the following
names:

SINF LOGF
COSF SQRTFE
EXPF ATANF

For input and output data, always use a
FORMAT statement, This means that, for in-
put, one should restrict data to certain card
fields, and use a corresponding FORMAT
statement.

A simplified scheme is to divide the informa-
tion into fixed fields, with one value per field,
right-justified. Then the corresponding
FORMAT statement will consist of a statement
number and the word FORMAT followed by one
or more terms separated by commas and all

2-35

enclosed in parentheses, with the terms
being of the following three forms:

(1) For fixed values, of form

nlw, where n=repeat count, if more
than one value
I = letter I, for "integer"
w = field width

(2) For consecutive floating values containing
an E and an exponent, of form

nEw, d where
n = repeat count
E = letter "E"
w = field width
d = number of places after
decimal point

(3) For consecutive floating values expressed
without exponent, of form

nFw, d where
n = repeat count
F = letter "F"
w = field width
d = number of places after
decimal point

A slash (/) can be used to denote the end of

the information for one card, and the start of
another., Exhaustion of the FORMAT specifi-
cations causes the specifications to repeat

from the previous left parenthesis.

For example, to read two cards containing in-
formation of form

6.23 -,47027E+05 25 67
80 204

where these are each separated by one blank,
one may use the following:

READ 7,A, B, I, K, M; NAN
7 FORMAT (F4,2, E12,5, 2I3/12, 14)

2.3.,10 SAMPLE PROGRAMS

2,3.10.1 Sample Program

Problem: D =<3:0 (4; . Bi)z) 1/2

i=1
Read Aj, Bj from tape for each i.

Punch (A; . B;)2 on tape; if (A; . Bi)2 =0,
do not punch,

Punch D on tape.

Program:

C
C
C

FORM D, WHICH EQUALS THE SQRTF OF A SUM,
SUM IS FORMED FROM THE TERM (A(I) * B(L)**2,
WHERE I GOES FROM 1 UP TO AND INCLUDING 30.
DIMENSION A({30). B(30)

SUM = 0

DO9I=1, 30

ACCEPT TAPE, A(I), B(I)

PRODSQR = (A(I) * B(I) %% 2

IF (PRODSQR), 6, 9, 6

SUM = PRODSQR + SUM

PUNCH TAPE, PRODSQR

CONTINUE

D = SQRTF (SUM)

PUNCH TAPE, D

STOP

END

2.3.10,2 Sample Program

Problem: Find the value of ¥, V,U, W

Input
X; i=1,.. 15

Vi i=1... 15

Compute

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

i=1

>|o

10

12

b1

(9) T =

(10) V=G-F2
(11) U=R - 3:FeG+ 2F2
(12) W =T - 4eFeRe + 6 F2.G = 3G
Output
F, V, U, W
Program

MOMENT CALCULATION
DIMENSION X(15), Y (15)

DO 6 I=1, 15
ACCEPT TAPE, X(I)
DO 7 I=1, 15
ACCEPT TAPE, Y(I)
A=0,

DO 10 I=1, 15
A=A+Y(I)

B=0

Z=0

D=0

E=0

DO 12 I=1, 15
B= B4+X(I)*Y(I)
Z= Z+X(I)*B
D=ID+X(I)*

E= E+X(I)*

F= B/A

G= Z/A

R= D/A

T= E/A

V= G=F:¥%

U= R=-3, 0%F*G+2, 0%F 342

W= T-4, 0¥F ¥R+6, O¥F ##2%G=3, 0*Gk
PUNCH TAPE, F, V, U, W

PAUSE

END

.

ASI-210 MATHEMATICAL SUBROUTINES

The basic mathematical subroutines described here are callable
either by the Fortran compiler or by hand-coded assembly language.
For all these, an argument at location X results in a function value
in the accumulator. The argument and resulting value are both
floating. For the trigonometric functions, the argument is expressed
in radians.

NAME CALLING SEQUENCE DESCRIPTION

SIN or SINF RTN SIN Sine X to A
IMP SIN+1
PAR X

COS or COSF RTN cOoS cos Xto A
JIMP COS+1 '
PAR X

EXP or EXPF RTN EXP eXto A
JMP EXP+1
PAR X

1L.OG or LOGF RTN LOG logex to A
IMP LOG+1
PAR X

SOR or SQRTF RTN SOR x to A
IMP SQR+1
PAR X

ATN or ATANF RTN ATN tan lx to A
IMP ATN + 1
PAR X

For these, the possible error alarms are as follows:
EXPF ~ ERR Result too large to be represented
SQRTF ERR Negative argument

_———
MINNEAPOLIS 22, MINNESOTA

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	xBack

