From ASI’s continuing program of new product development...

6
2

REFERENCE MANUAL

ADVANCE SERIES

Advanced Scientific Instruments / 8001 Bloomington Freeway / Minneapolis, Minnesota 55420

ANS

REFERENCE MANUAL
FOR THE
ADVANCE Series 6020

GENERAL PURPOSE COMPUTER

ADVANCED SCIENTIFIC INSTRUMENTS

Division of Electro-Mechanical Research, inc.

Copyright © 1964 by
Advanced Scientific Instruments
All Rights Reserved

TABLE OF CONTENTS

SECTION 1. INTRODUCTION

General, 1-1
Central Processor 1-2
Principle Registers 1-2
Memory Section 1-2
Arithmetic and Control Section 1-2
Input/Output Section 1-3
Word Format 1-4
Peripheral Equipment 1-5

SECTION 2. ARITHMETIC

General ..., 2-1
Binary Arithmetic 2-1
Signed Magnitude Arithmetic = 2-2
Fixed Point Numbers 2-2
Floating Point Numbers 2-2
Floating Point Arithmetic 2-3
Conversion of Fixed Point Numbers to Floating Point Numbers 23
Conversion of Floating Point Numbers to Fixed Point Numbers 24

SECTION 3. INSTRUCTION REPERTOIRE

General e e 3-1
Instruction Operation 3-2
Data Transfer and Arithmetic Operations 3-2
Register Change Instructions 3-5
Logical Operations 3-7
Shift Operations e 3-7
Index Operations 39
Jump and Skip Operations 3-10
Trap, Fiag, and Flag Indicator Light Operations 3-12
Input/Output Operations 3-13
No Operation e 3-15

Programmed Instruction 3-15

SECTION 4. INPUT/OUTPUT

Instructing External Devices e 4-1
Program Interrupts 4-3
Standard Interrupts 4-3
THADS o oot e e e 4-3
(e r 1141 A 4.3
Priority Interruptso 4-4
Buffered Input/Output e 4-4
Input/Output Channel iiiiirnanennnn 4-4
Assembly Register Instruction 4-4
Data FlOW . . ot e a 4.5
Character Transfer 4-5
Word Transferttt 4.5
Field Transferot it e et e 4.5
Cyclic Transfer oot 4-6
Direct Communication e e 4.7

SECTION 5. OPERATOR'S CONSOLE

Display Register 5-1
Registers Tand S orti 5-1
INAICAIONS . . ot ettt et 5-1
CONTTONS . v s et e et e 5-2
APPENDIX
List of INSEFUCHIONS . . o o oo it e A-1
A. Instructions Arranged by Octal Codes A-l
B. Instructions Arranged by Mnemonic Codes A-3
Commonly Used Constantst A-7
Factorials . .ot o oo e A-7
Powers of 1010 .« oo oo i i e e e e A-7
Miscellaneous Constants i A-8
RECIPIOCAIS . . vttt A-9
Negative Powersof 2and 8ot A-10

Positive Powers of 2and 8 i A-11

Advanced Scientific Instruments has met the challenge
presented by the scientific and engineering field with the
ADVANCE Series computers. This new family of computers
highlights upward program compatibility; that is, programs
written for one computer will operate without modification
on all other computers above it in the Series. Peripheral
equipment is also upward compatible.

The foundation of the ADVANCE Series is the 6020. This
low-cost system for the small scale user is ideally suited to
a wide range of applications, including scientific and engi-
neering computations, on-line systems control, and data re-
duction. Expansion within the 6020 of magnetic core memory
size and input/output channels, and external expansion with
a variety of peripheral equipment keynote this versatile com-
puter.

Hardware

The ADVANCE Series 6020 features a short memory cycle
time of 1.90 microseconds; a new, larger, and more power-
ful instruction repertoire; and a large variety of optional in-
put/output channels. Other outstanding features include a
24-bit memory word plus a parity bit for automatic parity
checking on all memory data, double precision hardware, a
console typewriter as a standard feature, indirect addressing,
indexing, convenient subroutine access including sixteen
programmed instructions that provide one instruction access
to subroutines and return, sixteen individual levels of prior-
ity interrupt, floating-point operation, not to mention rapid
instruction execution such as a 3.8 microsecond add and a
11.4 microsecond double-precision add. Standard input/out-
put capabilities include a buffered Character Assembly In-
put/Output Channel and provisions for up to seven addi-
tional buffered 1/0 channels of various types as well as a
programmed input/output channel which permits convenient

1-1

SECTION ONE
INTRODUCTION

program handling of words or character information from
external devices. Character Assembly, Field Length, Com-
plete Computer Word, and Cyclic are among the buffered
I/0 channels offered. External device operations with buf-
fered channels require program attention for initiation only.
Up to 16 external devices may be connected to each channel,
to a system maximum of 64 devices.

Installation of the 6020 Central Processor requires no
special temperature and humidity controls, no special power
requirements, and no costly false flooring for cable runs. A
complete array of ADVANCE Series peripheral equipments
are available to increase the efficiency and usefulness of
the 6020.

Software

ALL ADVANCE Series Computing Systems include a new
and distinctive software package. Based on programming
systems thoroughly tested and proven on earlier AS| com-
puters, the ADVANCE Series software package features a
one-pass FORTRAN Il Compiler, a one-pass Symbolic As-
sembler, a Monitor program which allows for the centralized
control of program operation, Mathematical Subroutines,
Utility Routines, and Diagnostic Routines.

Support

ASI is proud of the services offered by the new Support
Program for ADVANCE Series customers. As important as
hardware and software, the Support Program brings the
ADVANCE Series full-circle. Not only does the Support Pro-
gram provide assistance before, during, and after purchase,
but covers the design of the complete system including any
special interfacing required. It is the aim of the Support
Program to be complete as possible; to help the customer in
every way.

CENTRAL PROCESSOR

The ADVANCE Series 6020 Central Processor may be
considered in three main sections: Memory, Arithmetic and
Control, and Input/Output. The Memory Section provides
fast access storage for data and instructions. In the Arithme-
tic and Control Section: arithmetic, logical, and shifting
operations are performed in the Arithmetic portion. The Con-
trol portion contains logic for controlling and sequencing all
of the events that occur in the Central Processor. The In-
put/Output Section contains the logic for instructing external
devices, scanning for external interrupts, and data com-
munication with external devices. In addition, an operator’s
console provides a convenient means of manual control and
information display.

PRINCIPLE REGISTERS

MEMORY ADDRESS REGISTERS

M — Memory address register (15 bits). M supplies the
address to the memory during a memory reference.

S — Sequence address register (15 bits). S contains the
address of the next instruction to be performed.

T — Temporary Storage Register (15 bits). T holds the
memory address temporarily during input/output
memory references. T also serves as a display and
entry address register for the operator’s console.

ARITHMETIC REGISTER

A — Accumulator (24 bits). A is the principle register in
most arithmetic, logical, and shift instructions.

Extension register (24 bits). E is involved in many
arithmetic, logical, and shift instructions. A and E
together form a 48-bit register for double precision
arithmetic with E usually containing the least signifi-
cant bits.

Console Display Register (24 bits). C is the word
display register on the operator's console and also
serves as an auxiliary arithmetic register.

BUFFERED INPUT/OUTPUT CHANNEL REGISTERS

B — Buffer Register (24 bits). B is the assembly register
in a buffered input/output channel. Character infor-
mation going to or from external devices is assembled
or disassembled in Register B. It communicates with
the memory in 24-bit words.

BM — Buffer Memory Address Register (15 bits). At the
start of a data communication, BM is loaded with the
starting address of the data in memory. BM is in-
cremented by one on each memory reference until

1.2

the end of the data communication. Therefore, BM
holds the address of the next memory location with
which a buffered input/output channel will communi-
cate.

Buffer Limit Address Register (15 bits). BL holds the

limit address (the last allowable address + 1) for a
block of buffered data.

BL —

INDEX REGISTERS

X1, X2, X3 — Index Registers (15 bits). These registers are
contained in Memory Locations 115, 116, and 117.

MEMORY SECTION

The standard 6020 magnetic core memory contains 4,096
24-bit words (plus one parity bit) with a complete read-write
cycle time of 1.90 microseconds. The memory is expandable
to 32,768 24-bit words, all of which are directly addressable.
Parity is automatically generated on all write operations and
checked on all read operations. Memory parity failure leads
to the second highest priority interrupt (the highest being
power failure) if the parity fail trap is armed. The resulting
interrupt routine will respond to the parity failure according
to the dictates of the running program.

ARITHMETIC AND CONTROL SECTION

The Arithmetic and Control Section is shown in Figure 1-1.
The arithmetic portion performs all arithmetic, logical, and
shift operations, while the timing source and cycle counter,
the address registers and address modification logic, and
the instruction and sequencing logic are contained in the
control portion.

The timing source generates two-phase clock pulses with
a repetition rate of 525 kc. These pulses are counted in the
P counter which supplies time sequencing for the instruction
fogic.

The three index registers are in memory in Locations 115
through 117. Any of these index registers may be used to
modify operand addresses. The addition of the index to the
basic operand address makes use of the arithmetic adder
with the result being transferred to M from the arithmetic
portion.

Multiple indirect addressing with indexing at each step
may be performed in the 6020 Central Processor.

The instruction and sequencing logic makes use of timing
information from the P counter, instruction codes from the
instruction register (Register L), and information from other
flip-flops in the system. It generates signals to the various
transfer gates and sets flip-flops at times that are appropriate
for the instruction that is being performed.

Six flags which may be set by the running program are
included in the control portion. Two of these flags operate
the operator indicator lights on the console, and may be
used to draw the operator's attention to special conditions.

INPUT-OUTPUT SECTION

The ADVANCE Series 6020 Input/Output Section has a
buffered character assembling channel. Once initiated by
means of its EXD instruction, external device operations are
controlled by logic associated with the external device. When
an external device has completed an operation, it may initiate
a program interrupt if it had previously been instructed to
do so.

Up to eight buffered input/output channels of the follow-
ing types may be attached to the 6020:

1. Character Assembling Channel.

2. Variable Field Channel
3. Parallel Word and Character Assembling Channel

4. Cyclic (continuous) Parallel Word Channel

Any of these channels may be used for input/output and
may be time-shared by up to 16 external devices per chan-
nel. Buffered channels, which have priority over the central
processor for memory reference, require one memory cycle
time from the running program for each memory reference.
Buffered communication may be variable block length and
may use any part of memory that is specified by the pro-
gram. The maximum character transfer rate of a buffered
channel is 180 kc, while the maximum rate for paraliel word

CONTROL LOGIC

TIMING P P o INSTRUCTION AND INTERRUPT
SOURCE COUNTER SEQUENCING LOGIC
INTERRUPT
L_9BITS SCANNER '
l
|N
SET EXT
—_— FOR DEV |/
! PRIORITY ADDR o
. r—1 C 24 RITS il e U
| EXT DEV |7
@y INSTRUCTION | Eég’fgéﬂ
gl MEMORY CODE LINES l
: ' ADDER e~ _
y B 24 BITS |H
E A
E 'N
T ADDRESS N
I A 24 BITS —] B 15 BITS |E
C
I It
N M or M+1 '
e e]
'}' SHIFT BM . 15-BITS |
T FW - M 15-BITS [-—
| :)
l o
- M+1
S 15 BITS T 15 BITS

MEMORY ADDRESS REGISTERS

Figure 1-1.

1-3

6020 Block Diagram

communication is 130 kc. The 6020 Central Processor can
handle a total buffered input/output word rate of 525 kc.

Up to 64 non-priority program interrupts are available on
the 6020. Each interrupt will lead to a unique interrupt rou-
tine associated with the particular interrupt event. At the
completion of an interrupt routine, control may be returned
to the running program at the point of interruption or trans-
ferred to a new program. These interrupts may be used to
notify the processor of the completion of some external
operation, the failure of some external operation, or the
occurrence of some other significant external event. The
processor may recognize or ignore these interrupts by setting
the external device interrupt to the allow or disallow condi-
tion, respectively.

Up to 16 levels of optional priority interrupts are available
on the 6020. Any priority interrupt takes precedence over a
lower priority interrupt and may interrupt any lower priority
program. Each level of priority interrupt may be separately
allowed or disallowed by the program and each leads to a
unique interrupt routine.

As an option, the 6020 may be provided with a pro-
grammed input/output channel which sends information to
or from the accumulator (Register A) by programmed in-
structions. The instruction specifies which device is to com-
municate: thus, the time-sharing of the programmed in-
put/output lines is controlled directly by the program.

OPERATOR’S CONSOLE

The 6020 Central Processor has an operator's console
with six sense switches, two program-controlled operator
indicator lights, convenient display and entry features, a con-
tinuous or one-instruction mode switch, a preset switch for
loading card or paper tape information simply, and many
other features. This console is more thoroughly described in
Section 5.

CONSOLE TYPEWRITER

The console typewriter is a standard feature of the 6020.
The primary function of the typewriter is to monitor system
and program operations. Such system conditions as ADD
OVERFLOW, EXPONENT OVERFLOW, etc. and program con-
ditions as SYNTAX ERROR, SYMBOL LENGTH, INTEGER
SIZE, etc. are brought to the operator’s attention via the
typewriter. The typewriter also may be programmed to re-
quest information from the operator.

The typewriter also may be used to enter programs and
data into the central processor and to type out the results in
lieu of other peripheral equipment specifically designed for
these functions.

WORD FORMAT

The 6020 computer word contains 24 bits which are
numbered 1 to 24 from right to left. There are four types of
computer words: the Instruction Word, the Index Word, the

1-4

Control Word, and the Data Word. The Control Word is dis-
cussed in Section 4, Input/Output.

Instruction Word Format

F | X Y
24 19 18 17 16 15 1
Operation Indirect Index Base
Code Address Address Operand
Address

Operation Code (Bits 24-19). The Operation Code (F),
which is the six highest order bits of the Instruction Word,
tells the computer what operation is to be performed. The
Operation Code of each Instruction Word is interpreted and
performed separately by the computer.

In certain instructions, the Base Operand Address is
treated as part of the Operation Code. This permits many
more instructions to be specified than can be uniquely identi-
fied in the 6-bit Operation Code of each instruction.

Indirect Address (Bit 18). The Indirect Address Designator
() specifies whether the Base Operand Address is to be used
as the address of the operand (direct) or as the address of
the memory location where the address of the operand will
be found (indirect). The Indirect Address Designator indi-
cates an indirect address if itisa "“1."”

Successive indirect addressing is possible as long as Bit
18 is a 1" in each Instruction Word referenced in memory.
The last word to be referenced must have a ‘0"’ in the Bit 18
location, as the address it references is the address of the
operand. Modification of the addresses through indexing (see
following paragraph) may take place at each step when suc-
cessive indirect addressing is performed.

Index Address (Bits 17-16). The Index Address (X) portion
of the Instruction Word tells the computer whether the Base
Operand Address of the instruction is to be modified or not;
and, if the Base Operand Address is to be modified, where
the modifying word will be found. The Index Address uses
Bits 17 and 16 of the instruction Word. if they are boihi
“0's,” no modification of the Base Operand Address will take
place. If either or both of the Index Address bits are *1's,"”
they indicate a modification of the address is required and
also specify the address of the modifying word. There are
three index registers on the 6020 and they occupy actual
memory locations in core storage.

Base Operand Address (Bits 15-1). The Base Operand Ad-
dress (Y) is the lowest order 15 bits of the Instruction Word
and is the address of the operand that is to be used for this
instruction. The Base Operand Address may be modified as
described in the two preceding paragranhs of this section.

Index Word Format

(Zeros)
(9 bits)

Index Base
(15 bits)

15 1

24 16

Index Words are stored in memory locations in the 6020.
When the Index Address of the Instruction Word is 0, no
indexing is specified. However, when the Index Address is
al, 2, or 3, the Index Words in Memory Locations 115, 116,
and 117, respectively, are referenced.

When the Index Address in an Instruction Word exceeds
zero, the Index Word is extracted from memory and the con-
tents of the Index Base (Bits 15-1) are added to the Base
Operand Address of the Instruction Word.

Indexing with the 6020 is carried out in the two’s comple-
ment system to eliminate the possibility of minus zero (see
Section 2). When referring to an Index Word, it must be
thought of as an absolute number that has no sign. If it is
desired to use an Index Word to decrease the relative posi-
tion of the specified Base Operand Address, the contents of
the Index Address must be the two’s complement of the
number of positions the address is to be decreased. The
two’s complement of a number is formed by adding one to
the one’s complement of that number.

Data Word Format (numeric)

Sign Magnitude
(1 bit) (23 bits)
24 23 1

Numbers within the central processor are represented in
fixed-point, binary, signed magnitude form. Bit 24 of the
Data Word is the sign bit of the number; the remaining bits
are magnitude bits. The sign bit is a ““0" for positive num-
bers and a “1" for negative numbers. When exarmining a
number for its absolute value, it must be remembered that
this value is merely the number presented by Bits 23-1 with

1.5

Sign Bit 24 ignored. (Section 2 of this publication provides
a complete description of the arithmetic used by the 6020.)

Data Word Format (alphanumeric)

Character 1 Character 2 | Character 3 | Character 4
(6 bits) (6 bits) (6 bits) (6 bits)
24 19 18 13 12 7 6 1

Four alphanumeric 6-bit characters are contained in each
alphanumeric data word. The most significant character oc-
cupies the highest order bits of the word.

PERIPHERAL EQUIPMENT

Peripheral equipments increase the versatility, flexibility,
and efficiency of the 6020 Computer System. The resulting
increased usefulness means an even further reduction in
the already low cost-per-answer ratio.

Line Printer. The Line Printer prints 400 lines/minute alpha-
numeric, 120 columns wide with the standard 48-character
drum.

Magnetic Tape Units. Magnetic Tape Units are available to
provide either low or high density operation. IBM compati-
bility permits the use of tapes written in this accepted format.

Punch Card Control Units. The Punch Card Contral Units
contain all logic, control, and power electronics to make
card formats compatible with 6020 formats.

Paper Tape Unit. The Paper Tape Unit consists of a separate
high speed reader and a punch.

Digitai incrementai Piotters. Digital Incremental Plotters are
available in four models that offer varied paper size, speed,
and plotting increments.

ARITHMETIC SYSTEMS

Since the ADVANCE Series 6020 utilizes bistable devices
in its counters, registers, and pulse storing components, its
“language’ is the binary number system. As implied, the
binary number system has only two symbols: “1'" and “‘0.”
In all other respects, it is identical to the familiar decimal
system.

Consider one more number system. The octal system is
based on 8 unique symbols (0 through 7). Figure 2-1 shows
that a binary 3-bit register can be utilized completely to
represent all 8 unique symbols of the octal system. Because
of the compatibility of the binary and octal systems and for
ease of recognition when discussing the 6020, all num-
bers are displayed in octal form. While it is still somewhat
difficult to comprehend the decimal equivalent of an octal
number, especially a large one, it is considerably easier to
work with than with its binary equivalent. For example, the
memory location 0,010,100,011,101; is much more mean-
ingful when it is expressed as 2435;.

BINARY ARITHMETIC

There are only four possible combinations for addition in
the binary number system. They are:

(1) 0+0=0
2 0+1=1
3 1+0=1
4 1 +1=10

With these combinations in mind, the following two binary
numbers may be added:

11011010
+ 01011001

100110011

2-1

SECTION TWO
ARITHMETIC

in subtraction, there are also only four possible combi-
nations:

a1y 1—1=0

2 1—0=1

3 0—1=1 (Actually 10 — 1 = 1, the “1”
of the ““10" is borrowed from the
adjacent column to the left, as with
subtraction in the decimal system.)

4 0—0=0

With these combinations in mind, the following two binary

numbare may be subtracted:
11011010
— 01011001

10000001

Decimal Number Binary Number Octal Number

0 0 ¢]
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 10
9 1001 11
10 1010 12
11 1011 13
12 1100 14
13 1101 15
14 1110 16
15 1111 17
16 10000 20
Figure 2-1. Comparison of Binary, Octal, and

Decimal Systems.

SIGNED MAGNITUDE ARITHMETIC

The 6020 is a signed magnitude computer; that is, all
the arithmetic operations are accomplished by the process
of addition and subtraction of magnitudes. Since multiplica-
tion and division can be broken down into a series of addi-
tions and subtractions, respectively, the 6020 will perform
these operations as well.

Operations with signed magnitude numbers are identical
with algebraic addition using a pencil and paper. Consider
the two rules for the addition of signed quantities:

(1) If the signs are alike, add the magnitudes of the
signed numbers. The sum will take the sign of the
numbers.

(+24) + (+12) +36
—24) + (—12) —36

(2) If the signs are not alike, subtract the smaller mag-
nitude from the larger of the signed numbers. The
difference will take the sign of the larger magnitude.

(+24) + (—12) = +12
(—24) + (+12) = —12

In the case of subtraction of signed quantities, one rule
applies:

(1) Change the sign of the subtrahend and add it to the

minuend, following the rules of algebraic addition.

(+24) — (+8) = (+24) + (—8) = +16
(—24) — (—8) = (—24) + (+8) = —16
(+24) — (—8) = (+24) + (+8) = +32
(—24) — (+8) = (-—24) + (—8) = —32

Signed magnitude operations are the same in any number
system, and are just as valid for the binary system as the
decimal.

FIXED POINT NUMBERS

The 6020 is a fixed-point computer, which means the
binary point of each operand is always in the same location
in the registers. A good example of a fixed point ‘‘computer”

Lo A H H
fixed decima! point

is the ofiice adding machine whicih has a
located between the second and third column from the right
(0,000,000,000.00) in order to show one-hundredths of the
dollar.

The binary point in the 6020 is located between the 23rd
and 24th bits of the operand. Since the 24th bit is the sign
bit, the operand is always a fraction. The results of all
arithmetic operations in the 6020 must be less than 1. The
product of two fractions will always be less than 1, but the
addition, subtraction, or division of two fractions may yield a
result greater than 1. Whenever the result of an arithmetic
operation is 1 or greater, overflow occurs, which is an illegal
condition in the 6020.

Two types of overflow may occur in the 6020; add and
divide. Overflow may also occur in certain algebraic sub-
traction operations such as a negative quantity subtracted
from a positive quantity. In reality, of course, this is the
same as an additive operation.

As was mentioned in Section |, Introduction, the operand

2-2

is positive when the 24th bit is ‘0" and negative when the
24th bit is “*1.” For all positive numbers (Bit 24 0), the
octal digit will be 0, 1, 2, or 3; for all negative numbers,
the octal digit will be 4, 5, 6, or 7. Therefore, positive
numbers range from 00000000 to 37777777s and nega-
tive numbers from 40000000, to 77777777.

The two numbers 37246012; and 21422531, are positive
numbers since their most significant digits are less than 4.
The sum of these two numbers is:

37246012
(+) 21422531,

60670543

The most significant digit of the sum indicates that the sum
is negative, since it is greater than 3. Obviously, the sum
of two positive numbers cannot be negative. What has hap-
pened is that the sum of the two numbers has exceeded the
register length of the 6020 and an add overflow has oc-
curred. Correspondingly, if the sum of two negative numbers
is positive, an add overflow has occurred. This leads to a
simple generalization that states: If the sign of the result
is different from both the sign of the augend and addend,
then an add overflow has occurred. Similarly, for subtrac-
tion: I the sign of the result is the same as the sign of the
subtrahend and different than the sign of the minuend, over-
flow has occurred.

When dividing in the 6020, the dividend is placed in
Registers A and E, the most significant bits being in A. The
quotient appears in Register E and the remainder in Register
A. If on division, one or more of the most significant bits of
the quotient cannot be contained in Register E, a divide over-
flow condition exists. Both the quotient and remainder wiil
be in error.

For example, dividing the number 302,560,000s by Zs

1 41270000
00000002) 00000003 02560000
A E
2
1 0
1 O
2
2
75
4
16
16
0

According to the long division, the quotient is 141,270,000,
with a remainder of Os, which is correct. However, the com-
puter would show the quotient to be 41,270,000: with a re-
mainder of 1, if it wore not for the fact that a divide over-
fiow condition existed. To pievent a
the most significant bit of the quotient must appear in
Register E.

A it
divide gverflow condition,

FLOATING POINT NUMBERS

In many cases. the sclution of a problem requires values

of numbers that are either too large or too small to be ex-
pressed by the computer. The physical size of the number
can be reduced by ‘‘scaling’ or shifting the number to the
right or left a predetermined number of places so that the
most significant bits of the number may be used. For
instance, the decimal number 6,510,000 may be expressed
as 0.651 x 107, 0.0651 x 108 0.00651 x 10°, etc. The ex-
ponent of the number system base is the scale factor or the
number of places the number is shifted.

The 6020 has fixed-point arithmetic, and there is no auto-
matic hardware feature for handling the scaling factor or
exponent. The programmer is responsible for remembering
the scale factors. Also, the possibility of an overflow during
intermediate operations must be considered. As was shown,
if two fractions are multiplied, the result is a number that is
less than 1. But, if the same two fractions are added, sub-
tracted, or divided, the result may be greater than 1 and an
overflow may occur.

As an alternative to fixed point operations, a method in-
volving a variable radix point, called floating point, is used.
The floating point system is similar to the scaling system ex-
cept that the exponent is also contained in the data word of
the 6020. The format of floating-point numbers is a fraction,
or mantissa, multiplied by an exponent. Since the 6020 rec-
ognizes only binary numbers, the fractions are muitiplied
by powers of two.

In order to achieve a greater degree of accuracy, two com-
puter words are used to express one floating-point number.
The mantissa of a floating-point word is a 37-bit fraction
plus the sign. The sign bits of each word (Bit 24) both apply
to the mantissa and must agree for proper operation. Nega-
tive mantissas have sign bits of 1's; positive mantissas
have sign bits of 0’s. Exponents are not complemented.

The exponent of the floating point number is a 9-bit quan-
tity that is contained in the least significant portion of the
second word of the expression. It is formed by adding the
true exponent to a ‘‘bias’” of 400.. This results in a range
of biased exponents with true values from —377; to +377,.
Biasing of the exponents is performed so that they can be
handled with greater ease by the computer.

FLOATING POINT ARITHMETIC

In order to add two floating point numbers, it is first
necessary to equalize the exponents of the numbers. This is
accomplished by shifting the mantissa of the smaller expres-
sion right the number of places that equals the difference
of the two exponents. For example, in adding the floating
point decimal numbers 0.3 x 10* and 0.27 x 105 0.3 x 104
is written as 0.003 x 10% and then the two numbers are
added which gives the results of 0.173 x 10¢.

3 x 10¢ .003 x 10¢
+ .27 x 10¢ = +.27 x 10¢
273 x 10¢

The same procedure is required for subtraction except that

2-3

the subtrahend is subtracted from the minuend in the final
step of the operation.

.27 x 10¢ 27 x 108
—.3 x 10¢ = + .003 x 10¢
.267 x 10¢

To perform this operation with the binary numbers con-
tained in the 6020, the exponents are first differenced. Then
the mantissa of the number with the smallest exponent is
shifted right the specified number of places, that is, the
difference between the two exponents.

When this is accomplished, the two resulting floating point
expressions are added with a double precision add instruc-
tion and the exponent of the larger number is affixed to the
result.

The operation is the same for subtraction except that
the sign of the subtrahend is changed before the double pre-
cision add is performed. The procedure outlined above is a
much simplified analysis of floating point addition and sub-
traction, but serves to explain the basic principle.

Multiplication and division of the mantissa of the floating
point expression is performed in the same manner as for
normal fixed point numbers. The exponents, however, are
added in multiplication and subtracted in division. For
example:

2 x 108
x.3 x 104

.06 x 10’ or .6 x 10¢
A x 1070 = 2 x 10° or .2 x 10¢

2 x 102

Note that the result of all arithmetic operations are nor-
malized and the exponent is corrected at the completion of
the operation. If overflow occurs, as in the example of divi-
sion, the mantissa is shifted right until the overflow is con-
tained in the fractional representation; the exponent is then
increased by the number of shifts required. In the binary
circuits of the computer the number of shifts required to
correct for overflow will never exceed 1. The shifts required
for underflow (the result is less than 15) may be any num-
ber within the capability of the machine.

CONVERSION OF FIXED POINT NUMBERS
TO FLOATING POINT NUMBERS

There are actually only two steps in converting a fixed
point number to a floating point expression. They are (1)
Normalize the number, and (2) calculate the biased ex-
ponent. The foliowing examples show the procedure of fixed
to floating point conversion.

Convert +36.0¢ to floating point:

1. Normalizing
+36.0s = 000 000 000 000 00C 000 011 110

= 0:11 110 x 25

2. Calculating the Exponent

2° = an exponent of 5

5 4+ 400 (bias) = 405 (biased exponent)
therefore, +36.0; fixed point = 36000000
00000405; floating point

Convert —36.0s to floating point:
1. Normalizing
—36.0; = 000 000 000 000 000 000 011 110;
= 0.11 110 x 25
2. Calculating the Exponent

25 = an exponent of 5

5 4 400 (bias) = 405 (biased exponent)
therefore, —36.0; fixed point = 76000000
400004055 floating point

Convert +0.0067; to floating point:
1. Normalizing
+0.0067; = 000 000 000 000 000 000 110 111.
=0.110111x 26

2. Calculating the Exponent
2 = an exponent of —6
—6 + 400 (bias) = 372 (biased exponent)

2-4

therefore, +0.0067; fixed point = 33400000
00000372 floating point

CONVERSION OF FLOATING POINT NUMBERS
TO FIXED POINT NUMBERS

The operations necessary to convert a floating point num-
ber to fixed point is merely the reversal of the fixed to float-
ing procedure. The exponent is first unbiased and the man-
tissa of the floating point word is shifted right or left the
number of places specified by the exponent.

Convert 27300000 00000403 to fixed point:

1. Unbias the exponent
403 — 400 = 43

2. Shift the Mantissa
273, 0.10 111 011, x 23
= 45.665 fixed point

Convert 77140000 40000374 to fixed point:
1. Unbias the exponent
374 — 400 = —4
2. Shift the Mantissa

—3714 = —0.11 111 001 100, x 2+
—0.000 011 111 001 100
—0.03714, fixed point

SECTION THREE

INSTRUCTION REPERTOIRE

This section defines all computer instructions and de-
scribes their operation. The instructions are grouped into
areas of common operations.

A diagram representing the format of the Instruction
Command Word is given for each instruction. Preceding the
diagram is the mnemonic code for the instruction and its
name. See Figure 3-1.

Timing is given in computer cycles where one cycle equals
1.90 microseconds. The timing includes memory reference
but does not include indexing and indirect addressing time.
Add two cycles to each instruction for indexing and one
cycle for each indirect address reference.

OPCODE | I] X | Y |
2% 19 18 1716 15 1

Figure 3-1. Instruction Diagram.

Each instruction diagram is divided into four fields repre-
senting the Operation Code, Indirect Address (1), Index Ad-
dress (X), and Base Operand Address (Y) portions of the
instruction. The small numbers below each diagram desig-
nate the bits which each field occupies in an instruction
word. See figure 3-1.

The Operation Code for each instruction is expressed as
a two-digit octal number and always appears as the left-
most part of an instruction diagram.

If the Indirect Address and Index Address portions of an
instruction diagram contain | and X, respectively, then in-
direct addressing and indexing can be used. The | and X
portions will be replaced by an octal number in some instruc-

31

tions. In these cases, the | and X portions of the instruction
are used in conjunction with the Operation Code to determine
the operation.

The symbol ‘Y appearing in the diagram denotes the
Base Operand Address portion of the instruction and at times
may be replaced by octal numbers. In these cases, the Base
Operand Address portion of the instruction is used in con-
junction with the Operation Code portion to determine the
operation. The octal numbers of the Base Operand Address
of the instruction along with the Operation Code determines
the defined operation.

A short paragraph that explains the operation of the in-
struction follows the diagram. Included with the explanation
is a shorthand notation of the instruction.

The terms commonly used in instruction descriptions and
their definitions are:

1. Effective Operand Address. The final effective address
of an instruction after all indexing and indirect address-
ing has occurred.

2. Operand. The contents of the memory location speci-
fied by the Effective Operand Address.

3. Base Operand Address. This refers to Bits 15 through
1 of the instruction or register being discussed. For ex-
ample, the Base Operand Address portion of the Operand
would mean the contents of Bits 15 — 1 of the memory
location specified by the Effective Operand Address.

A list of symbols commonly used in the instruction de-
scriptions and their definitions is given in Figure 3-2. All
numbers used in the examples in this section are in octal
form.

SYMBOL

A
A

Y

()

(m)

(m,)

DESIGNATION
Register A, or Accumulator

The base operand address portion (Bits 15-1) of the
A register

Register E, a second major arithmetic register
Designates Register A and Register E

The exponent portion (Bits 9-1) of the E register.
Specified index location

Specified index location

Bits 15-1 of the specified index location

The address of the instruction being performed
Shift count (Bits 6-1)

The effective address of the instruction after all
indexing and indirect addressing has been per-
formed; i.e., the effective operand address

Contents of. (A) signifies the contents of the A
register

The contents of the location specified by the effec-
tive operand address; i.e., the operand

The address portion (Bits 15-1) of the operand
Register S, the program sequence register

Register T, the temporary storage register and dis-
play register of the address of the last instruction
completed

The address portion of an instruction before index-
ing or indirect addressing takes place; i.e., the base
operand address

Add
Subtract
Multiply
Divide

Is placed in

Absolute value. |(A)| signifies the absolute value of
the contents of the A register.

Complement of. (A) signifies the 1's complement of
the A register.

Logica! OR (inclusive). (E) @ (m) signifies the logi-
cal OR of the 1's complement of the contents of
the E regisier and the operand.

Logical AND. (E) © (m) signifies the logical AND
of the contents of the E register and the operand.

Figure 3-2. Table of Symbols.

3-2

INSTRUCTION OPERATION
DATA TRANSFER AND ARITHMETIC OPERATIONS

LDA: LOAD A

| a [i1] x| Y B

24 19 18 1716 15 1
(m) — A

Place the operand in Register A. The operand in memory
remains unchanged.

Timing: 2

LDE: LOAD E Timing: 3

e hfx] Y |
24 19 18 1716 15 1
(m) —p E

Place the operand in Register E. The operand in memory
remains unchanged.

DLD: LOAD AE Timing: 3

| B3 1] x| Y
2 19 18 1716 15 1

(m)—p A, (m+1)—pE

Place the operand in Register A and the contents of the
memory location sequentially following the effective operand
address in Register E. The contents of both locations in
memory remain unchanged.

LXP: LOAD EXPONENT Timing: 3
L2 Jo[2] oo
24 19 18 1716 15 1

(m)exp _’ Eexp

Place Bits 9-1 of the operand into Bits 9-1 of Register E
without changing the remaining bits of Register E. The oper-
and in memory remains unchanged. No indirect addressing
or indexing will occur.

STA: STORE A Timing: 2

e i x| O]
24 19 18 1716 15 1
A —pm

Replace the operand with the contents of Register A. Reg-
ister A remains unchanged.

STE: STORE E Timing 3

Lo [1] x| Y |
24 19 18 1716 15 1
E) —p m

Replace the operand with the contents of Register E.
Register E remains unchanged.

DST: STORE AE Timing: 3

| 6 1] x| Y

24 19 18 1716 15 1

A—"hpmE-—hm41

Replace the contents of the memory location specified by
the effective operand address with the contents of Register
A and replace the contents of the memory location sequenti-
ally following the effective operand address with the contents
of Register E. The contents of Registers A and E remain
unchanged.

SXP: STORE EXPONENT Timing: 4
2 0] 3| Y
2% 19 18 1716 15 1

(E)exp _} Mo 0 _bm24-|01 0 —) Eexp

Place *‘0’s” in Bits 24-10 of the operand and the contents
of Bits 9-1 of Register E in Bits 9-1 of the operand. In Regis-
ter E, Bits 24-10 remain unchanged and Bits 9-1 are cleared.
No indirect addressing or indexing will occur.

SAM: STORE A ADDRESS Timing: 3

w0 [i[x] v]
24 19 18 1716 15 1
(AY) — (m)

Replace the base operand address of the operand with the
base operand address portion of Register A. Bits 24-16 of
the operand and Register A remain unchanged.

ADD: ADD Timing: 2

i [i[«x] ¥]
24 19 18 1716 15 1
A + (m) —p A

Add the contents of Register A to the operand and place
the sum in Register A. The operand remains unchanged.

3-3

Add overflow occurs and the AO flip-flop will be set if
both numbers are of the same sign and a carry is generated
into the sign bit. In this case, the sum is incorrect but the
sign bit remains correct. An AQ interrupt to Location 100
will occur when AO is set, the AO trap is armed, and the
program is not already in an interrupt routine. AQ will re-
main set until the AO interrupt occurs or until it is cleared
by the program.

Note: A sum of —0 can result only from the operation:

(—0) + (-0
MPY: MULTIPLY Timing: 16
] 2 1] x| Y]
2 19 18 1716 15 1

(A) * (m) —) AE

Multiply the contents of Register A by the operand and
place the product in Registers A and E with the most signifi-
cant bits of the product in Register A and the least signifi-
cant bits in Register E. The product appears as a 46-bit
signed number with A,, and E,, set to the correct sign.

Memory Locations 110 and 111 are used during execu-
tion of the multiply instruction for the formation of partial
products.

Note: A minus zero can result from the following operations:
(—0) X positive number
(+0) X negative number
(—0) x (+0)

SUB: SUBTRACT Timing: 2
| B Ji] x| Y
2 19 18 1716 15 1
(A —(m) —pA

Subtract the operand from the contents of Register A and
place the difference in Register A. The operand remains un-
changed.

Add overflow occurs and the AO flip-flop will be set if the
minuend and subtrahend are of opposite sign and a carry
is generated into the sign bit. In this case, the difference is
incorrect but the sign bit remains correct. An AO interrupt
to Location 100 will occur when AO is set, the AO trap is
armed, and the program is not already in an interrupt rou-
tine. AO will remain set until the AO interrupt occurs or until
it is cleared by the program.

Note: A difference of —0 can result only from the operation:
(—0) — (+0).

AMA: ADD MAGNITUDE Timing: 2
& [x] v]
24 19 18 1716 15 1

LA |+ [(m) | —hA

Add the contents of Register A to the operand as 24-bit
magnitudes (without sign) and place the sum in Register A.
The operand remains unchanged. Add overflow cannot occur.

DAD: DOUBLE PRECISION ADD Timing: 6
% [i[%] v)
24 1918 1716 15 1

(AE) 4 (m, m ++ 1)—p AE

Add the double precision contents of Registers A and E
and the double precision contents of the memory location
specified by the operand address and the next sequential
memory location. The result appears as a 46-bit number
in Registers A,;, — A, and E,;; — E, with the sign of the re-
sult in A,,. The addend and augend should be two 46-bit
numbers in the same format as the result with the signs
in the upper halves of the numbers.

Add overflow occurs and the AO flip-flop will be set if both
numbers are of the same sign and a carry is generated into
the sign bit. In this case, the sum is incorrect but the sign
bit remains correct. An AO interrupt to Location 100 will
occur when AO is set, the AO trap is armed, and the program
is not already in an interrupt routine. AO will remain set
until the AO interrupt occurs or until it is cleared by the
program,

Memory Location 110 is used during execution of the
double add instruction for temporary storage.

Note: A sum of —0 can result only from the operations:

occur when AQ is set, the AQ trap is armed, and the program
is not already in an interrupt routine. AO will remain set
until the AO interrupt occurs or until it is cleared by the
program.

Note: A sum of —0 can result only from the operation:

0) + (0).
DVD: DIVIDE Timing: 25
3 if divide fault
[4 || x| Y
24 19 18 1716 15 1
(AE) + (m) —p E
Remainder — A

IF 1M <], G+ 1—pS

Divide the 46-bit signed fraction contained in Registers A
and E by the operand and place the quotient in Register E
and the remainder in Register A. A true remainder is
generated with the sign algebraically correct.

For proper division to occur, the dividend should have its
most significant half in A,; — A;, and its least significant
half in E;~-—E,, with the correct sign appearing in A,.
E,, is ignored.

Before division, if the absolute value of Register A is
greater than or equal to the absolute value of the operand, a
divide fault will occur. If divide fault occurs, the original con-
tents of Registers A and E will remain unchanged, and the
next instruction will be taken in sequence. If divide fault does
not occur, the next instruction will be skipped, and the in-
struction following will be taken.

Note: A minus zero quotient or remainder can only result
from the following operations:

(+0) =+ negative number, remainder = (+0),
Quotient = (—0)

(—0) = positive number, remainder = (—0),

—0) 4 0) Quotient = (—0)
N+ (N { Oy + negative number, remainder = (—0),
Quotient = (+0)
ADM: ADD TO MEMORY Timing: 4 AOA: ADD ADDRESS Timing: 2
v i x| Y 1 52 Jo|o | Y]
24 19 18 1716 15 1 24 1918 1716 15 1
(A) + (m) —pm A +Y—pA

Add the contents of Register A and the operand and place
the sum in the memory location specified by the effective
cperand adrlvoee Tho

changed.

Add overflow occurs and the AO flip-flop will be set if both
numbers are of the same sign and a carry is generated into
the sign bit. In this case, the sum is incorrect but the sign
bit remains correct. An AO interrupt to Location 100 will

The contents of Register A remain un.

34

No indirect addressing or indexing will occur. Add the
contents of Register A and the base operand address and
nlace the sum in Register A

Add overflow occurs and the AO flip-flop will be set if
both numbers are of the same sign and a carry is generated
into the sign bit. In this case, the sum is incorrect but the
sign bit remains correct. An AO interrupt to Location 100 will
occur when AO is set, the AO trap is armed, and the pro-

gram is not already in an interrupt routine. AO will remain
set until the AO interrupt occurs or until it is cleared by the
program.

SOA: SUBTRACT ADDRESS Timing: 2
s Jof[1] Y]
2 19 18 1716 15 1

A)—Y —pA

No indirect addressing or indexing will occur. Subtract the
base operand address from the contents of Register A and
place the difference in Register A.

Add overflow occurs and the AO flip-flop will be set if the
minuend and subtrahend are of opposite sign and a carry is
generated into the sign bit. In this case, the difference is
incorrect but the sign bit remains correct. An AO interrupt
to Location 100 will occur when AO is set, the AO trap is
armed, and the program is not already in an interrupt rou-
tine. AO will remain set until the AQ interrupt occurs or until
it is cleared by the program.

Note: A difference of —0 can result only if the original con-
tent of Register A is —0 and the base operand address is

+o0.

LOA: LOAD ADDRESS Timing: 3
Lo [ix] Y]
24 19 18 1716 15 1

Y—)A,0—pA,thruA,
Place the base operand address in Bits 15 through 1 of
Register A. Clear Bits 24 through 16 of Register A.

RND: ROUND

L

Timing: 2

50

lo] 1] 00000]

19 18 1716 15 1

2
I Epi (A) +1—) A

If Ex3is a “1,” increase the magnitude of contents of Reg-
ister A by one.

Add overflow occurs and the AO flip-flop will be set if the
number in A is of maximum magnitude. In this case, the
sum is incorrect but the sign bit remains correct. An AO
interrupt to Location 100 will occur when AO is set, the AO
trap is armed, and the program is not already in an interrupt
routine. AO will remain set until the AO interrupt occurs or
until it is cleared by the program.

3-5

REGISTER CHANGE INSTRUCTIONS

All the Register Change Instructions use the 15-bit base
address portion of the instruction as part of the Operation
Code in order to determine the operation to be performed.
Indexing and indirect addressing are not allowed.

ZOA: ZERO A Timing: 2

L s Jolo | 00002]
24 19181716 15 1
0—pA
Clear Register A to all zeroes.

Z0E: ZERO E Timing: 2

| 50 JoJo | 00001
24 19 18 1716 15 1
0—E
Clear Register E to all zeroes.

Z0D: ZERO AE Timing: 2

L s JoJo | 00003]
24 19 18 1716 15 1
0—pA
0—E

Clear Register A to all zeros and clear Register E to alf
zeros.

ZSA: CLEAR A TO SIGN OF E Timing: 2
L s Jof[o] 01002]
2 19 18 1716 15 1

*0 —) A (Same sign as E)

Place “0's"” in Bits 23 — 1 of Register A. Place E,, in
A,.. The contents of Register E remain unchanged.

CMA: COMPLEMENT A Timing: 3

L 50 |0| 0 | 00010 j
2 19181716 15 1
A)—p A

Complement the contents of Register A.

CME: COMPLEMENT E Timing: 3 AVE: ABSOLUTE VALUE E Timing: 2

| 5 0] 0 | 00004 | 50 lofo | 00100
2 19 18 1716 15 1 24 19 18 1716 15 1
(—E7 '_’ E 0 _’ E24
Complement the contents of Register E. Clear E,,.

CMD: COMPLEMENT AE Timing: 3 AVD: ABSOLUTE VALUE AE Timing: 2

[s Jofo | 00014 [s [o]o] 00300 B
24 19 181716 15 1 2 1918 1716 15 1
B 0—pA
—_ 24
(E)—p E 0— Ey
Complement the contents of Register A and complement

the contents of Register E. Clear A, and E;..

MNA: MINUS A Timing: 2 SAE: SIGN OF A TO E Timing: 2

[s [o]o| 00040 1 [s Jofo| 00400
2 19 18 1716 15 1 24 19 18 1716 15 1
—AW A Ay —b Ez,

Complement A,,. A, through A, remain unchanged.

MNE: MINUS E Timing: 2

[s Jo]o] 00020 }
24 19 18 1716 15 1
—(B)—pE
Complement E,,. E,, through E, remain unchanged.

MND: MINUS AE Timing: 2

| 50 [0[0 | 00060 |
24 19 18 1716 15 1
—(A)—pA
—(E) —pE

Complement A,, and E,. A, through A, and E,, through

E, remain unchanged.

AVA: ABSOLUTE VALUE A Timing: 2

|) 50 [0] O | 00200 4i
24 19181716 15 1
0—p A
Ciear A,,.

3-6

Place A,, in E;,. A,, is unchanged.

SEA: SIGN OF ETO A Timing: 2

[50 Jofo | 01000
24 19 18 1716 15 1
E24 _} Az4
Place E,, in A,,. E,, is unchanged.

ATE: COPY A IN E Timing: 2

[50 Joflo] 02000 |
24 1918 1716 15 1
(A)—p E

Place the contents of Register A in Register E. The con-
tents of Register A remain unchanged.

ETA: COPY EIN A Timing: 2

s Tolo | 04000 |
2 19 18 1716 15 1
(E)—pA

Place the contents of Register E in Register A. The con-
tents of Register E remain unchanged.

XAE: EXCHANGE AE Timing 2

1 50 Jo]o | 06000
21 19 18 1716 15 1
A —pE
(E)—p A

Place the original contents of Register A in Register E and
place the original contents of Register E in Register A.

LOGICAL OPERATIONS

Note: The logical complement of Register A or Register E
may be obtained by using the CMA and CME instruc-

tions.
AND: LOGICAL ‘‘AND" Timing: 2
Lo x| Y |
24 19 18 1716 15 1
E)YO (m)—pA

Form the logical AND of the contents of Register E and
the operand and place the result in Register A. The original
contents of Register E remain unchanged.

XOR: EXCLUSIVE “OR"” Timing: 2
"ERIE Y
Zi i5 18 i7 i6 i5 i
(B) O (M) @ (E) © (m)—p A

Form the exclusive OR of the contents of Register E and
the operand and place the result in Register A. The original
contents of Register E remain unchanged.

LOR: LOGICAL ‘“‘OR" Timing: 2

e X v]
24 19 18 1716 15 1
EYS (m) —pA

Form the logical OR of the contents of Register E and
the operand and place the result in Register A. The original
contents of Register E remain unchanged.

SHIFT OPERATIONS

Shift instructions use Bits 15 - 11 of the operand address
to determine the type of shift operation. Bits 6 - 1 of the
operand address contain the shift count (k). The maximum
number of shifts is 63,,. Bits 10 — 7 are unspecified.

Indirect addressing and indexing can be used with these
instructions. If indexing is used, and the Index Base con-
tains bits in Positions 15 - 11, then the original operation

3.7

may be changed. When indexing is specified, the contents of
the index register are added to the base operand address and
this may change the type of shift operation and the shift
count.

If indirect addressing is used, then the base operand ad-
dress determines the type of shift operation and the shift
count. Therefore, indirect addressing with or without index-
ing may change the operation.

RSA: RIGHT SHIFT A Timing: 2 + k
20] x| 400 k]
2% 19 18 1716 15 1

(A) right k places —p A

Shift Bits 23 through 1 of Register A right k places. All
bits shifted out of A, will be lost and ““0’s’’ will be entered
into A,;. Sign Bit 24 of Register A is unchanged. The original
contents of Register E remain unchanged.

LSA:

B

LEFT SHIFT A

|1 X | 500 k
1918 1716 15 1

Timing: 2 + k

20

24

(A) left k places —)p A
Shift Bits 23 through 1 of Register A left k places. All bits

chiftad At Af A will ha lact Aand S4N'a’? wwill ha Andavrad imds
CHIILUU VUL U 1323 Y MU IUOL anu v o YA UL LOIRUITU Y

A,. Sign Bit 24 of Register A is unchanged. The original
contents of Register E remain unchanged.

CSA: CIRCULAR LEFT SHIFT A Timing: 2 + k
L 20 | | | X [540 k }
2% 19 18 1716 15 1

(A) left circular k places —p A

Shift the contents of Register A left circular k places. All
bits shifted out of A,, will be placed into A,. Sign Bit A,, is
shifted with the contents of Register A. The original contents
of Register E remain unchanged.

RLA: LOGICAL RIGHT SHIFT A Timing: 2 + k
L 20 JI] x] 420 K]
2 1918 1716 15 1

(A) left k places —p A

Shift the contents of Register A right k places. All bits
shifted out of A, will be lost and ““0’s’" will be entered into
A,.. The original contents of Register E remain unchanged.

LLA:

|

24

LOGICAL LEFT SHIFT A

[1] x| 520 k
19 18 1716 15 1

Timing: 2 4-k

(A) left k places —p A

Shift the contents of Register A left k places. All bits
shifted out of A,, will be lost and *'0's”” will be entered into
A,. The original contents of Register E remain unchanged.

RIGHT SHIFT E

[1] x| 200 k l
19 18 1716 15 1

RSE: Timing: 2 4+ k

[20
2

(E) right k places —) E

Shift Bits 23 through 1 of Register E right k places. All
bits shifted out of E, will be lost and *'0's" will be entered
into E,,. Sign Bit 24 of Register E is unchanged. The original
contents of Register A remain unchanged.

LEFT SHIFT E

1] x| 300 k |
19 18 1716 15 1

LSE:

-

Timing: 2 + k

20

24

(E) left k places —p E

Shift Bits 23 through 1 of Register E left k places. All bits
shifted out of E,; will be lost and ““0’s” will be entered into
E,. Sign Bit 24 of Register E is unchanged. The original
contents of Register A remain unchanged.

LLE:

L

LOGICAL LEFT SHIFT E

] x| 320 k
19 18 1716 15 1

Timing: 2 4-k

20

24

(E) left k places —p E

Shift the contents of Register E left k places. All bits
shifted out of E,, will be lost and *‘0’s™ will be entered into
E,. The original contents of Register A remain unchanged.

RSD: RIGHT SHIFT AE Timing: 2 -+ k
| 0[] x| 600 k |
24 19 18 1716 15 1

(AE) right k places —p AE

Shift Bits 23 through 1 of Register A and Bits 23 through
1 of Register E right k places. All bits shifted out of A, will
be placed into E,; and all bits shifted out of E, will be lost.
“0's"” will be entered into A,. Sign Bits 24 of Registers A
and E are unchanged.

LSD: LEFT SHIFT AE Timing: 2 + k
| 2 1] x| 700 k
24 19 18 1716 15 1

(AE) left k places —p AE

Shift Bits 23 through 1 of Register A and Bits 23 through
1 of Register E left k places. All bits shifted out of E,; will
be placed into A, and all bits shifted out of A,; will be lost.
“0's"" will be entered into E,. Sign Bits 24 of Registers A
and E are unchanged.

CSE: CIRCULAR LEFT SHIFTE Timing: 2+ k CSD: CIRCULAR LEFT SHIFT AE Timing: 2 4k
| 20 [1] x| 340 k | 0 1] x| 740]
2 19 18 1716 15 1 2 1918 1716 15 1

(E) left circular k places —p E

Shift the contents of Register E left circular k places. All
bits shifted out of E,, will be placed into E,. Sign Bit E,, is
shifted with the contents of Register E. The original contents
of Register A remain unchanged.

RLE: LOGICAL RIGHT SHIFT E Timing: 2 + k
I [1] x | 220 k |
2% 19 18 1716 15 1

(E) right k places — E

Shift the contents of Register E right k places. All bits
shifted out of E; will be lost and “0’s"" will be entered into
E,.. The original contents of Register A remain unchanged.

3-8

(AE) left circular k places —) AE

Shift the contents of Registers A and E left circular k
places. All bits shifted out of A,, will be placed in E, and all
bits shifted out of E,, will be placed in A,. Sign Bits 24 of
Registers A and E are shifted with the contents of the
registers.

RLD: LOGICAL RIGHT SHIFT AE Timing: 2+ k
i 2 [1] x] 620 k
2 19 18 1716 15 1

(AE) right k places —) AE

Shift the contents of Registers A and E right k places.
All bits shifted out of A, will be placed in E,,. All bits shifted
out of E, will be lost and “*0's"" will be entered into A,,.

LLD: LOGICAL LEFT SHIFT AE Timing: 2 - k AUX: AUGMENT INDEX Timing: 4
i %] s [ilx]]
24 19 18 1716 15 : 1 24 19 18 1716 15 1

(AE) left k places —) AE

Shift the contents of Registers A and E left k places. All
bits shifted out of E,, will be placed in A,. All bits shifted
out of A,, will be lost and “'0's’’ will be entered into E,.

NRM: NORMALIZE Timing: 6 4- k
0 [1] 2 | 00000 |
2% 19 18 1716 15 1

(AE) left until Ay, is a “1”

i+)—k—pit1

S)+1—pS

Shift Bits 23 through 1 of Registers A and E left until
A,; is a ““1" or until 46 shifts have been performed. All bits
shifted out of E,; will be placed in A, and “0’s"" will be en-

tered into E,. Sign Bits 24 of Registers A and E are un-
changed.

The count of the number of shifts required will be sub-
tracted from the 24-bit absolute value of the memory loca-
tion sequentially following the location of the NRM instruc-
tion. After execution of the NRMinstruction, the next instruc-
tion is skipped.

INDEX OPERATIONS

SXM: STORE INDEX Timing: 4

[3 o] x| Y]
2 19 18 1716 15 1
Xy —p m,

No indirect addressing or indexing will occur. Place the
contents of the specified index base in the base operand
address portion of the operand. Bits 24 through 16 of the
operand and the contents of the index location remain
unchanged.

ZOM: ZERO MEMORY Timing: 4

t 53 [o] o] Y |
2 19 18 1716 15 1
0 —pm,

If an index location is not specified in the SXM instruc-
tion, a ZOM instruction occurs. Bits 16 through 1 of the
operand are cleared, while Bits 24 through 16 remain un-
changed.

3-9

Y + X, —p X, 0 —p X,, through X,,
fY+X,=08)+1—S

No indirect addressing or indexing will occur. Add the
base operand address portion of this instruction to the
specified index base and place the result in the specified
index location. If this results in all “0O’s” in the index,
the next instruction is skipped. If not, the next instruction
is taken in sequence. Bits 24 through 16 of the specified
index location are cleared.

Decrementing of an index base can be affected by placing
the 2’s complement of the decrement value in the base
operand address portion of the AUX instruction.

KOZ: SKIP IF BASE OPERAND ADDRESS IS ZERO
Timing: 4
5 Jofo | v |
2% 19 18 1716 15 1

HY=0,(S)+1—S

If an index location is not specified in the AUX instruc-
tion, a KOZ instruction occurs. When the base operand ad-
dress of this instruction is “‘0,”" the next sequential instruc-
tion is skipped.

JDX: JUMP AND DECREMENT INDEX
Timing: 3
5 1] x | Y]
24 19181716 15 1

Xo—=1—P X; if X, —17#0, m—) S

No indirect addressing or indexing will occur. Subtract
+1 from the specified index base and place the result in
the specified index. If the result is not equal to zero, the
next instruction from the location specified by the effective
operand address is taken. If the result is equal to zero, the
next instruction in sequence is taken. Bits 24 through 16
of the index location are cleared.

LOX:

L

LOAD INDEX WITH ADDRESS

[of %] Y
19 18 1716 15 1

Timing: 2

55

24
Y—) X,
0 —p X,, through X,

No indirect addressing or indexing will occur. Place the
base operand address portion of this instruction in the speci-

fied index base. Clear Bits 24 through 16 of the specified
index location.

LAX: LOAD INDEX WITH A ADDRESS Timing: 2
s [ilx] v |
24 19 18 1716 15 1

A)—p X,

0—p Xy, through X,,

No indirect addressing or indexing will occur. Place the
base operand address portion of Register A in the specified

index base. Clear Bits 24 through 16 of the specified index
location.

IXT: INCREMENT INDEX AND TEST Timing:
5 if skip
4 if no skip
[s Jo] x| Y ‘ |
24 19 18 1716 15 1

Xo+ 1 —P X
IfX,+1=Y, then(S) +1—)S

No indirect addressing or indexing will occur. Add the
number +1 to the specified index base and place the re-
sult in the specified index base. Clear Bits 24 through 16
of the specified index location. If the result is equal to the
base operand address, the next instruction is skipped. If
the result is not equal, the next instruction is taken in
sequence.

KON: SKIP IF BASE OPERAND ADDRESS IS ONE

Timing:
5 if skip
4 if no skip
[s oo | Y B
24 19 18 1716 15 1

HYy=1,(+1—S

If an index location is not specified in the IXT instruc-
tion, a KON instruction occurs. When the base operand ad-
drecs of this instruction is '‘1,” the next sequential instruc-
ticn is skipped.

KXH: “KIP INDEX HIGH Timing: 3 if skip
2 if no skip

[s o] x| Y]

24 19 18 1716 15 1

IfX, > Y, then(S) +1—p S

No indirect addressing or indexing will occur. If the speci-
fied index base is greater than the base operand address,

the next instruction is skipped. If the specified index base
is not greater, the next instruction is taken in sequence.

JUMP AND SKIP OPERATIONS

Timing: 1

JMP: JUMP

[z [ix] f il
24 19 18 1716 15 1
m—)p S

XEC: EXECUTE Timing: 1 4 CYC

2 |1]x Y
2 19 18 1716 15 1

Execute the operand as an instruction, but do not leave
this instruction sequence unless the operand instruction
leads to a SKIP or JUMP. If it leads to a SKIP, the instruc-
tion following the XEC instruction is skipped. If it leads to a
JUMP, the next instruction from the location specified by
the effective operand address is taken.

JDI: JUMP ALLOW INTERRUPT Timing: 2

| ES Y
2 19 18 1716 15 1
m—pS

Allow Interrupt

Clear the highest priority interrupt flip-flop that is set. If
none is set, clear the non-priority interrupt flip-flop. Take
the next instruction from the location specified by the effec-
tive operand address.

JPO: JUMP TO M +1 Timing: 2

L # jifx] v l
2 19 18 1716 15 1
m+1—)S

Take the next instruction from the location sequentially
following the location specified by the effective operand
address. Only one level of indirect addressing will occur;
i. e., Bit 18 in the location specified by the indirect address
will be ignored.

RTJ: RETURN AND JUMP Timing: 3

1 5 1] x| Y |
2 19 18 1716 15 1

3-10

(S) —pm,
m+1—pS

Place the address of the instruction sequentially following
the RTJ instruction in the base operand address portion of
the operand. Bits 24 through 16 of the operand remain un-
changed. Take the next instruction from the location sequen-
tially following the location specified by the effective operand
address.

JUMP IFA < O Timing: 2 if Jump

3 if No Jump

JLZ:

|

1

0 (1] x|

1918 1716 15

24

I (A) < 0, m—p S

If the contents of Register A is algebraically less than
zero, take the next instruction from the location specified by
the effective operand address. The jump does not occur if
(A) is —0.

JGZ: JUMPIFA >0

DES

19 181716 15 1

Timing: 2 if Jump
3 if No Jump

24
If (A) >0, m—pS
If the contents of Register A is algebraically greater than

zero, take the next instruction from the location specified by
the effective operand address.

JEZ: JUMPIFA=0 Timing: 2 if Jump
3 if No Jump
| 2 1] x| Y
24 19 18 1716 15 1

If (A= =0, m—) S
If the contents of Register A equals zero, take the next

instruction from the location specified by the effective oper-
and address. This jump occurs when (A) is +0 or —0.

KAL: SKIP A LOW Timing: 4
L ifx] Y]
24 19 18 1716 15 1

If(A) <(m),) +1—S

If the contents of Register A is algebraically less than
the operand, skip the next instruction. If not, take the next
instruction in sequence.

KAH: SKIP A HIGH Timing: 4

| 3 1] x| Y
24 19 18 1716 15 1
If(A) > m), (S)4+1—S
If the contents of Register A is algebraically greater than

the operand, skip one instruction. If not, take the next in-
struction in sequence.

KAQ: SKIP A EQUAL Timing: 4
| 36 1] X | Y H
2 19 18 1716 15 1

if(A)=(m),(S) +1—pS

If the contents of Register A is equal to the operand, skip
one instruction. If not, take the next instruction in sequence.
Note: +0 = —0.

IMT: INCREMENT MEMORY AND TEST
Timing: 4
| 3 1] x] Y
24 19 18 1716 15 1
(m4+1—m

If () 4+ 1 = =0, then (S) + 1 — S

Add the number -1 to the algebraic value of the oper-
and and place the result in the memory location specified
by the effective operand addiess. if the resuli is =0, ihe
next instruction is skipped. If not, the next instruction is
taken in sequence. 40 is generated by adding +1 to
—1 and —O0 is generated by adding +1 to +37777777

Add overflow cannot occur.

HLT: HALT
51 [of o | Y
2 19 18 1716 15 1
HALT
YT

Halt and take the next instruction (when the RUN switch
is pressed) in sequence.

KIF: CONDITIONAL SKIP Timing: 3 if skip
2 if no skip
L s Jifo] ']
24 1918 1716 15 ' 1

If the specified condition is true and the corresponding
bit of Y is a ‘'1,"" the next instruction is taken in sequence.
If not, the next instruction is skipped.

If bit 7 is set, the specified flip-flop is cleared.

Bit Position Condition
1 Sense Switch 1
2 Sense Switch 2
3 Sense Switch 3
4 Sense Switch 4
5 Sense Switch 5
6 Sense Switch 6
7 Add Overflow Flip-Flop
8
9
10 Flag 1 (Indicator Light 1)
11 Flag 2 (Indicator Light 2)
12 Flag 3
13 Flag 4
14 Flag 5
15 Flag 6

Any combination of bits can be used to simultaneously
test more than one condition. If this is done, a skip occurs
if none of the tested conditions are true.

KEX: SKIP ON EXTERNAL SIGNAL Timing:
3 if skip
2 if no skip
51 [1] 1] Y
24 19 18 1716 15 1

If the external signal specified by Y is a '"'0,"” the next
instruction is skipped. If not, the next instruction is taken
in sequence.

TRAP, FLAG, AND FLAG INDICATOR LIGHT
OPERATIONS

All Trap, Flag, and Flag Indicator Light instructions use
the address portion of the instruction to specify the opera-
tion. Indexing and indirect addressing may not be used.
In discussing these instructions, all reference is to the bit
configuration appearing in the address portion of the
instruction.

Trap settings control which interrupt signals will be
allowed to interrupt a program in process. If a trap is armed,
then the associated interrupt conditions will be permitted to
interrupt the main program when they occur. A trap which
has not been armed or has been disarmed inhibits the
occurrence of interrupt signals.

The set and clear flag operations are used to change the
settings of four flag flip-flops. The condition of the flag

flip-flops can be tested by other instructions. These provide
built-in hardware switches which can be used to control pro-
gram branching.

Two Flag Indicator Lights can be set and cleared by the
trap instructions. These can also be tested by other in-
structions and can be used as the flags to control program
branching. In addition, their condition is displayed on the
operator's console thus providing a means for visible pro-
gram controlled operator directives.

CTP: CLEAR FLIP-FLOPS Timing: 2
51 |o| 2 | Y
2 19 18 1716 15 1

Clear the flip-flops specified by the bit position in Y.

Bit Position Flip-Flop
1 Priority Trap
2 ED Trap
3 Programmed 1/0 Channel Trap
4 Operator Trap
5 Power Fail Trap
6 Add Overflow Trap
7 Add Overflow Flip-Flop
8 Memory Parity Fail Trap
9
10 Flag 1 (Flag Light 1)
11 Flag 2 (Flag Light 2)
12 Flag 3
13 Flag 4
14 Flag 5
15 Flag 6

A 1" in the bit position will clear the flip-flop. A “‘0" has
no effect. Any number of flip-flops can be cleared in one
instruction by specifying the correct combination of *“1'" bits.

STP: SET FLIP-FLOPS Timing: 2
51 [o] 3] Y
% 1918 1716 15 1

A me LT L Y-

S 4 b £l T Y P e S LI V)
€L Uie Nip-nOpSs Specitied vy tne it position in Y.

Bit Position Flip-Flop

1 Priority Trap

2 ED Trap

3 Programmed 1/0 Channel Trap
4 Operator Trap

5 Power Fail Trap

6 Add Overflow Trap

7 Add Overflow Flip-Flop
8 Memory Parity Fail Trap
9 oM

10 Flag 1 (Flag Light 1)
11 Flag 2 (Flag Light 2)
12 Flag 3

13 Flag 4

14 Flag 5

15 Flag 6

A “1" in the bit position will set the flip-flop. A “‘0” has
no effect. Any number of flip-flops can be set in one instruc-
tion by specifying the correct combination of “1” bits.

If any of the interrupt conditions (as specified by Bit Posi-
tions 1,2, 3,5, 6, and 8) have occurred prior to execution
of this instruction and the particular trap is armed, an inter-
rupt will occur immediately after executing this instruction.

SCT:

L

SAVE AND CLEAR FLIP-FLOPS

1] 2]

19 18 1716 15

Timing: 2

6}

-

1

24

Clear Register A. Place the condition of the flip-flops
specified by Y in the corresponding bit positions of Register
A. Then, clear the flip-flops specified by Y.

Bit Position Flip-Flop

Priority Trap

ED Trap

Programmed 1/0 Channel Trap
Operator Trap

Power Fail Trap

Add Overflow Trap

Add Overflow Flip-Flop

Memory Parity Fail Trap

O W W N O O b» W KN

J—

Flag 1 (Flag Light 1)
Flag 2 (Flag Light 2)
Flag 3
Flag 4

_ e s
w N e

3-13

14
15

Flag 5

Flag 6
A *'1"" in the bit position will save and clear the flip-flops.
A "0 has no effect. Any number of flip-flops can be saved

and cleared in one instruction by specifying the correct com-
bination of “‘1"" bits.

SST:

i

SAVE AND SET FLIP-FLOPS Timing: 2

N

19 18 1716 15

51

-

]

1

24

Clear Register A. Place the condition of the flip-flops
specified by Y in the corresponding bit positions of Register
A. Then, set the flip-flops specified by Y.

Bit-Position Flip-Flop
1 Priority Trap
2 ED Trap
3 Programmed 1/0 Channel Trap
4 Operator Trap
5 Power Fail Trap
6 Add Overflow Trap
7 Add Overflow Flip-Flop
8 Memory Parity Fall Trap
5 0
10 Flag 1 (Flag Light 1)
11 Flag 2 (Flag Light 2)
12 Flag 3
13 Flag 4
14 Flag 5
15 Flag 6

A 1" in the bit position will save and set the flip-flop.
A 0" has no effect. Any number of flip-flops can be set in
one instruction by specifying the correct combination of “1”
bits.

If any of the interrupt conditions (as specified by Bit
Positions 1, 2, 3, 5, 6, 7, and 8) have occurred prior
to the execution of this instruction and the particular trap
is armed, an interrupt will occur immediately after execut-
ing this instruction.

INPUT/OUTPUT OPERATIONS

ASR: ASSEMBLY REGISTER Timing: 2 to 7
& 7] i]
24 19 18 1716 15 1

Interpret the operand as the first of a set of Assembly
Register Control Words (ARCW) that occupy consecutive
memory locations. If the specified channel is not busy, the
next instruction is skipped. See Section 4, Input/Output,
for a detailed explanation of ARCW.

The format of the ARCW is as follows:

Bits 24-22: Channel Address. The channel address speci-
fies which channel will be operated on. Eight
different channels can be specified.

Bits 21-19: Designator. The designator specifies which
operation will be performed.

0 - LOAD BM with the contents of Bits 15-1
of the ARCW if the specified channel is not
busy.

1 - LOAD BL with the contents of Bits 15-1
of the ARCW if the specified channel is
not busy.

2 - STORE BM into Bits 15-1 of the memory
location determined by Bits 15-1 of the
ARCW if the specified channel is not busy.
Bits 24-16 of the memory location deter-
mined by Bits 15-1 of the ARCW remain
unchanged.

3. LOAD BG. If Bit 15 is a *‘1,” this transfer
will occur if the specified channel is not
busy. {f Bit 15 is a “‘0,” this transfer will
occur regardless of the busy condition.
LOAD BG is used in some of the buffered
170 channels. For details of operation for
each particular channel, see the descrip-
tion for that channel in the Input/Output
Section.

4 . LOAD BM with the contents of Bits 15-1
of the ARCW regardless of the busy condi-
tion of the specified channel.

5. LOAD BL with the contents of Bits 15-1
of the ARCW regardless of the busy con-
dition of the specified channel.

6 - STORE BM into Bits 15-1 of the memory
location specified by Bits 15-1 of the
ARCW regardless of the busy condition of
the specified channel. Bits 24-16 of the
memory location specified by Bits 15-1 of
the ARCW remain unchanged.

7 - Unspecified.

NOTE: The above operations apply to the

Character and Word channels only. For opera-

tions pertaining to other channels, see the

description for that particular channel in Sec-
tion 4, Input/Output

Bit 18: Last Control Word: If Bit 18 is a "1,” the

control word is not the last word in the set.
The last control word of the set contains a
“0" in Bit 18 or specifies a Store BM op-
eration.

3-14

Bits 17-16: Index Location. These two bits specify an index
focation just as they do in an instruction word.
Bits 15-1: Memory Address.
EXD: EXTERNAL DEVICE Timing: 6
TN ES Y |
24 19 18 1716 15 1

Interpret the operand as the first of a set of control
words that occupy consecutive memory locations. The last
control word of the set is either an External Device Control
Word (EDCW) or an Assembly Register Control Word
(ARCW) that causes a Store BM operation. All other con-
trol words are ARCW's that do not Store BM. See Section
4, Input/Output, for a detailed explanation of EDCW.

The format of the EDCW is as follows:

Bits 24-19: ED Address. The ED address specifies which
external device this particular instruction is
referring to. Sixty-four different external de-

vices can be specified.

Bit 18: Last Control Word. If Bit 18 is a ‘1, the
control word is an ARCW and not the last
word in the set. The last contro! word of the
set contains a ‘0’ in Bit 18 specifying an
EDCW.

SKIP if not busy. If Bit 17 of the EDCW is a
“0" and the specified external device is not
busy, the next instruction is skipped. If not,
the next instruction is taken in sequence.

Inhibit ED START signal. If Bit 16 of the
EDCW is a ‘'1,” the ED START signal will be
inhibited.

Interrupt. If Bit 15 of the EDCW is a “'1"" and
the specified external device is given an ED
START signal, the external device will send an
interrupt when it has completed the specified
operation.

Bit 17:

Bit 16:

Bit 15:

Bits 14-1: ED Operation. These bits specify what opera-

tion the specified external device will perform.

The ED START signal occurs if the specified external de-
vice is not busy, the channel the specified external device is
connected to is not busy, and Bit 16 of the EDCW is a "‘0.”
The ED START signal is transmitted from the central proc-
essor to the specified external device and initiates the speci-
fied operation.

XAK: EXTERNAL LINES TO A AND SKIP IF READY
Timing: 4 if skip

3 if no skip

50 [o] 2 | Y
% 19 18 1716 15 1

The original contents of Register A is automatically stored
in Memory Location 110 as the first step in the execution
of XAK regardless of the READY status. If the READY signal
is present when the instruction is given, the data from the
external lines is transferred to Register A and the next
sequential instruction is skipped. If the READY signal is
not present, the data is not transferred to Register A and
the next instruction is taken in sequence. See ‘‘Buffered
Input/Output’’ in Section 4 for bit designation.

AXK: A TO EXTERNAL LINES AND SKIP IF READY
Timing: 4 if skip
3 if no skip

—

1

50

L [1] 0 |

19181716 15

24

If the READY signal is present when the instruction is
given, the data in Register A is transferred to the external
lines and the next sequential instruction is skipped. If the
READY signal is not present, the data is not transferred to
the external lines and the next instruction is taken in
sequence. See ‘‘Buffered Input/Output’” in Section 4 for
bit designation.

SEN: SEND EXTERNAL SIGNAL Timing: 3

0f 1

51

24 19 18 1716 15
Send the external signal that is specified by Y.

NO OPERATION

The no operation instructions cause nothing to occur as
far as the computer is concerned. They may be used as “fill-
in"’ instructions in lieu of instructions to be added later or
to consume time for special applications.

NOP: NO OPERATION Timing: 2 4k
0 1] x| 000 |
2 19 18 1716 15 1
NOP: NO OPERATION Timing: 2
50 |o] 0| 00000
2 19 18 1716 15 1

PROGRAMMED INSTRUCTION

There are sixteen programmed instructions which permit
routines assigned to these instructions to be handled as
hardware instructions. As various routines are assigned to
these instructions, each instruction will receive an individual
mnemonic code.

Each of the sixteen programmed instructions has a fixed
address as follows:

Octal Fixed Octal Fixed
Code Address Code Address
60 00120 70 00130
61 00121 71 00131
62 00122 72 00132
63 00123 73 00133
64 00124 74 00134
65 00125 75 00135
66 00126 76 00136
67 00127 77 00137

(—): PROGRAMMED INSTRUCTION Timing: 3

[- [T v v]

I i ' " ! |
24 19 18 1716 15 1

where a is the Octal Code.

Place the address of the programmed instruction being
performed in the base operand address portion of the mem-
ory location specified by the programmed instruction fixed
address. Clear Bits 24-19, 17, and 16, and place a ““1"” in
Bit 18 of the above specified memory location. Take the
next instruction from the memory location sequentially fol-
lowing the one specified by the programmed instruction
fixed address.

No indirect addressing or indexing will occur. The pro-
grammed instruction does not use the operand; therefore,
address modification is not appropriate. If address modifi-
cation is specified, it will take place in the subroutine to
which the programmed instruction has transferred control.

INSTRUCTING EXTERNAL DEVICES

The 6020 sends instructions to External Devices which
tell those devices to initiate specified operations. After an
External Device operation has been initiated by the 6020,

Aall Anantval Af Avunantn nocann +a dha laxin Acanaia A wasidh dlad
G LUVIHILTVE Vi UYL PUOOTO LWV LHIT TVRIIY doJoVLIALTU Wil uiiae

External Device until the operation is completed. During the
operation, the External Device will respond busy to attempts
by the 6020 to initiate further operations. The sequencing of
events during this operation derives its timing from the

External Device and its logic.

All External Devices which are instructed by the EXD in-
struction or which use external device interrupts are con-
nected to the 6020 by a ‘‘common cable’’ that carries an
External Device address code and a code which specifies
what operation is to be performed. Only that device whose
address is on the lines will respond to an instruction on the
common cable. No instruction will be initiated unless it is
accompanied by a START signal. When a device recognizes
its address and receives a START signal, it will store the

SECTION FOUR
INPUT/OUTPUT

essential information from the operation code in flip-flops
and initiate the specified operation. When the operation is
complete, the External Device will interrupt the computer
program if it was instructed to do so by the operation
code. Otherwise the External Device just becomes not busy
when it has completed its operation. It is then available for
furtier instruction.

When an External Device recognizes its address and is
not busy, it sends a response on the NOT BUSY line to the
6020. If no such response is received, the 6020 will as-
sume that the addressed device is busy. The 6020 will send
a START signal only if a NOT BUSY response is received. If a
device is disconnected, it will appear to be busy to the 6020.

EXD Instruction. The program instructs External Devices by
using the EXD instruction which has the same format as
other 6020 instructions (see Instruction Repertoire), but
may have more than one operand. The last operand of the
EXD instruction is the External Device Control Word (EDCW).
Its format is shown in Figure 4-1.

ED Address Last Skip Prevent Interrupt ED Operation Code
Start
(6 bits) (1 bit) (1 bit) (1 bit) (1 bit) (14 bits)
28 19 18 17 15 14 1
Figure 4-1. EDCW Format

Bits 24 through 19 of the EDCW are the 6-bit address
of the External Device. Table 4-1 lists the standard ad-

4-1

dresses for the available External Devices. Addresses other
than standard addresses may be ordered.

Table 4-1

Table 4-2

STANDARD EXTERNAL DEVICE ADDRESSES

ADDRESS EXTERNAL DEVICE
02 Paper Tape Reader
04 Paper Tape Punch
06 Card Reader
10 Card Punch
12 Line Printer
14 Plotter #1
16 Plotter #2
20 Magnetic Tape Unit #1
22 Magnetic Tape Unit #2
24 Magnetic Tape Unit #3
26 Magnetic Tape Unit #4

Note: Other External Devices will be assigned Ad-
dresses 30 to 77 as required. Addresses 60-77 are
priority addresses and are available as options in
groups of four.

Bit 18 of the EDCW will always be a ‘0" since it is al-
ways the last control word in an EXD instruction.

If Bit 17 of the EDCW is a “‘0,"” the next instruction in
sequence will be skipped if the External Device is not busy.
The programmer may enter a busy subroutine when the
External Device is busy by placing a ‘0" in Bit 17 of the
EDCW and by making the instruction following the EXD
instruction a jump to the subroutine. The jump instruction
will be skipped if the External Device is not busy. Similarly,
if the programmer wishes to wait until the device is not
busy, he may put a ‘0" in Bit 17 of the EDCW and foliow
the EXD instruction with a jump back to the EXD instruc-
tion. Thus, the 6040 will keep trying to execute the EXD
instruction until the External Device becomes not busy.
The START pulse will then be sent and the jump instruction

will he ckinnad
Wil De sxipped,

If Bit 16 is a **1,” the START signal will be prevented
regardless of the busy status of the External Device.

If Bit 15 is a ‘'1,”” the External Device is instructed to
interrupt the program when it has completed the specified
operation. If Bit 15 is a ““0,” the External Device is not
required to interrupt when it is done. In any case, fail inter-
rupts may still occur if the appropriate conditions occur.
Bit 15 is sent to all External Devices along with the Opera-
tion Code.

Bits 14 through 1 of the EDCW are the Operation Code
that is sent to the Exiernai Device to specify what operation
is to be performed. The operation code is interpreted by
the particular device that is addressed. The same Operation
Code may have different meanings to different devices.
Table 4-2 lists Operation Codes of standard External Devices.

4-2

OPERATION CODES FOR STANDARD
EXTERNAL DEVICES

EXTERNAL DEVICE COMMAND

Single Density Test End of Tape
Magnetic Tape Unit Test File Mark
Test Fail
Write Alpha
Write File Mark
Write Binary
Move Reverse N Records
Rewind
Move Forward N Records
Read Alpha
Read Binary
Test Busy

Multiple Density Test End of Tape
Magnetic Tape Unit Test File Mark
Test Fail
Test Busy
Write Alpha
Write File Mark
Write Binary
Backspace
Reverse to File Mark
Rewind
Space
Read Alpha
Forward to File Mark
Read Binary

Paper Tape Reader Read Packed Mode
Read Character Mode

Paper Tape Punch Punch Packed Mode
Punch Character Mode

High Speed Read Column Binary
Card Reader (multiple card)
Read Hollerith
(multiple card)
Read Column Binary
(single card)
Read Hollerith
(single card)

High Speed Punch Column Binary
Card Punch (multiple card)
Punch Hollerith
(multiple card)
Punch Column Binary
(single card)

CODE

00
01
02
05
06
07
10
12
14
15
17
03

00
01
02
03
05
06
07
10
11
12
14
15
16
17

00
01

00

00

01

04

05

00

01

04

Table 4-2 (cont.)

EXTERNAL DEVICE COMMAND CODE
Punch Hollerith 05
(single card)
Low Speed Read Column Binary 00
Card Reader (multiple card)
Read Hollerith 01
(multiple card)
Read Column Binary 04
(single card)
Read Hollerith 05
(single card)
Low Speed Punch Column Binary 00
Card Punch (multiple card)
Punch Hollerith 01
(multiple card)
Punch Column Binary 04
(single card)
Punch Hollerith 05
(single card)
Plotter Test Busy 00
Move +X 01
Move —X 02
Move +Y 04
Move —Y 10
Pen Up 20
Pen Down 40

PROGRAM INTERRUPTS

Standard Interrupts. Various events can lead to a program
interrupt. Each interrupt is to a unique fixed memory ad-
dress which is associated with the event that caused it. Figure
4-2 shows the addresses which are reserved for these inter-
rupts. Each External Device has an interrupt address which
is equal to its External Device address. An External Device
may have more than one interrupt event and each event may
have its own interrupt address. Interrupts may occur only at
the end of program instructions.

It is important to the programmer that each type of in-
terrupt results in transfer of control to a different memory
address. This makes it unnecessary for the program to scan
interrupt events to see what has happened. A subroutine
for each interrupt event may be in memory.

An add overflow interrupt takes precedence over non-
priority External Device interrupts if they occur at the same
time. The External Device interrupts will still occur but they
will be delayed until a JDI has been executed. Only a pri-
ority External Device may interrupt an interrupt routine.

External Device interrupts may occur for any of several
reasons. An External Device may interrupt when it has com-
pleted an operation if it was told to do so by the program
when the operation was initiated. An External Device may
interrupt at a different address to indicate that a failure
(parity fail, end of tape, etc.) has occurred. Different devices
have different failure conditions and different failure inter-

4-3

Octal Address

0.57 Non-Priority External Devices

60-77 Priority External Devices

100 Add Overfiow Interrupt

101 Operator Interrupt

102 Memory Parity Fail Interrupt

103 Memory |/O Parity Fail Interrupt

104 Power Fail Interrupt

105 Programmed /0 Channel Interrupt

106 Typewriter Interrupt

110-111 Temporary storage used during execution
of MPY, DAD, and XAK instructions

115 Index Register 1

116 Index Register 2

117 Index Register 3

120-137 Programmed Instruction Entries

Figure 4-2. Fixed Memory Addresses
rupt addresses. An External Device may be notifying the pro-
gram that some specific real-time event has occurred.

Operator interrupt is initiated by a switch on the
operator's console.

Add overflow is an event that may result from normal
program instructions (see Instruction Repertoire).

Traps. For each type of interrupt there is a program con-
trolled trap which may prevent or allow the corresponding
interrupts. If a trap is in the ““1"" condition, the correspond-
ing interrupt is allowed. If it is a *‘0,” the corresponding
interrupt is prevented. The following is a list of traps and
their corresponding interrupt events:

S
2

Power Fail Trap Power Fail Interrupt

Memory Parity Fail

. . Interrupt
Memory Parity Fail Trap . .
1/0 Memory Parity Fail

Interrupt

Priority ED Trap

Add Overflow Trap

ED Trap

Programmed /0O Trap

Priority ED Interrupts
Add Overflow Interrupt
Non-Priority ED Interrupts
Programmed 1/0 Interrupt

\ Typewriter Interrupt

Operator Tra
P P Operator Interrupt

If the ED trap is a ‘‘1,” standard External Device inter-
rupts are allowed. Priority interrupts are prevented if the
priority trap is a *'0."” Setting a trap to the ‘1"’ condition is
sometimes referred to as ‘‘arming’’ the trap. Conversely,
clearing a trap to the “0" condition may be called "‘dis-
arming’’ the trap.

Scanner. External Devices are continuously scanned for
interrupt requests. A scanner in the 6020 counts through
the non-priority External Device addresses sequentially (at
5.7 microseconds per address), each time asking if the
addressed device is requesting an interrupt. When an inter-
rupt request is found, the scanner will stop at that address

and attempt to interrupt the computer program. The only
other time when the scanner stops scanning for interrupt
requests is during an EXD instruction. The EXD instruction
uses the same address lines as the scanner on a time shar-
ing basis. Whenever an EXD instruction occurs, the scanner
is stopped and switched off the cable lines, and the address
from the EDCW is switched onto the lines. The process is
reversed at the end of the EXD instruction.

External Devices respond with both their busy status and
their interrupt request status whenever they recognize their
own address. They do not clear out an interrupt request un-
til the interrupt succeeds. The 6020 notifies an External
Device that its interrupt has been recognized by sending
out an interrupt reset signal along with the address of the
interrupt that has been recognized.

Priority Interrupts. Priority ED interrupts differ from stan-
dard ED interrupts in the following respects:

1. Priority ED interrupts are optional.

2. There are 16 priority ED interrupts available in groups
of four.

3. There can be 16 levels of priority with the lowest num-
ber (Address 60) having the highest priority.

4. Priority interrupts may interrupt standard interrupt pro-
grams and priority interrupt programs of lower priority.

5. Two priority internal interrupts, Power Fail and Memory
Parity Fail are of higher priority than the priority ex-
ternal interrupts. Power Fail has the highest priority.

6. Each priority ED interrupt may be separately allowed or
disallowed by the program since each has its own allow
flip-flop.

BUFFERED INPUT/OUTPUT

Input/Output Channel. The standard mode of input/output
data flow for the 6020 is by sequentially transmitted six-bit
bioctal or alphanumeric characters. These characters are
assembled (or disassembled) into 24-bit computer words by
an input/output Assembly Register (B), one of which is em-
ployed for each input/output channel. In addition, each
input/output channel is provided with two 15-bit address
registers. These registers are called Buffer Memory Address
Register (BM) and Buffer Limit Address Register (BL). (See
Figure 4-3, Input/Output Channel Block Diagram.) BM and
BL define the beginning and limit locations in memory into
(from) which a block of data is to be transferred via the
particular input/output channel.

These two address registers must be set to the correct
values (beginning and ending locations of the data area)
before an External Device is directed to begin a data trans-
fer. BL should always be set to one greater than the address.
of the last memory location involved in the transfer.

During the actual data transfer, Registers B, BM, and BL
are under control of the specified External Device. For input,
the B register assembles six-bit characters sent by the Ex-
ternal Device into 24-bit computer words and then transmits
these words to memory locations. In an output operation,
the B register receives 24-bit words from the core memory
and disassembles these into six-bit characters and directs
them to the External Device. The contents of the BM ad-
dress register are advanced by one after to each memory
transfer. Whenever the contents of BM are equal to the con-
tents of BL, communication with the External Device is
stopped as the specified amount of data has been commu-
nicated between the central processor and the External
Device.

Stop Communication

EXTERNAL DEVICE~—"—— COMPARE ‘—'

=

B BM BL

| f ! f f
MEMORY MEMORY Limit Address
ADDRESS CIRCUITS | (last address + 1)

Starting Address

Figure 4-3. Input/Output Channel Block Diagram

Assembly Register Instruction. The operation of each input/

output channel is controlled by the assembly register ir

struction (ASR). The ASR instruction has the same forma.
as all other machine instructions (see Instruction Repertoire)
and its operands are the Assembly Register Control Words
(ARCW). The ARCW's may also occur in the EXD instruction.
The format of the ARCW is shown in Figure 4-4.

Each ARCW is decoded and interpreted by the control
circuits of the 6020 when an ASR instruction is performed.
The ARCW contains the codes and control function desig-
nators that are necessary to accomplish control of the input/-
output channels. An explanation of each possible interpre-
tation of an ARCW is given in the following paragraphs.

Channel Operation Last Index Base Operand
No. Code Address

(3 bits) (3 bits) (1 bit) (2 bits) (15 bits)

2 22 21 19 18 17 16 15 1

Figure 4-4, ARCW Format

The operation codes are as follows:

000 Load BM if channel is not busy

001 Load BL if channel is not busy

010 Store BM if channel is not busy

011 ‘‘Set BG" (See Field Transfer and Cyclic Trans-
fer Channels)

100 Load BM regardless of busy status of channel

101 Load BL regardless of busy status of channel

110 Store BM regardless of busy status of channel

111 Unspecified

The index address portion of the ARCW operates in the
same manner as the index address of the machine instruc-
tions. That is, the base operand address portion of the
ARCW may be indexed to yield the effecitve operand ad-
dress. Indirect addressing cannot be used in the ARCW
as the indirect address bit (Bit 18) is used for another
purpose.

The effective operand address is used as indicated by
Bits 19-21 of the ARCW. The effective operand address is
either placed in Register BM or BL of the specified channel
or specifies the memory location where the contents of
Register BM of the indicated channel will be stored.

If Bit 18 is ‘0" or if the operation code specifies ‘‘Store
BM” (010 or 110) in an ARCW, the ARCW will be the last
control word to be executed during the ASR instruction. If
Bit 18 is a ““0’" in a control word for the EXD instruction,
e coniroi word wiii be interpreied as an COCW. i Dit 18
is a “1” in any control word, it will be interpreted as an
ARCW.

The ASR instruction will always cause a skip of the next
sequential instruction if the channel specified in any ARCW
is not busy. If the channel is busy, no skip will occur.

Data Flow. The transfer of data between External Devices
and their associated assembly registers proceeds under the
control of the External Device.

Input/Output channels may transfer data simultaneously
in multi-channel operation. The access to main memory from
the in/out channel is made available as needed, subject to
channel priority. This is provided by channel priority logic
which selects the channei of highest priority requesting
transfer, that is, the lowest numbered channel requesting
transfer of data. The data rate and channels active are not
restricted except that the program must not require data
transfer which exceeds a peak word rate of 525 kc con-
sidered over all input/output channels.

External Device action occurs only as a result of a com-
puter External Device instruction. The amount of data trans-
ferred and the memory locations employed are previously
determined by computer Assembly Register instructions
which set BM and BL. Once an ED is placed in action, the

4-5

information transfer is completely and irrevocably under the
control of the ED until the operation is complete except that
BM or BL may still be changed by the program. At the
completion of the operation, the ED may cause an ED
interrupt if appropriate.

Character Transfer. The normal mode of communication
is by sequential transmission of 6-bit (in parallel) characters
with provision for computer specification of the number of
words to be transferred.

The basic operation of the character input communica-
tion cycle is as follows: After an External Device has been
addressed and commanded to perform a specific input
operation by an ED instruction, four characters are input
to the assembly register of the communication channel. The
word is then stored in memory at the location specified by
Register BM.

This operation continues with a memory reference being
made at each fourth character untii BM = BL or the ex-
ternal device signals the end of its information. When
BM = BL, the channel signals the external device with a
complete signal and no further information is sent to the
computer. If the external device has no more information,
it sends a transfer signal to the channel and the word or
partial word is placed into memory and the communication
cycle is terminated.

The output operation occurs in about the same manner
as input. The differences are: (1) a memory reference is
made prior to the first character output and (2) the com-
plete signal appears when BM = BL and the last character
of the last word is sent to the external device.

Word Transfer. For applications requiring more generality
or increase in speed of data transmission, three types of
word channels are available. Transmission is of entire words
(24 bits in parallel). The word transfer feature is optional
and not part of the standard 6020.

The three types of word channels that are available are:
word in, word out, and word in-and-out. Only with the word
in-and-out channel is character transfer included to permit
standard character communications to take place. The word
in channel is for input only, while the word out is for output
only.

The operation of word transfer is the same as for char-
acter transfer except that 24 bits are transferred between
the computer and the external device at one time. This
means that no breakdown of words into characters on output
or assembling of characters into words on input takes place.
This provides an increase of four times the input/output
speed over character transfer assuming the external device
can accept or send words at that rate.

Field Transfer. The field channel is composed of a char-
acter channel and a field counter. The channel operates as
a character channel unless the field flip-flop is set. An ASR
instruction called ““‘Set BG'"' (see Figure 4-5) is used to set

Channel Operation Code Last Index Busy Field Field
No. Flip-Flop Count
(3 bits) “oroo1m 1 (1 bit) (2 bits) (1 bit) (1 bit) (4 bits)
2 22 21 20 19 18 17 16 15 14 13 5 4 1
Figure 4-5. ‘“‘Set BG" format for Field Channel

the field flip-flop. If Bit 15 is a ‘‘1,”” Bit 14 is recognized
regardless of busy status. If Bit 15 is a “0,” Bit 14 is
recognized only if the channel is not busy.

In operation, transfer is the same as for character trans-
fer. However, when the last character of the ‘“‘field”” word
has been processed, as determined by the contents of the
Field Length Register, the remaining bits of the word in
memory are not filled. The first character of the next
field word is placed in the six most significant bits of the
next memory location. The result is that each field word
in the memory has the same pattern, the same number of
locations and always begins with the most significant bit
of a memory location. The field word may be from one
to 15 characters long.

Cyclic Transfer. This optional channel provides continuous
cyclic word communication with from one to four equal-
length blocks of memory. The blocks are contiguous and
contain from one to 4,096 words. Both input and output
modes are accommodated. The cyclic feature of this chan-
nel is beneficial in such applications as telemetry or other
high-speed repetitive operations because once initiated, this

channel continues to function without the need of a pro-
gram instruction to start each cycle.

The Load BM instruction loads Registers BM and BF
with the same address. BM is the current address register
and always holds the address of the next memory location
to be referenced. BF is only changed by the Load BM in-
struction and therefore contains the address of the first
memory location to be referenced. From the Load BL instruc-
tion Bits 12-1 go to the BZ (Size) register, Bits 14-13 go to
the BK (Block) register, and Bit 15 to the BINT (Interrupt
Enable) flip-flop. An ASR instruction called ‘““Set BG" (see
Figure 4-6) is used to set or clear the stop flip-flop. Bit 13
prevents the channel from communicating when it is a ““1.”
If Bit 15 is a ““1,” Bit 13 is recognized regardless of busy
status. If Bit 15 is a “‘0,”" Bit 13 is recognized only if the
channel is not busy.

When the stop flip-flop is set and the end of a block is
reached, a complete signal is sent to the external device
and the channel is prevented from further communication
until a “‘Load BM’ or a ''Clear Stop Flip-Flop” code is gen-
erated by an ASR instruction. If the BINT flip-flop is set, a

priority interrupt will be sent to the central processor at the
end of a block.

Channel Operation Code Last Index Busy Stop
No. Status Flip-Flop
(3 bits) A L (1 bit) | (2 bits) (1 bit) (1 bit)
2 22 2120 19 18 17 16 15 14 13 12 1
Figure 4-6. “‘Set BG'’ format for Cyclic Channel

BZ is composed of a 12-bit register and a 12-bit counter.
The contents of the BZ register is the number of words in
a block of information, while the contents of the BZ counter
at a given time is the number of words left to be trans-
mitted in that particular block. The contents of the BZ
register can only be changed by the Load BL instruction.

BK is composed of a two-bit register and a two-bit counter.
The contents of the BK register is the number of blocks in
a cycle, while the contents of the BK counter at a given
time is the number of blocks left to be transmitted in that
particular cycle. The contents of the BK register can only
be changed by the Load BL instruction.

Every memory reference increments the BM and BZ

counters. When the BZ counter equals the BZ register, the
BK counter is incremented while the BZ counter is cleared.
When the BZ counter equals the BK register, the contents of
BF is transferred to the BM register and the BZ and BK
counters are cleared. At this point, one complete cycle has
been completed and the second cycle is just starting. All
subsequent cycles are identical to the first cycle unless a
Load BM or Load BL instruction is given to modify informa-
tion contained in the cyclic channel registers.

Pressing the Initial Clear button causes the cyclic channel
to cease memory reference and prevents further communi-
cation until a Load BM or a ‘‘Clear Stop Flip-Flop" code is
recognized by the channel.

4.6

DIRECT COMMUNICATION

Up to 16 bits of data may be sent directly to any External
Device as an operation code. This direct communication is
under direct program control and requires no buffered com-
munication channel.

The operation code may also be used to specify one of
up to 16,000 control lines to be signaled. Here again, no

4.7

buffered channel is required and the communication is under
direct program control.

An optional prozrammed input/output channel is avail-
able which is independent of all the buffered 1/0 channels.
Four computer instructions allow direct input and output
of words containing 24 bits or less to and from the accumu-
lator under program control. This input and output can be
programmed to occur regardless of external conditions or
with a “wait"” for an external READY signal.

SECTION FIVE

OPERATOR’S CONSOLE

DISPLAY REGISTER

There is a 25-bit binary display on the 6020’s operator
console. Display Bit 25 indicates the memory word parity,
and Display Bits 24 through 1 may indicate:

(1) the next instruction,

(2) the contents of any memory location,
3
4)
)
(6)
)
®

When the computer halts, the Display Register will indi-
cate the next instruction word, while Register T will contain
the address of the halt instruction that stopped the com-
puter. To display anything else, the appropriate push-button
display switch must be pressed.

the contents of Register A (Accumulator),

the contents of Register E,

the contents of Index Memory Location No. 1,
the contents of Index Memory Location No. 2,
the contents of Index Memory Location No. 3, or

the status of the traps.

When the DISPLAY M button is pressed, the contents of
the memory location specified by Register T will be dis-
played. When either the DISPLAY A, E, 1, 2, 3, or TRAPS
button is pressed; the contents of Register A; Register E;
Index Memory Locations 1, 2, or 3; or the condition of the
traps is displayed; respectively.

The Display Register is also used as an entry register.
Push-buttons are provided which may clear all or various
parts of the Display Register. The contents of the Display
Register may be entered in any memory location; Register
A; Register E; or Index Memory Locations 1, 2, or 3.

Pushing any of the ENTRY buttons will accomplish entry

5-1

of the Display Register contents into the appropriate memory
location or register. To enter a number in Register A, for
example, the operator must push the clear button for the
whole register, press those set buttons which correspond
to the bits where “1's"" are desired in the number, and then
press the ENTER A button.

REGISTERS T AND ¢

N Ew @ Ew = A

Two address registers are also displayed on the operator's
console. Register T is a temporary memory address register.
Register S is the program sequence register which specifies
the address of the next instruction. These registers may be
set to any desired value by push-button switches.

A clear button is associated with each of these registers
to clear the entire register. Each bit of each register may be
set by a particular button. Setting either register is ac-
complished by first clearing the register and then pushing
the buttons that correspond to the bits where “1's" are
desired.

INDICATORS

There are 10 display lights on the operator's console
which indicate various conditions of the computer system
that may be of interest to the operator. A list of the indi-
cators and their functions follows:

1. MEMORY ALARM. Indicates that the memory tempera-
ture is out of limits.

2. ED FAIL. Indicates that some external device has failed.
(Fail indicator lights are also located on each external
device.)

3. ED OPERATE. Indicates that some external device opera-
tions are in progress.

4. FLAG 1 and FLAG 2. These lights are controlled by the
STP instruction. They may be used to indicate anything
the programmer wishes them to indicate and may be
used to indicate different things in different programs.

5. INTERRUPT and PRIORITY INTERRUPT. Indicate that
interrupt or priority interrupt routines are in progress.

These must be clear before additional standard inter-
rupts may occur.

6. MEMORY FAIL. Indicates an unrecognized memory fail.
(Recognized memory fails lead to interrupts.)

7. POWER FAIL. Indicates that a momentary power fail has
occurred.

8. 1/0 PARITY FAIL. Indicates that a parity failure has been
detected in input/output communication.

CONTROLS

Push-button switches control power turn-on and turn-off.
The power turn-on sequence is built-in and is triggered by
the power ON switch. The power turn-off sequence is also
built-in and includes timing so that any memory cycle that
has been initiated will be completed. The power OFF switch
triggers these events.

The RUN button will cause the program to start by taking
its first instruction from the address specified by Register S.
Thereafter, the computer will follow sequential instructions
unless these instructions specify otherwise. When the com-
puter is halted, Register S may be set to any desired value
as described above.

The HALT button will halt the computer program but will
not interrupt input/output communication. When the pro-
gram halts as a result of pressing this button, it will halt
at the completion of the instruction in progress. The next
instruction following the halt will be in the Display Register.

Any one of four separate external devices may be selected
for presetting with the PRESET SELECT control. The
positions are labeled PT (Address 02), CD (Address 06),

MT 20 (Address 20), and MT 30 (Address 30). If a device
other than the one listed is using that particular address,
it can be used for presetting if it has that capability. For
instance, if a magnetic tape unit has Address 02, it can be
used for presetting by selecting “‘PT."”

The PRESET button will cause a block of information from
the specified external device to be loaded into the memory
beginning with the address in Register S which may be set
to any memory address by use of the console buttons. This
switch is armed by pressing the CLEAR button.

The CLEAR switch will halt the computer program and
all external device operation. Normally this button will not
be pressed until the ED OPERATE light indicates the in-
put/output communication is complete.

An operator interrupt switch (OPERATOR) will cause the
program to be interrupted and to go to the Operator Inter-
rupt Subroutine if the operator interrupt trap is armed. If
the operator trap is not armed, the OPERATOR switch will
be ignored. The operator interrupt trap is controlled by the
program which may arm it or disarm it with a trap instruc-
tion (STP, CTP, etc). If the trap is armed, the OPERATOR
indicator is lit.

The STEP button allows the 6020 to be operated in one
of two modes. The normal mode of operation (STEP indica-
tor unlit) is continuous. In this mode, the computer will
halt only as a result of a HALT instruction, an error halt, or
the HALT button. The other mode of operation (STEP indi-
cator lit) is one-instruction. In this mode, the computer will
halt after each instruction is performed. This is useful in
code checking and other special cases.

When the central processor is in the SCAN mode as indi-
cated by the illuminated SCAN indicator, pressing the RUN
button will not cause the central processor to run but will
transfer the contents of Register S to Register T. The
memory location specified by Register T will be shown in
the Display Register and the contents of Register S will be
incremented. Only one memory location will be displayed
each time the RUN button is pressed regardless of the
state of STEP push-button.

Six SENSE bhuttons mounted on the control console, num-
bered 1 through 6, may be used to cause branching of the
computer program when the sense switch instruction is
given.

W R WE ;
02000900000

Figure 5-1.

5-2

6020 Operator’s Console

APPENDIX

LIST OF INSTRUCTIONS

A. Instruction Arranged by Octal Codes

Octal Mnemonic Description Timing Section 3

Code Code Page Reference
01 LDA Load A 2 3-2
0z LDE Load E P4 3-2
03 DLD Load AE 3 3-2
04 STA Store A 2 3-2
05 STE Store E 3 3.3
06 DST Store AE 3 3-3
07 LOA Load Address 3 3.5
10 SAM Store A Address 3 3-3
11 ADD Add 2 33
12 MPY Multiply 16 3-3
13 suB Subtract 2 33
14 DVD Divide 25; 3 if divide fault 3-4
15 DAD Double Add 6 3-4
17 ADM Add to Memory 4 3-4
20 RSA Right Shift A 2+ k 3-7
20 LSA Left Shift A 2+k 3-7
20 CSA Circular Left Shift A 2+Kk 3-7
20 RLA Logical Right Shift A 2+k 3-7
20 LLA Logical Left Shift A 2+ k 3-8
20 RSE Right Shift E 2 +k 3-8
20 LSE Left Shift E 2+k 3-8

A-1

CSE
RLE
LLE
RSD
LSD
CSD
RLD
LLD
NOP
JMP
XEC
JDI
JPO
RTJ
ASR
EXD
JLZ
JGZ
JEZ
KAL
KAH
KAQ
IMT
AND
XOR
LOR
AMA
NOP
ZOA

20D
ZSA
CMA
CME
CMD
MNA
MNE
MND
AVA
AVE
AVD
SAE

Circular Left Shift E
Logical Right Shift E
Logical Left Shift E
Right Shift AE

Left Shift AE

Circular Left Shift AE
Logical Right Shift AE
Logical Left Shift AE
No Operation

Jump

Execute

Jump Disable Interrupt
Jumpto M + 1
Return and Jump
Assembly Register
External Device
Jumpif A< O
JumpifA>0
JumpifA=0

Skip A Low

Skip A High

Skip A Equal
Increment Memory and Test
Logical *'And"”
Exclusive “Or”
Logical "'Or"

Add Magnitude

No Operation

Zero A

Zero AE

Clear A to Sign of E
Complement A
Complement E
Complement AE
Minus A

Minus E

Minus AE
Absolute Value A
Absolute Value E
Absolute Value AE
Signof Ato E

A-2

2 +k
2+ k
2 +k
2+k
2 +k
2+ k
2 +k

+ k

+ CYC

to 7

if jump; 3 if no jump
if jump; 3 if no jump
if jump; 3 if no jump

M DN N NMRNMNDSBEDBNMNNDNDONDNDMN=E=DN

N DN N N NDND W W WDNDDN

3-8
3-8
3-8
3-8
3-8
3-8
3-8
39
3-15
3-10
3-10
3-10
3-10
3-10
3-13
314
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3.7
3-7
3.7
34
3-15
35
35
35
35
35
36
36
36
36
36
3-6
3-6
36
36

50
50
50
50
50
50

50

50
51
51
51
51
51
51
51
51
52
52
52
52
53
53
54
54

54
55
55
56
56

57

SEA
ATE
ETA
XAE
RND
XAK

AXK

NRM
SEN
CcTP
HLT
STP
KIF
KEX
SCT
SST
AOA
SOA
LXP
SXP
SXM
Z20M
AUX
KOZ

JDX
LOX
LAX
IXT
KON

KXH

Signof Eto A
Copy Ain E
Copy E in A
Exchange AE
Round

External Lines to A and
Skip if Ready

A to External Lines and Skip
if Ready

Normalize

Send External Signal
Clear Flip-Flops

HALT

Set Flip-Flops
Conditional Skip

Skip on External Signal
Save and Clear Flip-Flops
Save and Set Flip-Flops
Add Address

Subtract Address

Load Exponent

Store Exponent

Store Index

Zero Memory

Augment Index

Skip if Base Operand
Address is Zero

Jump and Decrement Index
Load Address in Index

Load A Address in Index
Increment Index and Test

Skip if Base Operand
Address is one

Skip Index High

B. Instructions Arranged by Mnemonic codes

Octal
Code
11
17
43
40
52

Mnemonic

Code

ADD
ADM
AMA
AND
AOA

Description

Add

Add to Memory
Add Magnitude
Logical “‘And"
Add Address

A-3

Timing

2 3-6
2 3-6
2 3-6
2 3-7
2 3-5
4

if skip; 3 if no skip 3.14

4 if skip; 3 if no skip 3-15

6+k 39
3 3-15
2 3-12

3-11
2 3-12

2 if no skip; 3 if skip 3-11
2 if no skip; 3 if skip 3-12
2 3-13
3-13
34
3-5
3-2
3-3
39
39
3-9
39

TN R S Y Y R N R XY

4 3-9
2 3-9
2 3-10
4 if skip; 5 if no skip 3-10
4 if skip; 5 if no skip 3-10

2 if skip; 3 if no skip 3-10

33
34
34
3.7
34

N NN PN

Section 3
Page Reference

26
50
54
50
50
50
50

50
50
50
20
20
20
51
15
03
06
14
50
27
51
37
56
23
54
32
31
30
21
24
35
34
36
51
51
56

54

57
55
o1
02

ASR
ATE

AUX
AVA
AVD
AVE
AXK

CMA
CMD
CME
CSA
)
CSE
CTP
DAD
DLD
DST
DVD
ETA
EXD
HLT
IMT
IXT
JDI
JDX
JEZ
JGz
Iz
IMP
JPO
KAH
KAL
KAQ
KEX
KIF
KON

KOZ

KXH
LAX
LDA
LDE

Assembly Register
Copy Ain E
Augment Index
Absolute Value A
Absolute Value AE
Absolute Value E

A to External Lines and Skip
if Ready

Complement A
Complement AE
Complement E

Circular Left Shift A
Circular Left Shift AE
Circular Left Shift E
Clear Flip-Flops

Double Add

Load AE

Store AE

Divide

Copy Ein A

External Device

HALT

Increment Memory and Test
Increment Index and Test
Jump Disable Interrupt
Jump and Decrement Index
JumpifA=0

Jump if A > 0

Jump if A< O

Jump

JumptoM + 1

Skip A High

Skip A Low

Skip A Equal

Skip on External Signal
Conditional Skip

Skip if Base Operand
Address is one

Skip if Base Operand
Address is Zero

Skip Index High

Load A Address in Index
Load A

Load E

A-4

if no skip; 4 if skip

+ k

w o NN

25; 3 if divide fault
2
6

4

5 if skip; 4 if no skip

2

4

2 if jump; 3 if no jump
2 if jump; 3 if no jump
2 if jump; 3 if no jump
1

2
4
4
4
3 if skip; 2 if no skip

3 if skip: 2 if no skip
5 if skip; 4 if no skip

2 if skip; 3 if no skip
2
2
2

3-13
3-6
3-9
3-6
3-6
3-6
3-15

35
3-6
36
3.7
3.8
3-8
312
34
3-2
33
34
3-6
3-14
3-11
311
3-10
310
39
3-11
3-11
3-11
3-10
3-10
3-11
311
3-11
312
311
3-10

3-9

3-10
3-10
3-2
3-2

20
20
20
07
42

55
20

20
20
52
50
50
50
12
20
50
50
20
20
20
50
20
20
20
25
50
10
51
50
51
52
51
04
05
51
13
53
52
50
50

22

LLA
LLD
LLE
LOA
LOR

LOX
LSA

LSD
LSE
LXP
MNA
MND
MNE
MPY
NOP
NOP
NRM
RLA
RLD
RLE
RND
RSA
RSD
RSE
RTJ
SAE
SAM
SCT
SEA
SEN
SOA
SST
STA
STE
STP
SUB
SXM
SXP
XAE

XAK

XEC

Logical Left Shift A
Logical Left Shift AE
Logical Left Shift E
Load Address
Logical “‘Or'"’

Load Address in Index
Left Shift A

Left Shift AE

Left Shift E

Load Exponent

Minus A

Minus AE

Minus E

Multiply

No Operation

No Operation
Normalize

Logical Right Shift A
Logical Right Shift AE
Logical Right Shift E
Round

Right Shift A

Right Shift AE

Right Shift E

Return and Jump
Sign of Ato E

Store A Address

Save and Clear Flip-Flops

Sign of E to A

Send External Signal
Subtract Address

Save and Set Flip-Flops
Store A

Store E

Set Flip-Flops

Subtract

Store Index

Store Exponent

Exchange AE

External Lines to A and
Skip if Ready

Execute

A-5

2+ k
2 +Kk
2 +k

2+k
2+Kk
2+k

16
2+k

6 + k
2+k
2+k
2+ k

2+k
2+k
2+k

S

N A PR NN WD NN WD WD

3 if no skip; 4 if skip

1+ CYC

3-8
3-9
3-8
3-5
3-7
3-9
3-7
3-8
3-8
3-2
3-6
3-6
3-6
3-3
3-15
3-15
3-9
3-7
3-8
3-8
3-5
3-7
3-8
3-8
3-10
3-6
3-3
3-13
3-6
3-15
3-5
3-13
3-2
3-3
3-12
3-3
39
3-3
3-7

3-14

3-10

50
50
50
50
53
50

XTA
ZOA
Z0D
ZOE
Z0M
ZSA

External Word to A
Zero A

Zero AE

Zero E

Zero Memory

Clear A to Sign of E

A-6

N A DN DN W

3-7
3-5
3-5
3-5
3-9
3-5

COMMONLY USED CONSTANTS

Factorials

1
2!
3!
a1
5!
6!
7!

Decimal

10°

87 178 291 200

Powers of 10y

Decimal Octal
1
24 30
120 170
720 1320
5040 11 660
40 320 116 600
362 880 1 304 600
3628 800 15 657 400
39916 800 230212 400
479 001 600 3443176 000
6 227 020 800 56 312 146 000

1211416 624 000

Octal

<+ 000000 000001
4 000000 000012
+ 000000 OLV144
+ 000000 001750
+ 000000 023420
<+ 000000 303240
+ 000003 641100
+ 000046 113200
+ 000575 360400
+ 007346 545000
+ 112402 762000
+.063146 314631 463146 314631
+.005075 341217 270243 656050
+.000406 111564 570651 767635
+.000032 155613 530704 145451
+.000002 476132 610706 643604
+.000000 206157 364055 366615
+.000000 015327 745152 745364
+.000000 001257 143561 060430
+.000000 000104 560276 404665
+.000000 000006 676337 663536
+.000000 000000 537657 770274

A-7

Miscellaneous
Constants

EEEEEEER

N
)

1/=

1/2x

1°=1/360 of a circle

e
1/e
logwe
log,10
log.2
logwm

log.mr

Decimal

1.414 213 562 4

1.732 050 807 6

2.236 067 977 5

24494897428

2.645751 3111

2.828427 124 8

3.162 277 660 2

3.141 592 653 6

6.283 185307 1

.318309 886 2

.159154 943 1

.002777 7778

2.718 281 828 5

.367 879441 2

434 294 481 9

2.302585093 0

693 147 180 6

497 1498727

1.144 7298858

1°=.017 453 292 5

A-8

radians

Octal

1.324 047 463 201

1.566 636 564 132

2.170 673 633 460

2.346 107 024 023

2.512 477 651 650

2.650 117 146 402

3.123 054 072 667

3.110 375 524 211

6.220 773 250 413

.242 763 015 564

.121 371 406 672

.001 330 133 015

2.557 605 213 053

.274 265 306 615

.336 267 542 512

2.232 730 673 553

.542 710 277 600

.376 424 666 307

1.112 064 044 344

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Reciprocals
1/n (octal)

4400000000000
4252525252525
+4-200000000000
4146314631463
4125252525252
4111111111111
4100000000000
4070707070707
4063146314631
4056427213505
4052525252525
4047304730473
4044444444444
4042104210421
+040000000000
4036074170360
4034343434343
4032745032745
4031463146314
4030303030303
4027213505642
4026205441310
4025252525252
4024365605075
4023542354235
4022755022755
4022222222222
4021517345410

+021042104210

A-9

1/n (decimal)
+.5000000000
+4-.3333333333
+.2500000000
+.2000000000
+.1666666667
+.1428571428
+.1250000000
+.1111111111
+.1000000000
4.0909090909
+.0833333333
+.0769230769
+.0714285714
+.0666666667
+.0625000000
+4.0588235294
+.0555555555
+.0526315789
+.0500000000
+.0476190476
+.0454545454
+.0434782609
+.0416666667
+.0400000000
+.0384615384
+.0370370370
+.0357142857
+.0344827586

+.0333333333

10

11

12

13

Negative Powers of 2 and 8

O 0 N O o & W N = O

W W W W W W W W W W NP NDNDRNDNDDDNDNDNDRNDN R B B [e e
O 00 N O O b W N = O W 00N O G & WDN = O W 0O N O OG & W N =~ O

2"and 8™

1.0

0.5

0.25

0.125

0.0625

0.031 25

0.015 625

0.007 8125

0.003 906 25

0.001 953 125

0.000 976 562 5

0.000 488 281 25

0.000 244 140 625

0.000 1220703125

0.000 061 035 156 25

0.000 030 517 578 125

0.000 015 258 789 062 5

0.000 007 629 394 531 25

0.000 003 814 697 265 625

0.000 001 907 348 6328125

0.000 000 953 674 316 406 25

0.000 000 476 837 158 203 125

0.000 000 238 418 579 101 562 5

0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625

0.000 000 029 802 322 387 695 3125

0.000 000 014 901 161 193 847 656 25

0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5

0.000 000 001 862 645 149 230 957 031 25

0.000 000 000 931 322 574 615 478 515 625

0.000 000 000 465 661 287 307 739 257 8125

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 3125
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

A-10

O W N O o W N = O

N = e = e e e e e e e
O W 0 N O o d W N = O

Positive Powers of 2 and 8

2" and 8™

0 H~ N =

16

32

64

128

256

512
1024
2048

4 096
8192
16 384
32768
65 536
131 072
262 144
524 288
1048576

A-11

10

11

12

13

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2" and 8™

2097 152

4194 304

8 388 608

16 777 216

33 554 432

67 108 864
134217 728

268 435 456

536 870 912
1073741 824
2147 483 648

4 294 967 296

8 589 934 592
17 179 869 184
34 359 738 368
68719476 736
137 438 953 472
274 877 906 944
549 755 813 888

8001 Bloomington Freeway, Minneapolis, Minnesota 55420 / Division Electro-Mechanical Research, inc.

SALES OFFICES — BOSTON 272-5400, 1 Garfield Circle, Burlington e COCOA BEACH, FLA. 783-4903, Suite 1,
Holiday Office Center, 1325 N. Atlantic Avenue e DALLAS DI 8-4170, Room 104, First Federal Building, 440 Northlake
Center e DENVER SU 9-1834, 3600 S. Lincoln, Englewood e EL PASO 751-2344, 8888 Dyer St. o HOUSTON
MI 4-1856, 7135 Office City Drive e HUNTSVILLE, ALA. 881-4822, 3322 S. Memorial Parkway e LOS ANGELES
ST 2-7030, 15551 Cabrito Road, Van Nuys e MINNEAPOLIS 888-9581, 8001 Bloomington Freeway e NEW YORK CITY
679-5954, 475 Fifth Avenue e SUNNYVALE, CALIF. 245-3694, 505 West Olive o WASHINGTON, D. C. 864-6340,

5012 College Avenue, College Park, Md.

FORM NO. 406021 REV. 1 LITHO IN U.S.A. 4.65

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	xBack

