AR]*400/800"

- ATARI HOME COMPUTER SYSTEM

TECHNICAL
REFERENCE NOTES

includes:

Operating System User’s Manual
Operating System Source Listing
and

Hardware Manual

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or written permission from the Corporation.

N\

®
ATARI A Warner Communications Company @ C016555 Rev. A

AAR400/800"

ATARI' HOME COMPUTER SYSTEM

OPERATING SYSTEM
USER’S MANUAL

A

®
ATARI A Warner Communications Company @

COPYRIGHT 1982, ATARI, INC.
“ ALL RIGHTS RESERVED

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or written permission from the Corporation.

Every effort has. been made to ensure that this manual accurately
documents this product of the ATARI Home Computer Division.
However, due to the ongoing improvement and update of the computer
software and hardware, ATARI, INC. cannot guarantee the accuracy
of printed material after the date of publication and disclaims
liability for changes, errors, or omissions.

ATARI Home Computer
Operating System USER ‘'S MANUAL

PREFACE

1 INTRODUCTION

GENERAL DESCRIPTION
OF THE ATARI COMPUTER SYSTEM

Conventions Used in This Manual

HEXADEC IMAL NUMBERS

MEMORY ADDRESSES

KILOBYTES OF MEMORY

PASCAL AS AN ALGORITHM—-SPECIFICATION LANGUAGE
MEMORY LAYOUTS

BACKUS—-NAUR FORM (BNF)

O0S-EQUATE FILENAMES

17

18

i8

20

20
26
20
20
20
21
21

2 OPERATING SYSTEM FUNCTIONAL ORGANIZATION

Input/Qutput Subsystem
Interrupt Processing
Initialization

Power—Up
System Reset

Floating Point Arithmetic Package

CONFIGURATIONS
Program Environments

Blackboard Mode
Cartridge
Diskette—Boot
Cassette—Boot

RAM Expansion
Peripheral Devices

Game Controllers
Program Recorder
Serial Bus Devices

SYSTEM MEMORY UTILIZATION
RAM Region

Page ©

Page 1

0S Data Base

User Workspace

Boot Region

Screen Display List and Data
Free Memory Region

22

22
22
a2

22
23

24

25
25

25
26
26
26

27
27

27
27
28

2%
29

30
30
30
31
31
31
31

Cartridges A and B

Mapped

1/0

Resident 0S8 and Floating Point Package ROM
Central Data Base Description

Memory

Dynamics

System Initialization Process
Changing Screen Modes

I1/0 SUBSYSTEM

Central I/0 Utility

CIo

CIO

Design Philosophy

DEVICE INDEPENDENCE

DATA ACCESS METHODS

MULTIPLE DEVICE/FILE CONCURRENCY
UNIFIED ERROR HANDLING

DEVICE EXPANSION

CALLING MECHANISM

HANDLER ID --— ICHID [03401
DEVICE NUMBER -- ICDNO [03411
COMMAND BYTE —-- ICCMD L[03421
STATUS —— ICSTA [03431]
BUFFER ADDRESS

ICBALLO3441 AND ICBAH [03451
PUT ADDRESS --

ICPTL [O3461 AND ICPTH [03471
BUFFER LENGTH/BYTE COUNT —--

ICBLL [0O3481 and ICBLH [034%]
AUXILIARY INFORMATION --

ICAX1 [O34A]1 and ICAX2 [O034B1
REMAINING BYTES (ICAX3-ICAX&)

31
a2
32
32
32

a3
a3
34

36
37

37
37
38
38
38

as
a9
39
40
40
40
40
40

40
41

CI0 Functions

OPEN —— Assign Device/Filename to IOCB
and Ready for Access

CLOSE —— Terminate Access to Device/File
and Release IOCB

GET CHARACTERS —— Read n Characters
(Byte—-Aligned Access)

PUT CHARACTERS —— Write n Characters
{(Byte—Aligned Access)

GEY RECORD -- Read Up To n Characters
(Record—-Aligned Access)

PUT RECORD -- Write Up To n Characters
(Record—-Aligned Access)

GET STATUS -- Return Device-Dependent
Status Bytes

SPECIAL —- Special Function

Device/Filename Specification
1/0 Example

Device Specific Information
Keyboard Handier

CID Function Descriptions
Theory of Operation
Display Handler (S:)
Screen Modes
TEXT MODE O
TEXT MODES 1 AND 2
GRAPHICS MODES (Modes 3 Through 11}
SPLIT-SCREEN CONFIGURATIONS
CIO Function Descriptions
User—Alterable Data Base Variables
Theory of Operation
Screen Editor (E:)
CIO Function Descriptions

User—Alterable Data Base Variables

Cassette Handler (C:)
CI0 Function Descriptions

Theory of Operation
File Structure

41

41

42

43

43

44

44

45
45

44
47

S50
50

51
51
o4
54
54
55
56
o6&
57
61
&2
bé
&7
70
72
72

74
75

6

Printer Handler (P:)
CIO Function Descriptions
Theory of Operation

Disk File Manager (D:)

CI0 Function Descriptions
Device/Filename Specification

Filename Wildcarding

Special CIO functions
Theory of Operation
FMS Diskette Utilization

FMS BOOT RECORD FORMAT
BOOT PROCESS MEMORY MAP
VOLUME TABLE OF CONTENTS
FILE DIRECTORY FORMAT
FMS FILE SECTOR FORMAT

Non—-CIO 1/0
Resident Device Handler Vectors

Resident Diskette Handler
Diskette Handler Commands

Sevrial Bus 1/0

INTERRUPT PROCESSING

Chip-Reset
Nonmaskable Interrupts

Stage 1 VBLANK Process
Stage 2 VBLANK Process

Maskable Interrupts
Interrupt Initialization
System Timers

Usage Notes

POKEY Interrupt Mask

Setting Interrupt and Timer Vectors
Stack Content at Interrupt Vector Points
Miscellaneous Considerations

Flowcharts

76
76
78

78

79
81

82

84
87
a9

90
92
93
94
95

Qb
26

?7
%

101

102

103
103

104
1095

107
i08
109
109

110
110
111
112

113

7 SYSTEM INITIALIZATION

Power-Up Initialization (Coldstart) Procedure
System Reset Initialization (Warmstart) Procedure

8 FLOATING POINT ARITHMETIC PACKAGE
Functions/Calling Sequences

ASCII to Floating Point Conversion (AFP)}
Floating Point to ASCII Conversion (FASC)
Integer to Floating Point Conversion (IFP}
Floating Point to Integer Conversion (FPI}
Floating Point Addition (FADD)
Floating Point Subtraction (FSUB)
Floating Point Multiplication (FMUL)
Floating Point Division (FDIV)
Floating Point Logarithms (LOG and LOG10}
Floating Point Exponentiation (EXP and EXP10}
Floating Point Polynomial Evaluation (PLYEVL)
Clear FRO (ZFRO)
Clear Page-Zero Floating Point Number (ZF1)
Load Floating Point Number to FRO
(FLDOR and FLDOP)
Load Floating Point Number to FRI1
(FLDIR and FLDIiP)
Store Floating Point Number From FRO
(FSTOR and FSTOP)
Move Floating Point Number From FRO to FRI
(FMOVE}

Resource Utilization
Implementation Details

Q ADDING NEW DEVICE HANDLERS/PERIPHERALS

Device Table
CI0/Handler Interface

Calling Mechanism
Handler Initialization
Functions Supported
Error Handling
Resource Allocation

LERO-PAGE RAM
NONZERO-PAGE RAM
STACK SPACE

Handler/SI0 Interface

114

116
119

121

122

iz22
i22
i23
123
124
124
124
125
125
126
126
127
127

127
iz28
128
128

128
i29

131

134
134

i35
136
136
140
140

141
141
142

142

10

Calling Mechanism
Functions Supported
Error Handling

Serial I/0 Bus Characteristics and Protocol

Hardware/Electrical Characteristics
Serial Port Electrical Specifications
Bus Commands

COMMAND FRAME

COMMAND FRAME ACKNOWLEDGE
DATA FRAME

OPERATION COMPLETE

Bus Timing
Handler Envivonment
Bootable Handler

Cartridge Resident Handler
Flowcharts

PROGRAM ENVIRONMENT AND INITIALIZATION
Cartridge

Cartridge Without Booted Support Package
Cartridge With Booted Support Package

Diskette—-Booted Software

Diskette—Boot File Format

Diskette-Boot Process

Sample Diskette—Bootable Program Listing
Program to Create Diskette-Boot Files

Cassette~Booted Software

Cassette-Boot File Format

Cassette—-Boot Process

Sample Cassette~Bootable Program Listing
Program to Create Cassette-Boot Files

142
144
144

145

145
147
147

148
148
149
149

150
152
153
153
153
157
157

158
158

159

159
160
161
162

164

1465
165
1467
168

11

10

ADVANCED TECHNIGUES AND APPLICATION NOTES
Sound Generation

Capabilities
Conflicts With 0S

Screen Graphics
Hardware Capabilities
0S Capabilities
Cursor Control
Color Control
Alternate Character Sets
Player/Missile Graphics

Hardware Capabilities
Conflicts With 0S8

Reading Game Controllers

Keyboard Controller Sensing
Front Panel Connectors as I/0 Ports

Hardware Information:
Software Information:

Other Miscellaneous Software Information:

170
170

170
170

171

171
171
171
171
172

174

174
174

174

174
176

176
177
179

APPENDICES

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

| o]

.

K

T ©® M Mm o o W >

Keyboard

Display

CIO COMMAND BYTE VALUES

CI0 STATUS BYTE VALUES.

SI0 STATUS BYTE VALUES

ATASCII CODES

DISPLAY CODES (ATASCII)

KEYBOARD CODES (ATASCII)

PRINTER CODES (ATASCII)

SCREEN MODE CHARACTERISTICS
SERIAL BUS ID AND COMMAND SUMMARY
ROM VECTORS

DEVICE CHARACTERISTICS

ATARI 410LTM1 Program Recorder
ATARI 820LTM] 40-Column Impact Printer
ATARI 810LTM] Disk Drive

Appendix £ —— 0S5 DATA BASE VARIABLE

FUNCTIONAL DESCRIPTIONS

Central Data Base Description

FUNCTIONAL INDEX TO DATA BASE VARIABLE DESCRIPTIONS

A. MEMORY CONFIGURATION

180
181
182
183
184
185
186
188
191
192
194
194
194
194

195
197

200

200

201

211

11

12

TEXT/GRAPHICS SCREEN

Cursor Control

Screen Margins

Text Scrolling

Attract Mode

Tabbing

Logical Text Lines

Split Screen

Displaying Control Characters
Escape (Display Following Control Character?
Display Control Characters Made
Bit-Mapped Graphics

Internal Working Variables
Internal Character Code Conversion

DISKETTE HANDLER

CASSETTE

Baud Rate Determination
Cassette Mode

Cassette Buffer

Internal Working Variables

KEYBOARD

Key Reading and Debouncing

Special Functions

Start/Stop

Autorepeat

Inverse Video Control

Console Keys: [SELECTI1, [START1, and [OPTION]

PRINTER

Printer—-Buffer
Internal Working Variables

212

212
213
215
215
216
217
218
220
221
221
221
222
224

225

225

226
227
227
228

229

229
230
230
231
232
232

232

233
233

G.

£ 2 - F

CENTRAL I/0 ROUTINE (CIO)

User Call Parameters

1/0 Control Block

Device Status

Device Table

CI0/Handler Interface Parameters
Zero-Page IOCB

Internal Working Variables

SERIAL I/0 ROUTINE (SIO)

User Call Parameters

Device Control Block

Bus Sound Control

Serial Bus Control

Retry Logic

Checksum

Data Buffering

General Buffer Control
Command Frame Qutput Buffer
Receive/Transmit Data Buffering
SI0 Timeout

Internal Working Variables

ATARI CONTROLLERS
Joysticks

Paddles

Light Pen

Priving Controllers

DISK FILE MANAGER

DISK UTILITY POINTER
FLOATING POINT PACKAGE
Power-Up and System Reset
RAM Sizing

Diskette/Cassette—~Boot
Environment Control

233

233

233
234
235
235
235
236

237

237
237
238
238
238
239
240
240
240
241
241
242

243
243
244
245
246
247
248
248
249
249

250
251

13

INDEX

14

INTERRUPTS

System Timers

Real Time Clock

System Timer 1

System Timer 2

System Timers 3, 4 and S
RAM Interrupt Vectors

NMI Interrupt Vectors

IRG Interrupt Vectors
Hardware Register Updates
Internal Working Variables

USER AREAS

Alphabetical List of Data Base Variables

Memory Address Ordered List of Data Base
Variables

Floating Point Package Variables

252

253
253
253
254
254
2595
255
259
256
258

258

259

266
270

271

TABLE OF ILLUSTRATIONS

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Utilization

Figure
Figure

i-1.
1-2.

4-1.
4-2.

S5-1.
S5-2.
5-3.
S5-4.
5-9.
S9=6.
S-7.
S5-8.
5-9.
5-10.
S5-11.

S5-12.
5-13.

Memory Map

Figure

of Contents

Figure
Figure
Figure
Figure
Figure

S-14,

5-15.
S5-16.
S5-17.
S5-18.
5-19.

ATARI Home Computer Block Diagram
Memory Layout Chart

6502 System Memory Map
Mapped 1I/0

1/0 Subsystem Structure Flow Diagram

CIO Calling Mechanism

An I/0 Example

Keycode to ATASCII Conversion Table

Text Modes 1 and 2 Data Form

Graphics Modes 3-11 GET Data Form
Graphics Modes 3-11 PUT Data Form

Screen Display Block Diagram

Cassette Handler Record Format
Device/Filename Syntax

File Management Subsystem Diskette Sector
Map

File Management Subsystem Boot Record Format
File Management Subsystem Boot Process

File Management Subsystem Volume Table

File Management Subsystem Volume Bit Map
File Directory Format

File Management Subsystem File Sector Format
Resident Device Handler Vectors

DVSTAT 4-Byte Operation Status Format

i9
20

29
32

35
38
49
53
56
58
59
64
74
81

89
?0

P2

93
93
94
95
96

100

i5

Figure
Figure
Figure
Figure

6-1.
6-2.
&-3.
b4,

L.ist of System Interrupt Events
Interrupt RAM Vector Initialization
POKEY Interrupt Mask Example
Interrupt and Timer Vector RAM Stack

Content Table

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

16

10~-1.
10-2.
10-3.
10-4.

11-1.
11-2.
11-3.
11-4.
11-5.

11-6.

1/0 Subsystem Flow Diagram

Device Table Format

Handler Vector Table

Serial Bus Connector Pin Descriptions
Serial Bus Command Frame Format
Serial Bus Timing Diagram

Cartridge Header Format

Diskette Boot File Format
Diskette—Bootable Program Listing Example
Sample Cassette-Bootable Program

User—Defined Character Set Bit Memory Address
User—~Defined B8 x B8 Character Matrix Bit Table
Character Base Diagram

Reading Data From an ATARI Keyboavrd Controller
ATARI Keyboard Controller Variable/Register
Value Table

Using Front Panel Connectors As I/0 Ports: Pin
Function Tables

io2
108
110

112

133
134
135
144
148
151

157
159
162
168

172
173
173
174

176

179

PREFACE

This manuval describes the resident Operating System (0S) for the
ATARI@ Home Computer, for readers who are familiar with the
internal behavior of the system. It discusses:

0 System functions and uvtilization techniques
o Subsystem relationships and organization

o Characteristics of the ATARI peripheral devices that can
be attached to the ATARI4Q00LTM] and ATARI B0O0OLTM1 Home

Computer

0 Advanced techniques for going beyond the basic 085
capabilities

o The general features of the computer system hardware used
by the 0S.

It would be helpful to have a familiarity with programming concepts
and terminology. assembly language programming in general, the
Synertek 6502 in particular, and digital hardware concepts and
terminology. you will be provided with the information you need to
use the 0S resources, without resorting to trial-and-error techniques
or the 0S8 listing. Supporting information for tasks that involve 05
listing references is also provided.

This manual does not present a comprehensive description of the
hardware used to provide 08 capabilites. The programmer who needs to
go beyond the capabilities described should consult the ATARI Home

Computer Hardware Manual.

OPERATING SYSTEM C016555 —- Section 1

i7

1 INTRODUCTION

GENERAL DESCRIPTION OF THE ATARI HOME COMPUTER SYSTEM

Operating systems in the ATARI@ 400LTM]1 and ATARI 800L{TM]1 Home
Computer are identical. The primary differences between the two are:

o)

[»]

Physical packaging

The ATARI 400 Computer console has one cartridge slot, the
ATARI B0O Computer console has two cartridge slots

The ATARI 400 Home Computer contains 16K RAM and cannot be
expanded. The ATARI 800 Home Computer can be expanded to a
maximum of 48K RAM.

The ATARI 800 Computer has a monitor jack: the ATARI 400
Computer does not.

The Hardware Circuitry

o Produces both character and point graphics for black and

white (B/W! or color television.

o Produces four independent audio channels (fregquency

controlled) which use the television sound system.

o Provides one bi-level audio output in the base unit

o Interfaces with up to four Joysticks and eight Paddle

Controllers.

o Interfaces with a serial 1/0 bus for expansion.

o Contains a built—-in keyboard

Figure 1-1 presents a simplified block diagram of the hardware.
See the hardware manuval for supporting documentation.

i8

OPERATING SYSTEM CO16555 —— Section 1

]
1)
]
4

e =
0s
ROM

{ DBOO~FFFF |

e e

e
6502
iprocessor!
P
]
s

L IR AR IR L R LRI C I ERTIE DI A had 4 - -4 L SRR IR L I
{ \n | { 0 | i ® { { |] |]
IR i | v s | | o | 1 | o &~ | i - |
| — - | i -~ o< |] ¥ m | - |] | I -k Z 1
i o0 i | gl | 4 @ | m0 w | | o~ | | 00O
| - o i { O s A | I @ I w31 i wm | el |
| ¥ i ol w1 v | &.~ao | | © w i 1 € 4k 1
| € - | | | % | w4 | o { | oo | | o |
i owm | |l o+ | o} @ [i | umn] jmwoa i
| o i | %o I N1 v | | | I i i
+ -+ -+ EEEC TN B N ~AE B B A L I RN BELRE + -+ -+
R R i o i 1 i i ! i
! I | | | | |
R LRI hdE LR L | | { E< |
i | { i i { O = |
+(¢|¢¢(+ _+..li...ll...la(...c...«olla.c(t(o...+ i ~ i
| »x | it i I { % O |
- » m — _ + - e we e ve we we ww + _
! x | [{ | |
.N X~ __— — +(lll++CKICll!llll(l((lll.\(t{c-....C+
1 < i w (| (I { {
_R 0- M e v ve we we we + e ww ww ey we * e v ww we we +
i O | u [| [| i i | [
i O | o i1 I 1 i | i (= |
| Q| + 1t | I 01 B | 4 v ovwe @ | wv v wc - ¢ LRI
+ - -~ w [w | f =~ § on}] | | [- i | §
> [+ | o1l =1 11 @ | i 1 i
=] It o | 21 1 11 -t | |] i
- (| o | it mi 1 11 - | | | 1
[| | ! 11l o i L ARSI >]
+ L IR + 4+ 4+ + + LI I N I N B R N R TRE R RO | | i
| | ooyl i i w1 | w it wiweil w i o i |
i | oned L | | ~ | | - | |1 -] -] | o i i
{ |l ol i 1 M i i > (o' I O ol >l o I oo] l
i it~ mi 1€ gl Y] ol 11 g (= I | =~ QO P - E R
! N B | | 11 | X | + + + = | + o4 i1 - >
| | O 1 o O | 1 O O i | - Q| | Z lo 3 n o~
| i .00 | | O | | o o | | O O | 1€ O oo
§ | 9O | i 01 i o | | O 1 } < | o
| o wn® | | a1 | =S| 1 = I] [~ I Ev
+ +4 -4+ 44~ 4 4e-4t-4+ 4e-4+t-—-4 4+--4--4 002
| | | - | N u
i { } P
i I { t
} | (]] < < i -
i | o 1 144 b 1 z
] | - i - (=] | 2z
| 1 i 1
| | | i
| i 1 i
- - m- ._T - - - ‘v o o me we e + - m- we we we + - e ww w- - ‘_T - e we we wo G -

processor
external

bus

19

OPERATING SYSTEM C016555 —— Section 1

ATARI Home Computer Block Diagram

Figure 1-1,

CONVENTIONS USED IN THIS MANUAL
This manual uses the following special notations:
Hexadecimal Numbers

All two—digit numbers preceded by a dollar sign (%) designate
hexadecimal numbers. All other numbers (except memory addresses)
are in decimal form unless otherwise specified in the supporting
text.

Memory Addresses
All references to computer memory and mapped I/0 locations are in
hexadecimal notation. Memory addresses may or may not be contained

in square brackets. (Example: [D20F] and D20F are the same
address.)

Kilobytes of Memory

Memory sizes are frequently expressed in units of kilobytes, such
as 32K, where a kilobyte is 1024 bytes of memory.

PASCAL As an Algorithm—Specification Language

The PASCAL language (procedure block only) is used as the
specification language in the few places where an algorithm is
specified in detail. PASCAL syntax is similar to any number of
other block-structured languages, and you should have no
difficulty following the code presented.

Memory Layouts

Diagrams similar to Figure 1-2 are used whenever pictures of bytes
or tables are presented:

76543210

el R e T S s

H { === This is a single byte.
e s et S

H H

+ + ——= This is a word (2 bytes).
[[

] E

e s s TS T SR S

H H

= = —-=— This is a block of memory
H H of unspecified length.
e e h &

Figure 1-2. Memory tayout Chart

OPERATING SYSTEM CO16555 ~—- Section 1
20

Bit 7 is the most significant bit (MSB) of the byte, and Bit O
is the least significant bit (LSB).

In tables and figures, memory addresses always increase toward the
bottom of the figure.

Backus—-Naur Form

A modified version of Backus—-Naur Form (BNF) is used to express some

syntactic forms, where the following metalinguistic symbols are used:

= is the substitution (assignment) operator.
< > a metasyntactic variable.

H separates alternative substitutions.

L 1 an optional construct.

Anything else is a syntactic literal constant, which stands for
itself.

For Example:
{device specification> ::= <Jdevice namel>f<{device number>]:
<device name> ::= CIDIEIKIPIRIS
{device number> ::= 112i314i516!7i8
A “"device specification" consists of a mandatory “device name, "
followed by an optional "device number." followed by the mandatory
colon character. The device name in turn must be one of the

characters shown as alternatives. The device number (if it is presen
must be a digit 1 through 8.

08 Equate Filenames

Operating System ROM (Read Only Memory!) and RAM (Random Access
Memory) vector names, RAM database variable names and hardware
register names are all referred to by the names assigned in the 0S5
program equate list. When one of these names is used, the memory
address is usually provided, such as BOOTAD [02421.

OPERATING SYSTEM C016555 —— Section 1

t)

21

2 DOPERATING SYSTEM FUNCTIONAL ORGANIZATION

This section describes the various subsystems of the resident 0S in
general terms.

Input/Output Subsystem

The Input/Output (I/0) subsystem provides a high—level interface
between the programs and the hardware. Most functions are
device—independent, such as the reading and writing of character data;
yet provisions have been made for device-dependent functions as well.
All peripheral devices capable of dealing with character data have
individual symbolic names (such as K,D:P, etc). and can be accessed
using a Central I/0 (CIO) routine.

A RAM data base provides access to controllers (joysticks and paddle
controllers}, which do not deal with character data. This RAM data
base is periodically updated to show the states of these devices.

INTERRUPT PROCESSING

The interrupt system handles all hardware interrupts in a common
and consistent manner. By default, all interrupts are fielded by
the 0S. At your discretion, individual interrupts (or

groups of interrupts) can be fielded by the application program.

INITIALIZATION

The system provides two levels of initialization: power up and
system reset. The 0S5 performs power—~up initialization each time
the system power is switched to ON: and system reset
initialization is performed each time the [SYSTEM. RESET] key is
pressed.

Power-Up

The 0S examines and notes the configuration of the unit whenever
the system power is switched to ON. The system performs the following
tasks at power up:

OPERATING SYSTEM CO16555 —— Section 2
22

o Determines the highest RAM address.

o Clears all of RAM to zeros.

o Establishes all RAM interrupt vectors.
0 Formats the device table.

o Initializes the cartridge(s}.

0 Sets up the screen for 24 x 40 text mode.
0 Boots the cassette if directed.
] Checks cartridge slot(s) for diskette-boot instructions.

0 Boots the diskette if directed to do so and a disk drive unit¢
is attached,

o Transfers control to the cartridge, diskette—-booted program.
cassette-booted program, or blackboard program.

[SYSTEM. RESET]
Pressing the [SYSTEM. . RESET] key causes the OS5 to perform these
following tasks:

o Clears the 0S portion of RAM.

o Rechecks top of RAM.

0 Reestablishes all RAM interrupt vectors.

0 Formats the device table.

0 Initializes the cartridge(s).

0 Sets up the screen for 24 x 40 text mode.

o Transfers control to the cartridge, a diskette—-booted program,
a cassette~booted program, or the blackboard program.

Note that [SYSTEM. RESET] does not perform all the power-up
tasks listed in the power—-up section.

OPERATING SYSTEM C0146555 —— Section 2
23

FLOATING POINT ARITHMETIC PACKAGE

The 09 ROM contains a Floating Point (FP) package that is available
to nonresident programs such as ATARI BASIC.

The package is not used by the other parts of the 0S itself.

The

floating point numbers are stored as 10 BCD digits of mantissa,
i~-byte exponent. The package contains these routines:

24

Q

(2]

ASCII-to-FP and FP-to—-ASCII conversion.
Integer—to-FP and FP-to-integer conversion.
FP add, subtract, multiply and divide.

FP log. exp, and polynomial evaluation.

FP number clear. load, store. and move.

OPERATING SYSTEM CO16555 —— Section 2

plus a

You set thesé 2-bytes. They contain information that is
used by the OPEN command process and/or is device-dependent.

For OPEN, two bits of ICAX1 are always used to specify the OPEN
direction as shown below, where R is set o 1 for input (read)
enable and W is set to 1 for output (write) enable.

+
[
LI

e e e e o e e o e e o e

ICAX1 is not altered by CID. You should not alter ICAX1
once the device/file is open.

The remaining bits of ICAX1 and all of ICAX2 contain only
device-dependent data and are explained later in this section.

Remaining Bytes (ICAX3—-ICAX&)

The handler reserves the four remaining bytes for processing the
I1/0 command for CIO. There is no fixed use for these bytes. They
are not user—alterable except as specified by the particular
device descriptions. These bytes will be referred to as ICAX3,
ICAX4, ICAXS and ICAXé, although there are no equates for those
names in the 0S5 equate file.

CI0 Functions

The CID supports records and blocks and the handlers support
single bytes. All of the system handlers support one or more
of the eight basic functions sub ject to restrictions based
upon the direction of data transfer (e.g. one cannot read data
from the printer). The basic functions are: OPEN, CLOSE, GET
CHARACTERS, PUT CHARACTERS:, GET RECORD, PUT RECORD, GET STATUS,
and SPECIAL.

DPEN -— Assign Device/Filename to IOCB and Ready for Access

A device/file must be opened before it can be accessed. This
process links a specific IOCB to the appropriate device
handler, initializes the device/file, initializes all CIOD
caontrol variables, and passes device-specific options to the
device handler.

OPERATING SYSTEM C016555 —— Section 5
41

You set up the following IOCB parameters prior to calling CIO for an
OPEN operation:

COMMAND BYTE = $03

BUFFER ADDRESS = pointer to a device/filename specification.

AUX1 OPEN direction bits, plus device-dependent information.
AUX2 = device—dependent information.

After an OPEN operation, CID will have altered the following IOCB
parameters:

HANDLER ID = index to the system device table; this is
vsed only by CIO and must not be altered.

DEVICE NUMBER = device number taken from the device/filename
specification and must not be altered.

STATUS = result of OPEN operation; see Appendix B for a list
of the possible status codes. In general, a negative status
will indicate a failure to open properly.

PUT ADDRESS = pointer to the PUT CHARACTERS routine for the
device handler just opened.

It is recommended that this pointer not be used.

CLOSE ~- Terminate Access to Device/File and Release IOCBH.

You issue a CLOSE command after you are through accessing a
given device/file. The CLOSE process completes any pending data
writes, goes to the device handler for any device-specific
actions, and then releases the IOCB.

You set the following IOCB parameter prior to calling
CIO:

COMMAND BYTE = $0C

The CID alters the following IOCB parameters as a result of the
CLOSE operation:

HANDLER ID = $FF
STATUS = Result of CLOSE operation.

PUT ADDRESS = pointer to "IOCB not OPEN" routine.

OPERATING SYSTEM CO16555 —- Section 5
42

GET CHARACTERS —— Read n Characters (Byte—Aligned Access)

The specified number of characters are read from the device/file
to the user—supplied buffer. EOL characters have no termination
features when using this function; there can be no EOL, or many
EOL‘s, in the buffer after operation completion. There is a
special case provided that passes a single byte of data in the
6502 A register when the buffer length is seft to zero.

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = $07
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = number of bytes to read; if this is zero,
the data will be returned in the 6502 A register only.

The CIO alters the following INDCB parameters as a result of the
GET CHARACTERS operation:

STATUS = result of GET CHARACTERS operation.
BYTE COUNT/BUFFER LENGTH = number of bytes read to the

buffer. The BYTE COUNT will always equal the BUFFER LENGTH
except when an error or an end-of-file condition occurs.

PUT CHARACTERS —-- Write n Characters (Byte—-Aligned Access)

The specified number of characters are written from the user-supplied
buffer to the devicesfile. EOL characters have no buffer

terminating properties, although they have their standard meaning

to the device/file receiving themi no EOL’s are generated by CIO.
There is a special case that allows a single character to be

passed to CIO in the 6502 A register if the buffer length is
zero.

You set the following IOCB parameters prior ¢o initiating the PUT
CHARACTERS operation:

COMMAND BYTE = $0B
BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = number of bytes of data in buffer.

The CIO alters the following IOCB parameter as a result of the
PUT CHARACTERS operation:

STATUS = result of PUT CHARACTERS operation.

OPERATING SYSTEM C0146555 -- Section 5
43

GET RECORD —— Read Up To n Characters (Record—-Aligned Access)

Characters are read from the device/file to the user—supplied
buffer until either the buffer is full or an EOL character is
read and put into the buffer. If the buffer fills before an EOL
is read, then the CIO continues reading characters from the
device/+ile until an EOL is read,, and sets the status to
indicate that a truncated record was read. No EOL will be put at
the end of the buffer.

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = %05
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = maximum number of bytes to read (including
the EOL character).

The CIO alters the following IOCB parameters as a result of the
GET RECORD operation:

STATUS = result of GET RECORD operation.

BYTE COUNT/BUFFER LENGTH = number of bytes read to data
buffer; this can be less than the maximum buffer length.

PUT RECORD —— Write Up To n Characters (Record-Aligned Access)

Characters are written from the user—supplied buffer to the
device/file until either the buffer is empty or an EOL character
is written. I+ the buffer is emptied without writing an EOL
character to the device/file, then CIO will send an EOL after the
last user—-supplied character.
You set the following IOCB parameters prior to calling CIO:

COMMAND BYTE = $09

BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = maximum number of bytes in buffer.

The CIO alters the following IOCB parameter as a result of the
PUT RECORD operation:

STATUS = result of PUT RECORD operation.

OPERATING SYSTEM CO16555 —— Section S
44

GET STATUS —-- Return Device-Dependent Status Bytes

The device controller is sent a STATUS command, and the
controller returns four bytes of status information that are
stored in DVSTAT [0O2EA1].

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = $0D

BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already OPEN; see the discussion of the
implied OPEN option below.

After a GET STATUS operation, CID will have altered the following
parameters:

STATUS = result of GET STATUS operation; see Appendix B for
a list of the possible status codes.

DVSTAT = the four-byte response from the device controller.

SPECIAL -- Special Function

Any command byte value greater than %$0D is treated by CIO as a

special case. Since CI0O does not know what the function is, CIO
transfers control to the device handler for complete processing
of the operation.

The user sets the following IOCB parameters prior to
calling CIO:

COMMAND BYTE > $0D

BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already open; see the discussion of the
implied OPEN option below.

Dther IOCB bytes can be set up, depending upon the specific
SPECIAL. command being performed.

After a SPECIAL operation, CIO will have altered the following
parameters:

STATUS = result of SPECIAL operationi see Appendix B for a
list of the possible status codes.

Other bytes can be altered, depending upon the specific
SPECIAL command.

OPERATING SYSTEM C016555 ~— Section 5
45

Implied OPEN Option

The GET STATUS and SPECIAL commands are treated specially by CIO;
they can use an already open IOCH to initiate the process or they
can use an unopened IOCB. If the IOCB is unopened, then the
buffer address must contain a pointer to a device/filename
specification, just as for the OPEN command; CIO will then open
that IOCB, perform the specified command and then close the IOCBH
again.

Device/Filename Specification

As part of the OPEN command, the IOCB buffer address parameter
points to a device/filename specification, that is a string of
ATASCII characters in the following format:

Lspecification’ .= {deviceXf<number>]:. [<{filename>l<eol>

<devicel> ::= CIDIEIKIPIR!S

<numberl :: 1i12i13i1415161718

<filenamel has device-dependent characteristics.
<eol2 ::= $9B

The following devices are supported at this writing:

C Cassette drive

D1 through D8 = Floppy diskette drives #
E = Screen Editor
K =
P

Keyboard
= 40-column printer
P2 = 80—column printer *
R1 through R4 = RS-232-C interfaces #
S = Screen display

Devices flagged by asterisks (#) are supported by nonresident
handlers.

I+ <number> is not specified, it is assumed to be 1.

The following examples show valid device/filename specifications:

C: Cassette
D2: BDAT File "BDAT" on disk drive #2
D: HOLD File "HOLD" on disk drive #i
K: Keyboard

OPERATING SYSTEM C0O16555 —— Section 5
46

1/0 Example

The example provided in this section illustrates a simple example of

an I/0 operation using the CID routine.

drive

N W we w

- e e W we

1.

This code segment jllustrates the simple example of reading
text lines (records) from a diskette file named TESTER on disk

#1. All symbols used are equated within the program

Opens the file

i I/0 EGUATES

although many of the symbols are in the 08 equate file.
The program performs the following steps:
‘D1: TESTER’ using IOCB #3.

2. Reads records until an error or EOF is reached.
3. Closes the file.

EOL= $9B i END OF LINE CHARACTER.
IOCB3= %30 i 10CB #3 OFFSET (FROM IQOCB #0).
ICHID= #0340 i (HANDLER ID —-- SET BY CIO).
ICDNO= ICHID+1 i (DEVICE # -- SET BY CIO).
ICCOM= ICDNO+1 i COMMAND BYTE.

ICSTA= ICCOM+1 i STATUS BYTE -- SET BY CIO.
ICBAL= ICSTA+1 i BUFFER ADDRESS (LOW).
ICBAH= ICBAL+1 i BUFFER ADDRESS (HIGH).
ICPTL= ICBAH+1

ICPTH= ICPTL+1

ICBLL= ICPTH+t1 i BUFFER LENGTH (LOW).
ICBLH= ICBLL+1 i BUFFER LENGTH (HIGH).
ICAX1= ICBLH+1 i AUX 1.

ICAX2= ICAX1i+1 i AUX 2.

OPEN= $03 i OPEN COMMAND.

GETREC= $05 i GET RECORD COMMAND.

CLOSE= $0C i CLOSE COMMAND.

OREAD= 404 i OPEN DIRECTION = READ.
OWRIT= $08 i OPEN DIRECTION = WRITE.
EOQOF= %88 i END OF FILE STATUS VALUE.
Ci0v= $E456 i CIOD ENTRY VECTOR ADDRESS.

i FIRST INITIALIZE THE IOCB FOR FILE “OPEN".

LDX #I10CB3 i SETUP TO ACCESS IOCB #3.

OPERATING SYSTEM C0O16555 ~- Section 5

47

LDA
STA

LDaA
S5Ta
LDA
STA

LDaA
STa

LDaA
STA

JSR
BPL

JMpP

i SETUP TO READ

TP10 L.DA
STA

LDA
STA
LDaA
STA

i READ RECORDS.

i

LooP LDA
STaA
LDA
STA

JER
BMI

i

i A RECORD IS NOW IN THE DATA BUFFER "BUFF".

48

#OPEN
ICCOM, X

#NAME
ICBAL, X
#NAME /256
ICBAH, X

#OREAD
ICAXL., X

#0
Icaxa, X

"OPEN" THE FILE.

cIav
TP10

ERROR

A RECORD.

#GETREC
ICCOM, X

#BUFF
ICBAL., X
#BUFF /256
ICBAH, X

#BUFFSZ
ICBLL, X

#BUFFSZ1/256

ICBLH, X

cIov
TP20

i

SETUP OPEN COMMAND.

SETUP BUFFER POINTER TO .
POINT TO FILENAME.

SETUP FOR OPEN READ.

CLEAR AUX 2.

PERFORM “OPEN" OPERATION.
STATUS WAS POSITIVE -~ OK.

NO -- "“OPEN" PROBLEM.

SETUP “GET RECORD" COMMAND.

SETUP DATA BUFFER POINTER.

SETUP MAX RECORD SIZE ..
PRIOR TO EVERY READ.

READ A RECORD.
MAY BE END OF FILE.

OPERATING SYSTEM CO16555 —— Section S

IT IS TERMINATED BY

i AN EOL CHARACTER, AND THE RECORD LENGTH IS IN “ICBLL" and "“ICBLH".
i THIS EXAMPLE WILL DO NOTHING WITH THE RECORD JUST READ.

JMP Loop i READ NEXT RECORD.

i NEGATIVE STATUS ON READ -- CHECK FOR END OF FILE.

TP20 CPY #EOF i END OF FILE STATUS?
BNE ERROR i NO -- ERROR.
LDA #CLOSE i YES -- CLOSE FILE.
STA ICCOM, X
JER cIov i CLOSE THE FILE.
JMP #* i ##% END OF PROGRAM #33

i DATA REGION OF EXAMPLE PROGRAM

i

NAME . BYTE “Di:TESTER", EOL
BUFFSZ= 80 ; 80 CHARACTER RECORD MAX
(INCLUDES EOL).
BUFF= i READ BUFFER.
= #+BUFFSZ
. END

Figure 5-3 An I/0 Example

OPERATING SYSTEM C016555 —- Section 5

Device-8pecific Information

This section provides device—specific information regarding the
device handlers that interface to CIO.

Keyboard Handler (K:)

The keyboard device is a read only device with a handler that
supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

GET STATUS (null function)

The Keyboard Handler can produce the following errvor statuses:

$80 -— [BREAK] key abort.
$88 -— end-of-file (produced by pressing [CTRL] 3).

The Keyboard Handler is one of the resident handlers. It has a
set of device vectors starting at location E420.

The keyboard can produce any of the 256 codes in the ATASCII
character set (see Appendix F). Note that a few of the keyboard
keys do not generate data at the Keyboard Handler level. These
keys are described below:

L/7i\1 - The ATARI key toggles a flag that enables/disables the
inversion of bit 7 of each data character read. The
Screen Editor editing keys are exempted from such
inversion, however.

CAPS -~ The [CAPS/LOWR] key provides three functions:

[(SHIFTILCAPS/LOWR] —~— Alpha caps lock.
CCNTRLILCAPS/LOWR] —— Alpha [CTRLI lock.
C[CAPS/LOWR] —-— Alpha unlock.

OPERATING SYSTEM C0146555 —- Section 5
50

The system powers up and will system reset to the alpha
caps lock option.

Some key combinations are ignored by the handler, such as
CLCTRLY 4 through CCTRLY 9, [CTRL] O, £CTRL1I 1, {CTRL] /., and
all key combinations in that the [SHIFT1 and LCTRL] keys are
depressed simultaneously.

The L[CTRLY 3 key generates an EOL character and returns EOF status.

The [BREAK] key generates an EOL character and returns BREAK status.

CIO Function Descriptions

The device-specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:

OPEN

The device name is K, and the handler ignores any device number
and filename specification, if included.

There are no device—dependent option bits in AUX1 or AUXZ.

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

The handler returns the ATASCII key codes to CID as they are
entered, with no facility for editing.

GET STATUS

The handler does nothing but set the status to %01.

Theory of Operation

Pressing a keyboard key generates an IRQ interrupt and vectors to
the Keyboard Handler ‘s interrupt service routine (see Section 6).
The key code for the key pressed is then read and stored in data
base variable CH [0O2FC]. This occurs whether or not there is an
active read request to the Keyboard Handler, and effects a one-byte
FIFO for keyboard entry. See Appendix L (EB) for a discussion of
the auto repeat feature.

OPERATING SYSTEM C016555 —-- Section 5
51

The Keyboard Handler monitors the CH variable for not containing
the value %FF (empty state) whenever there is an active read
request for the handler. When CH shows nonempty. the handler
takes the key code from CH and sets CH to $FF again. The key code
byte obtained from CH is not an ATASCII code and has the
following form:

7 0
e o o o o e e o o e e e e e
tCiSt key code |
o o o e e e e e e e e

Where: C
s

1 if the ECTRL] key is pressed.
1 if the [SHIFT] key is pressed.

The remaining six bits are the hardware key code.

The key code obtainad is then converted to ATASCII using the
first of the following rules that applies:

Ignore the code if the C and S bits are both set.

If the C bit is set, process the key as a L[CTRLI code.

If the S bit is sef, process the key as a [SHIFT1 code.

If £CTRL] lock is in effect, process alpha characters as CTRL
codes, all others as lowercase.

IF £SHIFT3 lock is in effect, process alpha characters as SHIFT
codes, all others as lowercase,

Else, process as lowercase character.

o 0 kUM

Then: I+ the resultant code is nat a Screen Editor control code,
and if the video inverse flag is set, then set bit 7 of the
ATASCII code (will cause inverse video when displayed).

OPERATING SYSTEM CO16555 —- Section 5
92

KEY CODE TO ATASCII CONVERSION TABLE

Key ey
Code Cap

00 i
(031 J
o2 i
03 -
04 ——
05 N
06 +
07 #*
o8 0
o9 —
OA P
OB U
oC R
I
v

m
P!

oD

OE

OF

10

11 -
12 c
13 -
14 —
15 B
16 X
17 z
18 4
i2 -
1A 3
iB &
iC LESC]
iDp 5
1E 2
1F i

[CTRL]I 3 returns EOF status.

Lwr.
Case

&6c
bA
3B
6B
2B

2A
6F

70
75
7B
&9
2D
aD
74

63

&2
78
74
34
33
36
iB
35

32
31

LSHIFT]

4ac
aA
34
4B
5C
SE
4F
50
55
9B
49
S5F
7C
56

43

42
o8
SA
24
23
26
iB
29

22
21

ECTRL.]

ocC
oA
7B

oB
1E
iF
OF
10
15
9B
09
1C
iD
16

03

Key
Code

20
21
22
23
24
25
26
27
28
29
24
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
3%
34
3B
3C
3D
SE
aF

Key
Cap

SPACE

ACKS

OINY ANORBNO

PO
>
T
n

Lwr.
Case

2C
20
2E
&E

&b
2F

72
&5
79
7F
74
77
71
3%
30
37
7E
38
3C
3E
&b
&8
&4

&7
73
61

SHIFT

°B
20
SD
4E

4D
aF
52
45
59
9F
54
57
51
28
29
27
9C
40
7D
9D
44
ag
44

47
93
41

CTRL

A complement of this table (ATASCII to keystroke) is given in

Appendix F.

Figure 5-4

Keycode to ATASCII Conversion Table

OPERATING SYSTEM C0146555 ~— Section 5

53

Display Handler (S:)

The display device is a read/write device with a handler
that supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD ; .
GET STATUS (null function)
DRAW

FILL

The Display Handler can produce the following error statuses:

$84 —- Invalid special command.

$8D -~ Cursor out—-of-range.

$?1 ~— Screen mode 2> 11.

$93 —— Not enough memory for screen mode selected.

The Display Handler is one of the resident handlers, and
therefore has a set of device vectors starting at location E410.

Screen Modes

You can operate the display screen in any of 20

configurations (modes 1 through 8, with or without split
screen; plus mode O, and modes 9 through 11 without split
screen). Mode O is the text displaying mode. Modes 1 through
i1 are all graphics modes (although modes 2 and 3 do display a
subset of the ATASCII character set). Modes 9 through 11
require a GTIA chip to be installed in place of the standard
CTIA chip.

TEXT MODE ©

In text mode O the screen is comprised of 24 lines of 40
characters per line. Program alterable left and right margins
limit the display area. They default to 2 and 39 (of a possible O
and 39).

OPERATING SYSTEM C016555 —— Section 5
54

A program—controllable cursor shows the destination of the next

character to be output onto the screen. The cursor is visible as
the inverse video representation of the current character at the
destination position.

The text screen data is internally organized as variable length
logical lines. The internal representation is 24 lines when the
screen is cleared. Each EOL marks the end of a logical line as
text is sent to the screen. If more than 3 physical lines of text
are sent, a logical line will be formed every 3 physical lines.
The number of physical lines used to comprise a logical line (1
to 3) is always the minimum required to hold the data for that
logical line.

The text screen "scrolls" upward whenever a text line at the
bottom row of the screen extends past the right margin, or a text
line at the bottom row is terminated by an EOL. Scrolling removes
the entire logical line that starts at the top of the screen, and
then moves all subsequent lines upward to £ill in the void. The
cursor also moves upward, if the logical line deleted exceeds one
physical line.

All data going to or coming from the text screen is represented
in 8-bit ATASCII code as shown in Appendix E.

TEXT MODES 1 AND 2

In text modes 1 and 2 the screen comprises either 24 lines of 20
characters (mode 1), or 12 lines of 20 characters (mode 2). The
left and right margins are of no consequence in these modes and
there is no visible cursor. There are no logical lines associated
with the data and in all regards these modes are treated as
graphics modes by the handler.

Data going to or coming from the screen is in the form shown
below:

7 0
e b e e e e o
it C i D H
ek e S e A

Where:C is the color/character—set select field

OPERATING SYSTEM C016555 ~— Section S

55

C Color Color Character Character

Value (default) Register 8et Set

(see CHBAS=%EQ CHBAS=%ER2

Appendix

H)

0 green (PF1) -7 {HEART] [ARRDOW]
i gold (PFO) HE fHEART1 CARROWI
2 gold (PFO? e - CDIAMONDILTRIANGLE]
3 green (PF1) e - _ EDIAMONDICLTRIANGLE]
4 red (PF3)? b= 7 CHEART1 [ARROW]
9 blue (PF2) L {HEART] LARROW]
b6 blue (PF2} e - _ [DIAMONDILTRIANGLE]
7 red (PF3) e - {DIAMONDILTRIANGLE]

D is a 5~bit truncated ATASCII code that selects the specific
character within the set selected by the C field., See Appendix E
for the graphics representations of the characters.

Data base variable CHBAS [02F4] allows for the selection of
either of two data sets. The default value of $EC provides the
capital letters, numbers and punctuation characters: the
alternate value of $E2 provides lowercase letters and the special
character graphics set.

Figure 5-5 Text Modes 1 and 2 Data Form

GRAPHICS MODES (Modes 3 Through 11)

The screen has varying physical characteristics for each of the
graphics modes as shown in Appendix H. Depending upon the mode, a
1 to 16 color selection is available for each pixel and the
screen size varies from 20 by 12 (lowest resolution} to 320 by
192 (highest resolution) pixels.

There is neo visible cursor for the graphics mode output.

Data going to or coming from the graphics screen is represented
as 1 to 8-bit codes as shown in Appendix H and in the GET/PUT
diagrams following.

SPLIT-SCREEN CONFIGURATIONS

In split-screen configurations, the bottom of the screen is
reserved for four lines of mode O text. The text region is
controlled by the Screen Editor, and the graphics region is
controlled by the Display handler. Two cursors are maintained in

this configuration so that the screen segments can be managed
independently.

OPERATING SYSTEM C016555 —— Section S
56

To operate in split-screen mode, the Screen Editor must first be

opened and then the Display Handler must be opened using a
separate IOCB (with the split—screen option bit set in AUX1).

CI0O Function Descriptions

The device—specific characteristics of the standard CIO functions

(described earlier in this section) are detailed below:

OPEN

The device name is S, and the handler ignores any device number ani

filename specification, if included.

The handler supports the following options:

7 o
B et e e S s 2
AUX1 H ICISIWIR! H
e e e e
Where: € = 1 indicates to inhibit screen clear on OPEN.
8 = 1 indicates to set up a split-screen configuration (for

modes 1 through 8 only}.
R and W are the direction bits (read and write).

7 o)

e ek S SR S T

AUX2 ! { mode |
o oo o e = —

Where: mode is the screen mode (O through 11},

Note: If the screen mode selected is O, then the AUX1 C and
S options are assumed to be 0.

You share memory utilization with the Display Handler
information. Sharing is necessary because the Display Handler
dynamically allocates high address memory for use in generating
the screen display, and because different amounts of memory are
needed for the different screen modes. Prior to initiating an
OPEN command the variable APPMHI [QOOE] should contain the
highest address of RAM you need. The Screen handler

will open the screen only if no RAM is needed at or below that

address.

Upon return from a screen OPEN, the variable MEMTOP L[O2ES] will
contain the address of the last free byte at the end of RAM
memory prior to the screen—required memorTy.

OPERATING SYSTEM C016535 ~— Section 5

57

As a result of every OPEN command,

are altered:

the following screen variables

The text cursor is enabled (CRSINH = 0). The tabs are set to
the default settings (2 and 39). The color registers are set
to the default values (shown in Appendix H}.

Tabs are set at positions 7,15,23,31, 39,
47,55, 63,71,79, 87,95, 103,111, 119,

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

Returns data in the following screen mode dependent forms, where
each byte contains the data for one cursor position (pixel); there
is no facility for having the handler return packed graphics data.

TR R

+ -+

4 -+

+
t
t

+

7

0

o o e o e o e o e e e e e
ATASCII
s s S st S S

S
c
F

e —
zero
D s St St o

— ==t
zero
e s St S

e e e e
zero |

s et St

+
D
+

+

+

Figure 5-6 Graphics Mode

+

+ -+
+ 04

+
D
+

]
t

e

-~

——

+ -
o
+ -+

—

—

Mode O

Modes 1,2 -—- C = color/data
set.

D = truncated ATASCII.

]

Modes 3, 5,7 —— D color.

Modes 4, 4.8 —— D color.

Modes 9, 10,11 —— D = data.

3-11 GET Data Form

The cursor moves to the next position as each data byte is

returned. For mode O,
margins; for all other modes,

o8

the cursor will stay within the specified
the cursor ignores the margins.

OPERATING SYSTEM C016555 ~— Section 5

PUT CHARACTERS and PUT RECORD

The handler accepts display data in the following screen mode
dependent forms; there is no facility for the handler to receive
graphics data in packed form.

7 O

o e o e e o e e o

H ATASCI1I ! Mode O
e o e e e e e o =

e h s o TR R P

t € i D H Modes 1,2 -~ C = color/data
abal dad dof Lol Jot St ot sk o set,

D = truncated ATASCII.

B e S e S

H ? HERS I Modes 3,5,7 —— D = color.
B et S A s s 3
Bl ot ot S e S

H ? v Modes 4, 6,8 —— D = color.
B T N e s Lt T e
B T S St e s e 4

H ? H D H Modes 9,10,11 —— D = data.
Bk Lt T ST SR

Figure 5-7 Graphics Mode 3~11 PUT Data Form

NOTE: For all modes, if the output data byte equals $9B (EOL), that
byte will be treated as an EOL character; and i+ the output

data byte equals $7D (CLEAR) that byte will be treated as a
screen—clear character.

The cursor moves to the next cursor position as each data byte is
written. For mode O, the cursor will stay within the specified
margins; for all other modes, the cursor ignores the margins.

While outputting, the Display Handler monitors the keyboard to
detect the pressing of the [CTRL] 1 key combination. When this
occurs, the handler loops internally until that key combination
is pressed again: This effects a stop/start function that
freezes the screen display. Note that there is no ATASCII code
assoctiated with either the [CTRL] 1 key combination or the
start/stop function. The stop/start function can be controlled
only from the keyboard (or by altering database variable CH as
discussed in Appendix L, E4).

OPERATING SYSTEM C0146555 —- Section 5

GET STATUS

No handler action except to set the status to $01.

DRAW

This special command draws a simulated “"straight" line from the
current cursor position to the location specified in ROWCRS
E00C54]1 and COLCRS [0O055]. The color of the line is taken from the
last character processed by the Display Handler or Screen Editor.
To force the color, store the desired value in ATACHR L[O2FB]1. At
the completion of the command, the cursor will be at the location
specified by ROWCRS and COLCRS.

The value #for the command byte for DRAW is $11.

FILL

This special command fills an area of the screen defined by two
lines with a specified color. The command is set up the same as
in DRAW, but as each point of the line is drawn, the routine
scans to the right performing the procedure shown below (in
PASCAL notation):

WHILE PIXEL [ROW,COL] = O DO
BEGIN
PIXEL [ROW,COLY := FILDAT;
COL .= COL + 1;
IF COL > Screen right edge THEN COL := O
END;

An example of a FILL operation is shown below:

Where: ‘~’ represents the £ill operation.
‘+’ are the line points, with ‘+’ for the endpoints.

-- gset cursor and plot point.

-~ sef cursor and DRAW line.

set cursor and plot point.

-~ gset £ill data value, set cursor, and FILL.

PO~
1
I

OPERATING SYSTEM CO14555 —— Section 5
&0

FILDAT [O2FD] contains the fill data: and ROWCRS and COLCRS
contain the cursor coordinates of the line endpoint. The value
in ATACHR [O2FB] will be used to draw the line:; ATACHR always
contains the last data read or written, so if the steps above
are followed exactly, ATACHR will not have to be modified.

The value for the command byte for FILL is $12.

User—Alterable Data Base Variables

Certain functions of the Display Handler require you ¢o

examine and/or alter variables in the 05 database. The following
describes some of the more commonly used handler variables. (see
Appendix L, B1-55, for additional descriptfions).

Cursor Position

Two variables maintain the cursor position for the graphics
screen or mode O text screen. ROWCRS [0054] maintains the display
row number; and COLCRS LO055] maintains the display column
number. Both numbers range from O to the maximum number of
rows/columns, — 1. The cursor can be set outside of the defined
text margins with no ill effect. You can read and write this
region. The home position (0,0} for both text and graphics is the
upper left corner of the screen.

ROWCRS is a single byte. COLCRS is maintained at 2-bytes. with
the least significant byte being at the lower address.

When you alter these variables:, the screen representation
of the cursor will not move until the next I/0 operation
involving the display is performed.

Inhibit/Enable Visible Cursor Display

You can inhibit the display of the text cursor on the screen
by setting the variable CRSINH [02F0] to any nonzero valwue.
Subsequent I/0 will not generate a visible cursor.

You ctan enable the display of the text cursor by setting
CRSINH to zero. Subsequent I/0 will then genarate a visible
cursor.

Text Margins

The text screen has user—alterable left and right margins. The 08
sets these margins to 2 and 39. The variable LMARGN [00521
defines the left margin, and the variable RMARGN [00531 defines
the right margin. The leftmost margin value is O and the

DPERATING SYSTEM CD146555 —- Section S
61

rightmost margin value is 39

The margin values inclusively define the useable portion of the
screen for all operations in that you do not explicitly

alter the cursor location variables as described prior to this
paragraph.

Color Control

The 0OS updates hardware color registers using data from the 0OS
data base as part of normal Stage 2 VBLANK processing (see Section
&). Shown below are the data base variable names, the hardware
register names, and the function of each register. See Appendix H
for the mode dependent uses for the registers.

Data Base Hardware Function

COLORO COLPFO PFQO —— Playfield O

COLOR1 COLPF1 PF1 —-— Playfield 1.

COLOR2 COLPF2 PF2 —-— Playfield 2.

COLOR3 COLPF3 PF3 —— Playfield 3.

COLOR4 COLBK BAK —— Playtfield background.
PCOLRO COLPMO PMO -~ Player/missile O.
PCOLR1 caLpPmMi PM1 —— Player/missile 1.
PCOLR2 coLpPM2 PM2 —— Player/missile 2.
PCOLR3 COLPM3 PM3 -- Player/missile 3

Theory of Operation

The Display Handler automatically sets up all memory resources
required to create and maintain the screen display at OPEN time.
The screen generation hardware requires that two distinct data
areas exist for graphics modes: 1) a display list and 2} a
screen data region. A fthird data area must exist for text modes.
This data area defines the screen representation for each of the
text characters. Consult the ATARI Home Computer

Hardware Manual for a complete understanding of the material that
is to follow.

OPERATING SYSTEM CD16555 ——- Section 5
&2

The simplified block diagram below shows the relationships
between the memory and hardware registers used to set up a screen
display (without player/missile graphics) by the 0S5 Note that

the hardware registers allow for many other possibilities.

DATA BASE HARDWARE

VARIABLE REGISTER
(Updated every
VBLANK)

o o e +

{ MEMTOP H

+ +

H H

e e o e e e o e e +

+ - -

e o e s e e e e i +
P e + b ——————— + A o e o o e e + |
H Display { | SDLSTL | { DLISTL | |
H List t+ +m———— >+ +=+
= = { SDLSTH | i DLISTH !

o e e o e e e o o o e e + T +

; - +

! Screen Data {<{-- SAVMSC H

= = 4+ +

{ Graphics L H

i and/or HEE & +

H Text H

+ +

End of RAM memory

+— - - ———
H + + o e s + H
H { CHBAS=EQO {——~2{ CHBASE +~=——= +
H + + o e e o e e o +

e e e o S —— +

! Specials and! EQOO

{ Numbers H

B — +

{ Capital { E100

{ Letters H

{ Special ! E200

! Graphics i

+- +

{ Lowercase i E300

{ Letters H

T —— +

OPERATING SYSTEM CO16555 —— Section S

e + o o e e +
{ COLOR O | { COLPFO |
= =—=3! COLPF1 |
{ COLOR 1 | i COLPF2 |
! COLOR 2 | { COLPF3 |
¢ COLOR 3 | i COLBK |
{ COLOR 4 | e +
o o o e o e e e +

Figure 5-8 Screen Display Block Diagram

The following relationships are present in the preceding diagram:

1.

&4

Data base variables SDLSTL/SDLSTH contain the address of
the current display list. This address is stored in the
hardware display list address registers DLISTL and DLISTH
as part of the VBLANK process.

The display list itself defines the characteristics of the
screen to be displayed and points to the memory containing
the data to be displayed.

Data base variable CHBAS contains the MSB of the base address
of the character representations for the character data (text
modes only).

The default value for this variable is $EO. This variable
declares that the character representations start at memory
address EQOQO (the character set provided by the 05 in ROM]}.
Each character is defined as an 8XB bit matrix, requiring 8
bytes per character. 1024 bytes are required fo define the
largest set, since a character code contains up to 7
significant bits (set of 128 characters). The 0S5 ROM contains
the default set in the region from EQOO to E3JFF.

All character codes are converted by the handler from ATASCII
to an internal code (and vice versa), as shown belouw:

ATASCII INTERNAL
CODE CODE
00~-1F 40-5SF
20-3F 00-1F
40~5F 20-3F
&0-7F &0~-7F
B80~-9F CO~-DF
AQ~BF 80-9F
CO-DF AO-BF
EO~-FF EO-FF

OPERATING SYSTEM CO16555 -- Section S

The character set in ROM is ordered by internal code order. Three
considerations differentiate the internal code from the external
(ATASCII} code:

ATASCII codes for all but the special graphics characters were to
be similar to ASCII. The alphabetic, numeric, and punctuation
character codes are identical to ASCII.

In text modes 1 and 2 it was desired that one character subset
include capital letters, numbers, and punctuation and the other
character subset include lowercase letters and special graphics
characters.

The codes for the capital and lowercase letters were to be
identical in text modes 1 and 2.

Database variables COLORO through COLOR4 contain the current
ctolor register assignments. Hardware color registers receive
these values as part of the stage 1 VBLANK process, thus
providing synchronized color changes (see Appendix H).

Database variable SAVMSC points to the lowest memory address of
the screen data region. It corresponds to the data displayed at
the upper left corner of the display.

When the Display Handler receives an open command, it first
determines the screen mode from the OPEN IOCB. Then it allocates
memory from the end of RAM downward (as specified by data base
variable RAMTOP), +first for the screen data and then for the
display list. The screen data region is cleared and the display
list is created if sufficient memory is available. The display
list address is stored to the database.

OPERATING SYSTEM C016555 -— Section 5

65

Screen Editor (E:)}

The Screen Editor is a read/write handler that uses the Keyboard
Handler and the Display Handler to provide “"line—at-a-time" input
with interactive editing functions, as well as formatted output.

The Screen Editor supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null function)

See Keyboard Handler and Display Handler Sections for a
discussion of Screen Editor error statuses.

The Screen Editor is one of the resident handlers:, and

therefore has a set of device vectors starting at location
E400.

The Screen Editor is a program that reads key data from the
Keyboard Handler and sends each character to the Display Handler
for immediate display. The Screen Editor also accepts data from
you to send to the Display Handler, and reads data from the
Display Handler (not the Keyboard Handler) for you. In fact,

the Keyboard Handler, Display Handler, and the Screen Editor are
all contained in one monolithic hunk of code

Most of the behaviors already defined for the Keyboard Handler
and the Display Handler apply as well to the Screen Editor: The
discussions in this Section will be limited to deviations from
those behaviors: or to additional features that are part of the
Screen Editor only. The Screen Editor deals only with text data
(screen mode O). This Section also explains the split—-screen
configuration feature.

The Screen Editor uses the Display Handler to read data from
graphics and text screens on demand. You use the Screen

Editor to determine when the program will read Screen data, and
where upon the screen the data will be read from. You

first locates the cursor on the screen to determine the screen
area to be readi you then press the [RETURN] key fto determine
when the program will begin to read the data indicated.

OPERATING SYSTEM CO16555 —- Section 3
&b

When the [RETURN] key is pressed, the entire logical line within
that ¢the cursor resides is then made available to the calling
program: Trailing blanks in a logical line are never returned as
data, however. After all of the data in the line has been sent to
the caller (this can entail multiple READ CHARACTERS functions if
desired), an EOL character is returned and the cursor is

positioned to the beginning of the logical line following the one
Just read.

CID Function Descriptions

The device-specific characteristics of the standard CIO
functions are detailed below:

OPEN

The device name is E, and the Screen Editor ignores any
device number and filename specification, if included.

The Screen Editor supports the following option:

7 o

s Do S SN GETEE

AUX1 H tWIRY IFI
B T e el s 2

Where: R and W are the direction bits (read and write).
F = 1 indicates that a "forced read" is desired (see GET
CHARACTER and GET RECORD for more information).

CLOSE

No special handler actions.

GET CHARACTER and GET RECORD

Normally the Screen Editor will return data only when you press the
[RETURN] key at the keyboard. However, the “forced read" OPEN option
allows you to read text data without intervention. When you command a
READ operation: the Screen Editor will return data from the start of
the logical line in which the text cursor is located, and then

move the cursor to the beginning of the following logical line. A

read of the last logical line on the screen will cause the screen
data to scroll.

A special case occurs when characters are output without a
terminating EOL:. and then additional characters are appended to

OPERATING SYSTEM C016555 —-— Section 5
&7

that logical line from the keyboard. When the [RETURNI key is
pressed, only the keyboard entered characters are sent to the
caller, unless the cursor has been moved out of and then back
into the logical line, in that case all of the logical line will
be sent.

PUT CHARACTER and PUT RECORD

The Handler accepts ATASCII characters as one character per byte.
Sixteen of the 256 ATASCII characters are control codes; the EOL
code has universal meaning, but most of the other control codes
have special meaning only to a display or print device. The
Screen Editor processing of the ATASCII control codes is
explained below:

CLEAR ($7D} —— The Screen Editor clears the current display of
all data and the cursor is placed at the home position (upper
left corner of the screen).

CURSOR UP ($1C) —~— The cursor moves up by one physical line. The
cursor will wrap from the top line of the display to the bottom
line.

CURSOR DOWN ($1D} —— The cursor moves down by one physical line.
The cursor will wrap from the bottom line of the display to the
top line.

CURSOR LEFT ($1E} ~—— The cursor moves left by one column. The
cursor will wrap from the left margin of a line to the right
margin of the same line.

CURSOR RIGHT (#$1iF) —— The cursor moves right by one column. The
cursor will wrap from the vright margin of a line to the left
margin of the same line.

BACKSPACE ($7E) —— The cursor moves left by one column (but never
past the beginning of a logical line), and the character at that
new position is changed to a blank (£20).

OPERATING SYSTEM C016555 ~— Section 5
&8

SET TAB ($9F) -~ The Screen Editor establishes a tab point at the
logical line position at that the cursor is residing. The logical
line tab position is not synonymous with the physical line column
position since the logical line can be up $to 3 physical lines in
length. For example, tabs can be set at the 15th, 30th, 45th,
60th and 75th character positions of a logical line as shown
below:

02 9 19 29 39 Screen column #.
——f - + + ———— R L/R = margins.

X x—= T ———— T A logical line.
xx -7 T e e o e T x = inaccesible
Xx— - - columns.

Note the effect of the left margin in defining the limits of the
logical line.

The Handler default tab settings are shown below:

o2 ? 19 29 39 Screen column #,
-—L + ——— -+ --R L/R = margins.
xxT— T - T =T T --T A logical line.
X X o T oo oo e T T Tomm———— T x = inaccesible
xx -=T --=T e T e T T columns.
CLEAR TAB ($9E) —— The Screen Editor clears the current cursor

position within the logical line from being a tab point. There is
no “clear all tab points" facility provided by the Handler.

TAB ($7F) —-— The cursor moves to the