
ATARI GEMDOS

REFERENCE MANUAL

April 4, 1986

TABLE OF CONTENTS

Introduction

Calling GEMDOS
File Naming
File Operations
Processes
Extended Vectors
Error Handling

GEMDOS Calls

Executable File Format
Disk Structure

."

-/text/gemdos/intro Introduction (1)

INTRODUCTION

THIS IS A PRELIMINARY
DOCUMENT. IT MAY CONTAIN

INACCURACIES AND MISINFORMATION.
PLEASE REPORT ANY BUGS IN

THIS DOCUMENT TO ATARI.

This is the Atari GEMDOS User's Manual. It describes
the internals and use of GEMDOS on the Atari ST. This
manual is divided into three parts; a tutorial and introduc
tion for beginning users, a reference manual for application
writers, and appendices for GEMDOS wizards.

The GEMDOS Tutorial is a gentle introduction to the
basics of GEMDOS. Its intention is to get beginning users
started as quickly as possible. It gives example programs,
designed to exercise most of GEMDOS, which combine into a
simple command1ine interface, or "shell". The tutorial also
covers common pitfalls and useful shortcuts.

The GEMDOS Reference Manual is the app1ication-writer's
bible. It covers GEMDOS' calling conventions, file and han
dle manipulation, process execution, and every GEMDOS call.

The Appendices contain nitty-gritty details and hints
for those who have to push GEMDOS to the limit. They are
for application writers (and the merely curious) who have
"need to know" about obscurities in the system.

To use this manual effectively readers should be fami
liar with C and 68000 assembly language. Familiarity with
MSDOS, Unix[l], and the standard C runtime library will also
help.

[1] Unix ist ein eingetragenes Warenzeichen der Bell La
boratories.

5/22/86 Dyer Atari GEMDOS

-/text/gemdos/calling Calling GEMDOS (1)

CALLING CONVENTIONS
GEMDOS uses the Alcyon (or Digital Research) C calling

conventions. Note that these conventions may differ from
other 68000 C compilers. If you are using another C com
piler it might not be possible to call GEMDOS directly;
please check your compiler's documentation for compatibil
ity.

Arguments are pushed on the stack, in reverse order of
their declaration. The GEMDOS function number is pushed
last, as a WORD. To do the call to GEMDOS, a 68000 "TRAP
#1" instruction is executed. The trap can be made with the
68000 in user or supervisor mode.

NOTE
Applications running in supervisor mode may be
forced back into user mode after making a GEM AES
call.

Stack Snapshot
(Just Before a GEMDOS Trap)

stack contents
(sp) WORD function number

2(sp) argument 1
X(sp) argument 2
Y(sp) argument 3

· .
· . . . and so on . . .
· .

Results are returned in DO. Registers DO-D2 and AO-A2
can be modified; registers D3-D7 and A3-A7 will always be
preserved. The caller is responsible for popping the argu
ments (including the function number) off of the stack after
the call.

The Alcyon C compiler does not generate TRAP instruc
tions, so most applications use a small assembly-language
binding. It typically looks like:

4j4/86 Dyer Atari GEMDOS
/'

c
-/text/gemdos/calling Calling GEMDOS

text
*+
* GEMDOS binding for Alcyon C

NOTE: *
*
*
*
* *-

This binding is NOT re-entrant, and cannot
be shared by foreground and interrupt code.

.globl
gemdos:

- move.l
trap
move.l
rts

bss
t1sav: ds.l

_gemdos

(sp)+,tlsav
#1
t1sav,-(sp)

1

; save ret addr
call GEMDOS

; restore ret addr
; do "real" return

; saved ret addr

(2)

4/4/86 Dyer Atari GEMDOS

-/text/gemdos/fi1enames File Names (1)

FILENAMES
A filename consists of a drive specification followed

by a pathname and a simple filename. A drive specification
consists of a single letter, A through P, followed by a
colon; if the specification is missing, the default drive is
used. A pathname consists of a list of simple filenames
separated with backslashes. If the pathname starts with a
backs1ash it is anchored in the root directory, otherwise it
is anchored in the current directory. If the pathname is
missing, the current directory is used. A simple filename
consists of one to eight characters, optionally followed by
a period and zero to three more characters.

Legal characters in filenames and pathnames include the
alphabet (A-Z), digits (0-9), and most punctuation.
Periods, colons, backslashes, slashes, question-marks,
asterisks, control characters (including NULs), and charac
ters greater than Ox7f may never appear in filenames.
Lowercase letters are converted to uppercase.

A full file specification may not exceed 125 charac
ters.

Legal Characters in Filenames
letters A-Z, a-z

numbers 0-9
(underscore)

!-@ # $ % - & ()
+ - = . , " ,

< > I [] { }

In a pathname, "." refers to the current directory and
" " refers to the current directory's parent directory.
Thus, the paths:

" •. \ •• \foo"
and

".\.\.\.\.\.\ .. \.\.\ .. \.\foo"

refer to the same file two directories up from the current
one. (There is no parent directory at the root.)

There are three character devices. Only the calls
Fread(), Fwrite() Fopen(), Fcreate(), and Fc10se(), and the
standard I/O functions work on them:

4/4/86 Dyer Atari GEMDOS

c
, -/text/gemdos/filenames File Names (2)

name handle device
CON: , con: OxOffff (-1) system console
AUX: , aux: OxOfffe (-2) RS232 port
PRN: , prn: OxOfffd (-3) printer port

An Fopen() or Fcreate() calIon one of the character
devices will return a character device handle. The handle
is WORD negative, but not LONG negative.

4/4/86 Dyer Atari GEMDOS

-/text/gemdos/fileops File Operations (1)

FILE OPERATIONS
GEMDOS places no restrictions on what a file may con

tain. Most applications assume that text files contain
lines separated with carriage-return 'linefeeds, with a
control-Z indicating the end of file. The format of execut
able files is documented in the Appendix.

The GEMDOS calls Fcreate() and Fopen() return small,
positive l6-bit integers, called handles, that refer to open
files. A file may be opened for reading only, for writing
only, or for reading and writing. Closing the file relinqu
ishes the handle, allowing the handle to be re-used.

There are three kinds of handles. Standard handles
range from 0 to 5, and may refer to character devices or
files. Non-standard handles start at 6, and refer only to
files. Character handles refer only·to character devices;
the handle numbers range from Oxfffd to Oxffff, which are
WORD negative, but not LONG negative.

When a process does a Pexec() call the child process
inherits the parent's standard handles. Handle 0 is often
referred to as "standard input" or "standard output"; nor
mally it is connected to the console, CON:. With Fdup() and
Fforce() calls it is possible to redirect a process's stan
dard I/O to or from a file or another character device.

When a media change occurs, all files open on the disk
that was removed are forced closed by GEMDOS.

BUGS
There is no concept of "standard error" output.

4/4/86 Dyer Atari GEMDOS

/.

-/text/gemdos/processes Processes (1)

PROCESSES
Although GEMDOS does not support multitasking, it is

possible to execute processes in a subroutine-like manner.
A process may "call" another with Pexec(); the child process
will terminate with a WORD return code.

A process owns any files it opens and any memory it
allocates. Open files are closed and memory is deallocated
when the process terminates.

Before a process is actually terminated GEMDOS will
call extended vector Oxl02. This allows applications to
make a "last ditch" effort to recover from error conditions,
or to deinstall themselves.

The memory model used by GEMDOS is similar to MSDOS's.
A process runs in the TPA (Transient Program Area). The
first OxlOO bytes of the TPA is the process's basepage,
which contains process-specific information.

Basepage Structure

offset name description
OxOO p_lowtpa -> base of TPA
Ox04 p_hitpa -> end of TPA
Ox08 p_tbase base of text segment
OxOc p_tlen size of text segment
OxlO p_dbase base of data segment
Ox14 p_dlen size of data segment
Ox18 p_bbase size of BSS segment
OxIc p blen base of BSS segment
Ox20 p=dta Disk Transfer Address (DTA)
Ox24 p parent -> parent's basepage
Ox28 (reserved)
Ox2c p env -> enviroment string
Ox80 p:cmdlin commandline image

'p lowtpa' points to the basepage (to itself).
'p hitpa' points to the TPA's limit, to the first unusable
location. 'p tbase', 'p tlen' and so on contain the start
ing addresses and sizes-of the text, data and BSS segments.
'p parent' points to the process's parent process's
basepage. 'p env' points to the enviroment string [see
Pexec()] . -

The first byte of the commandline image contains the
number of characters in the commandline. The second through
Nth bytes contain the image. The image is not guaranteed to
be nUll-terminated. ---

4/4/86 Dyer Atari GEMDOS

-/text/gemdos/processes Processes (2)

An application receives control at the starting address
of its text segment. The second longword on the stack,
4(sp), will contain a pointer to the process's basepage.
Normally all free memory is allocated to a new process; if
the process is going to use Malloc() or Pexec() then it must
relocate its stack and call Mshrink() to release memory back
to the system. The stack segment starts near the highest
TPA location and grows toward the BSS.

4/4/86 Dyer Atari GEMDOS

c::

(c

-/text/gemdos/vectors Extended vectors (1)

EXTENDED VECTORS
The 68000 uses vectors Ox02 through Oxff, corresponding

to absolute locations OxOOOO through Ox03fc. GEMDOS adds
eight logical vectors, numbered OxlOO through Oxl07. The
absolute locations of the logical vectors is undefined; it
is up to the BIOS to allocate storage for them.

Logical Vector Assignments

vector
OxlOO
OxlOl
Oxl02

Oxl03 - Oxl07

OxlOO Timer Tick

use
timer tick
critical error handler
terminate (AC) handler
reserved for future use

This vector is called periodically (at 50hz) by
the BIOS to maintain the system's date/time-of-day
clock and do housekeeping. The first word on the
stack, 4(sp), contains the number of milliseconds from
the last timer tick interrupt.

To intercept the timer vector, use the BIOS call
to get and set the vector. Each handler should execute
its own code first, and then follow the old vector.
Interrupt handlers should be short and sweet; dawdling
here will affect system performance.

All registers (except SP and USP) are modified by
GEMDOS. The BIOS takes responsibility for saving
registers DO-D7/AO-A6; therefore handlers chained to
this interrupt do not have to save and restore regis
ters.

OxlOl Critical Error Handler
The Critical Error Handler is called by the BIOS

to handle certain errors (rwabs() disk errors and media
change requests.) It allows the application to handle
the errors as it sees fit.

The first word on the stack, 4(sp), is an error
number. Depending on the error, other arguments may
also be on the stack. The critical error handler
should preserve registers D3-D7/A3-A6. When the
handler returns, DO contains a result code:

4/4/86 Dyer Atari GEMDOS

-/text/gemdos/vectors

value in DO.L
Ox00010000
OxOOOOOOOO
OxffffffXX

Extended Vectors (2)

meaning
retry
pretend there wasn't an error (ignore)
abort with an error

The default critical error handler simply returns
-1.

Oxl02 Terminate (-C) Handler
Before a process is actually terminated, GEMDOS

calls the terminate vector. If the terminate vector
points to an RTS (the default case), the process will
be terminated. If the application does not wish to be
terminated it should do a longjump (or its equivalent)
to an appropriate handler.

4/4/86 Dyer Atari GEMDOS

""

-/text/gemdos/errors Error Handling (I)

ERROR NUMBERS
All error numbers are negative. Two ranges of errors are
defined; BIOS errors range from -1 to -31 and GEMDOS errors
range from -32 to -127.

name
E OK
ERROR
ED RVNR
EUNCMD
E CRC
EBADRQ
E SEEK
EMEDIA
ESECNF
EPAPER
EWRITF
EREADF

EWRPRO
E CHNG
EUNDEV
EBADSF
EOTHER

number
o

-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11
-12
-13
-14
-15
-16
-17

BIOS Error Codes

description
OK (no error)
Error
Drive not ready
Unknown command
CRC error
Bad request
Seek error
Unknown media
Sector not found
Out of paper
Write fault
Read fault
(unused)
Write on write-protected media
Media change detected
Unknown device
Bad sectors on format
Insert other disk (request)

'EOTHER' is really a request from the BIOS to insert
another disk in drive A:. The "virtual" disk number (0 or
1) is at 6(sp). This feature is used to fake GEMDOS into
thinking that a single drive system really has two drives.

4/4/86 Dyer Atari GEMDOS

-/text/gemdos/errors Error Handling (2)

name
EINVFN
EFILNF
EPTHNF
ENHNDL
EACCDN
EIHNDL
ENSMEM
EIMBA
EDRIVE
ENMFIL
ERANGE
EINTRN
EPLFMT
EGSBF

4/4/86 Dyer

GEMDOS Error Codes
(numbers in parenthesis

are MSOOS-equivalent error#s)

number descri tion
1) Invalid function number

-33 (2) File not found
-34 (3) Path not found
-35 (4) Handle pool exhausted
-36 (5) Access denied
-37 (6) Invalid handle
-39 (8) Insufficient memory
-40 (9) Invalid memory block address

-46 (15) Invalid drive specification
-47 (18) No more files

-64 Range error
-65 GEMDOS internal error
-66 Invalid executable file format
-67 Memory block growth failure

Atari GEMDOS

(-\
,-/ GEMDOS FUNCTIONS BY NUMBER

OxOO PtermO - Terminate Process
OxOl Cconin - Read character from Standard Input
Ox02 Cconout - Write Character to Standard Output
Ox03 Cauxin - Read Character from Standard AUX:
Ox04 Cauxout - Write Character to Standard AUX:
OxOS Cprnout - Write Character to Standard PRN:
Ox06 Crawio - Raw I/O to Standard Input/Output
Ox07 Crawcin - Raw Input from Standard Input
OxOS Cnecin - Read Character from Standard Input, No Echo
Ox09 Cconws - Write String to Standard Output
OxOA Cconrs - Read Edited String from Standard Input
OxOB Cconis - Check status of Standard Input
OxOE Dsetdrv - Set Default Drive
OxlO Cconos - Check Status of Standard Output
Oxll Cprnos - Check Status of Standard PRN:
Oxl2 Cauxis - Check Status of Standard AUX: Input
Oxl3 Cauxos - Check Status of Standard AUX: Output
Oxl9 Dgetdrv - Get Default Drive
OxlA Fsetdta - Set DTA (Disk Transfer Address)
Ox20 Super - Get/Set/Inquire Supervisor Mode
Ox2A Tgetdate - Get Date
Ox2B Tsetdate - Set Date
Ox2C Tgettime - Get Time
Ox2D Tsettime - Set Time
Ox2F Fgetdta - Get DTA (Disk Transfer Address)
Ox30 Sversion - Get Version Number
Ox3l Ptermres - Terminate and Stay Resident
Ox36 Dfree - Get Drive Free Space
Ox39 Dcreate - Create Directory
Ox3A Ddelete - Delete Directory
Ox3B Dsetpath - Set Current Directory
Ox3C Fcreate - Create File
Ox3D Fopen - Open File
Ox3E Fclose - Close File
Ox3F Fread - Read From File

. Ox40 Fwri te - Write To File
Ox4l Fdelete - Delete File
Ox42 Fseek - Seek File Pointer
Ox43 Fattrib - Get/Set File Attributes
Ox45 Fdup - Duplicate File Handle
Ox46 Fforce - Force File Handle
Ox47 Dgetpath - Get Current Directory
Ox48 Malloc - Allocate Memory
Ox49 Mfree - Release Memory
Ox4A Mshrink - Shrink Size of Allocated Block
Ox4B Pexec - Load/Execute Process
Ox4C Pterm - Terminate Process
Ox4E Fsfirst - Search First
Ox4F Fsnext - Search Next
Ox56 Frename - Rename File
Ox57 Fdatime - Get/Set File Timestamp

-/text/gemdos/funcs File System Calls

GEMDOS FUNCTIONS BY NAME
Ox03 Cauxin - Read Character from Standard AUX:
Ox12 Cauxis - Check Status of Standard AUX: Input
Ox13 Cauxos - Check Status of Standard AUX: Output
Ox04 Cauxout - Write Character to Standard AUX:
Ox01 Cconin - Read character from Standard Input
OxOB Cconis - Check Status of Standard Input
Ox10 Cconos,- Check Status of Standard Output
Ox02 Cconout - Write Character to Standard Output
OxOA Cconrs - Read Edited String from Standard Input
Ox09 Cconws - Write String to Standard Output

(2)

Ox08 Cnecin - Read Character from Standard Input, No Echo
Ox11 Cprnos - Check Status of Standard PRN:
OxOS Cprnout - Write Character to Standard PRN:
Ox07 Crawcin - Raw Input from Standard Input
Ox06 Crawio - Raw I/O to Standard Input/Output
Ox39 Dcreate - Create Directory
Ox3A Ddelete - Delete Directory
Ox36 Dfree - Get Drive Free Space
Ox19 Dgetdrv - Get Default Drive
Ox47 Dgetpath - Get Current Directory
OxOE Dsetdrv - Set Default Drive
Ox3B Dsetpath - Set Current Directory
Ox43 Fattrib - Get/Set File Attributes
Ox3E Fclose - Close File
Ox3C Fcreate -Create File
OxS7 Fdatime - Get/Set File Timestamp
Ox41 Fdelete - Delete File
Ox4S Fdup - Duplicate File Handle
Ox46 Fforce - Force File Handle
Ox2F Fgetdta - Get DTA (Disk Transfer Address)
Ox3D Fopen - Open File
Ox3F Fread - Read From File
OxS6 Frename - Rename File
Ox42 Fseek - Seek File Pointer
Ox1A Fsetdta - Set DTA (Disk Transfer Address)
Ox4E Fsfirst - Search First
Ox4F Fsnext - Search Next
Ox40 Fwrite - Write To File
Ox48 Malloc - Allocate Memory
Ox49 Mfree - Release Memory
Ox4A Mshrink - Shrink Size of Allocated Block
Ox4B Pexec - Load/Execute Process
Ox4C Pterm - Terminate Process
OxOO PtermO - Terminate Process
Ox31 Ptermres - Terminate and Stay Resident
Ox20 Super - Get/Set/Inquire Supervisor Mode
Ox30 Sversion - Get Version Number
Ox2A Tgetdate - Get Date
Ox2C Tgettime - Get Time
Ox2B Tsetdate - Set Date
Ox2D Tsettime - Set Time

4/10/86 Dyer Atari GEMDOS

/

-/text/gemdos/funcs File System Calls (3)

10XOO PtermO - Terminate Process I
void PtermO()

Terminate this process, closing all files it
opened and releasing any memory it allocated. Return
an exit code of OxOOOO to the parent process.

1 Cconin - Read character from Standard Input

LONG Cconin

Read character from the standard input (handle 0). If
the standard input device is the console, the longword re
turned in DO contains both the ASCII and the console scan
code:

31 •• 24 23 .• 16 15 .. 8 7 .. 0
OxOO or scancode OxOO ASCII

shift bits or OxOO char

The function keys (Fl through FlO, HELP, UNDO, etc.)
return the ASCII code OxOO, with appropriate scancode
values; see the GEM/VOl manual for keyboard scancode assign
ments. The ST BIOS is capable of placing the keyboard
shift-key status in bits 24 .. 31; see the BIOS Programmer's
Guide for further details.

BUGS
Does not return any indication of end of file.
Control-C is not recognized.
There is no way to tell if standard input is a character
device or a file.
There should be some way to type all possible 256 codes from
the keyboard.

4/10/86 Dyer Atari GEMDOS

.5"

-/text/gemdos/funcs File System Calls

Cconout - Write Character to Standard Output

void Cconout c
WORD c;

(4)

Write the character 'c' to the standard output (handle
0). The high eight bits of 'c' are reserved and must be
zero. Tabs are not expanded.

3 Cauxin - Rea Character from Standard AUX:

WORD Cauxin

Read character from handle 1 (normally the serial port,
AUX:).

BUGS
This function causes RS232 flow-control to fail; applica
tions should use the BrOS character device calls to avoid
losing received characters.

Cauxout - Write Character to Standard AUX:

void Cauxout c
WORD c;

Write 'c' to standard handle 1 (normally AUX:, the
serial port). The high eight bits of 'c' are reserved and
must be zero. Tabs are not expanded.

BUGS
This function causes RS~32 flow-control to fail; appli

cations should use the BrOS character device calls to avoid
losing transmitted characters.

4/10/86 Dyer Atari GEMDOS

c

(

-/text/gemdos/funcs File System Calls (5)

Ox05 Cprnout - Write Character to Standard PRN:

void Cprnout(c)
WORD c;

Write 'c' to handle 2 (normally PRN:, the printer
port). The high eight bits of 'c' are reserved and must be
zero. Tabs are not expanded

Crawio - Raw I 0 to Standard Input/Output

LONG Craw~o(w)
WORD w;

If 'w' is not OxOOFF, write it to the standard output.
Tabs are not expanded

Otherwise, if' 'w' equals OxOOff, read a character from
the standard input. OxOOOO is returned if no character is
available.

BUGS
Because of the way this function is defined, 'Oxff' cannot
be written to the standard output with this function.
Cannot distinguish between OxOO and the end of the file.

x07 Crawcin - Raw Input from Standard Input

LONG Crawcin()

Read a character from the standard input (handle 0).
If the input device is CON: no control character processing
is done and the character is not echoed.

BUGS
No end of file indication.

4/10/86 Dyer Atari GEMDOS

S9

-/text/gemdos/funcs File System Calls (6)

Cnecin - Read Character from Standard Input, No Echo

LONG Cnecin()

Read character from the standard input. If the input
device is CON:, no echoing is done, although control charac
ters are interpreted.

9 Cconws - Write String to Standard Output

void Cconws
char *str;

Write a null-terminated string, starting at 'str', to
the standard output.

A Cconrs - Read Edited String from Standard Input

void Cconrs
char *buf;

Read string from the standard input, handling
line editing characters. The editing characters are:

Char
<return>, J

-H, <rub>
-U, -X

-R
-C

Function
End the line
Kill last character
Kill entire line
Retype line
Terminate the process

common

The first
data part of
'buf' is set to
'buf+2' through

character of 'buf' indicates the size of the
the buffer. On return, the second byte of
the number of characters read, and locations
'buf+2+buf[l], contain the characters.

The string is not guaranteed to be nUll-terminated.

BUGS
Hangs on end-of-file.

4/10/86 Dyer Atari GEMDOS

. -. ("

-/text/gemdos/funcs File System Calls (7)

B Cconis - C eck Status of Standard Input

WORD Cconis

Return OxFFFF if a character is available on the stan
dard input, OxOOOO otherwise.

rv - set Default Drive

LONG Dsetdrv
WORD drv:

set the default drive to the zero-based drive number
"drv' (ranging from 0 to 15, A: to P:). Return a bit-string
of known drives (bit 0 = A, bit 1 = B, etc.)

A "known drive" is one on which a directory has been
used.

BUGS
GEMDOS only supports 16 drives (bits 0 through 15).

Future systems will support 32 drives.

conos - C

WORD Cconos

Return OxFFFF if the console is ready to receive a
character. Return OxOOOO if the console is NOT ready.

BUGS
CON: and files are always ready, so why check?

x11 Cprnos - Chec

WORD Cprnos

Return OxFFFF if PRN: is ready to receive a character,
OxOOOO if it isn't.

4/10/86 Dyer Atari GEMDOS

'"

-/text/gemdos/funcs File System Calls (8)

Cauxis - Check Status of Standard AUX: Input

WORD Cauxis()

Return OxFFFF if a character is available on AUX: (han
dle 1), OxOOOO if not.

Cauxos - Check Status of Standard AUX: Output

WaR Cauxos(

Return OxFFFF if AUX: (standard handle 1) is ready to
accept a character, OxOOOO if not.

Default Drive

WORD Dgetdrv

Return the current drive number, 0 through 15.

x1A Fsetdta - Set DTA Disk Transfer Address

void Fsetdta(addr
char *addr;

Set the DTA to 'addr'. (The DTA is used only by the
functions Fsfirst() and Fsnext().)

4/10/86 Dyer Atari GEMDOS

-/text/gemdos/funcs File System Calls

x20 Super - Get/Set/Inquire Supervisor Mode

LONG Super(stack
WORD *stack;

(9)

If 'stack' is -IL (OxFFFFFFFF) return OxOOOO if the
processor is in user mode, or Ox0001 if the processor is in
supervisor mode.

Otherwise, if the processor is in user mode,
with the processor switched to supervisor mode. If
is NULL (OxOOOOOOOO) then the supervisor stack will
same as the user stack before the call. Otherwise
pervisor stack will be set to ·stack'.

return
'stack'
be the
the su-

If the processor is in supervisor
processor switched back to user mode.
value of the supervisor stack that was
call to the function.

mode, return with the
. stack , should be the
returned by the first

NOTE
The original supervisor stack value MUST be re

stored before the process terminates. Failure to do so
will result in a system crash.

A Tgetdate - Get

WORD Tgetdate)

Return the current date, in DOS format:
15 9 8 5 4

year since

RETURNS
Bits:

O .. 119
1980 month

1 •. 12

0 .• 4 contain the day, ranging 1 .. 31.
5 •• 8 contain the month ranging 1 •. 12.

day
1 .. 31

9 •• 15 contain the year (since 1980) ranging 0 .. 119.

4/10/86 Dyer Atari GEMDOS

o

-/text/gemdos/funcs File System Calls (10)

WORD Tsetdate date)
WORD date;

Set the current date to 'date', which is in the format
described in Tgetdate().

RETURNS
o on valid date;
ERROR on an obviously screwed-up date.

BUGS
GEMDOS is not picky about date parameters; for in

stance, it likes Feb 31st

GEMDOS does NOT let the BIOS know that the date has
been changed.

x C Tgett~me - Get

WORD Tgettime)

Return the current time in DOS format:
15 11 10 5 4

RETURNS

hour
O •• 23

minute
O •• 59

second
o .. 29

Bits 0 .• 4 contain the second divided by 2, 0 •• 29.
Bits 5 .• 10 contain the minute, 0 •• 59.
Bits 11 •. 15 contain the hour, 0 •• 23.

o

4/10/86 Dyer Atari GEMDOS

)

... (.......•

-/text/gemdos/funcs File System Calls (11)

\OX2D Tsettime - Set Time \

WORD Tsettime(time)
WORD time; .

Set the current time to 'time', which is in the format
described in Tgettime().

RETURNS

BUGS

o if GEMDOS liked the time;
ERROR if it didn't.

GEMDOS does NOT let the BIOS know that the time has
been changed.

F Fgetdta - Get DTA (Disk Transfer Address)

LONG Fgetdta()

Returns the value of the current DTA, a pointer used by
the functions Fsfirst() and Fsnext().

Ox30 Sversion - Get Version Number

WORD Sversion)

Return GEMDOS's version number (in byte-reversed for
mat). The high byte contains the minor version number, the
low byte contains the major version number.

NOTE
The 5/29/85 (first disk-based) and the 11/20/85 (first

ROM-based) release of GEMDOS had the version number Ox1300.

GEMDOS version numbers and TOS versions numbers are not one
and the same. See the ST BIOS REFERENCE MANUAL for about
TOS version numbers.

4/10/86 Dyer Atari GEMDOS

-/text/gemdos/funcs File System Calls

Ox3l Ptermres - Terminate and Stay Resident

void Ptermres keepcnt, retcode
LONG keepcnt;
WORD retcode;

(12)

Terminate the current process, keeping some of it in
memory. 'keepcnt' is the amount of the memory belonging to
the process to keep, including and starting at the 256-byte
basepage. 'retcode' is the exit code that is returned to the
parent process.

Memory the process has allocated (in addition to the
TPA) will NOT be released.

Ptermres() will never return.

BUGS
Open files are closed as part of termination.

Dfree - Get Drive Free Space

void Dfree buf, driveno)
LONG *buf;
WORD driveno;

Get disk
'driveno' and
'buf' :

allocation information about the drive
store it into four longwords starting at

BUGS

buf + 0

buf + 4

buf + 8

buf + 12

of free clusters

total # of clusters

sector size (in bytes)

cluster size (in sectors)

Incredibly slow (5-10 seconds) on a hard disk.

4/10/86 Dyer Atari GEMDOS

(~

-/text/gemdos/funcs File System Calls (13)

IOX39 Dcreate - Create Directory I

WORD Dcreate(pathname)
char *pathname;

Create a directory. 'pathname' points to a null
terminated string specifying the pathname of the new direc
tory.

RETURNS
o on success;
ERROR or appropriate error number on failure.

A Ddelete - Delete Directory

WORD Ddelete pathname)
char *pathname;

Delete a directory (it must be empty, except for the
special directories "." and " .. "). 'pathname' points to a
null-terminated string specifying the pathname of the direc
tory to remove.

RETURNS
o on success;
ERROR or appropriate error number on failure.

Ox3B Dsetpath - Set Current Directory

Set the current to 'path', a null-terminated string.
If the path begins with a drive letter and a colon, set the
current directory on the specified drive.

A current directory is kept for each drive in the sys-
tern.

RETURNS
o for success;
ERROR or an appropriate error number.

4/10/86 Dyer Atari GEMDOS

-/text/gemdos/funcs

x3C Fcreate - Create File

WORD Fcreate name, attribs)
char *fname;
WORD attribs;

File System Calls (14)

Create a file 'fname' and return a write-only non
standard handle to it. The attribute word is stored in the
directory entry; its bit assignments are:

I

RETURNS

mask
OxOl
Ox02
Ox04
Ox08

description
file set to read-only
file hidden from directory search
file set to "system"
file contains ll-byte volume label

a positive number, a handle, or:
ERROR or an appropriate error number.

BUGS
Useless feature department: If the 'read-only' bit is

set, a write-only handle is returned, and the handle can't
be written to.

Ideally, only one volume label
volume's root directory. GEMDOS
though, which could cause confusion.

4/10/86 Dyer

is permitted in the
doesn't enforce this,

Atari GEMDOS

(

-/text/gemdos/funcs

Ox3D Fopen - Open File

WORD Fopen fname, mode)
char *fname;
WORD mode;

File System Calls (15)

Open the 'fname' according to 'mode', and return a
non-standard handle to it. The open mode can be:

mode description
0 read only
1 write only
2 read or write

RETURNS
a positive number, a handle, or:
a negative error number.

E Fclose - Close File

WORD Fclose handle)
WORD handle;

Close the file associated with the handle.

RETURNS
o on success;
ERROR or an appropriate error number.

IOX3F Fread - Read From File I

LONG Fread(handle, count, buffer)
WORD handle;
LONG count;
char *buffer;

Read from a file. From the file referred to by 'han
dle' read • count , bytes into memory starting at 'buffer'.

RETURNS
the number of bytes actually read, or:
o on end of file, or:
a negative error number.

4/10/86 Dyer Atari GEMDOS

-/text/gemdos/funcs File System Calls

Fwrite - Write To File

LONG Fwrite handle, count, buffer)
WORD handle;
LONG count;
char *buffer;

(16)

Write to a file. Write 'count' bytes from memory,
starting at 'buffer', to the file referred to by 'handle'.

RETURNS
the number of bytes actually written, or:
a negative error number.

1 Fdelete - Delete File

WORD Fdelete(name)
char *fname;

Delete the file 'fname'.

RETURNS
0, success, or:
a negative error number.

4/10/86 Dyer Atari GEMDOS

./

-/text/gemdos/funcs File System Calls

IOX42 Fseek - Seek File Pointer I

LONG Fseek(offset, handle, seekmode)
LONG offset;
WORD handle;
WORD seekmode;

(17)

Set the current position within the file associated
with 'handle'. 'offset' is a signed number; positive values
move toward the end of the file, and negative values move
toward its beginning. 'seekmode' can be:

seekmode Moves offset bytes . . .
0 from beginning of file
1 relative to current position
2 from end of file

RETURNS
The current, absolute position in the file.

IOX43 Fattrib - Get/Set File Attributes I

WORD Fattrib(fname, wflag, attribs)
char *fname;
WORD wflag;
WORD attribs;

Get or set a file's attribute b~ts. 'fname' points to
a null-terminated pathname. If 'wflag' is 1, set the file's
attributes from 'attribs' (no return value). If 'wflag' is
0, return the file's attributes.

The attribute bits are:

BUGS

mask
OxOl
Ox02
Ox04
Ox08
OxlO
Ox20

description
file is read-only
file hidden from directory search
file set to "system"
file contains II-byte volume label
file is a subdirectory
file has been written to and closed.

The "archive" bit, Ox20, doesn't seem to work as adver
tised.

4/10/86 Dyer Atari GEMDOS

71

-/text/gemdos/funcs File System Calls

Ox45 Fdup - Duplicate File Handle

WORD Fdup handle)
WORD handle;

(18)

The handle 'handle' must be a standard handle (0 .. 5);
Fdup() returns a non-standard handle (greater than or equal
to 6) that refers to the same file.

RETURNS
a handle, or:
EIHNDL - not a standard handle
ENHNDL - no more standard handles available

Force - Force File

Fforce st h, nonstdh
WORD stdh;
WORD nonstdh;

Force the standard handle 'stdh' to point to the same
file or device as the non-standard handle 'nonstdh.'

RETURNS
OK, or:
EIHNDL - invalid handle

7 Dgetpath - Get Current Directory

voi
char
WORD

The current directory for the specified drive 'driveno'
is copied into 'buf'. The drive number is l-based: 0 speci
fies the default drive, 1 specifies A:, and so on.

BUGS
The maximum size of a pathname is not limited by the

system; it is up to the application to provide enough buffer
space. 128 bytes should be enough for 8 or 9 levels of sub
directories.

4/10/86 Dyer Atari GEMDOS

c
-/text/gemdos/funcs File System Calls (19)

\OX48 Malloc - Allocate Memory I
LONG Malloc(amount)
LONG amount;

If "amount' is -IL ($FFFFFFFF) return the size of the
largest free block in the system.

Otherwise, if "amount' is not -lL, attempt to allocate
"amount' bytes for the current process. Return a pointer to
the beginning of the block or NULL if there is no free block
large enough to meet the request.

BUGS
WARNING

A process may not have, at any time, more than 20
blocks of Malloc()'d memory. Exceeding this limit may crip
ple GEMDOS. [It is OK to do many Mal1oc() calls if they are
followed- by matching Mfree() calls; the limit of 20 is to
the number of fragments a process may generate.]

Mfree - Release

WORD
LONG

Free the block of memory starting at "saddr'; the·block
must be one that was returned by Malloc().

RETURNS
o if the release was successful, or:
ERROR or an appropriate error number.

4/10/86 Dyer Atari GEMDOS

-/text/gemdos/funcs File System Calls

Ox4A Mshrink - Shrink Size of Allocated Block

WORD Mshrink , block, newsiz
(WORD) 0;
LONG block;
LONG newsiz;

(20)

Shrink the size
'block' points to a
allocated by Malloc(),
block.

of an allocated block of memory;
process basepage or a piece of memory
'newsiz' is the new size of the

The first argument must be a WORD of zero.

RETURNS
o if the size adjustment was successful, or:
EIMBA - invalid memory block address
EGSBF - setblock failure due to growth restrictions

BUGS
A block can only be shrunk; 'newsiz' must be less than

or equal to the current block size.

4/10/86 Dyer Atari GEMDOS
/
,

-/text/gemdos/funcs File System Calls (21)

IOX4B Pexec - Load/Execute Process I

WORD Pexec(mode, ptr1, ptr2, ptr3)
WORD mode;
char *ptrl;
char *ptr2;
char *ptr3;

This function wears several hats, according to the flag
'mode' :

mode ptr1 ptr2 ptr3
0 = load & go file command enviroment

to exec tail string

3 = load, no go file command enviroment
to load tail string

4 = just go basepage (unused) (unused)
address

5 = create (unused) command enviroment
basepage tail string

The file to load or exec,
'ptr2', are null-terminated
string, 'ptr3', is either NULL
string structure of the form:

'ptr1', and the command tail,
pathnames. The enviroment
(OL), or a pOinter to a

"string1\O"
"string2\O"
. .. etc. . ..
"stringN\O"

"\0"

The enviroment string is any number of null-terminated
strings, with an empty string (a single null) at the end.
If 'ptr3' is NULL, then the process inherits a copy of the
parent's enviroment string.

Load-and-go (mode 0) will load the specified file, set
up its basepage, and execute it. Pexec()'s return value
will be the child process's exit code (see PtermO() and
Pterm(».

Load-nogo will load the specified file, setup its
basepage, and return a pointer to the basepage; the process
is not executed.

Just-go is passed a pointer to a basepage. The process

4/10/86 Dyer Atari GEMDOS

-/text/gemdos/funcs File System Calls 22)

starts executing at the base of its text segment, as speci
fied in the basepage.

Create-basepage will allocate the largest free block of
memory and create most of a basepage for it. (Some entries,
most significantly the text/data/bss size and base values,
are NOT setup -- the caller is responsible for maintaining
them) •

A child process inherits the parent's standard file
descriptors; effectively dOing an Fdup() and an Fforce()
calIon handles 0 through 5.

Since system resources are allocated when a
created, the spawned process MUST be terminated
release them. This is especially important when
lays; see the [Pexec cookbook] for details on
ec().

IOX4C Pterm - Terminate Process I
void Pterm(retcode)
WORD retcode;

basepage is
in order to
using over
use of Pex-

Terminate the current process, closing all open files
and releasing any allocated memory. Return 'retcode' to the
parent process.

4/10/86 Dyer Atari GEMDOS

-/text/gemdos/funcs

IOX4E Fsfirst - Search First I

WORD Fsfirst(fspec, attribs)
char *fspec;
WORD attribs;

File System Calls (23)

Search for the first occurrence of the file 'fspec'.
The file specification may contain wildcards ('1' and '*')
in the simple filename, but not in the path specification.
'attrib' controls which files are returned by Fsfirst; its
format is described in the documentation on 'Fattrib()'.

If 'attrib' is zero, then only normal files are
searched for (no volume labels, hidden files, subdirectories
or system files are returned). If 'attrib' is set for hid
den or system files, they are included in the search set.
If 'attrib' is set for volume labels, only volume labels are
returned.

When a file is found, a 44-byte structure is written to
the location pOinted to by the DTA:

offset size contents

0-20 (reserved)
21 byte file attribute bits
22 word time stamp
24 word date stamp
26 long file size
30 14 bytes file name + extension

The filename and extension is null-terminated, and con
tains no spaces.

RETURNS
0, if a file was found, or:
EFILNF - file not found (no matches), or:
an appropriate error number.

4/10/86 Dyer' Atari GEMDOS

-/text/gemdos/funcs

IOX4F Fsnext - Search Next I

WORD Fsnext()

File System Calls (24)

Search for the next occurrence of a file. (The first
occurrence should be searched for with Fsfirst(». Bytes
0-20 of the DTA must remain unmodified from the Fsfirst()
call or the most recent Fsnext() call.

RETURNS
o if a file was found, or:
ENMFIL - no more files were found, or:
an appropriate error number.

Frename - Rename File

WORD Frename , oldname, newname)
(WORD) 0;
char *oldname;
char *newname;

Rename a file from 'oldname' to 'newname'. The desti
nation file must not exist. The new file may be in another
directory.

The first argument must be a zero WORD.

RETURNS
EACCDN - destination file already exists;
EPTHNF - 'oldname' not found;
ENSAME - 'newname' not on save drive;
or an appropriate error.

4/10/86 Dyer Atari GEMDOS

.. ,./

c
-/text/gemdos/funcs File System Calls (25)

\OX57 Fdatime - Get/Set File Timestamp \

void Fdatime(handle, timeptr, wflag)
WORD handle;
LONG timeptr;
WORD wflag;

The file is referred to by 'handle'. 'timeptr' points
to two words containing the DOS formatted timestamp (the
time word is first, the date word is second). If 'wflag' is
1, set the file's timestamp from 'timeptr', otherwise read
the file's timestamp into 'timeptr'.

4/10/86 Dyer Atari GEMDOS

-/text/gemdos/prg Executable Files (1)

EXECUTABLE FILES
An executable file consists of a header followed by

images for the text and data segments, zero or more symbol
table entries, a fixup offset, and zero or more fixup
records:

Executable File Parts

file header

text segment

data segment

symbols

fixup information

The file header contains a "magic" number (a signature
to indicate that it is an executable file) and several long
words containing size information:

Executable File Header

Offset Size Description
OxoO word Ox601A (magic number)
Ox02 long Size of text segment
Ox06 long Size of data segment
OxOA long Size of BSS segment
OxOE long Size of symbol table
Ox12 long (reserved)
Ox16 long (reserved)
OxlA long (reserved)
OxlE (start of text segment)

The text and data segment images immediately follow the
header. The symbol table, if there is one, follows the data
segment.

GEMDOS will "fix up" a longword in the text or data
segments by adding the base of the text segment to the value
already in the longword. The fixup list specifies which
longwords need to be relocated. The first item in the fixup
list is a longword specifying the offset of the first fixup;

4/4/86 Dyer Atari GEMDOS

('

-/text/gemdos/prg Executable Files (2)

the longword is NULL (OL) if there are no fixups. Single
bytes following the longword specify offsets to more fixups.
The longwords must start on word boundaries, or the system
will crash.

Relocation Bytes

Byte Description
0 end of relocation information
1 advance 254 bytes, get next byte
2, 4, . . 254 fixup longword at location pointer
3, 5, . . 255 (odd numbers, reserved for future use)

4/4/86 Dyer Atari GEMDOS

fl

-/text/gemdos/prg Executable Files (3)

SYMBOL TABLE
The symbol table consists of symbol-table entries, for

matted as:

Symbol Table Entry

8 bytes
symbol name

WORD symbol type

LONG symbol value

«<explain about symbol types here. It's really pretty sim
ple ••• »>

Values for Symbol Types

Type Value
defined Ox8000
equated Ox4000
global Ox2000
equated register OxlOOO
external reference Ox0800
data based relocatable Ox0400
text based relocatable Ox0200
BSS based relocatable OxOlOO

4/4/86 Dyer Atari GEMDOS

(;

(

-/text/gemdos/diskstruct Volume structure (1)

VOLUME ORGANIZATION
GEMDOS uses the first few sectors of a disk to indicate

where files are stored. A volume usually contains five
parts; an optional boot sector, two identical FAT tables, a
root directory, and a cluster area.

When GEMDOS first accesses a drive (or accesses one
after a media change), it makes a 'GETBPB' (Get BIOS Parame
ter Block) BIOS call to determine how big these areas are,
and where they are stored on the disk. GETBPB returns a
pointer to a nine-word structure. From this structure, GEM
DOS can puzzle out where the various parts of the file sys
tem are.

BIOS Parameter Block (BPB)

name value function
recsiz 512 physical sector size in bytes
clsiz 2 cluster size in sectors

clsizb 1024 cluster size in bytes
rdlen root directory length in sectors
fsiz FAT size, in sectors

fatrec sector# of 1st sector of 2nd FAT
datrec sector# of 1st data sector

numcl number of data clusters on disk
bflags flags

RECSIZ indicates the number of bytes per physi
cal sector; this must be 512 with the current GEM
DOS. CLSIZ indicates the number of sectors in a
cluster; this must be 2 in the current GEMDOS.
CLSIZB is the number of bytes in a cluster, which
must be 1024.

RDLEN is the size of the root directory, in
sectors. A directory entry uses 32 bytes, so the
number of root files available is RDLEN * 512 / 32.

FSIZ is the size of each FAT in sectors. FA
TREC is the starting sector number of the first sec
tor of the /second/ FAT.

DATREC is the starting sector# of the first
cluster. NUMCL is the number of clusters on the
device.

BFLAGS was supposed to be a bit-vector of
flags. Currently only bit 0 is being used; when set
it indicates that 16-bit FAT entries (instead of
12-bit ones) are to be used.

4/4/86 Dyer Atari GEMDOS

~/text/gemdos/diskstruct Volume structure (2)

If there are boot sectors, they occupy logical sectors
o through FATREC FSIZ 1. The second FAT starts at
FATREC, and the first FAT starts at FATREC - FSIZ. The root
directory starts at FATREC + FSIZ, and the first cluster
starts at DATREC. The cluster region is where the data for
all files on the volume is kept.

DIRECTORY ENTRIES
A directory entry contains a filename, some flags, the

file's creation time and date, the file's size, and the
file's starting cluster number. The entry itself is a 32-
byte structure that looks like:

Directory Entry

8-character
primary name

3-character
extension

Attribute byte

(10 bytes unused)

WORD creation time

WORD creation date

WORD starting cluster#

LONG file length

All WORDS and LONGS in the directory entry are in 8086
"byte reversed" format.

When a file is deleted, the first byte of the name
field is set to OxeS.

4/4/86 Dyer Atari GEMDOS

(/

-/text/gemdos/diskstruct Volume structure (3)

A subdirectory is a file that contains directory
entries. The first two entries in a subdirectory are always
the special directories "." and" "

FAT ENTRIES
The File Allocation Table (FAT) is used to allocate

clusters and to link clusters together into files. FAT
entries may be 12 or 16 bits. A file's directory entry con
tains the number of the first cluster in the file. Each
cluster's associated FAT entry contains the number of the
next cluster in the file, or a number that indicates end
of-file.

12-bit FAT Entries

value meaning

OxOOO free cluster
Ox001 (impossible)

Ox002 - Oxfef next cluster number
OxffO - Oxff7 bad sector
Oxff8 - Oxfff end of file

16-bit FAT Entries

value meaning

OxOOOO free cluster
OxOOOl (impossible)

OxOO02 - Ox7fff next cluster number
Ox8000 - Oxffef (impossible)
OxfffO - Oxfff7 bad sector
Oxfff8 - Oxffff end of file

For a 12-bit FAT, obtain the next cluster in the file,
NCL, given the current cluster number, CL, by:

[1] (Multiply by 1.5)
NCL = CL + CL / 2

[2] Set NCL to the 16-bit word in the FAT indexed by NCL
(it must be byte-swapped to 68000 format as well.)
The word might not be on a 68000 word boundary.

[3] (Extract the correct 12 bits.)
If CL is odd, set NCL = NCL » 4.

4/4/86 Dyer Atari GEMDOS

-/text/gemdos/diskstruct Volume Structure (4)

[4]

[5]

(Mask off incorrect bits.)
Set NCL = NCL & OxOFFF.
(Interpret the result.)
If NCL is OxOFF8 or higher, then CL
cluster in the file. If NCL is zero
OxOFFO to OxOFF7 then there is a file
Otherwise, NCL is the number of the
the file.

was the last
or in the range
system problem.
next cluster in

For a 16-bit FAT, obtain the next cluster in the file,
NCL, given the current cluster number, CL, by:

[1] Set NCL to the 16-bit word in the FAT indexed by CL.
The word must be byte-swapped into 68000 format.

[2] If NCL is Oxfff8 or higher, then CL was the last
cluster in the file. If NCL is 0 or in the range
Ox8000 to Oxfff7 then there is a file system problem.
Otherwise, NCL is the number of the next cluster in
the file.

To convert from a cluster number, CL, to a logical sec
tor number, LSN:

[1] (Adjust for reserved FAT entries.)
LSN = CL - 2

[2] Multiply LSN by the number of sectors per cluster
(CLSIZ).

[3] Add the logical sector# of the first cluster to LSN
(DATREC) .

4/4/86 Dyer Atari GEMDOS

36

\

I
/'

