
GEM

Programmer's Guide

Volume 2: AES

COPYRIGHT

Copyright 1985 Digital Research Inc. All rights reserved. No
part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital
Research Inc., 60 Garden Court, P.o. Box DRI, Monterey, Califor­
nia 93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. Further, Digital Research Inc. reserves the
right to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital Research
Inc. to notify any person of such revision or changes.

NOTICE TO USER

From time to time changes are made in the filenames and in the
files actually included on the distribution disk. This manual
should not be construed as a representation or warranty that such
files or facilities exist on the distribution disk or as part of
the materials and programs distributed. Most distribution disks
include a "README. DOC" file. This file explains variations from
the manual which do constitute modification of the manual and the
items included therewith. Be sure to read this file before using
the software.

TRADEMARKS

Digital Research and its logo are registered trademarks of Digi­
tal Research Inc. Concurrent, GEM, GEM Desktop, GEM Draw, GEM
Programmer's Toolkit, and Graphics Environment Manager are
trademarks of Digital Research Inc. We Make Computers Work is a
service mark of Digital Research Inc. UNIX is a trademark of
Bell Laboratories. IBM is a registered trademark of Interna­
tional Business Machines. WordStar is a registered trademark of
MicroPro International. MS is a trademark of Microsoft Corpora­
tion.

GEM •. programmer'~ Guide, Volume 2: AES was printed in the United
States of America.

* First Edition: March 1985 *

Table of Contents

1 Introduction to GEM AES

1.1 Purpos~ of This Programmer's Guide

1.1.1 Abbreviations of Names .

1.2 Before Programming to GEM AES

1.3 Structure of This Programmer's Guide

1.3.1
1.3.2
1.3.3

Contents of the Iritroduction . .
Sample GEM AES Calling Sequence
Subroutine Libraries • • •

1.3.3.1 Naming Convention •

1.4 GEM AES's Position in Memory

1.5 GEM AES Components

1. 5.1
1. 5. 2

Subroutine Libraries • ••••••

2

1. 5.3
1. 5.4
1. 5. 5
1. 5. 6

Limited Multitasking Kernel

1.5.2.1
1.5.2.2
1.5.2.3

Desk Accessories
Screen Manager
Dispatcher

The Shell ••• •
Desk Accessory Buffer
Menu/Alert Buffer
x- and Y-Coordinates .

Typical GEM AES Calling Routines

2.1 Introduction
2.2 Initializing an Application . . .
2.3 Finding Screen Resolution

2.4 Loading the Resource File .
2.5 Getting Resource Addresses

iii

· · · · · ·
· · · · ·

· · · · · ·
·

, .

.

. . .

1-1

1-1

1-1

1-2

1-2
1-2
1-2

1-3

1-3

1-4

1-5
1-5

1-5
1-6
1-6

1-8
1-9
1-9
1-9

2-1

2-1

2-2

2-3

2-3

Table of Contents

(continued)

Displaying the Menu Bar 2.6

2.7 Displaying Icons in the Desktop Window

2.8 waiting for a User Event

2.9 Menu Selection ••..••....

2.10 Displaying a Dialog

2.11 Keystroke Menu Selection

2.12 Selecting an Icon

2.13 Creating a Window.

2.14 Calculating Work Area or Outer Dimensions.

2.15 Opening a Window .•.

2.16 Slider Size and Location

2.17 Sizing a Window.

2.18 Rectangle List

2.19 Before Updating a Window

2.20 Redrawing the Work Area.

2.21 Making a Window Active

2.22 Closing and Deleting a Window .

3 Application Library

3.1 Introduction •...•.•.....•••

3.2 Using the Application Library .. . •.

3.3 Global Array •.•••.••.•••••.

iv

2-3

2-4

2-4

2-5

2-6

2-8

2-8

2-9

2-10

2-11

2-11

2-11

2-12

2-12

2-12

2-13

2-13

3-1

3-2

3-2

(
Table of Contents

(continued)

3.4 Application Library Routines
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7

APPL INIT•••.•....
APPL -READ •
APPL-WRITE • ...•.•.•....
APPL -FIND . . . • . • . . . • •
APPL -TPLAY•••.•...•
APPL-TRECORD . .• • • . . • . .
APPL -EXIT . • . . . • . • . . • . . • •

4 Event Library

4.1 Introduction

4.2 Using the Event Library

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

Waiting for Multiple Events
Keyboard Event. . . . • . .
Mouse Button Event . ••••••
Mouse Event . • . . . • . • . • • . • .
Message Event • • • . . . • • . • .

4.2.5.1
4.2.5.2
4.2.5.3
4.2.5.4
4.2.5.5
4.2.5.6
4.2.5.7
4.2.5.8
4.2.5.9
4.2.5.10
4.2.5.11
4.2.5.12
4.2.5.13

Predefined GEM AES Messages
MN SELECTED
WM-REDRAW • • • .
WM-TOPPED • • • .
WM-CLOSED •
WM-FULLED • . . • . ••. • • . •
WM-ARROWED . • •
WM-HSLID • • • •
WM-VSLID . • • • • • • . • • •
WM-SIZED • . . • • . • . •
WM-MOVED
AC-OPEN • •
AC-CLOSE • • .

4.2.6 Timer Event

4.3 Event Library Routines

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

EVNT KEYBD . • • . . •• .•.•
EVNT-BUTTON . • •• •.••.••.
EVNT-MOUSE . . • • . • •• •.•••
EVNT-MESAG . ••• .•.•.••
EVNT-TIMER • • • • •• .•••.
EVNT-MULTI • • • • • • • • . • .
EVNT-DCLICK • • • • • • • • • •

v

3-3

3-5
3-6
3-7
3-8
3-9

3-10
3-12

4-1

4-1

4-2
4-2
4-2
4-3
4-4

4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-7
4-7
4-7
4-8
4-8

4-8

4-9

4-11
4-12
4-14
4-16
4-17
4-18
4-20

Table of Contents
"\

(continued)

5 Menu Library

5.1 Introduction . · · · · · · · · · · · · · · 5-1

5.2 Using the Menu Library · · · · · · · · 5-4

5.3 Menu Library Routines · · · · · · · · · · · · · 5-5

5.3.1 MENU BAR · · · · · · · · · · · · · · 5-7
5.3.2 MENU-ICHECK · · · · · · · · · · · · · · 5-8
5.3.3 MENU-IENABLE · · · · · · · · 5-9
5.3.4 MENU-TNORMAL · · · · · · · · · · · · · · · · 5-10
5.3.5 MENU-TEXT · · · · · · · · · · · 5-11
5.3.6 MENU-REGISTER · · · · · · · · · · · · · 5-12

6 Object Library

6.1 Introduction . · · · · · · · · · · · · · · 6-1

6.2 Using the Object Library · · · · · · · · · · · 6-2
/'\

6.3 Object Library Data Structures · · · · · · · · · · 6-3 J ,~

6.3.1 OBJECT Structure · · · · · · · · 6-4
6.3.2 TED INFO Structure · · · · · · · · · · · 6-5
6.3.3 ICONBLK Structure · · · · · · · · · 6-8
6.3.4 BITBLK Structure · · · · · · · · · · · · 6-9
6.3.5 APPLBLK Structure · · · · · · · · · 6-10
6.3.6 PARMBLK Structure · · · · · · · · · · · · · 6-10
6.3.7 Predefined Values · · · · · · · · · 6-12

6.3.7.1 Object Types · · · · · · · · · · · 6-12
6.3.7.2 Object Flags · · · · · · · · · 6-14
6.3.7.3 Object States · · · · · · · 6-15
6.3.7.4 Object Colors · · · · · · · · · 6-16

6.4. Object Library Routines · · · · · · · · · · 6-17

6.4.1 OBJC ADD • · · · · · · · · · · · · · · · 6-19
6.4.2 OBJC-DELETE · · · · · · · · · · · · 6-20
6.4.3 OBJC-DRAW · · · · · · · · · · · · · · · · · 6-21
6.4.4 OBJC-FIND · · · · · · · · · · · · · · · · · 6-23
6.4.5 OBJC-OFFSET · · · · · · · · · · · · 6-25
6.4.6 OB JC-ORD ER · · · · · · · · · · · · · · · 6-26
6.4.7 OBJC-EDIT · · · · · · · · · · · · · · · 6-27
6.4.8 OBJC CHANGE · · · · · · · · 6-29

vi

(

(~""
_/

7

Table of Contents

(continued)

Form Library

7.1 Introduction

7.1.1
7.1.2
7.1.3

7.1.4

Forms: A Model ..••.• • • .
GEM AES Forms: The User's View •....
Dialog Boxes • . • • . . • . • •

7.1.3.1 Editable Text Fields

Alerts •

7.1.4.1 Error Boxes

7-1

7-1
7-2
7-3

7-4

7-5

7-6

7.1.5 GEM AES Forms: The Programmer's View. . 7-7

7.2
7.3

Using the Form Library
Form Library Routines .

7.3.1 FORM DO · · 7.3.2 FORM-DIAL · · · 7.3.3 FORM-ALERT · · · 7.3.4 FORM-ERROR · · · 7.3.5 FORM-CENTER · ·

·
· · ·

· . . · · · · · · · · ·
8 Graphics Library

8.1 Introduction

8.2 Using the Graphics Library

8.3 Graphics Library Routines •

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10

GRAF RUBBERBOX • • • • • . • • .
GRAF-DRAGBOX • •••
GRAF-MOVEBOX • • • •
GRAF-GROWBOX • . • •
GRAF-SHRINKBOX • • . • • • • • • • • •
GRAF-WATCHBOX
GRAF-SLIDEBOX • . • . . • . • . • • .
GRAF-HANDLE . • . • • • • . • • .
GRAF-MOUSE • . • • • • . • . • • .
GRAF-MKSTATE • • . • • • • • •

vii

· · · · · ·
·
· · ·

7-9
7-11

7-13
7-14
7-16
7-17
7-18

8-1

8-1

8-1

8-4
8-6
8-8
8-9

8-11
8-13
8-15
8-17
8-18
8-20

Table of Contents

(continued)

9 Scrap Library

9.1 Introduction

9.2 Using the Scrap Library •

9.3 Scrap Library Routines

9.3.1
9.3.2

SCRP READ • • . . • • • .
SCRP-WRITE • • .

10 File Selector Library

10.1 Introduction

10.2 Using the File Selector Library •.

10.3 File Selector Library Routine •

9-1

9-1

9-2

9-4
9-5

10.3.1 FSEL INPUT

10-1

10-2

10-3

10-5

11 Window Library

11.1 Introduction

11.2 Using the Window Library

11.2.1 Components of the Border Area
11.2.2 Division of Labor•
11.2.3 Window Management Calls ••.
11.2.4 Support of Overlapping Windows
11.2.5 Redrawing and Updating •.....

11.3 Window Library Routines .

· · ·
·

·
·

· · · · · · · · ·

· · 11-1

· · 11-2

11-3

· · 11-6

· · 11-6

· · 11-8

· · 11-9

· 11-11

11.3.1 WIND CREATE 11-13
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.3.8
11.3.9

WIND-OPEN . . • • • . . • . 11-15
WIND-CLOSE • . • • 11-16
WIND-DELETE . . • • . . . • 11-17
WIND-GET •• •.•••.•....... 11-18
WIND-SET . • . • . . • • . . 11-21
WIND-FIND • . • • • . . • •. ••..• 11-23
WIND-UPDATE • • • • .••.•..• 11-24
WIND-CALC • • • • • • • • . • •. ... 11-25

viii

(
Table of Contents

(continued)

12 Resource Library

12.1 Introduction

12.2 Using the Resource Library

12.3 Resource Library Routines •

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5

RSRC LOAD • . • • • • • • • • • • • • •
RSRC-FREE
RSRC-GADDR . • • • • • . • • • . • •
RSRC-SADDR . . . • • • . . . • . • . • • . .
RSRC-OBFIX

13 Shell Library

13.1 Introduction

13.2 Using the Shell Library

13.3 Shell Library Routines

13.3.1 SHEL READ
13.3.2 SHEL-WRITE •
13.3.3 SHEL-FIND
13.3.4 SHEL-ENVRN •

ix

12-1

12-1

12-2

12-4
12-5
12-6
12-8
12-9

13-1

13-1

13-2

13-4
13-5
13-7
13-8

5-1.

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.

7-1.
7-2.
7-3.
7-4.

Figures

Typical Menu . • • •

Object Tree • • • •
On-screen Display . . • . . • • .
OBJECT Structure • • • . .
TED INFO Structure • • . . . • . •. .•.
ICONBLK Structure . • • .. . • • . . • .
BITBLK Structure • • . . • • • . •
APPLBLK Structure • • .
PARMBLK Structure • . • •.
Obj ect Color WORD . • • • . • • .

Typical Product Survey Form . . .
Sample GEM AES Alert
OBJECT St~ucture Elements . •. .•.
TEDINFO Structure Elements • ..•

10-1. File Selector Dialog Box ..

11-1. Components of a Typical Window .

5-1

6-1
6-2
6-4
6-6
6-8
6-9

6-10
6-11
6-16

7-2
7-6
7-7
7-8

10-2

11-2

(.

c

Section 1

Introduction to GEM AES

1.1 Purpose of This Programmer's Guide

This programmer's guide has three major purposes:

o Introduce a programmer to the concepts and structures underlying
GEM .. Application Environment Services.

o Prepare the programmer to write a GEM application.

o Serve as a reference guide for the programmer writing a GEM ap­
plication.

1.1.1 Abbreviations of Names

The following abbreviations appear throughout this programmer's
guide:

o GEM - Graphics Environment Manager.

o GEM AES - GEM Application Environment Services

o GEM VDI - GEM Virtual Device Interface. The GEM VDI is described
in detail in the GEM Programmer'~ Guide, Volume 1: VDI.

o DOS - MS.-DOS or PC DOS (version 2.0 or higher) or Concurrent.
DOS version 3.3 in DOS mode

1.2 Before programming to GEM AES

Before starting to write a GEM application, and even before reading
further in this programmer's guide, a programmer should do the
following:

o Read the GEM Programmer'~ Guide, Volume 1: VDI.

Because GEM AES uses GEM VDI function
derstanding of GEM VDI is essential to
application.

o Use the GEM Desktop.

calls extensively, an un­
writing a successful GEM

Familiarity with GEM AES's user interface--the GEM Desktop,
icons, drop-down menus, and windows--is also essential to writing
a successful GEM application.

1-1

Gem PG Vol. 2: AES 1.2 Before Programming to GEM AES

The "GEM Desktop Reference Guide" (Part 2 of The GEM Desktop
manual) describes GEM AES functionality in detail.

1.3 Structure of this Programmer's Guide

This programmer's guide contains three major divisions:

1. This introduction, which includes descriptions of the major com­
ponents of GEM AES.

2. The description of a sample calling sequence for a typical GEM
application.

3. Descriptions of the GEM AES subroutine libraries.

1.3.1 Contents of the Introduction

The remainder of this introduction describes the relationship of
GEM AES to operating system files, GEM VOl, and applications, and
describes how GEM AES shares space in memory with each of the
three.

This section also describes the architecture of GEM AES itself, as
well as its components and their relationship to each other.

1.3.2 Sample GEM AES Calling Sequence

Section 2 describes a typical sequence of calls from a GEM applica­
tion to GEM AES.

The calling sequence does not try to describe a specific applica­
tion, but instead tries to give a general overview of GEM AES func­
tion calls. However, where specific examples are needed, the GEM
Desktop application serves as a typical case.

1.3.3 Subroutine Libraries

The remaining sections of
AES's subroutine libraries.
structure:

this programmer's
Each section has

o an introduction to the library

guide describe GEM
the following basic

o a section describing how an application uses the library

o descriptions of the library's data structures (if applicable)

o descriptions of each of the library's routines, including all of
the routine's parameters and a sample C language binding "

1-2

(

GEM AES Programmer's Guide 1.3 Structure of Programmer's Guide

1.3.3.1 Naming Convention

The parameter name for a routine does the following:

o It identifies the parameter.
o It identifies the subroutine library the routine belongs to.
o It identifies the routine to which the parameter belongs.

The part of the parameter name preceding the underbar is a code for
the subroutine library to which the routine belongs. The
following list gives several partial parameter names and the names
of the subroutine libraries to which they belong.

ap_ •..
ev ..•
ob-..•
gr .. .
wi- .. .

Application Library
Event Library
Object Library
Graphics Library
Window Library

The first letter (or, in cases where there would be duplication,
two letters) following the underbar identifies the specific
routine to which the parameter belongs. The following list gives
several partial parameter names from the Graphics Library and the
names of the routines to which they belong.

gr_r .•.
gr_m .••
gr s ...
gr=sl •••
gr_a .••

GRAF RUBBERBOX
GRAF-MOVEBOX
GRAF-SHRINKBOX
GRAF-SLIDEBOX
GRAF-APPLMOUSE

Note that a second letter was required to distinguish GRAF SLIDEBOX
from GRAF SHRINKBOX.

1.4 GEM AES's Position in Memory

GEM AES shares memory space with the following:

o DOS
o GEM VDI
o an application

When a user starts GEM AES, the system has already loaded DOS into
memory, followed by GEM VDI. The application takes as much of the
remaining memory space as it requires.

1-3

GEM AES Programmer's Guide 1.4 GEM AES's Position in Memory

The application can be any of the following:

o the GEM Desktop
o a GEM application
o a DOS application

The GEM Desktop application is in fact a GEM application; it uses
no special function calls and does nothing that another GEM ap­
plication cannot do.

The user can start an application (GEM or DOS) from the GEM
Desktop. When the current application terminates, GEM AES
automatically invokes and runs the GEM Desktop unless the user has
already invoked another application. For example, the user can in­
voke the GEM Output application from within another GEM applica­
tion.

Note: The user can also start any GEM application from the DOS
prompt.

An application can use any of three sets of calls, each with a
specific purpose:

o DOS calls are responsible for managing the file system. The
programmer should be familiar with the material contained in the
DOS manual.

Because GEM AES requires DOS version 2.0 or higher, the program­
mer should use the UNlX.-type file system calls that are not
available in DOS version 1.1.

o GEM VDl calls manage graphics output to the screen or other
peripheral devices. The programmer should be familiar with the
material in the GEM Programmer'~ Guide, Volume 1: VDl.

o GEM AES calls manage graphics input. They make possible a
variety of high-level user interface graphics primitives that are
used for icons, drop-down menus, dialog boxes, alert messages,
and windows.

1.5 GEM AES Components

The following GEM AES components occupy space in memory:

o subroutine libraries
o a limited multitasking kernel and dispatcher
o the shell
o a desk accessory buffer
o a menu/alert buffer

1-4

\ . ,/

(

.... _ .. _---- - ---

GEM AES Programmer's Guide 1.5 GEM AES Components

1.5.1 Subroutine Libraries

GEM AES's subroutine libraries provide routines for a wide variety
of tasks, including windowing, monitoring the mouse's movement,
displaying system messages and error messages, and drawing objects
on the screen.

The code for the subroutine libraries is resident in memory, and it
remains in memory until the user exits GEM AES.

1.5.2 Limited Multitasking Kernel

The limited multitasking kernel supports the following:

o up to three desk accessory programs (see Section 1.5.2.1) or
background tasks/processes

o one primary application, GEM or DOS, such as the GEM Desktop ap­
plication or Wordstar.

o the GEM AES Screen Manager

The function of the limited multitasking kernel is to divide CPU
time between the primary application, background processes, and the
Screen Manager in such a way that the user does not see any
degradation in the performance of the primary application.

1.5.2.1 Desk Accessories

A desk accessory is an application that does not take over the en­
tire display screen. It runs in a specially designed window on top
of the GEM Desktop application or any other GEM application. The
calculator is a typical desk accessory.

The limited multitasking kernel supports as many as six desk acces­
sories in three desk accessory programs, called DESK1.ACC,
DESK2.ACC, and DESK3.ACC. Each desk accessory program can contain
more than one desk accessory. For example, in the GEM Desktop ap­
plication, the program DESK1.ACC contains both the clock and the
calculator.

The desk accessory programs are loaded into memory using the Over­
lay option of the DOS EXEC function call (documented in the DOS
manual). They remain in memory until the user exits GEM AES.

A desk accessory program is loaded only if, after loading it and
the rest of the GEM software, 128 kilobytes of memory remain avail­
able for the primary application.

1-5

GEM AES Programmer's Guide 1.5 GEM AES Components

If a desk accessory registers with GEM AES (see Section 5.3.6, the
MENU REGISTER call), it appears in the Desk Menu. The user starts
the desk accessory by choosing it from the menu.

1.5.2.2 Screen Manager

The Screen Manager is a special process that monitors the actions
of the mouse when it is outside the work area of the top (active)
window. The work area is the part of the window exclusive of the
title bar, information line (if any), and border area.

The Screen Manager monitors the user's interaction with the
following:

o the border area of the top window

o the menu bar and drop-down menus

o any other part of the screen, except for the work area of the top
window

The Screen Manager sends the results of all these user interactions
to the application that is currently running.

When necessary, the Screen Manager is responsible for converting
the mouse form to an arrow (pointer).

1.5.2.3 Dispatcher

The dispatcher is the part of the multitasking kernel that makes
sure that no process dominates CPU time to the exclusion of the
other processes.

The kernel divides CPU time between the primary application, back­
ground processes, and the Screen Manager by assigning each task to
one of two lists: the Ready List and the Not-Ready List.

The Not-Ready List contains all processes that are waiting for one
of the following events:

o a keystroke
o a mouse button press
o mouse movement
o a message
o passage of a time interval

1-6

c

GEM AES Programmer's Guide

The Ready List contains
process is ready to run
events listed above.

1.5 GEM AES Components

all processes that are ready to
when it is not waiting for one

run. A
of the

The process at the head of the Ready List is the one that is cur­
rently running. Any others on the list are waiting to run. The
multitasking kernel uses "round-robin scheduling" to run the
processes on the Ready List in the order in which they appear on
the list.

To prevent a single process from dominating CPU time, the multitas­
king kernel dispatches at intervals. Dispatching involves two
steps:

1. Moving processes from the Not-Ready List to the Ready List, if
they now qualify.

2. Moving the currently running process to the end of the Ready
List, to give the next process on the list a chance to run.

GEM AES dispatches nonpre-emptively, which means that a process
periodically gives up its claim to CPU time and lets the next
process run. Dispatching takes place each time the running
process makes a GEM AES call.

If a process does not make any other kind of GEM AES call in the
course of its normal activity, it should periodically make an
EVNT TIMER call, specifying an interval of 0 (zero) milliseconds.
(See-the description of the EVNT_TIMER routine, Section 4.3.5.)

At dispatch time, GEM AES's dispatcher first moves any processes
that have become ready to run from the Not-Ready List to the end of
the Ready List. GEM AES next stops the currently running process
and looks to see if any other processes are on the Ready List. If
so, the dispatcher moves the current process to the end of the
Ready List and starts the next process. If there are no other
processes on the Ready List, the current process begins to run
again.

This dispatching procedure is repeated with each GEM AES call.

Dispatching also
means the process
example, when it
tinuing) .

occurs when the running process "blocks," which
goes from a ready state to a not-ready state (for

needs to look for mouse movement before con-

If no processes are on the Ready List, the multitasking kernel con­
tinually checks all processes to see if any can be moved over to
the Ready List.

1-7

GEM AES Programmer's Guide 1.5 GEM AES Components

1.5.3 The Shell

The Shell is in fact one of the GEM AES subroutine ~ibraries, but
functionally it runs on top of the limited multitasking kernel.
The Shell invokes GEM AES and DOS applications, causing the
primary application to run.

The following examples illustrate how the Shell starts GEM ap­
plications.

o When the tiser enters the command "GEM", GEM AES is loaded into
memory, and the primary application is the GEM Desktop. The user
can start other applications, GEM or DOS, from the GEM Desktop.
After quitting the GEM Desktop, the user returns to the DOS en-
vironment. .

o When the user enters the command "GEM DRAW", GEM AES is loaded
into memory, and the primary application is GEM Draw •. After
quitting GEM Draw, the user returns to the DOS environment.

o When the user enters the command "GEM DRAW /D", GEM AES is loaded
into memory, and the primary application is again GEM Draw.
However, the "/D" part of the command tail causes the user to
return to the GEM Desktop after quitting GEM Draw.

If the user invokes another application from the GEM Desktop, the
GEM Desktop passes to the Shell the following information about
the new application:

o whether it is graphic or character-based
o whether it is a GEM application or a DOS application
o the name of the directory containing the application

(Most GEM applications are graphic, and most DOS applications are
character-based, but the GEM Desktop needs to pass the information
as separate parameters of the SHEL WRITE call for those cases where
this correlation does not hold.) -

The GEM Desktop then terminates.

When any application terminates, control returns to the process
that invoked it. In this case, control returns to the Shell.

The Shell determines if it was instructed to . start a new applica­
tion. If it was not, it starts the GEM Desktop again.

If the Shell was instructed to start a character-based application,
it converts the screen to character mode and makes a GEM VOl Close
Workstation call.

If the Shell was instructed to start a GEM application, no GEM VOl
call or conversion is required.

1-8

GEM AES Programmer's Guide 1.5 GEM AES Components

When this application terminates, the Shell starts the next ap­
plication, either a user-requested application or (if none was re­
quested) the GEM Desktop.

To go from a character-based application to a GEM application or to
the GEM Desktop, the Shell must make a GEM VDl Open Workstation
call and convert the screen to graphics mode.

1.5.4 Desk Accessory Buffer

The desk accessory buffer contains the .ACC files for the GEM AES
desk accessories.

As noted above, the multitasking kernel supports as many as three
desk accessory programs. The desk accessories remain in memory un­
til the user exits GEM AES.

1.5.5 Menu/Alert Buffer

Drop-down menus and alert boxes (the latter are a special form of
dialog box) appear at different times in a GEM application. They
always appear layered on top of any windows, icons, or dialogs
located in the same area.

When the menu or alert is no longer being displayed, GEM AES red­
raws the screen from a buffer in which it stores the parts of the
screen that were displaced by the menu or alert. The application
does not redraw the screen.

This buffer can hold data equal to one-fourth the size of the
screen area. Consequently, no single menu or alert can be larger
than one-fourth the size of the screen.

GEM AES uses the menu/alert buffer because an application redraw is
typically slower than a redraw from the buffer.

1.5.6 x- and Y-Coordinates

Several GEM AES subroutine libraries define objects by their X- and
Y-coordinates and their width and height. These X- and Y-coor­
dinates always refer to the upper left corner of the object.

End of Section 1

1-9

(- -,

"

Section 2

Typical GEM AES Calling Routines

2.1 Introduction

This section describes a hypothetical sequence of GEM AES and GEM
VDI calls that might be made by a GEM application. Where needed,
the GEM Desktop application serves as an example of a typical GEM
application.

These calling routines do the following:

o initialize the application

o determine the system's screen resolution

o load the application's resource file

o get the addresses of the application's resources

o display the application's menu bar

o display icons on the desktop

o let the application await user action

o let the user select from a menu

0 display a dialog as the result of selecting from a menu

0 let the user make a menu selection by pressing a specially desig-
nated key or combination of keys

0 let the user select an icon

0 let the user interact with windows

2.2 Initializing an Application

Application initialization consists of three steps:

1. Freeing unneeded memory.

When an application is first loaded into memory, it should make
a DOS call to modify the application's memory allocation. By
freeing memory from the end of the application to the top of
memory, this call makes space available for the application's
resource file.

2-1

Gem PG Vol. 2: AES 2.2 Initializing an Application

If the application does not make this call, the operating system~-/
will return an error message when the RSRC LOAD call (described
in Section 2.4) makes its DOS memory allocation request.

2. Initializing internal data structures and setting up GEM AES ar­
rays.

The application initializes its internal data structures and
sets up the following GEM AES arrays:

- GEM AES Parameter Block
- Control Array
- Global Array
- Integer Input (int in) Array
- Integer Output (int out) Array
- Address Input (addr-in) Array
- Address Output (addr_out) Array

The application allocates space for these arrays and establishes
bindings in its code so that parameters go to the right arrays.
Examples of these bindings are the sample language bindings in
this guide and the GEM Programmer's Toolkit ..

3. The APPL INIT call.

APPL INIT, the application's first GEM AES call, sets up any ap­
pl.ication-specific data structures and returns a system-wide ap­
plication identifier (ap id). GEM AES places ap id in the
Global Array so it can identify the application throughout its
calling sequence.

2.3 Finding Screen Resolution

All of an application's textual or graphic data that is either
device- or language-specific (spoken/written language, not program­
ming language) is contained in the application's resource file.
These materials include the following:

o text
o icons
o menus
o dialogs
o forms

All resource files have a .RSC filetype.

Applications usually have at least two resource files, one for a
low-resolution screen (640x200 pixels) and another for a high­
resolution screen (640x400, 640x350, or 720x350 pixels).

2-2

(

Gem PG Vol. 2: AES 2.3 Finding Screen Resolution

Before it can load the correct resource file, the application
needs to know the system's screen resolution. Two steps are re­
quired to get this information:

1. The application calls the GRAF HANDLE routine.
returns the GEM VDI handle for the screen.

This call

2. The application makes a GEM VDI Open Virtual Workstation call,
which provides the same information as an Open Workstation
call. This call returns the system's screen resolution.

For a description of the GEM VDI Open Virtual Workstation call,
see the GEM Programmer'~ Guide, Volume 1: VDI.

2.4 Loading the Resource File

When the application makes its RSRC LOAD call, the Resource Library
allocates memory for the resource-file, loads it into memory, and
sets the pointer references in the file.

The RSRC LOAD call also transforms special X, Y, width, and height
screen position information that allows the application to address
any pixel on the screen. This coordinate system assumes a stan­
dard screen of 80 columns and 25 lines and uses a bit offset
method of locating screen positions. For example, on a given
line, GEM AES can address two points that are three pixels apart by
identifying their positions as (column 46 + 2 pixels) and (column
46 + 5 pixels).

2.5 Getting Resource Addresses

To get the address of any object contained in its resource file,
the application makes a RSRC GADDR call. The application can make
RSRC GADDR calls at either of-the following times:

o immediately after making the RSRC LOAD call
o each time it needs a particular resource

In the first case, the application makes a series of anticipatory
RSRC GADDR calls, getting and storing the address of each resource
it expects to need in the course of the current session.

2.6 Displaying the Menu Bar

The application's menu bar is a resource. To display the menu bar,
the application makes two calls:

1. The application calls RSRC GADDR (if it has not already done
so), passing in the menu barTs data structure type and the index
to the menu bar.

2-3

Gem PG Vol. 2: AES 2.6 Displaying the Menu Bar

RSRC GADDR returns the LONG ADDRESS of the root of the object
tree-that draws the menu bar.

2. The application calls MENU BAR, passing in the menu bar's ad­
dress and an me bshow value of 1 (display the menu bar).

The Menu Library then displays the menu bar across the top of the
screen.

2.7 Displaying Desktop Icons

To display icons in the desktop window, the application must first
know the size and location of the desktop window's available work
area. The work area includes everything but the menu bar and bor-
der area (if any). .

To get this information the application makes a WIND GET call, pas­
sing in values that do the following:

o identify the window as the desktop window (wi_ghandle = 0)

o ask for the window's X, Y, width, and height values (wi_gfield =
4)

The call returns the work area's X, Y, width, and height values.

The application then makes an OBJC DRAW call to draw the icons in
the work area. The values contained in ib xicon, ib yicon,
ib wicon, and ib hicon in each icon's ICONBLK structure determine
where the icon appears.

Note: to their own application windows. The GEM Desktop applica­
tion, however, does display icons (disks and the trash can) in the
desktop window.

2.8 Waiting for a User Event

At this point the application has displayed its menu bar and
desktop icons, and it is now ready for user interaction.

The Event Library defines five user interaction events:

o keystroke
o pressing a mouse button
o mouse movement
o message from a GEM AES process
o passage of a specified period of time

2-4

(

Gem PG Vol. 2: AES 2.8 Waiting for a User Event

Although an application can wait for one event at a time, most com­
monly it will make an EVNT MULTI call to wait for some combination
of events.

When one of the awaited events occurs, GEM AES's dispatcher moves
the application from the Not-Ready List to the Ready List. When
the application reaches the head of the Ready List, it responds to
the user event and then returns to the Not-Ready List to await the
next event in the EVNT MULTI sequence.

Note: single mouse button. If a mouse has more than one button, a
GEM application should look for input from the button on the left.
DOS applications can accept input from more than one mouse button.

2.9 Menu Selection

An application's menu bar is controlled by the GEM AES Screen
Manager; the application is not responsible for user interaction
with the menu bar.

The following sequence describes what happens when a user selects
"Desktop Info ", one of the Desk Menu commands in the GEM
Desktop application. (Menu selection for any GEM application
should follow the same basic sequence.)

1. The GEM Desktop application makes an EVNT MULTI call that in­
cludes a message as one of the awaited events.

2. The user moves the mouse into the menu bar, touching the Desk
Menu's title.

3. Receiving notification that the mouse has entered the menu bar,
the Screen Manager is dispatched to the Ready List. It deter­
mines which menu title the pointer is touching, saves the part
of the screen under the menu, and displays the menu. The
Screen Manager highlights menu items as the user moves the
mouse pointer through the menu.

The GEM Desktop application is still on the Not-Ready List at
this time.

4. The user clicks the mouse button on Desktop Info

5. The Screen Manager notifies the primary application of. the
user's selection by writing a message to the GEM Desktop ap­
plication's message buffer. The ev mrngpbuff parameter of the
EVNT MULTI call contains the buffer's-address.

The message (the predefined GEM AES message MN SELECTED,
described in Section 4.2.5.2) contains object tree indexes for
the selected menu title and item.

2-5

--- - -----------------------

Gem PG Vol. 2: AES 2.-9 Menu Selection

6. When the Screen Manager writes the message, the Dispatcher
checks the Not-Ready List for the process that was waiting for
the message. It finds the GEM Desktop application and moves it
over to the Ready List.

7. The EVNT MULTI call returns an ev mwhich value to the GEM
Desktop application. The bit setting in ev mwhich indicates that
a message has been received.

8. The GEM Desktop application reads and interprets the message
from its buffer and displays the DESKTOP INFORMATION dialog.
Displaying a dialog is described in Section 2.10.

9. The menu title remains highlighted until the requested action is
complete. In the case of displaying the DESKTOP INFORMATION
dialog, the menu title is highlighted until after the final
FORM DIAL call.

When the action is complete, the application makes a
MENU TNORMAL call with an me nnormal value of 1. This call
changes the menu title from its-highlighted state to its normal
state.

2.10 Displaying a Dialog

To display a dialog, the GEM Desktop application makes the
following sequence of calls:

1. The application calls RSRC GADDR to get the address of the
dialog's object tree.

(As noted in Section 2.5, the application can make this call at
any time between its RSRC LOAD call and the beginning of the
dialog display sequence.)

2. The application calls the FORM DIAL routine, passing in an
fO_diflag value of 0 (zero), an FMD START call.

This call reserves screen space for the dialog.

3. The application can make a second FORM DIAL call, this time pas­
sing in an fO_diflag value of 1, an FMD_GROW call.

This call draws an expanding rectangle out to the position where
the dialog's borders will be.

This call is optional. Its primary purpose is to produce a
pleasing visual effect.

4. The application calls the OBJC DRAW routine to draw the dialog,
whose root object is usually a-G BOX object type.

2-6

(

Gem PG Vol. 2: AES 2.10 Displaying a Dialog

One of the OBJC DRAW call's input parameters is the address of
the dialog's obJect tree.

5. The application calls FORM DO, to monitor the user's interaction
with the dialog. -

6. When one of the dialog's exit conditions is met, the application
compares the dialog's initial values--set up in the RSRC_LOAD
call or in the application's code--with the values the dialog
now contains. The application notes any changes and acts accor­
dingly.

7. In many cases the application makes a series of OBJC CHANGE
calls to reset the dialog objects to their initial values.

For example, after the user exits the DESKTOP INFORMATION
dialog, the GEM Desktop application changes the OK exit button's
ob state from SELECTED to NORMAL so that the next time the user
selects Desktop Info , the dialog does not appear with its
OK button already highlighted.

In some cases, the user can overwrite text strings that have
been set to initial values. The user backspaces over the string
and types a new string. After comparing values and acting ac­
cordingly, the application might reset the string to its in­
itial value.

Note, however, that the user might· want to save some changes
made to dialogs. One example is the DOCUMENT INFORMATION
dialog, in which the user will want to save both the document's
name and its Read/Write or Read-Only status.

8. The application can call FORM DIAL again, passing in an
fO_diflag value of 2, an FMD_SHRINK call.

This call draws a shrinking box from the dialog's borders. Like
the call that draws the expanding box, this call is optional.

9. The application calls FORM DIAL the last time, this time passing
in an fo_diflag value of 3~ an FMD_FINISH call.

This call removes the dialog from
screen space that had been reserved
also causes the Screen Manager to send
tion to redraw the screen.

the screen and frees the
by the dialog. The call
a message to the applica-

The application can redraw the screen with an OBJC DRAW call or
with several GEM VOl calls.

To be able to respond to such a redraw message at any time, the
application should be in an EVNT MULTI wait.

2-7

Gem PG Vol. 2: AES 2.11 Keystroke Menu Selection

2.11 Keystroke Menu Selection

GEM AES supports letting the user select some menu items by pres­
sing a specially designated key or combination of keys instead of
uS1ng a menu. To enable this feature, the application should
specify a keyboard event as one of the awaited events in the
EVNT MULTI call.

When the user presses one of the menu item selection keys, the ap­
plication makes a MENU TNORMAL call with an me nnormal value of a
(zero) to highlight the menu title. The user does not see the
menu, but the highlighted menu title serves as notice that the ap­
plication is acting on the user's request.

When the requested action has taken place, the application makes a
MENU TMORMAL call with an me nnormal value of 1, to return the menu
title to its normal state.

2.12 Selecting an Icon

To select an icon, the user clicks the mouse button once on the
icon.

The following sequence describes icon selection:

1. The application sets the bit for a button event (MU BUTTON) in
the EVNT MULTI call. - \,,-/

Input parameters for this call include the awaited mouse button
state (up or down) and the number of times the application
wants the button to enter that state within the preset time in­
terval.

2. When the user clicks on an icon, the EVNT MULTI call returns an
ev mwhich value with the bit set for a mouse button event.

3. The application makes a GRAF MKSTATE call to get the mouse poin­
ter's X- and Y-coordinates. -

4. The application makes an OBJC FIND call, passing in the mouse
pointer's X- and Y-coordinates from the previous call. The ap­
plication also passes in the address of the object tree that
draws the icons on the desktop (if the pointer was in the
desktop window) or in the application's window.

5. If the OBJC FIND call reports that the mouse pointer was over an
icon, the application makes an OBJC CHANGE call to change the
icon's ob state from NORMAL to SELECTED.

If the mouse pointer was not over an icon, the application assumes
that the user intends to select a group of icons by dragging an
expanding (or "rubber") rectangle around them. In that event, the
application makes the following sequence of calls:

2-8

Gem PG Vol. 2: AES 2.12 Selecting an Icon

1. The application makes a GRAF MKSTATE call to see if the button
is still down. -

2. If so, the application makes a GRAF RUBBERBOX call to draw the
rubber rectangle that will surround the icons the user wishes
to select.

The call's input X and Y values are the X and Y values from the
GRAF MKSTATE call.

The GRAF RUBBERBOX call's output width and height values
(gr rlastwidth and gr rlastheight) define the size of the rubber
rectangle at the time-the user released the mouse button.

3. The application looks for icons inside the rectangle.

4. The application makes an OBJC CHANGE call for each icon, chan­
ging its ob state from NORMAL-to SELECTED.

Selecting an icon can change the appearance of menu items. For ex­
ample, when a folder, document, application, or disk icon is
selected, the File Menu item Open should change state from dis­
abled to enabled. The same icon selection can change other menu
items from enabled to disabled.

A disabled menu item appears in dimmed characters, which indicates
to the user that the item cannot be selected .. An enabled item ap­
pears in characters of normal brightness.

When the user selects an icon, the application's code determines
which menu items need to change state. The application then makes
a MENU IENABLE (item enable) call for each of these items, passing
in me eenable values of 0 (zero) to disable an item or 1 to enable
it.

2.13 Creating a Window

When a GEM application is running, GEM AES and the application
share responsibility for drawing and managing windows. GEM AES is
responsible for all user interactions with any components present
in the window's border area. These components include the
following:

o title bar
o move bar
o size box
o full box
o close box
o arrows, scrOll bars, and sliders

2-9

Gem PG Vol. 2: AES 2.13 Creating a Window

The application is responsible for drawing and managing everything
that appears inside the window's work area.

Making a window appear on the screen actually consists of two
steps: creating the window and opening it. Creating the window
defines what components will be present in the window; opening
makes the created window appear.

When the application makes a WIND CREATE call, it passes in a bit
vector with a bit set for each border area component the window
will have. The application also passes in the size and location
of the window's greatest possible size.

The GEM Desktop application and the calculator desk accessory
illustrate how the WIND CREATE call works. (The calculator actu­
ally appears in a window; although from the user's viewpoint, the
calculator and its window are indistinguishable.)

When the GEM Desktop makes a WIND CREATE call, the bit is on for
(among others) the size box. This means the size box appears in
the GEM Desktop window's border area, and the user can change the
window's size. In addition, the WIND CREATE call defines the win­
dow's largest size as the size of the-GEM Desktop work area (all of
the screen below the menu bar).

When the calculator desk accessory makes a WIND CREATE call, the
bit is off for the size box. No size box appears in the window's
border area, and the user cannot change the size of the window.
The WIND CREATE call defines the window's greatest possible size
(its only size, because there is no size box) as nineteen charac­
ters wide by thirteen characters high.

When an application makes a WIND CREATE
window handle, a numeric identifier the
future GEM AES calls.

call, GEM AES returns a
application uses for all

2.14 Calculating Work Area or Outer Dimensions

Before issuing the WIND OPEN call to open the window, the applica­
tion might need to make a WIND CALC call to perform the following
calculation.

o Using the size and location of the window's outer dimensions
(including the border area) as input parameters, WIND CALC
returns the size and location of the window's work area.

o Using the size and location of the window's work area as input
parameters, WIND CALC returns the size and location of the win­
dow's outer dimensions (including the border area).

In either case, WIND CALC uses the same bit vector that WIND CREATE
used to identify the components of the window's border.

2-10

(

Gem PG Vol. 2: AES 2.15 Opening a Window

2.15 Opening a Window

The WIND OPEN call causes the window to appear on the screen.

In making the call, the application passes in the window handle
from WIND CREATE and the initial size and location in which the
window will open.

The application determines the initial size and location. The ap­
plication can be written to remember a window's previous size and
location, or the application can specify that a window always open
in the same size and location.

When the application makes the WIND OPEN call, the GEM AES Screen
Manager draws the window's border area and then sends a message to
the application to draw the window's work area.

2.16 Slider Size and Location

If the work area of the window contains only part of the directory
or document (if only a portion of the virtual amount of data is
visible in the physical window), the application makes a WIND SET
call to set the size and location of the vertical and/or horizon­
tal sliders. A separate call is required for the size and loca­
tion of each slider.

The application makes similar WIND SET calls each time the size and
location of the sliders change. -

2.17 Sizing a Window

When the user drags the window's size box, GEM AES is responsible
for displaying the rubber box that shows the user a preview of the
window's new size.

When the user releases the mouse button, GEM AES sends the applica­
tion a message containing the dimensions of the window the user is
requesting. The application must decide if the requested size is
valid.

If the requested size is valid, the application issues a WIND SET
call to change the size of the window. If the new window is
smaller than the current window, the application does not have to
redraw the window's work area. If the new window is larger than
the current window, GEM AES sends the application a WM REDRAW mes­
sage requesting that it redraw the contents of the window's work
area.

2-11

Gem PG Vol. 2: AES 2.17 Sizing a Window

If the requested size is not valid, the application must decide how
it responds to such a request. It can do any of the following:

o ignore the request

o automatically size the window to the nearest valid size

o display a dialog that informs the user the request is not valid

If an application does not support a particular window function
(like sizing), it should not in its WIND CREATE call request the
window control point (like the size box) that supports this func­
tion.

2.18 Rectangle List

An application is only responsible for redrawing and updating the
visible portion of its windows. To keep track of the area for
which it is responsible, the application divides the visible por­
tion of each window's work area into the fewest possible number of
non-overlapping rectangles. For example, if the entire window is
visible, there is only one rectangle, the work area itself.

The application keeps a list of these rectangles by making a series
of WIND GET calls, the first with an input value of WF FIRSTXYWH,
and the -subsequent calls with values of WF NEXTXYWH. The applica­
tion continues making these calls until -the returned width and
height values for the rectangle are 0 (zero).

·2.19 Before Updating a Window

Before it updates a window, an application must notify GEM AES and
any other processes that an update is about to take place.

The application makes a WIND UPDATE call with a wi ubegend value of
1, which indicates the begInning of a window update. This call
freezes the rectangle lists of all windows except the one about to
be updated. The call also prevents menus and alerts from ap­
pearing during window update.

When the update is complete, the application makes a WIND UPDATE
call with a wi ubegend value of 0 (zero), which indicates the end
of a window update. This call frees the frozen rectangle lists,
allowing the other windows to change as required.

2.20 Redrawing the Work Area

When it redraws its window's work area, an application makes a
WIND GET call to get the first rectangle in the rectangle list.

2-12

(

Gem PG Vol. 2: AES 2.20 Redrawing the Work Area

The application then looks to see if the first rectangle has any
area in common with the "update rectangle," the part of the work
area that is to be redrawn. If so, the application redraws that
common area. If not, the application makes another WIND GET call,
to get the next rectangle in the list. The application compares
the next rectangle with the update rectangle and again redraws any
area common to both rectangles.

The application continues this sequence of WIND GET calls, com­
parisons, and redraws until it has gone through all the rectangles
in the rectangle list.

2.21 Making a Window Active

When the user presses the mouse button over a window, the ap­
plication--if it has made an EVNT MULTI call that includes a mouse
button event--receives a message-from the Screen Manager that the
button has been pressed.

The application then needs to find out where the button was
pressed. It makes a WIND FIND call, passing in the mouse's x- and
Y-coordinates, which were- returned by the EVNT MULTI call. The
WIND FIND call returns the window handle of the- window under the
mouse pOinter's position.

If the window handle is 0 (zero), the mouse pointer is on the GEM
Desktop, and the application is not responsible for the mouse but­
ton event. The Screen Manager, assuming that the user intends to
select desktop icons, draws a rubber box on the GEM Desktop.

If the window handle identifies a inactive window (including a desk
accessory window), the Screen Manager sends a message to the ap­
plication that owns the window. The Screen Manager uses the
predefined message WM TOPPED, which tells the application that the
user has requested that its window be brought to the top.

To bring the window
makes a WIND SET
handle and a code
the top.

to the top (make it "active"), the application
call with input values including the window's
indicating that the window is to be brought to

2.22 Closing and Deleting a Window

When the user closes a window, either by interaction with the win­
dow's border area or by choosing a command from a menu, the Screen
Manager sends a message to the application to close the window.
The application makes a WIND CLOSE call, passing in the handle of
the window to be closed.

2-13

Gem PG Vol. 2: AES 2.22 Closing and Deleting a Window
(~\

When the window is closed, its handle is still allocated to the ap-\..,~j
plication. The application does not free the handle until it
makes a WIND DELETE call.

The user cannot detect WIND CREATE or WIND_DELETE; the user can
only detect WIND OPEN and WIND CLOSE. In most cases, an applica­
tion will make the create and open calls one immediately after the
other, and it will do the same with the close and delete calls.
However, this is optional.

Section 11, "Window Library," contains more details on specific
windowing techniques, as well as descriptions of the individual
Window Library calls.

End of Section 2

2-14

(

(
~

\

c

Section 3

Application Library

3.1 Introduction

With a full multitasking operating system like Concurrent DOS, GEM
AES provides a desktop-style user interface that can have several
applications running at the same time. The applications appear in
windows that resemble overlapping sheets of paper. Whenever multi­
ple applications are running in a system simultaneously, the system
needs to be able to coordinate them. The Application Library's
routines make this kind of coordination possible.

GEM AES can extend a single-tasking operating system like PC DOS
and MS-DOS (version 2.0 and higher) to a limited multitasking form
that can simultaneously run a single foreground application and
several background applications. The foreground application can be
one of the following:

o a primary application like a word processing or drawing program
o a desk accessory like a clock/calendar or calculator

Background applications include print spoolers, network com­
munications drivers, and the GEM AES Screen Manager. The GEM AES
Screen Manager monitors the activities of the mouse when it is
outside the work area of the topmost window. The Screen Manager's
responsibilities include the following:

o drop-down menu interaction
o window border manipulation

In the limited multitasking environment, an internal GEM AES dis­
patcher switches CPU time between the foreground application and
the background tasks, while the user switches CPU time between the
primary application and the desk accessories.

In both full and limited multitasking systems, an application must
first register with the Application Library before it can use the
other GEM subroutine libraries. The following sections describe
the routines that an application uses to interact with the Applica­
tion Library.

3-1

GEM PG Vol. 2: AES 3.2 Using the Application Library

3.2 Using the Application Library

The Application Library controls access to the other GEM AES sub­
routine libraries. Because multiple applications use these sub­
routine libraries at the same time, each subroutine must know which
application is requesting a service. The steps in the following
sequence illustrate the Application Library's role:

1. An application is loaded into memory and starts executing.

2. The application reserves the required space for the Global Array
(described in the next section) and makes a call to tell GEM
AES to initialize the space.

3. The application enters its main body of code and runs until the
user requests that it terminate.

4. The application exits the Application Library.

5. The application terminates.

The application should never tamper with the space it allocates for
GEM AES. The space contains global data structures that are vital
to the successful use of all GEM AES subroutines. ,/ .".

In addition to initialization, Application Library routines are
also responsible for message pipes (APPL READ, APPL WRITE, and
APPL FIND). Section 4 contains a detailed -description-of message
pipes and other miscellaneous function calls.

3.3 Global Array

All of GEM AES's subroutines use the Global Array as a parameter.
The Global Array is 30 bytes long and contains the following infor­
mation:

global(O) = ap_version
global(l) = ap count
global(2) = ap=id
global(3,4) = ap_private
global(5,6) = ap_ptree
global(7,8) = ap lresv
global(9,10) = ap-2resv
global(11,12) = ap-3resv
global(13,14) = ap=4resv

In the parameter definitions below, the code (G) indicates that GEM
AES supplies the value at the time of the APPL INIT call. The code
(A) indicates that the application supplies the value prior to the
APPL INIT call.

3-2

(
GEM PG VOl. 2: AES 3.3 Global Array

o ap version - (G) A WORD of data identifying the version of GEM
AES being used.

o ap count - (G) A WORD of data specifying the maximum number of
applications this version of GEM AES supports concurrently.

o ap id - (G) A WORD of data containing a unique application iden­
tifier that is in effect as long as the application remains in
the GEM AES application environment.

o ap private - (A) A LONG data value that is private to the ap­
plIcation and can hold any kind of information the application
requires.

o ap-ptree - (A) A LONG address that points to the array of tree
addresses initialized by the RSRC LOAD call. This value should
initially be zeroed by the application.

o ap lresv - (A) A LONG value that is reserved for future use and
should initially be zeroed by the application.

o ap 2resv - (A) A LONG value that is reserved for future use and
should initially be zeroed by the application.

o ap 3resv - (A) A LONG value that is reserved for future use and
should initially be zeroed by the application.

o ap 4resv - (A) A LONG value that is reserved for future use and
should initially be zeroed by the application.

3.4 Application Library Routines

The Application Library provides the following routines:

o APPL_INIT - initializes a session with the Application Library

o APPL READ - lets an application read a specified number of bytes
from- a message pipe

o APPL WRITE - lets an application write a specified number of
bytes-to a message pipe

o APPL FIND - finds the application identifier of another applica­
tion-in the system

o APPL TPLAY - plays a piece of a GEM AES recording of the user's
actions

o APPL TRECORD - records a set of the user's interactions with GEM
AES -

o APPL EXIT - exits a session with the Application Library

3-3

GEM PG Vol. 2: AES 3.4 Application Library Routines

The following sections describe these routines.

In addition to the Global Array described in Section 3.3, each
Application Library routine has a GEM AES Parameter Block and a
Control Array that contain the following information:

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
params(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of int_in array
params(3) = long address (32 bits) of int_out array
params(4) = long address (32 bits) of addr in array
params(5) = long address (32 bits) of addr-out array

Control Array
control(O) = op_code
control(l) = size in WORDS of int_in array
control(2) = size in WORDS of int_out array
control(3) = size in LONGS of addr in array
control(4) = size in LONGS of addr=out array

In addition, each routine contains some or all of the following ar­
rays:

0 Integer Input (int_in) - Unless otherwise noted, each parameter
in this array is a WORD.

0 Integer Output (int_out) - Unless otherwise noted, each parameter
in this array is a WORD.

0 Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

o Address Output (addr out) Unless otherwise noted, each
parameter in this array is a POINTER.

3-4

(
GEM PG Vol. 2: AES 3.4 Application Library Routines

3.4.1 APPL INIT

Purpose:

Initializes the application and establishes a number of internal
GEM AES data structures prior to calls to other Application
Library subroutines.

Parameters:

control(O) = 10
control(l) = 0
control(2) = 1
control(3) = 0
control(4) = 0

int_out(O) = ap_id

o ap id - If APPL INIT was successful, ap id is zero or a positive
number. GEM AES places this number in the Global Array, and the
application uses it with future calls to Application Library
routines.

If APPL INIT
application

was not successful, the value of ap id is -1. The
should make no further Application Library calls.

Sample call to C language binding:

ap_id = appl_init();

3-5

GEM PG Vol. 2: AES 3.4 Application Library Routines

3.4.2 APPL READ

Purpose:

Reads a specified number of bytes from a message pipe.

Parameters:

control(O) = 11
control(1) = 2
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = ap_rid
int:in(1) = ap_rlength

int_out(O) = ap_rreturn

addr_in(O) = ap_rpbuff

o ap rid - the ap id of the process whose message pipe the applica­
tion is reading (usually its own)

the number of bytes to read from the message pipe

o ap_rreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o ap rpbuff - address of the buffer that will hold the bytes the
application is reading

Sample call to C language binding:

ap_rreturn = appl_read(ap_rid, ap_rlength, ap_rpbuff);

3-6

(
GEM PG Vol. 2: AES 3.4 Application Library Routines

3.4.3 APPL WRITE

Purpose:

Writes a specified number of bytes to a message pipe.

Parameters:

control(O) = 12
control(l) = 2
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = ap_wid -int in(l) = ap_wlength -
int_out(O) = ap_wreturn

addr_in(O) = ap_wpbuff

o ap wid - the ap id of the process to which the application is
writing (usually not itself)

the number of bytes to write to the message pipe

o ap_wreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o ap wpbuff - address of the buffer holding the bytes that will be
written

Sample call to C language binding:

ap_wreturn = appl_write(ap_wid, ap_wlength, ap_wpbuff);

3-7

GEM PG Vol. 2: AES 3.4 Application Library Routines

3.4.4 APPL FIND

Purpose:

Finds the ap_id of another application in the system.

The application must know the ap id before it can establish com­
munications with the other application.

Parameters:

control(O) = 13
contro1(1) = 0
control(2) = 1
control(3) = 1
control(4) = 0

int_out(O) = ap_fid

addr_in(O) = ap_fpname

o ap fid - The ap id of the application for which the current ap­
plIcation is searching.

-1 - GEM ASS could not find the application

o ap fpname - Address of a null-terminated string containing the
filename of the application for which the current application is
searching.

The string must be 8 characters long. If the filename has fewer
than 8 characters, the programmer must fill out the rest of the
string with blank spaces.

Sample call to C language binding:

ap_fid = appl_find(ap_fpname);

3-8

GEM PG Vol. 2: AES 3.4 Application Library Routines

3.4.5 APPL TPLAY

Purpose:

Plays a piece of a GEM AES recording of the user's actions.

Parameters:

control(O) = 14
control(l) = 2
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = ap_tpnum
int=in(l) = ap_tpscale

int_out(O) = ap_tpreturn

addr_in(O) = ap_tpmem

o ap_tpnum - the number of user actions to play back

o ap tpscale
speed at
ample:

- a sliding scale (from I to 10,000) determining the
which GEM AES plays back the user's actions, for ex-

50 = half speed
100 = full speed
200 = twice speed

o ap_tpreturn - always equals 1 (one)

o ap tpmem - the address of the area in memory holding the recor­
ding of user events that GEM AES will play back

Sample call to C language binding:

ap_tpreturn = appl_tplay(ap_tpmem, ap_tpnum, ap_tpscale);

3-9

GEM PG Vol. 2: AES 3.4 Application Library Routines

3.4.6 APPL TRECORD

Purpose:

Records a set of the user's interactions with GEM AES.

Each user event uses six bytes in memory, divided into a WORD and
a LONG value as follows:

o The WORD contains a code for the event (as defined by the Event
Library) that occurred.

o = timer event
1 = button event
2 = mouse event
3 = keyboard event

o The LONG value's meaning depends on the type of event that was
recorded.

- timer event: The number of milliseconds elapsed.
',,-j

button event: The LOW WORD is the button state (0 = button
up; 1 = button down). The HIGH WORD is the number of
clicks.

- mouse event: The LOW and HIGH WORD are the mouse's x- and Y­
coordinates in pixels, respectively.

- keyboard event: The LOW WORD contains the character the user
typed. The HIGH WORD contains the keyboard state.

Parameters:

control(O) = 15
control(l) = 1
control(2) = 1
control(3) = 1
control(4) = 0

int_in(O) = ap_trcount

int_out(O) = ap_trreturn

addr_in(O) = ap_trmem

3-10

(/

('

GEM PG Vol. 2: AES 3.4 Application Library Routines

o ap trcount - The number of user events that the application can
store. This number equals the available storage space (in
bytes) divided by the 6 bytes used by each event.

o ap_trreturn - The number of user events the application recorded.

o ap trmem The address of an area in memory where the recorded
user events will be stored.

Sample call to C language binding:

ap_trreturn = appl_trecord(ap_trmem, ap_trcount);

3-11

GEM PG Vol. 2: AES 3.4 Application Library Routines i"\
i~/)

3.4.7 APPL EXIT

Purpose:

Lets the Application Library clean up its environment when an ap­
plication is done making Application Library calls.

Parameters:

control(O) = 19
control(l) = 0
control(2) = 1
coritrol(3) = 0
control(4) = 0

int_out(O) = ap_xreturn

o ap_xreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

Sample call to C language binding:

ap_xreturn = appl_exit();

End of Section 3

3-12

(Section 4

Event Library

4.1 Introduction

An interactive application must be able to respond quickly to
several types of user input, including the following:

o typing on a keyboard

o clicking a mouse button

o moving a mouse

o choosing a menu command

o manipulating a control point on the border of a window

o doing nothing when something is expected (that is, the lack of in­
put)

GEM AES refers to these types of user input as "events"
application writers with an Event Library, consisting
that monitor events. These routines can significantly
speed and efficiency of the application.

4.2 Using the Event Library ,

and provides
of routines

increase the

The Event Library lets an application get input from the keyboard
and mouse, other programs in the system, and the system itself. In
most programming interfaces available for developing desktop-style
applications, the programmer must write an application that spins in
a tight loop polling the keyboard, mouse, message pipe (described
in Section 4.2.5), and clock. This type of polling will exhaust the
resources of a multitasking system.

The Event Library avoids this problem by letting the application
tell the operating system what types of events to wait for. The
operating systelR can let other programs run, and it need only ac­
tivate the application when one or more of the desired events has
occurred.

The Event Library lets an application wait for any of the following
events:

o keyboard event - The user presses a key.

4-1

S7J9

GEM PG Vol. 2: AES 4.2 Using the Event Library

o mouse button event - The user presses or releases a mouse button.

o mouse event - The user moves the mouse into or out of a specified
rectangle.

o message event - An application receives a message from another
process.

o timer event - The preset timer amount expires.

o multiple event - Any combination of the other events.

4.2.1 Waiting for Multiple Events

If an application were to wait only for a single type of event, it
would not respond to events of any other type. An application needs
to be able to wait for one or more of a specified set of events.
The Event Library makes this possible.

When any or all of the events in the set occur, the Event Library
notifies the application and returns a value that identifies the
events that have occurred. The application uses this value to
determine how it should process the events.

After processing the event or events, the application typically
specifies another set of events, calls the Event Library, and then
awaits notification that one of the new set of events has taken
place. While the application is awaiting notification, the system
can share CPU time with other processes that are ready to run.

4.2.2 Keyboard Event

GEM AES recognizes a standard keyboard. The definition of this
keyboard is the same as the hardware standard implied in the IBM.
PC ROM BIOS documented in the GEM Programmer'~ Guide, Volume 1:
VOl.

These keyboard events are encoded in a l6-bit form of console input.
The state of the Ctrl, Shift, and Alt keys is also available by
making the GEM AES GRAF MKSTATE function call.

4.2.3 Mouse Button Event

GEM AES lets an application wait for a specified mouse button or set
of buttons to enter a specified state (down or up).

A mask word performs a logical AND operation on the bits represen­
ting the mouse buttons the application wants to ignore. For ex­
ample, on a three-button mouse, a mask word value of 001 indicates
that the user has pressed the left button.

4-2

c

GEM PG Vol. 2: AES 4.2 Using the Event Library

A mouse button event takes place when the following equation is
true:

(current_state AND mask) = desired_state

For example, if the user presses
the application is waiting for,
In that case the equation reads:

the left button and that is what
a mouse button event takes place.

(001 AND 001) = 001

The application can also wait for the mouse button to enter the
desired state a specified number of times in a set interval. One
occurrence in the interval is referred to as a "click"; two occur­
rences are called a "double-click."

The Event Library returns to the application the number of times the
mouse button entered the desired state in the interval. The number
returned is always at least 1 (one) and never more than the number
desired by the application.

4.2.4 Mouse Event

Several kinds of mouse movement can cause an application to change
the appearance of the screen, including the following:

o dragging an icon over the desktop
o drawing a rubberband line or rectangle
o moving the mouse form into a sensitive region

A Mouse Event occurs when the mouse is either inside or outside a
pixel-aligned rectangle. For example, using a Mouse Event, an ap­
plication can change the mouse form from an arrow to a cross hair
whenever the mouse is inside a certain area of the screen. The ap­
plication waits for the Mouse Event that indicates that the mouse is
inside a certain rectangle on the screen. When the mouse enters the
rectangle, GEM AES notifies the application. The application makes
a GRAF MOUSE call to change the mouse form to a cross hair, and
then disengages to wait for the mouse to exit the rectangle.

As long as the mouse remains in the rectangle, the application is
inactive. As soon as the mouse exits, GEM AES reactivates the ap­
plication so it can change the mouse form back to an arrow.

The size of this critical rectangle depends on the resolution that
is required for the mouse response. For example, dragging objects
that can be placed on arbitrary pixel boundaries requires a rec­
tangle that is one pixel high and one pixel wide. However, most ap­
plications, including graphics applications that use a grid for
aligning elements, do not always require such fine resolution. For
example, inverting the items in a menu requires a resolution equal
to the size of the menu item in which the mouse form is located.

4-3

$11

GEM PG Vol. 2: AES 4.2 Using the Event Library

('\
Systems can achieve significant improvements in overall through:p !

if the amount of mouse motion significant for each action determin~
the size of each of the application's mouse event rectangles.

4.2.5 Message Event

The GEM AES programming environment provides a user interface in
which applications use separate overlapping windows. The windows
reside on the physical screen, which looks like a gray desktop with
a menu bar running across the top. The window that is on top and
has control of the keyboard is called the "active window."

The application that owns the active window provides GEM AES with
the following:

o a set of menus that appears in the menu bar

o the title that GEM AES places in the top border of the ap­
plication's window

o the kinds of window control points including the close box, full
box, and size box to which the application will respond

To ensure a consistent user interface and increase programm,r
productivi ty, GEM AES manages all interactions with the user dur;jl ~ ..
menu selection and window border manipulation. However, ~,/
plications need to know the results of these external user intera~
tions. To provide this information, GEM AES uses Message Events.

To receive notification of external events, applications use a stan­
dard message pipe. A Message Event occurs when an application
receives a message in its message pipe.

Messages come in a standard format defined by the GEM AES Message
Protocol and are placed in an application's message pipe in First­
In-First-Out (FIFO) order. Each time an application reads a message
in its message pipe, GEM AES removes the message from the pipe.

4.2.5.1 Predefined GEM AES Messages

GEM AES provides several predefined message types. Each type has a
maximum length of 16 bytes. All the predefined message types define
the first three words in the same way:

o word 0 - A number identifying the message type.

o word 1 - The ap_id of the application that sent the message.

4-4

GEM PG Vol. 2: AES 4.2 Using the Event Library

o word 2 - The length of the message,
bytes. If the value of word 2 is
message is longer than 16 bytes),
APPL READ call for the remainder of

not counting the predefined 16
not 0 (in other words, if the
the application should use an
the message.

4.2.5.2 MN SELECTED

GEM AES uses this message to notify an application that a user has
selected a menu item.

o word 0 = 10
o word 3 = the object index of the menu title selected
o word 4 = the object index of the menu item selected

4.2.5.3 WM REDRAW

GEM AES uses this message to tell an application that a user has
taken an action that requires redrawing part of the work area of
its window. The work area is the part of the window exclusive of
the title bar, information line (if any), and border area.

0 word 0 = 20

0 word 3 = the handle of the window to redraw

0 word 4 = X-coordinate of the portion of the redraw area to redraw
(in screen coordinates)

0 word 5 = Y-coordinate of the portion of the redraw area to redraw
(in screen coordinates)

o word 6 = width of the portion of the redraw area to redraw (in
screen coordinates)

o word 7 = height of the portion of the redraw area to redraw (in
screen coordinates)

4.2.5.4 WM TOPPED

GEM AES uses this message to tell the application that the user has
requested its window or another application's window be moved to
the top (made active).

o word 0 = 21
o word 3 = the handle of the window

4.2.5.5 WM CLOSED

GEM AES uses this message to tell an application that the user has
requested that its window be closed.

4-5

GEM PG Vol. 2: AES 4.2 Using the Event Library

o word 0 :: 22
o word 3 :: the handle of the window

4.2.5.6 WM FULLED

GEM AES uses this message to tell an application that the user h~s
clicked the mouse button in the window's full box, either to en­
large the window to its fullest possible siz$ or, if the window is
already full, to return it to its previous size.

o word 0 = 23
o word 3 = the handle of the window

4.2.5.7 WM ARROWED

GEM AES uses this message to tell an application that the user has
clicked in the arrows or scroll bars in the window's border area.

o word 0 = 24
o word 3 = the handle of the window
o word 4 = the action requested by the user as follows:

0 = page up
I :: page down
2 = row up
3 :: row down
4 = page left
5 = page right
6 = column left
7 = column right

The user invokes the page actions by clicking on the scroll bars.
The row and column actions are invoked when the user clicks on the
arrows. Section 11.2.1, "Components of the Border Area," describes
scrolling in detail.

4.2.5.8 WM HSLID

GEM AES uses this message to tell an application the new position
the user has requested for the horizontal slider.

o word 0 = 25

o word 3 = the handle of the application's window

o word 4 = a number from 0 to 1000, indicating the requested slider
position

4-6

(-" ,

GEM PG Vol. 2: AES 4.2 Using the Event Library

4.2.5.9

GEM AES
that the

o word a

o word 3

a = leftmost position
1000 = rightmost position

WM VSLID

uses this message to tell an application the new position
user has requested for the vertical slider.

= 26

= the handle of the application's window

o word 4 = a number from a to 1000, indicating the requested slider
position

a = top position
1000 = bottom position

4.2.5.10 WM SIZED

GEM AES uses this message to give an application its window's new
coordinates when the user requests a change in the window's size.
The coordinates include the window's title bar, information line (if
any), and borders.

0 word a = 27

0 word 3 = the handle of the window

0 word 4 = the requested X-coordinate (should remain the same as the
window's current X-coordinate)

0 word 5 = the requested V-coordinate (should remain the same as the
window's current V-coordinate)

0 word 6 = the requested width

0 word 7 = the requested height

4.2.5.11 WM MOVED

GEM AES uses this message to give an application its window's new
coordinates when the user requests a change in the window's posi­
tion. The coordinates include the window's title bar, information
line (if any), and borders.

0 word a = 28

0 word 3 = the handle of the window

4-7

GEM PGVol. 2: AES 4.2 Using the Event Library

(-~
\

0 word 4 = the requested X-coordinate

o word 5 = the requested Y-coordinate

0 word 6 == the requested width (should remain the same as the win-
dow's current width)

0 word 7 = the requested height (should remain the same as the win-
dow's current height)

4.2.5.12 AC OPEN

GEM AES sends this message to a desk accessory when the user selects
it from the Desk Menu.

o word 0 = 30

o word 3 = me rmenuid: the desk accessory menu item identifier
returned by the MENU REGISTER call

4.2.5.13 AC CLOSE

GEM AES sends this message to a desk' accessory when the following
set of conditions exists:

o The current application has just terminated.
o The screen is about to be cleared.
o Window Library data structures are about to be reinitia1ized.

The desk accessory should zero any window handle it currently owns.

o word 0 = 31

o word 3 = me raccmenid: the desk accessory menu item identifier
returned by the MENU REGISTER call

4.2.6 Timer Event

An application sometimes needs to wait a certain amount of time
before proceeding. For example, the application might be displaying
a message that must remain on the screen for a maximum of three
seconds. To gauge the time, the application can poll the system
clock or do a large number of difficult, hardware-specific cal­
culations. However, both of these methods are inefficient in a mul­
titasking system in which processes can make good use of each
other's delay time.

4-8

('

GEM PG Vol. 2: AES 4.2 Using the Event Library

By using Timer Events, GEM AES provides a more efficient method. A
Timer Event occurs when a programmer-specified number of
milliseconds has passed since the Timer Event was started.

4.3 Event Library Routines

The Event Library provides the following routines:

0 EVNT KEYBD - waits for a keyboard event

0 EVNT BUTTON - waits for a mouse button event

0 EVNT MOUSE - waits for a mouse event

0 EVNT MESAG - waits for a message event

0 EVNT TIMER - waits for a timer event

0 EVNT MULTI - waits for multiple events

0 EVNT DCLICK - sets and gets the speed required for double-clicking

The following sections describe these routines.

Each Event
Array, and

Library routine has a GEM AES Parameter Block, Control
Global Array that contain the following information:

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
params(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of int_in array
params(3) = long address (32 bits) of int_out array
params(4) = long address (32 bits) of addr in array
params(5) = long address (32 bits) of addr-out array

Control Array
control(O) = op code
control(l) = size in WORDS of int in array
control(2) = size in WORDS of int:out array
control(3) = size in LONGS of addr_in array
control(4) = size in LONGS of addr out array

4-9

$17

GEM PG Vol. 2: AES

Global Array
global(O) =
global(1) =
globa1(2) =
global(3,4) =
global (5, 6) =
global (7,8) =
globa1(9,10) =
global(11,12) =
global(13,14) =

ap version
ap-count
ap-id
ap-private
ap-ptree
ap-1resv
ap-2resv
ap-3resv
ap=4resv

4.3 Event Library Routines

Global Array parameters are described in Section 3.

Each routine also contains some or all of the following arrays:

o Integer Input (int in) - Unless otherwise noted, each parameter in
this array is a WORD.

o Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

o Address Input (addr in) ~ Unless otherwise noted, each parameter
in this array is a POINTER.

o Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER.

4-10

(/

GEM PG Vol. 2: AES 4.3 Event Library Routines

4.3.1 EVNT KEYBD

Purpose:

Notifies GEM AES that the application is waiting for any kind of
keyboard input.

Parameters:

control(O) = 20
control(l) = 0
control(2) = 1
control(3) = 0
control(4) = 0

int_out(O) = ev kreturn

o ev kreturn - the standard keyboard code for the values returned in
AH-and AL, as defined by the IBM PC DOS ROM BIOS

Sample call to C language binding:

ev kreturn = evnt_keybd();

4-11

GEM PG VOl. 2: AES 4.3 Event Library Routines

4.3.2 EVNT BUTTON

Purpose:

Notifies GEM AES that
mouse button state.

the application is waiting for a particular

Parameters:

control(O) = 21
control(1) = 3
control(2) = 5
control(3) = 0
control(4) = 0

int in(O) = ev bclicks
int-in(1) = ev-bmask
int=in(2) = ev-bstate

int_out(O) = ev breturn
int out(l) = ev-bmx
int-out(2) = ev-bmy
int-out(3) = ev-bbutton
int=out(4) = ev-bkstate

, ... /

o ev bclicks - the number of times the application is wai ting fOT~~"
the mouse button to enter a particular state (ev _ bstate) wi thin '.
preset time

o ev bmask - the mouse buttons the application is waiting for

GEM AES can theoretically support 16 mouse buttons.

In ev bmask, ev bstate,
represent the buttons:

and ev_bbutton, the following bits

Ox0001 - button on left
Ox0002 - second button from left
Ox0004 - third button from left, etc.

These parameters use the following bit settings:

o - button up
1 - button down

o ev bstate - The button state for which the application is waiting.

o ev breturn - The number of times the button actually entered the
desired state within the preset time. This number is never less
than 1 or greater than the number contained in ev bclicks.

4-12

5:2.0

(,

GEM PG Vol. 2: AES 4.3 Event Library Routines

0 ev bmx - The X-coordinate of the mouse pointer when the user event
occurred.

0 ev bmy - the Y-coordinate of the mouse pointer when the user event
occurred.

o ev bbutton - The mouse button state when the user event occurred.

o ev bkstate - The state of the keyboard's right-Shift, left-Shift,
Ctrl, and Alt keys when the user event occurred.

The following bits represent the keys:

Ox0001 - right-Shift
Ox0002 - left-Shift
Ox0004 - Ctrl
Ox0008 - Alt

This parameter uses the following bit settings:

o - key up
1 - key down

Sample call to C language binding:

ev breturn = evnt button(ev bclicks, ev bmask,
- ev bstate, &ev brnx, &ev bmy,

&ev_bbutton, &ev_bkstate);

4-13

S.:ll

GEM PG Vol. 2: AES 4.3 Event Library Routines

4.3.3 EVNT MOUSE

Purpose:

Notifies GEM AES that the application is waiting for the mouse to
enter or leave a specified rectangle.

Parameters:

control(O) = 22
control(l) = 5
control(2) = 5
control(3) = 0
control(4) = 0

int in(O) = ev_moflags
int-in(l) = ev mox
int-in(2) = ev_moy
int-in(3) = ev mowidth
int:in(4) = ev-moheight

int out(O) = ev moresvd
int-out(l) = ev momx
int-out(2) = ev momy
int-out(3) = ev-mobutton
int:out(4) = ev mokstate

o ev_mof1ags - flags for the call

OxOOOO - return on entry
OxOO01 - return on exit

o ev mox - The X-coordinate of the mouse rectangle in pixel-based
screen coordinates.

o ev_moy - The Y-coordinate of the mouse rectangle in pixel-based
screen coordinates.

o ev mowidth - The width of the mouse rectangle in pixel-based
screen coordinates.

o ev_moheight - The height of the mouse rectangle in pixel-based
screen coordinates.

o ev_moresvd - RESERVED; value always equals 1 (one).

o ev momx - . The X-coordinate of the mouse pOinter when the user
event occurred.

o ev momy - The Y-coordinate of the mouse pointer when the user
event occurred.

o ev mobutton - The mouse button state when the user event occurred.

4-14

(

GEM PG Vol. 2: AES 4.3 Event Library Routines

The following bits represent the buttons:

OxOOOl - button on left
Ox0002 - second button from left
Ox0004 - third button from left, etc.

This parameter uses the following bit settings:

o - button up
1 - button down

o ev mokstate - The state of the keyboard's right-Shift, left-Shift,
Ctrl, and Alt keys when the user event occurred.

The following bits represent the keys:

Ox0001 - right-Shift
Ox0002 - left-Shift
Ox0004 - Ctrl
Ox0008 - Alt

This parameter uses the following bit settings:

o - key up
1 - key down

Sample call to C language binding:

ev moresvd = evnt mouse(ev moflags, ex mox, ev moy,
- -ev mowidth,-ev moheight,

&ev mornx, &ev momy,
&ev=mobutton,-&ev_mokstate);

4-15

GEM PG Vol. 2: AES 4.3 Event Library Routines

4.3.4 EVNT MESAG

Purpose:

Notifies GEM AES that the application is waiting for a standard
l6-byte message in the message pipe.

Using message pipes to communicate between processes in the system
is very flexible and makes possible many different types of mes­
sages in the l6-byte message buffer. For these messages to be
meaningful to the receiving application, a well-defined set of
message protocols must exist. GEM AES provides several
predefined messages, which are described in Section 4.2.5.

Parameters:

control(O) = 23
control(l) = 0
control(2) = 1
control(3) = 1
control(4) = 0

int_outeO) = ev_mgresvd

addr_in(O) = ev_mgpbuff

o ev_mgresvd - RESERVED; value always equals 1 (one).

o ev mgpbuff - Address of the buffer where the message will be
placed. Its size must be 16 bytes.

Sample call to C language binding:

ev_mgresvd = evnt~esag(ev_mgpbuff);

4-16

(

GEM PG Vol. 2: AES 4.3 Event Library Routines

4.3.5 EVNT TIMER

Purpose:

Notifies GEM AES that the application is waiting for a specified
amount of time to pass.

Parameters:

control(O) = 24
control(1) = 2
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = ev tlocount
int_in(1) = ev-thicount

int_out(O) = ev tresvd

o ev tlocount - LOW WORD of a LONG value.

o ev thicount - HIGH WORD of a LONG value.

Combined, ev tlocount and ev thicount are the length of the time
interval in -milliseconds.

o ev tresvd - RESERVED; value always equals 1 (one).

Sample call to C language binding:

ev tresvd = evnt_timer(ev_tlocount, ev_thicount);

4-17

GEM PG Vol. 2: AES 4.3 Event Library Routines

4.3.6 EVNT MULTX -
Purpose:

Notifies GEM AES that the application is waiting for one or more
events at the same time.

Parameters:

control(O) = 2S
control(l) = 16
control(2) = 7
control(3) = 1
control(4) = 0

int in(O) = ev mflags
int-in(l) = ev-mbclicks
int-in(2) = ev-mbmask
int-in(3) = ev-mbstate
int-in(4) = ev-mm1flags
int-in(S) = ev-mm1x
int-in(6) = ev-mm1y
int-in(7) = ev-mm1width
int-in(S) = ev-mmlheight
int-in(9) = ev-mm2flags
int-in(lO) = ev-mm2x
int-in(ll) = ev-mm2y
int-in(12) = ev-mm2width
int-in(13) '"" ev-mm2height
int-in(14) = ev-mtlocount
int:in(lS) = ev-mthicount

int out(O) = ev mwhich
int-out(l) = ev_mmox
int-out(2) = ev mmoy
int-out(3) = ev-mmobutton
int-out(4) = ev-mmokstate
int-out(S) = ev-mkreturn
int out(6) = ev-mbreturn

addr_in(O) = ev_mmgpbuff

Many of the EVNT MULTI parameters are defined under the other
Event Library routines. For example, the parameter ev mbclicks
corresponds to the parameter ev_bclicks, defined under the
EVNT_BUTTON routine. Unique parameters are defined below.

The two sets of mouse event parameters, ev mm1 ••• and ev mm2 ••• ,
describe two distinct mouse rectangles. These parameters cor­
respond to the X, Y, width, and height parameters (ev mox, etc.)
described under the EVNT MOUSE routine. -

4-1S

(

GEM PG Vol. 2: AES 4.3 Event Library Routines

o ev_mflags - the type of event for which the application is waiting

This call uses the following bit settings:

OxOOOl - MU KEYBD
Ox0002 - MU-BUTTON
Ox0004 - MU-M1
Ox0008 - MU-M2
Ox0010 - MU-MESAG
Ox0020 - MU-TIMER

o ev_mwhich - the event(s) in ev_mflags that actually occurred

This call uses the following bit settings:

Ox0001 - MU KEYBD
Ox0002 - MU-BUTTON
Ox0004 - MU-M1
Ox0008 - MU-M2
Ox0010 - MU-MESAG
Ox0020 - MU-TIMER

Sample call to C language binding:

ev mwhich = evnt multi(ev mflags, ev mbclicks, ev mbmask,
- ev mbstate,-ev mm1flags,­

ev-mm1x, ev mmIy, ev mm1width,
ev-mmlheight, ev mm2?lags,
ev-mm2x, ev mm2y; ev mm2width,
ev-mm2height, ev mmgpbuff,
ev - mtlocount, ev-mthicount,
&ev mmox, &ev mmoy, .
&ev-mmobutton; &ev mmokstate,
&ev mkreturn, &ev_mbreturn);

4-19

GEM PG Vol. 2: AES 4.3 Event Library Routines

4.3.7 EVNT DCLICK

Purpose:

Gets the current setting of the mouse button's double-click speed
or sets a new double-click speed for the mouse button.

Parameters:

control(O) = 26
control(l) = 2
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = ev dnew
int=in(l) = ev=dgetset

int_out(O) = ev_dspeed

o ev dnew - the new double-click speed the user has selected

This parameter has integer values from 0 (zero) to 4 that cor­
respond to the SLOW-2-3-4-FAST settings of the selection buttons
in the GEM Desktop's SET PREFERENCES dialog.

o eV_dgetset - the purpose of the call

1 = set a new double-click speed
o = get the current double-click speed

If the value of ev dgetset is 0, EVNT_DCLICK disregards the
ev dnew value in the-call.

o ev dspeed - the double-click speed, either newly set (ev dgetset =
l)-or already existing (ev_dgetset = 0) -

This parameter uses the same integer values as ev dnew.

Sample call to C language binding:

ev_dspeed = evnt_dclick(ev_dnew, ev_dgetset);

End of Section 4

4-20

(

c

Section 5

Menu Library

5.1 Introduction

Menus represent groups of options a user can choose within an ap­
plication. Menus commonly appear as some form of text list.

Each GEM application defines its own menus. When an application is
active (controls the keyboard and mouse), GEM AES displays the tit­
les of its menus in a menu bar at the top of the screen.

To select a menu, the user places the mouse form over the menu's
title in the menu bar. This causes the menu to drop down. The menu
appears in a rectangle below the menu bar and remains visible until
the user clicks the mouse button.

Figure 5-1 illustrates a typical menu.

Figure 5-1. Typical Menu

5-1

GEM PG Vol. 2: AES 5.1 Introduction

The standard menu item is a text string that names the menu command.
In addition, a menu item can contain either of the following:

o A space for a check mark to the left of the menu item.

A check mark indicates that a certain condition is in effect. For
example, in a menu of text fonts, a check mark next to the name of
a font indicates that user-entered text will appear in that font.

o A character identifying a key that produces the same result as
choosing the menu item.

The user can press the
choosing an item. The
this shortcut.

key instead of displaying the menu and
character appears on the menu to identify

Depending on the current state of the application, menu items can
appear in either of two states: enabled (can be chosen) or disabled
(cannot be chosen). Menu items are enabled only when choosing them
is meaningful to the application. For example, the File Menu com­
mand Open is enabled if the user has selected an icon and is dis­
abled if the user has not selected an icon.

The Menu Library displays enabled items in standard character
brightness; it. displays disabled items in dimmed characters.

Responsibility for the user's interaction with menus is shared by
the Screen Manager and the Menu Library.

The application uses a Menu Library call to display its menu bar,
and it uses Menu Library calls to enable or disable menu items and
to display check marks in a menu.

After making a RSRC LOAD call to bring menu data into memory, and a
MENU BAR call to dIsplay the menu, the application waits for a mes­
sage from its message pipe. If the user touches a menu title with
the mouse form, the Screen Manager does the following:

o It highlights the menu title in reverse video.

o It displays the menu items in a rectangle that appears below the
title.

As the user moves the mouse form up and down the menu, the Screen
Manager uses reverse video to highlight each enabled item as the
mouse form touches it. The item remains highlighted as long as the
mouse form is in contact with it.

5-2

(

GEM PG Vol. 2: AES 5.1 Introduction

To choose a menu item, the user clicks the mouse button while the
mouse form is over an enabled item. The Screen Manager removes the
drop-down portion of the menu from the screen and writes a message
to the pipe. The application reads the message and acts accor­
dingly.

When the chosen action has been performed, the calling application
makes a Menu Library call to change the menu title back to its nor­
mal state.

If the user chooses a menu item by using the keyboard shortcut
described previously, the application makes a Menu Library call
both to highlight the menu title and to return it to its normal
state. Section 2.11 describes keyboard menu selection in greater
detail.

A menu remains visible until the user clicks the mouse button.

If the user moves the mouse form outside the menu rectangle, the
Screen Manager dehighlights the currently highlighted item (if
any). If the user moves the mouse form back into the rectangle,
the Screen Manager again highlights enabled items as the mouse form
touches them.

If the user clicks the mouse button outside the rectangle, the
Screen Manager removes the drop-down portion of the menu from the
screen. No item is chosen, and no message is written to the pipe.
To redisplay the menu, the user must move the mouse form back to the
menu bar and select the menu title.

The Menu Library has two additional special functions. First, it
supports context-sensitive text in menus. An application can
change the wording of its menu items depending on the application's
current state. Second, desk accessories use a Menu Library call to
make their names appear on the Desk Menu, which is where the user
starts them.

The Menu Library offers distinct advantages to both programmer and
user:

o The programmer can create menus that meet the unique requirements
of individual applications.

o The programmer does not have to be concerned with manipulating the
interaction between menu and mouse.

o The programmer can modify menus and/or menu items in an efficient
and timely manner.

o The user can expect all GEM AES application menus to be familiar,
both in appearance and function.

5-3

531

GEM PG Vol. 2: AES 5.2 Using the Menu Library

5.2 Using the Menu Library

The Menu Library is intended to relieve the application of the over­
head of handling the interaction between mouse and menu. The Menu
Library has the following responsibilities:

o displaying the appropriate menu bar for each active application
o enabling and disabling menu items
o displaying check marks in menus
o returning a highlighted menu title to its normal state
o displaying context-sensitive menu text
o displaying a desk accessory's name on the Desk Menu

The application need only do the following:

1. Create a menu object tree. (The data for each menu
in an object structure, described in Section 6.3.1.
state of the application determines whether a check
in the menu and whether an item is enabled.)

2. Add the menu object tree to a resource file.

is contained
The current

mark appears

3. Load the
Library's

menu object tree
RSRC LOAD call.

into memory, using the Resource

4. Call the MENU BAR routine to have the Menu Library display the
menu titles across the top of the desktop.

After the application has completed the above steps, the menu titles
are visible in the menu bar, and the individual menus are ready for
user interaction.

The application's major task is to establish the menu resource file.
The information in the resource file determines the menu title's
location on the menu bar and the location of the menu rectangle
below the menu title.

When the user chooses an item, the Screen Manager writes a message
to the pipe. Control then returns to the application, which must
read the pipe.

The pipe message contains the following:

o a code indicating that it is a menu message
o the object index of the menu title selected
o the object index of the menu item chosen

(If the user does not choose an item, the Screen Manager does not
write a message to the pipe.)

5-4

(-

GEM PG Vol. 2: AES 5.2 Using the Menu Library

After processing the chosen item, the application makes a Menu
Library call to dehighlight the menu title and waits for the next
message to come through the message pipe.

5.3 Menu Library Routines

The Menu Library uses the following routines:

o MENU_BAR - displays or erases the menu bar

o MENU_I CHECK - displays or erases a check mark next to a menu item

o MENU IENABLE - displays an enabled item in normal brightness and a
disaoled item in dimmed characters

o MENU_TNORMAL - displays menu title in normal or reverse video

o MENU_TEXT - changes the text of a menu item

o MENU REGISTER - lets a desk accessory set a text string on the
Desk-Menu and obtain a desk accessory identifier

The following sections describe these routines.

Each Menu
Array, and

Library routine has a GEM AES Parameter Block, Control
Global Array that contain the following information:

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
params(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of int in array
params(3) = long address (32 bits) of int-out array
params(4) = long address (32 bits) of addr in array
params(5) = long address (32 bits) of addr-out array

Control Array
control(O) = op code
control(l) = size in WORDS of int in array
control(2) :II size in WORDS of int-out array
control(3) :II size in LONGS of addr in array
control(4) = size in LONGS of addr out array

5-5

GEM PG Vol. 2: AES

Global Array
global(O) =
global (1) =
global(2) =
global(3,4) =
global (5,6) =
global (7 , 8) =
global(9,lO) =
global(11,12) =
global(13,14) =

ap version
ap-count
ap-id
ap-private
ap-ptree
ap-lresv
ap-2resv
ap-3resv
ap-4resv

5.3 Menu Library Routines

Global Array parameters are described in Section 3.

Each routine also contains some or all of the following arrays:

o Integer Input (int in) - Unless otherwise noted, each parameter in
this array is a WORD.

o Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

o Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

o Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER.

5-6

GEM PG Vol. 2: AES 5.3 Menu Library Routines

5 • 3 • 1 MENU BAR

Purpose:

Displays or erases the application's menu bar.

The application should always call MENU BAR to erase the menu
prior to its APPL EXIT call.

Parameters:

control(O) = 30
control(l) = 1
control(2) = 1
control(3) = 1
control(4) = 0

int_in(O) = me bshow

int_out(O) = me breturn

addr_in(O) = me btree

o me bshow - a code for whether the application displays the menu
bar

o - erase the menu bar
1 - display the menu bar

o me breturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o me btree - the address of the object tree that forms this menu

Sample call to C language binding:

mebreturn = menu_bar(me_btree, me_bshow);

5-7

S3S

GEM PG Vol. 2: AES 5.3 Menu Library Routines

5.3.2 MENU ICHECK

Purpose:

Displays or erases a check mark next to a menu item.

Parameters:

control(O) = 31
control(l) = 2
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = me citem
int:in(l) = me-ccheck

int_out(O) = me creturn

addr_in(O) = me ctree

o me citem - a number that uniquely identifies this menu item

o me ccheck - a code for whether the application displays a check
mark next to the menu item identified by me_citem

o do not display a check mark, or if a check mark is visible,
erase it

1 - display a check mark

o me creturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o me ctree - the address of the object tree that forms this menu

Sample call to C language binding:

me creturn = menu_icheck(me_ctree, me_citem, me_ccheck);

5-8

(/

c

GEM PG Vol. 2: AES 5.3 Menu Library Routines

5.3.3 MENU I ENABLE

Purpose:

Enables or disables a menu item.

Parameters:

control(O) = 32
control(l) = 2
contro1(2) = 1
control(3) = 1
contro1(4) = 0

int in(O) = me eitem
ip.t=in(l) = me-eenable

int_out(O) = me ereturn

addr_in(O) = me etree

o me eitem - a number that uniquely identifies this menu item

o me eenab1e - a code for how the application displays a menu item

o - disabled (dimmed characters)
1 - enabled (normal brightness)

o me ereturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o me etree - the address of the object tree that forms this menu

Sample call to C language binding:

me ereturn = menu_ienab1e(me_etree, me_eitem, me_eenable);

5-9

GEM PG Vol. 2: AES 5.3 Menu Library Routines

5.3.4 MENU TNORMAL

Purpose:

Displays a menu title in normal or reverse video.

Parameters:

control(O) = 33
control(l) = 2
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = me ntitle
int:in(l) = me-nnormal

int_out(O) = me nreturn

addr_in(O) = me ntree

o me ntitle - a number unique to this application that identifies
this menu,

o me nnormal - a code for whether the application displays the menu
title in normal or reverse video

o - reverse video
1 - normal video

o me_nreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o me ntree - the address of the object tree that forms this menu

Sample call to C language binding:

me nreturn = menu tnormal(me ntree, me ntitle,
- me_nnormal);

5-10

GEM PG Vol. 2: AES 5.3 Menu Library Routines

5.3.5 MENU TEXT

Purpose:

Changes the text of a menu item.

This routine lets GEM AES support context-sensitive menus. For
example, a word processing application that lets the user turn
the character insert on and off can have a menu item reading
"Insert On" or "Insert Off", depending on the current state of
the insert.

Parameters:

control(O) = 34
control(l) = 1
control(2) = 1
control(3) = 2
control(4) = 0

int_in(O) = me titem

int_out(O) = me treturn

addr_in(O) = me ttree
addr_in(l) = me-ttext

o me titem - A number that uniquely identifies this menu item.

o me treturn - A coded return message.

o - an error exists
n (positive integer) - no error exists

o me ttext - The address of the new text string for this menu item.
ThIs text string should be no longer than the one it is replacing
in the menu object tree structure.

o me ttree - The address of the object tree that forms this menu.

Sample call to C language binding:

me treturn = menu_text(me_ttree, me_titem, me_ttext);

5-11

GEM PG VOl. 2: AES 5.3 Menu Library Routines

5.3.6 MENU REGISTER

Purpose:

Places a desk accessory's menu item string on the Desk Menu and
returns the accessory's menu item identifier.

The Desk Menu can list no more than six desk accessories.

Parameters:

control(O) := 35
control(l) := 1
contro1(2) := 1
control(3) := 1
control(4) = 0

int_in(O) = me_rapid

int_out(O) = me rmenuid

addr_in(O) = me_rpstring

o me_rapid - the desk accessory's process identifier

This value is the ap_id returned by the desk accessory's APPL INIT
call. /

o me rmenuid - the desk accessory's menu item identifier, a value
ranging from 0 (zero) to 5

-1 - no room on the Desk Menu for this item

o me rpstring - the address of the desk accessory's Desk Menu text
string

Sample call to C language binding:

me rmenuid = menu_register(me_rapid, me_rpstring);

End of Section 5

5-12

(

c

c

Section 6

Object Library

6.1 Introduction

An object is a collection of data describing something that appears
on the screen. For example, GEM AES objects include boxes, charac­
ters, and icons. GEM AES defines several standard objects, and the
Object Library provides routines to handle them.

An application uses the Object Library to set up and manipulate a
tree structure of objects. Figure 6-1 shows a typical object tree.

Figure 6-1. Object Tree

An object tree is an array of objects. Starting with a root object,
the tree consists of linked lists in which each child points to its
next sibling and to its children, if either exists. In addition,
the last child at each level pOints back to its parent.

6-1

GEM PG Val. 2: AES

6.2 Using the Object Library

Figure 6-2 illustrates how
simple on-screen display: a
inside.

6.2 Using the Object Librar¥

the Object Library works. It shows a
box containing two boxes, one with text

+--------------------+
+--------------+

+--------------+
+--------------+

TEXT

+--------------+
+--------------------+

Figure 6-2. On-screen Display

The object tree that defines this display contains three objects:

o The root: the outer box. Its object type is G BOX. Data for this
object include the following: -

- X- and Y-coordinates of the upper left corner
- width and height
- thickness of the border
- foreground and background colors

o The first child: the empty inner box. Its object type is also
G BOX. Data for this object include the following:

- X- and Y-coordinates of the upper left corner, relative to the
parent

- width and height

- thickness of the border

- foreground and background colors

6-2

c·

GEM PG Vol. 2: AES 6.2 Using the Object Library

o The second child: the box with TEXT. Its object type is
G BOXTEXT. Data for this object include the following:

- X- and Y-coordinates of the upper left corner, relative to the
parent

- width and height

- thickness of the border

- foreground and background colors

- text

An application can create an object tree by making separate calls to
the OBJC ADD routine for each of the root's children. The applica­
tion then calls the OBJC DRAW routine. Using the tree structure
created by the OBJC ADD calls and the data contained in the objects
themselves, the Object Library draws the on-screen image.

An application can also load one or more complete object trees with
the RSRC LOAD call. In that case, all parent-child relationships
have already been established.

Note that the parent object (in Figure 6-1, the root is the parent)
always occupies screen space greater th'an or equal to that occupied
by its children. In other words, the parent must contain its
children.

6.3 Object Library Data Structures

The Object Library uses the following data structures:

o OBJECT structure
o TEDINFO structure
o ICONBLK structure
o BITBLK structure
o APPLBLK structure
o PARMBLK structure

If an element of one of these data structures has a value of -1, it
is either a nil index or a nil pOinter.

The following sections describe these data structures.

6-3

GEM PG Vol. 2: AES 6.3 Object Library Data structures

6.3.1 OBJECT Structure

The OBJECT structure contains values that describe the object, its
relationship to the other objects in the tree, and its location
relative to its parent or (in the case of the root object) the
screen. There is an OBJECT structure for each object in a tree.

+-------~+--------+--------+--------+ I ob_next ob_head
+--------+--------+--------+--------+
lob_tail lob_type I
+--------+--------+--------+--------+ I ob_flags I ob state I
+--------+--------+--------+--------+ I ob_spec I
+--------+--------+--------+--------+ I ob_x I ob_y I
+--------+--------+--------+--------+ I ob width ob_height
+--------+--------+--------+--------+

Figure 6-3. OBJECT Structure

a ob next - a WORD containing the index of the object's next sibling
in-the object tree array

a ob head - a WORD containing the index of the first child: the head
of-the list of the object's children in the object tree array

a ob_tail - a WORD containing the index of the last child: the tail
of the list of the object's children in the object tree array

a ob type - a WORD containing the object type (defined in Section
6.g.7.l). GEM AES ignores the high byte of this WORD.

a ob flags - a WORD containing the object flags (defined in Section
6.g.7.2)

a ob state - a WORD containing the object state (defined in Section
6.g.7.3)

a ob spec a LONG value
detailed description of
parameter list.

containing object-specific data. A
ob_spec appears at the end of this

a ob_x - a WORD containing the X-coordinate of the object relative
to its parent or (for the root object) the screen

a ob~y - a WORD containing the Y-coordinate of the object relative ~.
to its parent or (for the root obj ect) the screen \.C~/

6-4

,(~

GEM PG Vol. 2: AES 6.3 Object Library Data Structures

0 ob width - a WORD that contains the width of the object in
pixels

0 ob height a WORD that contains the height of the object in
pixels

Depending on the object's type, ob spec can be a POINTER or any com­
bination of WORD and/or BYTE values that add up to 32 bits. Object
types are described in Section 6.3.7.1.

For object types G BOX, G IBOX, and G BOXCHAR, the LONG value of
ob spec is broken into a LOW WORD and a-HIGH WORD. The LOW WORD is
the object color, as defined in Section 6.3.7.4.

The HIGH WORD is broken into two bytes. For the object type
G BOXCHAR, the HIGH BYTE of the HIGH WORD is a character. For all
other object types, the HIGH BYTE equals zero.

The LOW BYTE of the HIGH WORD is the thickness of the border of the
object. This byte can have the following values:

00 = no thickness

1 - 128 (positive values) = inside thickness: inward from the ob­
ject's edge

-1 - (-127) (negative values) = outside thickness: outward from the
object's edge

6.3.2 TEDXNFO Structure

The TEDINFO structure lets a user edit formatted text. The object
types G TEXT, G BOXTEXT, G FTEXT, and G FBOXTEXT use their ob_spec
pointers to point to TEDINFO structures.-

6-5

GEM PG Vol. 2: AES 6.3 Object Library Data structures

+--------+--------+--------+--------+
te ptext

+--------+------~-+--------+--------+ I te_ptmplt I
+--------+--------+--------+--------+ I te~valid I
+--------+--------+--------+--------+ I te font I te resvdl I
+--------+--------+--------+--------+ I te_just I te color I
+--------+--------+--------+--------+ I te_resvd2 I te_thickness I
+--------+--------+--------+--------+ I te txt len I te _ tmplen I
+----~---+--------+--------+--------+

Figure 6-4. TED INFO Structure

o te~text - A POINTER to the actual text.

If the first text character is "@", the field is blank, and the
application can use any characters for the remaining character
positions in the field. For example, a te ptext string "@xyzpdq"
is seven blank spaces. - ;,-"

o te ptmplt - A POINTER to a text string template for any further
data entry. The editable portion of the field is represented by
underscores.

o te pvalid - A POINTER to a text string containing characters that
validate any entered text.

9 - allow only digits 0 - 9
A - allow only uppercase A - Z, plus space
a - allow upper- and lowercase A - Z, plus space
N - allow 0 - 9 and uppercase A - Z, plus space
n -allow 0 - 9 and upper- and lowercase A - Z, plus space
F - allow all valid DOS filename characters, plus? * :
P - allow all valid DOS path name characters, plus \ ?
P - allow all valid DOS path name characters, plus \
X - allow anything

o te_font - A'WORD identifying the font used to draw the text.

3 - system font: used in menus, dialogs, etc.
S - small font: used in icons

o te resvdl - Reserved for future use.

6-6

*

GEM PG Vol. 2: AES 6.3 Object Library Data structures

o te just - A WORD identifying the type of text justification
desired.

o - left-justified
1 - right-justified
2 - centered

o te color
objects.

- A WORD identifying the color and pattern of box-type
See Section 6.3.7.4, "Object Colors."

o te resvd2 - Reserved for future use.

o te thickness - A WORD
border of the text
values:

containing the thickness in pixels of the
box. This WORD can have the following

0

0

00 = no thickness

1 - 128 (positive values) = inside thickness: inward from the ob­
ject's edge

-1 - (-127) (negative values) = outside thickness: outward from
the object's edge

te txtlen - A WORD containing the length of 'the string pointed to
by-te_ptext.

te tmplen - A WORD containing the length of the string pointed to
by- te~tmplt.

The following example illustrates how the TEDINFO structure works.

o te ptext is a string of raw data for a date.
"061384" •

Its value is

o te ptmplt, also a string, is a template that shows how to display
the data in te_ptext. Its value is "Enter Date: _I_i_"

o te pvalid is a string of input validation characters. Its value
is-"999999".

o The editable
string, "Enter

text facility merges all the
Date: 06/13/84".

above data into one

o If the user types "1004", the string becomes "Enter Date:
10/04/84" •

o If the user presses the Backspace key after typing "1004", the
string becomes "Enter Date: 10/0_/84".

6-7

GEM PG Vol. 2: AES 6.3 Object Library Data structures

o If te ptext has no data or not enough data to fill out the temp­
late,-the unfilled parts of the template show underscores. For
example, if the user types "01" into an empty date field, it then
reads "Enter Date: 01/_1_"

6.3.3 ICONBLK Structure

The Object Library uses the ICONBLK structure to hold the data that
defines icons. The object type G ICON paints with its ob_spec
pointer to an ICONBLK structure.

+--------+--------+--------+--------+ I ib_pmask I
+--------+--------+--------+--------+
1 ib_pdata 1

+--------+--------+--------+--------+
1 ib_ptext 1

+--------+--------+--------+--------+
I ib char I ib xchar 1
+--------+--~-----+--------+--------+
I ib_ychar I ib xicon 1
+--------+--------+--------+--------+

ib_yicon ib_wicon
+--------+--------+--------+--------+
I· ib_hicon 1 ib xtext 1

+--------+--------+--------+--------+
I ib_ytext I ib_wtext 1
+--------+--------+--------+--------+
1 ib htext I 0 I 0 I
+--------+--------+--------+--------+

Figure 6-5. ICONBLK Structure

All X, Y, width, and height values for this structure are in pixels.

0 ib pmask - A POINTER to an array of WORDS representing the mask
bit-image of the icon.

o ib_pdata - A POINTER to an array of WORDS representing the data
bit-image of the icon.

o ib_ptext - A POINTER to the icon's text.

o ib char - A WORD containing a character to be drawn in the icon
(for example, the letter "A" on a floppy disk icon).

o ib xchar - A WORD containing the X-coordinate of ib char.

6-8

(

GEM PG VOl. 2: AES 6.3 Object Library Data structures

0 ib_ychar - A WORD containing the Y-coordinate of ib char.

0 ib xicon - A WORD containing the X-coordinate of the icon.

0 ib_yicon - A WORD containing the Y-coordinate of the icon.

0 ib wicon - A WORD containing the width of the icon in pixels.
This value must be divisible by 16.

0 ib hi con - A WORD containing the height of the icon in pixels.

o ib xtext - A WORD containing the X-coordinate of the icon's text.

0 ib_ytext - A WORD containing the Y-coordinate of the icon's text.

0 ib wtext - A WORD containing the width of a rectangle in which the
icon's text will be centered.

o ib htext - A WORD containing the height of the icon's text in
pixels.

6.3.4 BXTBLK Structure

The object type G IMAGE uses the BITBLK structure to draw bit images
like cursor forms or icons.

+--------+--------+--------+--------+ I bi_pdata I
+--------+--------+--------+--------+ I bi wb I bi_hl I
+--------+--------+--------+--------+ I bi x I bi_y I
+--------+--------+--------+--------+ I bi_color I I
+--------+--------+--------+--------+

Figure 6-6. BXTBLK Structure

o bi_pdata - A POINTER to an array of WORDS containing the bit im­
age.

o bi wb - A WORD containing the width of the bi pdata array in
bytes. Because the bi pdata array is made of WORDS, this value
must be an even number.-

6-9

GEM PG Vol. 2: AES 6.3 Object Library Data structures

o bi hl - A WORD containing the height of the bit block in scan
lines (pixels).

o bi x - A WORD containing the source X in bit form, relative to the
bi:pdata array.

o bi y - A WORD containing the source Y in bit form, relative to the
bi:pdata array.

o bi color - A WORD containing the color GEM AES uses when dis­
playing the bit-image. See Section 6.3.7.4 for the color values.

6.3.5 APPLBLK Structure

The Object Library uses the
application-defined routine
The object type G PROGDEF
APPLBLK structure. -

APPLBLK structure to locate and call an
that will draw and/or change an object.
points with its ob_spec pointer to an

+--------+--------+--------+--------+ I ab_code I
+--------+--------+--------+--------+ I ab_parm I
+--------+--------+--------+--------+

Figure 6-7. APPLBLK Structure

o ab code - a POINTER to the routine for drawing and/or changing the
object

o ab_parm - a LONG value (optionally provided by the application)
passed as a parameter when the Object Library calls the ap­
plication's object drawing/changing routine

6.3.6 PARMBLK Structure

The Object Library uses the PARMBLK structure to store information
relevant to the application's drawing or changing an object.

When it calls the application's object drawing/changing routine
(pointed to by ab~code), the Object Library provides a pointer to a
PARMBLK.

6-10

(.....

GEM PG Vol. 2: AES 6.3 Object Library Data structures

+--------+--------+--------+--------+
I pb_tree I
+--------+--------+--------+--------+
I pb_obj I pb_prevstate I
+--------+--------+--------+--------+
I pb_currstate I pb_x I
+--------+--------+--------+--------+
I pb_y I pb_w I
+--------+--------+--------+--------+
I pb_h I pb_xc I
+--------+--------+--------+--------+
I pb_yc I pb_wc I
+--------+--------+--------+--------+
I pb_hc Ipb_parm LOW WORD I
+--------+--------+--------+--------+
I pb_parm HI WORD I
+--------+--------+

Figure 6-8. PARMBLK Structure

o pb tree - A POINTER to the object tree that contains the ap­
plication-defined object.

o pb obj - A WORD containing the object index of the application­
defined object.

o pb prevstate - A WORD containing the old state of an object to be
changed.

o pb currstate - A WORD containing the changed (new) state of an ob­
ject.

Note: If pb prevstate and pb currstate are the same, the applica­
tion is drawing the object, not changing it.

o pb x - A WORD containing the X-coordinate of a rectangle defining
the location of the object on the physical screen.

o pb y - A WORD containing the Y-coordinate of a rectangle defining
the location of the object on the physical screen.

o pb w - A WORD containing the width (in pixels) of a rectangle
defining the size of the object on the physical screen.

o pb h - A WORD containing the height (in pixels) of a rectangle
defining the size of the object on the physical screen.

o pb xc - A WORD containing the X-coordinate of the current clip
rectangle on the physical screen.

o pb yc - A WORD containing the Y-coordinate of the current clip
rectangle on the physical screen.

6-11

-------.~~----~--.. ~

GEM PG Vol. 2: AES 6.3 Object Library Data structures

o pb wc
clip

- A WORD containing the width (in pixels) of
rectangle on the physical screen.

the current

o pb hc
clip

- A WORD containing the height (in pixels)
rectangle on the physical screen.

of the current

o pb parm - A LONG value; identical to ab parm in the APPLBLK struc~
ture. The Object Library passes this value to the application
when it is time for the application to draw or change the object.

6.3.7 Predefined Values

The Object Library routines use the following predefined values:

o object types
o object flags
o object states
o object colors

The following sections define these values.

6.3.7.1 Object Types

#define G BOX 20
#define G-TEXT 21
#define G-BOXTEXT 22
#define G-IMAGE 23
#define G-PROGDEF 24
#define G-IBOX 25
#define G-BUTTON 26
#define G-BOXCHAR 27
#define G-STRING 28
#define G-FTEXT 29
#define G-FBOXTEXT 30
#define G-ICON 31
#define G-TITLE 32

Object types are stored in the ob_type section of the OBJECT struc­
ture. All object types are graphic or bitmap object types.

o G BOX - A graphic box; its ob-spec value contains the object's
color WORD and thickness.

o G TEXT - Graphic text; its ob spec value is a POINTER to a TED INFO
structure in which the value of te_ptext pOints to the actual
text string as displayed.

6-12

(
GEM PG Vol. 2: AES 6.3 Object Library Data structures

o G BOXTEXT - A graphic box containing graphic text; its ob_spec
value is a POINTER to a TED INFO structure in which the value of
te_ptext pOints to the actual text string as displayed.

o G IMAGE - A graphic bit-image; its ob_spec value is a POINTER to a
BITBLK structure.

o G PROGDEF - A programmer-defined object; its ob_spec value is a
POINTER to an APPLBLK structure.

o G IBOX - An "invisible" graphic box; its ob spec value contains
the object's color WORD and thickness. It has-no fill pattern and
no internal color. If its border has no thickness, it is truly
invisible. If its border has thickness, it is an outline.

o G BUTTON - A graphic text object centered in a box; its ob spec
value is a POINTER to a nUll-terminated text string. -

o G BOXCHAR - A graphic box containing a single text character; its
05 spec value contains the character, plus the object's color WORD
and thickness.

o G STRING - A graphic text object; its ob_spec value is a POINTER
to a null-terminated text string.

o G FTEXT - Formatted graphic text; its ob spec value is a POINTER
to a TED INFO structure in which the value of te ptext points to a
text string. The text string is merged with the template pointed
to by te_ptmplt before it is displayed.

o G FBO~TEXT - A graphic box containing formatted graphic text; its
05 spec value is a POINTER to a TED INFO structure in which the
value of te ptext points to a text string. The text string is
merged with the template pointed to by te ptmplt before it is dis-
played. -

o G ICON - An object that describes an icon; its ob_spec value is a
POINTER to an ICONBLK structure.

o G TITLE - A graphic text string used in menu titles; its ob_spec
value is a POINTER to a nUll-terminated text string.

6-13

GEM PG Vol. 2: AES

6.3.7.2 Object Flags

#define NONE
#define SELECTABLE
#define DEFAULT
#define EXIT
#define EDITABLE
#define RBUTTON
#define LASTOB
#define TOUCHEXIT
#define HIDETREE
#define INDIRECT

OxOOOO
Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
Ox0080
Ox0100

6.3 Object Library Data structures

Object flags are stored as a bit vector in the ob flags portion of
the OBJECT structure. Each bit in the ob_flags WORD is sig­
nificant. Undefined bits should be set to zero.

o SELECTABLE - Indicates that the user can select the object.

o DEFAULT - Indicates that the Form Library will examine the object
if the user enters a carriage return. No more than one object in
a form can be flagged DEFAULT. This object is usually an exit
button, which lets the user enter a carriage return to exit the
form without using the mouse.

o EXIT - Indicates that the Form Library will return control to the
caller after the exit condition is satisfied. The exit condition
is satisfied when the user selects the object by clicking on it.

o EDITABLE - Indicates that an object is editable by the user in
some way.

o RBUTTON - An object called a radio button.

Radio buttons appear in groups of two or more, only one of which
may be selected at a given time. When the user selects a button,
the currently selected button is automatically de-selected.

All radio buttons in a group must have the same parent.

The "Floppy" and "Hard" buttons in the GEM Desktop application's
INSTALL DISK DRIVE dialog are examples of radio buttons.

o LASTOB - Indicates that an object is the last object in the object
tree.

o TOUCHEXIT - Indicates that the Form Library will return control to
the caller after the exit condition is satisfied. The exit con­
dition is satisfied when the user presses the mouse button while
the pOinter is over ("touching") the object.

6-14

• i

GEM PG Vol. 2: AES 6.3 Object Library Data Structures

o HIDETREE - Makes a subtree invisible. When the application makes
an OBJC DRAW or OBJC FIND call, the Object Library will not draw
or find the object or any of its children.

o INDIRECT - Indicates that the value in ob_spec is a pointer to the
actual value of ob_spec.

6.3.7.3 Object States

#define NORMAL
#define SELECTED
#define CROSSED
#define CHECKED
#define DISABLED
#define OUTLINED
#define SHADOWED

OxOOOO
Ox0001
Ox0002
Ox0004
Ox0008
OxOOlO
Ox0020

Object states determine how the OB DRAW routine draws objects.
Object states are stored as a bit vector in the ob state portion of
the OBJECT structure.

o NORMAL - Indicates that the object is drawn in normal foreground­
background colors.

o SELECTED - Indicates that the object is highlighted by being drawn
with its foreground and background colors reversed.

o CROSSED - Indicates that an "X" is drawn in the object. The ob­
ject must be a box.

o CHECKED - Indicates that the object (typically one containing
text) is drawn with a check mark.

o DISABLED - Indicates that the object (typically one containing
text) is drawn faintly.

o OUTLINED - Indicates that an outline appears around a box object.
This state is used for dialog boxes.

o SHADOWED - Indicates that the object (usually a box) is drawn with
a drop shadow.

6-15

GEM PG Vol. 2: AES 6.3 Object Library Data structures

6.3.7.4 Object Colors

#define WHITE a
#define BLACK 1
#define RED 2
#define GREEN 3
#define BLUE 4
#define CYAN 5
#define YELLOW 6
#define MAGENTA 7
#define WHITE 8
#define BLACK 9
#define LRED 10
#define LGREEN 11
#define LBLUE 12
#define LCYAN 13
#define LYELLOW 14
#define LMAGENTA 15

Object colors are stored as a WORD in the ob spec portion of the
OBJECT structure and the te color portion of the TEDINFO structure.
An L preceding the name of-the color (for example, "LGREEN") in­
dicates a light shade of the color.

Figure 6-9 shows the components of the object color WORD.

+----+----+-+---+----+
I a I b Icl die I
+----+----+-+---+----+

Figure 6-9. Object Color WORD

The high four bits ("a" in Figure 6-9) are the border color, with
values ranging from a to 15.

The next four bits ("b") are the text color, with values ranging
from 0 to 15.

The next bit ("c") indicates how text is written.

o = transparent mode
1 = replace mode

(Transparent and replace mode are defined in the GEM Programmer'~
Guide, Volume 1: VDI.)

6-16

GEM PG Vol. 2: AES 6.3 Object Library Data structures

The next three bits ("d") indicate the object's fill pattern, with
values ranging from 0 to 7.

o = hollow fill
7 = solid fill
1 - 6 = dither patterns of increasing darkness

The low four bits ("e") are the object's inside color, with values
ranging from 0 to 15.

6.4 Object Library Routines

The Object Library uses the following routines:

o OBJC ADD - adds an object to an object tree
o OBJC DELETE - deletes an object from an object tree
o OBJC-DRAW - draws an object or object tree
o OBJC-FIND - determines if the mouse is over an object
o OBJC-OFFSET - computes an object's location relative to the screen
o OBJC-ORDER - changes the order of an object within its tree
o OBJC-EDIT - lets a user edit text in an object
o OBJC-CHANGE - changes an object's state

The following sections describe these routines.

Note: A tree is an array of objects.
descriptions, references to an object
the object in the tree.

In the Object Library routine
refer to the array index of

Each Object Library routine has a GEM AES Parameter Block, Control
Array, and Global Array that contain the following information:

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
params(1) = long address (32 bits) of global array
params(2) = long address (32 bits) of int_in array
params(3) = long address (32 bits) of int out array
params(4) = long address (32 bits) of addr in array
params(5) = long address (32 bits) of addr-out array

Control Array
control(O) = op_code
control(1) = size in WORDS of int in array
contro;L(2) = size in WORDS of int=out array
control(3) = size in LONGS of addr_in array
control(4) = size in LONGS of addr out array

6-17

GEM PG Vol. 2: AES

Global Array
global (0) =
global (l) =
global(2) =
global(3,4) =
global(5,6) =
global (7,8) =
global(9,lO) =
global(ll,12) =
globa1(13,14) =

ap version
ap-count
ap-id
ap-private
ap-ptree
ap-lresv
ap-2resv
ap-3resv
ap:4resv

6.4 Object Library Routines

Global Array parameters are described in Section 3.

Each routine also contains some or all of the following arrays:

o Integer Input (int in) - Unless otherwise noted, each parameter in
this array is a WORD.

o Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

o Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

o Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER.

6-18

(:/
GEM PG Vol. 2: AES 6.4 Object Library Routines

6.4.1 OBJC ADD

Purpose:

Adds an object to an object tree.

In creating an object tree, the application makes separate
OBJC ADD calls to establish the relationship of each child to its
parent. For example, if the tree contains one parent with three
children and another parent with two children, the tree requires a
total of five OBJC ADD calls.

Parameters:

control(O) = 40
control(l) = 2
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = ob aparent
int=in(l) = ob-achild

int_out(O) = ob areturn

addr_in(O) = ob atree

o ob aparent - the object to whose list of children the child will
be-added

o ob achild - the object to add to parent's list of children

o ob are turn - a coded return message

o - an error exists
n (positive integer) - the object was successfully added

o ob atree - the address of the object tree containing parent and
chIld

Sample call to C language binding:

ob areturn = objc_add(ob_atree, ob_aparent, ob_achild);

6-19

GEM PG Vol. 2: AES 6.4 Object Library Routines

6.4.2 OBJC DELETE

Purpose:

Deletes an object from an object tree by unlinking it from its
parent object.

Parameters:

control(O) = 41
control(l) = 1
control(2) = 1
control(3) = 1
control(4) = 0

int_in(O) = ob_dlobject

int_out(O) = ob dlreturn

addr_in(O) = ob dltree

o ob dlobject - the object to be deleted

o ob dlreturn - a coded return message

o - an error exists
n (positive integer) - the object was successfully deleted

o ob dltree - the address of the object tree that contains the
obJect

Sample call to C language binding:

ob dlreturn = objc_delete(ob_dltree, ob_dlobject);

6-20

(

(/

c\

GEM PG Vol. 2: AES 6.4 Object Library Routines

6.4.3 OBJC DRAW

Purpose:

Draws any object or objects in an object tree.

Each OBJC DRAW call defines a new clip rectangle, and the Object
Library draws only the parts of the object contained within the
clip rectangle for that call.

The clip rectangle is defined in the GEM Programmer'~ Guide,
Volume 1: VDI.

Parameters:

control(O) =
control(l) =
control(2) =
control(3) =
control(4) =
int in(O) =
int-in(l) =
int-in(2) =
int-in(3) =
int-in(4) =
int:in(5) =
int_out(O) =
addr_in(O) =

o ob drstartob
ob artree

42
6
1
1
0

ob drstartob
ob-drdepth
ob:drxclip
ob_dryclip
ob drwclip
ob:drhclip

ob drreturn

ob drtree

the starting object on the tree indexed by

o ob drdepth - how many levels in the object tree to draw, starting
from ob drstartob

o - starting object only
1 - first level children of starting object
2 - second level children of starting object [etc.]

o ob_drxclip - the X-coordinate of the clip rectangle

o ob_dryclip - the Y-coordinate of the clip rectangle

o ob_drwClip - the width (in pixels) of the clip rectangle

o ob_drhclip - the height (in pixels) of the clip rectangle

6-21

GEM PG Vol. 2: AES 6.4 Object Library Routines

o ob_drreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o ob drtree - the address of the object tree that contains the ob­
ject

Sample call to C language binding:

ob drreturn = objc draw(ob drtree, ob drstartob,
- ob drdepth,-ob drxclip,

ob-dryclip, ob-drwclip,
ob:drhclip); -

6-22

/~

(--

GEM PG Vol. 2: AES 6.4 Object Library Routines

6.4.4 OBJC FIND

Purpose:

Finds an object under the mouse form.

The application supplies the X- and Y-coordinates of the mouse's
position, as well as a parameter that tells OBJC FIND how far down
the tree to search.

Parameters:

control(O) = 43
control(l) = 4
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = ob fstartob
int-in(l) = ob-fdepth
int-in(2) = ob-fmx
int:in(3) = ob:fmy

int_out(O) = ob fobnum

addr_in(O) = ob ftree

o ob fstartob - the object at which to start the search

o ob fdepth - how many levels in the object tree to search, starting
from ob fstartob

o - starting object only
1 - first-level children of starting object
2 - second-level children of starting object [etc.]

o ob fmx - the X-coordinate of the mouse's location

o ob_fmy - the Y-coordinate of the mouse's location

o ob fobnum - the found object's number in the tree, ranging from 0
(zero) to n

-1 - no object found

o ob ftree - the address of the object tree containing the object
identified by ob fstartob

6-23

GEM PG Vol. 2: AES 6.4 Object Library Routines

Sample call to C language binding:

ob fobnum = objc find(ob ftree, ob fstartob, ob_fdepth,
- -ob_fmx, ob_fmy);

6-24

(
GEM PG Vol. 2: AES 6.4 Object Library Routines

6.4.5 OBJC OFFSET

Purpose:

Computes an object's X- and Y-coordinates relative to the screen.

Parameters:

control(O) = 44
control(l) = 1
control(2) = 3
control(3) = 1
control(4) = 0

int_in(O) = ob_ofobject

int out(O) = ob of return
int-out(l) = ob-ofxoff
int=out(2) = ob=ofyoff

addr_in(O) = ob of tree

o ob_ofobject the object whose location is being computed

o ob ofreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o ob ofxoff - the X-coordinate of ob_ofobject relative to the screen

o ob_ofyof£ - the Y-coordinate of ob_ofobject relative to the screen

o ob of tree - the address of the object tree containing the object
identified by ob_ofobject

Sample call to C language binding:

ob_ofreturn = objc offset(ob of tree, ob ofobject,
- &ob_ofxOf£,-&ob_ofyoff)i

6-25

GEM PG Vol. 2: AES 6.4 Object Library Routines

6.4.6 OBJC ORDER

Purpose:

Moves an object to a new position in its parent's list of children
(for example, takes the third child and moves it to the second
child's place).

Parameters:

control(O) = 45
control(l) = 2
control(2) = 1
control(3) = 1
control(4) = 0

int_in(O) = ob_orobject
int_in(l) = ob_ornewpos

int_out(O) = ob orreturn

addr_in(O) = ob ortree

o ob orobject - the object to be moved to a new position

o ob_ornewpos - the new position in which to put the object

o - on the bottom
1 - one from the bottom
2 - two from the bottom [etc.]

-1 - on top

o ob orreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o ob ortree - the address of the object tree that contains the ob­
ject identified by ob orobject

Sample call to C language binding:

ob orreturn = objc order(ob ortree, ob orobject,
- ob_ornewpos);

6-26

r

GEM PG Vol. 2: AES 6.4 Object Library Routines

6.4.7 OBJC EDIT

Purpose:

Lets the user edit text in an object.

The object must be of the type G TEXT or G BOXTEXT.

Parameters:

0

0

0

0

control(O) = 46
control(l) = 4
control(2) = 2
control(3) = 1
control(4) = 0

int in(O) = ob_edobject
int-in(l) = ob edchar
int-in(2) = ob-edidx
int=in(3) = ob-edkind

int out(O) = ob edreturn
int=out(l) = ob-ednewidx

addr_in(O) = ob edtree

ob edobject - the object containing the text to be edited

ob edchar - the character input by the user

ob edidx the index of the next character position in the raw
text string

ob edkind - the OBJC EDIT function to perform

o - ED START - reserved for future use

1 - ED INIT - combine values in te ptext and te_ptmplt into a for­
matted string; turn on text cursor

2 - ED CHAR - validate typed characters against te_pvalid, update
te-ptext, and display string

3 - ED END - turn off text cursor

See Section 6.3.2, "TEDINFO Structure."

o ob edreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

6-27

GEM PG Vol. 2: AES 6.4 Object Library Routines

o ob ednewidx - the index of the next character position in the raw
text string after the OBJC_EDIT operation is finished

o ob edtree - the address of the object tree containing the object
with the text to be edited

Sample call to C language binding:

ob edreturn = objc edit(ob edtree, ob edobject,
- ob edchar, Ob edidx,

ob:edkind, &ob_ednewidx};

6-28

./

(
GEM PG Vol. 2: AES 6.4 Object Library Routines

6.4.8 OBJC CHANGE

Purpose:

Changes an object's ob state value.
"Object states."

Refer to Section 6.3.7.3,

Each OBJC CHANGE call defines a new clip rectangle, and the Object
Library changes only the parts of the object contained within the
clip· rectangle for that call.

Parameters:

control(O) = 47
control(l) = 8
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = ob_cobject
int-in(l) = ob cresvd
int-in(2) = ob=cxclip
1nt-1n(3) = ob_cyclip
1nt-in(4) = ob cwcl1p
1nt-1n(5) = ob-chcl1p
1nt-1n(6) = ob-cnewstate
1nt=1n(7) = ob-credraw

1nt_out(O) = ob creturn

addr_1n(O) = ob ctree

o ob_cobject - The object to be changed.

o ob cresvd - Reserved; the value must be zero.

o ob_cxclip - The X-coordinate of the clip rectangle.

o ob_cyclip - The Y-coordinate of the clip rectangle.

o ob_cwcl1p - The width (in pixels) of the clip rectangle.

o ob_chclip - The height (in pixels) of the clip rectangle.

o ob cnewstate - The ob_state value of the object.

o ob credraw - A code for whether to redraw the object.

o - do not redraw the object
1 - redraw the object

6-29

GEM PG Vol. 2: AES 6.4 Object Library Routines

o ob creturn - A coded return message.

o - an error exists
n (positive integer) - no error exists

o ob ctree - The address of the object tree containing the object.

Sample call to C language binding:

ob creturn = objc change(ob ctree, ob cobject, ob cresvd,
- ob cxclip,-ob cyclip, -

ob-cwclip, ob-chclip,
ob:cnewstate,-ob_credraw);

End of Section 6

6-30

Section 7

Form Library

7.1 Introduction

A form is a means of giving or gathering information. It can be a
set of questions, often in the form of a list, to which a user
responds by checking off boxes or writing text. A form can appear
on a piece of paper or on a computer screen.

GEM AES's Form Library displays forms almost exactly as they would
appear on paper. For example, an application can display a form and
then use the responses it receives to update an information
database. The Form Library collects the user's responses and stores
them in the object tree that describes the form.

In making this high-level interaction between application and user
possible, the Form Library offers several advantages, including the
following:

o The Form Library, and not the application, is responsible for the
user's interaction with the form.

o The application is idle until the user has completed the form.
When the user satisfies the form's exit condition, the application
regains control and acts on the user's responses.

o The Form Library greatly simplifies the programmer's task by
providing a consistent framework for interaction between the ap­
plication and the user.

7.1.1 Forms: A Model

A typical form is the product survey illustrated in Figure 7-1. This
kind of form, which might be included with a newly purchased com­
puter, contains several questions, to which the user responds by
putting an "X" in the appropriate boxes or by writing a response.

7-1

GEM PG Vol. 2: AES 7.1 Introduction

+--+
1. Age (check one only):

10-29
30-49
50-69
over 70

2. Yearly Income (check one only):
less than SlO,OOO
S10,000 - S29,999
S30,OOO - S49,999
S50,OOO - S69,999
over S70,OOO

3. Activities You Enjoy (check all that apply):
water Skiing
Hang Gliding
Backpacking
Bicycling
SCUBA Diving
Horseback Riding

4. Computer Dealer's Name:

Address:

+--+

Figure 7-1. Typical Product Survey Form

The questions in this form require three different kinds of answer:

o a check in a Single box (questions 1 and 2)
o a check in one or more boxes, or no check at all (question 3)
o a written answer (question 4)

7.1.2 GEM AES Forms: The User's View

Forms in GEM AES are essentially the same as printed forms. For ex­
ample, GEM AES uses the same three types of response that appear on
the product survey. However, GEM AES uses its own terminology:.

o radio buttons - The "check-one-only" type of response.

If a user selects one button, all other buttons are automatically
de-selected. Radio buttons are a "one of many" structure.

o check boxes - The "check-all-that-apply" type of response.

7-2

(-/

C:

GEM PG Vol. 2: AES 7.1 Introduction

The user can select one or more of the options, or none at all.
Despite the name, a check mark does not necessarily appear in the
box when the user selects it. Check boxes are an "any of many"
structure.

o editable text - For all responses requiring text entry.

GEM AES needs one piece of information that does not appear ex­
plicitly on the product survey: notification that the user has com­
pleted the form. To provide this information, the programmer desig­
nates at least one box as an exit button and sets the object flag to
EXIT. When the user selects the box, the Form Library completes its
tasks and then passes control back to the application.

Many GEM AES forms have two exit buttons, one labeled "OK" and the
other labeled "Cancel". These buttons have the following functions:

o OK - Tells the Form Library that the form is complete. The ap­
plication can then act on the user's responses.

o Cancel - Tells the Form Library to ignore any responses and to
return control to the application. The environment remains the
same as it was before GEM AES displayed the form.

A form's exit buttons do not
For example, a form can have
buttons labeled "Excellent",
The labels on the exit button
plication.

7.1.3 Dialog Boxes

have to be labeled "OK" and "Cancel".
an "OK" button alone, or it can have

"Very Good", "Good", "Fair", "Poor".
or buttons depend entirely on the ap-

A dialog, which is a special kind of form, provides a consistent
framework for interaction between an application and a user when
either of the following conditions exists:

o The application needs more information before it can carry out a
command.

o An error or some other condition occurs that requires that the
user be notified immediately.

Dialog boxes appear in the center of the screen. Each box contains
text and one or more exit buttons.

Dialogs are stored on disk as resources, which lets an application
programmer alter their content (for example, rewrite a message from
English to German) without having to make changes to the application
.using them or the Form Library itself.

7-3

GEM PG VOl. 2: AES 7.1 Introduction

7.1.3.1 Editable Text Fields

Many dialogs have editable text fields. The user can move and edit
in these fields with the following keys:

o left- and right-arrow - Move the text cursor left and right within
the field.

If the key is held down, the cursor moves continuously until it
reaches the beginning or end of the field.

o down-arrow and Tab - Move the cursor to the next field.

If the key is held down, the cursor moves continuously from field
to field until it reaches the last field.

Note: The cursor
field is empty.
character position

goes to the beginning of the field only if the
Otherwise, the cursor goes to the first open

following the field's data string.

o up-arrow and Backtab - Move the cursor to the previous field.

To Backtab, the user presses the Tab and Shift keys at the same /----\
time.

If the keys are held down, the cursor moves continuously from
field to field until it reaches the first field.

Note: The cursor
field is empty.
character position

goes to the beginning of the field only if the
Otherwise, the cursor goes to the first open

following the field's data string.

o Delete - Deletes the character following the cursor.

The cursor does not move.

If held down, the key deletes continuously until all characters
following the cursor have been deleted.

o Backspace - Deletes the character to the left of the cursor.

The cursor and any following text move one character space to the
left.

If held down, the Backspace key moves the cursor and any following
text continuously to the left, deleting characters until the cur­
sor reaches the beginning of the field •

. 0 Return/Enter - Ends editing and terminates the dialog.

The Return/Enter key works this way only if one object in the form
has been flagged as a DEFAULT object (see Section 6.3.7.2, "Object
Flags"). If no object has been flagged as a DEFAULT object, the

7-4

(GEM PG Vol. 2: AES 7.1 Introduction

Form Library ignores any Return/Enter keystrokes.

For example, in the dialog in Figure 7-2, the GEM Desktop applica­
tion has flagged the "Cancel" button as the DEFAULT object. (The
DEFAULT object is identified by its heavy border.) If the user
presses the Return/Enter key, intending to format a disk, the
keystroke instead cancels the format request. The DEFAULT flag
acts as an extra safety device, forcing the user to click the
mouse pointer on "OK".

o Escape - Clears all characters from the field.

The user can also move through a field by typing a delimiter charac­
ter that appears to the right of the cursor. This delimiter
character must be a character that is not allowed by the validation
string te_pvalid (see Section 6.3.2, "TEDINFO Structure").

For example, the user might be entering a filename in the following
field:

The validation string for this field is "FFFFFFFFFFF"--all valid DOS
filename characters, plus 1, *, and :. The period is not a valid
character. If the user types "file.", the Form Library looks for a
period in the field to the right of the cursor's position. Finding
one, it moves the cursor one position past the period, filling all
spaces between the text and the delimiter with blanks. The user now
sees the following field:

f i 1 e ·1- __
Similarly, the user can type "9/30/55" into the following date
field:

/ /

The following field results:

9 /30 / 5 5

7.1.4 Alerts

An alert is a special kind of dialog box that notifies the user a
condition has arisen that requires immediate attention and, usually,
action by the user. Alerts are GEM AES's and GEM AES-based ap­
plications' means of handling error conditions.

7-5

GEM PG Vol. 2: AES 7.1 Introduction

Figure 7-2 shows a sample alert.

Figure 7-2. Sample GEM AES Alert

The alert is contained in a text string. In the examples that
follow, the first is the actual alert string. The second describes
the components of the string. The string uses square brackets to
separate the components.

[3] [Formatting will ERASE alliinformation on
the disk in driveIA:. Click on OK only if you
don'tlmind losing this information. [Cancel I Retry]

[<icon#>] [<message text>] [<exit buttons>]

The components of the string are the following:

o <icon#> - A single character that identifies an icon (if any) that
appears at the left side of the alert.

o - no icon
1 - NOTE icon
2 - WAIT icon
3 - STOP icon

o <message text> - A maximum of 200 ASCII characters for text.

The alert can have five text lines, with no more than 40 charac­
ters on each line. In the string, the lines are separated by the
logical OR symbol [I].

o <exit buttons> - One, two, or three exit buttons, each containing
no more than 20 text characters.

In the string, the exit button text is separated by the logical OR
symbol.

7.1.4.1 Error Boxes

An error box is a special kind of alert that reports DOS errors like
"File Not Found." DOS error codes are defined in the PC DOS ver­
sion 2.1 Technical Reference Manual.

7-6

(/ GEM PG Vol. 2: AES 7.1 Introduction

Unlike the text string for other alerts, the text string for an er­
ror box is generated by the Form Library instead of the application.

7.1.5 GEM AES Forms: The programmer's View

structurally, a GEM AES form is an object tree, as described in Sec­
tion 6. In the alert in Figure 7-2, the root of the object tree is
the box that gives the form its structure. The root has three
children-objects, the text and two exit buttons. The three children
have no children-objects of their own.

Figures 7-3 and 7-4 show the OBJECT structure and TED INFO structure
elements for each part of the form's object tree.

+-----------+-------------+--------+-----------+-----------+
OBJECT

structure
element root text OK CANCEL

+-----------+-------------+--------+-----------+-----------+
I next I -1 I 2 I 3 I 0 I

+-----------+-------------+--------+-----------+-----------+
I head I 1 I -1 I -1 I -1 I

+-----------+-------------+--------+-----------+-----------+
I tail I 3 I -1 I -1 I -1 I

+-----------+-------------+--------+-----------+-----------+
I type I G BOX I G _TEXT I G _ BOXTEXT I G _ BOXTEXT I

+-----------+-------------+--------+-----------+-----------+
I flags I NONE I NONE I see below I

+-----------+-------------+--------+-----------+-----------+
I state I NORMAL I NORMAL I NORMAL I NORMAL I

+-----------+-------------+--------+-----------+-----------+
I spec I Ox00020007L I OxOL I OxOL I OxOL I

+-----------+-------------+--------+-----------+-----------+
I X I 96 I 80 I 368 I 368 I

+-----------+-------------+--------+-----------+-----------+
I y I 152 I 16 I 16 I 48 I

+-----------+-------------+--------+-----------+-----------+
I width I 448 I 272 I 64 I 64 I

+-----------+-------------+--------+-----------+-----------+
I height I 96 I 64 I 16 I 16 I

+-----------+-------------+--------+-----------+-----------+
Figure 7-3. OBJECT Structure Elements

7-7

GEM PG Vol. 2: AES 7.1 Introduction

Valid flags for "OK" are the Boolean OR of SELECTABLE and EXIT.

Valid flags for "Cancel" are the Boolean OR of SELECTABLE, EXIT,
DEFAULT, and LASTOB.

The X- and Y-coordinates of the root are relative to the physical
screen. The X- and Y-coordinates of any children are relative to
their parents--in this case, the root.

+-----------+-------------+----------+----------+----------+ TED INFO
structure

element root text OK CANCEL
+-----------+-------------+----------+----------+----------+
I ptext I I see below I "OK" I "Cancel" I

+-----------+-------------+----------+----------+----------+ I ptmplt I I NULLPTR I NULLPTR I NULLPTR I
+-----------+-------------+----------+----------+----------+

pvalid I I NULLPTR I NULLPTR I NULLPTR I

+-----------+-------------+----------+----------+----------+
font I IBM IBM IBM I

+-----------+-------------+----------+----------+----------+
resvdl I I 0 0 0 I

+-----------+-------------+----------+----------+----------+
I just I I TE_LEFT I TE_CNTR I TE_CNTR I

+-----------+-------------+----------+----------+----------+
I color I I SYS FG I SYS_FG I SYS FG I

+-----------+-------------+----------+----------+----------+
I resvd2 I I 0 10 I 0 I

+-----------+-------------+----------+----------+----------+
I thickness I I 0 I -2 I -2 I

+-----------+-------------+----------+----------+----------+ I txtlen I I 0 I 0 I 0 I
+-----------+-------------+----------+----------+----------+ I tmplen I I 0 I 0 I 0 I
+-----------+-------------+----------+----------+----------+
ptext: "Formatting will ERASE all information on the disk in

drive A:. Click on OK only if you don't mind losing
this information."

Figure 7-4. TED INFO Structure Elements

To display the whole form, the Form Library follows the structure of
the object tree from root to children, displaying each object in the
tree according to the information contained in the object. For a
more detailed discussion of displaying object trees, see Section 6.

7-8

(/

GEM PG Vol. 2: AES 7.2 Using the Form Library

7.2 Using the Form Library

To display a form, the application calls OBJC DRAW, passing an index
to the object tree for the form. The Object Library displays the
form in the application's window. The application then makes a
call to the FORM DO routine, and the Form Library monitors the
user's interaction-with the form.

When the user selects an exit button, the Form Library returns con­
trol to the application. In general, the application identifies the
object(s) that cause the Form Library to relinquish control. After
regaining control, the application must look at the form, determine
if any changes took place, and decide on appropriate action.

By contrast with an application-defined form, which appears inside a
window, a dialog sits on top of windows and desk accessories and
does not have to be within a window's boundaries.

To display a dialog, the application takes the following steps:

1. It calls the RSRC GADDR routine to get the address of the object
tree that draws-the dialog. This call is described in Section
12.3.

2. It calls the FORM CENTER routine to center the dialog on the
screen. (This call is optional.)

3. It calls the FORM DIAL routine to reserve the part of the physi­
cal screen in which the dialog will appear. Nothing else can oc­
cupy the reserved part of the screen.

4. It calls the FORM DIAL routine
which the dialog-will appear.

again to draw an expanding box in
(This call is optional.)

5. It calls the OBJC DRAW routine to display the dialog. This call
is described in Section 6.4.

6. It calls the FORM DO routine to let the user interact with the
dialog.

7. When the user satisfies the dialog's exit condition, by clicking
on an exit button or pressing the Enter key, the application
calls the FORM DIAL routine, to draw a shrinking box. (This call
is optional.) -

8. It calls the FORM DIAL routine again, to free the reserved screen
space and to redraw the screen.

7-9
579

GEM PG Vol. 2: AES 7.2 Using the Form Library

To display an alert, the application calls the FORM ALERT routine.
The FORM_ALERT routine contains the following internal steps:

1. It constructs the object tree of the alert, based on the input
string whose address is contained in FORM ALERT.

2. It saves to the menu/alert buffer the screen space that will be
taken over by the alert.

3. It calls the OBJC DRAW routine, to display the alert.

4. It calls the FORM DO routine, to let the user respond to the
alert.

5. After the user selects an exit button, it redraws the screen from
the menu/alert buffer.

6. It reports the user's exit button selection to the application.

To display an error box, the application calls the FORM ERROR
routine. The input parameter for FORM ERROR is a DOS error-code,
and its output parameter is a code that tells the application to
retry or abandon the requested action. Otherwise, FORM ERROR uses
the same internal sequence as FORM ALERT.

7-10

GEM PG Vol. 2: AES 7.3 Form Library Routines

7.3.1 FORM DO

Purpose:

Causes the Form Library to monitor the user's interaction with a
form.

Parameters:

control(O) = 50
control(l) = 1
control(2) = 1
control(3) = 1
control(4) = 0

int_in(O) = fo dostartob

int_out(O) = fo doreturn

addr_in(O) = fo dotree

o fo dostartob - The number of an object (which must be an
text field) that the application wants active when the
displayed. The application can pass in a value of -1 if
does not contain editable text fields.

editable
form is

the form

o fo doreturn - The number of the object that caused the exit from
the user's interaction with the form.

o fo dotree - The
form.

address of the

Sample call to C language binding:

object tree that

fo doreturn = form_do(fo_dotree, fo_dostartob);

7-13

draws this

SIB

GEM PG Vol. 2: AES 7.3 Form Library Routines

7.3.2 FORM DIAL

Purpose:

Depending on the value in fO_diflag, does one of the following:

o reserves a portion of the physical screen for a dialog box

o draws an expanding box in which the dialog will appear

o draws a shrinking box when the user has completed interacting with
the dialog

o frees the reserved portion of the screen and redraws the screen

Parameters:

control(O) = 51
control(l) = 9
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = fo diflag
int:in(l) = fo-dilittlx
int in(2) = fo-dilittly
int:in(3) = fo dilittlw
int in(4) = fo-dilittlh
int-in(5) = fo-dibigx
int-in(6) = fo=dibigy
int-in(7) = fo dibigw
int:in(8) = fo=dibigh

int_out(O) = fo direturn

o fo diflag - The FORM DIAL action being invoked by the current
call.

o - FMD_START - Reserves screen space for the dialog box.

1 - FMD GROW - Draws
width, and height
Chapter 8).

expanding box from small to large X, Y,
(see description of GRAF_GROWBOX routine in

2 - FMD SHRINK - Draws shrinking box from large to small X, Y,
width, and height (see description of GRAF_SHRINKBOX in Chap­
ter 8).

3 - FMD FINISH - Frees screen space reserved by FMD_START; causes
application to redraw screen.

7-14

GEM PG Vol. 2: AES 7.3 Form Library Routines

o fo dilittlx - The X-coordinate of the box's smallest size.

0 fo_dilittly - The Y-coordinate of the box's smallest size.

o fa dilittlw - The width (in pixels) of the box's smallest size.

0 fo dilittlh - The height (in pixels) of the box's smallest
size.

o fO_dibigx - The X-coordinate of the box's largest size.

0 fO_dibigy - The Y-coordinate of the box's largest size.

o fO_dibigw - The width (in pixels) of the box's largest size.

o fo_dibigh - The height (in pixels) of the box's largest size.

o fo direturn - A coded return message.

o - an error exists
n (positive integer) - no error exists

Sample call to C language binding:

fo direturn = form dial(fo diflag, fo dix, fO_diy,
- fO_diw, fo_dih);

7-15

GEM PG Vol. 2: AES 7.3 Form Library Routines

7.3.3 FORM ALERT

Purpose:

Displays an alert.

Section 7.2 describes the complete sequence of calls internal to
FORM ALERT.

Parameters:

control(O)
control(l)
control(2)
control(3)
control(4)

int_in(O)

int_out(O)

addr_in(O)

=
=
=
=
=
=
=

=

52
1
1
1
o

fo adefbttn

fo aexbttn

fo_astring

o fo adefbttn - the form's DEFAULT exit button (see Section 7.1.3.1)

o - no DEFAULT exit button
1 - first exit button
2 - second exit button
3 - third exit button

o fo aexbttn - a number that identifies the exit button selected by
the user

1 - first exit button in string
2 - second exit button in string
3 - third exit button in string

o fo_astring - the address of the string containing the alert

Sample call to C language binding:

fo aexbttn = form_alert(fo_adefbttn, fo astring);

7-16

C:

GEM PG Vol. 2: AES 7.3 Form Library Routines

7.3.4 FORM ERROR

Purpose:

Displays an error box.

Parameters:

control(O) = 53
control(l) = 1
control(2) = 1
control(3) = 0
control(4) = 0

int_in(O) = fo enum

int_out(O) = fo eexbttn

o fo enum - the DOS error code

o fo eexbttn - a code that identifies the user's exit button selec­
tion

1 - first exit button in string
2 - second exit button in string
3 - third exit button in string

Sample call to C language binding:

fo eexbttn = form_error(fo_enum);

7-17

GEM PG VOl. 2: AES 7.3 Form Library Routines

7.3.5 FORM CENTER

Purpose:

Centers a dialog box on the screen.

Parameters:

control(O) = 54
control(l) = 0
control(2) = 5
control(3) = 1
control(4) = 0

int out(O) = fo cresvd
int-out(l) = fo-cx
int-out(2) = fo=cy
int-out(3) = fo cw
int=out(4) = fo-ch

addr_in(O) = fo ctree

o fo cresvd - [RESERVED]: values equals 1 (one).

o fo cx - The X-coordinate of the centered object tree containing~_
the dialog box.

o fo cy - The Y-coordinate of the centered object tree containing
the dialog box.

o fo cw - The width (in pixels) of the centered object tree con-
taining the dialog box.

o fo ch - The height (in pixels) of the centered object tree con-
taining the dialog box.

0 fo ctree - The address of the object tree that describes the
dialog.

Sample call to C language binding:

fo cresvd = form center(fo ctree, &fo cx, &fo_cy, &fo_cw,
- &fO_ch):-

End of Section 7

7-18

(~ ..

c~

Section 8

Graphics Library

8.1 Introduction

In certain circumstances a graphics application might need to
manipulate a rectangular outline (a box drawn with lines) on the
screen. The Graphics Library provides a set of routines for these
manipulations. As a result, each application can make calls to a
single library within GEM AES, without having to carry the routines
in its own code.

Graphics Library routines are based on GEM VOI routines that are
fully described in the GEM Programmer'~ Guide, Volume!: VDI. GEM
AES runs on top of GEM VDI, and a graphics application should use
GEM VDI for its graphics output. However, all graphics input is
made directly through GEM AES.

Graphics Library routines also return the GEM VDI handle
rent opened screen workstation, change the mouse form
predefined set or to a form defined by the application,
formation on the mouse and keyboard.

8.2 Using the Graphics Library

of the cur­
to one of a
and get in-

The boxes manipulated by the Graphics Library routines can be used
for a variety of purposes. In the GEM Desktop application, for ex­
ample, the GRAF RUBBERBOX routine draws the box that appears when a
user drags with the mouse to select a group of icons. The
GRAF GROWBOX routine draws the expanding box that appears when a
user opens an icon, and the GRAF SHRINKBOX routine draws the box
that appears when the user closes a-window.

8.3 Graphics Library Routines

The Graphics Library uses the following routines:

o GRAF RUBBERBOX - draws a "rubber" box that expands and contracts
from-a fixed point as the mouse moves

o GRAF DRAGBOX - moves a box, keeping the mouse pointer in the same
position in the box

o GRAF MOVEBOX - draws a moving box

o GRAF GROWBOX - draws an expanding box outline

o GRAF SHRINKBOX - draws a shrinking box outline

8-1

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

o GRAF WATCHBOX - watches a box to see if the mouse pointer (with
button down) is inside

o GRAF SLIDEBOX - keeps a sliding box inside its parent box

o GRAF HANDLE - returns a GEM VDI handle for the opened screen
workstation that the GEM AES libraries use

o GRAF_MOUSE - lets an application change the mouse form to one of a
predefined set or to an application-defined form

o GRAF MKSTATE - returns the current mouse location, mouse button
state, and keyboard state

The following sections describe these routines.

Each Graphics Library routine has a GEM AES Parameter Block, Control
Array, and Global Array that contain the following information:

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
params(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of int in array
params(3) = long address (32 bits) of int=out array
params(4) = long address (32 bits) of addr_in array
params(5) = long address (32 bits) of addr out array

control(O) = op_code
control(l) = size in WORDS of int_in array
control(2) = size in WORDS of int out array
control(3) = size in LONGS of addr_in array
control(4) = size in LONGS of addr out array

Global Array
global(O) = ap version
global(l) = ap-count
global(2) = ap-id
global(3,4) = ap=private
global(5,6) = ap_pname
global(7,8) = ap lresv
global(9,lO) = ap-2resv
global(11,12) = ap-3resv
global(13,14) = ap=4resv

Global Array parameters are described in Section 3.

8-2

.:r90

!' ~ ..

\;'--......,/{

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

Each routine also contains some or all of the following arrays:

o Integer Input (int in) - Unless otherwise noted, each parameter in
this array is a WORD.

o Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

o Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

o Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER.

8-3

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.1 GRAF RUBBERBOX

Purpose:

Draws a "rubber box."

The position of the box's upper left corner is fixed, but by drag­
ging the lower right corner with the mouse pointer, the user can
make the box larger or smaller. The call returns the rubber box's
new size when the user releases the mouse button.

Parameters:

control(O) = 70
control(l) = 4
control(2) = 3
control(3) = 0
control(4) = 0

int in(O) = gr_rx
int-in(l) = gr ry
int-in(2) = gr-rminwidth
int=in(3) = gr-rminheight

int out(O) = gr rreturn
int-out(l) = gr rlastwidth
int=out(2) = gr=rlastheight

o gr_rx - the box's X-coordinate

0 gr_ry - the box's Y-coordinate

o gr_rminwidth - the box's smallest possible width in pixels

o gr_rminheight - the box's smallest possible height in pixels

o gr_rreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o gr rlastwidth - the width of the box when the user released the
mouse button

o gr rlastheight - the height of the box when the user released the
mouse button

8-4

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

Sample call to C language binding:

gr_rreturn = graf rubberbox(gr rx, gr ry,
- gr rminwidth, gr rminheight,

&gr rlastwidth, -
&gr=rlastheight);

8-5

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.2 GRAF DRAGBOX

Purpose:

Lets a user drag a box within an application-defined boundary rec­
tangle.

When the user presses the mouse button to begin dragging, GEM AES
makes a GEM VDI call to get the mouse's location. As the user
drags, this call keeps the mouse pOinter in a fixed position rela­
tive to the box's upper left corner.

Parameters:

control(O) = 71
control(l) = 8
control(2) = 3
control(3) = 0
control(4) = 0

int in(O) = gr dwidth
int - in(l) gr-dheight =
int - in(2) gr-dstartx =
int-in(3) = gr-dstarty
int-in(4) = gr-dboundx
int-in(S) = gr-dboundy
int-in(6) = gr-dboundw
int:in(7) = gr-dboundh

int out(O) = gr dreturn
int-out(l) = gr_dfinishx
int:out(2) = gr_dfinishy

o gr_dwidth - the width in pixels of the box being dragged

o gr_dheight - the height in pixels of the box being dragged

o gr_dstartx - the box's starting X-coordinate

o gr_dstarty - the box's starting Y-coordinate

o gr_dboundx - the X-coordinate of the boundary rectangle

o gr_dboundy - the Y-coordinate of the boundary rectangle

o gr_dboundw - the width in pixels of the boundary rectangle

o gr_dboundh - the height in pixels of the boundary rectangle

8-6

r'-"
"'~j

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

(. ... 0 gr _ dreturn - a coded return message

o - an error exists
n (positive in~eger) - no error exists

o gr dfinishx - the box's X-coordinate when the user released the
mouse button

o gr dfinishy - the box's Y-coordinate when the user released the
mouse button

Sample call to C language binding:

gr dreturn = graf dragbox(gr dwidth, gr dheight,
- gr dstartx,-gr dstarty,

gr-dboundx, gr-dboundy,
gr-dboundw, gr-dboundh,
&gr dfinishx, &gr dfinishy); - -

8-7

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.3 GRAF MOVEBOX

Purpose:

Draws a box moving from one position to another.

The box's size does not change.

Parameters:

control(O) = 72
control(l) = 6
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = gr mwidth
int-in(l) = gr:mheight
int-in(2) = gr_msourcex
int-in(3) = gr msourcey
int-in(4) = gr-mdestx
int:in(5) = gr:mdesty

int_out(O) = gr_mreturn

0 gr_mwidth - the box's width in pixels

o gr_mheight - the box's height in pixels

o gr_msourcex - the box's X-coordinate, in its initial position

o gr_msourcey - the box's Y-coordinate, in its initial position

o gr_mdestx - the box's X-coordinate, in its final position

the box's Y-coordinate, in its final position

o gr_mreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

Sample call to C language binding:

gr mreturn = graf_movebox(gr_mwidth, gr_mheight,
gr msourcex, gr msourcey,
gr:mdestx, gr_mdesty);

8-8

(

(...

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.4 GRAF GROWBOX

Purpose:

Draws an expanding box outline.

Parameters:

control(O) = 73
control(l) = 8
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = gr_gstx
int-in(l) = gr gsty
int-in(2) = gr-gstwidth
int-in(3) = gr-gstheight
int-in(4) = gr-gfinx
int-in(5) = gr-gfiny
int-in(6) = gr:gfinwidth
int:in(7) = gr_gfinheight

int_out(O) = gr_greturn

0 gr_gstx - the box's X-coordinate, in its initial size

o gr_gsty the box's Y-coordinate, in its initial size

o gr_gstwidth - the box's initial width in pixels

o gr_gstheight - the box's initial height in pixels

o gr_gfinx - the box's X-coordinate, in its final size

o gr_gfiny - the box's Y-coordinate, in its final size

o gr_gfinwidth - the box's final width in pixels

o gr_gfinheight - the box's final height in pixels

o gr_greturn - a coded return message

o - an error exists
n (positive integer) - no error exists

8-9

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

Sample call to C language binding:

graf_growbox(gr_gstx, gr_gsty, gr_gstwidth,
gr gstheight, gr gfinx,
gr-gfiny, gr gfinwidth,
gr=gfinheight) ;

8-10

c:'

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.5 GRAF SHRINKBOX

Purpose:

Draws a shrinking box outline.

Parameters:

control(O) = 74
control(l) = 8
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = gr_sfinx
int-in(l) = gr_sfiny
int-in(2) = gr_sfinwidth
int-in(3) = gr_sfinheight
int-in(4) = gr sstx
int-in{S) = gr-ssty
int-in(6) = gr=sstwidth
int=in(7) = gr_sstheight

int_out(O) = gr_sreturn

the box's X-coordinate, in its final size

o gr_sfiny - the box's Y-coordinate, in its final size

o gr_sfinwidth - the box's final width in pixels

o gr_sfinheight - the box's final height in pixels

o gr_sstx

o gr_ssty

the box's X-coordinate, in its initial size

the box's Y-coordinate, in its initial size

o gr_sstwidth - the box's initial width in pixels

o gr_sstheight - the box's initial height in pixels

o gr_sreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

8-11

GEM PG Vol. 2: ASS 8.3 Graphics Library Routines

Sample call to C language binding:

gr_sreturn = graf shrinkbox(gr sfinx, gr sfiny,
- gr sf1nw1dth,

gr-sf1nhe1ght, gr sstx,
gr:ssty, gr_sstw1dth,
gr_ssthe1ght);

8-12

C:

---------- ._------------

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.6 GRAF WATCHBOX

Purpose:

Tracks the mouse pointer in and out of a predefined box.

The box's object state changes as the mouse pointer enters and
leaves the box. The application makes this call only when the
mouse button is being held down, and the routine returns a value
only when the user releases the mouse button.

The box is contained in an object tree. The input variables for
gr winstate and gr_woutstate are defined in Section 6.3.7.3.

Parameters:

control(O) = 75
control(l) = 4
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = [reserved]
int-in(l) = gr_wobject
int-in(2) = gr winstate
int:in(3) = gr_woutstate

int_out(O) = gr wreturn

addr_in(O) = gr_wptree

o gr wobject - the index of the object in the tree

o gr winstate - the box's state when the mouse pointer (with button
down) is inside it

OxOOOO
OxOOOl
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020

NORMAL
SELECTED
CROSSED
CHECKED
DISABLED
OUTLINED
SHADOWED

8-13

~I)/

GEM PG VOl. 2: AES 8.3 Graphics Library Routines

o gr woutstate - the box's state when the mouse pOinter (with button
down) is outside it

OxOOOO NORMAL
Ox0001 SELECTED
Ox0002 CROSSED
Ox0004 CHECKED
Ox0008 DISABLED
Ox0010 OUTLINED
Ox0020 SHADOWED

o gr wreturn - the mouse pointer's position when the button was
released

o - outside the box
1 - inside the box

o gr_wptree - the address of the object tree containing the box

Sample call to C language binding:

gr_wreturn = graf_watchbox(gr_wptree, gr_wobject,
gr_winstate, gr_woutstate);

8-14

(

c

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.7 GRAF SLIDEBOX

Purpose:

Tracks a sliding box inside a parent box.

Mouse movement causes the sliding box to move, and the parent box
defines the sliding box's range of motion.

An application makes this call only when the mouse button is being
held down, and the routine returns a value only when the user
releases the mouse button.

Both boxes (slider and parent) are contained in an object tree.
The return value is a number that indicates the slider's relative
position inside the parent box.

Parameters:

control(O) = 76
control(l) = 3
control(2) = I
control(3) = I
control(4) = a
int in(O) = gr slparent
int-in(l) = gr-slobject
int:in(2) = gr:slvh

int_out(O) = gr_slreturn

addr_in(O) = gr_slptree

o gr_slparent - The index of the parent in the tree.

o gr_slobject - The index of the object (the slider) in the tree.

o gr_slvh - A code for the direction of the slider's movement.

a - horizontal
I - vertical

o gr_slreturn - The position of the center of the slider relative to
its parent. The value can range from a to 1000.

if gr_slvh = 0: a = left
1000 = right

if gr_slvh = 1: a = top
1000 = bottom

o gr slptree - The address
parent.

of the object tree containing slider and

8-15

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

Sample call to C language binding:

gr slreturn = graf_slidebox(gr_slptree, gr_slparent,
gr_slobject, gr_slvh);

8-16

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.8 GRAF HANDLE

Purpose:

Gets the GEM VDI handle for the currently opened screen worksta­
tion.

GEM AES and GEM applications share this handle whenever they make
GEM VOI calls.

Parameters:

control(O) = 77
control(l) = 0
control(2) = 5
control(3) = 0
control(4) = 0

int out(O) = gr_handle
int-out(l) = gr hwchar
int-out(2) = gr-hhchar
int-out(3) = gr-hwbox
int=out(4) = gr=hhbox

o gr_handle - the GEM VDI handle

o gr hwchar the width (in pixels) of a character cell in the sys­
tem font used in menus and dialogs

o gr hhchar - the height (in pixels) of a character cell in the sys­
tem font used in menus and dialogs

o gr hwbox - the width (in pixels) of a square box large enough to
hold a system font character

o gr hhbox - the height (in pixels) of a square box large enough to
hold a system font character

Sample call to C language binding:

gr_handle = graf handle(&gr hwchar, &gr hhchar,
- &gr_hwbox, &gr_hhbox);

8-17

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.9 GRAF MOUSE

Purpose:

Changes the mouse form to one of a predefined set or to an ap­
plication-defined form.

Note: The application selects or defines the mouse form that ap­
pears in the work area of its topmost (active) window. Outside
the work area of the active window, the mouse form must always be
an arrow or an hourglass.

If it uses a mouse form other than an arrow, an application must
make a GRAF MOUSE call each time the mouse form exits or enters
the active window's work area.

The GRAF MOUSE call upon exit converts the mouse form to an arrow.
The GRAF MOUSE call upon entry converts the mouse form back to
the application's mouse form.

The application uses an EVNT MULTI call, specifying a mouse rec­
tangle equal to the active -window's work area, to detect mouse
form exit and entry.

Parameters:

control(O) = 78
control(l) = I
control(2) = I
control(3) = 1
control(4) = 0

int_in(O) = gr_monumber

int_out(O) = gr moreturn

addr....,;in(O) = gr_mofaddr

o gr_monumber - a code identifying a pr.edefined mouse form

o - arrow
1 - text cursor (vertical bar)
2 - hourglass
3 - hand with pointing finger
4 - flat hand, extended fingers
5 - thin cross hair
6 - thick cross hair
7 - outline cross hair

255 - mouse form stored in gr_mofaddr
256 - hide mouse form
257 - show mouse form

8-18

(

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

o gr_moreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o gr mofaddr - the address of a 35-word buffer
form definition block specified in the GEM
Volume 1: VOI.

Sample call to C language binding:

that fits the mouse
Programmer'~ Guide,

gr_moreturn = graf_mouse(gr_monumber, gr_mofaddr);

8-19

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

8.3.10 GRAF MKSTATE

Purpose:

Returns the current mouse location, mouse button state, and
keyboard state.

Parameters:

control(O) = 79
control(l) = 0
control(2) = 5
control(3) = 0
control(4) = 0

int out(O) = gr mkresvd
int-out(O) = gr mkmx
int-out(O) = gr-mkmy
int-out(O) = gr-mkmstate
int_out(O) = gr-mkkstate

o gr_mkresvd - [RESERVED]; value always equals 1 (one).

o gr_mkmx - The X-coordinate of the mouse's current location.

o gr_mkmy - The Y-coordinate of the mouse's current location.

o gr_mkmstate - The current mouse button state.

The following bits represent the buttons:

OxOOOl - button on left Ox0002 - second button from left Ox0004 -
third button from left, etc.

This parameter uses the following bit settings:

o - button up 1 - button down

o gr mkkstate - The current state of the keyboard's right-Shift,
left-Shift, Ctrl, and Alt keys.

The following bits represent the keys:

OxOOOl - right-Shift
Ox0002 - left-Shift
Ox0004 - Ctrl
Ox0008 - Alt

8-20

c\

GEM PG Vol. 2: AES 8.3 Graphics Library Routines

This parameter uses the following bit settings:

o - key up
1 - key down

Sample call to C language binding:

gr mkresvd = graf mkstate(&gr rnkrnx, &gr mkmy,
- -&gr rnkrnstate,

&gr=rnkkstate);

End of Section 8

8-21

(./ Section 9

Scrap Library

9.1 Introduction

GEM AES's Scrap Library provides a set of routines that increase
the usefulness of different applications by managing data inter­
change between the applications.

A standard
cluding the

data interchange
following:

format offers several advantages, in-

o Users can assemble an integrated set of independently developed
applications.

o An application can take advantage of functions and output provided
by other applications.

The Scrap Library's user interface lets the user cut or copy from
one application's data space and paste into another's. The tem­
porary holding place for these scraps of data is a clipboard, which
is the implied destination for all cuts and the implied source for
all pastes.

The user can place data on the clipboard in two ways:

o By cutting, the user deletes the data from the source ap­
plication's data space.

o By copying, the user leaves the original piece of data in the
source application's data space.

The clipboard is only one level deep; each new cut or copy over­
writes the current contents of the clipboard.

A paste is in effect a copy from the clipboard to the target ap­
plication. The data remains on the clipboard, allowing the user to
paste the same piece of data repeatedly.

9.2 Using the Scrap Library

GEM AES's Scrap Library supports the following interactions:

o writing the name of a scrap directory to the clipboard
o reading the name of a scrap directory from the clipboard
o managing the use of the disk as an extensible scrap area

9-1

GEM PG Vol. 2: AES 9.2 Using the Scrap Library

GEM AES stores scrap on the disk. The filename for scrap data is
~lways SCRAP. The data's filetype identifies what kind of data it
1S. For different applications to be integrated, GEM AES must
define standard data types in which scrap may be stored.

GEM AES supports the following standard data types. Each is iden­
tified by a filetype in parentheses.

o ASCII text strings (.TXT)
o spreadsheet data (.DIF)
o metafile - GEM VDI-type graphic images (.GEM)
obit-images - GEM VDI standard forms (.IMG)

All GEM AES programs should at least be able to read and write ASCII
data. Metafiles are described in the GEM Programmer'~ Guide, Volume
1: VDI.

In addition to these standard data types, programmers can add their
own application-specific data types.

An application can find
A:\SCRAPDIR\SCRAP.*) by
routines.

or establish the full path (for example,
using the SCRAP READ and SCRAP WRITE

To be accessible to a variety of applications, a piece of scrap/-''\
might appear on the clipboard in several data types. The applica~
tion can find and/or manipulate the actual size, contents, and ex-~~/
istence of scrap by making the following DOS file system calls:

o search
o create
o open
o read
o write
o close
o delete
o get filesize

9.3 Scrap Library Routines

The Scrap Library uses the following routines:

o SCRP READ - reads the scrap directory currently stored on the
clipboard

o SCRP WRITE - writes the scrap directory to the clipboard

The following sections describe these routines.

9-2

~//

('\
/

c'

GEM PG Vol. 2: AES 9.3 Scrap Library Routines

Each Scrap
Array, and

Library routine has a GEM AES Parameter Block, Control
Global Array that contain the following information:

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
params(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of int_in array
params(3) = long address (32 bits) of int_out array
params(4) = long address (32 bits) of addr_in array

params(5) = long address (32 bits) of addr out array

Control Array
control(O) = op_code
control(l) = size in WORDS of int_in array
control(2) = size in WORDS of int out array
control(3) = size in LONGS of addr_in array
control(4) = size in LONGS of addr out array

Global Array
global(O) = ap_version
global(l) = ap_count
global(2) = ap_id
global(3,4) = ap_private
global(5,6) = ap_ptree
global(7,8) = ap_lresv
global(9,lO) = ap 2resv
global(11,12) = ap-3resv
global(13,14) = ap=4resv

Global Array parameters are described in Section 3.

Each routine also contains some or all of the following arrays:

a Integer Input (int in) - Unless otherwise noted, each parameter in
this array is a WORD.

a Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

a Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

a Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER.

9-3

GEM PG Vol. 2: AES 9.3 Scrap Library Routines

9.3.1 SCRP READ

Purpose:

Reads the current scrap directory on the clipboard.

Parameters:

control(O) = 80

control(l) = 0
control(2) = 1
control(3) = 1
control(4) = 0

int_out(O) = sc rreturn -
addr_in(O) = sc_rpscrap

o sc rreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o sc rpscrap - the address of the buffer into which the scrap direc­
tory will be copied

Sample call to C language binding:

sc rreturn = scrp_read(sc_rpscrap);

9-4

GEM PG Vol. 2: AES 9.3 Scrap Library Routines

9.3.2 seRP WRITE

Purpose:

Writes a new scrap directory to the clipboard, as a result of a
CUT or COpy command from the user.

Parameters:

control (0) = 81
contro1(1) = 0
control(2) = 1
contro1(3) = 1
contro1(4) = 0

int_out(O) = sc wreturn

addr_in(O) = sc_wpscrap

o sc wreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o sc wpscrap - the address of the buffer from which the new scrap
directory will be copied to the clipboard

Sample call to C language binding:

sc wreturn = scrp_write(sc_wpscrap);

End of Section 9

9-5

Section 10

File

10.1 Introduction

Many applications require that the user provide a filename to create
a new file, recall an existing file, or use a file as input for a
function like PRINT. Programmers can design applications that
elicit the filename from the user in a variety of ways, three of
which are described below:

o The application does not display a directory of existing
filenames. To act on an existing file, the user must remember its
filename. To create a file, the user must provide a filename that
does not already exist in the directory.

o The application displays a directory, and the user types a new or
existing filename.

o The application displays a directory. To act on an existing file,
the user selects the filename directly from the directory. To
create a file, the user types a filename.

The last method, the easiest for the user, is the method used by GEM
AES's File Selector Library, which provides a consistent user inter­
face for filename entry and selection.

When an application requests the File Selector Library to prompt the
user for a filename, a special dialog box called the File Selector
(or "Item Selector") appears on the screen. See Figure 10-1.

10-1

GEM PG Vol. 2: AES 10.1 Introduction

Figure 10-1. File Selector Dialog Box

The File Selector dialog box displays the name of the current direc­
tory (including drive identifier), a selection field, and a list of
filenames contained in the directory. The scrolling area to the
right of the directory list contains up- and down-arrows, a scroll
bar, and a slider.

The next section describes how the user interacts with the File
Selector.

10.2 Using the File Selector Library

The File Selector Library provides the
method of prompting the user for a
selects a menu command that requires
following events typically occur:

programmer with a consisten~,-j
filename. After the user

a filename as input, the

1. The application calls the File Selector Library to display the
File Selector dialog box.

2. Before selecting or entering a filename, the user can do the
following:

o scroll through the list of files in the directory

The File Selector dialog box's scrolling area is functionally
the same as the vertical scrolling area of a window. For
details of the user's interaction with the scrolling area, see
the descriptions of the up-arrow, down-arrow, and the vertical
scroll bar and slider in Section 11.2.1.

10-2

GEM PG Vol. 2: AES 10.2 Using the File Selector Library

o change the directory being displayed

To do so, the user clicks on "Directory:" and
new drive identifier, directory path name, and
tion containing a wildcard in the filename or
the following example:

c:\receipts*.bas

then types in a
file specifica­
filetype, as in

After changing the directory specification, the user clicks the
mouse pointer anywhere inside the window containing the list
of filenames. GEM AES updates the window, displaying a list
of filenames that fit the new specification.

3. The user selects a filename from the directory in the File Selec­
tor dialog box or enters a new filename.

To select an existing file, the user places the mouse pointer
over the filename and clicks. If the filename is not currently
visible in the list, the user can place the mouse pointer over
"Selection:", click, and then type the filename.

To create a new file, the user places the pointer over "Selec­
tion:", clicks, and then types the filename.

(~~ 4. The user selects OK or Cancel.

5. The File Selector Library returns the following information to
the application:

o the filename that was selected or entered

o the current directory and wildcard specification

o the way in which the user exited the File Selector dialog box
(OK or Cancel)

6. If the user selected OK, the application continues on with the
filename that was selected or entered.

10.3 File Selector Library Routine

The File Selector Library uses the following routine:

o FSEL INPUT - Displays the File Selector dialog box and lets the
user-select a filename.

10-3

GEM PG Vol. 2: AES 10.3 File Selector Library Routine

This File Selector Library routine has a GEM AES Parameter Block,
Control Array, and Global Array that contain the following informa­
tion:

GEM AES Parameter Block
params(O) =
params(l) =
params(2) =
params(3) =
params(4) =
params(5) =

Control Array
contro1(0) =
contro1(1) =
contro1(2) =
contro1(3) =
contro1(4) =

Global Array
globa1(0)
globa1(1)
globa1(2)
globa1(3,4)
globa1(5,6)
globa1(7,8)
globa1(9,10)
globa1(11,12)
globa1(13,14)

long address (32
long address (32
long address (32
long address (32
long address (32
long address (32

op_code
size in WORDS of

=
=
=
=
=
=
=
=
=

size in WORDS
size in LONGS
size in LONGS

ap version
ap-count
ap-id
ap-private
ap-ptree
ap-1resv
ap-2resv
ap-3resv
ap=4resv

of
of
of

bits) of control array
bits) of global array
bits) of int_in array
bits) of int_out array
bits) of addr_in array
bits) of addr out array

int in array
int=out array
addr in array
addr-out array

Global Array parameters are described in Section 3.

This routine also contains some or all of the following arrays:

a Integer Input (int in) - Unless otherwise noted, each parameter in
this array is a WORD.

a Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

a Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

a Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER.

10-4

GEM PG Vol. 2: AES 10.3 File Selector Library Routine

10.3.1 FSEL INPUT

Purpose:

Displays the File Selector dialog box and monitors the user's in­
teraction with it.

The File Selector Library returns the results of this interaction
between the user and the dialog to the application.

Parameters:

control(O) = 90
control(1) = 0
control(2) = 2
control(3) = 2
control(4) = 0

int out(O) = fs ire turn
int=out(l) = fs-iexbutton

addr in(O) = fs_iinpath
addr=in(l) = fs iinsel

o fs ireturn - A coded return message.

o - an error exists
n (positive integer) - no error exists

o fs iexbutton - A code identifying the exit button selected by the
user.

o - Cancel
1 - OK

o fs iinpath - The address of the buffer that holds the initial
directory specification displayed in the File Selector dialog
box. This buffer will also hold the directory specification that
was in the File Selector dialog box when the user selected OK or
Cancel.

o fs iinsel - The address of the buffer that holds the initial
selection displayed in the File Selector dialog box. This buffer
will also hold the selection that was in the File Selector dialog
box when the user selected OK or Cancel.

Sample call to C language binding:

(. "'\ fs ireturn = fsel input (fs iinpath, fs iinsel,
_j - &fs_iexbutton);

10-5

GEM PG Vol. 2: AES 10.3 File Selector Library Routine

End of Section 10

10-6

Section 11

Window Library

11.1 Introduction

A window is an area with clearly defined boundaries. GEM AES sup­
ports two kinds of windows:

o the desktop window
o application windows

While the user is in the GEM AES environment, the desktop window is
always present on the screen. It contains the menu bar and the
desktop surface. The desktop window is owned by the primary ap­
plication and serves as the backdrop for the application's other
windows.

GEM applications use application windows whenever they need to
present data on the screen. In addition, GEM AES supports overlap­
ping windows to allow an application to display two pieces of data
at the same time. For example, a word processor that lets a user
work simultaneously on two files can show each file in a separate
window.

(~:' Additional features of application windows include the following:

o They let the user view help information and the application data
area at the same time.

o They let the user cut and paste data between applications.

o They make it possible to display status information from several
background activities--for example, compiling, sorting, and
transferring data.

GEM AES supports a maximum of eight (8) windows at a time. Of these
eight windows, the desktop window is always identified by a window
handle (identifier) of zero. A GEM application can use all eight
available windows, although this could result in no windows being
left available for desk accessories. An application can avoid this
problem in the manner adopted by the GEM Desktop application, which
sets a limit of four (4) windows for itself, leaving the remaining
four windows available for desk accessories.

11-1

GEM PG Vol. 2: AES 11.2 Using The Window Library

11.2 Using the Window Library

An application window is made up of two components: a rectangular
work area surrounded by a border area.

Figure 11-1 illustrates the components of a typical window.

Figure 11-1. Components of a Typical Window

The work area has the following characteristics:

o It is the portion of the window's area that is available for use
by the application.

o All user interactions inside the work area are managed by the ap­
plication.

o What appears in the work area as a result of user interaction is
defined, displayed, and controlled by the application.

The border area has the following characteristics:

11-2

-"" \

(

c

c

GEM PG Vol. 2: AES 11.2 Using The Window Library

o The border area can have several different components. An ap­
plication determines which components will appear in the border
area but does not control them.

o GEM AES's Screen Manager displays the contents of each window's
border and manages all user interactions with the border area.

11.2.1 Components of the Border Area

A window's border area has some or all of the following:

o title bar

All windows have a title bar, which appears across the top of the
window. It can contain a maximum of 80 text characters. The ap­
plication provides this text as the name of the window.

o information line

The application determines if its window has an information line.

The information line appears directly under the title bar and can
contain a maximum of 80 text characters. The application
provides this'text to describe the contents of the window.

The remaining features of the border are known as "window control
areas" because user interaction with any of them causes some change
to take place, either in the work area or to the window as a whole.
The application determines which window control areas appear in the
window.

o close box

The close box is located at the left end of the title bar.

When the user clicks the mouse on the close box, GEM AES sends the
application a message that the user wants the window closed.

o full box

The full box is located at the right end of the title bar.

The full box acts as a toggle with which the user can change the
window from its current size and location on the desktop to its
greatest possible size, and back again. In their greatest pos­
sible size, most windows fill all of the desktop but the menu bar.

11-3

GEM PG Val. 2: AES 11.2 Using The Window Library

o move bar

The move bar, when present, occupies the same space as the title
bar. The move bar is invisible and to the user is indistinguish­
able from the title bar.

When the user presses the mouse button on the move bar, GEM AES
displays an XORed outline of the window. The user can drag this
outline around the desktop as long as the button is held down.
When the user releases the button, the outline disappears, and GEM
AES sends the application a message that the user wants the window
moved to the location indicated by the outline's last position.

o size box

The size box is located in the lower right corner of the window.

When the user presses the mouse button on the size box, GEM AES
displays an XORed outline of the window. The upper left corner of
the outline remains in a fixed position. The lower right corner
can be dragged around as long as the user continues to press the
button.

When the user releases the button, the outline disappears. GEM
AES sends the application a message that the user wants the win­
dow's size changed to match the size of the outline when the but­
ton was released.

o up-arrow

The up-arrow appears at the top of the right border.

When the user clicks on the up-arrow, GEM AES moves one line (or
. an equivalent) toward the beginning of the directory or file.

o down-arrow

The down-arrow appears at the bottom of the right border, directly
above the size box.

When the user clicks on the down-arrow, GEM AES moves one line (or
an equivalent) toward the bottom of the directory or file.

o left-:lrrow

The left~arrow appears at the left end of the bottom border.

When the user clicks on the left-arrow, GEM AES moves the equiv­
alent of one line toward the left side of the directory or file.

o right-arrow

The right-arrow appears in the bottom border immediately to the
left of the size box.

11-4

f/

c

GEM PG Vol. 2: AES 11.2 Using The Window Library

When the user clicks on the right-arrow, GEM AES moves the equiv­
alent of one line toward the right side of the directory or file.

o vertical scroll bar and slider

The vertical scroll bar is located between the up-arrow and down­
arrow. The vertical slider moves up and down in the scroll bar.

By clicking on the part of the scroll bar
visible), the user moves one page (or an
beginning of the directory or file.

By clicking on the part of the scroll bar
visible), the user moves one page (or an
end of the directory or file.

above the slider (when
equivalent) toward the

below the slider (when
equivalent) toward the

To move quickly to the top
any point between, the user
bar.

or bottom of the window's data or to
can drag the slider inside the scroll

The length of the scroll bar represents all the window's data,
from top to bottom. The position of the slider in the scroll bar
indicates which part of the data is currently visible in the win­
dow. If the slider is at the top of the scroll bar, the top of
the window shows the top of the data. If the scroll bar is two­
thirds of the way down the scroll bar, the top of the window
shows a point two-thirds of the way through the data.

The size of the slider indicates how much of the data is visible
in the window. For example, if the slider is half the size of
the scroll bar, half the window's data is visible.

o horizontal scroll bar and slider

The horizontal scroll bar is located between the left-arrow and
the right-arrow. The horizontal slider moves back and forth in
the scroll bar.

By clicking on the part of the scroll bar to the left of the
slider (when visible), the user moves to the left by the equiv­
alent of one page.

By clicking on the part of the scroll bar to the right of the
slider (when visible), the user moves to the right by the equiv­
alent of one page.

To move quickly anywhere to the left or right, the user can drag
the slider inside the scroll bar.

Like the vertical slider, the horizontal slider also shows the
location of the top of the window relative to the window's data
and how much of the data is visible.

11-5

GEM PG Vol. 2: AES 11.2 Using The Window Library

The following sections describe concepts and procedures that apply
in the GEM AES windowing environment.

11.2.2 Division of Labor

GEM AES and the application divide responsibility for window
management.

GEM AES handles all user-mouse interactions that occur outside the
window's work area, including the following:

o clicking on the close box or full box

o pressing the mouse button in the move bar to drag the window's
outline

o pressing the mouse button in the size box to produce a larger or
smaller window outline

o manipulating the scroll bars

GEM AES sends a message to the application that created the window
telling it the outcome of these interactions. When it receives one
of these messages from GEM AES, the application has two choices:

o Make a Window Library call that causes the requested change to oc­
cur.

o Ignore the message.

This division of labor between GEM AES and the application has the
following advantages:

o The application is not responsible for user interactions outside
its window's work area.

o The application determines when and if user-requested window chan­
ges take place.

o Because it chooses which window control areas appear in its win­
dow's border area, the application also controls the kinds of win­
dow changes a user can request.

11.2.3 Window Management Calls

An application usually follows some variation of the following steps
to fulfill its window management responsibilities:

11-6

(~

c

(~;

GEM PG Vol. 2: AES 11.2 Using The Window Library

1. It calls WIND GET with a value of WF WORKXYWH for window 0 (the
desktop window).

This call returns the window's X- and Y-coordinates, plus its
width and height in pixels. These values identify the part of the
screen below the menu bar that is available to the application.

2. It calls WIND CALC with the width and height values from the pre­
vious call, plus a code identifying the border components it is
requesting.

WIND CALC returns the size of the work area for this window in
its greatest possible size.

3. It determines the size of the work area it requires.

This size must be less than or equal to the size returned by the
previous call.

4. It calls WIND CALC with the desired work area size and the code
describing the-window's border.

WIND CALC returns the size of the window including the border
area. This size is used in the WIND_CREATE, WIND_OPEN, and
WIND SET calls.

5. It calls WIND CREATE with the size returned by WIND CALC and the
code describing the window's border.

The size given to WIND CREATE determines the window's maximum
possible size.

GEM AES returns a window handle (numeric identifier) for use with
the other window calls.

6. It calls WIND OPEN with the window's initial size and location on
the desktop.

The window appears after this call has been made.

7. It uses the window to display information to the user.

The application uses an EVNT MULTI call to wait for messages from
GEM AES regarding user requests to close, full, size, scroll, or
top (activate) the window. To support the overlapping window
environment, GEM AES can also send a message requesting that
part of the window be redrawn. The redraw procedure is
described in Section 11.2.5.

8. It makes a WIND CLOSE call when the application no longer wants
the window visible on the screen.

The window disappears, but it is still allocated to the applica­
tion and may be reopened.

11-7

GEM PG Vol. 2: AES 11.2 Using The Window Library

9. It makes a WIND DELETE call when the application no longer needs
the window at all.

This call frees the window handle for use by another application.
The application should always close a window before deleting it.

Managing multiple windows is an extension to the procedure described
above. When an application gets a message requesting a window
change, it uses the handle of the affected window in its Window
Library calls.

11.2.4 Support of Overlapping Windows

Application windows can overlap like sheets of
The topmost window is called the active window.

When the user clicks the mouse button outside
border area, GEM AES looks at what was under
pointer and acts as follows:

paper on a desktop.

the active window's
the tip of the mouse

o If the pointer was over the desktop, GEM AES does nothing.

o If the pointer was over another window, GEM AES sends a message to
the application owning the current active window. The message
informs the application that the user wants the other window
brought to the top (activated). The application should respond ,_/
to this message with a GEM AES call to bring the other window to
the top.

There are two instances when part of a window may not be visible:

o when one window overlaps another

o when the active window has been positioned so that part of it is
off the physical screen

When an application sends output to the work area of its window, it
draws that output only to the portion of the physical screen that is
visible to the user. This selective drawing is called "clipping."

(GEM AES is responsible for drawing the border, but clipping applies
here as well.)

GEM AES uses a list of rectangular regions to keep track of the por­
tion of the physical screen belonging to each window. This list
contains the least number of non-overlapping rectangles that define
the visible area of the window. For example, if the window is
fully visible, the list contains one rectangle.

11-8

GEM PG Vol. 2: AES 11.2 Using The, Window Library

The application obtains the list by making a series of WIND GET
calls. The application must only draw to the physical screen in-the
area defined by the window's current rectangle list.

11.2.5 Redrawing and Updating

To use the windowing system most efficiently, an application should
be able to respond quickly to redraw requests from GEM AES.

There are three reasons why an application might need to update a
window's work area:

o to display new application-generated information to the user

o to respond to a message reporting a user request to scroll the
contents of the window

o to respond to a request from GEM AES to redraw a portion of the
window

In each case, some portion of the work area has to be updated. This
"update rectangle" can range in size from a one-pixel square to the
entire work area. In the first two cases above, the application
defines the update rectangle. In the third case, GEM AES's redraw
message contains the X- and Y-coordinates of the update rectangle,
as well as its width and height.

Knowing the size and location of the update rectangle, the applica­
tion follows these steps:

1. It calls WIND UPDATE with a value of 1, which indicates the
beginning of an-update.

This call freezes the rectangle lists of all the windows on the
screen.

2. It calls WIND GET with
the location and size
rectangle list.

a value of WF FIRSTXYWH, which asks for
of the first-rectangle in the window's

3. If the width and height values of this rectangle are not zero, it
continues to step 4. If the values are zero, it goes to step 8.

4. It calculates a "result rectangle," which is the intersection (if
any) of the rectangle obtained from the window's rectangle list
and the update rectangle.

11-9

GEM PG Vol. 2: AES 11.2 Using The Window Library

5. If the result rectangle has width and height, the application
draws the portion of the window defined by the result rectangle.
To simplify the process of clipping the window contents to fit
the rectangle (which will probably be required), GEM VDI
provides a "set clip rectangle" call.

If the result rectangle has zero width or height, the application
doesn't draw anything. It continues to the next step.

6. It calls WIND GET with a value of WF NEXTXYWH, which asks for the
next rectangle from the window's rectangle list.

7. It repeats steps 3, 4, 5, and 6.

8. It calls WIND UPDATE with a value of 0, which indicates the end
of an update.

This call allows the resumption of changes to the rectangle lists
of all the windows on the screen.

ll-lO

GEM PG Vol. 2: AES 11.3 Window Library Routines

(/ 11.3 Window Library Routines

The Window Library provides the following routines:

o WIND CREATE - allocates the application's full-size window and
returns a handle

o WIND_OPEN - opens the created window to a specified size

o WIND_CLOSE - closes an open window

o WIND DELETE - de-allocates the application's window and handle

o WIND_GET - gets information on a particular window

o WIND SET - sets new values for the fields that determine how a
window is displayed

o WIND FIND - determines which window is under the mouse's X,Y posi­
tion-

o WIND UPDATE - notifies GEM AES that the application is about to
update or has finished updating a window, or that the application
is about to take or relinquish control of all mouse functions

o WIND CALC - calculates the X- and Y-coordinates and the width and
height of a window's work area or border area

The following sections describe these routines.

Each Window
Array, and

Library routine has a GEM AES Parameter Block, Control
Global Array that contain the following information:

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
params(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of int_in array
params(3) = long address (32 bits) of int_out array
params(4) = long address (32 bits) of addr_in array
params(5) = long address (32 bits) of addr out array

Control Array
control(O) = op_code
control(l) = size in WORDS of int_in array
control(2) = size in WORDS of int_out array
control(3) = size in LONGS of addr_in array
control(4) = size in LONGS of addr out array

11-11

GEM PG Vol. 2: AES

Global Array
global (0) =
global(1) =
global(2) =
global(3, 4) =
global (5, 6) =
global (7 , 8) =
global (9,10) =
global(11,12) =
global(13,14) =

ap version
ap-count
ap-id
ap-private
ap-ptree
ap-1resv
ap-2resv
ap-3resv
ap:4resv

11.3 Window Library Routines

Global Array parameters are described in Section 3.

Each routine also contains some or all of the following arrays:

a Integer Input (int in) - Unless otherwise noted, each parameter in
this array is a WORD.

a Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

a Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

a Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER. (" -"\

11-12

GEM PG Vol. 2: AES

(11.3.1 WIND CREATE

Purpose:

11.3 Window Library Routines

Allocates the application's full-size window and returns the win­
dow's handle (numeric identifier).

This routine establishes the window's greatest possible size; the
WIND OPEN routine determines the window's actual size when opened.

Parameters:

control(O) = 100
control(l) = 5
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = wi crkind
int:in(l) = wi crwx
int in(2) = wi_crwy - in(3) int = wi crww
int:in(4) wi - crwh =

int_out(O) - wi crreturn

o wi crkind - the individual components present in the window

The following bits represent the components:

Ox0001 - NAME
Ox0002 - CLOSE
Ox0004 - FULL
Ox0008 - MOVE
Ox0010 - INFO
Ox0020 - SIZE
Ox0040 - UPARROW
Ox0080 - DNARROW
Ox0100 - VSLIDE
Ox0200 - LFARROW
Ox0400 - RTARROW
Ox0800 - HSLIDE

(title bar with name)
(close box)
(full box)
(move box)
(information line)
(size box)
(up-arrow)
(down-arrow)
(vertical slider)
(left-arrow)
(right-arrow)
(horizontal slider)

This call uses the following bit settings for each component:

o - does not have the component
1 - has the component

o wi crwx - the X-coordinate of the full-size window

(~'\ 0 wi_crwy - the Y-coordinate of the full-size window

11-13

GEM PG Vol. 2: AES 11.3 Window Library Routines

o wi crww - the width (in pixels) of the full-size window

o wi crwh - the height (in pixels) of the full-size window

o wi crreturn - the handle (numeric identifier) that will identify
this window in future calls. Values range from 0 to n. A nega­
tive value indicates that GEM AES has no more windows available.

Sample call to C language binding:

wi crreturn = wind_create(wi_crkind, wi crwx, wi crwy,
wi_crww, wi=crwh)i -

11-14

GEM PG Vol. 2: AES 11.3 Window Library Routines

11.3.2 WIND OPEN

Purpose:

Opens a window in its initial size (not necessarily its full size)
and location.

Parameters:

control(O) = 101
control(l) = 5
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = wi ohandle -int in(l) = wi owx
int - in(2) wi = _owy -int in(3) = wi oww -int in(4) = wi owh -
int_out(O) = wi ore turn

o wi ohandle _. the handle of the window to be opened

o wi owx the X-coordinate of the window in its initial size

the Y-coordinate of the window in its initial size

o wi oww - the width (in pixels) of the window in its initial size

o wi owh - the height (in pixels) of the window in its initial size

o wi ore turn - a coded return message

o - an error exists
n (positive integer) - no error exists

Sample call to C language binding:

wi oreturn = wind open(wi ohandle, wi_owx, wi_owy, wi_oww,
- wi_owh);

11-15

GEM PG Vol. 2: AES 11.3 Window Library Routines

11.3.3 WIND CLOSE

Purpose:

Closes an opened window.

Although closed, the window and its handle remain allocated. The
application can reopen the window by again calling the WIND OPEN
routine.

Parameters:

control(O) = 102
control(1) = 1
control(2) = 1
control(3) = 0
control(4) = 0

int_in(O) = wi clhandle

int_out(O) = wi clreturn

o wi clhandle - the handle of the window to be closed

o wi clreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

Sample call to C language binding:

wi clreturn = wind_close(wi_clhandle);

11-16

(.~'

GEM PG Vol. 2: AES 11.3 Window Library Routines

11.3.4 WIND DELETE

Purpose:

Frees the space occupied by the window and its handle.

To open the window again, the application must first recreate it
by calling the WIND CREATE routine before calling the WIND OPEN
routine.

Parameters:

control(O) = 103
control(1) = 1
control(2) = 1
control(3) = 0
control(4) = 0

int_in(O) = wi dhandle

int_out(O) = wi dreturn

o wi dhandle - ~he handle of the window to be deleted

o wi dreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

Sample call to C language binding:

wi dreturn = wind_delete(wi_dhandle);

11-17

GEM PG Vol. 2: AES 11.3 Window Library Routines

11.3.5 WIND GET

Purpose:

Depending on the information requested by the call, returns one of
the following:

o X- and Y-coordinates and width and height values for various
aspects of the current and previous windows

o slider location and size

o the handle of the active window

o X- and Y-coordinates, width, and height of the rectangles in the
window's rectangle list

Parameters:

control(O) = 104
control(l) = 2
control(2) = 5
control(3) = 0
control(4) = 0

int in(O) = wi ghandle
int=in(l) = wi-gfield

int out(O) = wi greturn
int-out(l) = wi-gwl
int-out(2) = wi-gw2
int-out(3) = wi-gw3
int=out(4) = wi=gw4

o wi ghandle - The handle of the window about which the application
wants information.

o wi gfield - A numerical value identifying the field about which
the application wants information. The value of wi gfield deter­
mines which of wi_gwl, wi_gw2, wi_gw3, and wi_gw4 is-returned.

1 - WF_RESVDl - [RESERVED]

4 - WF WORKXYWH - the coordinates of the work area of the window
- returns wi gwl (X-coordinate)
- returns wi-gw2 (Y-coordinate)
- returns wi-gw3 (width)
- returns wi=gw4 (height)

11-18

(

GEM PG Vol. 2: AES 11.3 Window Library Routines

5 - WF CURRXYWH - the coordinates of the entire current window,
• including borders, title bar, and information line

- returns wi gw1 (X-coordinate)
- returns wi-gw2 (Y-coordinate)
- returns wi-gw3 (width)
- returns wi=gw4 (height)

6 - WF PREVXYWH - the coordinates of the previous window, in­
cluding borders, title bar, and information line
- returns wi gw1 (X-coordinate)
- returns wi-gw2 (Y-coordinate)
- returns wi-gw3 (width)
- returns wi-gw4 (height)

7 - WF FULLXYWH - the coordinates of the window at its fullest
possible size, including borders, title bar, and informa­
tion line
- returns wi gw1 (X-coordinate)
- returns wi-gw2 (Y-coordinate)
- returns wi-gw3 (width)
- returns wi=gw4 (height)

8 - WF HSLIDE - a number between 1 and 1000, giving the relative
position of the horizontal slider
(1 = leftmost position; 1000 = rightmost position)
- returns wi_gw1

9 - WF VSLIDE - a number between 1 and 1000, giving the relative
position of the vertical slider
(1 = top position; 1000 = bottom position)
- returns wi_gw1

10 - WF TOP - the window handle of the window that is on top (ac­
tive)
- returns wi_gw1

11 - WF FIRSTXYWH - the coordinates of the first rectangle in the
window's rectangle list
- returns wi gw1 (X-coordinate)
- returns wi-gw2 (Y-coordinate)
- returns wi-gw3 (width)
- returns wi-gw4 (height)

12 - WF NEXTXYWH - the coordinates of the
window's
- returns

returns
- returns
- returns

13 - WF RESVD2

rectangle list
wi gw1 (X-coordinate)
wi-gw2 (Y-coordinate)
wi-gw3 (width)
wi-gw4 (height)

- [RESERVED]

11-19

next rectangle in the

GEM PG Vol. 2: AES 11.3 Window Library Routines

15 - WF HSLSIZE - the size of the horizontal slider
-1 = default minimum size (a square box)

1 - 1000 = the slider's relative size compared to
the horizontal scroll bar

- returns wi_gw1

16 - WF VSLSIZE - the size of the vertical slider
-1 = default minimum size (a square box)

1 - 1000 = the slider's relative size compared to
the vertical scroll bar

- returns wi_gw1

17 - WF SCREEN - the address and length of the internal menu/alert
buffers

o

0

0

0

0

- returns wi gw1 (low WORD of address)
- returns wi-gw2 (high WORD of address)
- returns wi-gw3 (low WORD of length)
- returns wi_gw4 (high WORD of length)

wi_greturn - a coded return message

o - an error exists
n (positive integer) - no error exists

wi gw1 The value returned depends
wi gfie1d (see above) •

wi gw2 The value returned depends
wi_gfield (see above) •

wi gw3 The value returned depends
wi_gfield (see above) •

wi gw4 The value returned depends
wi_gfield (see above) •

on

on

on

on

Sample call to C language binding:

the

the

the

the

wi_greturn = wind get(wi ghandle, wi gfield, &wi gw1,
- &wi_gw2, &wi_gw3, &wi gW4);

11-20

field named in

field named in",~/

field named in

field named in

(

(j

GEM PG Vol. 2: AES 11.3 Window Library Routines

11.3.6 WIND SET

Purpose:

Changes the value in one of several fields that determine how a
window is displayed.

Parameters:

control(O) = 105
control(l) = 6
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = wi shandle
int-in(l) = wi-sfield
int-in(2) = wi-swl
int-in(3) = wi-sw2
int-in(4) = wi-sw3
int:in(5) = wi-sw4

int_out(O) = wi sreturn

o wi shandle - The handle of the window whose fields the application
wishes to change.

o wi sfield - A numerical value identifying the field the applica­
tion wishes to change.

2 - WF NAME - the address of the string containing the name of
the window
- takes wi swl and wi sw2

3 - WF INFO - the address of the string containing the informa­
tion line
- takes wi swl and wi sw2

5 - WF CURRXYWH - defined under WIND GET

8 - WF HSLIDE - defined under WIND GET

9 - WF VSLIDE - defined under WIND GET

10 - WF TOP - defined under WIND GET

11-21

GEM PG Vol. 2: AES 11.3 Window Library Routines

14 - WF NEWDESK - the address of a new default GEM Desktop for
GEM-AES to draw
- takes wi swl (object tree LOW WORD)
- takes wi-sw2 (object tree HIGH WORD)
- takes wi:sw3 (starting object to draw in tree)

15 - WF HSLSIZE - defined under WIND GET

16 - WF VSLSIZE - defined under WIND GET

0 wi swl - The value depends on the field
above) •

o wi sw2 - The value depends on the field
above) •

o wi sw3 - The value depends on the field
above) •

named

named

named

o wi sw4 - The value depends on the field named
above) •

o wi sreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

SaLple call to C language binding:

in

in

in

in

wi sreturn = wind set(wi shandle, wi sfield, wi swl,
- wi sw2, wi_sw3, wi_sw4)T

11-22

wi sfield

wi sfield

wi sfield

wi sfield

(see

(see

(see

(see

.' ",

(..
i ,

GEM PG Vol. 2: AES 11.3 Window Library Routines

11.3.7 WIND FIND

Purpose:

Finds which window is under the mouse's X,Y position.

Parameters:

control(O) = 106
control(l) = 2
control(2) = 1
control(3) = 0
control(4) = 0

int in(O) = wi fmx
int=in(l) = wi=fmy

int_out(O) = wi freturn

o wi_fmy - the X-coordinate of the mouse's position

o wi_fmy - the Y-coordinate of the mouse's position

o wi freturn - the handle of the window under the mouse's X,Y posi­
tion

Sample call to C language binding:

wi freturn = wind_find(wi_frnx, wi_fmy);

11-23

GEM PG Vol. 2: AES 11.3 Window Library Routines

11.3.8 WXND UPDATE

Purpose:

Does one of the following:

o Notifies GEM AES that the application is about to begin updating a
window or has finished updating a window.

During the update, GEM AES does not allow changes to take place in
the portion of the screen belonging to the window.

o Notifies GEM AES that the application is taking control of all
mouse functions, regardless of the mouse's location on the
screen, or is returning to normal mouse function.

When the application has control of all
Screen Manager no longer responds to mouse
window control points are not active.

Parameters:

control(O) = 107
control(1) = 1
control(2) = 1
control(3) = 0
control(4) = 0

int_in(O) = wi_ubegend

int_out(O) = wi ureturn

o wi_ubegend - a code for the call's function

o - END UPDATE
1 - BEG-UPDATE
2 - END-MCTRL
3 - BEG MCTRL

o wi ureturn - a coded return message

o - an error exists
n (positive integer) - no error exists

Sample call to C language binding:

wi ureturn = wind_update(wi_ubegend);

11-24

mouse functions, the
input, and menus and

(...

GEM PG Vol. 2: AES 11.3 Window Library Routines

11.3.9 WIND CALC

Purpose:

Calculates the X- and V-coordinates and the width and height of a
window's border area or work area.

In calculating the border area's parameters, this routine uses the
corresponding parameters of the work area as input values. In
calculating the work area's parameters, this routine uses the cor­
responding parameters of the border area as input values.

Parameters:

control(O)
control(l)
control(2)
control(3)
control(4)

int in(O)
int-in(l)
int-in(2)
int-in(3)
int-in(4)
int-in(5)

int out(O)
int-out(l)
int-out(2)
int-out(3)
int=out(4)

= 108
= 6
= 5
= 0
= 0

= wi ctype
= wi-ckind
= wi cinx
= wi-ciny
= wi-cinw
= wi-cinh

= wi creturn
= wi-coutx
= wi-couty
= wi-coutw
= wi couth

o wi_ctype - the type of calculation to perform

o - return border area X, Y, width, and height
1 - return work area X, Y, width, and height

o wi ckind - the individual components present in the window

The following bits represent the components:

Ox0001 - NAME
Ox0002 - CLOSE
Ox0004 - FULL
Ox0008 - MOVE
Ox0010 - INFO
Ox0020 - SIZE

(title bar with name)
(close box)
(full box)
(move box)
(information line)
(size box)

11-25

GEM PG Vol. 2: AES

Ox0040 - UPARROW
Ox0080 - DNARROW
Ox0100 - VSLIDE
Ox0200 - LFARROW
Ox0400 - RTARROW
Ox0800 - HSLIDE

11.3 Window Library Routines

(up-arrow)
(down-arrow)
(vertical slider)
(left-arrow)
(right-arrow)
(horizontal slider)

This call uses the following bit settings ·for each component:

o - does not have the component
1 - has the component

o wi cinx - the input X-coordinate of the work area (if wi_ctype =
O)-or border area (if wi_ctype = 1)

o wi ciny - the input Y-coordinate of the work area (if wi_ctype =
O)-or border area (if wi_ctype = 1)

o wi cinw - the input width value of the work area (if wi_ctype = 0)
or- border area (if wi_ctype = 1)

o wi cinh - the input height value of the work area (if wi_ctype =
O)-or border area (if wi_ctype = 1)

o wi creturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o wi coutx - the output X-coordinate of
l)-or border area (if wi_ctype = 0)

0 wi couty - the output Y-coordinate of
l)-or border area (if wi_ctype = 0)

o wi coutw - the output width value of
l)-or border area (if wi_ctype = 0)

o wi couth - the output height value of
l)-or border area (if wi_ctype = 0)

Sample call to C language binding:

the work area

the work area

the work area

the work area

wi creturn = wind calc(wi ctype, wi ckind, wi_cinx,
- wi ciny, wi cinw, wi cinh,

&wi coutx, &wi couty;
&wi=coutw, &wi:couth);

End of Section 11

11-26

(if wi_ctype =

(if wi_ctype =

(if wi_ctype =

(if wi_ctype =

12.1 Introduction

Section 12
Resource Library

The Resource Library is the interface between an application and its
resources, the collection of data used by the application. Types of
resources include trees, objects, strings, icons, and pictures.

The purpose of a resource file is to isolate an application's
device-, user-, and country-specific data from its code. This
isolation provides the following advantages:

o machine-code portability

To port the
programmer need

application across different environments,
only change the resource file data.

o customization of appearance

the

A non-programmer can change the application's menu structure, the
layout of dialog boxes, and error message text. In most cases
the programmer need not be involved.

o internationalization of text messages

To change text messages from one language to another, one need
only change the text in the resource file.

o device-independent raster graphics

Because they are stored as resources, GEM AES's icons and other
bit-mapped images can be tailored to the resolution characteris­
tics of various displays.

In all these instances the application's code is unchanged.

Most applications have a single resource file that contains all
their resources. GEM AES follows the convention that all resource
files have the filetype .RSC.

The programmer creates a resource file by using the GEM Resource
Construction Set.

12.2 Using the Resource Library

When an application calls RSRC LOAD with the name of
file, the Resource Library does-the following:

12-1

a resource

GEM PG Vol. 2: AES 12.2 Using the Resource Library

o It searches for the file and finds its total size in bytes.

o Using the DOS allocate call, it allocates enough memory space to
hold the resource file.

o It opens the resource file, reads it into the allocated memory
space, and closes the file.

o It makes any required updates to the file. These updates do the
following:

- make the file device-specific to the screen's resolution

link up all the OBJECT pointers, TEDINFO pointers, ICONBLK
pointers, and BITBLK pOinters

- build the array of tree pOinters

- store the address of the tree array in the application's Global
Array

The application can now make calls to any routines
tree index, including Object Library routines,
MENU BAR.

that require a
FORM_DO, and

To get or set any pOinter in the OBJECT, TEDINFO, ICONBLK, or BITBLK
structures, the application calls RSRC_GADDR and RSRC_SADDR.

When the application is finished with the data from the resource
file, it calls RSRC FREE to release the allocated memory and zero
out the address of tne tree array in the Global Array.

12.3 Resource Library Routines

The Resource Library uses the following routines:

o RSRC LOAD - loads an entire resource file into memory

o RSaC FREE - frees the memory allocated during RSRC_LOAD

o RSRC GADDR - gets the address of a data structure in memory

o RSRC SADDR - stores an index to a data structure

o RSRC OBFIX - converts an object's X- and Y-coordinates, width, and
height from character coordinates to pixel coordinates

The following sections describe these routines.

12-2

GEM PG Vol. 2: AES 12.3 Resource Library Routines

Each Resource Library routine has a GEM AES Parameter Block, Control
Array, and Global Array that contain the following information:

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
params(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of int_in array
params(3) = long address (32 bits) of int_out array
params(4) = long address (32 bits) of addr_in array
params(5) = long address (32 bits) of addr out array

Control Array
control(O) = op_code
control(l) = size in WORDS of int in array
control(2) = size in WORDS of int=out array
control(3) = size in LONGS of addr_in array
control(4) = size in LONGS of addr out array

Global Array
global(O) = ap_version
global(l) = ap count
global(2) = ap=id
global(3,4) = ap_private
global(5,6) = ap_ptree
global(7,8) = ap lresv
global(9,lO) = ap-2resv
global(ll,12) = ap-3resv
global(13,14) = ap=4resv

Global Array parameters are described in Section 3.

Each routine also contains some or all of the following arrays:

o Integer Input (int in) - Unless otherwise noted, each parameter in
this array is a WORD.

o Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

o Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

o Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER.

12-3

GEM PG Vol. 2: AES 12.3 Resource Library Routines

12.3.1 RSRC LOAD

Purpose:

Allocates memory and loads a resource file into memory.

Parameters:

control(O) = 110
control(l) = 0
control(2) = 1
control(3) = 1
control(4) = 0

int_out(O) = re lreturn

addr_in(O) = re_lpfname

o re lreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o re lpfname - the address of the ASCII string of the resource '\
filename

Sample call to C language binding:

re lreturn = rsrc_load(re_lpfname);

12-4

(
GEM PG Vol. 2: AES 12.3 Resource Library Routines

12.3.2 RSRC FREE

Purpose:

Frees the memory space allocated in RSRC LOAD.

Parameters:

control(O) = 111
control(l) = 0
control(2) = 1
control(3) = 0
control(4) = 0

int_out(O) = re freturn

o re freturn - a coded return message

o - an error exists
n (positive integer) - no error exists

Sample call to C language binding:

(j re freturn = rsrc _ free () ;

12-5

GEM PG Vol. 2: AES 12.3 Resource Library Routines

12.3.3 RSRC GADDR

Purpose:

Gets the address of a data structure in memory.

Parameters:

control(O) =
control(l) =
control(2) =
control(3) =
control(4) =
int in(O) =
int:in(l) =

int_out(O) =

addr_out(O) =

o re_gtype - the

o tree
1 OBJECT
2 TED INFO
3 ICONBLK
4 BITBLK
5 string
6 imagedata
7 obspec

112
2
1
0
1

re gtype
re:gindex

re-greturn

re_gaddr

type of data structure

8 te ptext (see Section 6.3.2)
9 te-ptmplt (see Section 6.3.2)

10 te-pva1id (see Section 6.3.2)
11 ib-pmask (see Section 6.3.3)
12 ib-pdata (see Section 6.3.3)
13 ib-ptext (see Section 6.3.3)
14 bi-pdata (see Section 6.3.4)
15 ad-frstr - the address of a POINTER to a free string
16 ad-frimg - the address of a POINTER to a free image

o re_gindex - the index of the data structure

o re_greturn - a_coded return message

o - an error exists
n (positive integer) - no error exists

o re gaddr - the address of the data structure specified by re_gtype
and 17e_gindex

12-6

(....

~~ .••.

GEM PG Vol. 2: AES 12.3 Resource Library Routines

Sample call to C language binding:

re_greturn = rsrc gaddr(re gtype, re gindex,
- &re_gaddr);

12-7

GEM PG Vol. 2: AES 12.3 Resource Library Routines

12.3.4 RSRC SADDR

Purpose:

Stores the address of a data structure in memory.

Parameters:

control(O) = 113
control(l) = 2
control(2) = 1
control(3) = 1
control(4) = 0

int in(O) = re stype
int:in(l) = re-sindex

int_out(O) = re sreturn

addr_in(O) = re saddr

o re_stype - the type of data structure

15 ad frstr - defined under RSRC GADDR
16 ad:frimg - defined under RSRC-GADDR

o re sindex - the location in the data structure where re saddr will
be- stored

o re sreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o re saddr - the address of the data structure

Sample call to C language binding:

re sreturn = rsrc saddr(re stype, re sindex,
- re_saddr):-

12-8

GEM PG Vol. 2: AES 12.3 Resource Library Routines

12.3.5 RSRC OBFIX

Purpose:

converts an object's location and size from character coordinates
to pixel coordinates.

Character coordinates are defined as the object's X, Y, width, and
height values, where each WORD has the integral character posi­
tion in the Least Significant Byte and the positive or negative
pixel offset in the Most Significant Byte.

Parameters:

control(O) = 114
control(1) = 1
control(2) = 1
control(3) = 1
control(4) = 0

int_in(O) = re_oobject

int_outCO) = re oresvd

addr_in(O) = re otree

o re_oobject - The index of the object to be converted.

o re_oresvd - [RESERVED]; value always equals 1 (one).

o re otree - The address of the tree that contains the object.

Sample call to C language binding:

re oresvd = rsrc_obfix(re_otree, re_oobject);

End of Section 12

12-9

,(

Sect~on 13

Shell Library

13.1 Introduction

The Shell Library serves two major functions:

o It lets an application keep track of the command and command tail
that invoked it.

o It lets applications invoke other applications directly, without
first returning to the GEM Desktop application.

It allows a user to request an application (for example, an output
application) from within a running application. The user can, if
the application supports this practice, string together several
applications in this manner.

The GEM Desktop application is itself an example of an application
that uses the second Shell function to invoke GEM and DOS ap­
plications.

13.2 Using the Shell Library

Two Shell Library routines use a single buffer that contains the
following:

o the command with which the Shell Library invoked the current ap­
plication or will invoke the next application

o the command tail with which the Shell Library invoked the current
application or will invoke the next application

To learn the name of the command and command tail that invoked it,
an application calls the SHEL READ routine, passing in the
following:

o Pointers to the addresses of the application's buffers that will
hold the command information.

The Shell Library copies the data from its own buffer to the ap­
plication's buffer.

13-1

GEM PG Vol. 2: AES 13.2 Using the Shell Library

o A pointer to the application's home directory.

The home directory is where the system looks if it does not find
the application in the current directory.

To invoke an application, the current application (or the GEM
Desktop) follows these steps:

1. It calls the SHEL WRITE routine and passes in the address of the
command, command tail, and home directory for the next applica­
tion to run. It also indicates whether the requested application
is graphic or character-based and whether it is a GEM or DOS ap­
plication.

2. When the current application terminates, the Shell Library starts
the application that was requested next.

To exit GEM AES, an application makes a SHEL_WRITE call, passing in
an sh_wdoex value of 0 (zero).

The other two Shell Library routines are SHEL FIND and SHEL ENVRN.

SHEL FIND makes it possible for an application to locate a filename
by following the DOS search path.

SHEL ENVRN lets an application search the DOS environment for a
predefined environment parameter like "COMSPEC=lI or "VERIFY=". The
routine returns the address of the byte immediately following the
parameter. This byte contains the value of the parameter, and its
address is stored in a LONG value pointed at by one of the input
parameters of SHEL_ENVRN.

13.3 Shell Library Routines

The Shell Library uses the following routines:

oSHEL READ - lets an application determine how it was invoked

oSHEL WRITE - exits GEM AES or tells which
next-

application to run

oSHEL FIND - locates a filename by following the DOS search path

oSHEL ENVRN - searches the DOS environment for a parameter and
returns the address of its value

Each Shell
Array, and

Library routine has a GEM AES Parameter Block, Control
Global Array that contain the following information:

13-2

(

(~

GEM PG Vol. 2: AES 13.3 Shell Library Routines

GEM AES Parameter Block
params(O) = long address (32 bits) of control array
paramS(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of int in array
params(3) = long address (32 bits) of int=out array
params(4) = long address (32 bits) of addr in array
params(5) = long address (32 bits) of addr-out array

Control Array
control(O) = op code
control(l) = size in WORDS of int in array
control(2) = size in WORDS of int=out array
control(3) = size in LONGS of addr_in array
control(4) = size in LONGS of addr out array

Global Array
global(O) = ap_version
global(l) = ap count
global(2) = ap=id
global(3,4) = ap_private
global(5,6) = ap_ptree
global(7,8) = ap lresv
global(9,lO) = ap-2resv
global(11,12) = ap-3resv
global(13,14) = ap=4resv

Global Array parameters are described in Section 3.

Each routine also contains some or all of the following arrays:

o Integer Input (int in) - Unless otheniise noted, each parameter in
this array is a WORD.

o Integer Output (int out) - Unless otherwise noted, each parameter
in this array is a WORD.

o Address Input (addr in) - Unless otherwise noted, each parameter
in this array is a POINTER.

o Address Output (addr out) - Unless otherwise noted, each parameter
in this array is a POINTER.

13-3

GEM PG Vol. 2: AES 13.3 Shell Library Routines

13.3.1 SHEL READ

Purpose:

Lets an application identify the command that invoked it.

Note: The format of the information in the buffer referred to in
the addr in parameter descriptions is consistent with the format
used by -the Load/execute program function, as documented in the
DOS Technical Reference manual for PC DOS version 2.10 and higher.

Parameters:

control(O) = 120
control(1) = 0
control(2) = 1
control(3) = 2
control(4) = 0

int_out(O) = sh rreturn

addr in(O) = sh rpcmd
addr=in(1) = sh:rptail

o sh rreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o sh rpcmd - the address of a buffer that will hold the command that
invoked the application

o sh rptail - the address of a buffer that will hold the command
tarl invoked with the command

Sample call to C language binding:

sh rr~turn = shel_read(sh_rpcmd, sh_rptail);

13-4

GEM PG Vol. 2: AES 13.3 Shell Library Routines

13.3.2 SHEL WRITE

Purpose:

Tells GEM AES whether to run another application and,
which application to run.

Parameters:

control(O} = 121
control(l} = 3
control(2} = 1

control(3} = 2
control(4} = 0

int in(O} = sh wdoex
int-in(l) = sh=wisgr
int=in(2) = sh wiscr

int_out(O) = sh wreturn

addr in(O) = sh_wpcmd
addr-in(l) = sh_wptail

if so,

o sh wdoex - a coded instruction to exit the system or run another
application when the user exits the current application

o - exit GEM AES and return to the operating system prompt
1 - run another application

o sh wisgr - a code for whether the next application is a graphic
application

o - not graphic application
1 - graphic application

o sh wiscr - a code for whether the next application is a GEM AES
application

o - not GEM application
1 - GEM application

o sh wreturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o sh_wpcmd - the address of the new command file to execute

o sh~wptail - the address of the command tail for the next program

13-5

GEM PG Vol. 2: AES 13.3 Shell Library Routines

Sample call to C language binding:

sh_wreturn = shel write(sh wdoex, sh wisgr, sh wiser,
- -sh_wpemd,-sh_wptail);

13-6

{,.'"
"

-"~,/

GEM PG Vol. 2: AES 13.3 Shell Library Routines

13.3.3 SHEL FIND

Purpose:

Searches for a
directory in the
its full DOS file

filename in the current directory and in each
search path; when it finds the filename, returns
specification.

Parameters:

control(O) = 124
control(1) = 0
control(2) = 1
control(3) = 1
control(4) = 0

int_out(O) = sh freturn

addr_in(O) = sh_fpbuff

o sh freturn - a coded return message

o - an error exists
n (positive integer) - no error exists

o sh f pbuff - the address of a buffer with distinct input and out­
put functions

input: holds the filename the application is searching for
output: holds the full DOS file specification of the filename's

location in the search path

The buffer must
specification (80

be long enough to hold
character minimum).

Sample call to C language binding:

sh freturn = shel_get(sh_fpbuff);

13-7

the full DOS file

GEM PG Vol. 2: AES 13.3 Shell Library Routines

13.3.4 SHEL ENVRN

Purpose:

Searches in the DOS environment for the occurrence of an environ­
ment parameter string; stores the address of the byte immediately
following the parameter string in a LONG value.

Parameters:

control(O) = 125
control(l) = 0
control(2) = 1
control(3) = 3
control(4) = 0

int_out(O) = sh eresvd

addr in(O) = sh_epvalue
addr:in (1) = sh_eparm

o sh eresvd - [RESERVED]; value equals one (1)

o sh_epvalue - the address of a LONG value in which this routin/
will store the address of the byte immediately following tJi~/
parameter string

o sh eparm - the parameter string for which the application is sear­
chIng (includes the "=" sign)

Sample call to C language binding:

sh eresvd = shel_envrn(sh_epvalue, sh_eparm);

End of Section 13

13-8

