10
DIGITAL
RESEARCH"

C

Language

Programming Guide

for CP/M-68K™

73¢

Foreword

The C language under CP/M-68K™ is easy to read, easy to maintain, and highly
portable. CP/M-68K can run most applications written in C for the UNIX® operating
system, except programs that use the UNIX fork/exec multitasking primitives or that
read UNIX file structures.

The C Language Programming Guide for CP/M-68K is not a tutorial. This manual
describes how to program in C under the CP/M-68K operating system, and is best used
by programmers familiar with the C language as described in The C Programming
Language (Kernighan and Ritchie, 1978).

The commonly accepted standard for C language programming is the Portable C
Compiler (PCC), written by Stephen C. Johnson. Mary versions of the UNIX operating
system use PCC, including the Zilog® ONYX™, Xenix®, Berkeley UNIX, and UNIQ™
systems.

The CP/M-68K C compiler differs from PCC on the following points:

® The CP/M-68K C int (default) data type is 16 bits long. Pointers are 32 bits long.
All function definitions and function calls that use long (32-bit ints) and pointer
parameters must use the proper declarations.

8 long, int, and char register variables are assigned to D registers. Five such registers
are available in each procedure.

B Any register variable used as a pointer is assigned to an A register. There are
three such registers available in each procedure.

® All local declarations in a function body must precede the first executable
statement of the function.

® The CP/M-68K C compiler handles structure initialization as if the structure
were an array of short integers, as in UNIX version 6.

® The first eight characters of variable and function names must be unique. The
first seven characters of external names must be unique.

® The CP/M-68K C compiler does not support floating point.

® The CP/M-68K C compiler does not support structure assignment, structure
arguments, and structures returned from procedures.

8 The CP/M-68K C compiler does not support initialization of automatic variables.
-8 The CP/M-68K C compiler does not support enumeration types.

738

Section 1 of this manual describes the conventions of using C language under
CP/M-68K. Section 2 discusses C language compatibility with UNIX version 7 and
provides a dictionary of C library routines for CP/M-68K. Section 3 presents a style

guide for coding C language programs.

Appendix A is a table of CP/M-68K error codes. Appendix B discusses compiler
components, tells you how to operate the compiler, and suggests ways to conserve the
disk space used for compiling. Appendix C presents sample C modules that are written
and documented according to the style conventions outlined in Section 3.

iv

736

P a

Table of Contents

Using C Language Under CP/M-68K

Compiling a CP/M-68K C Program .

Memory Layout « « « o

Calling Conventions
Stack Frame« . .
Command Line Interface
I/0 Conv;ntions e e e e e e e
Standard Files

I/0 Redirection

C Language Library Routines

2.1
2.2

Compatibility with UNIX V7 . . .
Library Routines under CP/M-68K

abort

ADS . . ¢ e ¢ e e s s e o o o o
ACCESS « « o« o o o o o o o o o
atoi, atof, atol
brk, Sbrk . . ¢« ¢« ¢ ¢ « o o o =
calloc, malloc, realloc, free .
Ceil . . . ¢ 4 e e e e e e e e
chmod, chown . . . « ¢« ¢« « « o« @
ClosSe . ¢ ¢ ¢ ¢ o e o e o o o o
COS, SiN ¢ ¢ ¢ ¢ ¢ o o o o o o @
creat, creata, creatb
CEYPE . ¢ ¢ ¢ ¢ ¢ ¢ e o e o o
end, etext, edata Locations . .
etoa, ftoa . . ¢ ¢ ¢ e ¢ e e o
exit, _exit0
EXP ¢ ¢ e+ o o s o s e o o o o
fabs . . ¢ . ¢ 4 e e e e e e e
fclose, fflush . . . ¢« « ¢ o o &
feof, ferror, clearerr, fileno .
£lOOFT © ¢ 4 o o o o o o o o o @
fmod e e e e e e e e e
fopen, freopen, fdopen
fread, fwrite
fseek, ftell, rewind
getc, getchar, fgetc, getw, getl
getpass ¢ e s e s s e
v

® ® & o e & 6 & 6 ® e o e & 6 & 06 o o o e 0 o o o o

L[] . L] . ® L] L] L[] L] . L] . L] L] . L] L[] . [. . [. . [L[]

L] . L[] L[] L] . L[] . . . L[] L] L] L] . . L] . . [. . . (] . .

o o © o o 6 6 6 6 & O 8 0 & s o o ° 0+ o ® o e o 0 o

e 8 e 8 6 ° & 0 0 0 6 0O s 8 s e 0 0 o 0 o s ° o s o

. L] . L[] . L] L[] L] . . L] L[] L[] L] L[] . L[] . . []

L[] . L[] . L] . . L[] L[] L[] L] L [L] L] L . . L] L] . . . L] .]

L[] L] L] L L[] L] L] . L[] L] L] . L] L] L] L] L] .] . . L[] . L[] [}]

L[] L[] L L . . L[] L] . L] . L] * . L] L] . L[] . [] . . .] .

. L] L] L] L] L[] L] L[] [L . L] L] . . L[] L[] [.

N
[}

NNN!;JNNN N
HFOWVWONOULLAW N [

vy
)

v37

Table of Contents
(continued)

getpid

gets, fgets
index, rindex
isatty « ¢« <« ¢« o « o o . .
log .« ¢ ¢ 4 @ e e e . .
lseek, tell
mktemp
open, opena, openb
PELIOr . « o ¢ o« o o o = .
POW ¢ ¢ o« o o o o o o @ .
printf, fprintf, sprintf .

putc, putchar, fputc, put
puts, fputs

o o © o o o 8 * 0 e 9 & 8 8 ° o 0+ o t ¢ o o & & & o ¢ s o o
® 6 8 6 8 8 6 e 8 6 6 8 e o & e & s s fo5 6 8 ¢ & e o o e o s o
. L[] L] . . L[] . . L[] . L] L[] . L] . . . [. - . L] [L[] . . . L] L] L]

. * . L] . . . L] L] . . L] . L[] . L] L[] L[] L[] L] L] .

gsort ¢« ¢ ¢ o . .
rand, srand -
read« ¢ o o o o .
scanf, fscanf, sscanf . .
setjmp, longjmp
signal «
sinh, tanh
Sgrt . . . ¢ . e e e o .
strcat, strncat
strcmp, strncmp
strcpy, strncpy
strlen e e o o o e o @ .
swab e o e o o o o o .
tan, atan . . ¢ ¢ ¢ ¢ o .
ttyname -
ungetc e e o s e o o o .
unlink . « ¢« « ¢« ¢ ¢« o . .
write . . ¢ ¢ ¢ ¢ ¢ o . .

3 C Style Guide

3.1

3.2

Modularity . « « « ¢ « o ¢ o o o o
3.1.1 Module Size . .« . <« « <« o .
3.1.2 1Intermodule Communication .
3. 1.3 Headet Files - . L - - L] ‘®
Mandatory Coding Conventions . . .
3.2.1 Variable and Constant Names

3.2.2 Variable Typing . «
3.2.3 Expressions and Constants .

vi

e o o o e ¢ ¢ 0o ¢ o s o ¢ & s o

e o 6 e o o o o & o o o o o o

€ & o @ 8 e ® e e 0 e @ ° 0 0 2 s 0 o o 0 o o o & o & o+ 2 o o

e © 8 @ 6 e & @ € 8 6 8 6 e ° & 0 o 0+ 9 4 o 0 o 0+ s s 0+ 0 o o

® © 6 o 6 o 8 o e @ o o o e 6 o o 9 o o s s 0 0 0 s o o 0o o o

8 6 6 © 6 6 @ 6 e 8 e 5 0 0 6 o & s & & e+ s s 0 02 2 s s 02

o 6 6 6 8 8 8 o & 6 8 o 6 e @ o+ e » o s o s o 0 0 4 e 0+ 2 s o

o e o o 0 e o o o 8 ® 8 6 B 5 8 5 B s 3 B 0 s s s S O o s o+ o

o e ® 6 e e & o o 6 & e ° e & e o s s o ° o 0 o s 2 o s e s 0

e o & o ® e e 8 9 & ® & 8 e & o e e & & * & & 4 & o2 o 2 & o o

2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-44
2-46
2-47
2-48
2-49
2-50
2-52
2-53
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-64
2-65
2-66

738

<y,

3.3

Table of Contents

(continued)
3.2.4 Pointer Arithmetic . . .
3.2.5 String Constants
3.2.6 Data and BSS Sections . .
3.2.7 Module Layout

Suggested Coding Conventions . .

Appendixes

Brror Codes . . . « ¢ o o « o o o o =«

Customizing the C Compiler

B.1
B.z
B.3

B.4

Compiler Operation
Supplied SUBMIT Files
Saving Disk Space

Gaining Speed

Sample CModule

Error Messages « « « « « &

D.l

C068 Error Messages

D.1.1 Diagnostic Error Messages
D.1.2 1Internal Logic Errors . .

Cl68 Error Messages

D.2.1 Fatal Diagnostic Errors .
D.2.2 1Internal Logic Errors . .

CP68 Error Messages

D.3.1 Diagnostic Error Messages
D.3.2 1Internal Logic Errors . .

C-Run-time Library Error Messages

vii

e s o 0

e o o o

D-1

D-1
D-12

D-13

D-13
D-14

D-15

D-15
D-20

D-20

735

Tables

D-3.

Pigures

1-1.
1-2.

Tables and Figures

Standard File Definitions .

ctype Functions .
Conversion Operators .

Valid Conversion Characters
68000 Exception Conditions

Type Definitions

.

Storage Class Definitions .

CP/M-68K Error Codes .
-

C068 Diagnostic Error Messages
Cl68 Fatal Diagnostic Errors
CP68 Diagnostic Error Messages

Memory Layout .

C Stack Frame

.

viii

D-13
D-15

-

o

Section1
Using C Language Under CP/M-68K

1.1 Compiling a CP/M-68K C Program

. To create an executable C program under CP/M-68K, use the C.SUB
and CLINK.SUB command files. The C.SUB file invokes the C compiler
and the CLINK.SUB file invokes the linker. Use the following
command line format to invoke the C compiler. Note that the command
keyword SUBMIT is optional and that the source file must have a C
filetype. You must not specify the C filetype in the compiler
command line.

A>[SUBMIT] C filename

The compiler §roduces an object file with a O filetype. The
linker uses the object file to create the executable program. Use
the following command line format to invoke the linker. Again, the.
command keyword SUBMIT is optional. You must not specify the O
filetype in the linker command line for the object file.

A>[SUBMIT] CLINK filename

You can specify multiple object files for linking into an
executable program. For example, the first three command lines
below compile source files named ONE.C, TWO.C, and THREE.C. The
last command line links the three object files that the compiler
Creates into an executable program named ONE.68K

A>submit ¢ one

A>submit ¢ two

A>submit ¢ three

A>subait clink one two three

To link C programs that use floating point math, substitute the
CLINKF file for CLINK in the preceding example. CLINKF uses the
Motorola FFP floating point format which is considered the fastest.
To compile and link programs that use IEEE floating point format,
substitute the CE file for C and the CLINKE file for CLINK in the
preceding examples.

v 4

1'2 Mo vy T oaveane

C Language Programming Guide

1.2 Memory Layout 4

The memory allocation of C programs running under CP/M-68BK is
similar to that of UNIX C programs. A program consists of three
segments: the text segment or program instruction area, the data
segment for initialized data, and the BSS or block storage segment
for uninitialized data. There are two dynamic memory areas: the
stack and the heap. Procedure calls and automatic variables use the
stack. Data structures such as symbol tables use the heap. The
brk, sbrk, malloc, and free C functions manage the heap. Figure 1-1
shows how each of the areas are arranged in memory.

TPA HIGH
STACK (GROWS TO LOWER ADDRESSES)

BREAK
HEAP (GROWS TO HIGHER ADDRESSES) END
BLOCK STORAGE SEGMENT

EDATA
DATA SEGMENT

ETEXT
TEXT SEGMENT

TPA LOW

Pigure 1l-l1l. Memory Layout

The linker determines the locations etext, edata, and end. These
locations are the ending addresses of the text, data, and BSS

segments. The break location is the first unused address following
the heap.

1.3 cCalling Conventions

The JSR instruction (jump to subroutine) calls a C language
procedure. Register A6 acts as the frame pointer to reference local
storage. Arguments are pushed onto the A7 stack in reverse order.
Word and character arguments occupy 16 bits. Long, floating point,
and pointer arguments occupy 32 bits. All function values return in
register DO. Functions that specify no return value actually return
an undefined value.

72

C Language Programming Guide 1.3 Calling Conventions

(For example, the following sequence

xyx()
: long a;
int b;
char X;
register y;

b = blivot(x,a):;
}

generates the following codes:

_Xyz:
link a6, $-8 * Space for a,b,x
movem.l d6-47,-(27) *3d7 used for y
. *d6 reserves space
move.l <-4(a6),(a7) * Load parameter a
move.b -8(a6),d0 * Load parameter x
ext.w 4o * Extend to word size
move.w d0,-(a7) * Push it
jsr blivot * Call subroutine
add.l1 ¥2,a7 * pop argument list
T move.w d0,6(aé) * Store return parameter
& tst.1l (a7)+ * Purge longword
: movem.l (a7)+,d47 * Unsave registers
unlk a6 * Restore frame pointer
rts * Return to caller

73

1.3 Calling Conventions C Language Programming Guide

C code, in which all arguments are the same length, might not
work without modification because of the varying length of arguments
on the stack.

The compiler adds an underline character, _, to the beginning of
each external variable or function name. This means that all
external names in C must be unigque in seven characters.

The compiler-generated code maintains a long word at the top of
the stack for use in subroutine calls. This shortens the stack-
porping code required on return from a procedure call. The movem.l
instruction, which saves the registers, contains an extra register
to allocate this space.

The compiler uses registers D3 through D7, and A3 through A5, for
register variables. A procedure called from a C program must save
and restore these registers, if they are used. The compiler-
generated code saves: only those registers used. Registers DO
through D2, and A0 through A2, are scratch registers and can be
modified by the called procedure.

l.4 Stack Prame

Figure 1-2 illustrates the standard C stack frame.

» - LONGWORD FOR PROCEDURE CALLS
SAVED REGISTERS
LOCAL VARIABLE AREA

AG - PREVIOUS VALUE OF A6

RETURN ADDRESS

ARGUMENT 1

ARGUMENT 2

Figure 1-2. C Stack Frame

14

C Language Programming Guide 1.4 Stack Frame

Arguments are either two or four bytes depending on the argument
type. The compiler generated code uses register A6 to reference all
variables on the stack.

1.5 Command Line Interface

The standard C argc/argv interface for arguments typed on the
command line also works under CP/M-68K. For example, the command

command argl arg2 arg3 ... argn

produces the following interface setup:

argce = n+l

arg(0] "C Runtime"
arg(l] ~ "argl®
arg[2] "arg2"
argv(n] argn

You cannot obtain the command name under CP/M-68K. Therefore, the
argv[0] argument always contains the string "C Runtime".

" Strings that contain the characters * or ? are interpreted as
wildcarded filenames. The C runtime start-up routine scans the
directory and expands each wildcarded filename into a list of
filenames that match the specification. To pass a string that
contains * or ? characters to a C program, enclose the string in
single or double quotation marks. Similarly, enclose argument
strings that contain embedded blanks in quotation marks to pass them
to a C program as a single element of argv[].

1.6 I/O Conventions

UNIX C programs use two types of file and device 1/0: regular
and stream files. A unique number called the file descriptor
identifies regular files. In CP/M-68K, file numbers range from O to
15. The address of a user control block in the run-time system
identifies stream files. Unlike regular files, stream files use a

form of intermediate buffering that makes single-byte I/0 more
efficient.

Under UNIX, you can reference peripheral devices, such as
terminals and printers, as files using the special names /dev/tty
for terminal and /dev/lp for printer. Under CP/M-68K, CON: is for
the console device and LST: is for the listing device.

1-5

7s/af'

[z

£ /7 Comventions C Language Programming Guide

[

-

CP/M-68K stores ASCII files with a carriage return line feed
after each line. A CTRL-Z (Oxla) character indicates end-of-file.
C programs usually end lines with only a line feed. This means that
in C for CP/M-68K, read and write operations to ASCII files must
insert and delete carriage-return characters. The CTRL-Z must be
deleted on read and inserted on close for such files. These
operations are not desirable for binary files. CP/M-68K C includes
an extra entry point to all file open and creat calls to distinguish
between ASCII and binary files.

1.7 Standard Files

C programs begin execution with three files already open: the
standard input, standard output, and standard error files. You can
access these files as either stream or regular files in a C program.
The usual C library routines close and reopen the standard files.
The following definitlons are in the <stdio.h> file.

Table 1-1. Standard File Definitions

File File Descriptor Stream Name
standard input STDIN stdin
standard output STDOUT stdout
standard error STDERR stderr

07

<

C Language Programming Guide 1.8 1/0 Redirection

1.8 I/0 Redirection

You can redirect C program standard I/0 using the < and >
characters. For example, the following command executes the file
TEST.68K. The standard input comes from file DAT and the standard
output goes to the listing device. The argument list is C, D, E,
and F.

A>TEST <DAT >LST: CDEPF

You cannot place spaces between the < or > characters and the
filename that the character refers to. Note that you cannot
redirect the standard error file.

You can append information to an existing file using the
following specification:

>>filename
The standard output from the program specified by the filename
appears after the original contents of the file.

End of Section 1

1-7

zs7

Section 2
C Language Library Routines

The CP/M-68K C library is a collection of routines for I/0,
dynamic memory allocation, system traps, and data conversion.

2.1 Compatibility with UNIX V7
The C library is compatible with UNIX version 7, allowing
programs to move easily from UNIX to CP/M-68K. CP/M-68K C simulates

many UNIX operating system calls and features. However, CP/M-68K
does not support the following C functions that UNIX implements:

e the fork/exec, kill, lock, nice, pause, ptrace, sync, and wait
primitives

e the acct system call

e the alarm function, or the stime, time, ftime, and times system
calls

e the dup and dup2 duplicate file descriptor functions

e the getuid, getgid, geteuid, getégid. setuid, and setgid
functions ’

e the indir indirect system call
e the ioctl, stty, and gtty system calls
e the link system call

e the chdir, chroot, mknod, mount, umount, mpx, pipe, pkon,
pkoff, profil, sync, stat, fstat, umask, and utime system calls

e the phys system call

rd'sd

2.1 Compatibility with UNIX V7 C Language Programming Guide

The following UNIX library functions are not available under CP/M-
68K:

Assert

Crypt

DBM

Getenv

Getgrent, getlogin, getpw, and getpwent functions
13tol, 1ltol3

monitor .

itom, madd, msub, mult, mdiv, min, mout, pow, gcd, and rpow
nlist

pkopen, pkclose, pkread, pkwrite, and pkfail

plot

popen, pclose

Sleep

system

ttyslot

The CP/M-68K C language library does not contain the floating-
point routines available under UNIX.

Entry points have been added to file open and creat calls to
distinguish between ASCII and binary files. Byte level end-of-file
is unavailable for binary files. ASCII files, however, are
compatible with UNIX, and with the CP/M-68K text editors and
utilities that use ASCII files.

The C Programming Guide for CP/M-68K does not separate the UNIX

system calls and library functions; all calls are library functions
under CP/M-68K.

2.2 Library Functions under CP/M-68K

The remainder of this section alphabetically 1lists library
routines that C supports under CP/M-68K. The C compiler accepts
entry in upper- and lower-case; however, type all library routines
in lower-case, as shown in the calling sequences.

Yé 44

‘ A=

C Language Programming Guide abort Function

abort Function

- ——— . - — - . W - - - ——— - - - —— -

The abort function terminates the curren* program with an error.
The error is system dependent. The - 2000 uses an illegal
instruction trap. This invokes DDT-68K™, if he debugger is loaded
with the object program.

Calling Sequence:

WORD code:;

abort(code);

Arguments:

code loads into register DO before abort

Returns:

The abort function never returns.

2-3

roo

abs Function C Language Programming Guide.

abs Punction

- - - - - ——— - - - - —— -———— - - - - o o ———

The abs function takes the absolute value of a single argument.
This function is implemented as a macro in <stdio.h>; arguments with
side effects do not work as you expect. For example, the call

a = abs(*x++);

increments x twice.

Calling Segquence:

WORD val:
WORD ret;

ret = abs(val);

Arguments:

val the input value

Returns:

ret the absolute value of val

et a4

C Language Programming Guide access function

access Function

The access function checks whether the calling program can access

a specified file. Under CP/M-68K, the file is accessible if it
exists.

Calling Sequence:

BYTE *name;
WORD mode;
WORD ret;

ret = access(name,mode);

Arguments:

name points to the null-terminated filename
mode can be one of four values:

4 checks read access

2 checks write access

1l checks execute access

0 checks directory path access

CP/M-68K ignores the 0 argument

Returns:

ret 0 if file access is allowed or -1 if not allowed

Note:

CP/M-68K only checks to see if the specified file exists.

7oL

atoi, .unctions C Language Programming Guide

atoi, atof, atol Functions

The atoi, atof, and atol functions convert an ASCII digit string
to an integer, float, or long binary number, respectively. The atoil
and atol functions convert digit strings of the form [-][+]dddddad...
The atof function converts digit strings of the form [-
J[+])dd4dd.ddd[e{-]Jdd]. Each "d" is a decimal digit. The compiler
ignores all leading spaces, but permits a leading sign. Conversion
proceeds until the number of digits in the string is exhausted.
Each function returns a 0 when there are no more digits to convert.

Calling Sequence:

BYTE *string:;

WORD ival,atoi();
LONG lval,atol();
FLOAT fval,atof();

ival = atoi(string);:

lval = atol(string);
fval = atof(string);

Arguments:

string a pointer to a null-terminated string that contains
the number to convert

Returns:

ival atoi returns the converted string as an integer

lval atol returns the converted string as a long binary
number
fval atof returns the converted string as a single-

precision floating-point number

Note:

The atoi, atol, and atof functions do not detect or report
overflow. Therefore, you cannot specify a limit to the number
of contiguous digits processed or determine the number of
digits a function processes.

;ﬁ%i\

C Language Programming Guide brk, sbrk Functions

brk,‘abtk Functions

- —— - —— - - -

The brk and sbrk functions extend the heap portion of the user
program. The brk function sets the upper bound of the program,
called the break in UNIX terminology, to an absolute address. The
sbrk function extends the program by an incremental amount.

Calling Sequence:

WORD brk();

BYTE *addr, *sbrk():
WORD ret;

BYTE *start;

ret = brk(addr);
start = sbrk(incr);

Arggyents:
addr the desired new break address
iner the incremental number of bytes desired

Returns:

0 success (brk)
-1 failure (brk)

start begins the allocated area (sbrk)
o failure (sbrk)

sy

calloc, malloc, realloc, free C Language Programming Guide

calloc, malloc, realloc, free Functions

The calloc, malloc, realloc, and free functions manage the
dynamic area between the region and the stack.

The malloc function allocates an area of contiguous bytes aligned
on a word boundary and returns the address of this area. Malloc
uses the sbrk function to allocate additional heap space, if
necessary.

The calloc function allocates space for an array of elements,
whose size is given in bytes.

The realloc function changes the size of a block. The address of
the block returns.

The free function releases a block previously allocated by
malloc.

Calling Sequence:

WORD size,number;
BYTE *addr,*malloc(),*calloc(),*realloc();

addr = malloc(size);

addr = calloc(number,size);
addr = realloc(addr,size);
free(addr);

Arguments:

size the number of bytes desired

number the number of elements desired

addr points to the allocated region
Returns:

Address of the allocated region if successful, 0 if
unsuccessful.

Note:

Freeing a bogus address can be disastrous.

oy

=,

C Language Programming Guide ceil Function

ceil Function

- - -

The ceil function returns the smallest integer that is greater
than the argument you specify. For example, ceil(l.5) returns 2.0.
The return value is a floating-point number.

Calling Sequence:

FLOAT ceil():
FLOAT arg;
FLOAT ret;

ret‘= ceil(arg);

Arguments:

arg a floating-point number
Returns:

ret a floating-point number

7T e

chzcid, chownn Functions C Language Programming Guide

cheod, chown Punctions

- - — - — - - ——————— - —— > - - -

Under UNIX, the chmod and chown system calls allow you to change
the protection and owner ID of an existing file. CP/M-68K treats
these calls as NO-OPS if the file exists.

Calling Sequence:

BYTE *name;
WORD mode, owner,group,ret;

ret = chmod(name,mode); _
ret = chown(name,owner,group):

Arguments:

name the affected filename (null-terminated)
mode the new mode for the file

owner the new owner of the file

group the new group number

Returns:
ret O if the file exists
-1 if the file does not exist
2-10

w7

51\\

C Language Programming Guide close Function

close Function

The close function terminates access to a file or device. This
routine acts on files opened with the open or creat functions.
Specify a file descriptor, not a stream, for the operation. The
fclose function closes stream files.

Calling Sequence:

WORD fd,ret;

ret = close(£fd):;

Arguments H

fd the file descriptor to be closed
Returns:

0 successful close

-1 unknown file descriptor

2-11

758

cos, sin Functions C Language Programming Guide

cos, sin Punctions

The cos function returns the trigonometric cosine of a floating-
point number. The sin function returns the trigonometric sine of a
floating-point number. You must express all arguments in radians.

Calling Sequence:

FLOAT cos{),sin{();
FLOAT val,ret;

ret = cos(val);

ret = sin(val);

Arguments:

val a floating-point number that expresses an angle in
radians

Returns:

ret the cosine or sine of the argument value expressed in
radians

Note:
The best results occur with arguments that are less than 2 pi.

You can pass numbers declared as either float or double to cos
and sin.

2-12

57

/ﬁa\

C Language Programming Guide creat, creata, creatb Functions

creat, creata, creatb Functions

- - - - - - - - - —-——— - —— - - —— —

The creat function adds a new file to a disk directory. The file
can then be referenced by the file descriptor, but not as a stream
file. The creat and creata functions create an ASCII file. The
creatb function creates a binary file.

Calling Sequence:

BYTE *name;
WORD mode, £4;

fd = creat(name, mode);
fd = creata(name,mode);
fd = creatb(name,mode);

Arguments:

name the filename string, null-terminated
mode the UNIX file mode, ignored by CP/M-68K
Returns:
fd The file descriptor for the opened file. A file
descriptor is an int quantity that denotes an open

file in a read, write, or lseek call.

-1 Returned if there are any errors.

Note:

UNIX programs that use binary files compile successfully, but
execute improperly.

ctype Functions C Language Programming Guide

ctype Functions

- -

- - ——— —— — ———————— —— - —————— - o —

The file <ctype.h> defines a number of functions that classify
ASCII characters. These functions indicate whether a character
belongs to a certain character class, returning nonzero for true and
zero for false. The following table defines ctype functions.

Table 2-1. ctype Punctions

Function Meaning
isalpha(c) c is a letter.

isupper(c) c is upper-case.

islower(c) c is lower-case.

isdigit(c) c is a digit.

isalnum(c) c is alphanumeric.

isspace(c) c is a white space character.
ispunct(c) c is a punctuation character.
isprint(c) c is a printable character.
iscntrl(c) c is a control character.
isascii(c) c is an ASCII character (< 0x80).

The white space characters are the space (0x20), tab (0x09),
carriage return (0x0d), line-feed (0x0a), and form-feed (0xOc)
characters. Punctuation characters are not control or alphanumeric
characters. The printing characters are the space (0x20) through
the tilde (Ox7e). A control character is less than a space (0x20).

2-14

7ér

C Language Programming Guide ctype Functions

Calling Sequence:

$include <ctype.h>

WORD ret;
BYTE c; /* or WORD c; */

ret

= isalpha(c);

ret = isupper(c);

ret = islower(c);

ret = isdigit(c);

ret = isalnum(c);

ret = isspace(c):

ret = ispunct(c);

ret = isprint(c);

ret = iscntrl(c):;

ret = isascii(e):;
Arguments:

c the character to be classified
Returns:

ret = 0 for false

ret <>0 for true
Note:

These functions are implemented as macros; arguments with side
effects, such as *p++, work incorrectly in some cases. Bogus

values return if arguments are not ASCII characters. For
example, >O0Ox7f.

2-15

TéZ

end, etext, edata Locations T Language Programming Guide

end, etext, edata Locations

—-— - —— e s . ——

The linkage editor defines the labels end, etext, and edata as
the first location past the BSS, text, and data regions,
respectively. The program-break location, which is the last used
location, is initially set to end. However, many library functions
alter this location. sbrk(0) can retrieve the break.

A5,

C Language

(ad
@)
W

Frogramaing Gusde etsa, £

etoa, ftoca Punctions

Functions

The etoa and ftoa functions convert a floating~-point number to an
Both functions return the address of the converted
The string returned in the buffer takes the form

ASCII string.
string buffer.

[-]d.ddddde[-]dd. Each "d" is a decimal digit.

Calling Sequence:

FLOAT
BYTE
WORD

ret
ret

Arguments:
fval

buf

prec

Returns:

ret

fval;
*ftoa(), *etoa(), *buf, *ret;
prec:;

etoa(fval,buf, prec):
ftoa(fval,buf,prec);

the floating point number to be converted
the address of the buffer for the digit string

the number of digits to appear to the right of the
decimal point in the converted string

the address of the buffer for the converted, null-
terminated string

2-17

Y6y

exit, ~v'* To-o-r-ons C iLanguage Programming Ju.de

exit, exit Puncticns

—— - —— - - —————— — - —— ———————— —— - —— A - — - ———— - —

The exit function passes control to CP/M-68K. An optional
completion code, which CP/M-68K ignores, might return. exit
deallocates all memcry and closes any open files. exit alsc flushes
the buffer for stream output files.

The _exit function immediately returns control to CP/M-68K,
without flushing or closing open files.

Calling Sequence:

WORD code;

exit(code);
_exit(code):

Argumeq&ii

code optional return code

Returns:

no returns

2-18

TS

Aﬁ.

C Language Programming Guide exp Function

exp Function

- — - - - —— - — ———— . - — - - -

The exp function returns the constant e raised to a specified
exponent. The constant e is the base of natural logarithims equal
to 2.71828182845905.

Calling Sequence:

FLOAT exp();
FLOAT fval,ret;

ret = exp(fval):

Arggments:

fval the exponent expressed as a floating-point number

Returns:

ret the value of e raised to the specified exponent

Note:

You can pass numbers declared as either float or double to exp.

2-19

7éé

fabs runction C Language Programming Guide

fabs Punction

- — - —— —— r—— —— - ———— ——————— ——— . —

The fabs function returns the absolute value of a floating-point
number. :

Calling Seguence:

FLOAT fabs():
FLOAT fval;
FLOAT retval;

retval = fabs(fval);

Arguments:

fval a floating point number

Returns:

retval the absolute value of the floating-point number

2-20 N

C Language Programming Guide fclose, fflush Functions

(,i fcldse. fflush Functions

The fclose and fflush functions close and flush stream files.
The stream address identifies the stream to be closed.

Calling Sequence:

WORD ret;
FILE *stream;

ret = fclose(stream);

ret = fflush(stream);

Arguments:

stream the stream address

Returns:
0 success ful
-1 bad stream address or write failure

-

2-21
T

., clearerr, fileno ¢ language Programming Gu: e

feof, ferror, clearerr, filemo Punctions

- — e - - —r— —— - — - - - - ————

These functions manipulate file streams in a system-independent
manner.

The feof function returns nonzero if a specified stream is at
end-of-file, and zero if it is not.

The ferror function returns nonzero when an error has occurred on
a specified stream. The clearerr function clears this error. This
is useful for functions such as putw, where no error indication
returns for output failures.

The fileno function returns the file descriptor associated with
an open stream.

Calling Sequence:

WORD ret:

FILE *stream;

WORD £4;

ret = feof(stream);
ret = ferror(stream);

clearerr(stream);
fd = fileno(stream);

Arguments:

stream the stream address

Bgturns:

ret a zero or nonzero indicator
fa the returned file descriptor

2-22

769

C Language Programming Guide floor Function

floor Function

The floor function returns the largest integer that is less than
the argument you specify. The returned value is a floating-point
number. For example, floor(l.5) returns 1.0.

Calling Sequence:

FLOAT floor():
FLOAT fval;
FLOAT retval;

retval = floor(fval);

Arguments:

fval a floating-point number
Returns:
retval a floating-point integer value

2-23

7o

fmod function C Language Programming Guaide

fmod Function

The fmod function returns the floating-point modulus (remainder)
from a division of two arguments. fmod divides the first argument
by the second and returns the remainder.

Calling Seguence:

" FLOAT fmod();
FLOAT x,y:
FLOAT ret;

ret = fmod(x,y);

Arguments:

x a floating-point dividend

Y a floating-point divisor
Returns:

ret the modulus as a floating-point number
2-24

777

\‘

=,

C Language Programming Guide fopen, freopen, fdopen Functions

fopen, freopen, fdopen Punctions

- - — . —— — —— ——— — - ——— — ——— A ————

The fopen, freopen, and fdopen functions associate an I/O stream
with a file or device.

The fopen and fopena functions open an existing ASCII file for
1/0 as a stream. The fopenb function opens an existing binary file
for 1/0 as a stream.

The freopen and freopa functions substitute a new ASCII file for
an open stream. The freopb function substitutes a new binary file
for an open stream.

The fdopen function associates a file that file descriptor
opened, using open or creat, with a stream.

Calling Sequence:

FILE *fopen(),fopena(), fopenb();
FILE *freopen(),freopa(), freopb();
FILE *fdopen();

FILE *stream;

BYTE *name, *access;

WORD £4:

stream = fopen(name,access);

stream = fopena(name,access);

stream = fopenb(name,access);

stream = freopen(name,access,stream);
stream = freopa(name,access,strean);

stream = freopb(name,access,stream);

stream = fdopen(fd,access);

2-25

772

fopen, f{reopen, fdcpen Functions T Language Programming Guide

Arsgments:

name
stream
access

Returns:

stream
0

Note:

the null-terminated filename string
the stream address
the access string:

b 4 read the file
w write the file
a append to a file

successful if stream address open
unsuccessful

UNIX programs that use fopen on binary files compile and link
correctly, but execute improperly.

2-26

773

C Language Programming Guide

fread, fwrite Functions

fread, fwrite Functions

The fread and fwrite functions transfer a stream of bytes between
a stream file and primary memory.

Calling Sequence:

WORD nitems;
BYTE *buff;
WORD size;
FILE *stream;

nitems
nitems

Arguments:

buff
size
nitems
stream

Returns:

nitems
0

= fread(buff,size,nitems,stream);
= fwrite(buff,size,nitems,stream);

the primary memory buffer address
the number of bytes in each item
the number of items to transfer
an open stream file

the number of items read or written
error, including EOF

2-27

77¢

fseek, ftell, rewind Functions C Language Programming Gu:de

fseek, ftell, rewind Punctions -

———— - —— . - —— - - —— " ———— ——— - —— - — ——— - —

The fseek, ftell, and rewind functions position a stream file.

The fseek function sets the read or write pointer to an arbitrary
offset in the stream. The rewind function sets the read or write
pointer to the beginning of the stream. These calls have no effect
on the console device or the listing device.

The ftell function returns the present value of the read or write

pointer in the stream. This call returns a meaningless value for
nonfile devices.

Calling Sequence:

WORD ret;

FILE *stream;

LONG offset,ftell():;
WORD ptrname;

ret = fseek(stream,offset,ptrnéme);
ret = rewind(stream);
offset = ftell(stream);

Arguments:

stream the stream address
offset a signed offset measured in bytes
ptrname the interpretation of offset:

0 => from beginning of file

1 => from current position
2 => from end of file

Returns:

ret 0 for success, -1 for failure
offset present offset in stream

Note:

ASCII file seek and tell operations do not account for carriage
returns that are eventually deleted. CTRL~-Z characters at the
end of the file are correctly handled.

2-28 N

=,

C Language Programming Guide getc, getchar, fgetc, getw, getl

getc, getchar, fgetc, getw, getl Punctions

The getc, getchar, fgetc, getw, and getl functions perform input
from a stream.

The getc function reads a single character from an input stream.

This function is implemented as a macro in <stdio.h>, and arguments
should not have side effects.

The getchar function reads a single character from the standard
input. It is identical to getc(stdin) in all respects.

The fgetc function is a function implementation of getc, used to
reduce object code size.

The getw function reads a 16-bit word from the stream, high byte

first. This is compatible with the read function call. No special
alignment is required.

The getl function reads a 32-bit long from the stream, in 68000
byte order. No special alignment is required.

Calling Sequence:

WORD ichar;

FILE *stream;
WORD iword;

LONG ilong,getl();

ichar = getc(stream);
ichar = getchar():
ichar = fgetc(stream);
iword = getw(stream);
ilong = getl(stream);

2-29

776

getc., .

Arguments:

stream

Returns:

ichar
iword
ilong
-1

Note:

the stream address

character read from stream
word read from stream
longword read from stream
on read failures

Lw.TC, getw, getli T Lanjuage Programming Guide

Error return from getchar is incompatible with UNIX prior to

version 7.
that might occur+in the file normally.

detect end-of-file or read errors.

2-30

Error return from getl or getw is a valid value
Use feof or ferror to

’7A‘7'7

C Language Programming Guide getpass Function

getpass Function

The getpass function reads a password from the console device. A
prompt is output, and the input read without echoing to the console.
A pointer returns to a 0- to 8-character null-terminated string.

Calling Sequence:

BYTE *prompt;
BYTE *getpass;
BYTE *pass;

pass = getpass(prompt);:

Arguments:

prompt a null-terminated prompt string

Returns:

pass points to the password read

Note:

The return value points to static data whose content is
overwritten by each call.

2-31

&4

getpid Function C Language Programming Guide

getpid PFunction

- ——— —

The getpid function is a bogus routine that returns a false
process ID. This routine is strictly for UNIX compatibility; serves
no purpose under CP/M-68K. The return value is unpredictable in
some implementations.

Calling Sequence:

WORD pid;

pid = getpid();

Arguments:

no arguments.

Returns:

pid false process ID

2-32

779

C Language Programming Guide gets, fgets Functions

gets, fgets Punctions

—— > A - s > - - - - - - - - - - -

The gets and fgets functions read strings from stream files.
fgets reads a string including a newline (line-feed) character.
gets deletes the newline, and reads only from the standard input.
Both functions terminate the stringz with a null character.

You must specify a maximum count wicii fgets, but not with gets.
This count includes the terminating null character.

Calling Sequence:

BYTE *addr:

BYTE *s;

BYTE *gets(},'fgets():
¥ORD n;

FILE *stream;

addr = gets(s);
addr = fgets(s,n,stream);

Arguments:
s the string buffer area address
n the maximum character count

stream the input stream

Returns:

addr the string buffer address

2-33

rFo

index, rindex Functions C Language Programming Guide

index, rindex Punctions

The index and rindex functions locate a given character in a
string. 1index returns a pointer to the first occurrence of the
character. rindex returns a pointer to the last occurrence.

Calling Sequence:

BYTE c:;

BYTE *s;

BYTE *ptr:

BYTE *index(),*rindex():;

ptr = index(s,c);
ptr = rindex(s,c);

Arguments:

] a null-terminated string pointer
c the character for which to look

Returns:

ptr the desired character address
0 character not in the string

" 2-34

78/

C Language Programming Guide isatty Function

isatty Punction

A T D - - - ———— - — - - " - ——— —————————— - —— T S——— ————— -~

A CP/M-68K program can use the isatty function to determine
whether a file descriptor is attached to the CP/M-68K console device
(CON:).

Calling Sequence:

WORD £4;
WORD ret;

ret = isatty(£d4):

Arguments:

fd an open file descriptor
Returns:

1 fd attached to CON:

o fd not attached to CON:

2-35

782

log Function C Language Programming Guide

log Function

- ——— - —— e — —— - —

The log function returns the natural logarithm (log base e) of a
floating-point number.

Calling Sequence:

FLOAT 1log():
FLOAT fval,ret;:

ret = log(fval);

Arguments:

fval a floating-point number

Returns:

ret the natural logarithim of the floating-point number

Note:

You can pass numbers declared as either float or double to log.

- 2=36

773

C Language Programming Guide lseek, tell Functions

lseek, tell Functions

The 1lseek function positions a file referenced by the file
descriptor to an arbitrary offset. Do not use this function with
stream files, because the data in the stream buffer might Dbe
invalid. Use the fseek function instead.

The tell function determines the file offset of an open file
descriptor.

Calling Sequence:

WORD f£4;
WORD ptrname;
LONG offsety lseek(),tell(),ret;

ret = lseek(fd,offset,ptrname);
ret = tell (£f4);

Arggments:

fd the open file descriptor
Q offset a signed byte offset in the file
\ ptrname the interpretation of offset:

0 => from the beginning of the file
1l => from the current file position
2 => from the end of the file

Returns:
ret resulting absolute file offset
-1 error

Note:

Incompatible with versions 1 through 6 of UNIX.

2-37

7Py

mktemp Function ¢ Language Programming Guide

mktemp Punction

- —— . s —-——

The mktemp function creates a temporary filename. The calling
argument is a character string ending in 6 X characters. The
temporary filename overwrites these characters.

Calling Segquence:

BYTE *string:;
BYTE *mktemp():

- string = mktemp(string);

Arguments:

string the address of the template string

Returns:

string the original address argument

2-38

785~

NS ’

-

C Language Programming Guide open, opena, openb Functions

open, opena, openb Functions

The open and opena functions open an existing ASCII file by file
descriptor. The openb function opens an existing binary file. The
file can be opened for reading, writing, or updating.

Calling Sequence:

BYTE *name;
WORD mode;
WORD £4;

£fd = open(name,mode);
fd = opena(name,mode):
fd = openb(rfiame,mode);

Arguments:

name the null-terminated filename string
mode the access desired:

0 => Read-Only
1 => Write-Only
2 => Read-Write (update)

Returns:
fa the file descriptor for accessing the file
-1 open failure

Note:

UNiX programs that use binary files compile correctly, but
execute improperly.

2-39

7L6

perror Function C Language Programming Guide

perror Function

The perror function writes a short message on the standard error
file that describes the last system error encountered. First an
argument string prints, then a colon, then the message.

CP/M-68K C simulates the UNIX notion of an external variable,
errno, that contains the last error returned from the operating
system. Appendix A contains a list of the possible values of errno
and of the messages that perror prints.

Calling Sequence:

BYTE *s;
WORD err;
err = perror(s);

Arguments:

s the prefix string to be printed
Returns:

err value of "ERRNO" before call
Note:

Many messages are undefined on CP/M-68K.

2-40

L o d

C Language Programming Guide pow Function

pow Function

— > - ~— - ——— —— —— ————— ————— . > ——— -

The pow function returns the value of a number raised to a
specified power; pow uses two floating-~point arguments. The first
argument is the mantissa and the second argument is the exponent.

Calling Sequence:

FLOAT pow():
FLOAT x,y:
FLOAT ret;

ret = pow(x,y):

Arguments:

X a floating-point mantissa
Y a floating-point exponent
Returns:
ii : ret the value of the mantissa raised to the expconent

2-41

788

3

print: . =printf Functions C Language Programming Guide

printf, fprintf, sprintf Functions

The printf functions format data for output. The printf function
outputs to the standard output stream. The fprintf function outputs

to an arbitrary stream file. The sprintf function outputs to a
string (memory).

Calling Sequence:

WORD ret;

BYTE *fmt;

FILE *stream;

BYTE *string; ‘

BYTE *sprintf(),rs;

/* Args can be any type */

ret = printf (fmt,argl,arg2 ...);
ret = fprintf(stream, fmt,argl,arg2 ...)
rs = sprintf(string, fmt,argl,arg2 ...)

.. ws

Arguments:

fmt format string with conversion specifiers
argn data arguments to be converted

stream output stream file

string buffer address

Returns:
ret number of characters output
-1 if error
rs buffer string address

null if error

Conversion Operators

A percent sign, %, in the format string indicates the start of a
conversion operator. Values to be converted come in order from the
argument list. Table 2-2 defines the valid conversion operators.

2-42

759

C Language Programming Guide printf, fprintf, sprintf Functions

Table 2-2. Conversion Operators

Operator Meaning

d Converts a binary number to decimal ASCII
and inserts in output stream.

o Converts a binary number to octal ASCII and
inserts in output stream.

x Converts a binary number to hexadecimal
ASCII and inserts in output stream.

c Uses the argument as a single ASCII
character.

s Uses the argument as a pointer to a null-
terminated ASCII string, and inserts the
string into the output stream.

u Converts an unsigned binary number to
decimal ASCII and inserts in output stream.

3 Prints a % character.

You can insert the following opticnal directions between the %
character and the conversion operator:

® A minus sign justifies the converted output to the 1left,
instead of the default right justification.

® A digit string specifies a field width.
minimum width of the field.

This value gives the
If the digit string begins with a

0 character, zero padding results instead of blank padding. An
asterisk takes the value of the width field as the next
argument in the argument list.

® A period separates the field width from the precision string.

® A digit string specifies the precision for floating-point
conversion, which is the number of digits following the decimal
point. An asterisk takes the value of the precision field from
the next argqument in the argument list.

® The character 1 or L specifies that a 32-bit long value be

converted.

A capitalized conversion code does the same thing.

2-43

90

~

putc, putchar, fputc, putw, putl C Language Programming Suide

putc, putchar, fputc, putw, putl Punctions

— — - -

The putc, putchér, fpute, putw, and putl functions output
characters and words to stream files.

The putc function outputs a single 8-bit character to a stream
file. This function is implemented as a macro in <stdio.h>, so do
not use arguments with side effects. The fputc function provides
the equivalent function as a real function.

The putchar function outputs a character to the standard output
stream file. This function is also implemented as a macro in
<stdio.h>. Avoid using side effects with putchar.

" The putw function outputs a 16-bit word to the specified stream
file. The word is output high byte first, compatible with the write
function call.

The putl function outputs a 32-bit longword to the stream file.
The bytes are output in 68000 order, as with the write function
call.

Calling Seguence:

BYTE c;

FILE *stream;

WORD w,ret;

LONG lret,putl(),1;

ret = putc(c,stream);
ret = fputc(c,stream);
ret = putchar(c):;

ret = putw(w,stream);
lret = putl(l,stream);

2-44

rd/4

C Language Programming Guide putc, putchar, fputc, putw, putl

Arguments:

c the character to be output
stream the output stream address
w the word to be output
1 the long to be output

Returns:

ret the word or character output
lret the long output with putl
-1 an output error

Note:

A -1 return from putw or putl is a valid integer or long value.
Use ferror to detect write errors.

s ’mh\,

putc, tputs functions 2 Language 7rugramming suide

puts, fputs Punctions

- -

The puts and fputs functions output a null-terminated string to
an output stream.

The puts function outputs the string to the standard output, and
appends a newline character.

The fputs function outputs the string to a named output stream.
The fputs function does not append a newline character.

Neither routine copies the trailing null to the output stream.

Calling Seguence:

WORD ret;
BYTE *s;
FILE *stream;

ret puts(s);

ret = fputs(s,stream);

Arsuments:

s the string to be output
stream the output stream

Returns:
ret the last character output
-1 error

Note:

The newline incompatibility is required for compatibility with
UNIX.

2-46

7923

-

C Language Programming Guide

gsort Function

- P R -

gsort Function

The gsort function is a quick sort routine. You supply a vector
of elements and a function to compare two elements, and the
returns sorted.

Calling Sequence:

WORD
BYTE
WORD
WORD
WORD

ret;
*base;
number;
size;
compare();

)
ret = gsort(base,number,size,compare);

Arguments:

base

the base address of the element vector

number the number of elements to sort

size

size of each element in bytes

compare the address of the comparison function

This

function is called by the following:

ret = compare(a,b):

The return is:

Returns:

0

<0 if a < D>
=0 ifa=»>b
>0 if a > b

always

vector

2-47

79y

-

rand, srand Func:i.cas 2 Language Programming Guide

rand, srand FPunctions

——

The rand and srand functions constitute the C language random
number generator. Call srand with the seed to initialize the
generator. Call rand to retrieve random numbers. The random
numbers are C int quantities.

Calling Seguence:

WORD seed:
WORD rnum;

rnum = srand(seed);
rnum = rand();

Argumentgi

seed an int random number seed

Returns:

rnum desired random number

2-48

Yé<°H

C Language Programming Guide read Function

read Punction

The read function reads data from a file opened by the file

‘descriptor using open or creat. You can read any number of bytes,

starting at the current file pointer.

Under CP/M-68K, the most efficient reads begin and end on 128-
byte boundaries.

Calling Sequence:

WORD ret;
WORD £4;
BYTE *buffer;
wnORD bytes;*®

ret = read(fd,buffer,bytes);

Arguments:

fd a file descriptor open for read
buffer the buffer address
bytes the number of bytes to be read

Returns:
ret number of bytes actually read
-1 error

2-49

796

scanf, fscanf, sscanf Funci:cns C ZLanguage Programming Guide

scanf, fscanf, sscanf Punctions

- s = ——— - - - - - -

—— -

The scanf functions convert input format. The scanf function
reads from the standard input, fscanf reads from an open stream
file, and sscanf reads from a null-terminated string.

Calling Segquence:

BYTE *format,*string:

WORD nitems;

FILE *stream;

/* Args can be any type */

nitems = scanf(format,argl,arg2 ...);
nitems = fscanf(stream, format,argl,arg2 ...)
nitems = sscanf(string,format,argl,arg2 ...)

. w0

Arggments:

format the control string

argn pointers to converted data locations
stream an open input stream file

string null-terminated input string

Returns:

nitems the number of items converted
-1 I/0 error

Control String Format

The control string consists of the following items:

® Blanks, tabs, or newlines (line feeds) that match optional
white space in the input.

® An ASCII character (not %) that matches the next character of
the input stream.

® Conversion specifications, consisting of a leading %, an

optional * (which suppresses assignment), and a conversion -

character. The next input field is converted and assigned to
the next argument, up to the next inappropriate character in
the input or until the field width is exhausted.

'2-50

C Language Programming Guide scanf, fscanf, sscanf Functions

Conversion characters indicate the interpretation of the next input
field. The following table defines valid conversion characters.

Table 2-3. Valid Conversion Characters

Character Meaning

3 A single % matches in the input at this
point; no conversion is performed.

d Converts a decimal ASCII integer and stores
it where the next argument points.

o Converts an octal ASCII integer.
x Converts a hexadecimal ASCII integer.
s A character string, ending with a space, is

input. The argument pointer is assumed to
point to a character array big enough to
contain the string and a trailing null
character, which are added.

c Stores a single ASCII character, including
spaces. To find the next nonblank
character, use %ls.

C Stores a string that does not end with
spaces. The character string is enclosed in
brackets. If the first character after the
left bracket is not “, the input is read
until the scan comes to the first character
not within the brackets. If the first
character after the left bracket is °, the
input is read until the first character
within the brackets.

Note:

You cannot determine the success of literal matches and
suppressed assignments.

setjmp, longjmp Functions 2 Language Programming Guide

setjmp, longjmp Functions

— —— ——— - - i ———————— S/

The setjmp and longjmp functions execute a nonlocal GOTO. The
setjmp function initially specifies a return location. You can then
call longjmp from the procedure that invoked setjmp, or any
subsequent procedure. longjmp simulates a return from setjmp in the
procedure that originally invoked setjmp. A setjmp return value
passes from the longjmp call. The procedure invoking setjmp must
not return before longjmp is called.

Calling Sequence:

#include <setjmp.h>
WORD xret,ret;
jmp_buf env;

xret = setjmp(env);

.

longjmp(env,ret);

Arguments:

env contains the saved environment

ret the desired return value from setjmp
Returns:

xret 0 when setjmp invoked initially

copied from ret when longjmp called

Note:

awkward

2-52 | "

rd 4

C lLanguage Programming Guide signal Function

signal Punction

. The signal function connects a C function with a 68000 exception
condition. Each possible exception condition is indicated by a
number. The following table defines exception conditions.

Table 2-4. 68000 Exception Conditions

Number Condition

4 Illegal instruction trap. Includes illegal
instructions, privilege violation, and line A
and line F traps.

5 Trace trap.
6 Trap instruction other than 2 or 3; used by
BDOS and BIOS.
8 Arithmetic traps: zZero divide, CHK
instruction, and TRAPV instruction.
o 10 BUSERR (nonexistent memory) or addressing
Q (boundary) error trap.

All other values are ignored for compatibility with UNIX.

Returning from the procedure activated by the signal resumes
normal processing. The library routines preserve registers and
condition codes.

2-53

Foo

Bigna. :.ii.iiln C Language Programming Guide

Calling Sequence:

WORD ret,sig:;
WORD func();

ret = signal(sig, func);

Arguments:

sig the signal number given above
func the address of a C function
Returns:
ret O if no error, -1 if sig out of range
2-54

Fos

-floating-point number. The tanh function returns the trigonometric

C Language Programming Guide sinh, tanh Functions

sinh, tanh Punction

The sinh function returns the trigonometric hyperbolic sine of a

hyperbolic tangent of a floating-point number. You must express all
arguments in radians.

Calling Sequence:

FLOAT sinh(),tanh():
FLOAT fval,ret;

ret = sinh(fval);
ret = tanh(fval);

Atguments:

fval a floating-point number that expresses an angle in

radians
Returns:
ret the hyperbolic sine or hyperbolic tangent of the

argument value expressed in radians

Note:

You can pass numbers declared as either float or double to sinh
and tanh.

2-55

FIa

sgqrt Function C Language Programming Guide

sqrt Punction

The sgrt function returns the square root of a floating-point
number.

Calling Sequence:

FLOAT sqrt();
FLOAT fval,ret;

ret sqrt(fval):

Arguments:

fval a floating-point number

Returns:

ret the square root of the specified argument

Note:

You can pass numbers declared as either float or double to
sqgrt.

©2-56

523

C Language Programming Guide strcat, strncat Functions

strcat, strmncat Functions

- - - - —— - — — —— —— -

The strcat and strncat functions concatenate strings. The strcat
function concatenates two null-terminated strings. The strncat
function copies a specified number of characters.

Calling Sequence:

BYTE *sl,*s2,*ret;
BYTE *strcat(),*strncat();
WORD n:;

ret = strcat(sl,s2);
ret = strncat(sl,s2,n);

Arguments:

sl the first string

s2 the second string, appended to sl

n the maximum number of characters in sl
Returns:

ret a pointer to sl
Note:

The strcat (sl,sl) function never terminates and usually
destroys the operating system because the end-of-string marker
is lost, so strcat continues until it runs out of memory,
including the memory occupied by the operating system.

2-57

Fo

strcmp. strnemp Functions C Language Programming Guide

strcmp, strncmp Functions

7
‘‘‘‘ - TETTss - .= ‘\\
The strcmp and strncmp functions compare strings. The strcmp
function uses null termination, and strncmp limits the comparison to
a specified number of characters.
Calling Sequence:
BYTE *sl1,%s2;
WORD val,n;
val = strcmp(sl,s2);
val = strncmp(sl,s2,n);
Arguments:
sl a null-terminated string address
s2 a null-terminated string address
n : the maximum number of characters to compare
Returns:
val the comparison result:
< 0 => s1 < s2
= 0 => s1 = s2
> 0 => sl > s2
Note:
Different machines and compilers interpret the characters as
signed or unsigned.
2-58 - "

Fos~

C Language Programming Guide strcpy, strncpy Functions

strcpy, stroncpy Functions

- - - - ——— - - - . ———— e - ———

The strcpy and strncpy functions copy one null-terminated string
to another. The strcpy function uses null-termination, while
strncpy imposes a maximum count on the copied string.

Calling Sequence:

BYTE *sl,*s2,*ret;
BYTE *strcpy(),*strncpy():
WORD n;

ret = strcpy(sl,s2):
ret = strncpy(sl,s2,n);

Arguments:

sl the destination string

32 the source string

n the maximum character count
Returns:

ret the address of sl
Note:

If the count is exceeded in strncpy, the destination string is
not null-terminated.

strlen Function

strlen Function

C Language Programming Guide

The strlen function returns the length of a null-terminated

string.

Calling Sequence:

BYTE *s;
WORD len;

len = strlen(s);

Arguments:

s the string address
Returns:
len the string length

2-60

Vadd

-

C Language Programming Guide swab Function

swab Function

The swab function copies one area of memory to another. The high
and low bytes in the destination copy are reversed. You can use
this function to copy binary data from a PDP-11" or VAX™ to the
68000. The number of bytes to swap must be even.

Calling Sequence:

WORD ret:;
BYTE *from, *to;
WORD nbytes;

ret = swab(from, to,nbytes);

Arguments:

from the address of the source buffer
to the address of the destination
nbytes the number of bytes to copy

Returns:

ret always O

2-61

Fog

tan, atan Functions C Language Programming Guide

tan, atan Functions

- —— - - - - — - -

The tan function returns the trigonometric tangent of a floating-
point number. The atan function returns the trigonometric
arctangent of a floating-point number. You must express arguments
to tan in radians.

Calling Sequence:

FLOAT tan(),atan():
FLOAT wval,rval,ret;

ret = tan(rval);
ret = atan(val);

Arguments:
rval a floating-point number that expresses an angle in radians
val a floating-point number
Returns:
ret the tangent or arctangent of the argument value
expressed in radians
Note:

The best precision results with arguments that are less than
two pi. You can pass numbers declared as either float or
double to tan and atan.

2-62

Sos

C Language Programming Guide : ttyname Function

ttyname Function

The ttyname function returns a pointer to the null-terminated
filename of the terminal device associated with an open file
descriptor.

Calling Sequence:

BYTE *name,*ttyname():;
WORD £4d;

name = ttyname(£fd):

Arguments:

fa an open file descriptor

Returns:

A pointer to6 the null-terminated string CON: if the file
descriptor is open and attached to the CP/M-68K console device.
Otherwise, zero (NULL) returns.

2-63

S0

ungetc Function C Language Programming Guide

ungetc Function

—— - ——— —

The ungetc function pushes a character back to an input stream.
The next getc, getw, or getchar operation incorporates the
character. One character of buffering is guaranteed if something
has been read from the stream. The fseek function erases any
pushed-back characters. You cannot ungetc EOF (-1).

‘Calling Sequence:

BYTE ¢
FILE ¥*streanm;
- WORD ret:

ret = ungetc(c,stream);

Arguments:

c the character to push back
stream the stream address

Returns:
ret c if the character is successfully pushed back
-1 error

2-64

L 774

——

C Language Programming Guide unlink Function

unlink Function

The unlink function deletes a named file from the file system.
The removal operation fails if the file is open or nonexistent.

Calling Sequence:

WORD ret;
BYTE *name;

ret = unlink(nanme);

Arguments:

name the null-terminated filename

Returns:

0 success
-1 failure

.2=65

Fra

write . o C Language Programming Guide

write Function

The write function transfers data to a file opened by file
descriptor. Transfer begins at the present file pointer, as set by
previous transfers or by the lseek function. You can write any
arbitrary number of bytes to the file. The number of bytes actually
written returns. If the number of bytes written does not match the
number requested, an error occurred.

Under CP/M-68K, the most efficient writes begin and end on 128-
byte boundaries.

Calling Sequence:

WORD f4:

BYTE *buffer;
WORD bytes:
WORD ret;

ret = write(fd,buffer,bytes):

Arguments:

£d the open file descriptor
buffer the starting buffer address
bytes the number of bytes to write

Returns:
ret the number of bytes actually written
-1 errors

Note:

Due to the buffering scheme used, all data is not written to
the file until the file is closed.

End of Section 2

 2-66

-5

Section 3
C Style Guide

To make your C language programs portable, readable, and easy to maintain, follow
the stylistic rules presented in this section. However, no rule can predict every situation;
use your own judgment in applying these principles to unique cases.

3.1 Modulanty

Modular programs reduce porting and maintenance costs. Modularize your pro- f

grams, so that all routines that perform a specified function are grouped in a single
module. This practice has two benefits: first, the maintenance programmer can treat
most modules as black boxes for modification purposes; and second, the nature of data
structures is hidden from the rest of the program. In a modular program, you can change
any major data structure by changing only one module.

3.1.1 Module Size

A good maximum size for modules is 500 lines. Do not make modules bigger than
the size required for a given function.
3.1.2 Intermodule Communication

Whenever possible, modules should communicate through procedure calls. Avoid

global data areas. Where one or more compilations require the same data structure, use
a header file.

DIGITAL RESEARCH™
3-1

Yy

3.1 Modularity C Language Programming Guide

3.1.3 Header Files

In separately combined files, use header files to define types, symbolic constants, and

data structures the same way for all modules. The following list gives rules for using
header files.

® Use the ‘#include “file.h™ format for header files that are project-specific. Use
‘#include <file.h>’ for system-wide files. Never use device or directory names
in an include statement.

& Do not nest include files.

® Do not define variables other than global data references in a header file. Never
~ initialize a global variable in a header file.

~ @ When writing macro definitions, put parentheses around each use of the parame-
ters to avoid precedence mix-ups.

3.2 Mandatory Coding Conventions

To make your programs portable, you must adhere strictly to the conventions
presented in this section. Otherwise, the following problems can occur:

® The length of a C int variable varies from machine to machine. This can cause
problems with representation and with binary /O that involves int quantities.

® The byte order of multibyte binary variables differs from machine to machine.
This can cause problems if a piece of code views a binary variable as a byte stream.

® Naming conventions and the maximum length of identifiers differ from machine
to machine. Some compilers do not distinguish between upper- and lower-case
characters.

® Some compilers sign-extend character and short variables to int during arithmetic
operations; some compilers do not.

8 Some compilers view a hex or octal constant as an unsigned int; some do not.
For example, the following sequence does not always work as expected:

LONG datas

L]
L]

L]

Printf("Zld\n" o(data. & OxfPff))s

DIGITAL RESEARCH™

&/S”

S

C Language Programming Guide 3.2 Mandatory Coding Conventions

The printf statement prints the lower 16 bits of the long data item data. However,
some compilers sign-extend the hex constant Oxffff.

® You must be careful of evaluation-order dependencies, particularly in compound
BOOLEAN conditions. Failure to parenthesize correctly can lead to incorrect
operation.

3.2.1 Variable and Constant Names

Local variable names should be unique to eight characters. Global variable names
and procedure names should be unique to six characters. All variable and procedure
names should be completely lower-case.

Usually, names defined with a #define statement should be entirely upper-case. The
only exceptions are functions defined as macros, such as getc and isascii. These names
should also be unique to eight characters.

You should not redefine global names as local variables within a procedure.

3.2.2 Variable Typing

Using standard types is unsafe in programs designed to be portable due to the
differences in C compiler standard type definitions. Instead, use a set of types and storage
classes defined with typedef or #define. The following tables define C language types
and storage classes.

@ DIGITAL RESEARCH™

F/6

2.2 Mu.diiery Coding Conventions C Language Programming Guide

Table 3-1. Type Definitions

Type CBase Type
LONG signed long (32 bits)
WORD signed short (16 bits)
UWORD unsigned short (16 bits)
BOOLEAN short (16 bits)
BYTE . signed char (8 bits)
UBYTE unsigned char (8 bits)
VOID void (function return)
DEFAULT int - (16/32bits)

~

Table 3-2. Storage Class Definitions

Class C Base Class
REG register variable
LOCAL auto variable
MLOCAL module static variable
GLOBAL global variable definition
EXTERN global variable reference

Additionally, you must declare global variables at the beginning of the module. Define
local variables at the beginning of the function in which they are used. You must always
specify the storage class and type, even though the C language does not require this.

3.2.3 Expressions and Constants
Write all expressions and constants to be implementation-independent. Always use
parentheses to avoid ambiguities. For example, the construct

if(c = getchar() == ‘\n’)

does not assign the value returned by getchar to c. Instead, the value returned by getchar
is compared to ‘\n’, and c receives the value 0 or 1 (the true/false output of the

comparison). The value that getchar returns is lost. Putting parentheses around the
assignment solves the problem:

if((c = getchar()) == ‘\n’)

DIGITAL RESEARCH™
34

577

C Language Programming Guide 3.2 Mandatory Coding Conventions

Write constants for masking, so that the underlying int size is irrelevant. In the
following example,

LONG datas

.

L]

Printf("Zld/n" (data & OxffPfL);

the long masking constant solves the previous problem for all compilers. Specifying

the one’s complement often yields the desired effect, for example, “Oxff instead
of 0xff00. '

For portability, character constants must consist of a single character. Place multi-
character constants in string variables.

Commas that separate arguments in functions are not operators. Evaluation order is
not guaranteed. For example, the following function call

Printf("2Zd Zd\n" »i+t+si++)3;
can perform differently on different machines.

3.2.4 Pointer Arithmetic -

Do not manipulate pointers as ints or other arithmetic variables. C allows the addition
or subtraction of an integer to or from a pointer variable. Do not attempt logical
operations, such as AND or OR, on pointers. A pointer to one type of object can convert
to a pointer to a smaller data type with complete generality. Converting a pointer to a
larger data type can yield alignment problems.

You can test pointers for equality with other pointer variables and constants, notably
NULL. Arithmetic comparisons, such as > =, do not work on all compilers and can

generate machine-dependent code.

When you evaluate the size of a data structure, remember that the compiler might
leave holes in a data structure to allow for alignment. Always use the sizeof operator.

DIGITAL RESEARCH™

3.2 Mandatory Coding Conventions C Language Programming Guide

3.2.5 String Constants

Allocate strings so that you can easily convert programs to foreign languages. The
preferred method is to use an array of pointers to constant strings, which is initialized

in a separate file. This way, each string reference then references the proper element of
the pointer array.

Never modify a specific location in a constant string, as in the following example:

BYTE string[] ="BDOS Error On x:"3}

L

L]

string[143 = ‘A’; °
Foreign-language equivalents are not likely to be the same length as the English version
of a message.

Never use the high-order bit of an ASCII string for bit flags. Extended character sets
make extensive use of the characters above 0x7F.

3.2.6 Data and BSS Sections

Usually, C programs have three sections: text (program instructions), data (initialized
data), and BSS (uninitialized data). Avoid modifying initialized data if at all possible.
Programs that do not modify the data segment can aid the swapping performance and
disk utilization of a multiuser system.

Also, if a program does not modify the data segment, you can place the program in
ROM with no conversion. This means that the program does not modify initialized static
variables. This restriction does not apply to the modification of initialized automatic
variables.

5F/3

DIGITAL RESEARCH™ ~ -

€ Language Programming Guide 3.2 Mandatory Coding Conventions

3.2.7 Module Layout

The following list tells you what to include in a module.
® At the beginning of the file, place a comment describing the following items:

— the purpose of the module

— the major outside entry points to the module
— any global data areas that the module requires
-~ any machine or compiler dependencies

8 Include file statements.
® Module-specific #define statements.

® Global variable references and definitions. Every variable should include a
comment describing its purpose.

B Procedure definitions. Each procedure definition should contain the following
items:
— A comment paragraph, describing the procedure’s function, input parameters,
and return parameters. Describe any unusual coding techniques here.

— The procedure header. The procedure return type must be explicitly specified.
Use VOID when a function returns no value.

— Argument definitions. You must explicitly declare storage class and variable type.

— Local variable definitions. Define all local variables before any executable
code. You must explicitly declare storage class and variable type.

~ Procedure code. -

Refer to Appendix C for a sample program.

DIGITAL RESEARCH™

3-7

F26

Appendix A

(Summary of BIOS Functions

Table A-1 lists the BIOS functions supported by CP/M-68K. For more details on these

functions, refer to the CP/M-68K Operating System System Guide.

Table A-1. Summary of BIOS Functions

S
=
ae

.

R

8.

Furiction F# Description
Init 0 Called for Cold Boot
Warm 8001 1 Called for Warm Start
Const 2 Check for Console Character Ready
Conin 3 Read Console CharacterIn
Conout 4 Write Console Character Out
List 5 Write Listing Character Out
Auxiliary Output 6 Write Character to Auxiliary Output Device
Auxiliary Input 7 Read from Auxiliary Input Device
Home 8 Moveto Track 00
e Seldsk 9 Select Disk Drive
i Settrk 10 Set Track Number
- Setsec 11 Set Sector Number
Setdma 12 Set DMA Offset Address
Read 13 Read Selected Sector
Write 14 Write Selected Sector
Listst 15 Return List Status
Sectran 16 Sector Translate
Get Memory Region
Table Address 18 Address of Memory Region Table
Get /O Byte 19 Get VO Mapping Byte
Set /O Byte 20 Set /O Mapping Byte
Flush Buffers 21 Writes Modified Buffers
Set Exceptdon Vector 22 Sets Excepdon Vector
End of Appendix A
E DIGITAL RESEARCH™

g2/

A CP/M-68K Error Codes C Language Programming Guide
Table A-1. (continued)
Number Name Error Message
21 - Error Undefined on CP/M-68K
22 EINVAL Invalid argument
23 ENFILE File table overflow
24 EMFILE Too many open files
25 ENOTTY Not a typewriter
26 - Error Undefined on CP/M-68K
27 EFBIG File too bid
28 ENOSPC No space left on device
29 - Error Undefined on CP/M-68K
30 EROFS Read-Only file svystem
31 - Error Undefined on CP/M-68K
32 - Error Undefined on CP/M-68K
33 - Error Undefined on CP/M-68K
34 - Error Undefined on CP/M-68K
35 ENODSPC No directory space

The file <errno.h> also includes the names for all errors defined with UNIX V7.

Therefore, programs that reference these definitions need not be changed.

End of Appendix A

A-2

G DIGITAL RESEARCH™

Fla

(Appendix B
Customizing the C Compiler

Compiling a C program requires three compiler passes. The output of the compiler
is assembly language, which must be assembled and linked to produce a program that
runs. The compiler, assembler, linker load modules, C library, and the system include
files need a substantial amount of disk storage space, minimizing storage space. This
appendix discusses compiler operation and suggests ways to minimize the disk storage
requirements for compiling.

B.1 Compiler Operation

The C compiler has three components: the preprocessor (CP68), the parser (C068),
and the code generator (C168). The assembler (AS68) and the linker (LO68) also help
generate an executable program. The following list tells you how these components
operate.

4&}5
/ \

1. The preprocessor, CP68, takes the original source file and produces a file with }
all #define and #include statements resolved. The preprocessor command line [
takes the form:

CP68 [-1 d:] file.C file.I

The -I flag indicates that the next argument is a CP/M-68K drive specification.
This drive is used for all library include statements of the form #include <file>.
Drive specifications can also appear in the filename portion of an #include
statement, but this procedure is not recommended. File.C is the source file, and
file.I is the output file.

2. The parser, C068, takes the file produced by the preprocessor and creates an
intermediate code file. The command line takes the form:

C068 ﬁlc.l file.IC file.ST

File.l is the output from the preprocessor. File.IC is the intermediate code file
that C168 uses. File.ST is a temporary file that collects constant data for
inclusion at the end of the intermediate code file.

¢

DIGITAL RESEARCH™

EZ3

B.1 Compoc. Cpciauon C Language Programming Guide

3. The code generator, C168, takes the intermediate code file from C068 and =~
produces an assembly-language source file. The commandline takes the form:

C168 file.IC file.S [-LD)

File.IC is the intermediate code output from CO068. File.S is the assembly-
language output file. The -L flag indicates that the compilation assumes all
address variables are 32 bits. The default is 16-bit addresses. The -D flag causes
the compiler to include the line numbers from the source file (file.C) as com-
ments in the generated assembly language. This is useful for debugging.

4. The assembler, AS68, translates the compiler output to a form that the linkage
editor can use. The command line takes the form:

AS68 -L -U [-F d:] [-S d:] file.S

The -L option indicates to the linkage editor that addresses are considered 32-bit
quantities. The -U option means that undefined symbols are considered external
references. The -F option specifies a drive that the assembler uses for temporary
files. The -S option specifies a drive that the assembler uses for the initialization

file (AS68SYMB.DAT). File.S is the output of C168, and file.O is produced by
the assembler.

5. The linker, LO68, produces an executable file from the output of one or more
assembler runs. You must also include a start-up file and the C library when
linking C programs. The linker command line takes the form:

LO68 -R [-F d:] -O file.68K S.O file.O clib

The -R option specifies that the file be relocatable. Relocatable files run on any
CP/M-68K system. The -F option allows you to place linker temporary files on
a disk drive other than the default. The -O file.68K construct makes the linker
place the executable output in file.68K. S.O is the run-time start-up routine.
You must include this file as the first file in every C program link. File.O is the
output of the assembler. Specify multiple files between S.O and clib if you want
separate compilation. clib is the C library file.

T

DIGITAL RESEARCH™ .~

ya2y

C Language Programming Guide B.2 Supplied submit Files

B.2 Supplied submit Files

CP/M-68K includes two submit files, c.sub and clink.sub, that compile and link C
programs (see Section 1.1). Usually, these files are located on the default drive. However,
you can edit these files to specify different disk drives for any of the following drives:

B The disk drive on which the compiler passes, assembler, and linker reside.

8 The disk drive that the #include <file> statements in the C preprocessor
reference.

8 The disk drive with the assembler initialization file.
® The disk drive on which the assembler and linker create temporary files.
® The disk drive containing the C library file.

B.3 Saving Disk Space

You can do the following things to conserve disk space:
® Use the reloc utility on all the load modules, the compiler, assembler, linker, and
editor. This significantly reduces file size and load time.

® Place all the load modules on one disk and use another disk for sources and
temporary files. This requires two drives.

B8 On single-density disk systems, you must place the C library file and linker on
a separate disk and swap disks before linking.

DIGITAL RESEARCH™

o
.3

FRS

B.4 Gaining Speed C Language Programming Guide

B.4 Gaining Speed

Along with the items in Section B.3, you can speed compilation by implementing the
following:
8 Putthe assembler temp files on a different drive from the source and object files.

® Put the linker temp files on a different drive from the object input, Clibrary, and
load module output.

B Use the linker -S (suppress symbol table) and -T (absolute load module) switches
in place of the -R flag. If you do this, the resulting program cannot run on an
- arbitrary CP/M-68K system.

-

End of Appendix B

| ;
S~

DIGITAL RESEARCH™

26

” e "-\?\

Appendix C
Sample C Module

The modules in this appendix are written and documented in C code that follows the
style conventions discussed in Section 3.

JEZZZZ22 2222 22 X 2R X R S R XS X X R SRR S R R X R R AR R R R SR XSRS SRR ER RSS2 S22 R 2)

/# %/
/% ~-Print?t Module +/
/J# | dcaaacccsccscceccccacccsnans ®/
/+ */
/% This module is called throush the sinsle entry Point "_pPrintf" to */
/# perform the conversions and outeput for the library functions: */
/* %/
/% printf - Formatted Pprint to standard output *®/
/% feprintf - Formatted print to stream file */
/® sprintf - Formatted print to string */
/® ®/
/% The calling routines are losically a part of this module:» but are */
/® compiled separately to save space in the user’s prosram when only +/
/% one of the library routines is used., */
/% */
/# The following routines are present: */
/% */
/* -printf Internal printf conversion / outrPut */
/% . -prntB Octal conversion routine */
/# -PINLX Hex conversion routine */
/® --CONV Decimal ASCII to binary routine */
/+ -PUtstre Qutput character to string routine */
/% -Prntl : Decimal conversion routine *®/
/% . #®/
/% The followiny routines are called: */
/% +/
/% strlen Compute lendth of a string */ ‘3:>“
/% PuUtc Stream outpPut routine */ L
/% ftoa Floating point output conversion routine */ o)
/% */ e
/* %/ 3‘
/% This routine depends on the fact that the arsument list is alwars */ -
/% composed of LONG data items. */ "
/% *®/ O
/% Confisured for Whitesmith’s C on VAX. “putc" arsuments are */ S
/% reversed from UNIX. *®/
/% */
[RN R RN RS/
/®
* Include files:
*/
sinclude {stdio.h> /% just the standard stuff #/
@ DIGITAL RESEARCH™

F27

+
*/

Local DEFINEs

sdefine HIBIT 31

C Language Programming Guide

/% Hish bit number of LONGC &/

/e
Local static data:
*/ [R R R R R RN RN RN R RN RN R RRER/
MLOCAL BYTE «_ptrbt = 0% /% Buffer .Pointer s/
MLOCAL BYTE #_ptrst z Oj /% => File/string (if any) #/
MLOCAL BYTE #o-fmr = O /# Format Pointer */
[R R R R R E R AR R R R R RRNE/
@ DIGITAL RESEARCH™
C-2

\.\\ o

g2y

C Language Programming Guide € Sample C Module

R R R R R R AR R R R R R R A AR AR B AR R AR AR R R R BB R R RRRRRR RN SRR AR R PR AR R ARERS

PRINTF INTERNAL ROUTINE

L 0 USRI S S T T T v U SR

Routine “_printf" is used to handle all "printf" functicns, including
"sprintf", and "ferintf",

Calling Seauence:

-printf{(fdsfuncs,fmt argl)i

Where:
fd Is the file or string pointer,
func Is the function to handle output.
fmt Is the address of the format string.
arsil Is the address of the first ars.
Y
Returns:
Number of characters outpPut
Buss:

It is assumed that arys are contisuous startiny at “arel", and that
all are the same size (LONG): excert for floating point,

L B BE BE BE BN BN BE BE BN BE BN BE BE BE BE BE N BN CBE BE BE B BN BN BN BN NN

222 2222222222222 SRR XSRS SR E S RS2 S22 SS 22 S22 S S22 S22 ¥

~Printf(fd,f,fmtral) /R AR RERRRRRERRRRRRARBRERRRARRRRS)
' LONG fdi /# Not reallys» but ..., */
LONG (%) ()5 /* Function pointer */
BYTE #fmts /# -) Format string */
LONG *als /% -> Arg list &/

{ /RRRRRRR R RREERERRRRRRER R RRRARS/
LOCAL BYTE ci /% Format character temp */
LOCAL BYTE *s3 /% Quteput string pointer */
LOCAL BYTE adJs /% Risht/left adJust flasg */
LOCAL BYTE bufl3013 /% Temporary buffer +/

’ /il}ii{!llli’l’li!l.ili’!ll!l!l}i/

LOCAL LONG #adxs /% Ar9 Address temporary */
LOCAL LONG x4 /% Arg Value temporary */
LOCAL LONG ni /# String Length Teme */
LOCAL LONG mi /% Field Lensth Temporary */
LOCAL LONG widthi /% Field width ®/
LOCAL LONG precs /% Precision for “"Ix.rft* */
LOCAL LONG padchari /# ‘0’ or ‘' (mpadding) +/
LOCAL DOUBLE 224 /% Floating temporary */
LOCAL DOUBLE #dbletri /# Floating temp, address */
LOCAL LONG ccounts /% Character count */
EXTERN -putster()i /¢ Reference function */

[/ERER R R RRRRRFRERBRRRERIRRER/

88 DIGITAL RESEARCH™

C-3

29

C Sample C Module

C Language Programming Guide

X2 XTI IR RRZZ222222222222 ¥

ccount = O3 /% Initially no characters #/

-ptrbf = buf} /% Set buffer mointer */

adx = al3d /% Corpy address variable */

-ptrst = fdi /% Copy file descrirtor %/

—=imt = fmts /% Copy format address %/

, I YL SR I SR I IIIIIY,

if(e__fmt o= ‘LY 10 #__fmt oz ‘17) /% SKie long outmut %/
eafmt++] /% conversions */

/% %/

(R R R R R R R R R R R R R R R AR R R R R R B R R R R R R AR RN R RN E RN %/
/# This is the main format conversion loop, Load a character from the %/
/# format string, If the character is ‘I’ perform the aPrropriate */
/% conversion, Otherwise: Just output the character, */
[E R R R R R R R R R R R R AR AR R R R R F R AR RS R R RRRRER RS &/
/% ®/

while(¢ = #__fmt++) /% PicK up next format char#/

{ /% */

if(e 1= '27) -~ [/HRREBRRERRERR B AR RREERRERRRR/

{ /% */
(#¢)(fdc)i /# 1f not 'L’y Just OutpPut #/

cocount++si /% Bump character count */

)} (R R B R R R RN RR RN RN R R RN RNERR/

else /# It is a ‘1’ */

{ /+ convert */

X = ¥adx++i /% x = address of next arg #/

if(#__fmt == '-")
{

else
adJy =

padchar=(#__fmt=='0') ? ‘0’ ¢ ‘' ‘3%
width = __conv()}

it(#__fmt ==
{

‘v

+4__fmts
prec = —.conv()i
}
else
prec

"
o
-

S = 03
switeh (
{

C = #__fmt+s)

case ‘D’:
case ‘d‘:
-Prtl(x)i
breaki

A222222222XX2XRX2XZ2ZRZLZ2 L

/% Check for left adJjust */
JEEBRERERRRR R R R EESRRREERR/

/% 1s left, set flag */
/% Bump format pointer *
Iz; */
/% Right adJust */
[R R R R R R R R RN R R RN BB RRN RN/
/% */
/% Select Pad character */

VE T2 I R SIS ITIINY
/% Convert width (if any) #/
[R R B R AR R RN E R R R RRRRRERRRRN/
/% ‘.’ means precision spec#/
/% */
/% Bume pPast ‘.’ */
/% Convert precision spec #/
/ */
/% None specified */
JEERRREER AR R AR RGN RN RRRRRER/
/# %/
/% Assume no output string #/
/# Next char is conversion #/

IR] ®/
/% Decimal */
/% */

/% Call decimal erint rtn #/
/% Go do outrut */
/llili!l*!ll&l*iiiiiii}iil*#/

C4

F30

e
{

DIGITAL RESEARCH™

C Language Programming Guide C Sample C Module

(case ‘0’: /+% Octal #/
o case ‘O‘: /% Print */
-PrntB(x) 3 /# Call octal printer */
breaki /% Go do outrut */
/i&l!!!}iill!iGlll&illllil}l/

case ’‘x’: /% Hex %/
case ‘X‘: /® Print %/
-PrAtx(x)s /% Call conversion routine %/
breaks /# Go do output */
[REERRRRFERRE RS ERERERRTRRRER/

case ‘S’: /% String #/
case ‘s’: /# Qutput? %/
S=X1 /% Yesy (easvy) L ¥
breaksi /# Go finish up */
[/REBRRERER R ERERLERRRERERS/

case ‘C’: /# Character */
case ‘c’: /% Dutput? ®/
#_ptebf++ - x&03773% /% Just load buffer */
break? /% Go outprut %/
IRXZX2ZXXXIXXZIZYXR X222 222 %)

case ‘E’: /% Floating point? */
case ‘e’: /% ®/
case ‘F’: /% */
case ‘f': /% +/
dbleptr = adx-13 /% Assumes B4 bit float! +/

zZ2 = #dblmtri /% Load value */

adx =+ 13} /% Bume past second word */
ftoa (22, buf,» Precy c)i /# Call floating conversion#/
prec = 03 /% Fake out padding routine#/

- s = bufi ' /% just like string mrint #/
@ ~ breaks /% Go Output &/
3 J/RERRRRRRRRRRERBERERRERBRERR/
default: /% None of the above? %/
(#f)(fdsc)s /% Just Quteut #/
ccount++y /% Count it, */
adx--3 /% Fix aryg address %/

)} /% End switch %/
/R R R B EREREFRERRRERRRRERRRRR/

it (s == 0) /# If s - 0y string is in #/
{ /% "but", */
#_ptebt = ‘0’3 /% Insure termination */

s = bufsi /% Load address +/

) /R RBREREERRRRERBRERBRRERE/
/% */

n = strlen (s)}§ /% Compute converted lensth#/
n = (precin && prec !z 0) ? prec : ni/* Take min(Precn) %/
m = width-ni : /# m is 8 of pad characters#/
[/RERBRRERRERRFRRRRRREEREROEE/

if (add == ‘t’) /% For risht adJust, */
while (m-- > 0) /% Pad in front */

{ /% */
(#f)(fdsmadchar)i /% Thusly +/
ccount++§ /% Count it ®/

} /% */

/RERBRRRRERRERRERRRBRRRRRRAR/

.

DIGITAL RESEARCH™
C-5

F3/

C Sample C Module

while (n--)

{

(#0)(fdrws++) 3
ccount++j

}

while (m-- > 0)

{
(#f)(ftdspadchar)i
ccount++;

}

-ptrb? = bufs -

}

}
if((2f) -2 _pPutstr)
(?)(?dy)'0") 3

return{ccount)s

C Language Programming Guide

/% OQutrut Converted */
/% ®/
/% Data &/
/% Count it */
/% */
/SRR RRRERARRARESRRR RS/
/% 17 left adJjust, %/
/% */
/% Pad +/

/% Count padded characters #/
/ll!llllli!llillll&lli!ll}l‘/

/% Reset buffer pointer */
/% End else */
/% End while */
/# If string output, %/

/# Drop in terminator char &/
/iiiil{l!lliliil!lﬁ{il{lilﬁl/
/% Return appropriate value#/
/% End _printf . +/
/iiiGlllliliiiil{l*lli!i!lli/

DIGITAL RESEARCH™

'
e

F3

C Language Programming Guide

C Sample C Module

‘ [N R A R R R SRR RSN R R R AR R R R RN R R R AR R AR R AR RN R/
/% */
/% -PRNTS PROCEDURE _ */
/% ceceaccecemsmmcemeccccccacca-a- &/
/% ®/
NAJ Routine "_prnt8”" converts a binary LONG value to octal ascii. #/
/% The area at “_pirbf™ is used. %/
/% */
/# Calling Seauence: */
/% */
/e -PrntBin) 3 ®/
/e */
/% *n” is the number to be converted. #/
/% */
/® Returns: */
/% */
/% (none) +/
/% %/
/l*l'l"li”iili*ililllii{{ili{ii!fiiii&l{{iiiil!ililiiiillilQQQ}iiililiil{{/
VOID _prnt8 (n) /® */
LONG ns /% Number to convert */
{ /% */
REG WORD L] /% Counts bits */
REG WORD KS /% Temporary 3-bit value */
REGC WORD sW$ /% Switch 1 => output */
/R RERRRRRRRERRRRRRERRERRERE/
it (n==0) /% Handle O as special case#/
{ /% */
#_ptrbf++ = ‘0’5 /% Put in one zero %/
returni /® And auit */
- } /% . */
(ﬂ JRRRREERRRRARRRERERRRRRRERRN/
. sw = 03 /% Indicate no outpPut vet #/
/% */
for (P=HIBITS P >= 05 P =- 3) /% Use 3 bits at a time +/
/# */
it ((K = (n>>p)807) !} sw) /% Need to output vet? */
{ /% */
it (p-=HIBIT) /% 1st digit has only 2 bits#/
K = kK & 023% /% Mask apepropriately */
#_PLIDI++ = ‘0’ + Ki§ /% ASCIIfy disit +/
sw = 13 /% Set output flas +/
)} /% End if */
} /% End .rrnt8 */
[EEFRERAR AR AR R RRRAR AR RRRERR/
(@ DIGITAL RESEARCH™

C-7

F33

C Sample C Module

C Language Programming Guide

/EBR R RRERERRLAERRIRP RIS RN R R R AR RR R E RN RRREEIRRRFRREERRBI IR EREERRRRERE/

/# */
/% - Prntx Function */
/# | eeeceaccccccccccccracccccnaana */
/% */
/% The “"_prntx" function converts a binary LONG suantity to hex ASCII &/
/ and stores the result in "#_ptrbf", Leading 2eros are suprressed. +/
/% */
/% Calling sequence: */
/% */
/% -Pratx(n)j %/
/% 'Y
/% where "n" is the value to be converted. */
/% i */
/& Returns: */
/% %/
/% {none) */
/# %/
/iiiii*!ii!iilliilliililii@iiili*iliil*ll*iiiiliiiii!lfli*{li!&!ii!lllllili{i/
VOID _prntx (n) /# */
LONG ni /% 32 bits */
{ /iliii{l{!*ili{{!l{llii”lilili/
REG LONG di /% A digit */
REG LONG ai /% Temporary value */
/l!l&i!il*li**{i{i!l*i*ili*iiii/
it (a = n>>48) /% Peel off low 4 bits */
-pratx (a & Oxffffeee) s /% If <> 0y Print first */
d = nk017; /% TaKe low four bits %/
#_PLrbf++ - d > 9 ? 'A’'+d-10 ‘0’ + di/% ASCIIfy into buffer *®/
) IR X222 XXX IR R YR)
88 DIGITAL RESEARCH™
C-8

3y

\\,n L

C Language Programming Guide C Sample C Module

A2 IR XXX I X R R R R X RS2 SRR X E R SRR R RS R SR RS RS RS2 2222222222222 ¥)

/# &/
/e - =Conuw Function &/
/8 eeea- eecmmmceccceccecsccccceaa %/
/® %/
/% Function “__conv" is used to convert a decimal ASCII string in #/
/% the format to binarvy. #/
/% L 7
/* Calling Seauence: */
/% */
/* val = _—.conu()} */
/e */
/® Returns: */
/# */
/% “val” is the converted value */
/® Zero is returned if no value +/
/® */
IEXZZZ Y I 2 R Y YRR R E R R R Y Y SRR YR SRR R YRR YR Y YRR SR YRR RYRRRRR XXX YR W)
LONG __conv() N /% . */
{ /llilllilllili{#lilili!lll**l/
REG BYTE cs /% Character temporary */
REG LONG ni /% Accumulator */
J/ERRERRRRRRERE AR RERRERRRRNERE/
n = 03} /% Zero found so far */
while(((c= #__fmt++) D= ‘0’) /% While ¢ is a disit */
&% (c <= '9')) /% */
n = n#l0+c-'0'3 /% Add ¢ to accumulator +/
e=int--3 /% Back up format pointer to#/
/% character skiprped above #/
return{n)j /% Sees wasn’t that simple? #/
} /R RRERRRRRREREEREERRERIRRRNER/
&8 DIGITAL RESEARCH™ C
. -9

535

C Samgic © invauic

C Language Programming Guide

AZZIZIXE IR XS R RS R S SRR T X S XX SRS R RS XX SRR R 2SR SX SRR S SRR ESRTTSSE R)

/% +/
/% -Puts e Function %/
/. -—w e oaeoee - oo w o - oSoeoeew cToecsensowwes ’/
/% +*/
/#) Function *"_putstr” is used by “sprintf" as the output function */
/% arsument to "_printf"., A single character is coried to the buffer &/
/% at "_ptrst*,) */
/% */
/% Calling Seauence: */
/% : */
/# -putstristrschr)i #/
/+ */
/¥ where "str” is a dummy arsument necessary because the other output #/
/% functions have two arsuments. */
/+ */
/% Returns: */
/% */
/% (none) */
/% */
/&i‘i*!iiiii‘l*ilﬂl!*’{iliiﬂl{{«lii{i!i‘l"l'l'lllli!lliii‘lil‘l!lil*iill*ifl*i‘i!iliiil!/
VOID _putstri(strschr) /% +/
REG BYTE chri /% The output character */
BYTE LI3% 21 /% Dummy arsument */
{ AZZXXXZZXXXXZTIZXZREZIRIZIZZZR Y W)
#_Ptrst++ = chri /% Quteut the character +/
return(0)3 /% Go back %/
} [/RERBERE BRI R R R R R LR R ERRRRRER/
% DIGITAL RESEARCH™
C-10

F36

\

J
S

PN

C Language Programming Guide C Sample C Module

/R E R AR R R R R R R R R R R F SRR AR R R R R R R R R R R R R R R R R AR R AR R RS R R R BB AR ERERE/

/@ */
/» -Pre Funection ®/
/# eeeccaccecccceccccccc e &/
/% */
/# Function "_prt1” converts a LONG binary aquantity to decimal ASCII */
/s at the buffer pointed to by "_pPtrbt", */
/% #®/
/% Calling Seauence: %/
/% +/
/% -rrtiin)si */
/# %/
/% where "n" is the value to be converted. */
/% */
/% Returns: ./
/® */
/® - (none)) */
/® . ®/
/}6liiiliillli*iiliil*ll{Q{i?i}}lil{*flliiililliiliill’llllii’lii!li*iilliiil/
VOID _prti(n) s /# &/
REGC LONG ni /% Conversion inpPut */
{ /R E R R R E R R R R RN RN R RN R R RRR RN/
REG LONG digs[1513 /% store disits here ®/
REG LONG #dpt /% Points to last digit */
[REREREEREERRRBER AR R R RERRRRR/
det = digss /% Initialize disit Pointer #/
/l*illlil{l{*iiiil*iiiill!iil/
it (n >=- 0) /% Fix */
n =z -nj /® up */
else : /#® siyn */
#_ptrbf++ - -’} /% stuff */
. /R EFRRRRR RSB R BB R R R AR RN
for (i n !'- 0§ n - n/10) /% Divide by 10 till zero #/
#dpt++ - nl10} /% Store disit (reverse ord)#/
/i**liii*ilfilili{{i*!i*l!lii/
it (dept == diss) /% Zero value? +/
#dpt++ = 0} /% Yes, store 1 zero digit #/
/li*i{*li*iliiiiililiiii!ilil/
while (det - diss) /% Now convert to ASCII +/
{ /* */
Y LR /% Decrement pointer +/
#_ptrbf++ - ‘0’ - #dpti /% Note digits are nesative!#/
} /% +/
)} X Y2 SIS 2SI I2222%221Y)
End of Appendix C
DIGITAL RESEARCH™
C-11

F37

TN
7

N

m‘

«

Appendix D
Error Messages

This appendix lists the error messages returned by the components of the CP/M-68K
C compiler, the C Parser, C068, the C Co-generator, C168, the C Preprocessor, CP68,
and by the CP/M-68K C Run-time Library. The sections are arranged alphabetically.
Error messages are listed within each section in alphabetical order with explanations
and suggested user responses.

D.1 C068 Error Messages

The CP/M-68K C Parser, C068, returns two types of error messages: diagnostic error
messages and messages indicating errors in the internal logic of C068. Both types of
error messages take the general form:

*line no. error message text

The asterisk (*) indicates that the error message comes from C068. The “error message
text” describes the error. You must correct any errors you receive from C068 before
invoking C168. Uncorrected errors from C068 cause erroneous error messages to occur
when you run C168.

D.1.1 Diagnosn';: Error Messages

These error messages occur mostly in response to syntax errors in the source code.
Refer to your C language manual for a complete discussion of the C language syntax.

The error messages are listed in Table D-1 in alphabetical order with short explana-
tions and suggested user responses.

® DIGITAL RESEARCH™

L35

D.1 CO068 Error Messages

Table D-1. C068 Diagnostic Error Messages

C Language Programming Guide

Message Meaning

#line no. address of register
You have attempted to take the address of a register. Correct the
source code before you recompile it.

#line no., assignable operand required
On the line indicated, the operand to the left of the equals sign in the
assignment statement is not a-valid operand. Supply a valid operand.
This error might occur because the operand is a constant instead of a
variable.

#line no. badcharacterconstant
A character constant on the line indicated is invalid. The character
constant must be a single character between quotes. A control charac-
ter, more than one character, or a symbol that is not a character will
cause this error to occur.

#line no. bad indirection
You attempted to reference by address instead of by' value, but the
expression you used is not an address. Supply a value or a valid address
before you recompile the source code.

#line no. can‘t orenfilename
Either the filename or the drive code is incorrect. Specify the correct
drive code and filename before you recompile the source code.

|#line no. casenot inside aswitchblock

The case on the line indicated is not inside a switch block. Correct the
source code before you recompile it.

#line no. characterconstant too long
The character constant on the line indicated is too long. A character
constant must be a single character berween quotes. Correct the source
code before you recompile it.

#line no. constant required .
The operation on the line indicated requires a constant. Correct the
error before you recompile the source code.

I DIGITAL RESEARCH™
D-2

5739

TN
/

N

C Language Programming Guide D.1 CO068 Error Messages

Table D-1. (continued)

Message Meaning

#line no. declaration sryntax
The syntax of the declaration on the line indicated is incorrect. Refer
to your C language manual. Correct the syntax before you recompile
the source code.

#line no. defaultnotinside aswitchblocK
The default on the line indicated is not inside a switch block. Correct
the source code before you recompile it.

#line nos dimension table overflow
There are too many dimensions, at or prior to the line indicated, for
the dimension table. The dimension table does not have space for more
than 8 or 9 dimensions. Structures count as dimensions. Rewrite the
source code to use fewer dimensions and structures before you recom-
pile it. '

@ #line no. duplicate case value

Two cases for the same switch are identical. Eliminate one of the cases
before you recompile the source code.

#line no. exrpected label
A go to statement on the line indicated does not have a label. Supply
the missing label before you recompile the source code.

#line no. exPression toocompPrlex
Due to internal limitations in C068, the expression on the line indi-
cated is too complex to be evaluated. Simplify the expression before
recompiling the source code.

#line no. external definitionsyntax
The syntax of the external definition on the line indicated is incorrect.
Correct the syntax before you recompile the source code. Refer to
your C language manual for the correct syntax.

#line no. fieldoverflows brte '
The bit field asks for more bits than fit in an 8-bit byte. Reduce the

(number of bits in the bit field before you recompile the source code.

DIGITAL RESEARCH™

D-3

550

D.1 CO068 Error Messages C Language Programming Guide

Table D-1. (continued)

Message Meaning

#line no, fieldoverflows word

The word field asks for more bytes than fit in a word. Reduce the
number of bytes in the byte field before you recompile the source code.

#line no. floating Point not surrPorted

CP/M-68K does not support floating point. Rewrite the source code
before you recompile it.

#line no. functionbody syntax

There is no bracket at the beginning of the function on the line
indicated. Supply the missing bracket before you recompile the source
code.

#line no. illegal call

You attempted to call something that is not a function. Correct the
. source code before you recompile it.

#line no. illegal function declaration

The storage class of the function declared in the line indicated is illegal.
The only two storage classes allowed for functions are static and
external. Correct the declaration before you recompile the source
code.

#line no. illedal redister specification

The register specification in the line indicated is illegal. Structures and
arrays cannot be put into a register. Correct the source code before
you recompile it.

#line no. illegal tyrpe conversion

You made an incompatible assignment. This error commonly occurs
when attempting to convert a pointer, 32 bits, to an int, 16 bits.
Correct the source code before you recompile it.

#line no. indirectionon functioninvalid

You attempted to use the indirection operator (*) on a function.
Correct the source code before you recompile it.

DIGITAL RESEARCH™
D4

4/

C Language Programming Guide D.1 C068 Error Messages

Table D-1. (continued)

Message Meaning

#line no. initializeralignment

. This message usually indicates a missing initializer value, or values
out of order. Check the initializer list and correct it before you
recompile the source code.

#line no. initializerlist toolong

The initializer list is too long for C068. Shorten the list before you
recompile the source code.

#line no. invalidbreak statement

The break statement on the line indicated is not inside a loop or a
switch. Correct the source code before you recompile it.

#line nos., invalidcharacter

There is an invalid character in the collating sequence in the line
indicated. Control characters or members of the extended character
set are not valid characters. Correct the source code before you
recompile it.

#line nos invalidcontinue statement

The continue statement on the line indicated is not inside a loop. This
error might occur when you have used a continue statement in a
switch. A continue statement is only valid in aloop. Correct the source
code before reinvoking C068.

#line no. invalid conversion

You attempted an incompatible assignment, for example, a pointer,
32 bits, and an int, 16 bits. Correct the source code before you
recompile it.

#line nos invalid data trypre

‘The line indicated contains an expression that attempts to equate two
incompatible quantities, for example, an int, 16 bits, and a pointer,
32 bits. Correct the source code before you recompile it.

@ DIGITAL RESEARCH™

FYR

D.1 CO068 Error Messages C Language Programming Guide

Table D-1. (continued)

Message Meaning

*#line no, invalid declarator

The declarator in the line indicated is not a recognizable language

element. Supply a valid declarator before you recompile the source
code.

#line no, invalid exPpression

The expression in the line indicated contains a syntax error. Correct
the syntax of the expression before you recompile the source code.

*#line no. invalid fieldsize

The field in the line indicated is less than or equal to zero. Correct the
field size before you recompile the source code.

#line no. invalid field tyrPpe description

You attempted to put a pointer or a long into a bit field. Correct the
source code before you recompile it.

*¥line no. invalid forstatement

The for statement in the line indicated contains a syntax error. Refer
to your C language manual for the correct syntax of a for statement.
Correct the statement before you recompile the source code.

#line no. invalidinitializer

The initializer you specified in the line indicated is not a constant. You
can only initialize to a constant. Correct the source code before you
recompile it.

#line nos. invalid label

You used a variable name as a label in the line indicated. Correct the
source code before you recompile it.

#line no. invalid longdg declaration

You attempted to declare something long that cannot be long, for
example, a character. Correct the source code before you recompile it.

DIGITAL RESEARCH™
D-6

FL3

C Language Programming Guide D.1 CO068 Error Messages

(, Table D-1. (continued)
Message Meaning

#line no. invalid orperand tvpre

The expression in the line indicated contains an invalid operand.
Correct the source code before you recompile it.

*¥line no. invalid redister specification

You attempted to put something larger than allowed into a register,
for example, a structure or a function. Correct the source code before
you recompile it.

*#line nao. invalid short declaration

You attempted to declare something short that cannot be short.
Correct the source code before you recompile it.

*#line no, invalid storageclass

You specified an invalid storage class in a declaration. Refer to your
C language manual for the allowed storage classes. Correct the source
code before you recompile it.

#line no. invalid structure declaration: name

The size of the structure indicated by the variable name has a size
less than or equal to zero. Correct the source code before you recom-
pile it.

#line no. invalid structure member name

The structure reference in the line indicated is not a member of any
structure. Correct the source code before you recompile it.

*#line no, invalid structure prototypPe: name

In the line indicated you reference a structure name that is not a
prototype. Correct the source code before you recompile it.

#line no. invalid tyepe declaration

The type declared in the line indicated is invalid. Refer to your C
language manual for a discussion of valid types. Correct the source
code before you recompile it.

DIGITAL RESEARCH™

Ly

D.1 CO068 Error Messages C Language Programming Guide

Table D-1. (continued) -

Message Meaning -

#line no., invalid tyrpedef statement

The line indicated contains a statement with more than one typedef

keyword. Only one typedef is allowed per statement. Correct the
source code before you recompile it.

#line no. invalid unsigned declaration

The quantity you declared unsigned in the line indicated might not be
unsigned. Only an int can be unsigned. Correct the declaration before
you recompile the source code.

. - . ~
#line no. invalid ?: operatorsyntax

This message indicates an error in the use of the ?: conditional operator
in the line indicated. Refer to your C language manual for the correct
syntax. Correct the source code before you recompile it.

#line no. label redeclaration: label

You used the same label for two separate items. Correct the source
code before you recompile it.

#line no. missingcolon

You left out a colon. Supply a colon in the correct location before you
recompile the source code.

*#line no. missing{ ininitialization

You neglected to put in the left curly brace in the initialization of an
array or structure. Supply the missing brace before you recompile the
source code.

*#line no. missing }

You left the right curly brace out of the initialization of an array or
structure. Supply the missing brace before you recompile the source
code.

#line no. missind while

The do statement at the line indicated is missing a while at the end.
Supply the missing while before you recompile the source code.

— DIGITAL RESEARCH™

g £~2

C Language Programming Guide

D.1 CO068 Error Messages

Table D-1. (continued)

Message Meaning

#line no. missing semicolon
A semicolon is missing from the line indicated. Supply the missing
semicolon before you recompile the source code.

*line no. no structure name
You referred to a structure in the line indicated without giving the
structure name. Correct the source code before you recompile it.

line no. no/ before EOF
The last comment in the source code is missing its final delimiter.
Supply the missing delimiter before you recompile the source code.

#line no. not astructure: name
The structure referenced in the line indicated is not a structure. Correct
the source code before you recompile it.

*line no., not inParameterlist: x
In the line indicated, you declared the something indicated by the
variable x to be an argument to a function, but x is not in the function
parameter list. Correct the source code before you recompile it.

*line no. Parenthesized exPression syntax
The line indicated contains a syntax error in the parenthesized expres-
sion. Correct the source code before you recompile it.

#line no. redeclaration: symbol
A symbol has been declared twice. Remove one of the declarations
before recompiling the source code.

#line no. strindcannotcross line
The character string at the line indicated continues beyond one line.
The closing quote to a character string must be on the same line as
the opening quote, unless you use a backslash (\) at the end of the
first line to indicate that the line continues. Correct the source code
before you recompile it.

DIGITAL RESEARCH™

T3l CREe Tmmmmn o T mgygmms D . Y
0.1 Ccles LE C Language Programnmung Gmde

Table D-1. {(continued)

Message Meaning

#line no. string toolong

The string at the line indicated is longer than 255 characters. A string
cannot be longer than 255 characters on a single line. Break the string
and use a continuation, indicated by a backslash (\) at the end of the
line to be continued.

#line no. structure declarationsyntax

The syntax of the structure declaration on the line indicated is incor-
rect. Correct the syntax before reinvoking C068.

- ~ . -
#line no.structure operationnot vet implemented

On the line indicated, you assigned a structure to another structure.
Assigning a structure to another structure is not yet supported by the

CP/M-68K C compiler. Correct the source code before reinvoking
C068.

*line no. structure tableoverflow

There are too many structures in your program for the structure
tables. Eliminate some structures before reinvoking the C compiler.

#line no. symbol table overflow

Your program uses too many symbols for the space available on the
symbol table. Eliminate some symbols before reinvoking the C
compiler.

#line no. tempPpcreationerror

The drive code or filename of the temporary file referenced in the line
indicated is incorrect. Specify the correct drive code and filename
before you recompile the source code.

#line no. too many cases inswitch

The switch at the line indicated has too many cases. Eliminate some
cases before you recompile the source code.

//f -

 DIGITAL RESEARCH™. -

D-10

F¥7

-

C Language Programiming Guide

D.1 CO068 Error Messages

Table D-1. (continued)

Message Meaning

#line no. toomany initializers
The initializer list in the line indicated contains more initializers than
there are members of the array being initialized. Correct the list before
you recompile the source code.

#line no., too many Params
The function declaration at the line indicated contains too many
parameters. Rewrite the source code before you recompile the source
code.

#line no. undefined label: label
The label indicated by the variable 1abel has not been defined.
Correct the source code before you recompile it.

#line no, undefined symbol: symbol
The symbol indicated by the variable s ymb ol is undefined. Correct
the source code before you recompile it.

#line no., unexrected EOF
This error usually occurs when there is no right curly brace (}) after
a function, or when there are mismatched comment delimiters. Locate
and correct the error before you recompile the source code.

#line no., usade: cO6EB source asmstr
The syntax of the C compiler command line is incorrect. The correct
syntax is given in the error message. Reenter the command line using
a valid syntax.

#line no. { not matched by }
A left curly brace ({) is not matched by a right curly brace. This error
frequently occurs in an initialization sequence. Supply the missing
brace before you recompile the source code.

DIGITAL RESEARCH™

D.1 C068 Error Messages C Language Programming Guide

Table D-1. (continued)

Message Meaning

*line no. ="char" assumed

You have user a = + type operation with an invalid character. When
an invalid character occurs after the = sign, C068 putsin = = instead
of =. Correct the source code before you recompile the source code.

#line no. & orPerandillegal

You attempted to take the address of something that is not a variable,
for example, a register. Correct the source code and recompile it.

D.1.2 Internal Logic Errors

These messages indicate fatal errors in the internal logic of C068:

*#line nos. can‘t copy filename

#line no. invalid Kevyword

#line no. toomany chars pushed back
*#line no. too many tokens pPushed back

Contact the place you purchased your system for assistance. Provide the following
information:

® Indicate the version of the operating system you are using.
® Describe your system’s hardware configuration.

® Provide sufficient information to reproduce the error. Indicate which program
was running at the time the error occurred. If possible, also provide a disk with
a copy of the program.

€ DIGITAL RESEARCH™

D-12

FY7

«

C Language Programming Guide D.2 C168 Error Messages

D.2 C168 Error Messages

The CP/M-68K C Co-generator, C168, returns two types of fatal error messages:
diagnostic error messages and messages indicating errors in the internal logic of C168.
Both types of error messages take the general form:

**line no. error message text

The asterisks (**) indicate that the error message comes from C168. The error message
text describes the error. If you run C168 before correcting any errors you received from
C068, you receive erroneous errors from C168.

D.2.1 Fatal Diagnostic Errors

The C168 fatal, diagnostic error messages are listed in Table D-2 in alphabetical
order, with explanations and suggested user responses.

Table D-2. C168 Fatal Diagnostic Errors

Message Meaning

##line no. can‘t create filename

Either the drive code or the filename for the file indicated by the
variable fi1ename is incorrect. Ensure that you are requesting the
correct drive code and filename before you recompile the source code.

#*¥line no. can‘t oren filename

Either the drive code or the filename for the file indicated by the
variable fi1ename is incorrect. Ensure that you are requesting the
correctdrive code and filename before you recompile the source code.

**line no. divide by zero

You attempted to divide by zero in the line indicated. Correct the
source code before you recompile it.

##*#line no. exPression toocomplex

An expression on the line indicated is too complex for C168. Simplify

the expression before you recompile the source code.

@DIGITAL RESEARCH™

D-13

FIo

essages C Language Programming Guide

Table D-2. (continued)

Message Meaning

##line no.modulus by zero

The second operand of the percent operator in the line indicated is
zero. Correct the source code before you recompile it.

#%line no., structure operationnot implemented

The operation you attempted with a structure in the line indicated is
illegal. Correct the source code before you recompile it.

##line no. usade: ci168 icode asm [-DLmec]

The command line syntax is incorrect. The correct command line
syntax is given in the error message. Correct the syntax before you
reenter the command line.

D.2.2 Internal Logic Errors

The following messages indicate fatal errors in the internal logic of C168:

¥#line no, cdsize: invalid type

#*#line no. code sKeleton error: op
#%line no., hard long to register
¥#line no. intermediate code error
#*line no. invalid initialization
#*#line no. invalid operator op

##line no. invalid redister exPression
#%#line no. invalid storage class sc
**#line nos. no code table for opP

**line no. sKelmatch tvyrPe: stypPe

If you receive one of these messages, contact the place where you purchased your system
for assistance. Provide the following information:

® Indicate the version of the operating system you are using.
® Describe your system’s hardware configuration.

B Provide sufficient information to reproduce the error. Indicate which program
was running at the time the error occurred. If possible, also provide a disk with
a copy of the program.

B DIGITAL RESEARCH™
D-14

S

g/

e

/

e

C Language Programming Guide D.3 CP68 Error Messages

D.3 CP68 Error Messages

The CP/M-68K C Preprocessor, CP68, returns two types of fatal error messages:
diagnostic error messages and messages indicating errors in the internal logic of CP68.
Both types of error messages take the general form:

line no. error message text

The pound sign (#) indicates that the error message comes from CP68. The “error
message text” describes the error.

D.3.1 Diagnostic Error Messages

A faral diagnostic erfor message prevents CP68 from processing your file. The CP68

diagnostic error messages are listed in Table D-3 with explanations and suggested user
responses.

Table D-3. CP68 Diagnostic Error Messages
Message Meaning

#line no, ardument bufferoverflow

An argument list in the line indicated contains too many characters
for the space allocated to the argument buffer. Reduce the number of
characters in the argument list before rerunning CP68.

#line no. bad ardument: arg

In the line indicated, the argument represented by the variable ar g

contains an invalid character. Replace or eliminate the invalid charac-
ter before rerunning CPé68. '

DIGITAL RESEARCH™

D-15

rS

D.3 CPé68 Error Messages

Table D-3. (continued)

C Language Programming Guide

Message

Meaning

#line no.

bad characteroctal no.

The line indicated contains an illegal character. The ASCII code of the
invalid character is represented by the variableoctal no . Examine

the line indicated to locate the error. Replace the character before-
rerunning CP68.

#line

no.

bad define name: name

The name indicated by the variable name contains one or more

invalid characters. Examine the name to locate the error. Replace the
invalid characters before rerunning CP68.

#line

NO .

bad include file
The syntaxofthe#include statementisincorrect. The#include
statement must follow one of the following two formats:

#include <filename>
#include “filename”

Rewrite the statement before rerunning CPé68.

#line

No.

bad include file name

In the line indicated, the filename in the #include statement con-
tains either an invalid character or more than 8 characters, the
maximum allowed. Supply a valid filename before rerunning CP68.

gline

nNo.

can’‘t orpen fname

The #include statement in the line indicated contains an invalid
or nonexistent filename. Check the filename before rerunning CP68.

gline

NO .

can’‘t openinfile

CP68 cannot open the input file indicated by the variable infile.
Either the drive code or the filename is incorrect. Check the drive code
and the filename before rerunning CPé68.

#line

No.

can’t openoutfile

CPé68 cannot open the output file indicated by the variableoutfile.
Either the drive code is incorrect, or the disk to which CP68 is writing
is full. Check the drive code. If it is correct, the file is full. Erase
unnecessary files, if any, or insert a new disk before rerunning CP68.

D-16

DIGITAL RESEARCH™

N

T3

// h

J
g

'C Language Programming Guide D.3 CP68 Error Messages

Table D-3. (continued)

Message Meaning

#line no.conditionstacKkoverflow

The source code contains too many nested #if’s for the space allocated
to the condition stack. The stack overflowed before the line indicated.
Rewrite the source code before rerunning CP68.

s#line no.define recursion

A name or variable on the line indicated has been defined in terms of
itself. Redefine the name before rerunning CPé68.

#line no.define table overflow

The source code contains one or a combination of the following: too
many names, too many long names, too many expressions, or too
many large expressions. The space allocated to the define table was
filled before the line indicated. Simplify and rewrite the source code
before rerunning CP68.

#line no. exPressionopPeratorstack overflow

G(An expression in the line indicated contains too many operations for
: the space allocated to the expression operator stack. Eliminate or
consolidate some operations before rerunning CP68.

#line no. expressionstack overflow

An expression in the line indicated contains too many terms for the
space allocated to the expression stack. Eliminate or consolidate some
terms before rerunning CPé68.

#line no. exPressionsyntax

The syntax of an expression in the line indicated is incorrect. Examine
the line to locate the error. Correct the syntax before rerunning CP68.

#line nos.includes nested too deerly

The #include statement in the line indicated contains more than
7 nested include files, the maximum allowed. Rewrite the source code

so that no one sinclude statement contains more than 7 nested
include files.

¢

88 DIGITAL RESEARCH™
: D-17

FZnd

D.3 CPé68 Error Messages C Language Programming Guide

Table D-3. (continued) \
Message Meaning R

#line no. invalid selse

A #else statement occurs in the source code without a preceding
#if statement. Supply the missing #1i f statement or eliminate the
#else statement before rerunning CP68.

#line no. invalid 8gndif

A sendif statement occurs in the source code without a preceding
#if statement. Supply the missing #i f statement or eliminate the
#endif statement before rerunning CPé68.

kY
#line no. invalid preprocessor command

The command in the line indicated is either not valid for CP68 or is
incorrectly formatted. Correct the command before rerunning CP68.

#line no., lineoverflow

The line indicated contains more than 255 characters, the maximum
allowed. Reduce the line to no more than 255 characters before
rerunning CP68.

#line no, macro arsument too long

An argument name in the line indicated contains more than 8 charac-
ters, the maximum allowed. Use no more than 8 characters for the
argument name, and rerun CPé68.

#line no. no */ before EQF

A comment in the source code is missing the closing */. Supply the
missing */ before rerunning CPé68.

#line no. stringcannotcross line.

A string in the line indicated is missing a closing quotation mark.
Supply the missing quotation mark before rerunning CP68.

#line no. string too long

The line indicated contains a string greater than 255 characters, the
maximum allowed. Shorten the string to no more than 255 characters
before rerunning CP68.

,/‘4' ™

DIGITAL RESEARCH™

D-18

FIS

C Language Programming Guide D.3 CPé68 Error Messages

Table D-3. (continued)

Message Meaning

#line no. symbol table goverflow

The source code uses too many symbols for the space allocated to the
symbol table. The symbol table was filled prior to the line indicated.
Eliminate some symbols before rerunning CP68.

#line no. too many arduments

- One of the names in the line indicated contains more than 9 arguments,
the maximum allowed. Reduce the number of arguments to no more
than 9 per name before rerunning CP68.

#line no. unexprected EOF

This message indicates an incomplete program. Examine the source
code to locate the error. Correct before rerunning CP68.

#line no. unmatched conditional

A #if statement occurs in the source code without a matching
sendif statement. Supply the missing #endif statement before
rerunning CP68.

#line no., usage: c68[-1i x:] inPutfile outputfile

This message indicates incorrect syntax in the command line. The
correct syntax is given. Correct the command line before rerunning
CP68. Refer to your C manual for an explanation of the command
line syntax.

DIGITAL RESEARCH™
| | D-19

o6

D.3 CP68 Error Messages C Language Programming Guide

D.3.2 Internal Logic Errors

CP68 returns only one message indicating an error in the internal logic of CPé68:
#line no. toomany characters pushed bacK

If you receive this message, contact the place where you purchased your system for
assistance. Provide the following information:

® Indicate the version of the operating system you are using.
8 Describe your system’s hardware configuration.

‘B Provide sufficient information to reproduce the error. Indicate which program
was running at the time the error occurred. If possible, also provide a disk with
a copy of the program.

D.4 C-Run-time Library Error Messages
The C-Run-time Library returns only one fatal error message, stack overflow. The

stack overflow message means the program you are trying to include in the C-Run-time
Library is too big. Reduce the size of the program.

End of Appendix D

@ DIGITAL RESEARCH™
D-20

FS7

index

[, 2-51 B
¢, 2-51
%, 2-43, 2-51 binary and ASCII files,
*, 2-43, 2-51 distinguishing, 1-6
-, 2-43 binary,
files, 1-6, 2-25
A 1/0, 3-2
: binary numbers, converting to

A.68K, 1-1 decimal ASCII, 2-43
abort function, 2-3 bit flags, 3-6
abs function, 2-4 black boxes, 3-1
absolute load module, B-4 blank padding, 2-43, 2-50
access function, 2-5 block size, changing, 2-8
addition, 3-5 blocks, releasing, 2-8
address variables, B-2 bogus address, freeing, 2-8
addressing error trap, 2-53 Boolean condition, 3-3
alignment, 2-29 boundaries, 128-byte,
AND, 3-5 2-49, 2-66
alphanumeric characters, 2-29 brackets, 2-51, 3-8
argc/argv interface, 1-5 break location, 2-16
argument, brk function, 1-2, 2-7

absolute value of, 2-4 BSss, 1-1, 2-16, 3-8

pointer, 2-51 buffer flushing, 2-18

same length, 1-4 BUSERR, 2-53

with side effects, 2-4, 2-15, BYTE, 3-4

2-29, 5-35 byte order, 2-29, 2-44

arithmetic comparison, 3-5 byte stream, transferring, 2-27
arithmetic trap, 2-53 ‘

ASCI1 character, 2-43, 2-50

ASCII files, 2-25 c character, 2-51
in CP/M-68K, 1-6 C Co-generator, D-1
ASCII string, C language,
converting to integer or functions implemented in, 2-2
binary, 2-6 portability, 3-1
null-terminated, 2-43 program memory layout, 1l-1
assembler, program compiling, 1l-1
initialization file, B-3 c operator, 2-43, 2-51
temp files, B-3 C Parser, D-l
assembly-language source file, C Preprocessor, D-1
B"2 cosub' l"l. 3-3
atan function 2-62 clé68, B-1, D-1
atof function, 2-6 calling conventions, 1-2
atoi function, 2-6 calloc function, 2-8
atol function, 2-6 carriage return, 2-14
automatic variables, 1-1 carriage return line-feed, 1-6

ceil function, 2-9

character, 8-bit, 2-44
character class, 2-14
character string, 2-51

Index-1

r

characters, locating in D
strings, 2-34

CHK instruction, 2-53 -D flag, B-2
chmed function, 2-10 d character, 2-51
chown function, 2-10 d operator, 2-43
clearerr function, 2-22 data,
clib, B-2 conversion, 2-2
clink.sub, 1-1, B-3 region, 2-16
close function, 2-11 structures, 3-1
closing streamfiles, 2-21 DDT-68K, 2-3
coé68, B-1, D-1 decimal ASCII, 2-43
coding conventions, ' integer conversion, 2-51
mandatory, 3-2 DEFAULT, 3-4
suggested, 3-8 default drive, B-3
code generator, B-1l, B-2 $define statement, 3-3, B-1
command line interface, 1-5 module-specific, 3-7
commas, 3-5 deleting a file, 2-65
comments in a module, 3-7 destination string, 2-59
comparing two elements, 2-47 /dev/1p, 1-5
compilation, speeding, B-4 /dev/tty, 1-5
compiler, B-1, B-2, B-3, B-4 device access, terminating,
compiler-generated code, 1-5 2-11
compiling a C program, 1l-1 device 1/0, 1-5
completion code, 2-18 digit string, 2-43
compound statement, 3-8 disk space, conserving,
CON:, 1-5, 2-35, 2-63 B-1, B-3
concatenating strings, 2-57 disks, swapping, B-3
console device, 2-28, 2-35 do, 3-8
contiguous digits, 2-6 documenting code, 3-8
control characters, 2-14 drive changing, B-3
control string format, 2-50 dynamic memory allocation, 2-1
controlling statement, 3-8 dynamic memory areas,
conversion character, 2-50 heap, 1-2
conversion code, capitalized, stack, 1-2
2-43
conversion operators, 2-42 E
optional instructions in,
2-43 E2BIG, A-1l
conversion specifications, 2-50 EACCES, A-1
copying strings, 2-59 EBADF, A-1
cos function, 2-12 . edata location, 1-2, 2-16
cp68, B-1 editor, B-3
CP/M-68K C compiler, D-1 EFBIG, A-2
CP/M-68K C Run-time Library, EINVAL, A-2
D-1 EIO, A-1l
creat function, 2-11, 2-13 else, 3-8
creata function, 2-13 end, 1-2
creatb function, 2-13 end location, 2-16
CTRL-Z, 1-6 end-of-file, 2-22
ctype function, 2-14 errors, 2-30
<ctype.h> file, 2-14 ENFILE, A-2

ENODSPC, A-2
ENOENT, A-1
ENOMEN, A-1l
ENOSPC, A-2

Index-2

ENOTTY, A-2

entry points, 2-2

EROFS, A-2

errno external variable,
2-400 A‘l

<errno.h>include file, A-1l
error,
in specified stream, 2-22
system-dependent, 2-3
error file, 2-40
error messages, numbers,
2-40, A-1
error return, from getchar,
2-29
etext location, 1-2, 2-16
etoa function, 2-17
exception condition, 68000,
2-53 *
executable file, B-2
exit function, 2-18
_exit function, 2-18
exp function, 2-19

extended character sets, 3-6

EXTERN, 3-4
external,
names, l1-4
reference, B-2
variable, 2-40

) 4

~-F option, B-2

fabs function, 2-20

fcetc function, 2-29

fclose function, 2-21

fdopen function, 2-25

feof function, 2-22

ferror function, 2-22, 2-36

£flush function, 2-21

fgetc function, 2-29

fgets function, 2-33

field width, 2-43

file access,
terminating, 2-11
legal, 2-5

file data, reading, 2-49

file descriptor, 2-63

file 1/0, 1-5

file pointer, 2-49

file size, reducing, B-3

file statements, 3-7

file streams, manipulating,

2-22
file.0, B-2
file.C, B-1

file.I, B-l

file.IC, B-1l

file.S, B-2

file.ST, B-1

filename, temporary, 2-38

fileno function, 2-22

files, changing protection and

iD, 2-10

floating-point,
conversion, 2-43
routines, 2-2

flushing stream files, 2-21

floor function, 2-23

fmod function, 2-24

fopen function, 2-25

fopena function, 2-25

fopenb function, 2-25

for, 3-8

form feed, 2-14

formatting data, 2-42

fprintf function, 2-42

fputc function , 2-44

fputs function, 2-46

frame pointer, 1-2

fread function, 2-27

free function, 1-2, 2-8

freopa function, 2-25

freopb function, 2-25

freopen function, 2-25

fscanf function, 2-50

fseek function , 2-28, 2-64

ftell function, 22-28

ftoa function, 2-17

fwrite functions, 2-27

G

getc function, 2-29, 2-64
getchar function, 2-29
getl function, 2-29
getpass function, 2-31
getpid function, 2-32
gets function, 2-33

getw function, 2-29
GLOBAL, 3-4

global data areas, 3-1
global variable, 3-3

header file, 3-2

heap management, 1-2

heap space, 'allocating, 2-8
heap extending, 2-7

hex constant, 3-2

Index-3

F&o

hexadecimal ASCII, 2-43
integer conversion, 2-51
high bytes, reversing with low
bytes, 2-61

I

-1 flag, B-1

#include, B-1

#include "file.h", 3-2

1/0, .
redirection, 1-7
stream, 2-25
device, 1-5

filep 1‘5
single-byte, 1-5
if'p 3-8

illegal instruction trfap, 2-53
include files, nesting, 3-2
indention technique, 3-8
index function, 2-34
initialization file, B-2
initialized data, 1-1, 3-6
input, 1-6

format, 2-50

stream, 2-64
instruction trap, 2-3
int,

random number seed, 2-48

variable length, 3-2
intermediate code file, B-1l
intermodule communication,

using procedure calls, 3-1
isalnum(c), 2-14
isalpha(c), 2-14
isascii(c), 2-14
isatty function, 2-35
iscentri(c), 2-14
isdigit(c), 2-14
islower(c), 2-14
isprint(c), 2-14
ispunct(c), 2-14
isspace(c), 2-14
isupper(c), 2-14

J

JSR instruction, 1-2
L

L character, 2-43

-L flag, B-2
-L option, B-2

Index-4

language library, compatibility
with UNIX V7, 2-1

leading sign, 2-6

leading spaces, 2-6

line A trap, 2-53 .

line F trap, 2-53

line-feed, 1-6, 2-14, 2-50

linkage editor, 1-2, B-2

linker, B-1, B-2, B-3, B-4

linker, invoking, 1-1

listing device, 2-28

literal matches, 2-51

Loe8, B-1, B-2

load modules, B-3

load time, reducing, B-3

LocaL, 3-4, 3-7

local variable names, 3-3

log function, 2-36

logical, 3-5

long, 32-bit, 2-29, 2-43

long masking constant, 3-5

longjmp function, 2-52

low bytes, reversing with high
bytes, 2-61

lower-case, 2-2, 3-2, 3-3

lseek function, 2-37

LST:, 1-5

M

macro, 2-4, 2-15, 2-29, 2-44
macro definitions, 3-2
maintenance costs, 3-1
maintenance documentation, 3-8
malloc function, 1-2, 2-8
mandatory coding conventions,
3-2
margin, 3-8
masking, 3-5
memory allocation, 2-15
memory layouts of C programs,
1-1
minus sign, 2-43
mktemp function, 2-38
MLOCAL, 3-4
modular programs, 3-1
module,
layout, 3-7
size, 3-1
module-specific #define
statements, 3-7
movem.l instruction, 1-4
multibyte binary variables, 3-2
multicharacter constants, 3-5

p 24

nesting level, 3-8

newline, 2-50
character, 2-33, 2-46
incompatibility, 2-46

' NO-OPS, 2-10

nonlocal goto, 2-52
null statement, 3-8
null-terminated string,
2-43, 2-46
concatenating, 2-57

o

O character, 2-51
© operator, 2-43
-0 file.68K, B-2
object code, reducing size,
2-29
octal,
ASCIIl 2‘431 2‘51
constant, 3-2
open function, 2-11, 2-39,
2-25, 2-49
open stream, 2-22, 2-50
opena function, 2-39
openb function, 2-39
opening files, 2-39
operations, 3-5
OR, 3-5
output, 1-6
file' B-l
left-adjusted, 2-43
right-adjusted, 2-43
overflow, detection and
reporting, 2-6

P

padding, blank or zeco, 2-43
parentheses, 3-2, 3-4
parser, B-1

password, 2-31

PDP-11, 2-61

percent sign, %, 2-42
peripheral devices, 1-5
perror function, 2-40, A-l
pointer arithmetic, 3-5
portability, 3-1 to.3-7

" pow function, -2-41

precision field, 2-43
precision string, 2-43
preprocessor, B-l
primary memory, 2-27

printf function, 2-42, 3-2, 3-5
printing characters, 2-14
privilege violation, 2-53
procedure definitions, 3-7
procedure header, 3-7
process 1D, false, 2-32
punctuation characters, 2-14
pushed-back characters, 2-64
putc function, 2-44

putchar function, 2-44

putl function, 2-44

puts function, 2-46

putw function, 2-44

Q

gsort function, 2-47
qguick sort routine, 2-47

R

-R option, B-2

rand function, 2-48

random number generator, 2-48

random numbers, retrieving,
2-48

read errors, 2-30

read function, 2-49, 2-29

read pointer, 2-28

readability, improving, 3-8

realloc function, 2-8

references, global, 3-7

REG' 3’4

registers, scratch, 1-4

regular files, 1-6

reloc utility, B-3

relocatable files, B-2

rewind function, 2-28

rindex function, 2-34

ROM, 3-6

run-time start-up routine, B-2

8 character, 2-51

8 operator, 2-43

-S option, B-2

-S switch, B-4

sample C module, C-1

sbrk function, 1-2, 2-7, 2-16
scanf function, 2-50

screen editing, 3-8

seed, 2-48

setjmp function, 2-52
sign-extending characters, 3-2

Index-5

Lo

signal function, 2-53
signed characters, 2-58
sin function, 2-12
single-byte 1/0, 1-5

single-density disk system, B-3

sinh function, 2-55
source file, B-1l
space, 2-14

allocation for array, 2-8
sprintf function, 2-42
sgqrt function, 2-56
srand function, 2-48
sscanf function, 2-50
stack frame, 1-4
stack use, 1-2
stack-popping code, 1-4
standard error file, L\-6

standard type definitions, 3-3

start-up file, B-2
static data, 2-31
static variables, 3-6
stderr, 1-6
stdin, 1-6
<stdio.h> file, 1-6, 2-4,
2-29: 2‘44
stdout, 1-6
storage class, 3-7
definitions, 3-3
strcat function, 2-57
strcmp function, 2-58
strcpy function, 2-59
stream, :
address, 2-21
buffer, 2-37
file, 2-28, 2-33
output file, 2-18
string,
comparison, 2-58
length, 2-58
null-terminated, 2-31
variables, 3-5
strlen function, 2-60
strncat function, 2-57
strncpy function, 2-59
strncmp function, 2-58
stylistic rules in C
programs, 3-1 .
submit files, B-3
subroutine calls, 1-4
subtraction, 3-5
suppressed assignments, 2-41
swab function, 2-61
swapping binary data, 2-61
symbolic constants, 3-2
symbolic names, A-l

Index-6

system,
calls, 2-1
error, 2-40
include files, B-l
traps, 2-1
system-wide file, 3-2

T

-T switch, B-4

tab, 2-14, 2-50, 3-8

tan function, 2-62

tanh function, 2-55

tell function, 2-37

temporary file, B-1

terminal device, 2-63

terminating current program,
2-3

text, 3-6

tilde, 2-14

trace trap, 2-51

trailing null, 2-46, 2-51

transferring data, 2-66

TRAPV instruction, 2-51

ttyname function, 2-63

type, 3-2

type definitions, 3-3

typedef 3-3

4]

u operator, 2-43
-U option, B-2
UBYTE, 3-4
underline character, 1-4
ungetc function, 2-64
uninitialized data, 1-1, 3-6
UNIX,
compatibility, 2-9, 2-40,
2-46, 2-53
versions 1 through 6, 2-37
version 7, A-2
with fopen, 2-26
with getpid, 2-32
with getchar, 2-30
UNIX programs, with binary
files, 2-39
unlink function, 2-65
unsigned characters, 2-58
unsigned int, 3-2
upper bound of progranm,
setting, 2-7
upper-case, 2-2, 3-2, 3-3
user control block, 1-5
UWORD, 3-4

v

variable, 3-7
variable names,
global, 3-3
local, 3-3
lower-case, 3-3
variable type, 3-7
VAX, 2‘61
vectors, sorting, 2-47
Vo1iDp, 3-4

W

while, 3-8
white space characters, 2-14
WORD, 3-4
word,
le-bit, 2-44
32-bit word, 2-3
word boundary, 2-8
write function, 2-44, 2-66
write pointer, 2-28

~

X

X characters, 2-38, 2-44, 2-51

X operator, 2-43
A

zero divide, 2-53
zero padding, 2-43

Index~7

Fées”

