
PREFACE

INTENDED AUDIENCE

The DOS-73 Technical Reference is written for technicians doing component-level
trou bleshooting of the DOS-73 Coprocessor board.

ORGANIZATION OF THIS MANUAL

System Features and Functions

Briefly describes the physical features and functional capabilities of the
DOS-73 Coprocessor board.

DOS-73: Theory Of Operation

Describes the DOS-73 hardware and the functions performed by it.

Diagnostics

Describes DOS-73 Coprocessor diagnostic procedures.

1.

CONTENTS

1: System Features and Functions

General Description... 1-2
DOS-7 3 Archi tecture.. 1-2
DOS-73 Block Diagram... 1-3

2: DOS-73: Theory Of Operation

cPu.. 2-2
Memory Organization.. 2-3
COM2: Emula tion.. 2-4
Timer Emulation.. 2-5
Interrupt System... 2-5
I/O Intercept System.. 2-6
Video Intercept System... 2-7
Math Coprocessor Emulation... 2-7
UNIX Interface.. 2-8
Software Driver Specifications.. 2-10

DOS-7 3 Hard ware... 2-10
User Level Interface... 2-13

3: Diagnostics

Testing The COM2: Port... 3-2
Number Of Test Passes... 3-2
Test Descriptions... 3-3
In Case Of Trouble... 3-6

11.

1: SYSTEM FEATURES AND FUNCTIONS

General Description... 1-2
DOS-73 Architecture.. 1-2
DOS-73 Block Diagram... 1-3

1-1

SYSTEM FEATURES AND FUNCTIONS

GENERAL DESCRIPTION

The DOS-73 coprocessor is a peripheral product designed to bring MS-DOS capabilities to
the AT&T UNIX PC. The DOS-73 hardware is essentially a PC "on a board," with several
enhancements. The hardware enhancements include: Hercules monochrome graphics emula­
tion (first page only), PC COM2: port emulation, Microsoft Mouse emulation using the
mouse, and increased performance due to a full 16 bit bus and increased clock speed. This
document describes the DOS-73 hardware and outlines the DOS-73/7300/UNIX interface
standards as ALLOY has defined them.

DOS-73 Architecture

The DOS-73 hardware was designed to parallel the PC architecture. The hardware also in­
cludes enhancements which allow it to be integrated into a multi-processor environment,
and improvements. The system includes the following:

8086 CPU

512K Bytes Dynamic RAM

Memory Timing & Control Circuitry

INS8250 Asynchronous Communications Element

Interface Circuitry to the 7300 bus

18259 Programmable Interrupt Controller

18253 Programmable Timer

V ideo Data Handling Circuitry

I/O Intercept Circuitry

8087 Numeric Coprocessor Hooks

A block diagram of the board is found on the following page.

1-2

System Features and Functions

DOS-73 BLOCK DIAGRAM

I COM2: 1

~
I I II

~~;!3"r
~~~IM r 

I CM·I....----+-1 UNIX 10' ~ 
I ~:::~,J 

Refresh 

ul Data I I I I 
1 1----' 

8086 

ADDR 

RAM 

I f Refresh ADDR 
: 

/ ~ System rE-
Control r--- 5121\. 

...... Logic ..., r--- RAM 
" /1 Data 

Remap Logic ,...--- Seiect 
UNIX IDt 

RAM - Logic 

t i 4 Sel 

11 
Sel Logic 

\11 

UNIX BlU Logic Sel ~f\ r 
1 

I j\ 
ADDR 

Control 

V\ Data 

\11 V IV 

UNIX PC BUS 

Figure I-I. DOS-73 Coprocessor Block Diagram 

1-3 



2: D05-73: Theory Of Operation 

cPu.................................................................................................................................................................. 2-2 
Memory Organization.............................................................................................................................. 2-3 
COM2: Emulation...................................................................................................................................... 2-4 
Timer Emulation........................................................................................................................................ 2-5 
Interrupt System......................................................................................................................................... 2-5 
I/O Intercept System................................................................................................................................ 2-6 
Video Intercept System........................................................................................................................... 2-7 
Math Coprocessor Emulation............................................................................................................... 2-7 
UNIX Interface.......................................................................................................................................... 2-8 
Software Driver Specifications.......................................................................................................... 2-10 

DOS-73 Hard ware....................................................................................................................... 2-10 
User Level Interface................................................................................................................. 2-13 

2-1 



DOS-73: Theory Of Operation 

CPU 

The DOS-73 utilizes an INTEL 8086 CPU. The CPU is run at a master clock frequency of 
8 Mhz. This effectively doubles the speed of the DOS-73 board when compared to the IBM 
PC. The 8086's 16 bit data bus further increases the overall system throughput. 

Minor problems occur when switching from an 8088 to an 8086 and continuing to use 8 bit 
VLSI peripherals. One problem is that the 8086 expects data for 8 bit I/O cycles, to odd 
addresses, on the upper half of the data bus. This is a problem because the 8 bit 
peripherals usually reside on the lower half of the bus. Thus, a data path is needed to 
move data from the lower half of the bus to the upper half on I/O operations to odd 
addresses. This process is known as byte swapping. 

The logic to control this is incorporated in M33 (PA20LI0) and in the bus transceivers M24, 
M25, and M49. M33 monitors the bus control signals generated by the 8086 during its ex­
ecution of instructions. Based upon the type of operation being executed, M33 sends the 
appropriate device enable control signals to M24, M25, M49, according to the following 
table: 

OPERATION CHIP ENABLED 

word rd from mem 
byte wrt to mem (even addr) 
byte wrt to mem (odd addr) 
byte rd from mem (even addr) 
byte rd from mem (odd addr) 
byte wrt to I/O (even addr) 
byte wrt to I/O (odd addr) 
byte rd from I/O (even addr) 
Byte rd from I/O (odd addr) 

M24,~149 

M24,M49 
M24 
M49 
M24 
M49 
M24 
M25 
M24 
M25 

The CPU is supported by two other chips, the 18284 clock generator, and the 18288 bus 
controller. These chips are M51 and M50, respectively. The 8284 is used to divide the 
master system clock into a 33% duty cycle, 8Mhz clock. This chip also produces a 4mhz 
peripheral clock, and serves to synchronize the 8086's reset. The 8288 is used to decode the 
8086's status signals and generate the bus control signals traveling to the rest of the board. 
This chip is also responsible for generating the signal ALE. This signal strobes the 8086 
addresses into the address latches. The address latches are M30, M37, and M43. The ad­
dresses must be saved because the 8086 time multiplexes its addresses and data signals. 
Thus, the addresses that the 8086 sets up are only valid for a short time at the beginning of 
a bus cycle, and you must save them if you want to use them through the whole cycle. 

2-2 



DOS-73: Theory Of Operation 

Memory Organization 

The DOS-73 utilizes 512k bytes of random access memory. The memory is implemented 
using sixteen, standard technology, 256k x I bit dynamic RAM chips. They are M56 
through M71. The RAM system is dual-ported. This means that the 8086 may access the 
RAM or the UNIX system may access the RAM. In this section we will only discuss how 
the 8086 gets access to the RAM. The UNIX interface to the RAM will be discussed later. 

The basic Ri\.~1 timing is derived from a simple delay line circuit. Any memory read or 
memory write by the 8086 will start a memory cycle. The 8086 MRD and MWT signals are 
or'ed by the three input or gate Ml. The output from this gate clocks a flip-flop (MI2A), 
which generates the RAS to the RAM banks, and the master cycle length input to the delay 
(M2) line. The delay line delays the input signal, by some pre-specified length of time, 
before passing it to the output pins. The delay line We uSe has 40ns increments. Thus, the 
delay from input to the output on TI is 40ns, to T2 is 80ns, and so on. TI from the delay 
line is used as the MUX signal to the address multiplexors. Thus, 40ns after RAS becomes 
active the select on the address multiplexors changes to select the CAS addresses. Tap T2 is 
used to feed the clock on the CAS flipflop. So, 80ns after RAS becomes active the CAS 
flipflop (MI2B) gets clocked and the master CAS signal becomes asserted. The actual CAS 
signals to the RAMS are decoded in M3. 

M3 takes the output from the CAS flipflop and gates it with four other signals, to form 
HICAS and LOCAS. HICAS and LOCAS allow byte or word operations to the memory. 
The bank decode signals are XHI, XLO, RIDEN, and LODEN. XHI and XLO arc generated 
by M33 and apply only to memory transfers by the UNIX system. XLI and XLO will not 
become active unless UNIX has control of the DOS-73 buses. HIDEN and LODEN are gen­
erated in M38 and M33, respectively. HID EN becomes active when the UNIX system does 
NOT have control of the bus and the 8086 wants to transfer data on the upper half of the 
data bus (D8-DI5). LODEN becomes active when the UNIX system does NOT have control 
of the bus and the 8086 wants to transfer data on the lower half of the bus (DO-D7). 
HICAS and LOCAS are generated according to the following table: 

2-3 



DOS-73: Theory Of Operation 

OPERATION -----> HI CAS LOCAS 

I/O (any width) false false 

MEM (word even aligned) true true 

MEM (byte even addr) false true 

MEM (byte odd addr) true false 

The last bit of memory to talk about is the refresh. The DRAMS we use require a 256 cycle 
4ms refresh. Thus, if we space refresh cycles evenly, we must do a refresh every 12.5us to 
be safe. The way the system is structured, there are two types of refresh. One is a refresh 
when the UNIX system has control of the DOS-73 bus, and the other is a refresh when the 
8086 is running. 

When the 8086 is running, the refresh timing is generated on the board. To generate these 
refresh cycles we use one channel of the onboard programmable timer to generate a pulse 
train with a rising edge every l2.5us. This wave form is fed into the clock of the refresh 
request flip flop (M9b). Under normal conditions, this will cause the flipflop to be clocked 
and a refresh request to be generated. There are two conditions when this will not happen. 
One, if the 7300 has control of the local bus, then the onboard refresh requests will be 
inhibited. Two, if the 7300 has requested access to the local memory, then refresh requests 
will be cleared so as not to confuse the bus arbitration state machine. 

COM2: Emulation 

The DOS-73 board provides for I/O communication with the outside world by having 
hardware onboard that emulates the PC COM2: port. This is accomplished by using the 
same type of VLSI communications chip that IBM uses. The chip is the NATIONAL 8250 
(m18). We have preserved compatability with IBM by installing the chip at the same I/O 
address as the PC's COM2: port. The actual address decoding is done by the 
MASTER 10 DEC pal, a 1618 (m14). The COM port is further supported by RS-232 line 
drivers and receivers (m4 and m5) to translate the TTL signal levels to RS-232 levels. 
Physical interface compatability is achieved by terminating the signals with a DB-25 con­
nector that is the same sex as the PC's COM port, and has the same pinouts. 

2-4 



DOS-73: Theory Of Operation 

Timer Emulation 

The DOS-73 board has an onboard 8253 VLSI counter/timer chipo This is used for two 
things. One, to provide a clock to the RAM refresh circuit, and two, to provide a pulse 
train to the interrupt controller which emulates the IBM PC timer tick interrupt. The 8253 
happens to be the same part that IBM uses to generate its internal timing, thus more PC 
compatability is achieved here. The I/O decoding for this chip is done by M14, the master 
I/O decoder PAL. Finally, the 8253 reqires a clock input from which it derives all of its 
timing. We provide it with a IMhz clock input. This is obtained by dividing the processor 
8Mhz clock by two, three times. The clock division is done by flip-flops in M45 and M7. 

Interrupt System 

The DOS-73 coprocessor has an interrupt system very similar to that on the IBM PC. It uses 
an 8259 programmable interrupt controller (m32). The channel assignments are as follows: 

CHN# 

o 
I 
2 
3 
4 
5 
6 
7 

FUNCTION 

Reserved for future use 
Reserved for future use 
Timer Tick interrupt from 8253 
Comm interrupt from 8250 
Interrupt 0 from UNIX interface 
Interrupt I from UNIX interface 
Interrupt 2 from UNIX interface 
Interrupt 3 from UNIX interface 

The 8086 is structured such that during an interrupt acknowledge cycle it wants to see 
valid vector data on the lower half of its data bus. The problem that arises here is that 
during an intak cycle the 8086 does not set up its address lines, thus the addresses on the 
system bus during an intak cycle are the ones left from the last instruction that was 
executed. This causes a problem if the last bus operation was a memory or I/O operation to 
an odd location. If this scenario occurs, AO is left in the wrong state for proper data trans­
fer during the interrupt acknowledge cycle. To avoid this type of problem we fix AD to a 
zero during intak cycles. The address generation is done by negative logic or'ing (M27-c) 
AO with INTAK, to form WILDAO. WILDAO is then used by the system as its AG. 

2-5 



DOS-73: Theory Of Operation 

I/O Intercept System 

The DOS-73 supports many onboard I/O mapped devices that the IBM PC does, however, 
we can't support them all due to space and cost limitations. Some important ones that 
aren't supported in hardware are the COMI: port, LPT: port, and the floppy controller. 
Since many PC compatible programs talk directly to these devices, we need to know when 
code is attempting to access them, so we may then emulate these devices and others in 
software. Hence the creation of the I/O intercept system. 

The I/O intercept system is a simple concept. In hardware we keep a map of the addresses 
of I/O mapped devices that we do and don't support. As each instruction is executed 
hardware decodes what instruction is being executed for use later. More hardware com­
pares the address of the instruction being executed to the address map of devices. If the 
instruction being executed is an I/O instruction and the address accessed by that instruc­
tion is in the map as valid, then processing continues normally. However, if the address 
was shown as invalid in the map then the following happens. First, we generate an NMI to 
the onboard CPU. This will be recognized prior to executing the next instruction. At the 
same time the lower fourteen bits of the address bus and two bits indicating the type of in­
struction being executed at the time of the NMI are stored into two eight bit latches. At 
this point the NMI service routine has enough information to tell what type of operation 
happened to cause the NMI and where the instruction was trying to access. 

The address map is maintained in Ml4 (PAL 1618), This PAL does all the I/O address 
decoding for the 8086, thus by default contains the map. The output labeled ILLADD(L) 
indicates that an address not on the board is being accessed if it is true. This signal is fed 
into M20 (PAL2018), and is used to generate the NMI to the CPU. In this PAL is logic 
which may enable and disable this feature. This logic is seen as the term ENID. ENID is 
essentially a one bit latch. When an I/O write occurs to port A2h then the latch is set true; 
when a write to A3h is done then the latch is cleared false. To generate the NMI to the cpu 
the ENID bit is anded with ILLADD and lOW or lOR (see terms 2 and 3 of NMI equation 
in M20). Thus, if ENID and ILLADD and lOW or ENID and ILLADD and lOR are true, 
then the PAL will generate an NMI. The NMI signal is used to freeze the state machine 
tracking the instruction being executed (M38), and store its information as well as the bus 
address information into the NMI latches (M13 and MI7). 

2-6 



DOS-73: Theory Of Operation 

Video Intercept System 

The video intercept system on the DOS-73 is quite similar to the I/O intercept system. The 
video intercept system gives the software a way of knowing when the screen RAM has been 
accessed, and also revectors memory operations from the screen RAM addresses to the top 
part of our memory. The DOS-73 has only 512k of RAM, thus the IBM video RANi page 
falls outside of our memory. Therefore, we need a way to make video memory operations 
access our memory. 

In a manner similar to the I/O system, the video NMls may be enabled and disabled. This 
is done by the ENVID term in M20. An I/O write to AOh will set this true and enable 
NMI's to be generated when memory writes are done to the video RAM page, and a write to 
Alh will disable this feature. The term in the NMI equation which does this is term 1. To 
generate a video NMI it requires that ENVID and MEMW be true and that the bus address 
is equal to the BOOOOh memory page. 

The remapping is similar to the NMI generation in that it may be enabled and disabled. 
This is done by an I/O write to the STH register and by setting the ENBMAP bit. This bit 
is set false after a board reset and is generated in M40 (PALI6R4). The ENBMAP signal is 
then fed in to M20, where the address comparison for remap addresses is done. The equa­
tion MAPNOW is what causes a video remap. This equation will be true any time that the 
bus address is equal to the BOOOh page and ENBMAP is true. This signal is fed into M21 
(PAL 16L8) which will do the actual address translation for the remap. M21 is used to gen­
erate the upper five address bits that will go to the system RAM (SYAI4 - SYAI8). In ad­
dition to the remap, it multiplexes the addresses from the 8086 and the UNIX system that 
go to the RAM. A video remap occurs as follows: if the 8086 is writing to the RAM and the 
MAPNOW signal goes true, the PAL fixes SYAl5 thru SYAl8 to a high state. These ad­
dresses are latched in on the falling edge of CAS, thus the remap cycles are forced into the 
top 32k of our RAM. 

Math Coprocessor Emulation 

The DOS board has the circuitry onboard to support the 8087 numeric coprocessor in an PC 
compatible fashion. The only support issue to contend with here is what happens when 
there is an operation fault in the 8087. When this occurs, an NMI is generated to the 8086. 
Following this the application program running at the time will generally do an I/O read 
from port 62h to obtain information concerning the cause of the NMI. We emulate two bits 
in the port 62 register, D6 and D7. We fix d6 low, thus indicating that an I/O CHCHK is 
false, and we set D7 to reflect the state of the 8087 int signal. This has the effect of in­
dicating no parity error if the 8087 causes the NMI, and a parity error if anything else sets 
the NMI. When appiication software checks this register and sees an NNiI with no parity 
error it will go to its 8087 error handling routines. If, however, it sees a parity error, it 
will pass control to our routines, which will then deal with the NMI according to our needs 
(I/O NMI or VIDEO NMI). 

2-7 



DOS-73: Theory Of Operation 

UNIX Interface 

The UNIX PC provides an independent memory and I/O space for each slot in its bus. The 
I/O space is 256k bytes in length. The DOS-73 resides only in the UNIX PC slot I/O space. 
In our mapping scheme, the upper 128k of the I/O space is used for the board ID registers 
and the DOS control and status registers. The lower 128k bytes is mapped into our RAM. 

Each expansion board for the UNIX PC must have its own unique four byte sequence of 
identification bytes that the computer may read. To save space, we have hard coded the 
board ID into a PAL (M54). This PAL is accessed and its data is gated onto the UNIX PC's 
bus any time that a read operation is done to the ID addresses for the slot that the board is 
in. The slot address comparison is done by M22 (74Is85). This chip compares the upper 
three UNIX address bits to the hardwired slot id bits of the slot the board is in. If they are 
equal and the PC is doing an I/O cycle, as indicated by the signal XIOEN, then the com­
parator will set its output true. This is fed into a flip-flop (M9), where it is synchronized 
to the UNIX PC's peripheral clock, to form the signal BOARDIO(H). Whenever this signal 
is true it indicates that the UNIX PC is doing a valid I/O access to our I/O space. The 
board id PAL uses BOARDIO(H) and the signal 10SPACE(H) and the lower four address 
bits to decode whether the board id is being accessed or something else is being accessed. 

The other two registers in the upper half of the slot's I/O space are the UNIX TO DOS 
con trol register and the DOS TO UNIX status register. The address decoding f or these 
two is done in M33 (PAL20LIO). The DTU register may be read by the UNIX system and 
written by the 8086. It is primarily used to pass interrupt information to the UNIX system 
from the DOS-73 environment It is also used to generate the physical interrupt to the 
UNIX PC. The 8086 interrupts the UNIX system by writing to the STH with D7 high. 
This causes two things in M41 (PAL20X8): First, the intbit (xd15 to unix) is set, indicating 
that an interrupt is set, and second, the HIRQ(L) line is set true to interrupt the UNIX 
system. 

The UNIX system sends high level commands to the DOS-73 board through the UTD 
register. The UNIX system writes to this port and the address decoding is done by M33. 
Through the use of this register the UNIX system may Reset the DOS processor, request its 
memory, interrupt it, or clear an interrupt generated by the 8086 to UNIX. The bit defini­
tions are detailed in the Software Driver Specifications. 

The last bit of the UNIX interface to discuss is the memory window interface. The UNIX 
system may communicate with the DOS-73 board by windowing anyone of the four 128k 
byte local memory segments into the lower 128k bytes of the slot id space. Once this is 
done, the UNIX system may read and write to this memory as though it were its own. 

2-8 



DOS-73: Theory Of Operation 

The windowing works as follows. When the DOS-73 board is in the reset state then the 
memory belongs to the UNIX system. When reset is de-asserted, then the local 8086 starts 
up and the RAM belongs to it. At this point, if the UNIX system wishes access to the 
RAM, it must follow a request/acknowledge arbitration process. First, the UNIX system 
must write to the UTD register and set bits 4 and 5. These bits will be decoded later to 
address one of the four l28k segments in local RAM. Next, the UNIX system must set the 
MEMORY_REQUEST bit. This line designates that the UNIX system is requesting access 
to the local memory. This bit becomes the TAKEMEM(L) signal and is fed into M26 
(PALl6R8). This PAL is actually a state machine which translates the TAKEMEM(L) sig­
nal to a REQUEST/GRANT sequence that the 8086 will accept (see intel Microprocessor 
Components Handbook). When the PAL receives the grant pulse from the 8086, then it 
sends a BUSAK(L) signal to the rest of the board. This signal degates the 8086 address and 
data drivers from the local bus and asserts the drivers from the UNIX PC bus. This signal 
is also sent to the DTU PAL where the UNIX system may monitor its status. When the 
UNIX system sees this signal become true then it may read and write to our RA~v1. During 
the time that the UNIX system has access to our memory we feed the XRFBG signal into 
M26 to generate refresh cycles to our RAM. When the UNIX system has finished with our 
memory, it resets the TAKEMEM(L) bit and the M26 state machine executes the 8086 bus 
release sequence. 

2-9 



DOS-73: Theory Of Opera tion 

Software Driver Specifications 

This section describes the relationship between the UNIX operating system and the DOS-73 
device. This section includes two parts: 

1) A description of the DOS-73 hardware. 
2) A description of the user-level interface supplied by the DOS-73 device driver. 

DOS-73 Hardware 

Before describing any part of the UNIX/DOS-73 relationship, some basic inf orma tion must 
be known about the DOS-73 hardware. 

Just a glance at the DOS-73 board shows the basic configuration. The device is equipped 
with an 8086 microprocessor with 5I2K bytes of random access memory. There is support 
for the device to receive and transmit interrupts from/to the UNIX PC. The hardware is 
configured to interrupt the Unix PC at level one. The DOS-73 device also has a local RS-
232 port and 8087 math processor, but neither are directly accessible from the user level. 

Since there is only 256K bytes of address space per slot on the UNIX PC bus, the 5I2K 
bytes RAM is divided up into four pages of I28K bytes each. The selection of different 
pages on the DOS-73 device is done through a control register, which will be explained 
shortly. 

The DOS-73 board is identified by the contents of the last four odd addresses in the slot it 
occupies. These locations contain the identification bytes and their associated checksums. 
The following table shows those values in hexadecimal: 

Description Offset in Slot Value 

LSB of ID Ox3fff9 Ox86 
MSB of ID Ox3fffa Ox73 
LSB of IDCK Ox3fffc Ox7a 
MSB of IDCK Ox3fffe Ox8d 

2-10 



DOS-73: Theory Of Operation 

The DOS-73 board communicates with the UNIX PC through one register residing at offset 
Ox3ffee. This register is called the Host-To-DOS/Status register, but for simplicity it will 
be referred to as the HTD register. When this register is written to by the s4, commands 
are sent to the hardware. When this register is read by the UNIX PC, commands are 
received from the hardware. Since there are no means of reading the register to get the 
last value written to it, the DOS-73 device driver maintains an image of the HTD register. 
Details will be explained later. 

The HTD register control bits are as follows: 

(Bit 0 always refers to the least significant bit.) 

Bit 0 

Bit 1 

Bit 2 

RESET 

BRQ 

1 filS 01'[ con trois the main state of 
the DOS-73 device. When this bit is 
1, the DOS-73 device is active and 
the 8086 is running. When this bit is 
0, the DOS-73 device is reset and 
nonactive. The 8086 microprocessor 
begins executing code at address 
OXIFFFO when enabled. 

This bit sends a bus request to the 
DOS-73 device. When a bus request 
is granted, the DOS-73 device's 
memory is in a tri-stated mode, and 
can be written to by the UNIX PC. 
When this bit is 0, such a request is 
made. When this bit is 1, no request 
is made. 

Clear Interrupt. 

This bit is toggled to clear an inter­
rupt that was received from the 
DOS-73 device. Toggling in this 
sense means set to 1, then back to O. 

2-11 



DOS-73: Theory Of Operation 

Bit 3 Interrupt/Bank Select 

Bit 4 

Bit 5 

Bit 6 

Bit 7 

This bit has two functions which go 
hand-in-hand with bits 4-7 
inclusive. When this bit is 0, the 
DOS-73 board is interrupted with 
the value (bit) selected in bits 4 
through bit 7, (only one of these bits 
can be 1) producing four distinct 
interrupts. When this bit is 1, no in­
terrupt is produced but it indicates 
tha t bits 4 and 5 are used to select 
which page bank of memory is to be 
addressed. 

Il/LSB of page bank 

I2/MSB of page bank 

13 

14 

When the HTD register is read, it is a status register, with the following bit assignments: 

Bit ° 

Bit 5 

2-12 

Bit 4 Inclusive - Request "type" 

These four bits are set by the 
program running on the DOS-73 
device to signal a request type to the 
UNIX PC. On an interrupt, this 
value is used to interpret what kind 
of service is requested. 

Bus ACK/Grant 

This bit is ° when bus request 
transmi tted by the UNIX PC has 
been granted, 1 otherwise. 



DOS-73: Theory Of Operation 

Bit 6 RFU 

Ignore this. 

Bit 7 Request 

If this bit is 1, the DOS-73 device 
has transmitted an interrupt. 

These registers are manipulated by the driver to control the device. There is some user­
control of the HTD register, and any program running on the DOS-73 device should under­
stand how these registers work, specifically the request numbers, since these affect user 
processes dealing with the device. 

User Level Interface 

The DOS-73 device is represented to the user as the character special file "/dev /dc73". This 
file is set up with mode 666, but can be changed by the system administrator. 

There are only three system calls that are supplied to the device: open, close and ioctl. All 
I/O to the device is done through ioct1 calls. Any attempts to read/write to the device in 
any other manner will produce an error. 

The concept of an "owner" process is associated with the DOS-73 device. Only one process 
can have the device open at one time, and that process is the owner. Also, signals are sent 
to the process to indicate certain states of the DOS-73 board, and the opening process 
should set up the environment to act accordingly. Details will be explained later. 

All control of the DOS-73 device is done through ioctl calls. The user level ioctl structure 
is contained in the include file "dc73.h". This file should be included in every C program 
that deals with the DOS-73 device. Upon installation of the DOS-73 System Software, this 
file is placed in /usr/bin/DOS. It should be moved into /usr/include/sys. 

2-13 



DOS-73: Theory Of Operation 

A portion of that file is displayed here for the purposes of this discussion: 

/* 
* dc73ioctl structure. 

* 
* The following ioctl commands exist: 

* 
* SETBASE - Sets the default mask for the HTD register. 

* 
* INTDOS - Sends an interrupt to the DOS board. 

* 
* DOSREAD - Read data from DOS board. 

* 
* DOSWRITE - Write data to the DOS board. 
* 
* RMREAD - Read data from the board with remapping and swapping. This call will * 

read 32K bytes. The user must have this space allocated. 
* 
* 
*/ 

#define SETBASE 0 
#define INTDOS 1 
#define DOSREAD 2 
#define DOSWRITE 3 
#define RMREAD 4 

union dc73io { 
struct setbase { 

unsigned char base; /* New default base * / 

}; 

2-14 

}b; 
struct dosin t { 

unsigned char dint; /* Interrupt level * / 
}d; 
struct dosrw { 

}rw; 

char *dosaddr; 
char *hostaddr; 
int count; 

struct rmread { 

}rm; 

char *dosaddr; 
char *hostaddr; 

/* Dos address 
/* Host address 

/* Xf er bytes 

/* Dos address 
/* Host address 

*/ 
*/ 

*/ 

*/ 
*/ 



DOS-73: Theory Of Operation 

As you can see, there are five commands supplied by the DOS-73 device driver. Each 
command uses a dif f eren t structure in the union. All ioctl calls return = 1 on error and er= 
rno is set to reflect the error. The following is an explanation of the usage and actions of 
each of the commands: 

1) SET BASE: 

The DOS-73 device driver uses the HTD register for many 
things, such as giving bus requests, interrupts, and the like. 
However, since there is no way of reading the HTD register to 
get the last command value written, the driver maintains a 
"base" value of the register. This value can be set by a user 
process using the SETBASE ioctl call. This call uses the union b 
in the ioctl structure. All writes to the register use this base 
value, then is modified by the driver. Using this scheme, the 
user can put any value in the HTD register, but use of this 
command is recommended only for setting initialization values 
and/or resetting the processor. The driver does all the necessary 
commands for doing writes and interrupts automatically through 
other ioctl calls. 

2) INTDOS: 

Using this ioctl call, the device driver will send an interrupt to 
the DOS-73 device. This ioctl call uses the structure d in the 
union. The value in the dint field must be 0, 1, 2, or 3, giving 
the user access to all interrupts. 

3) DOSREAD and 4) DOSWRITE: 

These two ioctl calls support all transfers of data from user 
memory onto the DOS-73 device. The user supplies in the union 
rw: 

i) A pointer to the start of the space to take/put information 
to/from the DOS-73 device. This is placed in the field hostaddr. 
All register manipulations are automatic. 

2-15 



DOS-73: Theory Of Operation 

ii) An address to place/take data to/from the DOS-73 device. 
This value is placed in the field dosaddr. This field should 
really be defined as an int, but ... 

All page mapping is done automatically by the driver. DOS-73 
addresses range from 0-5l2K. Bus requests are also handled by 
the driver. 

iii) A count of the number of bytes to transfer. This is placed 
in the field count. 

The user must have count bytes allocated in the space. The 
driver allocates no memory. If EIO is ever set as an errno, the 
DOS-73 device denied a bus request. This is usually a signal 
that the hardware is going south. 

5) RMREAD: 

This is a special read that is used for graphics transfers. Some 
additional conversions must be done when sending the graphics 
RAM over to the s4. This is done automatically in the driver. 
All graphics transfers are 32K long. The user supplies the 
dosaddr and hostaddr as before in the structure rm. 

Also associated with the device are signals that are sent to the owner process according to 
certain values held in the status register after an interrupt. When an interrupt occurs, the 
driver looks at the value in the status register and, if it recognizes it, sends a signal to the 
owner process. If the value is unrecognizable, the driver prints an error to the console. 

The following bit patterns generate the following signals: 

2-16 

Bit Pattern 

OxOl 
Ox02 
OxOf 
Ox04 
Ox08 

Signal 

SIGUSR2 
SIGUSRI 
SIGQUIT 
SIGINT 
SIGTERM 



DOS-73: Theory Of Operation 

The user should set up the process to catch these signals and to dictate appropriate actions. 
The 8086 program running on the DOS-73 device should ONLY use those bit patterns, since 
an y else produce errors. 

It is clear that the 8086 program and the UNIX user process should have strict interfaces to 
avoid confusion. 

2-17 



3: Diagnostics 

Testing The COM2: Port......................................................................................................................... 3-2 
Number Of Test Passes........................................................................................................................... 3-2 
Test Descriptions ............... "'...................................................................................................................... 3-3 
In Case Of Trouble................................................................................................................................... 3-6 

3-1 



Diagnostics 

To run the Diagnostics, insert the DOS-73 Diagnostics Diskette into the floppy disk drive 
and invoke the UNIX Shutdown command. When prompted, press the <Return> key to load 
the diagnostics. 

Testing The COM2: Port 

A COM2: LOOPBACK connector has been included with your DOS-73 package. It connects 
the following RS-232 pins together: 

Pin # Function 

2 Transmit 
4 RTS 
20 DTR 

3 
5 
6, 8 

Function 

Receive 
CTS 
DSR-RLSD 

This connector must be inserted in the DOS-73 COM2: port before testing begins. If this 
connector is not inserted in the COM2: port a Failed message will appear after 'Testing 
COM2.' 

Number of Test Passes 

The user selectable option for the DOS-73 diagnostics is the number of test passes. Each 
pass tests all of the components of the DOS-73 Hardware. The Diagnostics can be aborted 
at any point by hitting the <Break> key. 

3-2 



Diagnostics 

The following screen is displayed when the DOS-73 Diagnostics are loaded: 

Test Descriptions 

005-73 Oi:.::c~ti:: 

Insert the COM:; lOOP BACK cor-nectar to the rear of the 
DOS- 73 board. 

Hit rClura key to contiouc._ 

Testin, \iE\iOR Y 
Tes!in, Video SMI 
Testin, I/O S)I.{J 
Testin, Video Remap 
Tes!;n, COM2: 
Tesllnc Re-fresh.Timer 
Testinl Ioterrupt Controller 
TeStin, address tr:l.p 
Test;:!, 5017 

(Passed) 
(Passed) 
(Passed) 
(Passed) 
(Passed) 
(Passed) 
(Passed) 
(Passed) 
(Absent) 

Pass _I (Successful) 

Press returll key to cODtioue_. 

I) ALL THE TESTS 

Self-explanatory: prompts for the number of passes desired and executes all tests round 
robin. 

2) TEST MEMORY 

First writes hex data 00, OFF, OAA, and 055 to entire 5I2K of DOS-73 memory and reads it 
back; repeats above with hex data 055 

2a) TEST ME~10RY: ADDRESS LINES 

Tests each of the memory address lines by writing a unique value out on each line, then 
reading it back. 

3) TEST NMI SPEED 

Sets up interrupt vector for NNII service routine (which clears register ax to 0). 
Enables video NMI. 
Writes data to video RAM (455th video RAM address) which should cause an NMI. 
Checks if ax was cleared to O. 

3-3 



Diagnostics 

4) TEST VIDEO NMI 

Sets up interrupt vector for NMI service routine that reads lsb of NMI latch (port 24h) into 
register al and masks lower 2 bits; and enables port and video NMI. 

bit 0 of latch = 0 for VIDEO RAM WRITE 
I for I/O read or write 
bit 1 of latch = 0 conveys no information for VIDEO NMI 
I indicates I/O write if I/O NMI 
checks if al is 0 

5) TEST PORT OUT NMI 

Same as above, except checks if al is 1. 

6) TEST PORT IN NMI 

Same as above, except checks if al is 3. 

7) TEST VIDEO REMAP 

Disables video NMI, writes hex data Oa55a to hex addresses 0, 401, & 802 of PC screen 
RAM (page ObOOO); reads data back data at same addresses of DOS-73 screenram (page 7800) 

8) TEST COM2: DATA BIT 

Sets up interrupt vector for NMI service routine which reads both lsb and msb of NMI 
latches (latch information is not used for anything), initializes 8250 chip (9600 Baud, 8 
Data Bits, 1 Stop Bit, no parity), loads data into register ah (data is 0) repeats 9X: rotates­
data left lx, transmits data to 8250, receives data from 8250, and checks to see if data 
matches. 

9) TEST COM2: DTR LINE 

Initializes 8250 chip as above, clears modem status register, turns DTR on, reads modem 
status register (bit 5 should be clear), turns DTR off, and reads modem status register (bit 5 
should be set). 

3-4 



Diagnostics 

10) TEST COM2: RTS LINE 

Initializes 8250 chip as above, turns R TS on, reads modem status register (bit 4 should be 
clear), turns R TS off, reads modem status register (bit 4 should be set). 

11) TEST RE-FRESH/TIMER 

Reads counter 0 (timer tick) of CTC (8253) -lsb the msb, kills some time, reads counter 0 
again -lsb then msb; checks if tick count elapsed is within acceptable range. 

12) TEST 8087 

Part 1: hand coded portion checks if 8087 is present; it divides 5 by 2 (integer division) and 
expects the result to be 2. If part 1 succeeds then, part 2: does floating point arithmetic. It 
adds 3.75 to 3.75 and expects the result to be 7.5. Then it multiplies 7.5 by 7.5 and expects 
the result to be 56.25; then it divides 56.25 by 7.5 and expects the result to be 7.5; then it 
subtracts 3.75 from 7.5 and expects the result to be 3.75. 

13) TEST INTERRUPT CONTROLLER 

Tests interrupts 4 thru 7. Host sends interrupt request (and level number) to DOS-73 board; 
board sends level number back to Host (via Slave Status Register) in interrupt service 
routine. 

14) TEST ADDRESS TRAP 

Selects incorrect card select addresses (i.e., slots excluding the slot that the DOS-73 board 
presently resides in) on the PC 7300 and tests if the DOS-73 board responds. 

3-5 



Diagnostics 

In Case Of Trouble 

If any errors are detected, the DOS-73 Diagnostics will report a 'Failed' message after the 
appropriate test and an 'Unsuccessful' message after the PASS # count. 

A t this point you should do the following: 

1. Power off the UNIX PC, using the "Shutdown" command. 
2. Remove the DOS-73 Board. 
3. Press down on all of the socketed I.C. chips to assure that they are properly seated. 
4. Replace the DOS-73 board. 
5. Power up the UNIX PC. 
6. Insert the DOS-73 Diagnostics diskette and repeat the test. 

If problems persist, select another slot in the UNIX PC and repeat the test. If you are still 
unable to successfully test the DOS-73 system, it must be returned for repair. 

3-6 


	001
	002
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06

