
. -- AT&T

I ~;~; :; ; :.
~:.:.:.:.:.:.:.: :.:.:.:.:.: .. ::.- I· :.:.:.:.: .:.:.:.:. :.:.:. :.:.:.:.: .. ~.~ · ~.~ .. -.................... - '- .
• •••••••••••••••••• a • . ·

I ••••••••••••••••••••••••••••••••••••••• ~.~.

::::::::::::::::::: ::::::::: ::::::::::: ..
t._ .••...........••••.••••••••••••••••• : •
'
I ••••••••••••••••• ~. '.~. · , •••••••••••••••• a.a.-
I e ••••••••• _._._._._ ••••••••••••••• :.-.

~:.:.:.:. :.: .:.:.:.:.:.:.:.:.:.:.:.:~~. , :~:. _. · :.: -: :.:. :.:.:.:.:.:.:.:.:.:.:.:~.. · '0 · · · · · · · · · · · .;.~~;;.~ · . I • • • • • • • • • • • •• ,- ,-._.1 ••••••••••••••••••••••• ·
I • • •••••••••••••
:::::::.:::::::: :::::: :::::::::::::::: · -.~.
I •••••••••••••••••••••••••••••••••••

I ••••••••••••••••••••••••••••••••• ~:~:.
I ••••••••••••••• ~.~.~ ••

• :.:.:.:. :.:.:. :.:.:.:.:.:.:.:.:~.~.~ :.a .a_
I •••••••••••••••••••••••••••••••••••••

I •••••••••••••••••• _ •• ·
I ••••••••••••••••••••••••••••••••••• ~.~ ••••
I ••••••••••••••••••••••••••••••••••••••

I ••••••••••••••••••• ~ •• I·.·•....•.• ~ •. ~. · -.. :. ~. ~.:.:.~.:.:. :.:.:. :.:.:.:.:.:.:.:.:.:.:.~. :.

307-184

ATlaT 3B2 Computer
UNIX™ System V

Advanced Programming Utilities
Issue 1

Release Notes

.-.-.-.-.

©1986 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T assumes
no responsibility for any errors that may appear in this document.

UNIX is a trademark of AT&T.

Table of Contents

Introduction 1

Overview 1

Conventions Used in This Document 2

Contents of the Release 3

Software Features 5

Advanced C Utilities 5

Shared Library Upward Compatibility 6

Extended Software Generation Utilities 7

Source Code Control Utilities 8

SCCS Commands 8

Software Installation Information 10

Prerequisites 10

Software Dependencies 10

Storage Requirements 10

Installing APU 11

Software Notes 12

Documentation 16

Related Documents 16

How to Order Documents 17

TABLE OF CONTENTS iii

List of Figures

Figure 1: Advanced C Utilities 3

Figure 2: Extended Software Generation Utilities 4

Figure 3: Source Code Control Utilities 4

LIST OF FIGURES v

Introduction

Overview
These Release Notes contain information about the Advanced Program­

ming Utilities (APU). APU is a set of tools that are useful to programmers
who

• do extensive programming in the C language,

• need tools to do advanced programming and symbolic debugging,

• want to create shared libraries,

• or work in an environment where it is necessary to track and main­
tain versions of files and programs.

APU includes the following packages:

• Advanced C Utilities, containing tools such as cxref, drace, cflow,
and lint for the C language programmer, plus libraries, and mkshlib
(to create shared libraries)

• Extended Software Generation Utilities, containing tools such as m4
(a macro processor), yacc (Yet Another Compiler-Compiler), sdb (a
symbolic debugger), lex (a generator of lexical analyzers), and make
(a program construction tool)

• Source Code Control Utilities (SeCS), a system used to track changes
made to files and to maintain a record of all versions

APU runs on any model of the AT&T 3B2 Computer running UNIX System
V Release 2.0 or later releases.

These Release Notes contain the installation procedure for APU, a
description of available documentation, technical information, and a
description of new features.

RELEASE NOTES 1

Introduction

Conventions Used in This Document

In this document, certain typesetting conventions are followed when
command names, command line format, files, and directory names are
described. There are also conventions for displays of terminal input and
output.

• You must type words that are in bold font exactly as they appear.

• Italic words are variables; you substitute the appropriate values.
These values may be file names or they may be data values.

• CRT or terminal output and examples of source code are presented in
constant-width font.

• In output and source code examples, a backslash (\) at the end of a
line indicates that the line wraps around without a break.

• A command name followed by a number, for example, prof(l), refers
you to that command's manual page, where the number refers to the
section of the manual. These manual pages appear in the
Programmer's Reference Manual, unless otherwise noted.

2 ADVANCED PROGRAMMING UTILITIES

Contents of the Release

APU comes on three diskettes:

• Advanced C Utilities, Issue 4, on 1 diskette

• Extended Software Generation Utilities, Issue 4, on 1 diskette

• Source Code Control Utilities, on 1 diskette

The directory structure and files are presented in the following tables.

DIRECTORY FILES

Ibin mkshlib

lusr/bin cb etc ctrace lint
cflow etcr cxref regcmp

lusr/lib dag llib-Ie llib-port xcpp
flip llib-Ie.1n llib-port.ln xpass
lintl llib-lm lpfx
lint2 llib-lm.ln nmf

I usr I lib I ctrace runtime.c

I usr I options acu.name

Figure 1: Advanced C Utilities

RELEASE NOTES 3

Contents of the Release

DIRECTORY FILES

/usr/bin lex prof yaee
mes sdb

/usr/lib libg.a liby.a sdbs
libl.a sdbp yaeepar

/ usr /lib flex neform nrform

/ usr / options esg.name

/bin make

fete install

Figure 2: Extended Software Generation Utilities

DIRECTORY FILES

/usr/bin admin get seesdiff what
ede prs unget
eomb rmdel val
delta sad ve

/usr/lib/help ad emds ge un
bd eo he ut
eb de prs ve
em default re lib/help

lib/help2

/ usr / options sees. name

Figure 3: Source Code Control Utilities

4 ADVANCED PROGRAMMING UTILITIES

Software Features

The following paragraphs contain brief descriptions of the features
and some of the commands in this issue of APU. You may be familiar with
some of these features, while others may be new to you. Even though this
is the first release in which all of these features are part of the same pro­
duct, most of these features have been available in other software packages.

Advanced C Utilities
Below are some of the Advanced C Utilities and their functions:

cxref is a C cross-reference listing generator

ctrace is a statement-by-statement execution trace facility

cflow produces a graph of program dependencies

lint detects faulty and non-portable code.

cb displays the structure of code

regcmp compiles regular expressions

All of these tools are described in the UNIX System V Programmer's Guide and
the UNIX System V Programmer's Reference Manual.

The Advanced C Utilities package also contains mkshlib(l) (make
shared library), which is used to create a shared library. Shared libraries are
a feature of UNIX System V Release 3.0 that allow several a.out files to
simultaneously use the same object code. The mkshlib command has
options that allow you to specify the shared library specification file (which
contains all the information necessary to build the shared library) and to
name the host and target shared libraries. mkshlib and the shared library
feature are described in detail in the "Shared Libraries" chapter of the UNIX
System V Progrqmmer's Guide.

RELEASE NOTES 5

Software Features

Shared Library Upward Compatibility
Shared library compatibility is an important issue. These paragraphs

explain how to build upward-compatible shared libraries. For more detailed
information, see the "Shared Libraries" chapter in the UNIX System V
Programmer's Guide.

Comparing Previous Versions of the Library
Shared library developers normally want newer versions of a library to

be compatible with previous ones. a.out files will not execute properly oth­
erwise. There are procedures that let you check libraries for compatibility.
In these tests, two libraries are said to be compatible if their exported sym­
bols have the same addresses.

To compare two target shared libraries, we look at their symbols and
delete everything except external symbols. Then we create lists of symbol
names and values for the new and old libraries, and compare the symbol
values to identify differences.

If all symbols in the two libraries have the same values, the libraries are
compatible. If some symbols are different, the two libraries may be incom­
patible. The procedure for comparing shared libraries outlined above is
explained in detail in the "Shared Libraries" chapter of the UNIX System V
Programmer's Guide.

Dealing With Incompatible Libraries
When you determine that two libraries are incompatible, you have to

deal with the incompatibility. You can rebuild all the a.out files that use
your library, or you can give a different target path name to the new ver­
sion of the library. The host and target path names are independent, so you
don't have to change the host library path name. New a.out files will use
your new target library, but old a.out files will continue to access the old
library.

You should try to avoid multiple library versions. If too many copies of the
same shared library exist, they might actually use more disk space and more
memory than the equivalent relocatable version would have.

6 ADVANCED PROGRAMMING UTILITIES

Software Features

Extended Software Generation Utilities
The following list describes some of the tools in the Extended Software

Generation Utilities package:

• mcs(l) is used to manipulate the .comment sections in object files.
(.comment sections are created by #ident.) mcs can be used to
delete, print, compress, or add to .comment sections.

• The symbolic debugger, sdb(l), is used to examine C language exe­
cutable files and core files and provides a controlled environment for
their execution. When testing C language programs symbolically,
breakpoints can be set at executable lines of the source code. These
breakpoints force the program to pause at the specified point so that
an inspection can be made of the current state of the program.

• The make(l) program helps users build and maintain up-to-date ver­
sions of programs. make simplifies the job of keeping track of which
files depend on other files, recently modified files, files that need
recompiling after changes, and the sequence of operations needed to
make a new version of a program.

• lex(l) generates programs to be used in simple lexical analysis of text.
lex reads a file containing specifications of strings to be matched and
associated C code. Whenever the lexical analyzer produced by lex
matches a specified string in its input, it executes the associated C
code.

• yacc(l) (Yet Another Compiler-Compiler) is a software tool that
accepts an LALR(l) grammar specification and associated C code frag­
ments that represent actions to be taken when a found grammar rule
is reduced.

For more information about these commands, see the UNIX System V
Programmer's Guide and the UNIX System V Programmer's Reference Manual.

RELEASE NOTES 7

Software Features

Source Code Control Utilities
The Source Code Control System (SeeS) can be used to record all

enhancements and changes to files, along with comments on each version,
to maintain a history of the changes made. Some sees functions are

• retrieving any recorded version of a file with comments,

• storing a new version of a file,

• and comparing two versions of an sees file.

sees takes custody of a file and, when changes are made, identifies and
stores them in the file with the original source code and/ or documentation.
As other changes are made, they too are identified and retained in the file.
Each separate set of changes is called a delta. History data can be stored
with each version: why the changes were made, who made them, when
they were made.

Retrieval of the original or any set of changes is possible. Any version
of the file as it develops can be reconstructed for inspection or additional
modification.

SCCS Commands
Here is a list of sees commands:

get retrieves versions of sees files

unget undoes the effect of a get -e prior to the file being delta'd

delta applies deltas (changes) to sees files and creates new versions

admin initializes sees files, manipulates their descriptive text, and
controls delta creation rights

prs prints portions of an sees file in user specified format

sael prints information about files that are currently out for edit

help gives explanations of error messages

rmdel removes a delta from an sees file. Allows rem.oval of deltas
created by mistake

8 ADVANCED PROGRAMMING UTILITIES

Software Features

cdc changes the commentary associated with a delta

what searches any UNIX System file(s) for all occurrences of a special
pattern and prints out what follows it. Useful in finding identi­
fying information inserted by the get command

sccsdiffshows differences between any two versions of an SCCS file

comb combines consecutive deltas into one to reduce the size of an
SCCS file

val validates an SCCS file

vc a filter that may be used for version control

For instructions on how to use SCCS and detailed descriptions of SCCS
commands, see the "Source Code Control System" chapter in the UNIX Sys­
tem V Programmer's Guide.

RELEASE NOTES 9

Software Installation Information

You will use the System Administration menu command, sysadm, to
install the Advanced Programming Utilities on your 3B2 Computer.

Prerequisites
The following paragraphs describe CPLU storage requirements and

software dependencies.

Software Dependencies
Before you can install and use APU, you must have installed the Direc­

tory and File Management Utilities. Also, if your operating system is UNIX
System V Release 3.0 or a later release, you must have installed the System
Header Files that came with your operating system.

Issue 1 of APU will be supported on systems running UNIX System V
Release 2.0 or later releases. However, the mkshlib command will only
work on UNIX System V Release 3.0 and later releases, which support the
shared library feature.

Storage Requirements
You must meet the following requirements before you begin installa­

tion.

• Memory requirements. The minimum memory requirement for the
APU is 420K of main memory .

• Storage space. There must be six megabytes of free disk storage.
Installation will fail if there isn't adequate storage space. You can use
the df(lM) command to check free disk storage.

You need to have about 250 blocks of free space in your root direc­
tory (I), and about 3000 blocks of free storage in lusr.

10 ADVANCED PROGRAMMING UTILITIES

Software Installation Information

Installing APU

1. Make sure lusr is mounted. Type mount to see what is mounted. If
lusr has not been mounted, mount it with the mount command

mount Idev/dsk/cXdYsZ lusr

where X is replaced by the controller number, Y is replaced by the
drive number, and Z is replaced by the section or slice number
where lusr is to be mounted.

2. Type the following command line:

sysadm installpkg

This executes the system administration subcommand installpkg.

3. Insert the first floppy diskette in the Extended Software Generation
Utilities set and press RETURN as instructed. After all the utilities
on the first diskette have been installed, you will see a message that
tells you to remove the first diskette and insert the next one. When
you have repeated this procedure for all the diskettes in the pack­
age, you will see a message telling you to type q to signal the last
diskette in the package.

4. Repeat the procedure for the Advanced C Utilities package and,
finally, the Source Code Control Utilities package.

RELEASE NOTES 11

Software Notes

This section lists points of interest and workarounds that programmers
might need to know about.

1. Functions that use floating point may not be placed in a user­
defined shared library. Applications that build their own shared
libraries must arrange to place floating point code in a non-shared
portion of the host archive shared library.

2. The command mcs -d will corrupt a.outs and object files where the
comment section is not the last section. Use mcs -d -ax instead.

3. When compiling C programs that are the output of drace, expect to
see warning messages of the form:

"/usr/lib/ctrace/runtime. e", line DIm warning:
illegal pointer canbination, op =

4. The following C library functions do not have lint library
definitions:

mkdirO
rmdirO
sigsetO
sigholdO
sigignoreO
sigrelseO
sigpauseO
getmsgO
putmsgO
pollO
dup20
getdentsO

opendirO
readdirO
closedirO
telldirO
seekdirO

lockfO
cfreeO

fpgetmaskO
fpgetroundO
fpgetstickyO

fpsetmaskO
fpsetroundO
fpsetstickyO
isnandO

getutentO
getutidO
getutlineO
pututlineO
endutentO
setutentO
utmpnameO

5. The following C library functions have incorrect lint library
definitions:

setvbuf
signal

6. The files /usr/options/acu.name and /bin/mkshlib are not
removed when the Advanced C Utilities diskette is un-installed.

12 ADVANCED PROGRAMMING UTILITIES

Software Notes

7. On UNIX System V Release 2.0 systems, sdb might look as though it
has failed at startup. This is due to the kernel sending a signal to
the process when it queries the kernel about its floating point capa­
bility. sdb reports something like:

Bad System Call (12) (sig 12)
at

fpstart1.c: No such file or directory
Ox808????? in sys3b:No lines in file

When this message appears, type c to continue.

8. In early issues of some C compilation systems, all relocatable object
files (.0 files) produced by the assembler and relocated object files
(a.out files) produced by the link editor had only three sections:
.text, .data, and .bss. However, the assembler in Issue 4 of the C
Programming Language Utilities can generate object files with an
arbitrary number of sections in an arbitrary order; and the link edi­
tor can generate an arbitrary number of sections. This is because of
the following features:

o Addition of a .comment section in most object files. (See "#ident
Preprocessor Directives" in this document.)

o Elimination of zero-length .bss or .data sections in.o files. This
change was introduced to enhance performance of the compila­
tion process.

o Addition of any number of user-defined sections for special­
purpose applications, such as initialization code in some compi­
lation systems.

Some programs make assumptions about the number of sections in
.0 and a.out files. If you use Issue 4 of the C Programming Language
Utilities to compile these programs, you should first change the pro­
grams so that they read the number of sections in the files. You can
do this by reading in the file header using Idfhread(3X) and

RELEASE NOTES 13

Software Notes

examining the f_nscns field of the file header. See filehdr(4) and
Idfhread(3X) for details.

For example, if you are writing installable device drivers, you
should keep in mind that some versions of the lboot program
(which makes a bootable UNIX System from the kernel and driver
modules) assume that the installable drivers have three sections.
You need to do two things to your driver's object files before run­
ning lboot:

D Use the mcs(1) command, as shown:

mcs -d drivername.o

This will delete the .comment section from the .0 file.

D Add a .bss section to the .0 file using the ld command, as shown:

ld -r drivername.o -0 drivername

This takes drivername.o and produces the relocatable object driver­
name, attaching an empty .bss section to the input file.

If you are using Basic 1.0 and linking .0 files created from C source
files, you should follow this same procedure.

9. You should not use sdb to debug any process which uses shared
libraries.

10. The following table lists argument/return value types that have
changed. (In the second column, the entry "arg2" means "the second
argument to the function," "arg3" means "the third argument," etc.)

Function Name Argument Changed --> To
From

fread arg2 int --> size t
fwrite arg2 int --> size t
strncat arg3 int --> size t
strncmp arg3 int --> size t
strncpy arg3 int --> size_t
dime argl long --> time_t
localtime argl long --> time_t
gmtime argl long --> time_t

14 ADVANCED PROGRAMMING UTILITIES

For definitions of the new argument value types, use

#include < sys/types.h >

Software Notes

11. The mkshlib command does not accept full path names for the -h
options. It assumes the current directory and prepends the current
working directory to the modifier of -h.

RELEASE NOTES 15

Documentation

These APU Release Notes (select code 307-184) come with APU. The
Release Notes contain a description of APU and its main features, installation
information, prerequisites, and storage requirements.

Related Documents
The following documents contain more information about features of

APU and can be ordered as described in the next section.

1. The C Programming Language Utilities Issue 4 and Advanced Program­
ming Utilities Issue 1 Product Overview (select code 307-182) contains a
brief technical description of the C Programming Language Utilities,
Issue 4, and the Advanced Programming Utilities Issue 1. The Pro­
duct Overview is especially useful for new users.

2. The UNIX System V Programmer's Guide (select code 307-225) contains
descriptive information about SCCS (Source Code Control System),
the Link Editor Specification Language, yace, lex, make, the sym­
bolic debugging program sdb, shared libraries, programming on a
UNIX System, the C language and associated libraries, the C com­
piler, and much more.

3. The UNIX System V Programmer's Reference Manual (select code 307-
226) contains reference material in the form of manual pages for
programming commands, system calls, subroutines, libraries, file for­
mats, macro packages, and character-set tables.

4. The C Programmer's Handbook (select code 307-135) contains reference
material for the C language. Topics covered include syntax, data
types, operators and expressions, statements, functions, declarations,
program structure, libraries, formatted input/output, and portable C
programs.

16 ADVANCED PROGRAMMING UTILITIES

Documentation

How to Order Documents
Additional copies of any document or optional documents can be

ordered by calling AT&T Customer Information Center (CIC):

1-800-432-6600 (toll free within the continental United States)

1-317-352-8556 (outside the continental United States)

or by writing to:

AT&T Customer Information Center
Customer Service Representative
P. O. Box 19901
Indianapolis, Indiana 46219

RELEASE NOTES 17

