

. . - AT&T

I •••••••••••••••••• ~ •• ~.~ •• :~~. :~. :. :.:.:.:.:.:.:.:.:.:.:.:.:. :~:.:~~~. :.
I·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.~:· ,. , ':.:.:.:.:.:.:.:.:.:.:.: .:.:.:.:.:.:.:.:.:.
I •••••••••••••••• I:.:.:.:.:.:.:.:. :.:.:.: .:.:.:.:.~.:~. :. :.:.:.:.:.:.:.:.:. :.:.:. :.:.:.:.:~:~. ·
I ••••••••••••••••

,
, · :.:.:.:.:.:.:.:.:.:. :.:.:.:.:.:.:~.~. I·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·· · I·.·.·.·.·.·.·.·.·.·.·.·.·.·.· ~ ... I·.·.·.·.·.·.·.·.·.·.·.·.·.·.· .. '.
I·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·~·.· · ,.
I Y --............. _._.
a ~ •••••••••••••• I. \ ••••••••••••••••••• :::.;:; ' •• _ '.\ ~................... ~.:
'.~ .~ ---~~ · .. -............. .
I •••••••••••••• -.-.-· ::::: .. .
I • • • • • • • • • • • • •• • I·.·.·.·.·.·.·.·.·.·.·.·.·.·.· · I:.:.:.:.:.:.:. :.:. :.:.:.:.:~:.:;
1 • • • • • • • • • • • • •• • · ~:~: _.-
, '~.-.'-.. -·- ,-· : . : . : . : .: . : . : .:.:.: .:.:.;.~ ~. ~. ~ .. -
I:.:.:.:.:.:. :.:.:.:.:.:.:.:.:.:. ,.
I ••••••••••••••• · · · :.:.:.:.:.:.:.:.: .: · ;.;.;.; :.'-.' .. ~.-........ ,.

307-229
Issue 1

UNIX™ System V Release 3

STREAMS Primer

..• -.

©1986 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T assumes
no responsibility for any errors that may appear in this document.

Ethernet is a trademark of Xerox.
UNIX is a trademark of AT&T.

Table of Contents

Chapter 1: Introduction 1-1

How this Document is Organized 1-3

Other Documents 1-4

Chapter 2: Overview 2-1

A Basic View' of a Stream 2-1

System Calls 2-2

Benefits of STREAMS 2-3

Creating Service Interfaces 2-3

Manipulating Modules 2-3
Protocol Portability 2-4
Protocol Substitution 2-5
Protocol Migration 2-5

Module Reusability 2-6

An Advanced View of a Stream 2-8

Stream Head 2-9
Modules 2-9

Stream End 2-10

Chapter 3: Building a Stream 3-1

Expanded Streams 3-2
Pushable Modules 3-3

TABLE OF CONTENTS III

Table of Contents

Chapter 4: User Level Functions

STREAMS System Calls

An Asynchronous Protocol Stream Example
Initializing the Stream

Message Types

Sending and Receiving Messages
Using Messages in the Exam pIe

Other User Functions

Chapter 5: Kernel Level Functions

Introduction

Messages
Message Allocation

Put and Service Procedures
Put Procedures

Service Procedures

Kernel Processing
Read Side Processing

Driver Processing
CHARPROC

CANONPROC

Write Side Processing
Analysis

Iv STREAMS PRIMER

4-1

4-1

4-2

4-3

4-4

4-5
4-5

4-10

5-1

5-1

5-2

5-4

5-5

5-5

5-6

5-7

5-8
5-8
5-8

5-10

5-10

5-11

------------------ Table of Contents

Chapter 6: Other Facilities 6-1

Introduction 6-1

Message Queue Priority 6-2

Flow Control 6-4

Multiplexing 6-7

Monitoring 6-12

Error and Trace Logging 6-13

Chapter 7: Driver Design Comparisons 7-1

Introduction 7-1

Environment 7-1
Drivers 7-1

Modules 7-2

Glossary G-1

TABLE OF CONTENTS v

List of Figures

Figure 2-1: Basic Stream 2-1

Figure 2-2: Protocol Module Portability 2-5

Figure 2-3: Protocol Migration 2-6

Figure 2-4: Module Reusability 2-7

Figure 2-5: Stream In More Detail 2-8

Figure 3-1: Setting Up a Stream 3-1

Figure 4-1: Idle Stream Configuration for Example 4-3

Figure 4-2: Asynchronous Terminal Streams 4-8

Figure 5-1: A Message 5-2

Figure 5-2: Messages on a Message Queue 5-3

Figure 5-3: Operational Stream for Example 5-7

Figure 5-4: Module Put and Service Procedures 5-9

Figure 6-1: Streams Message Priority 6-3

Figure 6-2: Flow Control 6-5

Figure 6-3: Internet Multiplexing Stream 6-8

Figure 6-4: X.25 Multiplexing Stream 6-9

Figure 6-5: Error and Trace Logging 6-14

LIST OF FIGURES vii

Introduction

With the addition of the Networking Support Utilities, UNIX System V
Release 3.0 provides comprehensive support for networking services. This
Primer describes STREAMS, a major building block of that support. The Pri­
mer provides a high level, technical overview of STREAMS; it is intended for
managers and developers who have prior knowledge of the UNIX system
and networking or other data communication facilities. For a more detailed
description of STREAMS, see the STREAMS Programmer's Guide.

The UNIX system was originally designed as a general-purpose, multi­
user, interactive operating system for minicomputers. Initially developed in
the 1970's, the system's communications environment included slow to
medium speed, asynchronous terminal devices. The original design, the
communications environment, and hardware state of the art influenced the
character input/output (I/O) mechanism but the character I/O area did not
require the same emphasis on modularity and performance as other areas of
the system.

Support for a broader range of devices, speeds, modes, and protocols has
since been incorporated into the system, but the original character I/O
mechanism, which processes one character at a time, made such develop­
ment difficult. Additionally, a paucity of tools and the absence of a frame­
work for incorporating contemporary networking protocols added to the
difficulty.

The current generation of networking protocols is exemplified by Open
Systems Interconnection (051), Systems Network Architecture (SNA),
Transmission Control Protocol/lnternet Protocol (TCP /IP), X.2S, and Xerox
Network Systems (XNS). These protocols provide diverse functionality, lay­
ered organization, and various feature options. When developing these pro­
tocol suites, developers faced additional problems because there were no
relevant standard interfaces in the UNIX system.

Attempts to compensate for the above problems have led to diverse, ad­
hoc implementations; for example, protocol drivers are often intertwined
with the hardware configuration in which they were developed. As a
result, functionally equivalent protocol software often cannot interface with
alternate implementations of adjacent protocol layers. Portability, adaptabil­
ity, and reuse of software have been hindered.

INTRODUCTION 1-1

Introduction

AT&T decided to enhance the character I/O area in Release 3.0. The
result is STREAMS, a general, flexible facility and a set of tools for develop­
ment of UNIX system communication services. With STREAMS, developers
can provide services ranging from complete networking protocol suites to
individual device drivers.

STREAMS defines standard interfaces for character I/O within the UNIX
kernel, and between the kernel and the rest of the UNIX system. The associ­
ated mechanism is simple and open-ended. It consists of a set of system
calls, kernel resources, and kernel utility routines. The standard interface
and open-ended mechanism enable modular, portable development and
easy integration of higher performance network services and their com­
ponents. STREAMS does not impose any specific network architecture.
Instead, it provides a powerful framework with a consistent user interface
that is compatible with the existing character I/O interface still available in
UNIX System V.

STREAMS modularity and design reflect the "layers and options" charac­
teristics of contemporary networking architectures. The basic components
in a STREAMS implementation are referred to as modules. These modules,
which reside in the kernel, offer a set of processing functions and associated
service interfaces. From user level, modules can be dynamically selected
and interconnected to provide any rational processing sequence. Kernel
programming, assembly, and link editing are not required to create the
interconnection. Modules can also be dynamically "plugged into" existing
connections from user level. STREAMS modularity allows:

• User level programs that are independent of underlying protocols
and physical communication media.

• Network architectures and higher level protocols that are indepen­
dent of underlying protocols, drivers, and physical communication
media.

• Higher level services that can be created by selecting and connecting
lower level services and protocols.

• Enhanced portability of protocol modules resulting from STREAMS'
well-defined structure and interface standards.

1-2 STREAMS PRIMER

Introduction

In addition to modularity, STREAMS provides developers with integral
functions, a library of utility routines, and facilities that expedite software
design and implementation. The principal facilities are:

• Buffer management - To maintain STREAMS' own, independent
buffer pool.

• Flow control - To conserve STREAMS' memory and processing
resources.

• Scheduling - To incorporate STREAMS' own scheduling mechanism.

• Multiplexing - For processing interleaved data streams, such as occur
in SNA, X.2S, and windows.

• Asynchronous operation of STREAMS and user processes - Allows
STREAMS-related operations to be performed efficiently from user
level.

• Error and trace loggers - For debugging and administrative func­
tions.

STREAMS is the standard for AT&T UNIX system data communications
and networking implementations. The original STREAMS concepts were
developed in the Information Sciences Research Division of AT&T Bell
Laboratories (see "A Stream Input-Output System" in the October 1984 AT&T
Bell Laboratories Technical Journal).

How this Document is Organized
The Primer is organized as follows:

• Chapter 2 provides an overview of the applications and benefits of
STREAMS and the STREAMS mechanism.

• Chapter 3 describes how to set up a Stream from user level and how
this initializatIon affects the kernel. This and following chapters are
aimed at developers.

• Chapter 4 contains a detailed example and discusses it from user
level.

INTRODUCTION 1-3

Introduction

• Chapter 5 describes kernel operations associated with the Chapter 4
example, together with a discussion of basic STREAMS kernel facili­
ties.

• Chapter 6 includes kernel and user facilities not otherwise described.

• Chapter 7 compares certain design features of character I/O device
drivers with STREAMS modules and drivers.

• The Glossary defines terms that are specific to STREAMS.

Other Documents
The STREAMS Programmer's Guide contains more detailed STREAMS infor­

mation for programmers: how programmers can develop networking appli­
cations with STREAMS user-level facilities and how system programmers can
use STREAMS kernel-level facilities to build modules and drivers.

Section 2 of the Programmer's Reference Manual and the System V Interface
Definition include descriptions (manual pages) of STREAMS-related system
calls and other information.

1-4 STREAMS PRIMER

A Basic View of a Stream

"STREAMS" is a collection of system calls, kernel resources, and kernel
utility routines that can create, use, and dismantle a "Stream". A Stream is a
full-duplex processing and data transfer path between a driver in kernel
space and a process in user space (see Figure 2-1).

Stream
Head

Module

Driver

Figure 2-1: Basic Stream

User
Process

External
Interface

__ y~e! .?p~c~ __ _
Kernel Space

! downstream

(optional)

t upstream

A Stream has three parts: A Stream head, module(s) (optional), and a
driver (also referred to as the Stream end). The Stream head provides the
interface between the Stream and user processes. Its principal function is to
process STREAMS-related user system calls. A module processes data that
travel between the Stream head and driver. A STREAMS driver may be a
device driver, providing the services of an external I/O device, or an inter­
nal software driver, commonly called a pseudo-device driver.

OVERVIEW 2-1

A Basic View of a Stream

Using a combination of system calls, kernel routines, and kernel utili­
ties, STREAMS passes data between a driver and the Stream head in the
form of messages. Messages that are passed from the Stream head toward
the driver are said to travel downstream, and messages passed in the other
direction travel upstream.

The Stream head transfers data between the data space of a user process
and STREAMS kernel data space. Data sent to a driver from a user process
are packaged into STREAMS messages and passed downstream. Messages
arriving at the Stream head from downstream are processed by the Stream
head, and data are copied into user buffers. STREAMS can insert one or
more modules into a Stream between the Stream head and driver to perform
intermediate processing of data passing between the Stream head and
driver.

System Calls
Applications programmers can use the STREAMS facilities via a set of

system calls. This system call interface is upward compatible with the exist­
ing character I/O facilities. The open(2) system call will recognize a
STREAMS file and create a Stream to the specified driver. A user process can
send and receive data using read(2) and write(2) in the same manner as
with character files and devices. The ioct1(2) system call enables application
programs to perform functions specific to a particular device. In addition, a
set of generic STREAMS ioctl commands [see streamio(7)] support a variety
of functions for accessing and controlling Streams. A close(2) will disman­
tle a Stream.

open, close, read, write, and ioctl support the basic set of operations on
Streams. In addition, new system calls support advanced STREAMS facilities.
The poll(2) system call enables an application program to poll multiple
Streams for various events. When used with the STREAMS I_SETSIG ioctl
command, poll allows an application to process I/O in an asynchronous
manner. The putmsg(2) and getmsg(2) system calls enable application pro­
grams to interact with STREAMS modules and drivers through a service
interface (described next).

These calls are discussed in this document and in the STREAMS
Programmer's Guide. They are specified in the Programmer's Reference Manual
and the System Administrator's Reference Manual.

2-2 STREAMS PRIMER

Benefits of STREAMS

STREAMS offers two major benefits for applications programmers: easy
creation of modules that offer standard data communications services, and
the ability to manipulate those modules on a Stream.

Creating Service Interfaces
One benefit of STREAMS is that it simplifies the creation of modules that

present a service interface to any neighboring application program, module,
or device driver. A service interface is defined at the boundary between
two neighbors. In STREAMS, a service interface is a specified set of messages
and the rules for allowable sequences of these messages across the boun­
dary. A module that implements a service interface will receive a message
from a neighbor and respond with an appropriate action (for example, send
back a request to retransmit) based on the specific message received and the
preceding sequence of messages.

STREAMS provides features that make it easier to design various applica­
tion processes and modules to common service interfaces. If these modules
are written to comply with industry-standard service interfaces, they are
called protocol modules.

In general, any two modules can be connected anywhere in a Stream.
However, rational sequences are generally constructed by connecting
modules with compatible protocol service interfaces. For example, a module
that implements an X.2S protocol layer, as shown in Figure 2-2, presents a
protocol service interface at its input and output sides. In this case, other
modules should only be connected to the input and output side if they have
the compatible X.2S service interface.

Manipulating Modules
STREAMS provides the capabilities to manipulate modules from user

level, to interchange modules with common service interfaces, and to
present a service interface to a Stream user process. As stated in Chapter 1,
these capabilities yield benefits when implementing networking services
and protocols, including:

OVERVIEW 2-3

Benefits of STREAMS

• User level programs can be independent of underlying protocols and
physical communication media.

• Network architectures and higher level protocols can be independent
of underlying protocols, drivers and physical communication media.

• Higher level services can be created by selecting and connecting
lower level services and protocols.

Below are examples of the benefits of STREAMS capabilities to developers for
creating service interfaces and manipulating modules.

All protocol modules used below were selected for illustrative purposes.
Their use does not imply that AT&T offers such modules as products.

Protocol Portability
Figure 2-2 shows how the same X.2S protocol module can be used with

different drivers on different machines by implementing compatible service
interfaces. The X.2S protocol module interfaces are Connection Oriented
Network Service (CONS) and Link Access Protocol - Balanced (LAPB) driver.

2-4 STREAMS PRIMER

MACHINE A

------ ------

X.25
Protocol Layer

Module

------ ------

V
I

LAPB
Driver

Machine A
\

\

I

CONS
INTERFACE

SAME

MODULE

LAPB
INTERFACE

DIFFERENT
DRIVER

Figure 2-2: Protocol Module Portability

Protocol Substitution

Benefits of STREAMS

MACHINE B

------ ------

X.25
Protocol Layer

Module

1\

------ ------

~
I

LAPB
\

Driver
Machine B

\ I

Alternative protocol modules (and device drivers) can be interchanged
on the same machine if they are implemented to an equivalent service
in terface(s).

Protocol Migration
Figure 2-3 illustrates how STREAMS can migrate functions between ker­

nel software and front end firmware. A common downstream service inter­
face allows the transport protocol module to be independent of the number
or type of modules below. The same transport module will connect without
modification to either an X.25 module or X.25 driver that has the same ser­
vice interface.

By shifting functions between software and firmware, developers can
produce cost effective, functionally equivalent systems over a wide range of
configurations. They can rapidly incorporate technological advances. The
sam~ transport protocol module can be used on a lower capacity machine,

OVERVIEW 2-5

Benefits of STREAMS

where economics may preclude the use of front-end hardware, and also on a
larger scale system where a front-end is economically justified.

Class 1
Transport
Protocol

1\

------- -------
1/

X.2S
Packet Layer

Protocol

,\

I

I \
LAPB

-I Driver /-

\ I

Figure 2-3: Protocol Migration

Module Reusability

SAME
MODULES

CONS
Interface

KERNEL
------------1

I

Class 1
Transport
Protocol

\

I

\

/----

HARDWARE \ J
~------------~

X.2S
Packet Layer

Driver

Figure 2-4 shows the same canonical module (for example, one that pro­
vides delete and kill processing on character strings) reused in two different
Streams. This module would typically be implemented as a filter, with no
downstream service interface. In both cases, a TTY interface is presented to
the Stream's user process since the module is nearest the Stream head.

2-6 STREAMS PRIMER

User
Process

-- - -- - - - --
~

~

Canonical
Module

I

Class 1
Transport
Protocol

,

I

X.2S
Packet Layer

Protocol

~

III
I

LAPB
Driver

\

I

Figure 2-4: Module Reusability

SAME
INTERFACE

SAME
MODULE

Benefits of STREAMS

User
Process

- - - -- - - - --
~

~

Canonical
Module

\

I

I Raw \

TTY

\
Driver I

OVERVIEW 2-7

An Advanced View of a Stream

The STREAMS mechanism constructs a Stream by serially connecting ker­
nel resident STREAMS components, each constructed from a specific set of
structures. As described earlier and shown in Figure 2-5, the primary
STREAMS components are the Stream head, optional module(s), and Stream
end.

Module

B

Module

A

Message

"Ad"

"Bd"

QUEUE

Module

Figure 2-5: Stream In More Detail

2-8 STREAMS PRIMER

External

Interface

___ lIs~r_S'p~c! ___ _

Kernel Space

"Bu"

: •••• :"":;;:1. >r------,
'--~.r__---'

QUEUE

Stream

End

Message

"Bu"

An Advanced View of a Stream

Stream Head
The Stream head provides the interface between the Stream and an

application program. The Stream head processes STREAMS-related system
calls from the application and performs the bidirectional transfer of data
and information between the application (in user space) and messages (in
STREAMS' kernel space).

Messages are the only means of transferring data and communicating
within a Stream. A STREAMS message contains data, status/control informa­
tion, or a combination of the two. Each message includes a specified mes­
sage type indicator that identifies the contents.

Modules
A module performs intermediate transformations on messages passing

between Stream head and driver. There may be zero or more modules in a
Stream (zero when the driver performs all the required character and device
processing).

Each module is constructed from a pair of QUEUE structures (see Au/ Ad
and Bu/Bd in Figure 2-5). A pair is required to implement the bidirectional
and symmetrical attributes of a Stream. One QUEUE performs functions on
messages passing upstream through the module (Au and Bu in Figure 2-5).
The other set (Ad and Bd) performs another set of functions on downstream
messages. (A QUEUE, which is part of a module, is different from a message
queue, which is described later.)

Each of the two QUEUEs in a module will generally have distinct func­
tions, that is, unrelated processing procedures and data. The QUEUEs
operate independently so that Au will not know if a message passes
through Ad unless Ad is programmed to inform it. Messages' and data can
be shared only if the developer specifically programs the module functions
to perform the sharing.

Each QUEUE can directly access the adjacent QUEUE in the direction of
message flow (for example, Au to Bu or Stream head to Bd). In addition,
within a module, a QUEUE can readily locate its mate and access its messages
(for example, for echoing) and data.

OVERVIEW 2-9

An Advanced View of a Stream

Each QUEUE in a module may contain or point to messages, processing
procedures, or data:

• Messages - These are dynamically attached to the QUEUE on a linked
list ("message queue", see Au and Bd in Figure 2-5) as they pass
through the module.

• Processing procedures - A put procedure, to process messages, must
be incorporated in each QUEUE. An optional service procedure, to
share the message processing with the put procedure, can also be
incorporated. According to their function, the procedures can send
messages upstream and/or downstream, and they can also modify the
private data in their module.

• Data - Developers may provide private data if required by the
QUEUE to perform message processing (for example, state information
and translation tables).

In general, each of the two QUEUEs in a module has a distinct set of all
of these elements. Additional module elements will be: described later.
Although depicted as distinct from modules (see Figure: 2-5), a Stream head
and the Stream end also contain a pair of QUEUEs.

Stream End
A Stream end is a module in which the module's processing procedures

are the driver routines. The procedures in the Stream end are different
from those in other modules because they are accessible from an external
device and because the STREAMS mechanism allows multiple Streams to be
connected to the same driver.

The driver can be a device driver, providing an interface between ker­
nel space and an external communications device, or an internal pseudo­
device driver. A pseudo-device driver is not directly related to any external
device, and it performs functions internal to the kernel. The multiplexing
driver discussed in Chapter 6 is a pseudo-device driver.

Device drivers must transform all data and status/control information
between STREAMS message formats and their external representation.
Differences between STREAMS and character device drivers are discussed in
Chapter 7.

2-10 STREAMS PRIMER

Building a Stream

A Stream is created on the first open(2) system call to a character special
file corresponding to a STREAMS driver. A STREAMS device is distinguished
from other character devices by a field contained in the associated cdevsw
device table entry.

A Stream is usually built in two steps. Step one creates a minimal
Stream consisting of just the Stream head and device driver, and step two
adds modules to produce an expanded Stream (see Figure 3-1). The first step
has three parts: head and driver structures are allocated and initialized; the
modules in the head and end are linked to each other to form a Stream; the
driver open routine is called.

Minimal
STREAM

STR~AM

HEAD

\

II

I QUEUp pair I
raw TTY

device driver

Figure 3-1: Setting Up a Stream

Expanded
STREAM

STR~AM
HEAD

CANO~PROC
module

raw TTY
device driver

If the driver performs all character and device processing required, no
modules need be added to a Stream. Examples of STREAMS drivers include
a raw tty driver (one that passes along input characters without change) and
a driver with multiple Streams open to it (corresponding to multiple minor
devices opened to a character device driver).

BUILDING A STREAM 3-1

Building a Stream

When the driver receives characters from the device, it places them into
messages. The messages are then transferred to the next Stream component,
the Stream head, which extracts the contents of the message and copies
them to user space. Similar processing occurs for downstream character out­
put; the Stream head copies data from user space into messages and sends
them to the driver.

Expanded Streams
As the second step in building a Stream, modules can be added to the

Stream. In the right-hand Stream in Figure 3-1, the CANONPROC module
was added to provide additional processing on the characters sent between
head and driver.

Modules are added and removed from a Stream in last-in-first-out
(LIFO) order. They are inserted and deleted at the Stream head via the
ioctl(2) system call. In the Stream on the left of Figure 2-4, the X.2S module
was the first added to the Stream, followed by Class 1 Transport and Canon­
ical modules. To replace the Class 1 module with a Class 0 module, the
Canonical module would have to be removed first, then the Class 1 module,
then a Class 0 module would be added and the Canonical module put back.

Because adding and removing modules resembles stack operations, the
add is called a push and the remove a pop. Push and pop are two of the
ioctl functions included in the STREAMS subset of ioctl system calls. These
commands perform various manipulations and operations on Streams. The
modules manipulated in this manner are called pushable modules, in con­
trast to the modules contained in the Stream head and end. This stack ter­
minology applies only to the setup, modification, and breakdown of a
Stream.

Subsequent use of the word module will refer to those pushable modules
between Stream head and end.

The Stream head processes the ioctl and executes the push, which is
analogous to opening the Stream driver. Modules are referenced by a
unique symbolic name, contained in the STREAMS fmodsw module table
(similar to the cdevsw table associated with a device file). The module table
and module name are internal to STREAMS and are accessible from user
space only through STREAMS ioctl system calls. The fmodsw table points to

3-2 STREAMS PRIMER

Building a Stream

the module template in the kernel. When a module is pushed, the template
is located, the module structures for both QUEUES are allocated, and the
template values are copied into the structures.

In addition to the module elements described in "A Basic View of a
Stream" section of Chapter 2, each module contains pointers to an open rou­
tine and a close routine. The open is called when the module is pushed,
and the close is called when the module is popped. Module open and close
procedures are similar to a driver open and close.

As in other files, a STREAMS file is closed when the last process open to
it closes the file by a c1ose(2) system call. This system call causes the Stream
to be dismantled (modules popped and the driver close executed).

Pushable Modules
Modules are pushed onto a Stream to provide special functions and/or

additional protocol layers. In Figure 3-1, the Stream on the left is opened in
a minimal configuration with a raw tty driver and no other module added.
The driver receives one character at a time from the device, places the char­
acter in a message, and sends the message upstream. The Stream head
receives the message, extracts the single character, and copies it into the
reading process buffer to send to the user process in response to a read(2)
system call. When the user process wants to send characters back to the
driver, it issues a write(2) system call, and the characters are sent to the
Stream head. The head copies the characters into one or more multi­
character messages and sends them downstream. An application program
requiring no further kernel character processing would use this minimal
Stream.

A user requiring a more terminal-like interface would need to insert a
module to perform functions such as echoing, character-erase, and line-kill.
Assuming that the CANONPROC module in Figure 3-1 fulfills this need, the
application program first opens a raw tty Stream. Then, the CANONPROC
module is pushed above the driver to create a Stream of the form shown on
the right of the figure. The driver is not aware that a module has been
placed above it and therefore continues to send single character messages
upstream. The module receives single character messages from the driver,
processes the characters, and accumulates them into line strings. Each line
is placed into a message and sent to the Stream head. The head now finds
more than one character in the messages it receives from downstream.

BUILDING A STREAM 3-3

Building a Stream

Stream head implementation accommodates this change in format
automatically and transfers the multiple-character data into user space. The
Stream head also keeps track of messages partially transferred into user
space (for example, when the current user read buffer can only hold part of
the current message). Downstream operation is not affected: the head
sends, and the driver receives, multiple character messages.

Note that the Stream head provides the interface between the Stream
and user process. Modules and drivers do not have to implement user
interface functions other than open and close.

3-4 STREAMS PRIMER

STREAMS System Calls

After a Stream has been opened, STREAMS-related system calls allow a
user process to insert and delete (push and pop) modules. That process can
then communicate with and control the operation of the Stream head,
modules, and drivers, and can send and receive messages containing data
and control information. This chapter presents an example of some of the
basic functions available to STREAMS-based applications via the system calls.
Additional functions are described at the end of this chapter and in Chapter
6.

The full set of STREAMS-related system calls is:

open(2)

close(2)

read(2)

write(2)

ioct1(2)

getmsg(2)

putmsg(2)

poU(2)

Open a Stream (described in Chapter 3)

Close a Stream (described in Chapter 3)

Read data from a Stream

Write data to a Stream

Control a Stream

Receive the message at Stream head

Send a message downstream

Notify the application program when selected events
occur on a Stream

The following two-part example describes a Stream that controls the
data communication characteristics of a connection between an asynchro­
nous terminal and a tty port. It illustrates basic user level STREAMS features,
then shows how messages can be used. Chapter 5 discusses the kernel level
Stream operations corresponding to the user level operations described in
this chapter. See the STREAMS Programmer's Guide for more detailed exam­
ples of STREAMS applications, modules, and drivers.

USER LEVEL FUNCTIONS 4-1

An Asynchronous Protocol Stream Example

In the example, our computer runs the UNIX system and supports
different kinds of asynchronous terminals, each logging in on its own port.
The port hardware is limited in function; for example, it detects and reports
line and modem status, but does not check parity.

Communications software support for these terminals is provided via a
STREAMS implemented asynchronous protocol. The protocol includes a
variety of options that are set when a terminal operator dials in to log on.
The options are determined by a getty-type STREAMS user process, getstrm,
which analyzes data sent to it through a series of dialogs (prompts and
responses) between the process and terminal operator.

The process sets the terminal options for the duration of the connection
by pushing modules onto the Stream or by sending control messages to
cause changes in modules (or in the device driver) already on the Stream.
The options supported include:

• ASCII or EBCDIC character codes

• For ASCII code, the parity (odd, even or none)

• Echo or not echo input characters

• Canonical input and output processing or transparent (raw) character
handling

These options are set with the following modules:

CHARPROC Provides input character processing functions, including
dynamically settable (via control messages passed to the
module) character echo and parity checking. The
module's default settings are to echo characters and not
check character parity.

CANONPROC Performs canonical processing on ASCII characters
upstream and downstream (note that this performs some
processing in a different manner from the standard UNIX
system character I/O tty subsystem).

ASCEBC Translates EBCDIC code to ASCII upstream and ASCII to
EBCDIC downstream.

4-2 STREAMS PRIMER

An Asynchronous Protocol Stream Example

Initializing the Stream
At system initialization a user process, getstrm, is created for each tty

port. getstrm opens a Stream to its port and pushes the CHARPROC module
onto the Stream by use of an ioctl I_PUSH command. Then, the process
issues a getmsg system call to the Stream and sleeps until a message reaches
the Stream head. The Stream is now in its idle state.

The initial idle Stream, shown in Figure 4-1, contains only one pushable
module, CHARPROC. The device driver is a limited function raw tty driver
connected to a limited-function communication port. The driver and port
transparently transmit and receive one unbuffered character at a time.

__________ ~_:~i~~_~ ________ _
STRI?AM

HEAD

CHAR;rROC
module

raw TTY
device driver

Figure 4-1: Idle Stream Configuration for Example

USER LEVEL FUNCTIONS 4-3

An Asynchronous Protocol Stream Example

Upon receipt of initial input from a tty port, getstrm establishes a con­
nection with the terminal, analyzes the option requests, verifies them, and
issues STREAMS system calls to set the options. After setting up the options,
getstrm creates a user application process. Later, when the user terminates
that application, getstrm restores the Stream to its idle state by use of system
calls.

The next step is to analyze in more detail how the Stream sets up the
communications options. Before doing so, let's examine how messages are
handled in STREAMS.

Message Types
All STREAMS messages are assigned message types to indicate their

intended use by modules and drivers and to determine their handling by
the Stream head. A driver or module can assign most types to a message it
generates, and a module can modify a message's type during processing.
The Stream head will convert certain system calls to specified message types
and send them downstream, and it will respond to other calls by copying
the contents of certain message types that were sent upstream. Messages
exist only in the kernel, so a user process can only send and receive buffers.
The process is not explicitly aware of the message type, but it may be aware
of message boundaries, depending on the system call used (see the distinc­
tion between getmsg and read in the next section).

Most message types are internal to STREAMS and can only be passed
from one STREAMS module to another. A few message types, including
M_DATA, M_PROTO, and M_PCPROTO, can also be passed between a Stream
and user processes. M_DATA messages carry data within a Stream and
between a Stream and a user process. M_PROTO or M_PCPROTO messages
carry both data and control information. However, the distinction between
control information and data is generally determined by the developer
when implementing a particular Stream. Control information includes ser­
vice interface information, carried between two Stream entities that present
service interfaces, and condition or status information, which may be sent
between any two Stream entities regardless of their interface. An
M_PCPROTO message has the same general use as an M_PROTO, but the
former moves faster through a Stream (see "Message Queue Priority" in
Chapter 6).

4-4 STREAMS PRIMER

An Asynchronous Protocol Stream Example

Sending and Receiving Messages
putmsg is a STREAMS-related system call that sends messages; it is simi­

lar to write. putmsg provides a data buffer which is converted into an
M_DATA message, and can also provide a separate control buffer to be
placed into an M_PROTO or M_PCPROTO block. write provides byte-stream
data to be converted into M_DATA messages.

getmsg is a STREAMS-related system call that accepts messages; it is simi­
lar to read. One difference between the two calls is that read accepts only
data (messages sent upstream to the Stream head as message type M_DATA),
such as the characters entered from the terminal. getmsg can simultane­
ously accept both data and control information (message sent upstream as
types M_PROTO or M_PCPROTO). getmsg also differs from read in that it
preserves message boundaries so that the same boundaries exist above and
below the Stream head (that is, between a user process and a Stream). read
generally ignores message boundaries, processing data as a byte stream.

Certain STREAMS ioctl commands, such as I_STR, also cause messages to
be sent or received on the Stream. I_STR provides the general "ioctl" capa­
bility of the character I/O subsystem. A user process above the Stream head
can issue putmsg, getmsg, the I_STR ioctl command, and certain other
STREAMS related system calls. Other STREAMS ioctls perform functions that
include changing the state of the Stream head, pushing and popping
modules, or returning special information. ioctl commands are described in
more detail the STREAMS Programmer's Guide.

In addition to message types that explicitly transfer data to a process,
some messages sent upstream result in information transfer. When these
messages reach the Stream head, they are transformed into various forms
and sent to the user process. The forms include signals, error codes, and
call return values.

Using Messages in the Example
Returning to the asynchronous protocol example, the Stream was in its

idle configuration (see Figure 4-1). getstrm had issued a getmsg and was
sleeping until the arrival of a message from the Stream head. Such a mes­
sage would result from the driver detecting activity on the associated tty
port.

USER LEVEL FUNCTIONS 4-5

An Asynchronous Protocol Stream Example

An incoming call arrives at port one and causes a ring detect signal in
the modem. The driver receives the ring signal, answers the call, and sends
upstream an M_PROTO message containing information indicating an incom­
ing call. getstrm is notified of all incoming calls, although it can choose to
refuse the call because of system limits. In this idle state, getstrm will also
accept M_PROTO messages indicating, for example, error conditions such as
detection of line or modem problems on the idle line.

The M_PROTO message containing notification of the incoming call
flows upstream from the driver into CHARPROC. CHARPROC inspects the
message type, determines that message processing is not required, and
passes the unmodified message upstream to the Stream head. The Stream
head copies the message into the getmsg buffers (one buffer for control
information, the other for data) associated with getstrm and wakes up the
process. getstrm sends its acceptance of the incoming call with a putmsg
system call which results in a downstream M_PROTO message to the driver.

Then, getstrm sends a prompt to the operator with a write and issues a
getmsg to receive the response. A read could have been used to receive the
response, but the getmsg call allows concurrent monitoring for control
(M_PROTO and M_PCPROTO) information. getstrm will now sleep until the
response characters, or information regarding possible error conditions
detected by modules or driver, are sent upstream.

The first response, sent upstream in a M_DATA block, indicates that the
code set is ASCII and that canonical processing is requested. getstrm imple­
ments these options by pushing CANONPROC onto the Stream, above CHAR­
PROC, to perform canonical processing on the input ASCII characters.

The response to the next prompt requests even parity checking. getstrm
sends an ioctl I_STR command to CHARPROC, requesting the module to per­
form even parity checking on upstream characters. When the dialog indi­
cate protocol option setting is complete, getstrm creates an application pro­
cess. At the end of the connection, getstrm will pop CANONPROC and then
send a I_STR to CHARPROC requesting the module to restore the no-parity
idle state (CHARPROC remains on the Stream).

4-6 STREAMS PRIMER

An Asynchronous Protocol Stream Example

As a result of the above dialogs, the terminal at port one operates in the
following configuration:

• ASCII, even parity

• Echo

• Canonical processing

In similar fashion, an operator at a different type of terminal on port
two requests a different set of options, resulting in the following
configuration:

• EBCDIC

• No Echo

• Canonical processing

The resultant Streams for the two ports are shown in Figure 4-2. For
port one, on the left, the modules in the Stream are CANONPROC and
CHARPROC.

For port two, on the right, the resultant modules are CANONPROC,
ASCEBC and CHARPROC. ASCEBC has been pushed on this Stream to
translate between the ASCII interface at the downstream side of
CANONPROC and the EBCDIC interface of the upstream output side of
CHARPROC. In addition, getstrm has sent an I_STR to the CHARPROC module
in this Stream requesting it to disable echo. The resultant modification to
CHARPROC's functions is indicated by the word "modified" in the right
Stream of Figure 4-2.

USER LEVEL FUNCTIONS 4-7

An Asynchronous Protocol Stream Example

User
Process

STR~AM
HEAD

CANONPROC

I'

II

CHARPROC

QUEUp Pair
I

I
I
I

,
I

PORT
1

f---------

RAW TTY
DRIVER

User
Process

STR~AM
HEAD

t r
CANONPROC

i
ASCEBC

i
CHAR?ROC

(modified)

QUEUp Pair
I

I
I
I

I

I

PORT
2

Figure 4-2: Asynchronous Terminal Streams

4-8 STREAMS PRIMER

User Space
1-----------Kernel Space

An Asynchronous Protocol Stream Example

Since CHARPROC is now performing no function for port two, it might
have been popped from the Stream to be reinserted by getstrm at the end of
connection. However, the low overhead of STREAMS does not require its
removal. The module remains on the Stream, passing messages unmodified
between ASCEBC and the driver. At the end of the connection, getstrm
restores this Stream to its idle configuration of Figure 4-1 by popping the
added modules and then sending an I_STR to CHARPROC to restore the echo
default.

Note that the tty driver shown in Figure 4-2 handles minor devices.
Each minor device has a distinct Stream connected from user space to the
driver. This ability to handle multiple devices is a standard STREAMS
feature, similar to the minor device mechanism in character I/O device
drivers.

USER LEVEL FUNCTIONS 4-9

Other User Functions

The previous example illustrates basic STREAMS concepts. Alternate,
more efficient, STREAMS calls or mechanisms could have been used in place
of those described earlier. Some of the alternatives are described in Chapter
6 and others are addressed in the STREAMS Programmer's Guide.

For example, the initialization process that created a getstrm for each tty
port could have been implemented as a "supergetty" by use of the
STREAMS-related poll system call. As described in Chapter 6, poll allows a
single process to efficiently monitor and control multiple Streams. The
"supergetty" process would handle all of the Stream and terminal protocol
initialization and would create application processes only for established
connections.

The M_PROTO notification sent to getstrm could have been sent by the
driver as an M_SIG message that causes a specified signal to be sent to the
process. As discussed previously under "Message Types," error and status
information can also be sent upstream from a driver or module to user
processes via different message types. These messages will be transformed
by the Stream head into a signal or error code.

Finally, an ~oct1 CSTR command could have been used in place of a
putmsg M_PROTO message to send information to a driver. The sending
process must receive an explicit response from an I_STR by a specified time
period or an error will be returned. A response message must be sent
upstream by the destination module or driver to be translated into the user
response by the Stream head.

4-10 STREAMS PRIMER

Introduction

This chapter introduces the use of the STREAMS mechanism in the ker­
nel and describes some of the tools provided by STREAMS to assist in the
development of modules and drivers. In addition to the basic message pass­
ing mechanism and QUEUE Stream linkage described previously, the
STREAMS mechanism consists of various facilities including buffer manage­
ment, the STREAMS scheduler, processing and message priority, flow con­
trol, and multiplexing. Over 30 STREAMS utility routines and macros are
available to manipulate and utilize these facilities.

The key elements of a STREAMS kernel implementation are the process­
ing routines in the module and drivers, and the preparation of required
data structures. The structures are described in the STREAMS Programmer's

Guide. The following sections provide further information on messages and
on the processing routines that operate on them. The example of Chapter 4
is continued, associating the user-level operations described there with ker­
nel operations.

KERNEL LEVEL FUNCTIONS 5-1

Messages

As shown in Figure 5-1, a STREAMS message consists of one or more
linked message blocks. That is, the first message block of a message may be
attached to other message blocks that are part of the same message. Multi­
ple blocks in a message can occur, for example, as the result of processing
that adds header or trailer data to the data contained in the message, or
because of message buffer size limitations which cause the data to span mul­
tiple blocks. When a message is composed of multiple message blocks, the
message type of the first block determines the type of the entire message,
regardless of the types of the attached message blocks.

Message
Block
(type)

I

Message
Block

II

Message
Block

I

I
V

Figure 5-1: A Message

STREAMS allocates a message as a single block containing a buffer of a
certain size (see the next section). If the data for a message exceed the size
of the buffer containing the data, the procedure can allocate a new block
containing a larger buffer, copy the current data to it, insert the new data
and de-allocate the old block. Alternately, the procedure can allocate an
additional (smaller) block, place the new data in the new message block and

5-2 STREAMS PRIMER

Messages

link it after or before the initial message block. Both alternatives yield one
new message.

Messages can exist standalone, as shown in Figure 5-1, when the mes­
sage is being processed by a procedure. Alternately, a message can await
processing on a linked list of messages, called a message queue, in a QUEUE.
In Figure 5-2, Message 1 is linked to Message 2.

I
I

queue I

header <- - - r: ~
Message

Block
(type)

~
Message

Block

~
~1essage

Block

I

-

Message
1

next
message

Figure 5-2: Messages on a Message Queue

I
I Message
I Block I

(type)

!
Message

Block

I

V

Message
2

next
<. - - - - - - - - - - -> message

When a message is on a queue, the first block of the message contains links
to preceding and succeeding messages on the same message queue, in addi­
tion to containing a link to the second block of the message (if present).
The message queue head and tail are contained in the QUEUE.

STREAMS utility routines enable developers to manipulate messages and
message queues.

KERNEL LEVEL FUNCTIONS 5-3

Messages

Message Allocation
STREAMS maintains its own storage pool for messages. A procedure can

request the allocation of a message of a specified size at one of three mes­
sage pool priorities. The allocb utility will return a message containing a
single block with a buffer of at least the size requested, providing there is a
buffer available at the priority requested. When requesting priority for mes­
sages, developers must weigh their process' need for resources against the
needs of other processes on the same machine.

Message pool priority generally has no effect on allocation until the
pool falls below internal STREAMS thresholds. When this occurs, allocb
may refuse a lower priority request for a message of size "x" while granting
a higher priority request for the same size message. As examples of priority
usage, storage for an urgent control message, such as an M_HANGUP or
M_PCPROTO could be requested at high priority. An M_DATA buffer for
holding input might be requested at medium priority, and an output buffer
(presuming the output data can wait in user space) at lowest priority.

5·4 STREAMS PRIMER

Put and Service Procedures

The procedures in the QUEUE are the software routines that process
messages as they transit the QUEUE. The processing is generally performed
according to the message type and can result in a modified message, new
message(s) or no message. A resultant message is generally sent in the same
direction in which it was received by the QUEUE, but may be sent in either
direction. A QUEUE will always contain a put procedure and may also con­
tain an associated service procedure.

Put Procedures
A put procedure is the QUEUE routine that receives messages from the

preceding QUEUE in the Stream. Messages are passed between QUEUEs by a
procedure in one QUEUE calling the put procedure contained in the follow­
ing QUEUE. A call to the put procedure in the appropriate direction is gen­
erally the only way to pass messages between modules (unless otherwise
indicated, "modules" infers "module, driver and Stream head"). QUEUEs in
pushable (see Chapter 3) modules contain a put procedure. In general,
there is a separate put procedure for the read and write QUEUEs in a module
because of the "full duplex" operation of most Streams.

A put procedure is associated with immediate (as opposed to deferred,
see below) processing on a message. Each module accesses the adjacent put
procedure as a subroutine. For example, consider that modA, modB, and
mode are three consecutive modules in a Stream, with mode connected to
the Stream head. If modA receives a message to be sent upstream, modA
processes that message and calls modB's put procedure, which processes it
and calls mode's put procedure, which processes it and calls the Stream
head's put procedure. Thus, the message will be passed along the Stream in
one continuous processing sequence. On one hand, this sequence has the
benefit of completing the entire processing in a short time with low over­
head (subroutine calls). On the other hand, if this sequence is lengthy al1d
the processing is implemented on a multi-user system, then this manner of
processing may be good for this Stream but may be detrimental for others
since they may have to wait "too long" to get their turn at bat.

In addition, there are situations where the put procedure cannot
immediately process the message but must hold it until processing is
allowed. The most typical examples of this are a driver which must wait
until the current output completes before sending the next m~ssage and the

KERNEL LEVEL FUNCTIONS 5-5

Put and Service Procedures

Stream head, which may have to wait until a process initiates a read(2) on
the Stream.

Service Procedures
STREAMS allows a service procedure to be contained in each QUEUE, in

addition to the put procedure, to address the above cases and for additional
purposes. A service procedure is not required in a QUEUE and is associated
with deferred processing. If a QUEUE has both a put and service procedure,
message processing will generally be divided between the procedures. The
put procedure is always called first, from a preceding QUEUE. After the put
procedure completes its part of the message processing, it arranges for the
service procedure to be called by passing the message to the putq routine.
putq does two things: it places the message on the message queue of the
QUEUE (see Figure 5-2) and links the QUEUE to the end of the STREAMS
scheduling queue. When putq returns to the put procedure, the procedure
typically exits. Some time later, the service procedure will be automatically
called by the STREAMS scheduler.

The STREAMS scheduler is separate and distinct from the UNIX system
process scheduler. It is concerned only with QUEUEs linked on the
STREAMS scheduling queue. The scheduler calls the service procedure of
the scheduled QUEUE in a FIFO manner, one at a time.

Having both a put and service procedure in a QUEUE enables STREAMS
to provide the rapid response and the queuing required in multi-user sys­
tems. The put procedure allows rapid response to certain data and events,
such as software echoing of input characters. Put procedures effectively
have higher priority than any scheduled service procedures. When called
from the preceding STREAMS component, a put procedure executes before
the scheduled service procedures of any QUEUE are executed.

The service procedure implies message queuing. Queuing results in
deferred processing of the service procedure, following all other QUEUEs
currently on the scheduling queue. For example, terminal output and input
erase and kill processing would typically be performed in a service pro­
cedure because this type of processing does not have to be as timely as
echoing. Use of a service procedure also allows processing time to be more
evenly spread among multiple Streams. As with the put procedure there
will generally be a separate service procedure for each QUEUE in a module.
The flow control mechanism (see Chapter 6) uses the service procedures.

5-6 STREAMS PRIMER

Kernel Processing

The following continues the example of Chapter 4, describing STREAMS
kernel operations and associates them, where relevant, with Chapter 4 user­
level system calls in the example. As a result of initializing operations and
pushing a module, the Stream for port one has the following configuration:

write I

STREAM

CANONPROC
module

CHARPROC
module

raw TTY
device driver

Figure 5-3: Operational Stream for Example

1
read

As shown in Figure 5-3, the upstream QUEUE is also referred to as the
read QUEUE, reflecting the message flow in response to a read system call.
Correspondingly, downstream is referred to as the write QUEUE. Read side
processing is discussed first.

KERNEL LEVEL FUNCTIONS 5-7

Kernel Processing

Read Side Processing
In our example, read side processing consists of driver processing,

CHARPROC processing, and CANONPROC processing.

Driver Processing
In the example, the user process has blocked on the getmsg(2) system

call while waiting for a message to reach the Stream head, and the device
driver independently waits for input of a character from the port hardware
or for a message from upstream. Upon receipt of an input character inter­
rupt from the port, the driver places the associated character in an M_DATA
message, allocated previously. Then, the driver sends the message to the
CHARPROC module by calling CHARPROC's upstream put procedure. On
return from CHARPROC, the driver calls the allocb utility routine to get
another message for the next character.

CHARPROC

CHARPROC has both put and service procedures on its read side. In the
example, the other QUEUEs in the modules also have put and service pro­
cedures:

5-8 STREAMS PRIMER

CANONPROC
Module

CHARPROC
Module

Kernel Processing

write read

..

V
(service)

(service)
A

(put)

.................................

V
(service)

.---_....1..-_--.

(service)
A

(put)
.

Figure 5-4: Module Put and Service Procedures

When the driver calls CHARPROC's read QUEUE put procedure, the pro­
cedure checks private data flags in the QUEUE. In this case, the flags indi­
cate that echoing is to be performed (recall that echoing is optional and that
we are working with port hardware which can not automatically echo).
CHARPROC causes the echo to be transmitted back to the terminal by first
making a copy of the message with a STREAMS utility. Then, CHARPROC
uses another utility to obtain the address of its own write QUEUE. Finally,
the CHARPROC read put procedure calls its write put procedure and passes
it the message copy. The write procedure sends the message to the driver
to effect the echo and then returns to the read procedure.

This part of read side processing is implemented with put procedures so
that the entire processing sequence occurs as an extension of the driver
input character interrupt. The CHARPROC read and write put procedures
appear as subroutines (nested in the case of the write procedure) to the
driver. This manner of processing is intended to produce the character
echo in a minimal time frame.

KERNEL LEVEL FUNCTIONS 5-9

Kernel Processin~

After returning from echo processing, the CHARPROC read put pro­
cedure checks another of its private data flags and determines that parity
checking should be performed on the input character. Parity should most
reasonably be checked as part of echo processing. However, for this exam­
ple, parity is checked only when the characters are sent upstream. This
relaxes the timing in which the checking must occur, that is, it can be
deferred along with the canonical processing. CHARPROC uses putq to
schedule the (original) message for parity check processing by its read ser­
vice procedure. When the CHARPROC read service procedure is complete, it
forwards the message to the read put procedure of CANONPROC. Note that
if parity checking were not required, the CHARPROC put procedure would
call the CANONPROC put procedure directly.

CANONPROC
CANONPROC performs canonical processing. As implemented, all read

QUEUE processing is performed in its service procedure so that
CANONPROC's put procedure simply calls putq to schedule the message for
its read service procedure and then exits. The service procedure extracts the
character from the message buffer and place it in the "line buffer" contained
in another M_DATA message it is constructing. Then, the message which
contained the single character is returned to the buffer pool. If the charac­
ter received was not an end-of-line, CANONPROC exits. Otherwise, a com­
plete line has been assembled and CANONPROC sends the message
upstream to the Stream head which unblocks the user process from the
getmsg call and passes it the contents of the message.

Write Side Processing
The write side of this Stream carries two kinds of messages from the

user process: ioctl messages for CHARPROC, and M_DATA messages to be
output to the terminal.

ioctl messages are sent downstream as a result of an I_STR ioctl system
call. When CHARPROC receives an ioctl message type, it processes the mes­
sage contents to modify internal QUEUE flags and then uses a utility to send
an acknowledgement message upstream (read side) to the Stream head. The
Stream head acts on the acknowledgement message by unblocking the user
from the ioctl.

5-10 STREAMS PRIMER

Kernel Processing

For terminal output, it is presumed that M_DATA messages, sent by
write system calls, contain multiple characters. In general, STREAMS returns
to the user process immediately after processing the write call so that the
process may send additional messages. Flow control, described in the next
chapter, will eventually block the sending process. The messages can queue
on the write side of the driver because of character transmission timing.
When a message is received by the driver's write put procedure, the pro­
cedure will use putq to place the message on its write-side service message
queue if the driver is currently transmitting a previous message buffer.
However, there is generally no write QUEUE service procedure in a device
driver. Driver output interrupt processing takes the place of scheduling
and performs the service procedure functions, removing messages from the
queue.

Analysis
For reasons of efficiency, a module implementation would generally

avoid placing one character per message and using separate routines to echo
and parity check each character, as was done in this example. Nevertheless,
even this design yields potential benefits. Consider a case where alternate,
more intelligent port hardware was substituted. If the hardware processed
multiple input characters and performed the echo and parity checking func­
tions of CHARPROC, then the new driver could be implemented to present
the same interface as CHARPROC. Other modules such as CANONPROC
could continue to be used without modification.

KERNEL LEVEL FUNCTIONS 5-11

Introduction

The previous chapters described the basic concepts of constructing a
Stream and utilizing the STREAMS mechanism. Additional STREAMS
features are provided to handle characteristic problems of protocol imple­
mentation, such as flow control, and to assist in development.

There are also kernel and user-level facilities that support the imple­
mentation of advanced functions, such as multiplexors, and allow asynchro­
nous operation of a user process and STREAMS input and output.

OTHER FACILITIES 6-1

Message Queue Priority

As mentioned in the previous chapter, the STREAMS scheduler operates
strictly FIFO so that each QUEUE's service procedure receives control in the
order it was scheduled. When a service procedure receives control, it may
encounter multiple messages on its message queue. This buildup can occur
if there is a long interval between the time a message is queued by a put
procedure and the time that the STREAMS scheduler calls the associated ser­
vice procedure. In this interval, there can be multiple calls to the put pro­
cedure causing multiple messages. The service procedure always processes
all messages on its message queue unless prevented by flow control (see
next section). Each message must pass through all the modules connecting
its origin and destination in the Stream.

If service procedures were used in all QUEUES and there was no message
priority, then the most recently scheduled message would be processed after
all the other scheduled messages on all Streams had been processed. In cer­
tain cases, message types containing urgent information (such as a break or
alarm conditions) must pass through the Stream quickly. To accommodate
these cases, STREAMS provides two classes of message queuing priority,
ordinary and high. STREAMS prevents high-priority messages from being
blocked by flow control and causes a service procedure to process them
ahead of all ordinary priority messages on the procedure's queue. This
results in the high-priority message transiting each module with minimal
delay.

6-2 STREAMS PRIMER

QUEUE

queue
header

Message Queue Priority

Message queue

·····1 I I I I I I I I I I I 1
'--___ --J I I I

IE High ~IE Ordinary >1

I Priority I Priori ty I

Head Tail

Figure 6-1: Streams Message Priority

The priority mechanism operates as shown in Figure 6-1. Message
queues are generally not present in a QUEUE unless that QUEUE contains a
service procedure. When a message is passed to putq to schedule the mes­
sage for service procedure processing, putq places the message on the mes­
sage queue in priority order. High priority messages are placed ahead of all
ordinary priority messages, but behind any other high priority messages on
the queue. STREAMS utilities deliver the messages to the processing service
procedure FIFO within each priority class. The service procedure is unaware
of the message priority and simply receives the next message.

Message priority is defined by the message type; once a message is
created, its priority cannot be changed. Certain message types come in
equivalent high/ordinary priority pairs (for example, M_PCPROTO and
M_PROTO), so that a module or device driver can choose between the two
priorities when sending information.

OTHER FACILITIES 6-3

Flow Control

Even on a well-designed system, general system delays, malfunctions,
and excessive message accumulation on one or more Streams can cause the
message buffer pools to become depleted. Additionally, processing bursts
can arise when a service procedure in one module has a long message
queue and processes all its messages in one pass. STREAMS provides two
independent mechanisms to guard its message buffer pools from being
depleted and to minimize long processing bursts at anyone module.

Flow control is only applied to normal priority messages (see previous sec­
tion) and not to high priority messages.

The first flow control mechanism is global and automatic and is related
to the message pool priority, discussed in the "Message Storage Pool" section
of Chapter 5. When the Stream head requests a message buffer in response
to a putmsg or write system call, it uses the lowest level of priority. Since
buffer availability is based on priority and buffer pool levels, the Stream
head will be among the first modules refused a buffer when the pool
becomes depleted. In response, the Stream head will block user output
until the STREAMS buffer pool recovers. As a result, output has a lower
priority than input.

The second flow control mechanism is local to each Stream and advisory
(voluntary), and limits the number of characters that can be queued for pro­
cessing at any QUEUE in a Stream. This mechanism limits the buffers and
related processing at anyone QUEUE and in anyone Stream, but does not
consider buffer pool levels or buffer usage in other Streams.

The advisory mechanism operates between the two nearest QUEUEs in a
Stream containing service procedures (see diagram on next page). Messages
are generally held on a message queue only if a service procedure is present
in the associated QUEUE.

Messages accumulate at a QUEUE when its service procedure processing
does not keep pace with the message arrival rate, or when the procedure is
blocked from placing its messages on the following Stream component by
the flow control mechanism. Pushable modules contain independent
upstream and downstream limits, which are set when a developer specifies
high-water and low-water control values for the QUEUE. The Stream head
contains a preset upstream limit (which can be modified by a special

6-4 STREAMS PRIMER

Flow Control

message sent from downstream) and a driver may contain a downstream
limit.

Flow control operates as follows:

1. Each time a STREAMS message handling routine (for example, putq)
adds or removes a message from a message queue in a QUEUE, the
limits are checked. STREAMS calculates the total size of all message
blocks on the message queue.

2. The total is compared to the QUEUE high-water and low-water
values. If the total exceeds the high-water value, an internal full
indicator is set for the QUEUE. The operation of the service pro­
cedure in this QUEUE is not affected if the indicator is set, and the
service procedure continues to be scheduled.

3. The next part of flow control processing occurs in the nearest
preceding QUEUE that contains a service procedure. In the diagram
below, if D is full and C has no service procedure, then B is the
nearest preceding QUEUE.

--1 QU:UE H QU~UE H QU~UE ~
I I
I I

V V
Message Message
Queue Queue

Figure 6-2: Flow Control

4. The service procedure in B uses a STREAMS utility routine to see if a
QUEUE ahead is marked full. If messages cannot be sent, the
scheduler blocks the service procedure in B from further execution.
B remains blocked until the low-water mark of the full QUEUE, D, is
reached.

5. While B is blocked, any non-priority messages that arrive at B will
accumulate on its message queue (recall that priority messages are
not blocked). In turn, B can reach a full state and the full condition
will propagate back to the last module in the Stream.

OTHER FACILITIES 6-5

Flow Control

6. When the service procedure processing on D causes the message
block total to fall below the low water mark, the full indicator is
turned off. Then, STREAMS automatically schedules the nearest
preceding blocked QUEUE (B in this case), getting things moving
again. This automatic scheduling is know as back-enabling a
QUEUE.

Note that to utilize flow control, a developer need only call the utility
that tests if a full condition exists ahead, plus perform some housekeeping if
it does. Everything else is automatically handled by STREAMS. Additional
flow control features are described in the STREAMS Programmer's Guide.

6-6 STREAMS PRIMER

Multiplexing

STREAMS multiplexing supports the development of internetworking
protocols such as IP and ISO CLNS, and the processing of interleaved data
streams such as in SNA, X.2S, and terminal window facilities.

STREAMS multiplexors (also called pseudo-device drivers) are created in
the kernel by interconnecting multiple Streams. Conceptually, there are
two kinds of multiplexors that developers can build with STREAMS: upper
and lower multiplexors. Lower multiplexors have multiple lower Streams
between device drivers and the multiplexor, and upper multiplexors have
multiple upper Streams between user processes the multiplexor.

OTHER FACILITIES 6-7

Multiplexing

Module

Ethernet
Driver

User
Processes

AAA

....... lI.. If. ~
Upper

Multiplexor or
Module

IP
Multiplexor

Driver

Module

LAPB
Driver

Figure 6-3: Internet Multiplexing Stream

802.2
Driver

Figure 6-3 shows an example of a lower multiplexor. This configuration
would typically occur where internetworking functions were included in
the system. This Stream contains two types of drivers: the Ethernet, LAPB,
and IEEE 802.2 are hardware device drivers that terminate links to other
nodes; the IP (Internet Protocol) is a multiplexor.

The IP multiplexor switches messages among the various nodes (lower
Streams) or sends them upstream to user processes in the system. In this
example, the multiplexor expects to see an 802.2 interface downstream; for
the Ethernet and LAPB drivers, the Net 1 and Net 2 modules provide service
interfaces to the two the non-802.2 drivers and the IP multiplexor.

6-8 STREAMS PRIMER

Multiplexing

Figure 6-3 depicts the IP multiplexor as part of a larger Stream. The
Stream, as shown in the dotted rectangle, would generally have an upper
TCP multiplexor and additional modules. Multiplexors could also be cas­
caded below the IP driver if the device drivers were replaced by multiplexor
drivers.

PVC
Processes

SVC
Processes Processes

-----------------------------~-----

LAPB Driver
or

Lower Multiplexor

Figure 6-4: X.2S Multiplexing Stream

........)/
: Modules
....... :~

Figure 6-4 shows an upper multiplexor. In this configuration, the driver
routes messages between the lower Stream and one of the upper Streams.
This Stream performs X.2S multiplexing to multiple independent SVC
(Switched Virtual Circuit) and PVC (Permanent Virtual Circuit) user
processes. Upper multiplexors are a specific application of standard

OTHER FACILITIES 6-9

Multiplexing

STREAMS facilities that support multiple minor devices in a device driver.
This figure also shows that more complex configurations can be built by
having one or more multiplexed LAPB drivers below and multiple modules
above.

Developers can choose either upper or lower multiplexing, or both,
when designing their applications. For example, a window multiplexor
would have a similar configuration to the X.2S configuration of Figure 6-4,
with a window driver replacing Packet Layer, a tty driver replacing LAPB,
and the child processes of the terminal process replacing the user processes.
Although the X.2S and window multiplexing Streams have similar
configurations, their multiplexor drivers would differ significantly. The IP
multiplexor of Figure 6-2 has a different configuration than the X.2S multi­
plexor and the driver would implement its own set of processing and rout­
ing requirements.

In addition to upper and lower multiplexors, more complex
configurations can be created by connecting Streams containing multiplex­
ors to other multiplexor drivers. With such a diversity of needs for multi­
plexors, it is not possible to provide general purpose multiplexor drivers.
Rather, STREAMS provides a general purpose multiplexing facility. The
facility allows users to set up the inter-module / driver plumbing to create
multiplexor configurations of generally unlimited interconnection.

The connections are created from user space through specific STREAMS
ioctl system calls. In a lower multiplexor, multiple Streams are connected
below an application-specific, developer-implemented multiplexing driver.
The multiplexing facility will only connect Streams to a driver. The ioctl
call configures a multiplexor by connecting one Stream at a time below the
opened multiplexor driver. As each Stream is connected to the driver, the
connection setup procedure identifies the Stream to the driver. The driver
will generally store this setup information in a private data structure for
later use.

Subsequently, when messages flow into the driver on the various con­
nected Streams, the identity of the associated Stream is passed to the driver
as part of the standard procedure call. The driver then has available the
Stream identification, the previously stored setup information for this
Stream, and any internal routing information contained in the message.
These data are used, according to the application implemented, to process
the incoming message and route the output to the appropriate outgoing
Stream.

6-10 STREAMS PRIMER

Multiplexing

Additionally, new Streams can be dynamically connected to a operating
multiplexor without interfering with ongoing traffic, and existing Streams
can be disconnected with similar ease.

OTHER FACILITIES 6-11

Monitoring

STREAMS allows user processes to monitor and control Streams so that
system resources (such as CPU cycles and process slots) can be used
effectively. Monitoring is especially useful to user-level multiplexors, in
which a user process can create multiple Streams and switch messages
among them (similar to STREAMS kernel-level multiplexing, described previ­
ously).

User processes can efficiently monitor and control multiple Streams with
two STREAMS system calls: poll(2) and the ioctl(2) I_SETSIG command.
These calls allow a user process to detect events that occur at the Stream
head on one or more Streams, including receipt of a data or protocol mes­
sage on the read queue and cessation of flow control.

Synchronous monitoring is provided by use of poll alone; in this case,
the user process cannot continue processing until after the system call com­
pletes. When the calls are used together, they allow asynchronous, or con­
current, operation of the process and STREAMS input/output. This allows
the user process to monitor the Stream while carrying on other activities.

To monitor Streams with poll, a user process issues that system call and
specifies the Streams to be monitored, the events to look for, and the
amount of time to wait for an event. poll will block the process until the
time expires or until an event occurs. If an event occurs, poll will return
the type of event and the Stream on which the event occurred.

Instead of waiting for an event to occur, a user process may want to
monitor one or more Streams while processing other data. It can do so by
issuing the ioctl I_SETSIG command, specifying one or more Streams and
events (as with poll). Unlike a poll, this ioctl does not force the user pro­
cess to wait for the event but returns immediately and will issue a signal
when an event occurs. The process must also request signal(2) or sigset(2) to
catch the resultant SIGPOLL signal.

If any selected event occurs on any of the selected Streams, STREAMS
will cause the SIGPOLL catching function to be executed in all associated
requesting processes. However, the process(es) will not know which event
occurred, nor on what Stream the event occurred. A process that issues the
I_SETSIG can get more detailed information by issuing a poll after it detects
the event.

6-12 STREAMS PRIMER

Error and Trace Logging

STREAMS includes error and trace loggers useful for debugging and
administering modules and drivers.

Any module or driver in any Stream can call the STREAMS logging
function strlog, described in log(7). When called, strlog will send format­
ted text to the error logger strerr(lM), the trace logger strace(lM), or both.
The call parameters for strlog include the module/driver identification, a
severity level, and the formatted text describing the condition causing the
call. The call also identifies the process (strerr and/or strace) to receive the
resultant output message.

OTHER FACILITIES 6-13

Error and Trace Logging

.--.. -------..
.. _------_ .. -

Error
Log File

Strerr

I module ~ --

...-----.. _-...

-.. _------_ ..
Trace

Log File

Strace

Trace
Messages

Log
Software

Driver

Figure 6-5: Error and Trace Logging

User User

--1 driver I

strerr is intended to operate as a daemon process initiated at system
startup. A call to strlog requesting an error to be logged causes an
M_PROTO message to be sent to strerr, which formats the contents and
places them in a daily file. The utility strclean(lM) is provided to periodi­
cally purge aged, unreferenced daily log files.

6-14 STREAMS PRIMER

Error and Trace Logging

A call to strlog requesting trace information to be logged causes a simi­
lar M_PROTO message to be sent to strace(lM), which places it in a user
designated file. strace is intended to be initiated by a user. The user can
designate the modules/drivers and severity level of the messages to be
accepted for logging by strace.

A user process can submit its own M_PROTO messages to the log driver
for inclusion in the logger of its choice through putmsg(2). The messages
must be in the same format required by the logging processes and will be
switched to the logger(s) requested in the message.

The output to the log files is formatted, ASCII text. The files can be pro­
cessed by standard system commands such as grep(l) or ed(l), or by
developer-provided routines.

OTHER FACILITIES 6-15

Introduction

This chapter compares operational feat~res of character I/O device
drivers with STREAMS drivers and modules. It is intended for experienced
developers of UNIX system character device drivers. Details are provided in
the STREAMS Programmer's Guide.

Environment
No user environment is generally available to STREAMS module pro­

cedures and drivers. The exception is the module and driver open and
close routines, both of which have access to the u_area of the calling process
and can sleep. Otherwise, a STREAMS driver, module put procedure, and
module service procedure has no user context and can neither sleep nor
access any u _area.

Multiple Streams can use a copy of the same module (that is, the same
fmodsw), each containing the same processing procedures. This means that
module code is reentrant, so care must be exercised when using global data
in a module. Put and service procedures are always passed the address of
the QUEUE (for example, in Figure 2-5 Au calls Bu's put procedure with Bu
as a parameter). The processing procedure establishes its environment
solely from the QUEUE contents, typically the private data (for example,
state information).

Drivers
At the interface to hardware devices, character I/O drivers have inter­

rupt entry points; at the system interface, those same drivers generally
have direct entry points (routines) to process open, close, read, write and
ioctl system calls.

STREAMS device drivers have similar interrupt entry points at the
hardware device interface and have direct entry points only for open and
close system calls. These entry points are accessed via STREAMS, and the
call formats differ from character device drivers. The put procedure is a
driver's third entry point, but it is a message (not system) interface. The
Stream head translates write and ioctl calls into messages and sends them
downstream to be processed by the driver's write QUEUE put procedure.
read is seen directly only by the Stream head, which contains the functions

DRIVER DESIGN COMPARISONS 7-1

Introduction

required to process system calls. A driver does not know about system
interfaces other than open and close, but it can detect absence of a read
indirectly if flow control propagates from the Stream head to the driver and
affects the driver's ability to send messages upstream.

For input processing, when the driver is ready to send data or other
information to a user process, it does not wake up the process. It prepares a
message and sends it to the read QUEUE of the appropriate (minor device)
Stream. The driver's open routine generally stores the QUEUE address
corresponding to this Stream.

For output processing, the driver receives messages in place of a write
call. If the message can not be sent immediately to the hardware, it may be
stored on the driver's write message queue. Subsequent output interrupts
can remove messages from this queue.

Drivers and modules can pass signals, error codes, and return values to
processes via message types provided for that purpose.

Modules
As described above, modules have user context available only during

the execution of their open and close routines. Otherwise, the QUEUEs
forming the module are not associated with the user process at the end of
the Stream, nor with any other process. Because of this, QUEUE procedures
must not sleep when they cannot proceed; instead, they must explicitly
return control to the system. The system saves no state information for the
QUEUE. The QUEUE must store this information internally if it is to proceed
from the same point on a later entry.

When a module or driver that requires private working storage (for
example, for state information) is pushed, the open routine must obtain the
storage from external sources. STREAMS copies the module template from
fmodsw for the I_PUSH, so only fixed data can be contained in the module
template. STREAMS has no automatic mechanism to allocate working
storage to a module when it is opened. The sources for the storage typically
include a module-specific kernel array, installed when the system is
configured, or the STREAMS buffer pool. When using an array as a module
storage pool, the maximum number of copies of the module that can exist at
anyone time must be determined. For drivers, this is typically determined
from the physical devices connected, such as the number of ports on a mul­
tiplexor. However, certain types of modules may not be associated with a

7-2 STREAMS PRIMER

Introduction

particular external physical limit. For example, the CANONICAL module
shown in Figure 2-4 could be used on different types of Streams.

DRIVER DESIGN COMPARISONS 7-3

Glossary

downstream

driver

message

message queue

message type

module

multiplexor

The direction from Stream head to driver.

The end of the Stream closest to an external inter­
face. The principal functions of the driver are han­
dling any associated device, and transforming data
and information between the external interface and
Stream. It can also be a pseudo-driver, not directly
associated with a device, which performs functions
internal to a Stream, such as a multiplexor or log
driver.

One or more linked blocks of data or information,
with associated STREAMS control structures contain­
ing a message type. Messages are the only means of
transferring data and communicating within a
Stream.

A linked list of messages connected to a QUEUE.

A defined set of values identifying the contents of a
message.

Software that performs functions on messages as
they flow between Stream head and driver. A
module is the STREAMS counterpart to the com­
mands in a Shell pipeline except that a module con­
tains a pair of functions which allow independent
bidirectional (downstream and upstream) data flow
and processing.

A mechanism for connecting multiple Streams to a
multiplexing driver. The mechanism supports the
processing of interleaved data Streams and the pro­
cessing of internetworking protocols. The multi­
plexing driver routes messages among the connected
Streams. The other end of a Stream connected to a
multiplexing driver is typically connected to a dev­
ice driver.

GLOSSARY G-1

Glossary

pushable module A module between the Stream head and driver. A
driver is a non-pushable module and a Stream head
includes a non-pushable module.

QUEUE

read queue

Stream

Stream head

STREAMS

upstream

write queue

G-2 STREAMS PRIMER

The set of structures that forms a module. A module
is composed of two QUEUEs, a read (upstream)
QUEUE and a write (downstream) QUEUE.

The message queue in a module or driver containing
messages moving upstream. Associated with input
from a driver.

The kernel aggregate created by connecting
STREAMS components, resulting from an application
of the STREAMS mechanism. The primary com­
ponents are a Stream head, a driver and zero or
more pushable modules between the Stream head
and driver. A Stream forms a full duplex processing
and data transfer path in the kernel, between a user
process and a driver. A Stream is analogous to a
Shell pipeline except that data flow and processing
are bidirectional.

The end of the Stream closest to the user process.
The Stream head provides the interface between the
Stream and the user process. The principal func­
tions of the Stream head are processing STREAMS­
related system calls, and bidirectional transfer of
data and information between a user process and
messages in STREAMS' kernel space.

A kernel mechanism that supports development of
network services and data communication drivers. It
defines interface standards for character
input/output within the kernel, and between the
kernel and user level. The STREAMS mechanism
comprises integral functions, utility routines, kernel
facilities and a set of structures.

The direction from driver to Stream head.

The message queue in a module or driver containing
messages moving downstream. Associated with out­
put from a user process.

