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Introduction 

With the addition of the Networking Support Utilities, UNIX System V 
Release 3.0 provides comprehensive support for networking services. This 
Primer describes STREAMS, a major building block of that support. The Pri­
mer provides a high level, technical overview of STREAMS; it is intended for 
managers and developers who have prior knowledge of the UNIX system 
and networking or other data communication facilities. For a more detailed 
description of STREAMS, see the STREAMS Programmer's Guide. 

The UNIX system was originally designed as a general-purpose, multi­
user, interactive operating system for minicomputers. Initially developed in 
the 1970's, the system's communications environment included slow to 
medium speed, asynchronous terminal devices. The original design, the 
communications environment, and hardware state of the art influenced the 
character input/output (I/O) mechanism but the character I/O area did not 
require the same emphasis on modularity and performance as other areas of 
the system. 

Support for a broader range of devices, speeds, modes, and protocols has 
since been incorporated into the system, but the original character I/O 
mechanism, which processes one character at a time, made such develop­
ment difficult. Additionally, a paucity of tools and the absence of a frame­
work for incorporating contemporary networking protocols added to the 
difficulty. 

The current generation of networking protocols is exemplified by Open 
Systems Interconnection (051), Systems Network Architecture (SNA), 
Transmission Control Protocol/lnternet Protocol (TCP /IP), X.2S, and Xerox 
Network Systems (XNS). These protocols provide diverse functionality, lay­
ered organization, and various feature options. When developing these pro­
tocol suites, developers faced additional problems because there were no 
relevant standard interfaces in the UNIX system. 

Attempts to compensate for the above problems have led to diverse, ad­
hoc implementations; for example, protocol drivers are often intertwined 
with the hardware configuration in which they were developed. As a 
result, functionally equivalent protocol software often cannot interface with 
alternate implementations of adjacent protocol layers. Portability, adaptabil­
ity, and reuse of software have been hindered. 
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Introduction 

AT&T decided to enhance the character I/O area in Release 3.0. The 
result is STREAMS, a general, flexible facility and a set of tools for develop­
ment of UNIX system communication services. With STREAMS, developers 
can provide services ranging from complete networking protocol suites to 
individual device drivers. 

STREAMS defines standard interfaces for character I/O within the UNIX 
kernel, and between the kernel and the rest of the UNIX system. The associ­
ated mechanism is simple and open-ended. It consists of a set of system 
calls, kernel resources, and kernel utility routines. The standard interface 
and open-ended mechanism enable modular, portable development and 
easy integration of higher performance network services and their com­
ponents. STREAMS does not impose any specific network architecture. 
Instead, it provides a powerful framework with a consistent user interface 
that is compatible with the existing character I/O interface still available in 
UNIX System V. 

STREAMS modularity and design reflect the "layers and options" charac­
teristics of contemporary networking architectures. The basic components 
in a STREAMS implementation are referred to as modules. These modules, 
which reside in the kernel, offer a set of processing functions and associated 
service interfaces. From user level, modules can be dynamically selected 
and interconnected to provide any rational processing sequence. Kernel 
programming, assembly, and link editing are not required to create the 
interconnection. Modules can also be dynamically "plugged into" existing 
connections from user level. STREAMS modularity allows: 

• User level programs that are independent of underlying protocols 
and physical communication media. 

• Network architectures and higher level protocols that are indepen­
dent of underlying protocols, drivers, and physical communication 
media. 

• Higher level services that can be created by selecting and connecting 
lower level services and protocols. 

• Enhanced portability of protocol modules resulting from STREAMS' 
well-defined structure and interface standards. 
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In addition to modularity, STREAMS provides developers with integral 
functions, a library of utility routines, and facilities that expedite software 
design and implementation. The principal facilities are: 

• Buffer management - To maintain STREAMS' own, independent 
buffer pool. 

• Flow control - To conserve STREAMS' memory and processing 
resources. 

• Scheduling - To incorporate STREAMS' own scheduling mechanism. 

• Multiplexing - For processing interleaved data streams, such as occur 
in SNA, X.2S, and windows. 

• Asynchronous operation of STREAMS and user processes - Allows 
STREAMS-related operations to be performed efficiently from user 
level. 

• Error and trace loggers - For debugging and administrative func­
tions. 

STREAMS is the standard for AT&T UNIX system data communications 
and networking implementations. The original STREAMS concepts were 
developed in the Information Sciences Research Division of AT&T Bell 
Laboratories (see "A Stream Input-Output System" in the October 1984 AT&T 
Bell Laboratories Technical Journal). 

How this Document is Organized 
The Primer is organized as follows: 

• Chapter 2 provides an overview of the applications and benefits of 
STREAMS and the STREAMS mechanism. 

• Chapter 3 describes how to set up a Stream from user level and how 
this initializatIon affects the kernel. This and following chapters are 
aimed at developers. 

• Chapter 4 contains a detailed example and discusses it from user 
level. 
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• Chapter 5 describes kernel operations associated with the Chapter 4 
example, together with a discussion of basic STREAMS kernel facili­
ties. 

• Chapter 6 includes kernel and user facilities not otherwise described. 

• Chapter 7 compares certain design features of character I/O device 
drivers with STREAMS modules and drivers. 

• The Glossary defines terms that are specific to STREAMS. 

Other Documents 
The STREAMS Programmer's Guide contains more detailed STREAMS infor­

mation for programmers: how programmers can develop networking appli­
cations with STREAMS user-level facilities and how system programmers can 
use STREAMS kernel-level facilities to build modules and drivers. 

Section 2 of the Programmer's Reference Manual and the System V Interface 
Definition include descriptions (manual pages) of STREAMS-related system 
calls and other information. 
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A Basic View of a Stream 

"STREAMS" is a collection of system calls, kernel resources, and kernel 
utility routines that can create, use, and dismantle a "Stream". A Stream is a 
full-duplex processing and data transfer path between a driver in kernel 
space and a process in user space (see Figure 2-1). 

Stream 
Head 

Module 

Driver 

Figure 2-1: Basic Stream 

User 
Process 

External 
Interface 

__ y~e! .?p~c~ __ _ 
Kernel Space 

! downstream 

(optional) 

t upstream 

A Stream has three parts: A Stream head, module(s) (optional), and a 
driver (also referred to as the Stream end). The Stream head provides the 
interface between the Stream and user processes. Its principal function is to 
process STREAMS-related user system calls. A module processes data that 
travel between the Stream head and driver. A STREAMS driver may be a 
device driver, providing the services of an external I/O device, or an inter­
nal software driver, commonly called a pseudo-device driver. 
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A Basic View of a Stream 

Using a combination of system calls, kernel routines, and kernel utili­
ties, STREAMS passes data between a driver and the Stream head in the 
form of messages. Messages that are passed from the Stream head toward 
the driver are said to travel downstream, and messages passed in the other 
direction travel upstream. 

The Stream head transfers data between the data space of a user process 
and STREAMS kernel data space. Data sent to a driver from a user process 
are packaged into STREAMS messages and passed downstream. Messages 
arriving at the Stream head from downstream are processed by the Stream 
head, and data are copied into user buffers. STREAMS can insert one or 
more modules into a Stream between the Stream head and driver to perform 
intermediate processing of data passing between the Stream head and 
driver. 

System Calls 
Applications programmers can use the STREAMS facilities via a set of 

system calls. This system call interface is upward compatible with the exist­
ing character I/O facilities. The open(2) system call will recognize a 
STREAMS file and create a Stream to the specified driver. A user process can 
send and receive data using read(2) and write(2) in the same manner as 
with character files and devices. The ioct1(2) system call enables application 
programs to perform functions specific to a particular device. In addition, a 
set of generic STREAMS ioctl commands [see streamio(7)] support a variety 
of functions for accessing and controlling Streams. A close(2) will disman­
tle a Stream. 

open, close, read, write, and ioctl support the basic set of operations on 
Streams. In addition, new system calls support advanced STREAMS facilities. 
The poll(2) system call enables an application program to poll multiple 
Streams for various events. When used with the STREAMS I_SETSIG ioctl 
command, poll allows an application to process I/O in an asynchronous 
manner. The putmsg(2) and getmsg(2) system calls enable application pro­
grams to interact with STREAMS modules and drivers through a service 
interface (described next). 

These calls are discussed in this document and in the STREAMS 
Programmer's Guide. They are specified in the Programmer's Reference Manual 
and the System Administrator's Reference Manual. 
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Benefits of STREAMS 

STREAMS offers two major benefits for applications programmers: easy 
creation of modules that offer standard data communications services, and 
the ability to manipulate those modules on a Stream. 

Creating Service Interfaces 
One benefit of STREAMS is that it simplifies the creation of modules that 

present a service interface to any neighboring application program, module, 
or device driver. A service interface is defined at the boundary between 
two neighbors. In STREAMS, a service interface is a specified set of messages 
and the rules for allowable sequences of these messages across the boun­
dary. A module that implements a service interface will receive a message 
from a neighbor and respond with an appropriate action (for example, send 
back a request to retransmit) based on the specific message received and the 
preceding sequence of messages. 

STREAMS provides features that make it easier to design various applica­
tion processes and modules to common service interfaces. If these modules 
are written to comply with industry-standard service interfaces, they are 
called protocol modules. 

In general, any two modules can be connected anywhere in a Stream. 
However, rational sequences are generally constructed by connecting 
modules with compatible protocol service interfaces. For example, a module 
that implements an X.2S protocol layer, as shown in Figure 2-2, presents a 
protocol service interface at its input and output sides. In this case, other 
modules should only be connected to the input and output side if they have 
the compatible X.2S service interface. 

Manipulating Modules 
STREAMS provides the capabilities to manipulate modules from user 

level, to interchange modules with common service interfaces, and to 
present a service interface to a Stream user process. As stated in Chapter 1, 
these capabilities yield benefits when implementing networking services 
and protocols, including: 
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• User level programs can be independent of underlying protocols and 
physical communication media. 

• Network architectures and higher level protocols can be independent 
of underlying protocols, drivers and physical communication media. 

• Higher level services can be created by selecting and connecting 
lower level services and protocols. 

Below are examples of the benefits of STREAMS capabilities to developers for 
creating service interfaces and manipulating modules. 

All protocol modules used below were selected for illustrative purposes. 
Their use does not imply that AT&T offers such modules as products. 

Protocol Portability 
Figure 2-2 shows how the same X.2S protocol module can be used with 

different drivers on different machines by implementing compatible service 
interfaces. The X.2S protocol module interfaces are Connection Oriented 
Network Service (CONS) and Link Access Protocol - Balanced (LAPB) driver. 
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Figure 2-2: Protocol Module Portability 

Protocol Substitution 

Benefits of STREAMS 

MACHINE B 
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Module 
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LAPB 
\ 

Driver 
Machine B 

\ I 

Alternative protocol modules (and device drivers) can be interchanged 
on the same machine if they are implemented to an equivalent service 
in terface( s). 

Protocol Migration 
Figure 2-3 illustrates how STREAMS can migrate functions between ker­

nel software and front end firmware. A common downstream service inter­
face allows the transport protocol module to be independent of the number 
or type of modules below. The same transport module will connect without 
modification to either an X.25 module or X.25 driver that has the same ser­
vice interface. 

By shifting functions between software and firmware, developers can 
produce cost effective, functionally equivalent systems over a wide range of 
configurations. They can rapidly incorporate technological advances. The 
sam~ transport protocol module can be used on a lower capacity machine, 
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where economics may preclude the use of front-end hardware, and also on a 
larger scale system where a front-end is economically justified. 

Class 1 
Transport 
Protocol 

1\ 

------- -------
1/ 

X.2S 
Packet Layer 

Protocol 

,\ 

I 

I \ 
LAPB 

-I Driver /-

\ I 

Figure 2-3: Protocol Migration 

Module Reusability 
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MODULES 

CONS 
Interface 

KERNEL 
------------1 
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Transport 
Protocol 
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I 

\ 

/----

HARDWARE \ J 
~------------~ 

X.2S 
Packet Layer 

Driver 

Figure 2-4 shows the same canonical module (for example, one that pro­
vides delete and kill processing on character strings) reused in two different 
Streams. This module would typically be implemented as a filter, with no 
downstream service interface. In both cases, a TTY interface is presented to 
the Stream's user process since the module is nearest the Stream head. 
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An Advanced View of a Stream 

The STREAMS mechanism constructs a Stream by serially connecting ker­
nel resident STREAMS components, each constructed from a specific set of 
structures. As described earlier and shown in Figure 2-5, the primary 
STREAMS components are the Stream head, optional module(s), and Stream 
end. 

Module 

B 

Module 

A 

Message 

"Ad" 

"Bd" 

QUEUE 

Module 

Figure 2-5: Stream In More Detail 
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An Advanced View of a Stream 

Stream Head 
The Stream head provides the interface between the Stream and an 

application program. The Stream head processes STREAMS-related system 
calls from the application and performs the bidirectional transfer of data 
and information between the application (in user space) and messages (in 
STREAMS' kernel space). 

Messages are the only means of transferring data and communicating 
within a Stream. A STREAMS message contains data, status/control informa­
tion, or a combination of the two. Each message includes a specified mes­
sage type indicator that identifies the contents. 

Modules 
A module performs intermediate transformations on messages passing 

between Stream head and driver. There may be zero or more modules in a 
Stream (zero when the driver performs all the required character and device 
processing). 

Each module is constructed from a pair of QUEUE structures (see Au/ Ad 
and Bu/Bd in Figure 2-5). A pair is required to implement the bidirectional 
and symmetrical attributes of a Stream. One QUEUE performs functions on 
messages passing upstream through the module (Au and Bu in Figure 2-5). 
The other set (Ad and Bd) performs another set of functions on downstream 
messages. (A QUEUE, which is part of a module, is different from a message 
queue, which is described later.) 

Each of the two QUEUEs in a module will generally have distinct func­
tions, that is, unrelated processing procedures and data. The QUEUEs 
operate independently so that Au will not know if a message passes 
through Ad unless Ad is programmed to inform it. Messages' and data can 
be shared only if the developer specifically programs the module functions 
to perform the sharing. 

Each QUEUE can directly access the adjacent QUEUE in the direction of 
message flow (for example, Au to Bu or Stream head to Bd). In addition, 
within a module, a QUEUE can readily locate its mate and access its messages 
(for example, for echoing) and data. 
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An Advanced View of a Stream 

Each QUEUE in a module may contain or point to messages, processing 
procedures, or data: 

• Messages - These are dynamically attached to the QUEUE on a linked 
list ("message queue", see Au and Bd in Figure 2-5) as they pass 
through the module. 

• Processing procedures - A put procedure, to process messages, must 
be incorporated in each QUEUE. An optional service procedure, to 
share the message processing with the put procedure, can also be 
incorporated. According to their function, the procedures can send 
messages upstream and/or downstream, and they can also modify the 
private data in their module. 

• Data - Developers may provide private data if required by the 
QUEUE to perform message processing (for example, state information 
and translation tables). 

In general, each of the two QUEUEs in a module has a distinct set of all 
of these elements. Additional module elements will be: described later. 
Although depicted as distinct from modules (see Figure: 2-5), a Stream head 
and the Stream end also contain a pair of QUEUEs. 

Stream End 
A Stream end is a module in which the module's processing procedures 

are the driver routines. The procedures in the Stream end are different 
from those in other modules because they are accessible from an external 
device and because the STREAMS mechanism allows multiple Streams to be 
connected to the same driver. 

The driver can be a device driver, providing an interface between ker­
nel space and an external communications device, or an internal pseudo­
device driver. A pseudo-device driver is not directly related to any external 
device, and it performs functions internal to the kernel. The multiplexing 
driver discussed in Chapter 6 is a pseudo-device driver. 

Device drivers must transform all data and status/control information 
between STREAMS message formats and their external representation. 
Differences between STREAMS and character device drivers are discussed in 
Chapter 7. 
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Building a Stream 

A Stream is created on the first open(2) system call to a character special 
file corresponding to a STREAMS driver. A STREAMS device is distinguished 
from other character devices by a field contained in the associated cdevsw 
device table entry. 

A Stream is usually built in two steps. Step one creates a minimal 
Stream consisting of just the Stream head and device driver, and step two 
adds modules to produce an expanded Stream (see Figure 3-1). The first step 
has three parts: head and driver structures are allocated and initialized; the 
modules in the head and end are linked to each other to form a Stream; the 
driver open routine is called. 

Minimal 
STREAM 

------------
STR~AM 

HEAD 

\ 

II 

I QUEUp pair I 
raw TTY 

device driver 

Figure 3-1: Setting Up a Stream 

Expanded 
STREAM 

STR~AM 
HEAD 

CANO~PROC 
module 

raw TTY 
device driver 

If the driver performs all character and device processing required, no 
modules need be added to a Stream. Examples of STREAMS drivers include 
a raw tty driver (one that passes along input characters without change) and 
a driver with multiple Streams open to it (corresponding to multiple minor 
devices opened to a character device driver). 
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Building a Stream 

When the driver receives characters from the device, it places them into 
messages. The messages are then transferred to the next Stream component, 
the Stream head, which extracts the contents of the message and copies 
them to user space. Similar processing occurs for downstream character out­
put; the Stream head copies data from user space into messages and sends 
them to the driver. 

Expanded Streams 
As the second step in building a Stream, modules can be added to the 

Stream. In the right-hand Stream in Figure 3-1, the CANONPROC module 
was added to provide additional processing on the characters sent between 
head and driver. 

Modules are added and removed from a Stream in last-in-first-out 
(LIFO) order. They are inserted and deleted at the Stream head via the 
ioctl(2) system call. In the Stream on the left of Figure 2-4, the X.2S module 
was the first added to the Stream, followed by Class 1 Transport and Canon­
ical modules. To replace the Class 1 module with a Class 0 module, the 
Canonical module would have to be removed first, then the Class 1 module, 
then a Class 0 module would be added and the Canonical module put back. 

Because adding and removing modules resembles stack operations, the 
add is called a push and the remove a pop. Push and pop are two of the 
ioctl functions included in the STREAMS subset of ioctl system calls. These 
commands perform various manipulations and operations on Streams. The 
modules manipulated in this manner are called pushable modules, in con­
trast to the modules contained in the Stream head and end. This stack ter­
minology applies only to the setup, modification, and breakdown of a 
Stream. 

Subsequent use of the word module will refer to those pushable modules 
between Stream head and end. 

The Stream head processes the ioctl and executes the push, which is 
analogous to opening the Stream driver. Modules are referenced by a 
unique symbolic name, contained in the STREAMS fmodsw module table 
(similar to the cdevsw table associated with a device file). The module table 
and module name are internal to STREAMS and are accessible from user 
space only through STREAMS ioctl system calls. The fmodsw table points to 
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Building a Stream 

the module template in the kernel. When a module is pushed, the template 
is located, the module structures for both QUEUES are allocated, and the 
template values are copied into the structures. 

In addition to the module elements described in "A Basic View of a 
Stream" section of Chapter 2, each module contains pointers to an open rou­
tine and a close routine. The open is called when the module is pushed, 
and the close is called when the module is popped. Module open and close 
procedures are similar to a driver open and close. 

As in other files, a STREAMS file is closed when the last process open to 
it closes the file by a c1ose(2) system call. This system call causes the Stream 
to be dismantled (modules popped and the driver close executed). 

Pushable Modules 
Modules are pushed onto a Stream to provide special functions and/or 

additional protocol layers. In Figure 3-1, the Stream on the left is opened in 
a minimal configuration with a raw tty driver and no other module added. 
The driver receives one character at a time from the device, places the char­
acter in a message, and sends the message upstream. The Stream head 
receives the message, extracts the single character, and copies it into the 
reading process buffer to send to the user process in response to a read(2) 
system call. When the user process wants to send characters back to the 
driver, it issues a write(2) system call, and the characters are sent to the 
Stream head. The head copies the characters into one or more multi­
character messages and sends them downstream. An application program 
requiring no further kernel character processing would use this minimal 
Stream. 

A user requiring a more terminal-like interface would need to insert a 
module to perform functions such as echoing, character-erase, and line-kill. 
Assuming that the CANONPROC module in Figure 3-1 fulfills this need, the 
application program first opens a raw tty Stream. Then, the CANONPROC 
module is pushed above the driver to create a Stream of the form shown on 
the right of the figure. The driver is not aware that a module has been 
placed above it and therefore continues to send single character messages 
upstream. The module receives single character messages from the driver, 
processes the characters, and accumulates them into line strings. Each line 
is placed into a message and sent to the Stream head. The head now finds 
more than one character in the messages it receives from downstream. 
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Stream head implementation accommodates this change in format 
automatically and transfers the multiple-character data into user space. The 
Stream head also keeps track of messages partially transferred into user 
space (for example, when the current user read buffer can only hold part of 
the current message). Downstream operation is not affected: the head 
sends, and the driver receives, multiple character messages. 

Note that the Stream head provides the interface between the Stream 
and user process. Modules and drivers do not have to implement user 
interface functions other than open and close. 
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After a Stream has been opened, STREAMS-related system calls allow a 
user process to insert and delete (push and pop) modules. That process can 
then communicate with and control the operation of the Stream head, 
modules, and drivers, and can send and receive messages containing data 
and control information. This chapter presents an example of some of the 
basic functions available to STREAMS-based applications via the system calls. 
Additional functions are described at the end of this chapter and in Chapter 
6. 

The full set of STREAMS-related system calls is: 

open(2) 

close(2) 

read(2) 

write(2) 

ioct1(2) 

getmsg(2) 

putmsg(2) 

poU(2) 

Open a Stream (described in Chapter 3) 

Close a Stream (described in Chapter 3) 

Read data from a Stream 

Write data to a Stream 

Control a Stream 

Receive the message at Stream head 

Send a message downstream 

Notify the application program when selected events 
occur on a Stream 

The following two-part example describes a Stream that controls the 
data communication characteristics of a connection between an asynchro­
nous terminal and a tty port. It illustrates basic user level STREAMS features, 
then shows how messages can be used. Chapter 5 discusses the kernel level 
Stream operations corresponding to the user level operations described in 
this chapter. See the STREAMS Programmer's Guide for more detailed exam­
ples of STREAMS applications, modules, and drivers. 
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In the example, our computer runs the UNIX system and supports 
different kinds of asynchronous terminals, each logging in on its own port. 
The port hardware is limited in function; for example, it detects and reports 
line and modem status, but does not check parity. 

Communications software support for these terminals is provided via a 
STREAMS implemented asynchronous protocol. The protocol includes a 
variety of options that are set when a terminal operator dials in to log on. 
The options are determined by a getty-type STREAMS user process, getstrm, 
which analyzes data sent to it through a series of dialogs (prompts and 
responses) between the process and terminal operator. 

The process sets the terminal options for the duration of the connection 
by pushing modules onto the Stream or by sending control messages to 
cause changes in modules (or in the device driver) already on the Stream. 
The options supported include: 

• ASCII or EBCDIC character codes 

• For ASCII code, the parity (odd, even or none) 

• Echo or not echo input characters 

• Canonical input and output processing or transparent (raw) character 
handling 

These options are set with the following modules: 

CHARPROC Provides input character processing functions, including 
dynamically settable (via control messages passed to the 
module) character echo and parity checking. The 
module's default settings are to echo characters and not 
check character parity. 

CANONPROC Performs canonical processing on ASCII characters 
upstream and downstream (note that this performs some 
processing in a different manner from the standard UNIX 
system character I/O tty subsystem). 

ASCEBC Translates EBCDIC code to ASCII upstream and ASCII to 
EBCDIC downstream. 
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Initializing the Stream 
At system initialization a user process, getstrm, is created for each tty 

port. getstrm opens a Stream to its port and pushes the CHARPROC module 
onto the Stream by use of an ioctl I_PUSH command. Then, the process 
issues a getmsg system call to the Stream and sleeps until a message reaches 
the Stream head. The Stream is now in its idle state. 

The initial idle Stream, shown in Figure 4-1, contains only one pushable 
module, CHARPROC. The device driver is a limited function raw tty driver 
connected to a limited-function communication port. The driver and port 
transparently transmit and receive one unbuffered character at a time. 

__________ ~_:~i~~_~ ________ _ 
STRI?AM 

HEAD 

CHAR;rROC 
module 

raw TTY 
device driver 

Figure 4-1: Idle Stream Configuration for Example 
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Upon receipt of initial input from a tty port, getstrm establishes a con­
nection with the terminal, analyzes the option requests, verifies them, and 
issues STREAMS system calls to set the options. After setting up the options, 
getstrm creates a user application process. Later, when the user terminates 
that application, getstrm restores the Stream to its idle state by use of system 
calls. 

The next step is to analyze in more detail how the Stream sets up the 
communications options. Before doing so, let's examine how messages are 
handled in STREAMS. 

Message Types 
All STREAMS messages are assigned message types to indicate their 

intended use by modules and drivers and to determine their handling by 
the Stream head. A driver or module can assign most types to a message it 
generates, and a module can modify a message's type during processing. 
The Stream head will convert certain system calls to specified message types 
and send them downstream, and it will respond to other calls by copying 
the contents of certain message types that were sent upstream. Messages 
exist only in the kernel, so a user process can only send and receive buffers. 
The process is not explicitly aware of the message type, but it may be aware 
of message boundaries, depending on the system call used (see the distinc­
tion between getmsg and read in the next section). 

Most message types are internal to STREAMS and can only be passed 
from one STREAMS module to another. A few message types, including 
M_DATA, M_PROTO, and M_PCPROTO, can also be passed between a Stream 
and user processes. M_DATA messages carry data within a Stream and 
between a Stream and a user process. M_PROTO or M_PCPROTO messages 
carry both data and control information. However, the distinction between 
control information and data is generally determined by the developer 
when implementing a particular Stream. Control information includes ser­
vice interface information, carried between two Stream entities that present 
service interfaces, and condition or status information, which may be sent 
between any two Stream entities regardless of their interface. An 
M_PCPROTO message has the same general use as an M_PROTO, but the 
former moves faster through a Stream (see "Message Queue Priority" in 
Chapter 6). 
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Sending and Receiving Messages 
putmsg is a STREAMS-related system call that sends messages; it is simi­

lar to write. putmsg provides a data buffer which is converted into an 
M_DATA message, and can also provide a separate control buffer to be 
placed into an M_PROTO or M_PCPROTO block. write provides byte-stream 
data to be converted into M_DATA messages. 

getmsg is a STREAMS-related system call that accepts messages; it is simi­
lar to read. One difference between the two calls is that read accepts only 
data (messages sent upstream to the Stream head as message type M_DATA), 
such as the characters entered from the terminal. getmsg can simultane­
ously accept both data and control information (message sent upstream as 
types M_PROTO or M_PCPROTO). getmsg also differs from read in that it 
preserves message boundaries so that the same boundaries exist above and 
below the Stream head (that is, between a user process and a Stream). read 
generally ignores message boundaries, processing data as a byte stream. 

Certain STREAMS ioctl commands, such as I_STR, also cause messages to 
be sent or received on the Stream. I_STR provides the general "ioctl" capa­
bility of the character I/O subsystem. A user process above the Stream head 
can issue putmsg, getmsg, the I_STR ioctl command, and certain other 
STREAMS related system calls. Other STREAMS ioctls perform functions that 
include changing the state of the Stream head, pushing and popping 
modules, or returning special information. ioctl commands are described in 
more detail the STREAMS Programmer's Guide. 

In addition to message types that explicitly transfer data to a process, 
some messages sent upstream result in information transfer. When these 
messages reach the Stream head, they are transformed into various forms 
and sent to the user process. The forms include signals, error codes, and 
call return values. 

Using Messages in the Example 
Returning to the asynchronous protocol example, the Stream was in its 

idle configuration (see Figure 4-1). getstrm had issued a getmsg and was 
sleeping until the arrival of a message from the Stream head. Such a mes­
sage would result from the driver detecting activity on the associated tty 
port. 

USER LEVEL FUNCTIONS 4-5 



An Asynchronous Protocol Stream Example 

An incoming call arrives at port one and causes a ring detect signal in 
the modem. The driver receives the ring signal, answers the call, and sends 
upstream an M_PROTO message containing information indicating an incom­
ing call. getstrm is notified of all incoming calls, although it can choose to 
refuse the call because of system limits. In this idle state, getstrm will also 
accept M_PROTO messages indicating, for example, error conditions such as 
detection of line or modem problems on the idle line. 

The M_PROTO message containing notification of the incoming call 
flows upstream from the driver into CHARPROC. CHARPROC inspects the 
message type, determines that message processing is not required, and 
passes the unmodified message upstream to the Stream head. The Stream 
head copies the message into the getmsg buffers (one buffer for control 
information, the other for data) associated with getstrm and wakes up the 
process. getstrm sends its acceptance of the incoming call with a putmsg 
system call which results in a downstream M_PROTO message to the driver. 

Then, getstrm sends a prompt to the operator with a write and issues a 
getmsg to receive the response. A read could have been used to receive the 
response, but the getmsg call allows concurrent monitoring for control 
(M_PROTO and M_PCPROTO) information. getstrm will now sleep until the 
response characters, or information regarding possible error conditions 
detected by modules or driver, are sent upstream. 

The first response, sent upstream in a M_DATA block, indicates that the 
code set is ASCII and that canonical processing is requested. getstrm imple­
ments these options by pushing CANONPROC onto the Stream, above CHAR­
PROC, to perform canonical processing on the input ASCII characters. 

The response to the next prompt requests even parity checking. getstrm 
sends an ioctl I_STR command to CHARPROC, requesting the module to per­
form even parity checking on upstream characters. When the dialog indi­
cate protocol option setting is complete, getstrm creates an application pro­
cess. At the end of the connection, getstrm will pop CANONPROC and then 
send a I_STR to CHARPROC requesting the module to restore the no-parity 
idle state (CHARPROC remains on the Stream). 
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As a result of the above dialogs, the terminal at port one operates in the 
following configuration: 

• ASCII, even parity 

• Echo 

• Canonical processing 

In similar fashion, an operator at a different type of terminal on port 
two requests a different set of options, resulting in the following 
configuration: 

• EBCDIC 

• No Echo 

• Canonical processing 

The resultant Streams for the two ports are shown in Figure 4-2. For 
port one, on the left, the modules in the Stream are CANONPROC and 
CHARPROC. 

For port two, on the right, the resultant modules are CANONPROC, 
ASCEBC and CHARPROC. ASCEBC has been pushed on this Stream to 
translate between the ASCII interface at the downstream side of 
CANONPROC and the EBCDIC interface of the upstream output side of 
CHARPROC. In addition, getstrm has sent an I_STR to the CHARPROC module 
in this Stream requesting it to disable echo. The resultant modification to 
CHARPROC's functions is indicated by the word "modified" in the right 
Stream of Figure 4-2. 
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User 
Process 

STR~AM 
HEAD 

CANONPROC 

I' 

II 

CHARPROC 

QUEUp Pair 
I 

I 
I 
I 

, 
I 

PORT 
1 

f---------

RAW TTY 
DRIVER 

User 
Process 

STR~AM 
HEAD 

t r 
CANONPROC 

i 
ASCEBC 

i 
CHAR?ROC 

(modified) 

QUEUp Pair 
I 

I 
I 
I 

I 

I 

PORT 
2 

Figure 4-2: Asynchronous Terminal Streams 
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Since CHARPROC is now performing no function for port two, it might 
have been popped from the Stream to be reinserted by getstrm at the end of 
connection. However, the low overhead of STREAMS does not require its 
removal. The module remains on the Stream, passing messages unmodified 
between ASCEBC and the driver. At the end of the connection, getstrm 
restores this Stream to its idle configuration of Figure 4-1 by popping the 
added modules and then sending an I_STR to CHARPROC to restore the echo 
default. 

Note that the tty driver shown in Figure 4-2 handles minor devices. 
Each minor device has a distinct Stream connected from user space to the 
driver. This ability to handle multiple devices is a standard STREAMS 
feature, similar to the minor device mechanism in character I/O device 
drivers. 

USER LEVEL FUNCTIONS 4-9 



Other User Functions 

The previous example illustrates basic STREAMS concepts. Alternate, 
more efficient, STREAMS calls or mechanisms could have been used in place 
of those described earlier. Some of the alternatives are described in Chapter 
6 and others are addressed in the STREAMS Programmer's Guide. 

For example, the initialization process that created a getstrm for each tty 
port could have been implemented as a "supergetty" by use of the 
STREAMS-related poll system call. As described in Chapter 6, poll allows a 
single process to efficiently monitor and control multiple Streams. The 
"supergetty" process would handle all of the Stream and terminal protocol 
initialization and would create application processes only for established 
connections. 

The M_PROTO notification sent to getstrm could have been sent by the 
driver as an M_SIG message that causes a specified signal to be sent to the 
process. As discussed previously under "Message Types," error and status 
information can also be sent upstream from a driver or module to user 
processes via different message types. These messages will be transformed 
by the Stream head into a signal or error code. 

Finally, an ~oct1 CSTR command could have been used in place of a 
putmsg M_PROTO message to send information to a driver. The sending 
process must receive an explicit response from an I_STR by a specified time 
period or an error will be returned. A response message must be sent 
upstream by the destination module or driver to be translated into the user 
response by the Stream head. 
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This chapter introduces the use of the STREAMS mechanism in the ker­
nel and describes some of the tools provided by STREAMS to assist in the 
development of modules and drivers. In addition to the basic message pass­
ing mechanism and QUEUE Stream linkage described previously, the 
STREAMS mechanism consists of various facilities including buffer manage­
ment, the STREAMS scheduler, processing and message priority, flow con­
trol, and multiplexing. Over 30 STREAMS utility routines and macros are 
available to manipulate and utilize these facilities. 

The key elements of a STREAMS kernel implementation are the process­
ing routines in the module and drivers, and the preparation of required 
data structures. The structures are described in the STREAMS Programmer's 

Guide. The following sections provide further information on messages and 
on the processing routines that operate on them. The example of Chapter 4 
is continued, associating the user-level operations described there with ker­
nel operations. 
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As shown in Figure 5-1, a STREAMS message consists of one or more 
linked message blocks. That is, the first message block of a message may be 
attached to other message blocks that are part of the same message. Multi­
ple blocks in a message can occur, for example, as the result of processing 
that adds header or trailer data to the data contained in the message, or 
because of message buffer size limitations which cause the data to span mul­
tiple blocks. When a message is composed of multiple message blocks, the 
message type of the first block determines the type of the entire message, 
regardless of the types of the attached message blocks. 

Message 
Block 
(type) 

I 

Message 
Block 

II 

Message 
Block 

I 

I 
V 

Figure 5-1: A Message 

STREAMS allocates a message as a single block containing a buffer of a 
certain size (see the next section). If the data for a message exceed the size 
of the buffer containing the data, the procedure can allocate a new block 
containing a larger buffer, copy the current data to it, insert the new data 
and de-allocate the old block. Alternately, the procedure can allocate an 
additional (smaller) block, place the new data in the new message block and 
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link it after or before the initial message block. Both alternatives yield one 
new message. 

Messages can exist standalone, as shown in Figure 5-1, when the mes­
sage is being processed by a procedure. Alternately, a message can await 
processing on a linked list of messages, called a message queue, in a QUEUE. 
In Figure 5-2, Message 1 is linked to Message 2. 

I 
I 

queue I 

header <- - - r: ~ 
Message 

Block 
(type) 

~ 
Message 

Block 

~ 
~1essage 

Block 

I 

-

Message 
1 

next 
message 

Figure 5-2: Messages on a Message Queue 

I 
I Message 
I Block I 
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! 
Message 

Block 

I 

V 

Message 
2 

next 
<. - - - - - - - - - - -> message 

When a message is on a queue, the first block of the message contains links 
to preceding and succeeding messages on the same message queue, in addi­
tion to containing a link to the second block of the message (if present). 
The message queue head and tail are contained in the QUEUE. 

STREAMS utility routines enable developers to manipulate messages and 
message queues. 
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Message Allocation 
STREAMS maintains its own storage pool for messages. A procedure can 

request the allocation of a message of a specified size at one of three mes­
sage pool priorities. The allocb utility will return a message containing a 
single block with a buffer of at least the size requested, providing there is a 
buffer available at the priority requested. When requesting priority for mes­
sages, developers must weigh their process' need for resources against the 
needs of other processes on the same machine. 

Message pool priority generally has no effect on allocation until the 
pool falls below internal STREAMS thresholds. When this occurs, allocb 
may refuse a lower priority request for a message of size "x" while granting 
a higher priority request for the same size message. As examples of priority 
usage, storage for an urgent control message, such as an M_HANGUP or 
M_PCPROTO could be requested at high priority. An M_DATA buffer for 
holding input might be requested at medium priority, and an output buffer 
(presuming the output data can wait in user space) at lowest priority. 
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The procedures in the QUEUE are the software routines that process 
messages as they transit the QUEUE. The processing is generally performed 
according to the message type and can result in a modified message, new 
message(s) or no message. A resultant message is generally sent in the same 
direction in which it was received by the QUEUE, but may be sent in either 
direction. A QUEUE will always contain a put procedure and may also con­
tain an associated service procedure. 

Put Procedures 
A put procedure is the QUEUE routine that receives messages from the 

preceding QUEUE in the Stream. Messages are passed between QUEUEs by a 
procedure in one QUEUE calling the put procedure contained in the follow­
ing QUEUE. A call to the put procedure in the appropriate direction is gen­
erally the only way to pass messages between modules (unless otherwise 
indicated, "modules" infers "module, driver and Stream head"). QUEUEs in 
pushable (see Chapter 3) modules contain a put procedure. In general, 
there is a separate put procedure for the read and write QUEUEs in a module 
because of the "full duplex" operation of most Streams. 

A put procedure is associated with immediate (as opposed to deferred, 
see below) processing on a message. Each module accesses the adjacent put 
procedure as a subroutine. For example, consider that modA, modB, and 
mode are three consecutive modules in a Stream, with mode connected to 
the Stream head. If modA receives a message to be sent upstream, modA 
processes that message and calls modB's put procedure, which processes it 
and calls mode's put procedure, which processes it and calls the Stream 
head's put procedure. Thus, the message will be passed along the Stream in 
one continuous processing sequence. On one hand, this sequence has the 
benefit of completing the entire processing in a short time with low over­
head (subroutine calls). On the other hand, if this sequence is lengthy al1d 
the processing is implemented on a multi-user system, then this manner of 
processing may be good for this Stream but may be detrimental for others 
since they may have to wait "too long" to get their turn at bat. 

In addition, there are situations where the put procedure cannot 
immediately process the message but must hold it until processing is 
allowed. The most typical examples of this are a driver which must wait 
until the current output completes before sending the next m~ssage and the 
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Stream head, which may have to wait until a process initiates a read(2) on 
the Stream. 

Service Procedures 
STREAMS allows a service procedure to be contained in each QUEUE, in 

addition to the put procedure, to address the above cases and for additional 
purposes. A service procedure is not required in a QUEUE and is associated 
with deferred processing. If a QUEUE has both a put and service procedure, 
message processing will generally be divided between the procedures. The 
put procedure is always called first, from a preceding QUEUE. After the put 
procedure completes its part of the message processing, it arranges for the 
service procedure to be called by passing the message to the putq routine. 
putq does two things: it places the message on the message queue of the 
QUEUE (see Figure 5-2) and links the QUEUE to the end of the STREAMS 
scheduling queue. When putq returns to the put procedure, the procedure 
typically exits. Some time later, the service procedure will be automatically 
called by the STREAMS scheduler. 

The STREAMS scheduler is separate and distinct from the UNIX system 
process scheduler. It is concerned only with QUEUEs linked on the 
STREAMS scheduling queue. The scheduler calls the service procedure of 
the scheduled QUEUE in a FIFO manner, one at a time. 

Having both a put and service procedure in a QUEUE enables STREAMS 
to provide the rapid response and the queuing required in multi-user sys­
tems. The put procedure allows rapid response to certain data and events, 
such as software echoing of input characters. Put procedures effectively 
have higher priority than any scheduled service procedures. When called 
from the preceding STREAMS component, a put procedure executes before 
the scheduled service procedures of any QUEUE are executed. 

The service procedure implies message queuing. Queuing results in 
deferred processing of the service procedure, following all other QUEUEs 
currently on the scheduling queue. For example, terminal output and input 
erase and kill processing would typically be performed in a service pro­
cedure because this type of processing does not have to be as timely as 
echoing. Use of a service procedure also allows processing time to be more 
evenly spread among multiple Streams. As with the put procedure there 
will generally be a separate service procedure for each QUEUE in a module. 
The flow control mechanism (see Chapter 6) uses the service procedures. 
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The following continues the example of Chapter 4, describing STREAMS 
kernel operations and associates them, where relevant, with Chapter 4 user­
level system calls in the example. As a result of initializing operations and 
pushing a module, the Stream for port one has the following configuration: 

write I 

STREAM 

CANONPROC 
module 

CHARPROC 
module 

raw TTY 
device driver 

Figure 5-3: Operational Stream for Example 

1 
read 

As shown in Figure 5-3, the upstream QUEUE is also referred to as the 
read QUEUE, reflecting the message flow in response to a read system call. 
Correspondingly, downstream is referred to as the write QUEUE. Read side 
processing is discussed first. 
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Read Side Processing 
In our example, read side processing consists of driver processing, 

CHARPROC processing, and CANONPROC processing. 

Driver Processing 
In the example, the user process has blocked on the getmsg(2) system 

call while waiting for a message to reach the Stream head, and the device 
driver independently waits for input of a character from the port hardware 
or for a message from upstream. Upon receipt of an input character inter­
rupt from the port, the driver places the associated character in an M_DATA 
message, allocated previously. Then, the driver sends the message to the 
CHARPROC module by calling CHARPROC's upstream put procedure. On 
return from CHARPROC, the driver calls the allocb utility routine to get 
another message for the next character. 

CHARPROC 

CHARPROC has both put and service procedures on its read side. In the 
example, the other QUEUEs in the modules also have put and service pro­
cedures: 
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Figure 5-4: Module Put and Service Procedures 

When the driver calls CHARPROC's read QUEUE put procedure, the pro­
cedure checks private data flags in the QUEUE. In this case, the flags indi­
cate that echoing is to be performed (recall that echoing is optional and that 
we are working with port hardware which can not automatically echo). 
CHARPROC causes the echo to be transmitted back to the terminal by first 
making a copy of the message with a STREAMS utility. Then, CHARPROC 
uses another utility to obtain the address of its own write QUEUE. Finally, 
the CHARPROC read put procedure calls its write put procedure and passes 
it the message copy. The write procedure sends the message to the driver 
to effect the echo and then returns to the read procedure. 

This part of read side processing is implemented with put procedures so 
that the entire processing sequence occurs as an extension of the driver 
input character interrupt. The CHARPROC read and write put procedures 
appear as subroutines (nested in the case of the write procedure) to the 
driver. This manner of processing is intended to produce the character 
echo in a minimal time frame. 
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After returning from echo processing, the CHARPROC read put pro­
cedure checks another of its private data flags and determines that parity 
checking should be performed on the input character. Parity should most 
reasonably be checked as part of echo processing. However, for this exam­
ple, parity is checked only when the characters are sent upstream. This 
relaxes the timing in which the checking must occur, that is, it can be 
deferred along with the canonical processing. CHARPROC uses putq to 
schedule the (original) message for parity check processing by its read ser­
vice procedure. When the CHARPROC read service procedure is complete, it 
forwards the message to the read put procedure of CANONPROC. Note that 
if parity checking were not required, the CHARPROC put procedure would 
call the CANONPROC put procedure directly. 

CANONPROC 
CANONPROC performs canonical processing. As implemented, all read 

QUEUE processing is performed in its service procedure so that 
CANONPROC's put procedure simply calls putq to schedule the message for 
its read service procedure and then exits. The service procedure extracts the 
character from the message buffer and place it in the "line buffer" contained 
in another M_DATA message it is constructing. Then, the message which 
contained the single character is returned to the buffer pool. If the charac­
ter received was not an end-of-line, CANONPROC exits. Otherwise, a com­
plete line has been assembled and CANONPROC sends the message 
upstream to the Stream head which unblocks the user process from the 
getmsg call and passes it the contents of the message. 

Write Side Processing 
The write side of this Stream carries two kinds of messages from the 

user process: ioctl messages for CHARPROC, and M_DATA messages to be 
output to the terminal. 

ioctl messages are sent downstream as a result of an I_STR ioctl system 
call. When CHARPROC receives an ioctl message type, it processes the mes­
sage contents to modify internal QUEUE flags and then uses a utility to send 
an acknowledgement message upstream (read side) to the Stream head. The 
Stream head acts on the acknowledgement message by unblocking the user 
from the ioctl. 
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For terminal output, it is presumed that M_DATA messages, sent by 
write system calls, contain multiple characters. In general, STREAMS returns 
to the user process immediately after processing the write call so that the 
process may send additional messages. Flow control, described in the next 
chapter, will eventually block the sending process. The messages can queue 
on the write side of the driver because of character transmission timing. 
When a message is received by the driver's write put procedure, the pro­
cedure will use putq to place the message on its write-side service message 
queue if the driver is currently transmitting a previous message buffer. 
However, there is generally no write QUEUE service procedure in a device 
driver. Driver output interrupt processing takes the place of scheduling 
and performs the service procedure functions, removing messages from the 
queue. 

Analysis 
For reasons of efficiency, a module implementation would generally 

avoid placing one character per message and using separate routines to echo 
and parity check each character, as was done in this example. Nevertheless, 
even this design yields potential benefits. Consider a case where alternate, 
more intelligent port hardware was substituted. If the hardware processed 
multiple input characters and performed the echo and parity checking func­
tions of CHARPROC, then the new driver could be implemented to present 
the same interface as CHARPROC. Other modules such as CANONPROC 
could continue to be used without modification. 
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The previous chapters described the basic concepts of constructing a 
Stream and utilizing the STREAMS mechanism. Additional STREAMS 
features are provided to handle characteristic problems of protocol imple­
mentation, such as flow control, and to assist in development. 

There are also kernel and user-level facilities that support the imple­
mentation of advanced functions, such as multiplexors, and allow asynchro­
nous operation of a user process and STREAMS input and output. 
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As mentioned in the previous chapter, the STREAMS scheduler operates 
strictly FIFO so that each QUEUE's service procedure receives control in the 
order it was scheduled. When a service procedure receives control, it may 
encounter multiple messages on its message queue. This buildup can occur 
if there is a long interval between the time a message is queued by a put 
procedure and the time that the STREAMS scheduler calls the associated ser­
vice procedure. In this interval, there can be multiple calls to the put pro­
cedure causing multiple messages. The service procedure always processes 
all messages on its message queue unless prevented by flow control (see 
next section). Each message must pass through all the modules connecting 
its origin and destination in the Stream. 

If service procedures were used in all QUEUES and there was no message 
priority, then the most recently scheduled message would be processed after 
all the other scheduled messages on all Streams had been processed. In cer­
tain cases, message types containing urgent information (such as a break or 
alarm conditions) must pass through the Stream quickly. To accommodate 
these cases, STREAMS provides two classes of message queuing priority, 
ordinary and high. STREAMS prevents high-priority messages from being 
blocked by flow control and causes a service procedure to process them 
ahead of all ordinary priority messages on the procedure's queue. This 
results in the high-priority message transiting each module with minimal 
delay. 
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Figure 6-1: Streams Message Priority 

The priority mechanism operates as shown in Figure 6-1. Message 
queues are generally not present in a QUEUE unless that QUEUE contains a 
service procedure. When a message is passed to putq to schedule the mes­
sage for service procedure processing, putq places the message on the mes­
sage queue in priority order. High priority messages are placed ahead of all 
ordinary priority messages, but behind any other high priority messages on 
the queue. STREAMS utilities deliver the messages to the processing service 
procedure FIFO within each priority class. The service procedure is unaware 
of the message priority and simply receives the next message. 

Message priority is defined by the message type; once a message is 
created, its priority cannot be changed. Certain message types come in 
equivalent high/ordinary priority pairs (for example, M_PCPROTO and 
M_PROTO), so that a module or device driver can choose between the two 
priorities when sending information. 
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Even on a well-designed system, general system delays, malfunctions, 
and excessive message accumulation on one or more Streams can cause the 
message buffer pools to become depleted. Additionally, processing bursts 
can arise when a service procedure in one module has a long message 
queue and processes all its messages in one pass. STREAMS provides two 
independent mechanisms to guard its message buffer pools from being 
depleted and to minimize long processing bursts at anyone module. 

Flow control is only applied to normal priority messages (see previous sec­
tion) and not to high priority messages. 

The first flow control mechanism is global and automatic and is related 
to the message pool priority, discussed in the "Message Storage Pool" section 
of Chapter 5. When the Stream head requests a message buffer in response 
to a putmsg or write system call, it uses the lowest level of priority. Since 
buffer availability is based on priority and buffer pool levels, the Stream 
head will be among the first modules refused a buffer when the pool 
becomes depleted. In response, the Stream head will block user output 
until the STREAMS buffer pool recovers. As a result, output has a lower 
priority than input. 

The second flow control mechanism is local to each Stream and advisory 
(voluntary), and limits the number of characters that can be queued for pro­
cessing at any QUEUE in a Stream. This mechanism limits the buffers and 
related processing at anyone QUEUE and in anyone Stream, but does not 
consider buffer pool levels or buffer usage in other Streams. 

The advisory mechanism operates between the two nearest QUEUEs in a 
Stream containing service procedures (see diagram on next page). Messages 
are generally held on a message queue only if a service procedure is present 
in the associated QUEUE. 

Messages accumulate at a QUEUE when its service procedure processing 
does not keep pace with the message arrival rate, or when the procedure is 
blocked from placing its messages on the following Stream component by 
the flow control mechanism. Pushable modules contain independent 
upstream and downstream limits, which are set when a developer specifies 
high-water and low-water control values for the QUEUE. The Stream head 
contains a preset upstream limit (which can be modified by a special 
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message sent from downstream) and a driver may contain a downstream 
limit. 

Flow control operates as follows: 

1. Each time a STREAMS message handling routine (for example, putq) 
adds or removes a message from a message queue in a QUEUE, the 
limits are checked. STREAMS calculates the total size of all message 
blocks on the message queue. 

2. The total is compared to the QUEUE high-water and low-water 
values. If the total exceeds the high-water value, an internal full 
indicator is set for the QUEUE. The operation of the service pro­
cedure in this QUEUE is not affected if the indicator is set, and the 
service procedure continues to be scheduled. 

3. The next part of flow control processing occurs in the nearest 
preceding QUEUE that contains a service procedure. In the diagram 
below, if D is full and C has no service procedure, then B is the 
nearest preceding QUEUE. 

--1 QU:UE H QU~UE H QU~UE ~ 
I I 
I I 

V V 
Message Message 
Queue Queue 

Figure 6-2: Flow Control 

4. The service procedure in B uses a STREAMS utility routine to see if a 
QUEUE ahead is marked full. If messages cannot be sent, the 
scheduler blocks the service procedure in B from further execution. 
B remains blocked until the low-water mark of the full QUEUE, D, is 
reached. 

5. While B is blocked, any non-priority messages that arrive at B will 
accumulate on its message queue (recall that priority messages are 
not blocked). In turn, B can reach a full state and the full condition 
will propagate back to the last module in the Stream. 
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6. When the service procedure processing on D causes the message 
block total to fall below the low water mark, the full indicator is 
turned off. Then, STREAMS automatically schedules the nearest 
preceding blocked QUEUE (B in this case), getting things moving 
again. This automatic scheduling is know as back-enabling a 
QUEUE. 

Note that to utilize flow control, a developer need only call the utility 
that tests if a full condition exists ahead, plus perform some housekeeping if 
it does. Everything else is automatically handled by STREAMS. Additional 
flow control features are described in the STREAMS Programmer's Guide. 
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STREAMS multiplexing supports the development of internetworking 
protocols such as IP and ISO CLNS, and the processing of interleaved data 
streams such as in SNA, X.2S, and terminal window facilities. 

STREAMS multiplexors (also called pseudo-device drivers) are created in 
the kernel by interconnecting multiple Streams. Conceptually, there are 
two kinds of multiplexors that developers can build with STREAMS: upper 
and lower multiplexors. Lower multiplexors have multiple lower Streams 
between device drivers and the multiplexor, and upper multiplexors have 
multiple upper Streams between user processes the multiplexor. 
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Figure 6-3 shows an example of a lower multiplexor. This configuration 
would typically occur where internetworking functions were included in 
the system. This Stream contains two types of drivers: the Ethernet, LAPB, 
and IEEE 802.2 are hardware device drivers that terminate links to other 
nodes; the IP (Internet Protocol) is a multiplexor. 

The IP multiplexor switches messages among the various nodes (lower 
Streams) or sends them upstream to user processes in the system. In this 
example, the multiplexor expects to see an 802.2 interface downstream; for 
the Ethernet and LAPB drivers, the Net 1 and Net 2 modules provide service 
interfaces to the two the non-802.2 drivers and the IP multiplexor. 
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Figure 6-3 depicts the IP multiplexor as part of a larger Stream. The 
Stream, as shown in the dotted rectangle, would generally have an upper 
TCP multiplexor and additional modules. Multiplexors could also be cas­
caded below the IP driver if the device drivers were replaced by multiplexor 
drivers. 
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Figure 6-4: X.2S Multiplexing Stream 

........ )/ ....... . 
: Modules 
....... :~ ....... . 

Figure 6-4 shows an upper multiplexor. In this configuration, the driver 
routes messages between the lower Stream and one of the upper Streams. 
This Stream performs X.2S multiplexing to multiple independent SVC 
(Switched Virtual Circuit) and PVC (Permanent Virtual Circuit) user 
processes. Upper multiplexors are a specific application of standard 
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STREAMS facilities that support multiple minor devices in a device driver. 
This figure also shows that more complex configurations can be built by 
having one or more multiplexed LAPB drivers below and multiple modules 
above. 

Developers can choose either upper or lower multiplexing, or both, 
when designing their applications. For example, a window multiplexor 
would have a similar configuration to the X.2S configuration of Figure 6-4, 
with a window driver replacing Packet Layer, a tty driver replacing LAPB, 
and the child processes of the terminal process replacing the user processes. 
Although the X.2S and window multiplexing Streams have similar 
configurations, their multiplexor drivers would differ significantly. The IP 
multiplexor of Figure 6-2 has a different configuration than the X.2S multi­
plexor and the driver would implement its own set of processing and rout­
ing requirements. 

In addition to upper and lower multiplexors, more complex 
configurations can be created by connecting Streams containing multiplex­
ors to other multiplexor drivers. With such a diversity of needs for multi­
plexors, it is not possible to provide general purpose multiplexor drivers. 
Rather, STREAMS provides a general purpose multiplexing facility. The 
facility allows users to set up the inter-module / driver plumbing to create 
multiplexor configurations of generally unlimited interconnection. 

The connections are created from user space through specific STREAMS 
ioctl system calls. In a lower multiplexor, multiple Streams are connected 
below an application-specific, developer-implemented multiplexing driver. 
The multiplexing facility will only connect Streams to a driver. The ioctl 
call configures a multiplexor by connecting one Stream at a time below the 
opened multiplexor driver. As each Stream is connected to the driver, the 
connection setup procedure identifies the Stream to the driver. The driver 
will generally store this setup information in a private data structure for 
later use. 

Subsequently, when messages flow into the driver on the various con­
nected Streams, the identity of the associated Stream is passed to the driver 
as part of the standard procedure call. The driver then has available the 
Stream identification, the previously stored setup information for this 
Stream, and any internal routing information contained in the message. 
These data are used, according to the application implemented, to process 
the incoming message and route the output to the appropriate outgoing 
Stream. 
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Additionally, new Streams can be dynamically connected to a operating 
multiplexor without interfering with ongoing traffic, and existing Streams 
can be disconnected with similar ease. 
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STREAMS allows user processes to monitor and control Streams so that 
system resources (such as CPU cycles and process slots) can be used 
effectively. Monitoring is especially useful to user-level multiplexors, in 
which a user process can create multiple Streams and switch messages 
among them (similar to STREAMS kernel-level multiplexing, described previ­
ously). 

User processes can efficiently monitor and control multiple Streams with 
two STREAMS system calls: poll(2) and the ioctl(2) I_SETSIG command. 
These calls allow a user process to detect events that occur at the Stream 
head on one or more Streams, including receipt of a data or protocol mes­
sage on the read queue and cessation of flow control. 

Synchronous monitoring is provided by use of poll alone; in this case, 
the user process cannot continue processing until after the system call com­
pletes. When the calls are used together, they allow asynchronous, or con­
current, operation of the process and STREAMS input/output. This allows 
the user process to monitor the Stream while carrying on other activities. 

To monitor Streams with poll, a user process issues that system call and 
specifies the Streams to be monitored, the events to look for, and the 
amount of time to wait for an event. poll will block the process until the 
time expires or until an event occurs. If an event occurs, poll will return 
the type of event and the Stream on which the event occurred. 

Instead of waiting for an event to occur, a user process may want to 
monitor one or more Streams while processing other data. It can do so by 
issuing the ioctl I_SETSIG command, specifying one or more Streams and 
events (as with poll). Unlike a poll, this ioctl does not force the user pro­
cess to wait for the event but returns immediately and will issue a signal 
when an event occurs. The process must also request signal(2) or sigset(2) to 
catch the resultant SIGPOLL signal. 

If any selected event occurs on any of the selected Streams, STREAMS 
will cause the SIGPOLL catching function to be executed in all associated 
requesting processes. However, the process(es) will not know which event 
occurred, nor on what Stream the event occurred. A process that issues the 
I_SETSIG can get more detailed information by issuing a poll after it detects 
the event. 
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Error and Trace Logging 

STREAMS includes error and trace loggers useful for debugging and 
administering modules and drivers. 

Any module or driver in any Stream can call the STREAMS logging 
function strlog, described in log(7). When called, strlog will send format­
ted text to the error logger strerr(lM), the trace logger strace(lM), or both. 
The call parameters for strlog include the module/driver identification, a 
severity level, and the formatted text describing the condition causing the 
call. The call also identifies the process (strerr and/or strace) to receive the 
resultant output message. 
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strerr is intended to operate as a daemon process initiated at system 
startup. A call to strlog requesting an error to be logged causes an 
M_PROTO message to be sent to strerr, which formats the contents and 
places them in a daily file. The utility strclean(lM) is provided to periodi­
cally purge aged, unreferenced daily log files. 
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A call to strlog requesting trace information to be logged causes a simi­
lar M_PROTO message to be sent to strace(lM), which places it in a user 
designated file. strace is intended to be initiated by a user. The user can 
designate the modules/drivers and severity level of the messages to be 
accepted for logging by strace. 

A user process can submit its own M_PROTO messages to the log driver 
for inclusion in the logger of its choice through putmsg(2). The messages 
must be in the same format required by the logging processes and will be 
switched to the logger(s) requested in the message. 

The output to the log files is formatted, ASCII text. The files can be pro­
cessed by standard system commands such as grep(l) or ed(l), or by 
developer-provided routines. 
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This chapter compares operational feat~res of character I/O device 
drivers with STREAMS drivers and modules. It is intended for experienced 
developers of UNIX system character device drivers. Details are provided in 
the STREAMS Programmer's Guide. 

Environment 
No user environment is generally available to STREAMS module pro­

cedures and drivers. The exception is the module and driver open and 
close routines, both of which have access to the u_area of the calling process 
and can sleep. Otherwise, a STREAMS driver, module put procedure, and 
module service procedure has no user context and can neither sleep nor 
access any u _area. 

Multiple Streams can use a copy of the same module (that is, the same 
fmodsw), each containing the same processing procedures. This means that 
module code is reentrant, so care must be exercised when using global data 
in a module. Put and service procedures are always passed the address of 
the QUEUE (for example, in Figure 2-5 Au calls Bu's put procedure with Bu 
as a parameter). The processing procedure establishes its environment 
solely from the QUEUE contents, typically the private data (for example, 
state information). 

Drivers 
At the interface to hardware devices, character I/O drivers have inter­

rupt entry points; at the system interface, those same drivers generally 
have direct entry points (routines) to process open, close, read, write and 
ioctl system calls. 

STREAMS device drivers have similar interrupt entry points at the 
hardware device interface and have direct entry points only for open and 
close system calls. These entry points are accessed via STREAMS, and the 
call formats differ from character device drivers. The put procedure is a 
driver's third entry point, but it is a message (not system) interface. The 
Stream head translates write and ioctl calls into messages and sends them 
downstream to be processed by the driver's write QUEUE put procedure. 
read is seen directly only by the Stream head, which contains the functions 
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required to process system calls. A driver does not know about system 
interfaces other than open and close, but it can detect absence of a read 
indirectly if flow control propagates from the Stream head to the driver and 
affects the driver's ability to send messages upstream. 

For input processing, when the driver is ready to send data or other 
information to a user process, it does not wake up the process. It prepares a 
message and sends it to the read QUEUE of the appropriate (minor device) 
Stream. The driver's open routine generally stores the QUEUE address 
corresponding to this Stream. 

For output processing, the driver receives messages in place of a write 
call. If the message can not be sent immediately to the hardware, it may be 
stored on the driver's write message queue. Subsequent output interrupts 
can remove messages from this queue. 

Drivers and modules can pass signals, error codes, and return values to 
processes via message types provided for that purpose. 

Modules 
As described above, modules have user context available only during 

the execution of their open and close routines. Otherwise, the QUEUEs 
forming the module are not associated with the user process at the end of 
the Stream, nor with any other process. Because of this, QUEUE procedures 
must not sleep when they cannot proceed; instead, they must explicitly 
return control to the system. The system saves no state information for the 
QUEUE. The QUEUE must store this information internally if it is to proceed 
from the same point on a later entry. 

When a module or driver that requires private working storage (for 
example, for state information) is pushed, the open routine must obtain the 
storage from external sources. STREAMS copies the module template from 
fmodsw for the I_PUSH, so only fixed data can be contained in the module 
template. STREAMS has no automatic mechanism to allocate working 
storage to a module when it is opened. The sources for the storage typically 
include a module-specific kernel array, installed when the system is 
configured, or the STREAMS buffer pool. When using an array as a module 
storage pool, the maximum number of copies of the module that can exist at 
anyone time must be determined. For drivers, this is typically determined 
from the physical devices connected, such as the number of ports on a mul­
tiplexor. However, certain types of modules may not be associated with a 
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particular external physical limit. For example, the CANONICAL module 
shown in Figure 2-4 could be used on different types of Streams. 
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Glossary 

downstream 

driver 

message 

message queue 

message type 

module 

multiplexor 

The direction from Stream head to driver. 

The end of the Stream closest to an external inter­
face. The principal functions of the driver are han­
dling any associated device, and transforming data 
and information between the external interface and 
Stream. It can also be a pseudo-driver, not directly 
associated with a device, which performs functions 
internal to a Stream, such as a multiplexor or log 
driver. 

One or more linked blocks of data or information, 
with associated STREAMS control structures contain­
ing a message type. Messages are the only means of 
transferring data and communicating within a 
Stream. 

A linked list of messages connected to a QUEUE. 

A defined set of values identifying the contents of a 
message. 

Software that performs functions on messages as 
they flow between Stream head and driver. A 
module is the STREAMS counterpart to the com­
mands in a Shell pipeline except that a module con­
tains a pair of functions which allow independent 
bidirectional (downstream and upstream) data flow 
and processing. 

A mechanism for connecting multiple Streams to a 
multiplexing driver. The mechanism supports the 
processing of interleaved data Streams and the pro­
cessing of internetworking protocols. The multi­
plexing driver routes messages among the connected 
Streams. The other end of a Stream connected to a 
multiplexing driver is typically connected to a dev­
ice driver. 
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pushable module A module between the Stream head and driver. A 
driver is a non-pushable module and a Stream head 
includes a non-pushable module. 

QUEUE 

read queue 

Stream 

Stream head 

STREAMS 

upstream 

write queue 
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The set of structures that forms a module. A module 
is composed of two QUEUEs, a read (upstream) 
QUEUE and a write (downstream) QUEUE. 

The message queue in a module or driver containing 
messages moving upstream. Associated with input 
from a driver. 

The kernel aggregate created by connecting 
STREAMS components, resulting from an application 
of the STREAMS mechanism. The primary com­
ponents are a Stream head, a driver and zero or 
more pushable modules between the Stream head 
and driver. A Stream forms a full duplex processing 
and data transfer path in the kernel, between a user 
process and a driver. A Stream is analogous to a 
Shell pipeline except that data flow and processing 
are bidirectional. 

The end of the Stream closest to the user process. 
The Stream head provides the interface between the 
Stream and the user process. The principal func­
tions of the Stream head are processing STREAMS­
related system calls, and bidirectional transfer of 
data and information between a user process and 
messages in STREAMS' kernel space. 

A kernel mechanism that supports development of 
network services and data communication drivers. It 
defines interface standards for character 
input/output within the kernel, and between the 
kernel and user level. The STREAMS mechanism 
comprises integral functions, utility routines, kernel 
facilities and a set of structures. 

The direction from driver to Stream head. 

The message queue in a module or driver containing 
messages moving downstream. Associated with out­
put from a user process. 




