i

ATaTl

999-300-341
Issue 1

630 MTG

Software Development Guide

TRADEMARKS

The following trademarks are used in this manual:

+ DEC — Registered trademark of Digital Equipment Corp.

« IBM — Registered trademark of International Business Machines Corporation
+ MC68000 — Trademark of Motorola, Inc.

+ PDP — Registered trademark of Digital Equipment Corp.

« UNIX — Registered trademark of AT&T

+ VAX — Registered trademark of Digital Equipment Corp.

« WE — Registered trademark of AT&T

ORDERING INFORMATION

Additional copies of this document can be ordered by calling
Toll free: 1-800-432-6600 In the US.A.
1-800-255-1242 In Canada

Toll: 1-317-352-8557 Worldwide

OR by writing to:

AT&T Customer Information Center
Attn: Customer Service Representative
P.O. Box 19901

Indianapolis, IN 46219

NOTICE

The information in this document is subject to change without notice. AT&T assumes no

responsibility for any errors that may appear in this document.

Copyright © 1987 AT&T
All Rights Reserved
Printed in U.S.A.

Table of Contents

1. Overview
Introduction
User Responsibilities

Features of the 630 MTG Software Development
Package

Document Organization

Part 1 Programming the 630 MTG

2. Getting Started
General

Some Simple Programs

3. 630 MTG Operating System
Considerations

Introduction
The 630 MTG Operating System
Sharing the CPU
System and Process Exceptions
4. Graphics Environment

Introduction

TABLE OF CONTENTS

Table of Contents

Four Basic Data Types

Operations, Comparisons and Conversions .

Two Graphical Coordinate Systems
Graphics Routines

Example Program - “screen.c” .

5. Application Resources
Application Resource Management
The Mouse Resource

The Keyboard Resource - “kbdchar” and
“ringbell”

The Printer Resource

Host Communications
System Services

Example Programs

6. User Interface Toolbox
Introduction

“menuhit”

“tmenuhit” - Tree Menus

The Label Bar

4-2

4-15

4-21

4-26

4-43

5-1

5-1

5-4

6-1

6-1

6-2

6-15

Message Boxes .

Example Programs

7. “jx"” I/O Interpreter .

Introduction

How “jx”” Works

Using “jx” .

Functions Available with “jx” .

Example Program

8. Fonts and the Font Cache .

“Font” and “Fontchar” Structures .

Drawing Characters on the Screen .

Drawing Text Strings - “string”, “jstring”, and
“strwidth”o o000

Getting New Fonts from the Host - “getfont”

The 630 MTG Font Cache .

9. Interprocess Communications (Messages)

Introduction

What is a Message? .

Creating a Message Queue

TABLE OF CONTENTS

Table of Contents

6-19

6-21

7-4

7-5

8-1

8-1

8-5

8-8

8-9

8-12

9-1

9-2

9-3

Table of Contents

Sending and Receiving Messages 9-5
Example Program - “messagesl.c” 9-8
Message Queue Control 9-11
Example Program - “messages2.c” 9-14
10. Application Caching 10-1
Introduction L. 10-1
Caching an Application 10-2
Removing Applications from the Cache 10-8
Reshapability of Cached Applications 10-9
Cached Applications and “.text,” ““.data,” and

“bss” Sections 10-11
Writing Shared Text Applications 10-14
Example Programs for Application Caching . . . 10-21
11. Redefining Keyboard Operations 11-1
Introduction, 11-1
Redefining Key Clusters 11-2
Redefining the Entire Keyboard 11-6

Demonstrations of Keyboard Redefinition
Modes 11-9

iv

Table of Contents

Example Programs 11-11

Keyboard Transmittal Codes and Keyboard
Layout 11-21

Part 2 Applications

12. Dmdpi Debugger 12-1
Introduction 12-1
Dmdpi User Interface 12-2
Using the Dmdpi Debugger 12-6
Other Dmdpi Features 1225
“clock.c” Source Code 12-35
13. Jim Text Editor 13-1
Introduction 13-1
The Jim Window 13-2
Jim Operations 13-4
Keyboard Command Summary 13-24
14. Icon Editing 14-1
Introduction oL 14-1
Bitmaps and Texturelés 14-2

TABLE OF CONTENTS v

Table of Contents

UsingIcon L.
15. C Compilatioh System
Introductiono
The 630 MTG Compiler
Other Utilities
Register Use
CLlanguage
16. MC68000 UNIX System Assembler

Introduction
Warnings
Use of the Assembler
General Syntax Rules
" Segments, Location Counters, and Labels

Typeso
Expressions
Pseudo-Operations
Span-Dependent Optimization
Address Mode Syntax

Machine Instructions

Table of Contents

Part 3 Appendices and Index

A. Installation and Administration A-1
General Considerations A-1

Installation of 630 MTG Software Development

Package A4
Local Software A-10
B. 5620 Compatibility B-1
Co-existence of 5620 DMD and 630 MTG on

the Same Host Computer B-1
Porting 5620 DMD Programs to the 630 MTG . . B3
Index [I-1

TABLE OF CONTENTS vii

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2-1:
2-2:
2-3:
4-1:
4-2:
4-3:
4-4:
4-5:
4-6:
4-7:
4-8:
4-9:

4-10:
4-11:
4-12:
4-13:
4-14:
4-15:
4-16:
4-17:
4-18:
4-19:
4-20:
4-21:
4-22:
4-23:
4-24:

5-1:
5-2:
5-3:
5-4:
5-5:
5-1:
5-2:
5-3:
5-4:
5-5:

Example Program - ““hello.c”
Example Program - “HELLO.c”
Example Programs “arguments.c”’
Rectangle Edge Exclusion
Contiguous Block of Memory .o
Beginning of “Bitmap” Image in Memory
Ex_bitmap.width =2 .
Ex_bitmap.width =3 .
“rect” ={{0,0},{48,8}}
“rect” = {{16,16},{64,24}}
“rect” = {{10,10},{42,16}}

“rect” = {{24,5},{44, 10}}

Example Rectangle - “extent” D1v1ded by Two

Example Rectangle - CenterRectOnPt
Example Rectangle - “raddp” and ‘ rsubp
The Bitmap “’physical” .

Global Structures Defining a Wlndow
Example Program - Bltmap “dlsplay
Bitmap A .

Bitmap B .

“bitblt” - A Modlfymg the Image Data of B
“bitblt” - B Modifying the Image Data of A
Bitmap A Modified as C ce e
Bitmap B Modified as D

“bitblt” - C Modifying Image Data of D
Source Code for “twist.c” .o
Example Program “’screen.c”

Example Program - “mouse.c”

Example Program ““TrackMouse.c”
Example Program “star.c”

Example Program “type.c”

Example Program “vsterm1.c”

Example Program - “mouse.c”

Example Program “TrackMouse.c”
Example Program “‘star.c”

Example Program “type.c”’

Example Program “‘vsterm1.c”

LIST OF FIGURES

2-6
2-8

4-6

4-7

4-8

4-8

4-9
4-10
4-12
4-13
4-16
4-17
4-18
4-22
4-23
4-31
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-43
5-17
5-27
5-29
5-35
5-37
5-17
5-27
5-29
5-35
5-37

ix

List of Figures

Figure 6-1: Example Program “Menul.c” 621
Figure 6-2: Example Program “Menu2.¢” 623
Figure 6-3: Example Program “Tmenulc” 627
Figure 6-4: Example Program “Tmenu2.¢” 629
Figure 6-5: Example Program “Tmenu3.c” 6-33
Figure 6-6: Example Program “Tmenu4.c” 6-37
Figure 6-7: Example Program “Tmenu5.¢” 6-42
Figure 6-8: Example Program “Tmenué.c” 6-47
Figure 6-9: Example Program “Tmenu7.¢” 6-52
Figure 6-10: Example Program “Tmenu8¢” 6-58
Figure 6-11: Example Program “Tmenu9.c¢” 6-64
Figure 6-12: Example Program “labellc” 6-67
Figure 6-13: Example Program “label2.c” 6-68

Figure 6-14: Example Program “label3.c” 6-69
Figure 6-15: Example Program “msgboxl.c” 671

Figure 6-16: Example Program “msgbox2.c” 6-72
Figure 7-1: Example Program - “jxmouse” 7-6
Figure 8-1: Font Bitmap . . e e e e e e e e e 8-2
Figure 8-2: Character Image Cell e e e e e e e e e 8-4
Figure 8-3: Subroutine “drawchar” . . e e e e 8-6
Figure 8-4: Example Program Using getfont . . 810
Figure 8-5: Example Program - Cachmg a Downloaded Font . . 813
Figure 9-1: Example Program - “messagesl.c” 9-8
Figure 9-2: Example Program - “messages2.c” 9-14

Figure 10-1: Example Program ““cachelc” 10-21
Figure 10-2: Example Program “cache2.¢” 10-22
Figure 10-3: Example Program “cache3.c” 10-23
Figure 10-4: Example Program “cache4.c” 10-24
Figure 10-5: Example Program “cache5.c” 10-25
Figure 10-6: Example Program “cache6.c” 10-26
Figure 10-7: Example Program “cache7.¢” 10-28
Figure 10-8: Example Program “cache8.¢” 10-30
Figure 10-9: Example Program “cache9.¢” 10-32

Figure 10-10: Example Program “cachel0.c” 10-34
Figure 10-11: Example Program “cachell.c” 10-36
Figure 10-12: Example Program “cachel2.c¢” 10-38

Figure 10-13: Example Program “cachel3.c” 10-40
Figure 10-14: Example Program “cachel4.c” 10-42

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

10-15:
10-16:
10-17:

11-1:
11-2:
11-3:
11-4:
11-5:
11-6:
13-1:

13-2:
14-1:
14-2:
16-1:
16-2:
16-3:

Example Program “cachel5.c

" 10-44
Example Program “cachel6.c” 10-46
Example Program “cachel7.c” . . 10-48
Example Program ‘“’kbd1.c” 11-11
Example Program “kbd2.c” 11-14
Example Program “kbd3.c” 11-18
98-Key Keyboard Transmittal Codes 11-22
98-Key Keyboard Layout . 11-25
Keyboard Key Positions . 11-26
Sample 630 MTG Screen with Three]1m Frames
Open . e e e e e e 13-3
Dlagnostlc Messages 13-18
The icon Editor Display 14-4
The icon Menu . e v . . 145
Assembler Span- Dependent Optlmlzatlons 16-20
Effective Address Modes . 16-22
MC68000 Instruction Formats 16-25

LIST OF FIGURES xi

Chapter 1: Overview

Introduction Coe
Other 630 MTG Documentation .

User Responsibilities
Software Package Installation .

User’s ““.profile”

Features of the 630 MTG Software Development

Package Co
Applications for All Users
Applications for Programmers .

Document Organization

TABLE OF CONTENTS

Iintroduction

The AT&T 630 MTG Software Development Package provides tools that
enable a C language programmer to write, compile, execute and debug
application programs on and for the AT&T 630 Multitasking Terminal with
Graphics (MTG). This document provides detailed information on using the
tools provided in the 630 MTG Software Development Package and writing
custom C language programs for the 630 MTG.

This document is intended primarily for experienced C language
programmers; however, several sections are useful to all 630 MTG users. The
630 MTG Software Development Package must be installed on your host
computer before you attempt to write or execute application programs on the
630 MTG.

This document includes information on the following:

® Other 630 MTG documentation

® Writing custom 630 MTG application programs

® Using the 630 MTG dmdpi C language debugger

® jim text editor

® Jcon editing

m C Compilation System.

The appendices of this document include information on:

® Installation and administration of the 630 MTG Software Development
Package

m Compatibility between the 630 MTG and the AT&T 5620 Dot-Mapped
Display terminals.

OVERVIEW 1-1

Introduction

Other 630 MTG Documentation

Other documents that provide information on the 630 MTG and the
630 MTG Software Development Package are:

m 630 MTG Terminal User’s Guide (document number 999-300-375)
provides general user information. You should consult this guide for
installation and operation details.

m 630 MTG Software Reference Manual (document number 999-300-340)
provides manual pages on the 630 MTG applications and library
functions. You should refer to the manual pages for specific usage
information on commands and application programs associated with the
630 MTG Software Development Package.

® 630 MTG Software Development Package Release Notes (document
number 999-300-342) provides a listing of all files associated with the
630 MTG Software Development Package and any known software
exceptions.

m 630 MTG Service Manual (document number 582-630-030) provides
installation, setup, diagnostics, disassembly, adjustment, and cabling
information.

1-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

User Responsibilities

Software Package Installation

The 630 MTG Software Development Package must be installed on your
630 MTG host computer. Appendix A, "Installation and Administration,"
gives all the necessary information for a system administrator to install and set
up the 630 MTG Software Development Package. Dependencies, storage
requirements, and installation information for the 630 MTG Software
Development Package are also included.

User’s ‘“‘.profile’’

To use the 630 MTG Software Development Package, make the following
changes to your .profile:

m Set the shell variable $DMD to the root of the 630 MTG Software
Development Package tree. This is normally the directory
/usr/opt/630. If this directory does not exist on your host computer,
get the correct directory information from the person who installed the
630 MTG Software Development Package.

® The directory $DMD/bin must be added to the $PATH variable.

= The shell variable $TERM should be set to 630. This is not required to
use the 630 MTG host software, but it is needed by other UNIX*
System V applications (such as vi) which use the UNIX terminfo
facility. See the 630 MTG Terminal User’s Guide for more information on
terminfo.

Note: For convenience, a copy of the terminfo information
given in the 630 MTG Terminal User’s Guide is included
in the 630 MTG Software Development Package under
$DMD /terminfo.

* Registered trademark of AT&T

OVERVIEW 1-3

User Responsibilities

m The shell variables DMD, PATH, and TERM must all be exported.

The following is an excerpt from a .profile which will set up your
environment for the 630 MTG and the 630 MTG Software Development

Package.

stty tabs ixon
DMD=/usr/opt/630
PATH=$PATH: $DMD/bin
TERM=630

export DMD PATH TERM

1-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Features of the 630 MTG Software

Development Package

The 630 MTG Software Development Package provides a program
development and execution environment. In addition, a small number of
downloadable applications and firmware support programs are included. This
package must be installed on the host computer in order to run any programs
written for the 630 MTG.

The following list gives a brief description of the application programs that
are included in the 630 MTG Software Development Package. (Programs that
are applicable to all 630 MTG users are listed first, followed by programs that
are applicable only to 630 MTG programmers.)

Note: The most complete source of specific information on each

program is the individual manual page located in the 630 MTG
Software Reference Manual.

Applications for All Users

dmdversion — Reports the version numbers of the firmware in the
630 MTG and the 630 MTG Software Development Package on the
host computer.

dmddemo — Provides several simple graphics "demos" which
demonstrate the graphics capabilities of the 630 MTG.

dmdcat — Sends specified files to a printer connected to the Auxiliary
Port of the 630 MTG. This command sends the concatenation of files
specified on the command line or the standard input (if no files are
specified).

loadfont — Allows the user to load and remove fonts from the

630 MTG's font cache. Fonts are loaded from files on the host
computer. A number of fonts are provided in the 630 MTG Software
Development Package in the directory $DMD /termfonts.

jim — Provides the mouse-driven, visual, text editor for the 630 MTG.
(See the "Jim Text Editor" Chapter in this document for more
information.)

dmdman — Prints the on-line manual pages for command(s) given on
the command line. (Manual pages are not available on the AT&T
3B2 host computers.)

OVERVIEW 1-5

Features of the 630 MTG Software Development Package

Applications for Programmers

= C Compilation System (CCS) — Provides a C language cross compiler
for compiling programs to be downloaded into the 630 MTG. The CCS
also contains a number of utility programs to read and manipulate
object files. (See the "C Compilation System" Chapter of this
document for more information.)

= dmdcc — Compiles C language programs in a manner similar to the
UNIX System V cc command. dmdcc is the interface to the C cross
compiler. include files for compiling 630 MTG programs as well as
host libraries are also a part of the 630 MTG Software Development
Package.

= Dmdld and jx - Download application programs for execution in the
630 MTG. The jx application, a superset of dmdld, downloads the
application and then remains active, simulating standard I/O library
functions (such as file I/O) upon request from the application
executing in the terminal.

®» dmdpi — Provides an interactive, multi-window, mouse-driven
debugger for C language programs downloaded into the 630 MTG. (See
the "Dmdpi Debugger" Chapter for information on how to use the
dmdpi debugger.)

® dmdmemory — Presents a graphical representation of memory usage
in the 630 MTG. A user will be able to monitor memory, modify
allocation limits, and observe memory usage of a particular process.

m jcon — Provides an interactive icon and picture drawing program. (See
the "Icon Editing" Chapter for more information.)

1-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Document Organization

This document is organized as follows:

& Chapter 1 — "Overview" provides introductory
information for this document and the 630 MTG Software
Development Package.

Part 1 "Programming the 630 MTG" provides a tutorial on writing
C language programs for the 630 MTG.

m Chapter 2 — "Getting Started" provides introductory
information on programming the 630 MTG.

m Chapter 3 — "630 MTG Operating System
Considerations" provides information on the 630 MTG
program execution environment.

® Chapter 4 — "Graphics Environment" describes the
different features that are used to manipulate and display
images on the 630 MTG screen.

® Chapter 5 — " Application Resources" describes the
various 630 MTG application resources, such as the
mouse, keyboard, printer, host communications, etc.

s Chapter 6 — "User Interface Toolbox" describes the
various "tools" that provide the user interface for an
application program.

® Chapter 7 — "jx I/O Interpreter" describes the standard
630 MTG I/0 interpreter.

® Chapter 8 — "Fonts and the Font Cache" provides
information on "Font" and "Fontchar" data structures
and the Font Cache for defining and displaying characters
on the 630 MTG screen.

m Chapter 9 — "Interprocess Communications (Messages)"
describes the internal mechanism for communicating
between applications running on the 630 MTG.

m Chapter 10 — " Application Caching" describes the
facilities for caching applications that have been
downloaded to the 630 MTG.

OVERVIEW 1-7

Document Organization

Part 2

Part 3

Chapter 11 — "Redefining Keyboard Operations"
describes how to redefine specific key clusters or the entire
keyboard to suit the specific needs of an application.

" Applications" provides user information on features provided

by the 630 MTG Software Development Package.

Chapter 12 — "Dmdpi Debugger" provides how-to-use
information on the C language dmdpi debugger.

Chapter 13 — "Jim Text Editor" provides user
information on the 630 MTG visual text editor.

Chapter 14 — "Icon Editing" explains how to create icons
using the icon program.

Chapter 15 — "C Compilation System" provides a
tutorial on the components of the CCS.

Chapter 16 — "MC68000 UNIX System Assembler"
provides a reference manual for MC68AS, the assembler
language interpreted by the mc68as assembler.

" Appendices and Index"

Appendix A — "Installation and Administration"
provides information to install and maintain the 630 MTG
Software Development Package.

Appendix B — "5620 Compatibility" provides
information about the co-existence of 630 MTG and 5620
DMD terminals on the same host computer. Information
is also included on porting 5620 DMD programs to the
630 MTG.

630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 2: Getting Started

General
Example Programs .
What You Need to Know
Materials Needed .
Porting 5620 Programs

Some Simple Programs . .
Example Program - “hello.c”
Compiling hello.c - “dmdcc”
Download and Execution - dmdld
Notes on “hello.c” . .
Example Program - “HELLO.c”
Notes on “HELLO.c” . e e e e e e
Example Program - “arguments.c’” (“argc” and “argv”’)
Notes on “arguments.c”

TABLE OF CONTENTS

This part describes how to develop application programs for the 630 MTG.
Although written for programmers who are not familiar with the 630 MTG,
this programming section provides detailed reference information that is
needed by all 630 MTG programmers, regardless of their experience.

Example Programs

The best way to learn about programming the 630 MTG is through
experience. Several example programs have been provided in each chapter to
demonstrate important programming features. These programs will allow you
to focus attention on the use of specific library routines as they are discussed.
The source code for each of the example programs has been provided with the
630 MTG Software Development Package and may be found in the directory
$DMD /examples. A printout of the source code listings for the example
programs is also included in each chapter. (Short listings are included in the
text while longer listings are included in the "Example Programs™" section at
the end of each chapter.)

What You Need to Know

This part assumes that you are familiar with the following:

® UNIX System V operating system

® C programming language

® Layers windowing environment

® A text editor that will work with the 630 MTG such as jim
630 MTG Terminal User’s Guide.

GETTING STARTED 2-1

General

The 630 MTG Terminal User’s Guide describes how to install, operate, and
care for the 630 MTG. You should be particularly familiar with the Chapters
»Mouse and Menu Operation," "Windowing Operations," and
"Windowproc," in the 630 MTG Terminal User’s Guide.

Materials Needed

In order to get the most from this programming section, you should have
a 630 MTG terminal connected to a host computer running the UNIX System
V operating system with the 630 MTG Software Development Package
installed. See the "Installation of 630 MTG Software Development Package™"
section in Appendix A for instructions on how to install the 630 MTG
Software Development Package. You should also have a copy of the 630 MTG
Software Reference Manual that provides a detailed explanation of the tools and
library routines available in the 630 MTG Software Development Package.

Porting 5620 Programs

Programs written for the 5620 Dot-Mapped Display (the forerunner of the
630) can be ported to the 630 MTG with minor changes and recompilation.
This information on porting 5620 DMD programs to the 630 MTG is included
in Appendix B of this document.

2-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Some Simple Programs

This section will lead the first-time 630 MTG programmer through the
steps of creating, compiling, downloading, and executing a few simple
630 MTG applications. (The words "application" and "program™ are used
interchangeably in this document to refer to any program written for the
630 MTG.)

Example Program - ‘““hello.c”’

The best way to learn how to program the 630 MTG is to start simple and
build on that. For example, start with a simple program that prints the words
"hello, world". The program to accomplish this is shown in Figure 2-1.

#include <dmd.h>

main()

{

lprintf("hello, world");
for(;;) wait (CPU);

}

Figure 2-1: Example Program - “hello.c”

The source code for this example program can be found in the file named
hello.c in the directory $DMD /examples /GettingStarted. Copying this file into
your directory will save you the time of creating it yourself.

Compiling hello.c - ‘“‘dmdcc”’

The C compiler in the 630 MTG Software Development Package is called
dmdcc and is analogous to the UNIX System C compiler cc. Programs written
for the 630 MTG must be compiled using dmdcc. The following command
will compile hello.c and produce a 630 MTG executable object called
dmda.out (the host system’s prompt is not shown):

dmdecc hello.c

For more details concerning the 630 MTG C compiler, see the manual
page for dmdcc in the 630 MTG Software Reference Manual.

GETTING STARTED 2-3

Some Simple Programs

Download and Execution - dmdid

You are now ready to transfer the executable object dmda.out from your
host computer to the 630 MTG’s memory. This transfer is called a
vdownload." The 630 MTG "downloader" is called dmdld. The following
command will download dmda.out:

dmdld dmda.out

When the download begins, your window will be cleared and will start
filling from the bottom with inverse video. You will also notice that when the
mouse cursor is in the window, it changes to a coffee cup. The download is
complete when the inverse video reaches the top of the window. Execution of
the program begins immediately after the download is finished. As expected,
the words "hello, world" are displayed. The program can be terminated by
deleting the window.

Notes on ‘‘hello.c”’

All applications that run on the 630 MTG must include the file "dmd.h".
This file is in the directory $DMD/include and you need not make your own
local copy since dmdcc knows where to find it. dmd.h declares several
primitive data types needed by applications that run on the 630 MTG.

Printing Text - “Iprintf”’

The 630 MTG Software Development Package has a number of library
routines that allow you to print text on the screen. In the example program
hello.c, the library routine lprintf is used to print the string "hello, world".
Iprintf is syntactically equivalent to the UNIX System’s standard 1/O printf
function. It is called by an application when it wants to display text locally in
its window. lprintf calls another 630 MTG library routine called lputchar
which does the actual printing of individual characters. lputchar is
syntactically equivalent to the UNIX standard I/O putchar function. Further
details on the library routines lprintf and lputchar can be found in the 630
MTG Software Reference Manual on the manual pages PRINTF(3L) and
LPUTCHARQL).

2-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Sharing the CPU - “wait(CPU)”’

In the 630 MTG execution environment, the central processing unit (CPU)
is a shared resource. When an application starts execution in the 630 MTG, it
becomes the "owner" of the CPU and as long as it retains this "ownership,"
no other application in the 630 MTG will be allowed to run. The function call
wait(CPU) lets your application share the CPU with other applications
running in the terminal. When wait is called with the argument CPU,
ownership of the CPU is relinquished until all other applications in the 630
MTG have had a chance to run. It is very important to share the CPU since
not doing so will prevent 630 MTG system processes from running. Further
details about sharing the CPU will be given in the next chapter.

Example Program - ‘“HELLO.c”

The second example program (see Figure 2-2) gets a little fancier with the
way it says "hello." It prints the word "Hello" alongside a graphical
representation of the world.

GETTING STARTED 25

Some Simple Programs

#include <dmd.h>
#include "world.h"

/* Library Routines and associated manual page. */

void bitblt(); /* BITBLT(3R) */
void 1printf(); /* PRINTF(3L) */
Point sPtCurrent(); /* MOVETO(3L) */
int wait(); /* RESOURCES (3R) */
main()
{

/*

**+ See manual page STRUCTURES(3R) for the
** Point data type.
*/

Point savept;

/*

** Use "lprintf" to move the "current screen point"
** and set a position at which to display the

** image of the world.

*/

lprintf("\n ");

savept = sPtCurrent();

lprintf("\n Hello, tny;

/*

** Display the image of the world.
*/

bitblt(&world, world.rect, &display, savept, F_XOR);

/*

** Share the CPU with other applications
** and 630 MIG system processes.

*/

for (;;) wait(CPU);

Figure 2-2: Example Program - “HELLO.c”

2-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Some Simple Programs

To compile this example, you will need to copy the source file HELLO.c and
include file world.h into your directory from $DMD /examples/GettingStarted.
As before, you can compile and download the program using the commands:

dmdcc HELLO.c
dmdld dmda.out

Notes on “HELLO.c”

“Iprintf’’ and the Current Screen Point

For every application running in the 630 MTG, there is a point in its
window designated as the "current screen point”". When an application
begins execution, the "current screen point" is set to the upper left-hand
corner of the window. lprintf uses the "current screen point" to determine
where it should start printing a text string. It also takes care of updating the
" current screen point" so that the next text string printed will be concatenated
with the last. The coordinates of the "current screen point" can be
determined by calling the routine sPtCurrent. See the Chapter " Graphics
Environment" for more details on the "current screen point".

HELLO.c uses lprintf to move the "current screen point" to a location
where the world image will be displayed. This is the purpose of the first call
to lprintf. sPtCurrent is then called to save the "current screen point" in the
savept variable (the "Point" data type will be discussed in detail in the
chapter on graphics). The second call to lprintf prints the string "Hello" and
the exclamation point.

Display the Image of the World

The routine bitblt is then called to display the image of the world.
Basically, bitblt allows a rectangular image stored in one memory location to
be copied to a specific location within a second rectangular image. In
HELLO.c, the rectangular image of the world defined in the include file
world.h is copied to savept in the application’s window. Much more will be
said about bitblt in the Chapter " Graphics Environment. "

GETTING STARTED 2-7

Some Simple Programs

Example Program - “arguments.c’” (‘‘argc’’
and ‘‘argv’’)

The final example program of this chapter (see Figure 2-3 for source code)
demonstrates how an application can use argc and argv.

#include <dmd.h>

/* Library Routines and associated manual page. */
void lprintf(); /* PRINTF(3L) */
int wait(); /* RESOURCES(3R) */

main(arge, argv)
int argc;
char **argv;

{

int i;

/*

** Print command line arguments.
*/

for (i=0; argc; argc--, i++)
lprintf("\n argument %d = %s", i, argv[i]);

/*

** Share the CPU with other applications
** and 630 MIG system processes.

*/

for (;;) wait(CPU);

Figure 2-3: Example Programs “‘arguments.c”

If your application needs to have command line arguments, they can be
specified on the dmdld command line as follows:

dmdld dmda.out argl arg2 ...

2-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

The arguments are then available in the standard way through argc and
argv. Copy arguments.c into your directory from
$DMD /examples /GettingStarted. Compile and download the application as
follows:

dmdcc arguments.c
dmdld dmda.out argl arg2 arg3 "Hello there"

Notes on “arguments.c”’

Note that argv[0] contains the name of the downloaded object dmda.out.
All other arguments are printed as specified on the dmdld command line.

GETTING STARTED 29

Chapter 3: 630 MTG Operating System

Considerations
Introductiono 31
The 630 MTG Operatlng System R &)
Processes . e e e e 32
The Process Structure and the Global Varlable ”P" B]
Process States and Scheduling 33
Sharingthe CPU 34
System and Process Exceptlons - 2.
Process Exceptions . . . T
System Exceptions 35

TABLE OF CONTENTS i

introduction

This chapter presents some fundamental considerations about the
630 MTG operating system and its execution environment that will affect how
efficiently your applications run in this environment.

630 MTG OPERATING SYSTEM CONSIDERATIONS 3-1

The 630 MTG Operating System

The basic structure of the 630 MTG operating system is a set of
independent processes scheduled to run in a round-robin fashion.

Processes

A process is the execution of a program along with all the operating
system overhead needed to have that program execute. There are two types
of processes that run in the 630 MTG: system processes and application
processes.

System processes do not have associated windows on the screen and are
always scheduled to be run by the operating system. There are three basic
system processes in the 630 MTG operating system:

1. Control process - handles global mouse interaction and window
manipulation

2. Keyboard process - handles the translation of raw codes received from
the 630 MTG keyboard

3. 1/0 process - handles distribution of host input and output data.

An application process has an associated window and the initial
scheduling of the application is controlled by the user. Examples of
application processes include: Windowproc, Setup, Pfedit, and downloaded
applications.

The Process Structure and the Global Variable ‘“P”

Associated with each process is a data structure called Proc. This data
structure, most commonly referred to as the " process structure", contains
many entries and serves to uniquely identify each active process. A number
of the entries in the process structure are particularly useful for application
programs and will be discussed in later chapters as needed. The process
structures associated with all currently active processes are linked together in a
list called the "process list". The global variable "P" points to the process
structure associated with the process currently in the "run state".

3-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

The 630 MTG Operating System

Process States and Scheduling

Every process in the 630 MTG is in one of three states: running, ready, or
waiting. Since the 630 MTG has only one CPU there can only be one process
in the run state at a time. All others are either ready to run or waiting
for a particular resource. Scheduling of processes in the 630 MTG is
non-preemptive. Thus, it is the responsibility of the process in the run state to
service its current needs and then relinquish ownership of the CPU so that the
next process in the "process list" can run. The switch from one process to
the next is handled by the routine wait.

630 MTG OPERATING SYSTEM CONSIDERATIONS 3-3

Sharing the CPU

A common programming error made in 630 MTG applications is the
failure to share the CPU. As previously stated, scheduling of processes in the
630 MTG is non-preemptive. Therefore, if you forget to initiate a process
switch by calling the wait routine from your application, you will inhibit all
other processes in the terminal from running, including the system processes.
This has the undesired effect of locking up your terminal. There are two ways
to recover from this error: either execute the 630 MTG Selftest, or turn off
your terminal. Refer to the 630 MTG Terminal User’s Guide for information on
doing a User-Initiated Selftest.

3-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

System and Process Exceptions

An exception occurs in the 630 MTG when the CPU tries to execute an
illegal operation; for example, trying to divide by zero or accessing a memory
location that is not defined in the 630 MTG address space. There are two
categories of exceptions that can occur in the 630 MTG: "system exceptions"
and "process exceptions". System exceptions are generated by system
processes and process exceptions are generated by application processes.

Process Exceptions

When a process exception occurs, a message will be displayed at the
bottom of the window of the offending application process. The user will be
told to type any key to restart the window. Pressing any key will reset the
window as if it had just been created. In most cases everything will be fine
after a process exception is cleared, but this may not always be the case.

Warning: Just because the process exception can be cleared by
typing a key on the keyboard is no guarantee that
everything is operating properly. The application
process may have corrupted memory being used by
other processes, since a process can write anywhere in
the 630 MTG’s address space.

If you are in doubt about the sanity of your terminal, you should turn it
off and start over again.

System Exceptions

System exceptions are more severe than process exceptions. System
exceptions are usually the result of bugs in the application process corrupting
memory used by system processes. When a system exception occurs, a
message line will appear on the bottom of the screen describing the exception.
In order to restart the terminal, the user is told to type any key. Pressing a
key will cause the terminal to be reset, as if the power was turned off and
then on again.

630 MTG OPERATING SYSTEM CONSIDERATIONS 3-5

Chapter 4: Graphics Environment

Introduction a1

FourBastataTypes. T

“Point” . . - %)
“Rectangle” 42
“Word” 000000 0. 44
“Bitmap” . . -)

“Bitmap”’ Illustratnons s)
Include File “worldh” 4-13

Operations, Comparisons and Conversions 4-15

Operations on “Points” 4-15
“Point” Comparison 416
“Rectangle” Operations 417
“Rectangle” Comparison 4-18
Inclusion Operations 419

Data Type Conversions 419

Two Graphical Coordinate Systems 421
Global Structures Describing the Two Coordinate Systems . . . 4-21

Current Point e e e ... 4-23
Current Point in the Screen Coordmate System e e e . 424
Current Point in the Window Coordinate System 4-24

Coordinate System Transformations 4-25

Graphics Routines 42

FunctionCodes 426
Drawing Routines s ¥4
Screen Coordinate Drawing Routlnes P ¥4
Window Coordinate Routines 4-29

Textures «« . . . 430
“bitblt” S 3]
““bitblt” Illustranons e e e e e e e e e e e e e u . 4-33

TABLE OF CONTENTS i

Chapter 4: Graphics Environment

Using “bitblt” - “twistc” 441

Example Program - “screen.c” 443

Iintroduction

The 630 MTG is a "raster graphics" display terminal. The screen consists
of a 1024 by 1024 array of pixels, with each pixel represented by a single bit
in memory that is either "on™ or "off". The entire screen image is
represented by a 128K byte "refresh buffer".

In order to manipulate and display images on the screen, you will need a
basic understanding of the following items that are described in this chapter:

m Different graphical data types
m Global structures

m Coordinate systems

m Operations on data types

® Data type transformations

® Drawing routines.

630 MTG GRAPHICS ENVIRONMENT 4-1

Four Basic Data Types

The Graphical Data Types presented in this section are defined in the
include file dmd.h. This file must be included by all applications that run on
the 630 MTG.

“Point”’

The Point data type is used to specify the x- and y-coordinates of a pixel
on the screen or a bit in memory. The Point data structure consists of two
16-bit integers and is defined as follows:

typedef struct Point {
short X3
short Vs

} Point;

By convention, the x-coordinate increases from left to right and the y-
coordinate increases from top to bottom on the screen.

‘“‘Rectangle”

The Rectangle data type is specified by two Points and is used to define a
rectangular region on the screen or in memory. The Rectangle data type is
defined as follows:

typedef struct Rectangle {
Point origin;
Point corner;
} Rectangle;

The origin specifies the upper left corner (minimum x- and y-coordinates)
of the Rectangle, and corner specifies the lower right corner (maximum x-
and y-coordinates). Stated algebraically:

origin.x <= corner.x and origin.y <= corner.y

By convention, the right (maximum x-coordinate) and bottom (maximum
y-coordinate) edges of a Rectangle are excluded. This is so that abutting
Rectangles have no points in common. See Figure 4-1 and the explanation
that follows for more details on rectangle edge exclusion.

4-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Four Basic Data Types

o
. <«
=3 ;
0 + n
oo v H
ot " o
Y U -
o O c [
x 0 > x
] g 'y 3
>3 ° 5
- 5 . AR AR BN AR AR B RN BR R RN N BN RN) i
3~ 5 :
e H o|lo|o|o|jeje/o/e|e|0o|0j0je|0je]|e w
o
G X eje 0|0 0 0|0 (0|0 (00 0 /0|00 0
we_ o
et oooooooooooooooo\\
-
> ojlo(o|jo|0oo|(0o|/eo|0of(e|/0|0e o\\o\o\\
o ol
3 /o o|lo/e|o/o/o|o|0|e|e]|e . o\\o
5 \
2 eje(e|e ofe
N
Q -
e ohe|o(ojejo/o|efa]|0 0|0 ole|e
sS4 o?oo,ooo,oooco (oo -
oo/ooooooooo oyro -
\ ojejoNoejo|o 0fa]0 0|0 . oV// -
—
| ojele o/ro o|lejojojo(0]e o|eo]|e /__
& ([ojelo|e o|o|o|o|0|0]|s e|e|e s
[
e o) o o(o(ojojoj0o(o|o|0(o|e]e 5
™ v
. oodo*ooooooooooo .
© b
—~ olele o(o|jejojo/o(o(o|jo|0le]e @
a
-
c o|loejo|ojo|o|e|0oi0|0|joj0 e (e efe
e ojoe|o|o|o|o|e|e/e|e|o|/o|e|e]e]e
» >
ojo(o|o/o(o|o|0j0|/0 (0jeo|/e|0je]e
oo

Rectangle Edge Exclusion

Figure 4-1:

630 MTG GRAPHICS ENVIRONMENT 4-3

Four Basic Data Types

Figure 4-1 illustrates the relationship between pixels, Points and
Rectangles. An xy-coordinate system is shown with "x" increasing to the
right and "y" increasing downwards. Each square in the grid represents a
single pixel with its center indicated by the dot. The upper left corner of the
square designates the Point that corresponds to the pixel. In this way, a
Point can be thought of as a common corner of four adjacent pixels but only
designates the pixel immediately below it and to the right. See the expanded
view of Point {3, 2} in Figure 4-1.

A Rectangle can be thought of as an imaginary box bounded, in the x-
and y-direction, by two Points (not pixels). Only those pixels that have their
centers within the box are included in the Rectangle. Notice that the pixels
associated with the right and bottom edges of the Rectangle are not enclosed
by the box. This is how the right and bottom edges of the Rectangle are
excluded.

The 630 MTG employs a Motorola MC68000* microprocessor as its
Central Processing Unit (CPU). The MC68000 fetches data from memory in
16-bit increments. Therefore, the basic quantum of memory used by the
630 MTG'’s graphics software is a 16-bit integer called a Word which is
defined as follows:

typedef short Word;

The number of bits in a Word is defined by the constant WORDSIZE in
the include file dmd.h.

* Trademark of Motorola, Inc.

4-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Four Basic Data Types

“Bitmap”’

A Bitmap defines a storage area in memory for a rectangular image. The
Bitmap data structure is defined as follows:

typedef struct Bitmap {

Word *base;

unsigned short width;
Rectangle rect;

char * null;

} Bitmap;

base

width

rect

rect.origin

—null

This is a pointer to the first Word of a contiguous block of
memory. This block of memory contains the Bitmap image
representation.

This segments the block of memory referenced by base into
scan lines. width is the number of Words in a scan line.

This establishes a coordinate system in which the Bitmap
image resides and defines the Bitmap image boundary. All
bits or Words outside of this boundary are ignored by
graphical operations.

This is the coordinate of the upper left Point in the Bitmap
image. This Point always corresponds to a bit in memory that
resides within the Word referenced by base.

This must be set to (char *)0.

630 MTG GRAPHICS ENVIRONMENT 4-5

Four Basic Data Types

“Bitmap”’ lllustrations

This section illustrates the elements of the Bitmap data structure just
defined. Consider the segment of contiguous memory shown in Figure 4-2.
Each rectangle in the illustration represents a Word and has been numbered to
establish some order. We will assume that somewhere in this segment of
memory is the representation of a Bitmap image called Ex_bitmap.

Word_0O
Word_1
Word_2
Word_3
Word_4
Word_5
Word_6
Word_7
Word_8
Word_9
Word_10
Word_11
Word_12

Figure 4-2: Contiguous Block of Memory

4-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Four Basic Data Types

In order to be specific about where the Bitmap image resides in memory,
we must specify Ex_bitmap.base. Ex_bitmap.base specifies the first Word of
the Bitmap image. See Figure 4-3.

°

°

.
Word_0O
Word_1
Word_2
Word_3
Word_4
Ex_bitmap.base —p Word_5
Word_6
Word_7
Word_8
Word_9

Word_10

Word_11

Word_12

Figure 4-3: Beginning of “Bitmap” Image in Memory

630 MTG GRAPHICS ENVIRONMENT 4-7

Four Basic Data Types

Consider two different specifications for Ex_bitmap.width. Figure 4-4
shows how the Bitmap image memory would be viewed for width equal to 2
and Figure 4-5 for width equal to 3. Recall that width segments the Bitmap
image memory into scan lines.

Ex_bit-up.base —p1 Word_5 Word_6
Word_7 Word_8
Word_9 Word_10
Word_11 Word_12
°
°

Figure 4-4: Ex_bitmap.width = 2

Ex__bi tmap .base — Word_5 Word_6 Word_7
Word_8 Word_ 9 Word_10
Word_11 Word_12 Word_13

Figure 4-5: Ex_bitmap.width =3

4-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Four Basic Data Types

Finally, consider various specifications of Ex_bitmap.rect.
A. Consider the following Bitmap specification:

Bitmap Ex_ bitmap={
&Word_5;
3,
{{0,0} , {48,8}},
(char *)0,
}s
Ex_bitmap.rect specifies a boundary that is 48 bits wide and 8 bits
high. Figure 4-6 shows the contiguous block of Werds included in the
boundary specified by Ex_bitmap.rect and placed in the coordinate
system that Ex_bitmap.rect establishes. (Each bit of a Word is
represented by a grid square.)

origin of coordinate system defined by "rect"
rect.origin ={ 0,0}

base—pf — X

L rect.corner = { 48,8 }

Figure 4-6: “rect” ={{0,0},{48,8}}

630 MTG GRAPHICS ENVIRONMENT 4-9

Four Basic Data Types

B. Consider the following Bitmap specification:

Bitmap Ex_bitmap={
&VWord_5;
3,
{{16,16} , {64,24}},
(char *)0,
}s
The boundary specified by rect can be calculated as follows:

rect.corner.x - rect.origin.x = bits wide (64-16=48)
rect.corner.y - rect.origin.y = bits high (24-16=8).

Ex_bitmap.rect still bounds the same image data. Only the position
of the origin of the coordinate system established by Ex_bitmap.rect
has changed. See Figure 4-7.

origin of coordinate system defined by "rect."

16 64

B
P X
'llllllIlllllll|ll‘llllllllllllllllllIIllllI“llllllllllllllllll

rect.origin = {16, 16}

y

16 base

24

rect.corner = {64, 24}

Figure 4-7: ‘“rect” = {{16,16},{64,24}}

4-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Four Basic Data Types

C. To this point, care has been given to consider only those definitions of
rect where rect.origin.x is divisible by 16 (the number of bits in a
Word). When this is not the case, things get a little more interesting.
Consider the following Bitmap specification:

Bitmap Ex_bitmap={
&Vord_5;
3,
{{10,10} , {42,16}},
(char *)0,

}s
The rectangle boundary specified by Ex_bitmap.rect is:

42 - 10 = 32 bits wide
16 - 10 = 6 bits high.

The left edge of Ex_bitmap.rect starts at bit 10 in the first Word of
the image data. The bit offset of the left edge of the rectangle within
the Word pointed to by Ex_bitmap.base is given by the following
expression:

rect.origin.x % WORDSIZE

where "%" is the modulo operator. WORDSIZE is defined in the
include file dmd.h and is equal to the number of bits in a Word. Bits
of Words residing outside of the boundary defined by Ex_bitmap.rect
are ignored by graphical operations. See Figure 4-8 for an illustration.

630 MTG GRAPHICS ENVIRONMENT 4-11

Four Basic Data Types

origin of coordinate system defined by "rect"

0 42

rect.origin = {10, 'IO}

IABAREEEE]

base—b | ABBHBR KBKBEEO KR RER KRR DB EIBDREE
BERBRD BRBRUABDRIDBELLE ERBVRRBRIRY
RRIBIRX AR RIBUDE LB ERLERER BRI RIRERIE

CRBBED PP BELLRLLEARSERIE IRIRFRRVIRY
RAREXE AEBRERBIRERBVBRER ROVRIRBBBR &
BRURAD NARKRBERBERBIRERS IRBRBRERORL

-
o

rect.corner ={42, 16}

< GTTTTTTTTTITTT

Figure 4-8: “rect” = {{10,10},{42,16}}

D. As a final example, consider the following Bitmap specification:

Bitmap Ex_bitmap={
&Vord_5;
3,
{{24, 5} , {44,10}},
(char *)O0,
}s
The rectangle boundary specified by Ex_bitmap.rect is:
44 - 24 = 20 bit wide
10 - 5 = 5 bits high.
The offset of Ex_bitmap.rect within the Word referenced by base is:
24 % 16 = 8 bits

See Figure 4-9 for an illustration. Note that a full Word at the end of
each scan line has been excluded by the Ex_bitmap.rect boundary.
This can be a useful feature when defining Bitmaps that reside within
larger Bitmaps; for example, the Bitmaps for windows residing within
the larger Bitmap of the entire screen.

4-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Four Basic Data Types

origin of coordinate system defined by "rect."

BREBAEDL 2 B2 B ALEDBERE
VAR Ko % 0 X X0 X 02050 xR

10

rect.corner = {44,10}

Figure 4-9: ‘“rect” = {{24,5},{44,10}}

include File “world.h”

For an example of an actual Bitmap definition, see the include file
world.h used in the program HELLO.c in directory
$DMD /examples /GettingStarted. The array of Words, world_bits, defines the
image data for the Bitmap. This image data was created using the icon
application program with a 50 by 50 grid. See the Chapter "Icon Editing" of
this document for more information. The Bitmap definition called world has
base set to the first Word of the array world_bits.

width was calculated by determining the smallest integer number of
Words needed to cover a single scan line of the image data. Since the image
data is 50 bits wide, it takes four Words to cover a single scan line.

rect is defined with its origin at (0, 0) and corner point (50, 50). From this
definition of rect, the image is bounded by a box that is 50 bits in the
x-direction and 50 scan lines in the y-direction.

630 MTG GRAPHICS ENVIRONMENT 4-13

Four Basic Data Types

You should experiment with the world Bitmap definition and the example
program HELLO.c to gain an understanding of how width and rect affect the
image displayed on the screen. For example, try using the following Bitmap
definition:

Bitmap world = {
(VWord *)world bits,
4,
{ {12, 0}, {35, 25} }

4-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

Operations, Comparisons and
Conversions

Before getting into the drawing routines of the 630 MTG, it is appropriate
to discuss some of the operations that manipulate the four abstract data types
we have just defined. An understanding of these operations will enhance
your ability to make use of the drawing routines.

Operations on “Points”’

The operations on Points include arithmetic addition, subtraction,
multiplication and division. Given two Points, "p1" and "p2", and an
integer constant "a", these operations are defined as follows:

m Point Addition - add(p1, p2) returns a Point p3 such that
p3.x =plx + p2.x and p3.y = pl.y + p2.y.
= Point Subtraction - sub(pl, p2) returns a Point p3 such that
p3.x = pl.x - p2.x and p3.y.= pl.y - p2.y.
= Point Multiplication - mul(p1, a) returns a Point p3 such that
p3.x = a*pl.x and p3.y = a*pl.y.
= Point Division - div(pl, a) returns a Point p3 such that
p3.x = pl.x/a and p3.y = pl.y/a.
The subtraction routine has a very interesting result when applied to the
origin and corner of a Rectangle. For example, given a Rectangle "r",
sub(r.corner, r.origin) returns a Point that would be the corner of the

Rectangle "r" if the origin of "r" were translated to the Point (0, 0). This is
often referred to as the extent of the Rectangle.

630 MTG GRAPHICS ENVIRONMENT 4-15

Operations, Comparisons and Conversions

Another application of these routines is a subroutine that returns the Point
corresponding to the center of a Rectangle. This can be accomplished by
dividing the extent of the Rectangle by two and adding the result to its origin.
See the following example in Figure 4-10.

#include <dmd.h>

Point add();
Point sub();
Point div();

Point
GetRectCenter(r)
Rectangle r;

{

Point HalfOfExtent;

HalfOfExtent = div(sub(r.corner, r.origin), 2);
return add(r.origin, HalfOfExtent);

Figure 4-10: Example Rectangle - “extent’”” Divided by Two

The Point arithmetic operations can be found on the manual page
PTARITH(3R) in the 630 MTG Software Reference Manual.

‘“Point’’ Comparison

Two Points can be compared for equality by using the routine eqpt.
These Points are equal if the corresponding x- and y-coordinates are equal.
eqpt returns a 1 if the Points are equal or a 0 if they are not. See the manual
page EQ(3R) in the 630 MTG Software Reference Manual for more details on

eqpt.

4-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Operations, Comparisons and Conversions

‘‘Rectangle’ Operations

Arithmetic operations on Rectangles include addition and subtraction of a
Point from a Rectangle. Given a Rectangle "r" and a Point "p", these two
operations are defined as follows:

a Add Point to Rectangle - raddp(r, p) returns a Rectangle with origin
equal to add(r.origin, p) and corner equal to add(r.corner, p).

® Subtract Point from Rectangle - rsubp(r, p) returns a Rectangle with
origin equal to sub(r.origin, p) and corner equal to sub(r.corner, p).

An example application of these routines is shown in the routine
CenterRectOnPt (Figure 4-11). This routine, when given a Rectangle "r" and
a Point "p", will return a Rectangle centered on "p". The previous example,
GetRectCenter, is used to determine the center of the Rectangle "r". The
difference between the center point of the Rectangle and the Point "p" is
then added to the Rectangle "r" to center it on "p".

#include <dmd.h> ‘

Point GetRectCenter();
Rectangle raddp();

Rectangle
CenterRectOnPt(r, p)
Rectangle r;

Point p;

{

Point RectCenter;

RectCenter = GetRectCenter(r);
return raddp(r, sub(p, RectCenter));

Figure 4-11: Example Rectangle - CenterRectOnPt

630 MTG GRAPHICS ENVIRONMENT 4-17

Operations, Comparisons and Conversions

Another very simple application of raddp and rsubp is a routine that
translates the origin of a Rectangle "r" to the origin of some other coordinate
system (Figure 4-12). The origin of that coordinate system need not be at (0,
0). This is accomplished by translating the rectangle to (0, 0) and then
retranslating it to the Point "p".

#include

Rectangle rsubp();
Rectangle raddp();

Rectangle
MoveRectToOrigin(r, p)
Rectangle r;

Point p;

{
}

return raddp(rsubp(r, r.origin), p);

Figure 4-12: Example Rectangle - “raddp” and “rsubp”

The Rectangle arithmetic operations can be found on the manual page
RECTARITH(3R) in the 630 MTG Software Reference Manual.

Two other operations on Rectangles include the routines inset and
rectclip. The operation of these routines is documented fully on the
respective manual pages, INSET(3R) and RECTCLIP(3R), in the 630 MTG
Software Reference Manual.

‘““Rectangle’ Comparison

Two Rectangles, "r1" and "r2", can be checked for equality by using the
routine eqrect. Two Rectangles are equal if the corresponding origin and
corner Points are equal. eqrect returns a 1 if the Rectangles are equal or a 0 if
they are not. See the manual page EQ(3R) in the 630 MTG Software Reference
Manual for more details on eqrect.

4-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Operations, Comparisons and Conversions

Inclusion Operations

To ease the interaction of Points with Rectangles and Rectangles with
Rectangles, two routines, ptinrect and rectXrect, have been provided. See the
manual pages PTINRECT(3R) and RECTXRECT(3R) in the 630 MTG Software
Reference Manual. Given a Point "p" and a Rectangle "r", ptinrect checks to
see if "p" is within the bounds of "r". This routine is very useful when an
application is tracking the position of the mouse cursor and wants to
determine if the mouse cursor position has moved into a particular Rectangle.
More will be said about mouse tracking in the " Application Resources"
Chapter.

Given two Rectangles, "r1" and "r2", rectXrect will determine whether
the regions bounded by "r1" and "r2" overlap. If these regions do overlap,
rectXrect returns a one; otherwise, it returns a zero.

Data Type Conversions

A number of data type conversion routines have been provided for the
four basic graphical data types. These routines are documented in detail in
the 630 MTG Software Reference Manual and, therefore, only a short review
will be given here.

® addr - given a Point "p" in a Bitmap "b", addr will return the address
of the Word in "b" that contains "p". See the manual page
ADDR(3R).

m fPt - given two 16-bit integer coordinates, x and y, the function fPt will
return a Point "p" such that p.x = x and p.y = y. See the manual page
FPT(3L).

m Pt - differs from fPt in that Pt is a macro and is meant to be used in an
argument list for a function call. Pt will pass two 16-bit integers, x and
y, as a Point to some function "f"; for example, add (Pt(3, 5), Pt(10,
25)). See the manual page PT(3L).

® canon - given two Points, "p1" and "p2", the function canon will
return a Rectangle "r" that has a positive "extent". In other words,
canon will arrange the x- and y-coordinates of "pl" and "p2" so that
the Rectangle returned has its defining Points, origin and corner, in
standard form which is upper left and lower right. See the manual
page CANON(3R).

630 MTG GRAPHICS ENVIRONMENT 4-19

Operations, Comparisons and Conversions

® fRpt - similar to canon in that given two Points, "pl" and "p2", it
will return a Rectangle "r". fRpt however will not make sure that the
Rectangle has a positive "extent". fRpt(pl, p2) will return a Rectangle
with "pl" as the origin and "p2" as the corner.- See the manual page
FPT(3L).

a Rpt - differs from fRpt in that it is a macro and is meant to be used in
an argument list for a function call. Rpt will pass the two Points, "p1"
and "p2", as a Rectangle to some function "f"; for example,
GetRectCenter(Rpt(pl, p2)). See the manual page PT(3L).

= fRect - given four 16-bit integer coordinates, a, b, ¢, and d, fRect will
return a Rectangle "r" with origin Point (a, b) and corner Point (c, d).
See the manual page FPT(3L).

®» Rect - differs from fRect in that it is a macro and is meant to be used in
an argument list for a function call. Rect will pass four 16-bit integer
coordinates as a Rectangle to some function "f"; for example,
GetRectCenter(Rect(a, b, ¢, d)). See the manual page PT(3L).

4-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

Two Graphical Coordinate Systems

Two different coordinate systems exist in the 630 MTG graphical
programming environment: screen coordinates and window coordinates. Both
of these coordinate systems have the x-direction increasing from left to right
and the y-direction increasing from top to bottom.

Screen coordinates refer to the actual pixels of the screen: the Point (0, 0)
is the upper left corner, and (XMAX-1, YMAX-1) is the lower right corner of
the screen. The constants XMAX and YMAX are defined in the include file
dmd.h and are both set to 1024.

Window coordinates refer to a coordinate system that is confined to the
rectangular portion of the screen used by an application program. The
window coordinate system is scaled so that the Point (0, 0) corresponds to the
upper left corner of the window, and the Point (XMAX-1, YMAX-1)
corresponds to the lower right corner of the window. Since window
coordinates are scaled, adjacent Points within the coordinate system will not
necessarily refer to separate screen pixels.

Global Structures Describing the Two
Coordinate Systems

There are several global data structures defined when the header file
dmd.h is included to help the programmer deal with both screen and window
coordinates.

® physical - This is a global Bitmap that describes the entire screen.

= display - This is a Bitmap that defines the display area available to an
application program. It is the destination Bitmap most commonly used
with the graphics routines. The rect field (defined by display.rect) of
this Bitmap defines the Rectangle surrounding the window. This
Rectangle also includes the window border. Note that display.rect is
specified using the screen coordinate system.

s Drect - This global Rectangle defines the screen area inside the border
of a window and is specified using screen coordinates.

m Jrect - The Rectangle Jrect is defined as {0, 0, XMAX, YMAX} and
describes the screen area inside a window using window coordinates.
Jrect does not include the border of the window.

630 MTG GRAPHICS ENVIRONMENT 4-21

Two Graphical Coordinate Systems

Note: The global structures physical and display are Bitmaps.
Drect and Jrect are Rectangles. Also, Drect and Jrect
describe the same Rectangle on the screen. The only
difference is in the coordinate system used.

See Figures 4-13 and 4-14 for an illustration of these global data
structures.

|‘— width = 64 words —4

\ physical .rect.origin = {0,0}

—s x

lg¢——— physical.rect.

physical.rect.corner = {XIMX,YMAX} \

-2

1

y

Figure 4-13: The Bitmap “physical”

4-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

Two Graphical Coordinate Systems

-f(//, display.rect.origin = (x1,yl1) in screen coordinates

Ll L L

s\ Jrect.origin = {0,0}
Drect.origin = (x1+b,yl+b)

where b is the window border width.

Jrect. corner = {XMAX,YHAX }

Drecf.cotnet = (xlfw-b, y1+h:b))
s T border shickness T ion hetake \
7 L

e 2

display.rect.corner = (x1+w, yl+h)
where w = window width and
h = window height in pixels

SUOMUOMMDNONNNNNNNN

QUMNNNNNNNNNNN

N

-

<

Figure 4-14: Global Structures Defining a Window

Current Point

In both the "screen™ and "window" coordinate systems there is the
concept of a current point within the application’s window. This concept was
mentioned briefly in the discussion of the Iprintf routine in the " Getting
Started" Chapter. There are actually two distinct current points maintained:
one in screen coordinates and one in window coordinates. Modification of
one has no effect on the other.

630 MTG GRAPHICS ENVIRONMENT 4-23

Two Graphical Coordinate Systems

Current Point in the Screen Coordinate
System

The current point for the screen coordinate system is available through the
function sPtCurrent and can be moved using the routine moveto. See the
manual page MOVETO(3L). There are some subtleties about these two
routines that are worth mentioning at this time.

moveto is a routine that allows you to move the current screen point to
any position on the screen. However, if that current screen point falls outside
your application’s window (the rectangle defined by Drect), then any of the
library routines that use the current screen point (such as lprintf) will reset
the current screen point to Drect.origin. The current screen point can end up
outside the boundaries of Drect as the result of a window Reshape or by
specifically manipulating the current screen point using the routine moveto. If
the window is moved, the current screen point moves accordingly.

Current Point in the Window Coordinate
System

The current point for the window coordinate system is available through
the global Point variable PtCurrent. See the manual page GLOBALS(3R).

PtCurrent can be modified by using the routines jmove for relative
movement or jmoveto for absolute movement. See the manual page
JMOVE(3L).

4-24 630 MTG SOFTWARE DEVELOPMENT GUIDE

Two Graphical Coordinate Systems

Coordinate System Transformations

It is possible that some applications will want to perform some
manipulations using screen coordinates and other manipulations using
window coordinates. Routines transform and rtransform have been provided
to facilitate moving from the window coordinate system to the screen
coordinate system.

= transform - given a Point "p" in window coordinates, transform(p)
will return the corresponding screen coordinate Point.

= rtransform - given a Rectangle "r" in window coordinates,
rtransform(r) will return the corresponding screen coordinates
Rectangle.

These two routines are documented in the manual page
TRANSFORM(3R/3L).

630 MTG GRAPHICS ENVIRONMENT 4-25

Graphics Routines

Two sets of graphical routines have been provided in the 630 MTG
Software Development Package: a set of routines for window coordinates and
a set of routines for screen coordinates. The routines for drawing in window
coordinates can be distinguished from those that draw in screen coordinates
by the "j" prefix added to the names of the window coordinate routines.
Objects drawn using the window coordinate routines discussed in this chapter
will always be scaled to fit in the application’s window (the Rectangle defined
by Jrect). Objects drawn using the screen coordinate routines will be
"clipped” to a particular Bitmap specified in the parameter list when the
routine is called. "Clipping" means drawing only that part of the object that
lies within the bounding rectangle of the destination Bitmap specified.

Function Codes

Most of the graphics routines take a "Code" argument to specify a logical
function for use when drawing. Using C syntax, the values and meanings of
the codes are:

VALUE MEANING
F_OR target! = source
F_CLR target & = “source
F_XOR target = source
F_STORE | target = source

In other words, if some source image is to be copied to some congruent
target image with Code F_OR, the result will be the bitwise OR of the source
image with the contents of the target image.

Code F_XOR is the bitwise exclusive-OR of a source image with the
contents of a target image. The exclusive-OR operation has some very useful
properties. From the laws of Boolean algebra, you may recall the following
properties:

1. Given the Boolean variables x, y, and z, it is true that
(x XORy) XOR x = y.

2. A second useful property is
(x XOR y) AND z = (x AND z) XOR (y AND z).

S

4-26 630 MTG SOFTWARE DEVELOPMENT GUIDE

Graphics Routines

3. And finally,
x XOR x = 0.

From the above properties, we can make the following statements:

= F_XOR is its own true inverse: two adjacent identical F__XOR
operations cancel exactly, restoring the screen to its previous form.

= F_XOR is commutative: F_XOR operations may be executed in any
order to produce the same final result. Combined with its inverse
property, this means that an F_XOR operation may be canceled at any
later time by another F_XOR operation.

m Because F_XOR is its own inverse, the same code can be used to draw
or undraw a picture. This is a common action: the mouse cursor, for
example, is updated by calling the same routine, using F_XOR mode
internally, to undraw the old position and draw the new one (the order
is irrelevant).

Of course, these properties can break down if F_XOR operations are
mixed with other modes. However, it is not only possible, but common to do
all graphics in F_XOR mode.

Drawing Routines

Graphical routines have been provided to draw and fill, when appropriate,
the following objects: points (one pixel), lines, rectangles, circles, circular arcs,
ellipses and elliptical arcs.

The following sections describe the different drawing routines available
and the names of their respective manual pages. The 630 MTG Software
Reference Manual contains details and examples on the use of each of these
routines,

Screen Coordinate Drawing Routines

The following screen coordinate routines operate on Bitmaps which are
always specified in screen coordinates. For more information on each routine,
refer to the appropriate manual page in the 630 MTG Software Reference
Manual.

630 MTG GRAPHICS ENVIRONMENT 4-27

Graphics Routines

m Rectangles

box - draws a rectangle.
See BOX(3R).

rectf - performs functions on a rectangle.
See RECTF(3R).

texture - fills a rectangle with a texture.
See the section on "Textures" in this chapter
and the manual page TEXTURE(3R).

s Circles
circle - draws a circle.
disc - draws a filled circle.
discture - draws a texture filled circle.

arc - draws an arc.

See CIRCLE(3L).

Ellipses
ellipse - draws an ellipse.
eldisc - draws a filled ellipse.
eldiscture - draws a textured filled ellipse.
elarc - draws an elliptical arc.
See ELLIPSE(3L).
m Lines
segment - draws a line segment.

See SEGMENT(3R).

Points
point - draws a single pixel.

See POINT(3R).

4-28 630 MTG SOFTWARE DEVELOPMENT GUIDE

Graphics Routines

= Polygons
polyf - fills a polygon.
See POLYGON(3L).

The example program screen.c in directory $DMD /examples /Graphics
provides a demonstration of several screen coordinate drawing routines. The
source code for screen.c is given in Figure 4-24 at the end of this chapter.

Window Coordinate Routines

The window coordinate routines always operate within the global Bitmap
vdisplay".

m Circles
jeircle - draws a circle.
jdisc - draws a filled circle.
jarc - draws an arc.
See JCIRCLE(3L).

= Ellipses
jellipse - draws an ellipse.
jeldisc - draws a filled ellipse.
jelarc - draws an elliptical arc.
See JELLIPSE(3L).

m Lines
jsegment - draws a line segment.
See JSEGMENT(3L)

® Points
jpoint - draws a point.

See JPOINT(3L).

630 MTG GRAPHICS ENVIRONMENT 4-29

Graphics Routines

m Rectangles
jrectf - performs function in rectangle.
jtexture - draws a texture in rectangle.
See JRECTF(3L) and JTEXTURE(3L).

The fundamental difference between the screen coordinate routines and
the window coordinate routines is that the former allows the specification of a
particular bitmap in which to draw the object and always uses the screen
coordinate system. The window coordinate routines, on the other hand,
always draw in the global Bitmap "display" and scale the drawing to the
window coordinate system.

Textures

Texturel6 is another data type defined in the include file dmd.h. The
definition of Texturel6 is as follows:

typedef struct Texturel6 {
Vord bits[16];
} Texturel6;

A Texturel6 is an array of 16 Words or equivalently a 16 by 16 array of
bits, which defines a dot pattern. For example, a tweed texture is declared as:

Texturel6 tweed={
0x4444, 0x7777, OxEEEE, 0x2222,
0x4444, 0x7777, OxEEEE, 0x2222,
0x4444, 0x7777, OxEEEE, 0x2222,
0x4444, 0x7777, OxEEEE, 0x2222
}s
A Texture16 is much like a Bitmap that has a fixed width of one Word, a
fixed bounding rectangle with dimensions 16 by 16, and a two-dimensional
array of bits within the bounding rectangle that describes the image or texture.
The first Word of the image is the first horizontal scan line of the Texture16,
the second Word is the next scan line, and so on for 16 scan lines. The
routines which use Texturel6s fix the patterns to absolute screen coordinates
so that, for example, if two overlapping screen rectangles are textured with the
same Texturel6, the dots in each rectangle will mesh properly to form a
constant pattern.

4-30 630 MTG SOFTWARE DEVELOPMENT GUIDE

Graphics Routines

The routine texture will fill a rectangle in a specified Bitmap with a
texture. For example, the following program (Figure 4-15) will fill the global
Bitmap display with the tweed texture defined above:

#include <dmd.h>

Texturel6 tweed={
0x4444, 0x7777, OxEEEE, 0x2222,
0x4444, 0x7777, OxEEEE, 0x2222,
0x4444, 0x7777, OxEEEE, 0x2222,
0x4444, 0x7777, OxEEEE, 0x2222

main()

{
request(KBD);
texture(&display, Drect, &tweed, F_XOR);
wait(KBD);

}

Figure 4-15: Example Program - Bitmap “display”

A few textures are used frequently by 630 MTG programs. These are
stored in ROM and software libraries for fast access. Their names are:

T_background (ROM)
T_darkgrey (library)
T_lightgrey (library)

T_grey (ROM)
T_white (ROM)
T_black (ROM)
T_checks (ROM)

630 MTG GRAPHICS ENVIRONMENT 4-31

Graphics Routines

A variation of the use of a Texturel6 is to define mouse cursors and
graphics icons. The AT&T logo is the sample Texturel6 below.

Texturel6 globe = {
0x07E0, 0x0000, 0x207C, Ox7FFE,
0x0000, 0x803F, OxFFFF, 0x0000,
0xC07F, OxFFFF, 0x0000, Ox7FFE,
0x7FFE, 0x0000, Ox1FF8, 0x07E0,
b3 |
The following cursors and icons are stored in ROM or software libraries.

C__crosshair (library)

C_sweep (library)
C_confirm (library)
C_clock (ROM)
C_move (ROM)
C_skull (ROM)
C_target (ROM)
C_cup (ROM)

C_deadmouse (ROM)

For an example of using textures as cursors, see the " Application
Resources" Chapter under the heading "The Mouse Resource."

For more detailed information on using Texturelés, see the "ICON
Editing" Chapter in Part 2 of this document and the ICON(1) manual page in
the 630 MTG Software Reference Manual.

‘““bitbit”’

bitblt is a routine that operates on Bitmaps. See the manual page
BITBLT(3R) for details. Basically, it will take a rectangular image from one
Bitmap in memory and copy it into another Bitmap in memory. The bitblt
routine is declared as follows:

void bitblt(sb, r, db, p, f)
Bitmap *sb, *db;

Rectangle r;

Point p;

Code f£;

4-32 630 MTG SOFTWARE DEVELOPMENT GUIDE

Graphics Routines

bitblt copies valid image data within Rectangle "r" from source Bitmap
"sb" where "r" is specified within the coordinate system defined by
"sb->rect", to a congruent Rectangle with origin "p" in the destination
Bitmap "db" where "p" is specified within the coordinate system defined by
"db->rect". The nature of the copy is specified by the function Code "f".
The source and destination Bitmaps may be the same, and the source and
destination Rectangles may overlap.

Note: There is no jbitblt -- bitblt operates directly on Bitmaps
which are always specified in the screen coordinate system.

The illustrations in the following section will clarify this operation.

‘“bitbit’’ lllustrations

Consider the two Bitmaps shown in Figures 4-16 and 4-17. The image
data in Bitmap "A" is a series of horizontal lines. The image data in
Bitmap "B" is a series of vertical lines. Both Bitmaps are shown within their
respective coordinate systems defined by the Rectangles " A.rect" and

"B.rect".

630 MTG GRAPHICS ENVIRONMENT 4-33

Graphics Routines

A.rect.origin

A.rect.corner

Word A_image_data[] = {
0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF,

Bitmop A = {
A_image_data;

f{o,o}, {48,10}} ,

(char*)o0,

}

’

Figure 4-16: Bitmap A

4-34 630 MTG SOFTWARE DEVELOPMENT GUIDE

Graphics Routines

B.rect.origin

B.rect.corner

< @

Word B_image_data[] = {
0x5555, 0x5555, Ox5555,
0x5555, Ox5555, 0x5555,
0x5555, Ox5555, 0x5555,
Ox5555, Ox5555, 0x5555,
O0x5555, Ox5555, O0x5555,
0x5555, Ox5555, 0x5555,
0x5555, 0x5555, O0x5555,
0x5555, Ox5555, 0x5555,
0x5555, 0x5555, Ox5555,
0x5555, 0x5555, O0x5555,

}

Bitmap B = {
B_image_data,

{3{'o,o}, {48,10}} ,

{(char*)0,

Figure 4-17. Bitmap B

630 MTG GRAPHICS ENVIRONMENT 4-35

Graphics Routines

Executing the following bitblt command will generate the results shown
in Figure 4-18.

bitblt(&A, Rect(0,0,16,10), &B, B.rect.origin, F_STORE);
Note: The source Bitmap is not altered by a bitblt.

{16,10}

{48,10}

Figure 4-18: “bitblt” - A Modifying the Image Data of B

4-36 630 MTG SOFTWARE DEVELOPMENT GUIDE

Graphics Routines

Figure 4-19 shows the results of the following bitblt command:
bitblt(&B, Rect(16, 5, 24, 10), &A, Pt(8, 0), F STORE);

{00} {s.0} {165}

& x

aEEEEEER4 :
LLL L]] § SVEEEEEEEEEEEEEEEEEEENEEEEEEEEER
IENEEEEEE AN ENEESEEEREEEEREES
CEEEEEENEENAEANEARESNENNENANNAYEN NS S EEEEEEEEEEERE

{48,10}

Figure 4-19: “bitblt” - B Modifying the Image Data of A

630 MTG GRAPHICS ENVIRONMENT 4-37

Graphics Routines

Figures 4-20 and 4-21 show the definition of Bitmaps "A" and "B"
modified slightly and renamed as "C" and "D", respectively. Note that the
illustration of the Bitmaps "A" and "B" show only the valid image data
within the rectangles "C.rect" and "D.rect".

{00}

10 58

Only image data within

/{10,8} C.rect is shown.

{ 58,18}

Word C_image_data[| ={
0x0000, 0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0000, O0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF, OxFFFF,
0x0000, 0x0000, 0x0000, 0x0000,
OxFFFF, OxFFFF, OxFFFF, OxFFFF,

Bitmap C = {
C_image_data,
4’

{{10.8} .{s58.18}},

(char*)0,

i

Figure 4-20: Bitmap A Modified as C

4-38 630 MTG SOFTWARE DEVELOPMENT GUIDE

Graphics Routines

Only valid image data within
{20,15} D.rect is shown.

15

25

y Word D_image_data[| = {
O0x5555, O0x5555, 0x5555, 0x5555,
0x5555, Ox5555, 0x5555, 0x5555,
Ox5555, Ox5555, 0x5555, Ox5555,
0x5555, 0x5555, 0x5555, O0x5555,
0x5555, O0x5555, 0x5555, 0x5555,
0x5555, O0x5555, O0x5555, O0x5555,
0x5555, 0x5555, O0x5555, O0x5555,
0x5555, 0x5555, 0x5555, 0x5555,
0x5555, O0x5555, O0x5555, 0x5555,
O0x5555, 0x5555, O0x5555, 0x5555,

Bitmap D = {
D_image_data,

gizo, 15}, {68, 25}},

(char*)0,

Figure 4-21: Bitmap B Modified as D

630 MTG GRAPHICS ENVIRONMENT 4-39

Graphics Routines

Executing the following bitblt command will generate the results shown
in Figure 4-22:

bitblt(&C,Rect(8, 5, 28, 24), &, Pt(36, 8), F STORE);

{36'3} Destination
8 g— — e —(Rectangle
{2015} | |

15 |

4 "R m e E =SS - e e Em
A B B N RN EERN " B EmEDB
i B B N E N N B N SEESENEESEENESEEEERE B R E B W
A B E S B AR EDN "R E RN
" §F B F E R SN EENGEEESSEEEEENEESEESE B N N R B
4 R AR R R R EREGRN " B ES
4 E E E N RS R E R R R R RS NN NN ESENDQN
4 E E S E B NN E R R E N RSN N R E R AR AR
" E E BN N NS E R ENEESSESAEEEENESEEREEBRS®R

25 " B E B @ N EE S ESSNSESEE S NS S NES

27

Yy

Figure 4-22: “bitblt” - C Modifying Image Data of D

4-40 630 MTG SOFTWARE DEVELOPMENT GUIDE

Graphics Routines

Using “‘bitbIt” - ‘‘twist.c”’

A common use of bitblt is to copy a prepared picture from off-screen onto
the 630 MTG screen. The example program twist.c in directory
$DMD /examples /Graphics demonstrates how bitblt can be used to create the
impression of a rotating world. The source code for twist.c is given in
Figure 4-23.

#include <dmd.h>
#include "rotate.h"

/* Library Routines and associated manual page. */

void bitblt(); /* BITBLT(3R) */
void lprintf(); /* PRINTF(3L) */
void sleep(); /* SLEEP(3R) */
Point sPtCurrent(); /* MOVETO(3L) */
int wait(); /* RESOURCES(3R) */
main()

{

int i;

Point savept;

/*
** Use "lprintf" to move the "current screen point"
** and set a position at which to display the

** image of the world.

*/

1printf("\n LH

savept = sPtCurrent();

lprintf("\n Hello 1");

for (i=0; 1 ; i++) {
/*
** after the 18th Bitmap, go back to Bitmap zero.
*/
if(i==18)
i=0;

Figure 4-23: Source Code for ““twist.c” (Sheet 1 of 2)

630 MTG GRAPHICS ENVIRONMENT 4-41

Graphics Routines

/*
** Draw the current Bitmap of the world.

*/

bitblt(world[i], world[i]->rect, &display, savept, F_XOR);

/*
** Release the CPU for 10 ticks of the
** 60 Hz system clock.

*/

sleep(10);

/*
** Erase the current Bitmap of the world in

** preparation for drawing the next.

*/

bitblt(world[i}, world[i]->rect, &display, savept, F_XOR);

Figure 4-23: Source Code for “twist.c”” (Sheet 2 of 2)

4-42 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Program - ‘‘screen.c”’

Figure 4-24 gives the source code for screen.c, which demonstrates several
of the screen coordinate drawing routines.

#include <dmd.h>

/* Library Routines and associated manual page. */

Point add(); /* PTARITH(3R) ./
void box(); /* BOX(3R) */
void circle(); /* CIRCLE(3R) */
void disc(); /* CIRCLE(3R) */
void discture(); /* CIRCLE(3R) */
Point div(); /* PTARITH(3R) +/
Point fPt(); /* FPT(3L) */
Rectangle inset(); /* INSET(3R) */
int min(); /* INTEGER(3R) */
void point(); /* POINT(3R) */
void polyf(); /* POLYGON(3L) ./
void segment(); /* SEGMENT(3R) */
Point sub(); /* PTARITH(3R) */
int wait(); /* RESOURCES(3R) */

/* Local functions declared in this file */
Point GetRectCenter();

/*

**+ Define the number of vertices in polygons.
*/

#define POLYPOINTS 4

main()
{
int Radius;
Point WindowCenter, DrectExtent;
Rectangle MyRect;
/*
** Declare three polygons. A polygon is defined by an array
** of Points. Each polygon in this example has four vertices.
*/
Point polyl[POLYPOINTS];
Point poly2[POLYPOINTS];
Point poly3[POLYPOINTS];

Figure 4-24: Example Program “screen.c” (Sheet 1 of 3)

630 MTG GRAPHICS ENVIRONMENT 4-43

Example Program - ‘“‘screen.c”’

/*
** Get the center of the Rectangle Drect and also
** determine its extent.

*/

WVindowCenter = GetRectCenter(Drect);

DrectExtent = sub(Drect.corner, Drect.origin);

/*
** Calculate the radius of a circle.

*/

Radius = min(DrectExtent.x, DrectExtent.y) / 4;

/*
** Draw a circle, a texture filled circle,

** a filled circle, and a Point.

*/

circle (&display, WindowCenter, Radius, F_XOR);

discture (&display, WindowCenter, 2*Radius/3, &T_checks, F_XOR);
disc (&display, VWindowCenter, Radius/3, F_STORE);
point(&display, WindowCenter, F_XOR);

/*
** Draw a rectangle.

*/

MyRect = inset(Drect, Radius);
box(&display, MyRect, F_XOR);

/*
** Initialize the points in polygon one.

*/

polyl[0] = Drect.origin;

polyl[1l] = MyRect.origin;

polyl[2] = fPt(MyRect.origin.x, MyRect.corner.y);
polyl[3] = fPt(Drect.origin.x, Drect.corner.y);

/*
** Tnitialize the points in polygon twvo.

*/

poly2[0] = fPt(Drect.origin.x, Drect.corner.y);
poly2[1] = fPt(MyRect.origin.x, MyRect.corner.y);
poly2[2] = MyRect.corner;

poly2[3] = Drect.corner;

Figure 4-24: Example Program “screen.c” (Sheet 2 of 3)

4-44 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Program - ‘“screen.c”

/*
** Initialize the points in polygon three.

*/

poly3[0] = fPt(DPrect.corner.x, Drect.origin.y);
poly3[1] = fPt(MyRect.corner.x, MyRect.origin.y);
poly3[2] = MyRect.corner;

poly3[3] = Drect.corner;

/*
** Draw the three texture filled polygons.

*/

polyf(&display, polyl, POLYPOINTS, &T black, F_XOR);
polyf(&display, poly2, POLYPOINTS, &T_grey, F_XOR);
polyf(&display, poly3, POLYPOINTS, &T_black, F_XOR);

/*
** Draw four line segments.

*/

segment (&display, polyl[0], polyl[2], F_XOR);
segment (&display, polyl[1l], polyl[3], F_XOR);
segment (&display, poly3[0], poly3[2], F_XOR);
segment(&display, poly3[1], poly3[3], F_XOR);

/*
** Share the CPU with other applications
** and 630 MIG system processes.

*/

for (;;) wait(CPU);

}
/*
** Function to find the center of a Rectangle.
*/
Point
GetRectCenter(r)
Rectangle r;
{
Point HalfOfExtent;
HalfOfExtent = div(sub(r.corner, r.origin), 2);
return add(r.origin, HalfOfExtent);
1

Figure 4-24: Example Program “screen.c” (Sheet 3 of 3)

630 MTG GRAPHICS ENVIRONMENT 4-45

Chapter 5: Application Resources

Application Resource Management
Requesting a Resource - “request” .
Servicing a Resource - “own”’

Waiting on a Resource - “‘wait”

The Mouse Resource
The Global Structure ““mouse”
Button Interface Macros .
Mouse Tracking and “Button” Interface Macros
Button Interface Function - “bttns” . . .
Mouse Cursor Control . . .
Tummg the Mouse Cursor Off and On - cursmhlblt and
“cursallow”
Using Different Mouse Cursors - curssmtch"
Setting the Mouse Position - “cursset”
Drawing with the Mouse . .o
Graphic Routine with a Built-in Mouse Interface - newrect

The Keyboard Resource - “kbdchar” and
“ringbell”

The Printer Resource

Sending Data to the Printer - psendchar and ‘psendchars”

Using the Printer and Keyboard as a Typewriter

Host Communications . Co
Receiving and Sending Data - “rcvchar” and sendchar”
A Simple Terminal Emulator - “vsterm1.c”
Releasing the Host Connection - “local” .
Regaining the Host Connection - “attach”
Making Local Copies of Applications - “peel” .

TABLE OF CONTENTS i

Chapter 5: Application Resources

System Services

CPU Resource

DELETE Resource
RESHAPED Resource .
ALARM Resource - “alarm’ .
MSG Resource

Example Programs

Application Resource Management

This chapter describes how to manage and use the 630 MTG application
resources. Application resources are I/O devices (such as the keyboard and
the mouse) and system services. System services are simply flags set by the
630 MTG operating system indicating the occurrence of a particular event,
such as the application window being reshaped or deleted. A complete list of
630 MTG application resources and management routines can be found on the
manual page RESOURCES(3R) in the 630 MTG Software Reference Manual.

Requesting a Resource - ‘‘request”

request is a routine that announces an application’s intent to use one or
more resources. Since a resource must be requested before it is used, request
is most commonly called early in the application. The declaration of request
is shown below:

int request(r)
int r;

"r" is a bit vector that represents which resources are being requested and is
composed of the inclusive OR of a set of predefined masks each corresponding
to a specific resource. The predefined masks are listed below with the
resource they represent.

MASK Represented Resource

MOUSE mouse buttons and cursor position

KBD characters received from the 630 MTG keyboard
PSEND send characters to the printer

SEND send characters from the 630 MTG to the host
RCV characters received by the 630 MTG from host process
CPU 630 MTG cpu

DELETE application is being deleted

RESHAPED window has been reshaped or moved

ALARM alarm has "fired"

MSG state of message queue has changed

APPLICATION RESOURCES 5-1

Application Resource Management

For example, an application that wants to use the mouse, keyboard, and
printer would call request as shown below:

int resources;
resources = request(KBDIMMOUSEIPSEND) ;

request returns a bit vector indicating which resources have been granted.
You should not assume that resources requested are automatically granted.
For example, if one application program requests and is granted the printer
resource, requests for the printer by other applications will fail since only one
application at a time can be granted the printer. To determine if the printer
resource has been granted, you can test the returned value from request as
shown below:

int resources;
resources = request (KBDIMOUSEIPSEND) ;

if (resources&PSEND)
{prin:er granted};
else
{printer in use by another application};

Each call to request overrides all previously requested resources. This
means that all resources not specified in the latest request are not available to
the application.

Servicing a Resource - ‘“own”’

own is a routine that returns a bit vector indicating which of the resources
you requested are ready to be serviced. The declaration of own is shown
below:

int own()

For example, if you requested the keyboard resource and want to
determine if any characters have been typed, you could use the code fragment
shown below:

if (own()&KBD)
{service keyboard}

5-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Application Resource Management

Waiting on a Resource - ‘“‘wait”’

wait is a routine that allows your application to release the CPU, allowing
other applications to run, until one of your requested resources is ready for
service. wait returns a bit vector indicating which resources are ready for
service. The declaration of wait is shown below:

int wait(r)
int r;

The bit vector "r" specifies which resources you want to wait on. For
example, if your application program has requested the keyboard and Mouse
resources, the inner loop of your program may look something like the
following:

int NeedsService;
for(;;) {
NeedsService = wait(KBDMOUSE) ;
if (NeedsService & KBD)
ProcessKbdChar (kbdchar());
if (NeedsService & MOUSE)
GetMouseStatus();

}

The call to wait will suspend the above application until either the Mouse
or Keyboard resource is ready for service.

APPLICATION RESOURCES 5-3

The Mouse Resource

In many 630 MTG applications, the mouse is the primary means of
selecting and directing application operations. This section describes how an
application can interact with the mouse.

The Mouse is a 630 MTG application resource and, as such, must be
requested before it is used. The line of code below shows how to request both
the Mouse and the Keyboard resource:

request (MOUSEIKBD) ;

A request for the Mouse resource will never be denied. This implies that
the mouse will need to be shared by all the applications that have requested
its use. The following code can be used to determine if your application is the
current owner of the mouse:

if (own()&MOUSE)
{got the mouse}

The condition own()&MOUSE will be true only if your application is
running in the current window and the mouse cursor is within an unobscured
portion of that window.

The Global Structure ‘“mouse’’

Mouse button status and position are maintained for each application in a
global data structure called mouse. The declaration of this structure is shown
below:

struct Mouse {
Point Xy, jxy;
short buttons;
s
The Point xy holds the current position of the mouse in the screen
coordinate system, and jxy holds its position in the window coordinate system
(see the "Graphics Environment® Chapter for more details on the screen and
window coordinate systems). Current mouse button status is stored in the
three least significant bits of buttons. Bits zero, one, and two correspond to
mouse buttons three, two, and one (right, middle, and left), respectively.
Button status is most easily interpreted through the button interface macros
and functions discussed in the following section.

5-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

The Mouse Resource

Button Interface Macros

The macros buttonl, button2, button3, button12, button13, button23,
and button123 can be used to determine mouse button status when the
statement own()&MOUSE is true. This statement being true means your
application is running in the current window and the mouse cursor is in an
unobscured portion of that window. The macros will return a nonzero
number if any of the buttons specified by the numbers in the macro name are
depressed. Otherwise, the value returned will be zero. For example, if mouse
button 3 is depressed and the conditions specified above are true, then the
macros button3, button23, and button123 will return non-zero values.

The macros bttnl, bttn2, bttn3, bttn12, bttn13, bttn23, and bttn123 can
be used to determine mouse button status whenever your application is
running in the current window. The mouse cursor does not need to be in
your application’s window. The macros will return a non-zero number if any
of the buttons specified by the numbers in the macro name are depressed.
Otherwise, the value returned will be zero. For example, bttn2() returns a
non-zero value whenever mouse button 2 is depressed and your application is
running in the current window.

Note: It is strongly recommended that applications always use the
button interface macros (rather than bttn) since button
macros report button status only when the mouse cursor is in
the application’s window. Whenever the mouse cursor is
outside of your application’s window, the 630 MTG system
control process (which also uses the mouse) will be competing
with your application for ownership of the mouse resource.

Mouse Tracking and “Button” Interface Macros

The program mouse.c, in the directory $DMD /examples/Resources,
demonstrates how the mouse button interface macros work. Figure 5-1 at the
end of this chapter gives the source code for mouse.c. Compile and download
this program using the following commands:

dmdce -0 mouse mouse.c
dmdld mouse

Download the compiled version of mouse.c (mouse) into a window that is
at least 24 rows by 80 columns (with the Large Font). The program prints the
names of the button interface macros in a table and, as mouse buttons are

APPLICATION RESOURCES 5-5

The Mouse Resource

depressed, highlights the macro names that return a non-zero value based on
current button status and mouse cursor position. The program also displays
the mouse cursor position in both the screen and window coordinate systems.

Note: This program does not release the CPU to allow other
processes to run. This is to demonstrate the bttn macros
without competition from the system control process.

Clicking button 1 in the box in the lower right corner of the application’s
window will cause mouse.c to exit.

Button Interface Function - ‘“bttns”’

The routine bttns is used to detect a change in mouse button status.
When called with an argument of 0, bttns will loop without releasing the CPU
until all mouse buttons are released. If called with an argument of 1, bttns
will loop until at least one mouse button is depressed. Any other argument
will cause bttns to return immediately.

Further details on the mouse button macros and functions can be found in
the manual page BUTTONS(3R/3L) of the 630 MTG Software Reference
Manual.

Mouse Cursor Control

Using the mouse cursor can greatly enhance the graphics interface of an
application program. It allows the user of the application to control program
execution by pointing to and drawing objects on the screen. It also allows the
application program to indicate the need for certain user actions by switching
the mouse cursor icon.

Turning the Mouse Cursor Off and On - ““cursinhibit’’ and
“cursallow”’

The routine cursinhibit turns off the mouse cursor when it moves into
your application’s window. This is useful when you want to track the mouse
with some other graphical object other than one of the system mouse cursors.
The example program TrackMouse.c tracks mouse movement with the Bitmap
of the world used in the example program hello.c in the " Getting Started"
Chapter. A printout of TrackMouse.c is shown in Figure 5-2 at the end of
this chapter.

5-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

The Mouse Resource

The routine cursallow will enable mouse cursor tracking after a call to
cursinhibit. There must be one call to cursallow for every call to cursinhibit
to enable normal mouse cursor tracking. See the manual page CURSOR(3R)
for more details.

Using Different Mouse Cursors - ““cursswitch”

Mouse cursors are Texturel6 data types, normally referred to as icons.
The normal mouse cursor is the arrow icon. The routine cursswitch can be
used to change the mouse cursor to any Texturel6. The example program on
the manual page CURSOR(3R) demonstrates how to switch mouse cursors.
The manual page also gives a list of available mouse cursors stored in the
630 ROMs. For details on how to create your own mouse cursors, see the
Chapter "Icon Editing" of this document.

Setting the Mouse Position - ‘““cursset”’

The routine cursset allows your application to set the mouse position to
any point on the screen. See the CURSOR(3R) manual page for more details.

Drawing with the Mouse

The demo program star.c is a good example of how the mouse can be
used to create interactive graphics. star.c allows the user to select an initial
point in the window by depressing mouse button 1 and then, while keeping
button 1 depressed, will draw line segments between the current mouse
position and the initial point selected. To make the pattern more interesting,
the lines are reflected into the four different quadrants of the window.
Clicking mouse button 2 will erase the contents of the window and allow the
user to start a new drawing. A printout of star.c is shown in Figure 5-3 at the
end of this chapter.

Graphic Routine with a Built-in Mouse
Interface - “newrect”

The graphics routine newrect allows a user to use the mouse to
interactively sweep out a rectangle on the screen. The return value is the
swept rectangle. See the manual page NEWRECT(3R) in the 630 MTG
Software Reference Manual for further details.

APPLICATION RESOURCES 5-7

The Keyboard Resource - ‘‘kbdchar’” and
“ringbell”’

The keyboard is a resource that can be requested by multiple applications,
but only the application running in the current window can receive keyboard
input. An application can request the keyboard by executing:

request (KBD);

Once the keyboard is requested, characters typed will be placed on the
application’s keyboard queue and can be retrieved one character at a time by
calling kbdchar. kbdchar will return the next character from the keyboard
queue or -1 when the queue is empty. The code fragment shown below will
loop until the character 'q” is typed on the keyboard:

do
wait(KBD);
while (kbdchar() !'= ’q’);
Note: If an application does not request the keyboard, all characters
typed will be sent to the host computer.

An application can ring the keyboard bell by calling the routine ringbell.

For further details, see the manual pages KBDCHAR(3R) and
RINGBELL(3R) in the 630 MTG Software Reference Manual. Also see the
Chapter "Redefining the Keyboard" for information on the more advanced

features of the keyboard.

5-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

The Printer Resource

The printer is a 630 MTG resource that can be owned by only one
application at a time. When an application issues a request for the printer, it
should test the bit vector returned by request to see if the request succeeded.

Sending Data to the Printer - ““psendchar’’ and
‘“‘psendchars”

The routines psendchar and psendnchars can be used to send individual
characters and strings of characters to the printer, respectively. psendchar
will return 1 if successful and 0 if the printer output queue is full.
psendnchars, on the other hand, will not return to the calling application until
it has succeeded in sending the entire character string. psendnchars will
relinquish the CPU if it has to wait for room on the printer output queue.
Therefore, an application should use psendchar if it wishes to maintain
ownership of the CPU while sending information to the printer.

The routines xpsendchar and xpsendnchars operate in the same way as
psendchar and psendnchars except that Terminal Setup values for
expanding tabs and filtering escape sequences are used when sending data to
the printer. For more information on the Terminal Setup options, "Expand
Tabs" and "Filter Escapes," see the Chapter "Terminal Setup" in the
630 MTG Terminal User’s Guide.

Using the Printer and Keyboard as a
Typewriter

The example program type.c will enable the keyboard and a printer
attached to the 630 MTG to act together as a typewriter. A printout of the
source code for type.c is shown in Figure 5-4 at the end of this chapter.

For more information on the printer resource, see the manual pages
RESOURCES(3R), PSENDCHAR(3R), and PRINTQ(3R).

APPLICATION RESOURCES 5-9

Host Communications

Applications running in the 630 MTG may have a connection with the
host computer. This connection is available for sending and receiving host
data unless the connection is specifically released (see the section below
»Releasing the Host Connection"). To send and receive host data, the
application must first request the send and receive resources as follows:

request (SENDIRCV) ;

If the application wishes to send or receive exclusively, it can just request
the associated resource. For example,

request(RCV);

will allow the application to receive data from the host.

Receiving and Sending Data - ““rcvchar’’ and
‘‘sendchar’’

Data received from the host is placed in the application’s receive queue
and read one character at a time by calling the routine rcvchar which returns
the next character from the receive queue or -1 if the queue is empty. When
the receive queue is empty, the application can suspend itself by executing

wvait(RCV);

which is an instruction to wait until a character has been received from the
host.

sendchar and sendnchars send a single character or character string,
respectively, to the host by placing data on the 630 MTG's output queue.. If
the output queue becomes full, sendchar and sendnchars will wait until there
is room on the output queue before returning to the calling application. This
process is transparent to the calling application, but programmers should be
aware that these two routines may not return immediately. See the manual
pages RCVCHAR(3R) and SENDCHAR(3R) for more details.

5-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Host Communications

A Simple Terminal Emulator - “vsterm1.c”’

vsterml.c in $DMD /examples/Resources, is a simple terminal emulator that
handles receiving characters from the host and displaying them on the screen.
Figure 5-5 gives the source code for vsterml.c. It also does some very simple
processing for the backspace character and rings the keyboard bell when it
receives the ASCII BEL character. Note that vsterml.c does not request the
keyboard resource. This means that characters typed when vsterml.c is the
current window will be sent to the host.

Releasing the Host Connection - ‘““local”’

When an application is downloaded into the 630 MTG, it retains its
connection for communications with the host. Many applications, however,
do not need to communicate with the host and are therefore tying up a host
connection that could be used by another application. For this reason, the
routine local is provided for an application to release its host connection and
run "locally" in the 630 MTG without host interaction. When an application
calls local, the host connection that was used for the download is released for
use by other applications in the terminal. The processes running on the host
computer are terminated just as if the application’s window had been deleted.
In order to differentiate applications that are running locally from those that
have a host connection, the border of the local application is changed to a
textured pattern. For more details, see the manual page LOCAL(3R) in the
630 MTG Software Reference Manual.

Regaining the Host Connection - ‘“‘attach”

An application that had previously released its host connection can
reestablish host communications by calling the routine attach. This routine
will allocate a host connection for the application, if one is available, and
change the application’s border back to a solid outline. If there are no
channels available for the requested host, the application already has a host
connected, or the host argument is invalid, then attach will fail. This is
indicated by a return value of zero. See the manual page ATTACH(3R) in
the 630 MTG Software Reference Manual for further details.

APPLICATION RESOURCES 5-11

Host Communications

Making Local Copies of Applications - “peel”’

An interesting combination of the features of local and attach has been
provided in the routine peel. This routine will create a local copy of your
application in a new window and leave the original copy attached to the host.
Also, this routine can remove the original copy and start up the 630 MTG's
default terminal emulator in the original window. See the manual page
PEEL(3R) in the 630 MTG Software Reference Manual for more details.

5-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

System Services

The remaining application resources behave somewhat differently from
the I/O devices described so far. System services can be requested by an
application and are simply flags set by the 630 MTG operating system,
indicating occurrence of a particular event. These services are described in the
following paragraphs. ‘

CPU Resource

The wait function is typically used to allow other applications to run
while waiting for some system resource to become available. The CPU
resource is used with the wait to unconditionally give up the processor. In
this case, wait will return after all other applications have had the opportunity
to run. A typical application should periodically perform the wait(CPU)
instruction if it executes for a long period of time; otherwise, all other
applications are blocked from running. The CPU resource is always implicitly
requested.

DELETE Resource

Requesting the DELETE resource prohibits a user from deleting your
application with the main button 3 menu item Delete. Rather, a flag is set that
causes a call to own to indicate that the DELETE resource is ready for service.
This is intended for use by applications which wish to perform some type of
cleanup before being deleted. If the DELETE resource does become ready for
service, it is the responsibility of the application to perform the cleanup and
delete itself. For an example, see the manual page RESOURCES(3R) in the
630 MTG Software Reference Manual.

APPLICATION RESOURCES 5-13

System Services

RESHAPED Resource

A call to the wait function with the RESHAPED resource will suspend
the application until the application’s window has been either moved or
reshaped. A typical situation where this might be used is with an application
which requires a certain minimum sized window. Upon determining that its
current window size is too small, an application may wait until the user
reshapes the window to an appropriate size:

while ((Drect.corner.x - Drect.origin.x)< MIN_VIDTH) {
string(&mediumfont, "please reshape",&display,
add(Drect.origin,Pt(10,10)),F XOR);
wait (RESHAPED) ;
P->state &= "RESHAPED;

}

Note in the example that it is the responsibility of the application to clear
the reshaped bit in the process state variable. This bit is used to determine if
the RESHAPED resource is ready for service. Subsequent waittRESHAPED)
calls will return immediately if the application does not clear the RESHAPED
bit. The RESHAPED resource is always implicitly requested. See the manual
pages RESOURCES(3R) in the 630 MTG Software Reference Manual for more
details and examples of the RESHAPED resource, and see the manual page
STATE(3R) for details on the process state variable.

ALARM Resource - ‘“alarm”’

alarm starts a timer of variable duration which will fire at a specified
number of clock ticks (each tick is 1/60th of a second) in the future. The
ALARM resource is implicitly requested when the alarm function is called
and is ready for service after the timer completes. The own function will
indicate whether the timer has completed; the wait function will wait for the
timer to complete if it has not done so. The function call alarm(0) cancels the
previous call to alarm. See the manual page RESOURCES(3R) in the 630
MTG Software Reference Manual for more details.

5-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

System Services

MSG Resource

The 630 MTG provides for message passing between applications. Each
application may have one or more message queues associated with it that
other applications can access. If some activity occurs at any message queue
associated with the application, a flag is set which indicates the MSG resource
is ready for service. The own and wait functions test and wait for,
respectively, this condition. For complete details on and examples of the
message facility, see the "Interprocess Communication (Messages)" Chapter
and the manual pages RESOURCES(3R), MSGCTL(3L), MSGGET(3L), and
MSGOP(3L) in the 630 MTG Software Reference Manual.

APPLICATION RESOURCES 5-15

5-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

The source code for the example programs on resources is included in this
section (Figures 5-1 through 5-5).

#include <dmd.h>
#include <font.h>

#define FW FONTWIDTH(largefont) /* See Manual Page STRING(3R)*/
#define FH FONTHEIGHT (largefont) /* See Manual Page STRING(3R)*/

/* List of routines and associated manual page */

Point add(); /* PTARITH(3R) */
void box(); /* BOX(3R) */
Point fPt(); /* FPT(3L) ./
Rectangle fRpt(); /* FPT(3L) */
int eqpt(); /* EQ(3R) */
void lprintf(); /* LPRINTF */
void moveto(); /* MOVETO(3R) */
int own(); /* RESOURCES(3R)*/
Rectangle raddp(); /* RECTARITH(3R)*/
void rectf(); /* RECTF(3R) */
unsigned long realtime(); /* REALTIME(3R) */
int request(); /* RESOURCES(3R)*/
Point sub(); /* PTARITH(3R) */
Point sPtCurrent(); /* MOVETO(3L) */
int wait(); /* RESOURCES(3R)*/

Figure 5-1: Example Program - “mouse.c’” (Sheet 1 of 10)

APPLICATION RESOURCES 5-17

Example Programs

" /*Library macros and associated manual pages */
/* int button() BUTTONS(3R) */
/* int buttonl() BUTTONS(3R) */
/* int button2() BUTTONS(3R) */
/* int button3() BUTTONS(3R) */
/* int buttonl2() BUTTONS(3R) */
/* int buttonl3() BUTTONS(3R) */
/* int button23() BUTTONS(3R) */
/* int buttonl23() BUTTONS(3R) */

/* int bttn()
/* int bttnl()
/* int bttn2()
/* int bttn3()
/* int bttnl2()
/* int bttn23()
/* int bttnl3()
/* int bttnl23()

BUTTONS(3R) */
BUTTONS(3R) */
BUTTONS(3R) */
BUTTONS(3R) */
BUTTONS(3R) */
BUTTONS(3R) */
BUTTONS(3R) */
BUITONS(3R) */

/* Global Variables in this Program */

/*

** Previous status of button macro calls.

*/

int Prev[4][7];

/*

** pefines the table of button macro names.

*/

Rectangle Table[4][7];

main()

{
int x,y; /* general coordinates */
Point origin, corner; /* general points */
Point mxy, mjxy; /* previous mouse coordinates */
int Button; /* return status of button macro */
unsigned long time; /* time to update mouse coordinates */
Point scx, scy, wex, wey; /* points to print mouse coord’s */
Rectangle ExitRect; /* Exit Rectangle */
/*
** Request the mouse resource
*/

request (MOUSE);

Figure 5-1: Example Program - “mouse.c” (Sheet 2 of 10)

5-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Draw The Exit Rectangle. When button

** one of the mouse is clicked in this

** Rectangle, the program will exit.

*/

ExitRect.origin = sub(Drect.corner, fPt(23*FV, 5*FH));
ExitRect.corner = Drect.corner;

box(&display, ExitRect, F_XOR);

/*
** Print message in ExitRect.

./ :
moveto(add(ExitRect.origin, Pt(FW, FH)));
lprintf("Click Button One");
moveto(add(ExitRect.origin, Pt(FV, 2*FH)));
1printf("In This Box");
moveto(add(ExitRect.origin, Pt(FW, 3*FH)));
1printf("To Exit.");

/* .
** Initialize Table. The Rectangles in this table define where the
** names of each button macro will be positioned in the window.
** Each rectangle is 15 "character widths" wide one "character height"
** high. The first row of the table is on line 6 of the window.
*/
for (x=0; x<4; x++) {
for (y=0; y<7; y+) {
origin.x = FW*(15*x + 1);
origin.y = FH*(y + 6);
corner.x = origin.x + 15*FV;
corner.y = origin.y + FH;
Table[x][y] = fRpt(origin, corner);

}
}
/*
** Print Title line and label for mouse coordinates.
*/

moveto(Pt(0, 0));

lprintf("0);

1printf(" MOUSE TRACKING AND BUTTON STATUSO);
1printf(" Screen Coordinates Window Coordinates0);

Figure 5-1: Example Program - “mouse.c”” (Sheet 3 of 10)

APPLICATION RESOURCES 5-19

Example Programs

/*
** Obtain the points to print the mouse coordinate info.
*/

1printf(" ");

/* screen coordinate x */

scx = sPtCurrent();

Iprintf (" ")s

/* window coordinate x */

wex = sPtCurrent();

lprintf("0);

/* screen coordinate y */

scy = sPtCurrent();

lprintf (" ")s;
/* window coordinate y */

wey = sPtCurrent();

/*
** Print the table of button macro names.
** Column 1

*/
moveto(add(Drect.origin, Table[0][0].origin));
1printf("bttnl() ")s;

moveto(add(Drect.origin, Table[0][1].origin));
lprintf("bttn2() o),

moveto(add(Drect.origin, Table[0][2].origin));
1printf("bttn3() ")s;

moveto(add(Drect.origin, Table[0][3].origin));
1printf("bttnl2() ")

moveto(add(Drect.origin, Table[0][4].origin));
lprintf("bttnl3() ");

moveto(add(Drect.origin, Table[0][5].origin));
1printf("bttn23() ")

moveto(add(Drect.origin, Table[0][6].0rigin));
lprintf("bttnl23() ")s;

Figure 5-1: Example Program - “mouse.c”” (Sheet 4 of 10)

5-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Column 2

*/

moveto(add(Drect.origin, Table[1][0].origin));
1printf("buttonl() ");

moveto(add(Drect.origin, Table[l1][1].origin));
1printf("button2() ")s

moveto(add(Drect.origin, Table[1][2].origin));
Iprintf("button3() ")s;

moveto(add(Drect.origin, Table[1][3].origin));
1printf("buttonl2() ");

moveto(add(Drect.origin, Table[1][4].0rigin));
lprintf("buttonl3() ");

moveto(add(Drect.origin, Table[1][5].origin));
lprintf("button23() ");

moveto(add(Drect.origin, Table[1][6].origin));
1printf("buttonl23() ")

/*
** Column 3

*/

moveto(add(Drect.origin, Table[2][0].origin));
1printf("bttn(1l) ")s;

moveto(add(Drect.origin, Table[2][1].origin));
lprintf("bttn(2) ")

moveto(add(Drect.origin, Table[2][2].0rigin));
1printf("bttn(3) ")s;

Figure 5-1: Example Program - “mouse.c”’ (Sheet 5 of 10)

APPLICATION RESOURCES 5-21

/*
** Column 4

*/

moveto(add(DPrect.origin, Table[3][0].origin));
1printf("button(l) ")s;

moveto(add(Drect.origin, Table[3][1].origin));
1printf("button(2) ");

moveto(add(Drect.origin, Table[3][2].origin));

1printf("button(3) ")s
/*
** Main loop of the Program.
*/
for(;;) {
/*
*+ If we own the mouse
*/
if (own()&MOUSE) {
/*
** Update the mouse coordinates 5 times per second.
*/

if(realtime() > time) {

time = realtime() + 12;

if(!eqpt(mouse.xy, mxy)) {
mXy = mouse.Xxy;
moveto(scx);
/*
** Erase old coordinate
*/
1printf(" ");
moveto(scx);
/*
** Draw newv coordinate.
*/
1printf("x=%d", mouse.xy.x);
moveto(scy);

Figure 5-1: Example Program - “mouse.c’”” (Sheet 6 of 10)

5-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

/*

** Erase old coordinate

*/

1printf(" ");
moveto(scy);

/*

** Draw new coordinate.

*/

1printf("y=%d", mouse.Xxy.y);

}

if (leqpt(mouse. jxy, mjxy)) {
mjxy = mouse. jxy;
moveto(wcx) ;
/*
Erase old coordinate
*/
lprintf(" ")
moveto(wex);
/* ‘
*+ Draw new coordinate.
*/
lprintf("x=%d" ,mouse. jxy.x);
moveto(wey);
/*
** Erase old coordinate
*/
lprintf(" ")
moveto(wey);
/*
** Draw new coordinate.
*/
lprintf("y=%d" ,mouse. jxy.y);

Example Programs

Figure 5-1: Example Program - “mouse.c” (Sheet 7 of 10)

APPLICATION RESOURCES 5-23

Example Programs

/*
** The following code calls the button macros and
** determines whether the corresponding name should
** should be high-lighted in the table.

*/

/*
** Column 1 of Table.
*/
if ((Button = bttnl()) != Prev[0][0]) {
Prev[0][0] = Button;
rectf(&display, raddp(Table[0]}[0], Drect.origin), F XOR);

if ((Button = bttn2()) != Prev[0][1]) {
Prev[0][1] = Button;
rectf(&display, raddp(Table[0][1], Drect.origin), F_XOR);

if ((Button = bttn3()) != Prev[0][2]) {
Prev[0][2] = Button;
rectf(&display, raddp(Table[0][2], Drect.origin), F_XOR);
}
Button = bttnl2{);
if ((Button § Prev[0][3]) && (!Button {i !Prev[0][3])) {
Prev[0][3] = Button;
rectf(&display, raddp(Table[0][3], Prect.origin), F_XOR);
}
Button = bttnl3();
if ((Button i Prev[0][4]) && (!Button I !Prev[0][4])) {
Prev[0][4] = Button;
rectf(&display, raddp(Table[0][4], Drect.origin), F_XOR);
}
Button = bttn23();
if ((Button § Prev[0][5]) && (!Button i !Prev[0][5])) {
Prev[0]}[5] = Button;
rectf(&display, raddp(Table[0][5], Drect.origin), F_XOR);
}
Button = bttnl23();
if ((Button & Prev[0][6]) && (!Button # !Prev[0][6])) {
Prev[0][6] = Button;
rectf(&display, raddp(Table[0][6], Drect.origin), F_XOR);

Figure 5-1: Example Program - “mouse.c” (Sheet 8 of 10)

5-24 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Column 2 of Table.
*/
if ((Button = buttonl()) != Prev[1}[0]) {
Prev[1][0] = Button;
rectf(&display, raddp(Table[1][0], Drect.origin), F XOR);

if ((Button = button2()) != Prev[1][1]) {
Prev[1][1] = Button;
rectf(&display, raddp(Table[1][1], Drect.origin), F_XOR);

if ((Button = button3()) != Prev[1][2]) { -
Prev[1][2] = Button;
rectf(&display, raddp(Table[1][2], Drect.origin), F_XOR);
}
Button = buttonl2();
if ((Button ¥ Prev[1][3]) && (!Button {i !Prev[1][3])) {
Prev[1][3] = Button;
rectf(&display, raddp(Table[1][3], Drect.origin), F _XOR);
}
Button = buttonl3();
if ((Button # Prev[1][4]) && (!Button # !Prev[1][4])) {
Prev[1][4] = Button;
rectf(&display, raddp(Table[1][4], Drect.origin), F_XOR);
}
Button = button23();
if ((Button i Prev[1][5]) && (!Button ¥ !Prev[1][5])) {
Prev[1][5] = Button;
rectf(&display, raddp(Table[1][5], Drect.origin), F_XOR);
}
Button = buttonl23();
if ((Button § Prev[1][6]) && (!Button ¥ !Prev[1][6])) {
Prev[1][6] = Button;
rectf(&display, raddp(Table[1][6], Drect.origin), F_XOR);

}

/*
Column 3 of Table.
*/
if ((Button = bttn(l)) != Prev[2][0]) {
Prev[2][0] = Button;
rectf(&display, raddp(Table[2][0], Drect.origin), F_XOR);

}

Figure 5-1: Example Program - “mouse.c” (Sheet 9 of 10)

APPLICATION RESOURCES 5-25

Example Programs

if ((Button = bttn(2)) != Prev[2][1]) {

Prev[2][1] = Button;

rectf(&display, raddp(Table[2][1], Drect.origin),
}
if ((Button = bttn(3)) != Prev[2][2]) {

Prev[2][2] = Button;

rectf(&display, raddp(Table[2][2], DPrect.origin),

}

/*
** Column 4 of Table.
*/
if ((Button = button(l)) != Prev[3]}[0]) {

Prev[3][0] = Button;

rectf(&display, raddp(Table[3][0], Drect.origin),
}
if ((Button = button(2)) != Prev[3][1]) {

Prev[3][1] = Button;

rectf(&display, raddp(Table[3][1], Drect.origin),
}
if ((Button = button(3)) != Prev[3][2]) {

Prev[3][2] = Button;

rectf(&display, raddp(Table[3][2], Drect.origin),

}

/*

** Check for exit.

*/

if(bttnl() && ptinrect(mouse.xy, ExitRect))
exit();

} else {
/*
** Window is not current.
** wait for mouse
*/
wait (MOUSE) ;

}

Figure 5-1: Example Program - “‘mouse.c” (Sheet 10 of 10)

F_XOR);

F_XOR);

F_XOR);

F_XOR);

F_XOR);

5-26 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

#include <dmd.h>
#include "world.h"

/* Library Routines and associated manual page. */

void bitblt(); /* BITBLT(3R) */
int request(); /* RESOURCES (3R) */
void sleep(); /* SLEEP(3R) ./
main()
{

Point MousePosition;

/*

** Request the use of the MOUSE resource.

*/

request (MOUSE) ;

/*

¢* Allow the 630 MIG control process to run
** and update the mouse position.

*/

sleep(2);

/*
** Record the current mouse position.
*/

MousePosition = mouse.xy;

Figure 5-2: Example Program “TrackMouse.c”” (Sheet 1 of 2)

APPLICATION RESOURCES 5-27

/*
** Draw the world Bitmap at the current
** mouse position.
*/
bitblt(&world, world.rect, &display,
MousePosition, F_XOR);
for(;;) {
/*
** Erase the world Bitmap from the old
** mouse position.
*/
bitblt(&world, world.rect, &display, MousePosition, F_XOR);
/*
** Update the MousePosition.
*/

MousePosition = mouse.xy;

/*
** Draw the world at the new position.

*/

bitblt(&world, world.rect, &display, MousePosition, F_XOR);

/*
** Sleep for two ticks of the 60Hz clock to
** release the CPU and synchronize with the
** 60Hz refresh rate of the 630 MIG screen.
*/

sleep(2);

Figure 5-2: Example Program “TrackMouse.c”” (Sheet 2 of 2)

5-28 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

#include <dmd.h>

/*Library routines and associated manual pages. */

Point add(); /* PTARITH(3R) */
void exit(); /* EXIT(3R) ./
void jmoveto(); /* JMOVE(3L) */
void jlineto(); /* JSEGMENT(3L) ./
void jrectf(); /* JRECTF(3L) s/
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void nap(); /* SLEEP(3R) */
Point mul(); /* PTARITH(3R)) */
int request(); /* RESOURCES (3R) */
void sleep(); /* SLEEP(3R) */
Point sub(); /* PTARITH(3R) */
int wait(); /* RESOURCES (3R) ./
/*Library macros and associated manual pages. */
/*int bttnl() /* BUTTONS(3R) +/
/*int buttonl() /* BUTTONS(3R) */
/*int button2() /* BUTTONS(3R) */
/*int button3() /* BUTTONS(3R) */

/* Routines local to star.c */
void draw();

void GetDelta();

void GetPoints();

int WhichQuadrant();

#define QUADRANT1 1
#define QUADRANT2 2
#define QUADRANT3 3
#define QUADRANT4 4

typedef struct QuadrantPoints {
Point quadrantl, quadrant2, quadrant3, quadrant4;

} QuadrantPoints;

QuadrantPoints InitialPoint;
QuadrantPoints FinalPoint;

Figure 5-3: Example Program “‘star.c”” (Sheet 1 of 6)

APPLICATION RESOURCES 5-29

Example Programs

Point MousePosition;
Point Delta;

Point WindowCenter = {XMAX/2, YMAX/2};

/*

** gtar.c takes an initial point selected by depressing mouse button
** 1, maps that initial point into the four quadrants of the window
** (see the routine WhichQuadrant and SetPoints) and then while

** mouse button 1 is depressed, tracks mouse movement by drawing

**+ line segments from the initial points in each quadrant to the

#+ corresponding final points in each quadrant determined by mapping
** the current mouse position into each quadrant. The result is a

** drawing that is symmetrical about the x and y axis. Releasing and
** then depressing mouse button 1 will allow you to select new initial
** points. Mouse button 2 will erase the current drawving.

** gtar.c exits when the user types a ’q’.

*/
main()
{
/*
** Release the host connection.
*/
local();
/*

** Request the use of the mouse and
** keyboard application resources.
*/

request (MOUSEKBD) ;

/*
** Main loop.
*/
for(;;) {
/*
**+ Release the CPU until the mouse or
** the keyboard need service.
*/
wait (MOUSEKBD) ;

Figure 5-3: Example Program “star.c”” (Sheet 2 of 6)

5-30 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

if (buttonl()) {

/*

** If mouse button 1 is depressed,

** set initial points in each quadrant.

*/

GetPoints(&InitialPoint);

for (;bttnl();) {
/*
** As long as button 1 stays depressed,
** get final points in each quadrant
** and drav the line segments.
*/
GetPoints(&FinalPoint);
draw();
/*
** Busy loop for two clock ticks
** in order to allow the user to
** move the mouse.

*/
nap(2);
}
} else if (button2())
/t

**+ If mouse button two is depressed
** erase the current drawing.
*/
Jrectf(Jrect, F_CLR);
else if (button3()) {
/*
**+ If buttons 3 is depressed, release
** the Mouse resource and allow the control
** process to run.
*/
request(KBD);
sleep(2);
request(MOUSEKBD) ;

Figure 5-3: Example Program “star.c” (Sheet 3 of 6)

APPLICATION RESOURCES 5-31

Example Programs

if (kbdchar() == ’q’)

/*
+ If the user types a ’q’, then exit.
*/
exit();

}

}

int

VhichQuadrant()

/*

#+ gtar.c divides the window into four equal quadrants.

Ex] '

s 2 H 1

. !

2E e memmeemcmememeeme—- > x

e !

hdd 3 } 4

*s :

s v

% y

** VhichQuadrant will return the number corresponding to
** the quadrant that the mouse cursor is currently in.

*/

if (MousePosition.x >= XMAX/2) {
if (MousePosition.y <= YMAX/2)
return(QUADRANT1) ;
else
return(QUADRANT4) ;
} else {
if (MousePosition.y <= YMAX/2)
return(QUADRANT2);

else
return(QUADRANT3) ;
}
}
void
GetDelta()

Figure 5-3: Example Program “star.c”” (Sheet 4 of 6)

5-32 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** The x and y coordinate of the Point Delta helps in
** mapping the current mouse position into the four
** guadrants.

** Delta.x = 2*((XMAX/2) - MousePosition.x)

** Delta.y = 2*((YMAX/2) - MousePosition.y)

*/
{
MousePosition = mouse. jxy;
Delta = mul(sub(WindowCenter, MousePosition), 2);
}
void
GetPoints(Qp)
struct QuadrantPoints *Qp;
/*

** Map the current mouse position into the four quadrants.
*/

Point pl, p2, p3, p4;

GetDelta();

pl = MousePosition;

P2 = MousePosition; p2.x += Delta.x;

p3 = add(MousePosition, Delta);

p4 = MousePosition; p4.y += Delta.y;

switch(WhichQuadrant()) {

case QUADRANTI1:
Qp->quadrantl = pl;
Qp->quadrant2 = p2;
Qp->quadrant3 = p3;
Qp->quadrant4 = p4;
break;

case QUADRANT2:
Qp->quadrantl = p2;
Qp->quadrant2 = pl;
Qp->quadrant3 = p4;
Qp->quadrant4 = p3;
break;

Figure 5-3: Example Program “star.c’” (Sheet 5 of 6)

APPLICATION RESOURCES 5-33

case QUADRANT3:
Qp->quadrantl = p3;
Qp->quadrant2 = p4;
Qp->quadrant3 = pl;
Qp->quadrant4 = p2;
break;

case QUADRANT4:
Qp->quadrantl = p4;
Qp->quadrant2 = p3;
Qp->quadrant3 = p2;
Qp->quadrant4 = pl;
break;

}

void
draw()
/*
** Draw line segments from the initial point in the quadrant
** to the final point.
*/
{
int i;
for (i=0;i<4;i++) {
Jjmoveto(((Point *)(&InitialPoint))[i]);
jlineto(((Point *)(&FinalPoint))[i], F_OR);

Figure 5-3: Example Program “star.c”’ (Sheet 6 of 6)

5-34 630 MTG SOFTWARE DEVELOPMENT GUIDE

#include <dmd.h>

#define NEWVLINE 0x0a
#define RETURN 0x0d

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) ./
int kbdchar(); /* KBDCHAR(3R) */
void lprintf(); /* PRINTF(3R) ./
void lputchar(); /* LPUTCHAR(3L); */
int psendchar(); /* PSENDCHAR(3R) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) s/
main()

{

char c¢;

int resources;

/*
** Request the use of the keyboard
** and the printer.

*/

resources = request(KBDIPSEND);

/*
** If the request for the printer resource failed,
** ask the user if he wants to try the request
** again. If not then exit.
*/
vhile (!(resources & PSEND)) {
lprintf("\n Printer Not Available.\n");
lprintf(" Shall I try again? (y/n)\n");

while ((c=kbdchar()) == -1) wait(KBD);
if(c == ’y” § ¢ == ’Y’)

resources = request (KBDIPSEND);
else

exit();

Figure 5-4: Example Program “type.c” (Sheet 1 of 2)

APPLICATION RESOURCES 5-35

lprintf(" Type @ to quit.\n");

/*
** Send all characters typed to the printer.
*/
for(;;) {
while ((c¢ = kbdchar()) == -1) wait(KBD);
if (c == ’@") {
exit();
} else {
/*
Echo character on the screen
** and then send it to the printer.
*/
1putchar(c);
psendchar(c);
if (c == RETURN) {
1putchar (NEWLINE) ;
psendchar (NEWLINE) ;
}
}
1

Figure 5-4: Example Program “type.c”” (Sheet 2 of 2)

5-36 630 MTG SOFTWARE DEVELOPMENT GUIDE

#include <dmd.h>
#include <font.h>

/* Library Routines and associated manual page.
Point add(); /* PTARITH(3R)

Point fPt(); /* FPT(3L)

void l1lputchar(); /* LPUTCHAR(3L)

void moveto(); /* MOVETO(3L)

int own(); /* RESOURCES(3R)
void rectf(); /* RECTF(3R)

int request(); /* RESOURCES(3R)

void ringbell(); /* RINGBELL(3R)

Point sPtCurrent(); /* MOVETO(3L)

int wait(); /* RESOURCES(3R)

/* Library Macros and associated manual page.

/“

int FONTVIDTH
int FONTHEIGHT

STRING(3R)
STRING(3R)

Local routines in this file */

void init_screen();
void cursor();
void dispchar();

main()

{

Figure 5-5:

/*
** Initialize the current screen point and
draw a cursor.

*/

init_screen();

/*
** Request the RCV resource.
*/

request(RCV);

Example Programs

Example Program “vsterm1.c”” (Sheet 1 of 4)

APPLICATION RESOURCES 5-37

Example Programs

/*
** Main loop of program.
*/
for (;;3) {
/*
** Vait for chars from host.
*/
wvait(RCV);
if (own() & RCV) {
/*
** Erase the current cursor.
*/
cursor();
/*
**+ Display characters received.
*/
dispchar();
/*
Redraw cursor.
*/
cursor();
}
1
1
void
init_screen()
{
Point p;
p = Drect.origin;
p.y += 3;
/*
** Tnitialize the current screen point.
*/
moveto(p);
cursor();
}

Figure 5-5: Example Program “vsterml.c” (Sheet 2 of 4)

5-38 630 MTG SOFTWARE DEVELOPMENT GUIDE

void

Example Programs

cursor()

{

}

void

/*
** This routine is used to draw and erase the cursor.
*/

Rectangle r;

extern Point sPtCurrent();

extern Point add();

extern Point fPt();

/*
** Set dimension and position of cursor Rectangle.
*/
r.origin = sPtCurrent();
r.corner = add(r.origin, fPt(FONTWIDTH(mediumfont),
FONTHEIGHT (mediumfont)));
/*
** the following rectf will erase the cursor if it already exists
** and draw it if it does not.
s/ ‘
rectf(&display, r, F_XOR);

dispchar()

register int c;
Point curpos;

/*
** Process all characters received.

*/

Figure 5-5: Example Program “‘vsterml.c” (Sheet 3 of 4)

APPLICATION RESOURCES 5-39

wvhile (own() & RCV) {
switch(c = revechar()) {
case ’'\007’:
ringbell();
break;

case ’\b’ : /* backspace */
curpos = sPtCurrent();
if(curpos.x - FONTWVIDTH(largefont) >= Drect.origin.x)
curpos.x -= FONTWIDTH(largefont);
moveto(curpos);
break;

default:

lputchar(c);
break;

Figure 5-5: Example Program “vsterml.c”” (Sheet 4 of 4)

5-40 630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 6: User Interface Toolbox

Introduction

“menuhit”
Data Types - “Menu”
Mouse Interaction
Using “menuhit”
Generating a Simple Menu - “Menul c”
Generating Multiple Menus - “Menu2.c”

“tmenuhit” - Tree Menus :
“tmenuhit” Data Types - “Tmenu” and ”Tltem
“Tmenu” Definition .
“Titem” Definition
Calling “tmenuhit”
“tmenuhit” Return Value .
Using “tmenubhit” e e e e e e e e e e
Customizing the “Titem" Data Type for Simple Menus -
“Tmenul.c”
Using the “next” Field to Generate Submenus - ”Tmenu2 <’
Menu Expansion - “Tmenu3.c”
Menu Item Bitmaps - “Tmenu4.c”
Multiple Fonts - “Tmenu5.c” .
Menu Item Greying and the “hfn” Subroutme - “Tmenu6 c
Static Menus - “Tmenu?7.c” .
Static Menus and Multiple Selectlons “TmenuS.c”
“dfn”’, “hfn”, “bfn”” Demonstration - “Tmenu9.c”

N N

’r

[e2¥« W« N Nie Ne Ne N Nl N

The Label Bar . 6
Structure of Label Bar . 6
Requesting the Label Bar - ”labelon and “labeloff” . . 6
Displaying Icons - “labelicon” 6
Displaying Text - “labeltext” 6
Displaying Text and Icons 6
Maintaining Text and Icons After Reshape 6

TABLE OF CONTENTS

6-1

6-2

6-4
6-5

6-5

O\O\OI\O\O\
O 0N NN

LN
oo

L LU
B WWNNNRER RO

1 ¥ [}

Chapter 6: User Interface Toolbox

Message Boxes

Example Programs

6-19

6-21

Introduction

menuhit, tmenuhit, label bars, and message boxes are four tools that
enhance the user interface of an application program. menuhit enables an
application program to display a menu in response to depressing a mouse
button. From the menu, a user can make a selection by releasing the button
over a desired selection. tmenuhit, an advanced version of menuhit, allows
multiple menus to be presented simultaneously in a hierarchical structure or
tree. The label bar is a bar that is displayed across the top of a window. By
using icons and text strings, information about the application’s current status
and its resources can be printed within the label bar. The message box is a
friendly interface for providing information to the user through pop-up boxes.

Several example programs have been included in this chapter to
demonstrate the different user interface tools. The source code for these
programs is in directory $DMD /examples /UserInterface. Also, a printout of the
source code for each program is included at the end of this chapter in the
"Example Programs” section.

USER INTERFACE TOOLBOX 6-1

“menuhit”’

menuhit is declared as:

int menuhit (m, n)

Menu *m;
int n;

The menubhit routine accepts the two parameters "m" and "n". The
"m" parameter is a pointer to the Menu data structure. The "n" parameter
indicates which mouse button is to be used for interaction with the user.

When invoked, menuhit displays the menu, specified by the Menu data
structure that is pointed to by "m™", and waits for the user to make a
selection. Once a menu item is selected, menuhit returns an integer
indicating the selection. See the manual page on MENUHIT(3L) for more
details.

Data Types - ‘“Menu”’
The Menu data structure is defined in the include file dmd.h as:

typedef struct Menu {
char **item;
short prevhit;
short prevtop;
char *(*generator)();
} Menu;

6-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

“menuhit”’

The Menu data fields are defined as follows:

item This is a pointer to an array of character strings. The character
strings in this array, called menu items, are displayed within a
rectangular box when menubhit is called. For example, the
following array of character strings:

char *Menultems[] = {
"New" ,
"Reshape",
"Move",
"TOp ",
"Bottom",
"Current",
"Delete",
"More",
(char *)0,

}s

would be displayed in a menu as:

New
Reshape
Move
Top
Bottom
Current
Delete
More

Note the last entry in the array is a null pointer which allows
menubhit to detect the end of the array.

prevhit This is an integer that is maintained by menuhit to designate the
item selected from the previous call to menuhit. When menuhit is
called, it will try to position the mouse cursor over the previously
selected item.

prevtop This is an integer that is maintained by menuhit to indicate the top
menu item from the previous call to menuhit. prevtop is used
when there are more than 16 menu items to be displayed in a

USER INTERFACE TOOLBOX 6-3

“menuhit”’

scrolling menu. Details on scrolling menus and an example can be
found in the manual page MENUHIT(3L) in the 630 MTG Software
Reference Manual.

generator
This is a pointer to a function that menuhit will call if item is zero.
The generator function, which must be defined within the
application program, dynamically generates the items to be
displayed in a menu. An example of a menu using a generator
function is given in the manual page MENUHIT(3L).

Mouse Interaction

The mouse button for bringing up menus is specified as a parameter to the
menuhit routine. When the mouse is set up for right-hand operation, the
button numbering is as follows:

m 1 — left button

® 2 — middle button

m 3 — right button.
When the mouse is set up for left-hand operation, the button numbering is as
follows:

m 1 — right button

m 2 — middle button

m 3 — left button.
Refer to the 630 MTG Terminal User’s Guide for more information on terminal
setup.

menuhit assumes that the specified button is depressed when it is called.
When the user releases the mouse button, menuhit will return an integer
indicating the user’s selection. The integer returned is an index into the array
of character strings pointed to by item.

6-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

‘“menubhit”’

Using ‘“menuhit”’

The Menul.c and Menu2.c example programs in the directory
$DMD /examples /UserInterface demonstrate the menuhit routine. These
programs, as all others in this chapter, should be compiled and downloaded
using commands similar to the following for each program:

dmdcc -o Menul Menul.c

dmdld Menul

Generating a Simple Menu - ““‘Menu1.c”

Menul.c is a simple demonstration of the use of menuhit. Once
downloaded, depressing button 2 brings up a menu displaying " Breakfast",
"Lunch", and "Dinner" as menu items. Moving the cursor over the desired
item and releasing button 2 selects the item. Clicking button 1 causes the
program to exit. A printout of the source code for Menul.c is given in
Figure 6-1 at the end of this chapter.

Generating Multiple Menus - “Menu2.c”

Menu2.c expands Menul.c by allowing the user to bring up a submenu in
response to a main menu selection. Each submenu allows the user to make
additional selections and to return to the main menu. A printout of Menu2.c
is given in Figure 6-2.

USER INTERFACE TOOLBOX 6-5

‘“tmenuhit’ - Tree Menus

tmenuhit, an enhanced version of menuhit, includes the following
features:

Display of multiple menus in a hierarchical or tree format
Programmable menu item identification field

Menu item greying for non-selectable menu items

Use of Bitmaps within menu items

Font selection for menu item text

Execution of user-defined subroutines within tmenubhit

v Static" menus

Programmable positioning of menus on screen

Multiple menu item selections during one call to tmenuhit

Programmable selection of the above features.

tmenuhit will present the user with one or more menus in a hierarchical
format, allow the user to make a selection using the mouse buttons, and
return a pointer to a Titem data structure. See the manual page
TMENUHIT(3R) for more details.

““tmenuhit’’ Data Types - ‘“Tmenu’’ and
“Titem”’
The Tmenu data type is very similar to the Menu data type for menuhit

with differences being in the definition of the item field, the return value of
the generator function, and the addition of a new field called menumap.

6-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

‘‘tmenuhit” - Tree Menus

“Tmenu”’ Definition
The Tmenu data type is declared within the include file menu.h as

follows:

typedef struct Tmenu

{
Titem *jitem;
short prevhit;
short prevtop;
Titem *(*generator)();
short menumap;
} Tmenu;

The definitions of the fields in the Tmenu data structure are as follows:

item

prevhit

prevtop

generator

menumap

This is a pointer to an array of Titem data structures. A
Titem defines a single menu item. The array of Titems
defines all the menu items in a single menu. The last Titem
in the array must have its text field set to (char *)0.

This is an integer maintained by tmenuhit and used to
designate the menu item selected from the previous call to
tmenuhit. When tmenuhit is called, it tries to position the
mouse cursor over the previously selected menu item if
possible.

This is an integer maintained by tmenuhit and used to
indicate the top menu item from the previous call to tmenubhit.
tmenuhit uses prevtop when there are more than 16 menu
items to be displayed in a scrolling menu.

This is a pointer to a function (defined in the application
program) that tmenuhit will call if the item field in the
Tmenu data structure is set to zero. The generator function
must dynamically generate and return pointers to the Titem
data structures needed to create a menu. tmenuhit will call
the generator function repeatedly until it returns a Titem with
its text field equal to (char *)0.

This is a bit vector that allows you to tailor the Titem data
type for each instance of a menu. This enables you to select
and initialize only those Titem data fields needed in your
application.

USER INTERFACE TOOLBOX 6-7

‘“tmenuhit” - Tree Menus

“Titem” Definition
Each menu is composed of an array of Titem data structures. Each Titem

in the array defines a single menu item in the menu. The Titem data type is
defined in menu.h as follows:

typedef struct Titem

{

char *text;
struct {

unsigned short wuval;
unsigned short grey;

} ufield;
struct Tmenu *next;
Bitmap *icon;
struct Font *font;
void (*dfn)();
void (*bfn)();
void (*hfn)();
} Titem;

The definitions of the fields in Titem data structure are as follows:

text

uval

grey

next

This is a pointer to a NULL terminated character string to be
displayed in the menu for this item. Customized Titem data
structures must always include the text field.

This is an integer typically used as a menu item identification field
containing a constant that uniquely identifies the Titem. This is
useful since tmenuhit does not return an integer index, as does
menuhit, but returns a pointer to a Titem structure that
corresponds to the selected menu item.

This is an integer that, if set to one by the application program,
will cause tmenuhit to display the menu item with a "textured"
background and make the menu item non-selectable. A null
pointer will be returned by tmenubhit if a "greyed" menu item is
selected.

This points to a Tmenu data structure which defines a submenu
associated with this Titem. When a submenu is available for a
menu item, an arrow icon is placed to the left of the menu item
text. The menu containing the menu item that has a submenu is

6-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

‘“tmenuhit” - Tree Menus

called the "parent" menu. A "parent" menu can have as many
submenus as it has menu items. The topmost parent menu is
called the "root" menu.

icon This is a pointer to a Bitmap. The Bitmap will be displayed to the
left of menu item text. The Bitmaps within different menu items of
the same menu can have different sizes.

dfn, bfn, hfn

These are pointers to functions defined within your application
program. These functions, if initialized, will be called by tmenubhit.
dfn is called before sliding "down" into a submenu associated
with a Titem. If there is no submenu, dfn will never be called.
bfn is called after sliding from a submenu "back" to the parent
menu. hfn is called upon selecting an item (a "hit").

Calling “tmenuhit”’

tmenuhit is called with three or possibly four parameters, depending on
the bits set in the flags parameter. tmenuhit is declared as follows:

Titem *tmenuhit(m, n, flags [,p])

Tmenu *m;
int n;
int flags;
Pointp;

The definitions for the tmenuhit parameters are as follows:

m

flags

This is a pointer to the root Tmenu data structure. Although
multiple Tmenu data structures comprise a hierarchical menu,
tmenuhit only requires the address of the root Tmenu. The fact
that submenus exist has no effect on the call to tmenuhit.

This specifies the mouse button that tmenuhit will use for
interaction with the user. If this parameter equals 0, tmenuhit will
use all the mouse buttons.

This is a bit vector that gives the user some control over the
operation of tmenubhit.

USER INTERFACE TOOLBOX 6-9

“tmenuhit”’ - Tree Menus

P This is an optional parameter that specifies a point for the upper
left corner of the root menu. (The "p" parameter will be discussed
and demonstrated in the example program Tmenu8.c.)

‘‘tmenuhit’”’ Return Value

tmenuhit returns a pointer to a Titem as defined in menu.h. In order to
use the returned pointer with customized Titems, the return value must be
type cast to the user’s customized Titem. Properly type casting the return
value of tmenuhit can become confusing when there are too many
customized Titem data types. Therefore, the user should determine a
minimum subset of the Titem fields required for the application and declare
only one customized Titem. Examples of customized Titems are described in
the following section.

Using ‘‘tmenuhit”’

To become familiar with tmenuhit, it is suggested that you compile and
run each of the examples discussed in this section. The source code for the
examples can be found in the directory $DMD /examples/UserInterface and in
the printouts at the end of this chapter. Refer to the manual page
TMENUHIT(3R) in the 630 MTG Software Reference Manual for details on the
tmenuhit features used.

Compile and download each program as it is reviewed.

Customizing the ‘“Titem’’ Data Type for Simple Menus -
“Tmenui.c”
Tmenul.c demonstrates how tmenuhit can be used to generate menus
similar to the menus of menuhit. The source code for this example is shown
in Figure 6-3.

Tmenul.c is a recoded version of Menul.c using tmenuhit to display
MainMenu. Tmenul.c also allows the user to select a menu item using mouse
button 2.

To construct a menu, you must first determine which fields of the Titem
data type you want to use in your application. In Tmenul.c, only the text
field was needed, as shown in the type definition of MainTitem in Tmenul.c.

6-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

“tmenuhit”’ - Tree Menus

The menumap field in the Tmenu data structure must be set to reflect your
customized Titem. This is accomplished by setting menumap equal to
TM_TEXT. Refer to the definition MAP1 and the initialization of MainMenu
in Tmenul.c.

Note: The text field must always be included in your Titem because
tmenuhit looks for the text field set to "(char *)0" to locate
the end of the Titem array.

Using the ‘““next” Field to Generate Submenus -
“Tmenu2.c”

Tmenu2.c demonstrates the use of the next field in the Titem data type
to generate submenus. The source code for Tmenu2.c is shown in Figure 6-4.

The customized Titem, MyTitem, in Tmenu2.c uses both the text and
next fields. The next field is used to generate submenus. The order of the
fields declared in any customized Titem must be the same as the order of the
fields in the Titem data type declared in menu.h.

Note: Each menu, in a multiple menu display, could use its own
customized Titem data type. This, however, can become very
confusing when there are many Titem data types in one
application, especially when it comes to properly type casting
the return value of tmenuhit. It is suggested that you
determine a minimum subset of the Titem data fields you
need in your application and then declare one customized
Titem.

Linking the Menus Together

In order for a menu item to be linked with a submenu, the next field of
the Titem must point to the Tmenu data structure associated with the
submenu. This linkage occurs in the MainItems array in Tmenu2.c. When a
menu item does not have a submenu, next must be set to zero.

Menu Expansion - “Tmenu3.c”’

There is a slight change to the tmenuhit call in Tmenu3.c. Instead of
passing the flags parameter as a zero, it is set to TM_EXPAND as shown
below:

item = (MyTitem *)tmenuhit(&MainMenu, BUTTON2, TM_EXPAND);

USER INTERFACE TOOLBOX 6-11

‘“‘tmenuhit” - Tree Menus

This change instructs tmenuhit to expand the menu tree down to the
submenu that contains the menu item selected in the previous call to
tmenuhit. The source code for Tmenu3.c is shown in Figure 6-5.

Menu ltem Bitmaps - “Tmenu4.c”’

Tmenu4.c demonstrates the use of Bitmaps with menu items. The
Bitmaps needed for this example are in the file:

$DMD /examples /UserInterface /Menulcons.h.

MyTitem now includes the data field icon which is a pointer to a Bitmap.
This Bitmap will be displayed to the left of the menu item text. If no Bitmap
is to be displayed, icon should be set to zero. A printout of Tmenu4.c is
given in Figure 6-6.

Multiple Fonts - “Tmenu5.c”’

Tmenu5.c demonstrates the use of the font field in the Titem data
structure. The source code for Tmenu5.c is shown in Figure 6-7.

Using the font field in the Titem data structure allows you to select a font
style to use when displaying the menu item text string. Tmenu5.c uses the
three 630 MTG resident fonts. Any font style can be used as long as it exists
in the terminal’s font cache or was downloaded from the host by your
application using one of the font loading routines. See the Chapter "Fonts
and the Font Cache" for more details on fonts.

Initialization of the “font”’ Field

The font fields must be dynamically initialized when using the 630 MTG
resident fonts. This is because at compile time, the compiler does not know
the address in ROM of the resident fonts. Trying to initialize the fonts
statically with the rest of the fields of the MyTitem data structure will cause
the compiler to generate an error about illegal initialization of data. This rule
is true when using any of the 630 MTG ROM resident data structures.

6-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

“tmenuhit”’ - Tree Menus

Menu Item Greying and the ‘“hfn”’ Subroutine - “Tmenué.c”’
Tmenu6.c demonstrates two additional features of tmenuhit:

8 Menu item greying

m User-defined subroutines called from within tmenuhit.

The source code for Tmenué6.c is shown in Figure 6-8.

Two additional fields, ufield and hfn, have been added to the customized
Titem data type, MyTitem. The ufield data structure is located between the
text and next field in MyTitem, and the hfn structure is located after the font
field in MyTitem. The addition of these fields is reflected in the menumap
by adding TM_UFIELD and TM_HEN to the definition of MAP1. The body
of Tmenué.c is equivalent to the body of Tmenub5.c.

The routine SetGrey is the hfn function and is called by tmenuhit when
the user makes a menu item selection. SetGrey sets the grey field to one in
the ufield data structure for the selected item. When the grey field is set to
one, the menu item is displayed with a textured background and is also non-
selectable.

Static Menus - “Tmenu7.c”’

Tmenu?7.c demonstrates the use of the TM_STATIC flag. The
TM_STATIC flag instructs tmenubhit to reverse the sense of the mouse
buttons in terms of depression and release. To bring up the menu in example
Tmenu?.c, you must click button 2 in the application’s window. A menu will
pop up on the screen but it is not necessary to keep the mouse button
depressed to keep the menu on the screen. Menu selections are made with a
mouse button depression instead of a mouse button release. tmenuhit returns
as normal after a selection or non-selection. The source code for Tmenu?7.c is
shown in Figure 6-9.

USER INTERFACE TOOLBOX 6-13

“tmenuhit’”’ - Tree Menus

Static Menus and Multiple Selections - “Tmenu8.c”’

Tmenus8.c continues the demonstration of static menus started in
Tmenu?7.c. The source code for Tmenus8.c is shown in Figure 6-10.

Tmenu8.c adds two features to Tmenu?7.c. First of all, TM_POINT is set
in the flags parameter. This allows a fourth parameter, "p", to be passed to
tmenuhit. "p" specifies a point at which to draw the upper left corner of the
root menu.

Secondly, the flag TM_NORET is set. This flag instructs tmenuhit not to
return to the calling application until a non-selection has been made.
Therefore, the user is allowed to make multiple selections in a menu without
having to bring the menu up for every selection. The menus in this example
operate the same way as the static menus used in the 630 MTG terminal
Setup.

“dfn”’, ““hfn”’, “bfn’’ Demonstration - ‘“Tmenu9.c”’

Tmenu9.c breaks with the previous examples and gives an interesting
demonstration of the use of the dfn, hfn, and bfn functions of tmenuhit.
The source code for Tmenu9.c is shown in Figure 6-11.

6-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

The Label Bar

Structure of Label Bar

The Label Bar is a rectangle that appears across the top interior of an
application’s window. It is used by the 630 MTG operating system to display
status information about the application and can be used by the application
program to display its own status information in the form of text and/or icons.
The following is an illustration of the label bar.

l - Label Bar Width
Height [1[2]3[4]5]6
FC I\ y
N N
System Icons Applications Icons and Text

The pixel height of the label bar rectangle is defined in the include file
label.h by the constant, LABEL_HEIGHT.

#define LABEL HEIGHT 20 /* height of label area */

The width of the label bar is equal to the interior width of the
application’s window, which can be expressed as:

label_width = Drect.corner.x - Drect.origin.x;

The interior of the label bar is divided into two sections: "system icons"
and "application icons and text". The “system icons’ section is composed of
five icon positions. Each icon position is assigned an integer index from one
to five and spans an area 16-pixels high and 16-pixels wide. These reserved
positions are defined in the include file label.h as:

USER INTERFACE TOOLBOX 6-15

The Label Bar

#define L_HOST_POSITION 1 /*
#define L_MUX POSITION 2 /*
#define L_PRINT POSITION 3 /*
#define L_SCROLL_POSITION 4 /*
#define L_CAP_POSITION 5 /*

current host connection */
current host environment*/
printer request status */
scroll lock key status */
caps lock key status */

The "application icons and text" section begins at icon position 6. The
number of application icon positions available and the maximum text string
length depend upon the width of the application’s window. The application
icons and text positions are defined in the include file label.h as:

#define L _USER POSITION 6 /* first user position

Requesting the Label Bar - ‘‘labelon’ and
‘“‘labeloff”’

The labelon() routine puts a label bar at the top interior of the
application’s window. The global variable Drect is changed to the smaller
interior window size by decreasing the height of Drect by 20 pixels. The
system icons of the label bar will be updated automatically by the 630 MTG
operating system to indicate the following;:

s Application’s current host connection

m Type of communications protocol (multiplexed or non-multiplexed)
® Printer request status

@ State of the scroll lock and caps lock keys.

The labeloff() routine will remove the label bar from the window and
restore the initial height of Drect. See the manual page LABELON(3R) for
more details.

Displaying Icons - ‘“‘labelicon”’

labelicon draws a Bitmap in a specified label bar icon position. The
Bitmap is clipped to a height of 16 pixels and a width that is bounded on the
left by the icon position index and on the right by the edge of the label bar.
The width of the Bitmap can be greater than 16-pixels. The first icon position

6-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

The Label Bar

index that an application program can use is L_USER_POSITION. See the
manual page LABELON(3R) for more details on labelicon.

The example program, labell.c, displays the skull and crossbones icon in
the label bar at icon position six (L_USER__POSITION) and icon position
seven (L_USER_POSITION + 1). Note that Texturel6s must be converted
into Bitmaps before they can be displayed in the label bar. labell.c is located
in the directory $DMD /examples/UserInterface and a printout is given in
Figure 6-12.

Displaying Text - ‘““labeltext”

labeltext displays character strings in the "application icons and text"
area. The text string can be displayed with the three following justifications:

L_LEFT This left justifies the text string to L_USER_POSITION.
L_RIGHT This right justifies the text string to the right border of the
label bar.

L_CENTER This centers the string in the full length of the "application
icons and text" area.

labeltext uses the 630’s mediumfont font. Text strings are displayed in
the F_XOR storage mode; therefore, multiple strings displayed in the label bar
will superimpose unless previously written strings are erased by rewriting the
same string a second time. If the text string is too long to fit in the
"application icons and text" area, it will be clipped off at the right edge of the
label bar. The example program label2.c demonstrates labeltext. A printout
of label2.c is given in Figure 6-13. See the manual page LABELON(3R) for
more details on labeltext.

Displaying Text and Icons

Icons and text strings can share the "application icons and text" area.
However, some care is necessary to prevent interference when displaying both
text and icons in the label bar. For example, if an application is to display
icons in positions 6 and 7 in addition to left-justified text strings, the text
string must contain enough leading space characters so as not to overwrite the
two icon positions.

USER INTERFACE TOOLBOX 6-17

The Label Bar

The number of leading spaces required in a text string is calculated by
using the following equation:

spaces = (int)(float(n * 16)/9 + 0.5);

where:
"n" is the number of icon positions being used starting at
position ‘6" (L_USER_POSITION)
"16" is the width in bits of an icon position
"9n is the width in bits of the space character in
the mediumfont font.

The example program label3.c (Figure 6-14) is a demonstration of this
requirement. Notice the following line of code in label3.c:

labeltext (" left", 8,L LEFT);

The four spaces before "left" are based on the following calculation:

spaces = (int)((2 * 16)/9 + 0.5) = 4

Four spaces are needed to pad the string "left" to prevent interference with
the two skull and crossbone icons.

Maintaining Text and Icons After Reshape

When an application’s window is reshaped, the application is responsible
for redrawing any icons or text strings it may have written into the label bar.
Refer to the "Application Resources" Chapter for information on refreshing
the screen after a reshape.

Refer to the manual page LABELON(3R) for additional information on
label bars.

6-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Message Boxes

A message box is a "pop-up" box that tracks mouse movement until the
user presses any mouse button. The 630 operating system uses message boxes
to explain to the user why a particular mouse-driven operation failed or is not
possible. For example, the 630 MTG will display a message box when the
user attempts to delete the last window to a host or create a new window
when the 630 MTG does not have enough memory. (The 630 MTG Terminal
User’s Guide lists all of the system-generated message boxes.)

The routine msgbox creates message boxes for an application. msgbox is
called with one or more pointers to character strings with the last argument
being (char *)0 to terminate the argument list. Each character string will be
drawn on a separate line centered within a box and displayed with the
mediumfont font. Two example programs, msgbox1.c and msgbox2.c, are
located in the directory $DMD /examples /UserInterface and demonstrate the
use of message boxes. Printouts of msgboxl.c and msgbox2.c are given in
Figures 6-15 and 6-16, respectively.

msgbox1.c will display a pop-up message box containing the message:

This is a Message
Box Demonstration

when any mouse button is depressed. Click any mouse button to terminate
the display of the message box. The program will terminate when any
keyboard character is typed and the message box is not being displayed.

msgbox2.c uses the menuhit and msgbox routines. When msgbox2.c is
executed, button 2 will bring up a menu. A different message box is
associated with each menu item. For example, if the user selects the menu
item, Message Boxes, a message box containing the message:

Hey!
Hey!
MESSAGE BOXES

will appear.

USER INTERFACE TOOLBOX 6-19

Message Boxes

If the first argument to msgbox is (char *)0, a message box with the
message "No Memory" is displayed. Therefore, if the menu item, Default, is
selected, the command line:

msgbox((char *)0)

will produce a message box containing the message:

No Memory

Refer to the manual page, MSGBOX(3R) for additional information on
message boxes.

6-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

A printout of the source code for the example programs on the user
interface toolbox is included in this section (Figures 6-1 through 6-16).

#include <dmd.h>

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) +/
void lprintf(); /* PRINTF */
int menuhit(); /* MENUHIT(3L) */
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
int wait(); /* RESOURCES (3R) ./
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) */
/*int button2(); BUTTONS (3R) */
/*int button3(); BUTTONS (3R) */

#define BUTTON2 2

/*
** Declare array of menu items

*/

char *MainItems [] = {
"Breakfast",
"Lunch",
"Dinner",
(char *)0,

}s

Menu MainMenu = { MainItems };

Figure 6-1:

Example Program “Menul.c” (Sheet 1 of 2)

USER INTERFACE TOOLBOX 6-21

Example Programs

main()

{
int m;
request (MOUSE) ;
for(;;) {

wvait (MOUSE);
if (buttonl())

/.

*%

*/

Terminate execution.

exit();
else if (button2()) {

/.
s
L X]

%

+/

Application menus are normally handled on
button 2. Call "menuhit" to get user’s menu
selection and print out selection made.

m = menuhit(&MainMenu, BUTTON2);
1printf("Your selection was %s\n", MainItems[m]);

} else
/*
%
*s
*%
‘s

*/

if(button3()) {

Release ownership of the mouse and
sleep for two ticks of the 60Hz clock
to let the control process take care of
processing button 3 of the mouse.

request(0);
sleep(2);

/t

s

*/

Back on the "air," get the mouse back.

request (MOUSE) ;

Figure 6-1: Example Program “Menul.c” (Sheet 2 of 2)

6-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

#include <dmd.h>

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) s/
void lprintf(); /* PRINTF ./
int menuhit(); /* MENUHIT(3L) */
int request(); /* RESOURCES(3R) s/
void sleep(); /* SLEEP(3R) */
int wait(); /* RESOURCES (3R) +/
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) */
/*int button2(); BUTTONS (3R) ./ -
/*int button3(); BUTTONS (3R) */

#define BUTTON2 2

/*

** Declare main menu.

*/

char *MainItems [] = {
"Breakfast",

"Lunch",
"Dinner",
(char *)0,
}s
/*
** Declare breakfast menu.
*/

char *BreakfastItems [] = {
"Pancakes",
"French Toast",
"Bacon & Eggs",
"Coffee",
"Orange Juice",
"Main Menu",
(char *)o0,

Figure 6-2: Example Program “Menu2.c” (Sheet 1 of 4)

USER INTERFACE TOOLBOX 6-23

Example Programs

/*

** Declare lunch menu.

*/

char *LunchItems [] = {
"Hamburger",
"Hot Dog",
"French Fries",
"Root Beer",

"Grape Soda",
"Main Menu",
(char *)o0,

¥

/*

** Declare dinner menu.

*/

char *DinnerItems [] = {
"Salad",
"Steak",
"Fish",
"Baked Potato",
"Wine",
"Main Menu",
(char *)0,

s

char **Menus [] = {
MainItems,
BreakfastItems,
Lunchltems,
DinnerItems,

}s

main()

{

int MenuSelection, WhichMenu;
Menu CurrentMenu;

VhichMenu = 0;
CurrentMenu.item = Menus[WhichMenu];

Figure 6-2: Example Program “Menu2.c”” (Sheet 2 of 4)

6-24 630 MTG SOFTWARE DEVELOPMENT GUIDE

request (MOUSE) ;
lprintf("\n Press button2 for main menu.");
for(;;) {
wait(MOUSE);
if (buttonl())
exit();
else if (button2()) {
switch(WhichMenu) {
case 0: /*MainItems*/
/*
** Display main menu.
*/
MenuSelection = menuhit(&CurrentMenu, BUTTON2);
if (MenuSelection != -1) {
/*
** Print main menu selection.
*/
lprintf("\n Press button 2 for %s selections.",
MainItems[MenuSelection]);
WhichMenu = MenuSelection + 1;
CurrentMenu.item = Menus[WhichMenu];
}
break;
case 1: /[*BreakfastItems*/
case 2: /*LunchItems*/
case 3: /*DinnerItems*/
/*
** Display submenu.
*/
MenuSelection = menuhit(&CurrentMenu, BUTTON2);
switch(MenuSelection) {
case -1:
break;
case 5: [/* Go back to main menu */
VhichMenu = 0;
CurrentMenu.item = Menus[WhichMenu];
Iprintf("\n Press button2 for main menu.");
break;
default:

Figure 6-2: Example Program “Menu2.c”’ (Sheet 3 of 4)

Example Programs

USER INTERFACE TOOLBOX

6-25

/*

** Print submenu selections.

*/

1printf("\n \t%s",
CurrentMenu.item[MenuSelection]);

}
}
} else if(button3()) {
/*

*+ Release ownership of the mouse and

** sleep for two ticks of the 60Hz clock
** to let the control process take care of
** processing button 3 of the mouse.

*/

request(0);

sleep(2);

/*

** Back on the "air," get the mouse back.
*/

request(MOUSE) ;

Figure 6-2: Example Program “Menu2.c” (Sheet 4 of 4)

6-26 630 MTG SOFTWARE DEVELOPMENT GUIDE

#include <dmd.h>
#include <menu.h>

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) */
void lprintf(); /* PRINTF */
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) s/
Titem *tmenuhit(); /* TMENUHIT(3R) ./
int wait(); /* RESOURCES(3R) */
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) ./
/*int button2(); BUTTONS (3R) */
/*int button3(); BUTTONS (3R) */

#idefine BUTTON2 2

/t

** definition for menumap

*/
#define MAP1 TM_TEXT

/'

** definition of customized Titem structure

*/

typedef struct MainTitem {

char *text;
} MainTitem;

/‘

** Tnitialization of array of Titeml’s

*/

MainTitem MainItems [] = {

"Breakfast",
"Lunch",
"Dinner",
(char *)0,

Figure 6-3: Example Program “Tmenul.c” (Sheet 1 of 2)

USER INTERFACE TOOLBOX 6-27

/*
*+ Initialization of Tmenu structure

./]

Tmenu MainMenu = { (Titem *)MainItems, 0, 0, 0, MAP1 };

main()

{

MainTitem *item;

request (MOUSE) ;
1printf("\n Press button 2 to get menu.");
for (5;3) {
wait (MOUSE);
if (buttonl())
exit();
else if (button2()) {
/*
** Display menu.
*/
item = (MainTitem *)tmenuhit(&MainMenu, BUTTON2, 0);
if (item)
lprintf("\n Your selection was %s",item->text);
} else if(button3()) {
/*
** Release ownership of the mouse and
** sleep for two ticks of the 60Hz clock
** to let the control process take care of
** processing button 3 of the mouse.
*/
request(0);
sleep(2);
/*
** Back on the "air," get the mouse back.
*/
request (MOUSE) ;

Figure 6-3: Example Program “Tmenul.c”’ (Sheet 2 of 2)

6-28 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

#include <dmd.h>
#include <menu.h>

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) */
void lprintf(); /* PRINTF */
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
Titem *tmenuhit(); /* TMENUHIT(3R) s/
int wait(); /* RESOURCES (3R) ./
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) */
/*int button2(); BUTTONS (3R) s/
/*int button3(); BUTTONS (3R) */

#define BUTTON2 2

/‘

**+ definition for menumap

*/

#define MAP1 TM_TEXT | TM_NEXT

/t

** definition of customized Titem structure

*/

typedef struct MyTitem {

char *stext;
struct Tmenu
} MyTitem;

/t

*next;

** Tnitialize array of MyTitem’s for Breakfast submenu.
** Menu items do not have submenus

*/

MyTitem BreakfastItems
"Pancakes", 0,
"French Toast", 0,
"Bacon & Eggs", 0,
"Coffee", 0,
"Orange Juice", 0
(char *)o0,

’

(1= {

Figure 6-4: Example Program “Tmenu2.c” (Sheet 1 of 4)

USER INTERFACE TOOLBOX 6-29

/*
¢ Initialization of Tmenu structure for Breakfast menu

*/

Tmenu BreakfastMenu = { (Titem *)BreakfastItems, 0, 0, 0, MAP1 };

/*
** Initialize array of MyTitem’s for Lunch submenu.
** Menu items do not have submenus.

*/
MyTitem LunchItems [] = {
"Hamburger", o,
"Hot Dog", 0,
"French Fries", 0,
"Root Beer", 0,
"Grape Soda", 0,
(char *)oO,
s
/*
** Tnitialization of Tmenu structure for Lunch menu.
*/
Tmenu LunchMenu = { (Titem *)LunchItems, 0, 0, 0, MAP1 };
/*

** Initialize array of MyTitem’s for Dinner submenu.
*+ Menu items do not have submenus.

*/
MyTitem DinnerItems [] = {
"Salad", 0,
"Steak", 0,
"Fish", 0,
"Baked Potato", 0,
"Wine", 0,
(char *)o0,
}s
/*
** Initialization of Tmenu structure for Dinner menu
*/
Tmenu DinnerMenu = { (Titem *)DinnerItems, 0, 0, 0, MAP1 };

Figure 6-4: Example Program “Tmenu2.c”” (Sheet 2 of 4)

6-30 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Tnitialization of array of Titeml’s for root menu.
** Each Titem in the root menu has a submenu.
*/
MyTitem MainItems [] = {
"Breakfast", &BreakfastMenu,

"Lunch", &LunchMenu,
"Dinner", &DinnerMenu,
(char *)0,
}s
/*
** Initialization of Tmenu structure for root menu
*/
Tmenu MainMenu = { (Titem *)MainItems, 0, 0, 0, MAP1 };
main()
{

MyTitem *item;

request (MOUSE) ;
lprintf("\n Press button 2 to get menu.");
for(;;) {
wait(MOUSE) ;
if (buttonl())
exit();
else if (button2()) {
/*
** Display Menus
*/
item = (MyTitem *)tmenuhit(&MainMenu, BUTTON2, 0);
if(item)
lprintf("\n Your selection was %s",item->text);
} else if(button3()) {

Figure 6-4: Example Program “Tmenu2.c”” (Sheet 3 of 4)

USER INTERFACE TOOLBOX 6-31

Example Programs

/'
%
%
%
%

*/

Release ownership of the mouse and
sleep for two ticks of the 60Hz clock
to let the control process take care of
processing button 3 of the mouse.

request(0);
sleep(2);

/t

*/

Back on the "air," get the mouse back.

request (MOUSE) ;

Figure 6-4: Example Program “Tmenu2.c”” (Sheet 4 of 4)

6-32 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

#include <dmd.h>
#include <menu.h>

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) */
void lprintf(); /* PRINTF */
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
Titem *tmenuhit(); /* TMENUHIT(3R) */
int wait(); /* RESOURCES (3R) */
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) */
/*int button2(); BUTTONS (3R) */
/*int button3(); BUTTONS (3R) */

#define BUTTON2 2

/*
** definition for menumap
*/
#define MAP1 TM_TEXT | TM_NEXT
/*
** definition of customized Titem structure
*/
typedef struct MyTitem {
char *text;
struct Tmenu *next;
} MyTitem;
/*

** Tnitialize array of MyTitem’s for Breakfast submenu
** Menu items do not have submenus

Figure 6-5: Example Program “Tmenu3.c”” (Sheet 1 of 4)

USER INTERFACE TOOLBOX 6-33

Example Programs

*/

MyTitem BreakfastItems [] = {
"Pancakes", 0,
"French Toast", 0,
"Bacon & Eggs", 0,
"Coffee", 0,
"Orange Juice", 0,

(char *)0,

}s

/*

** Tnitialization of Tmenu structure for Breakfast menu
*/
Tmenu BreakfastMenu = { (Titem *)BreakfastItems, 0, 0, 0, MAP1 };

/*
** Tnitialize array of MyTitem’s for Lunch submenu
** Menu items do not have submenus

*/

MyTitem LunchItems [] = {
"Hamburger", 0,
"Hot Dog", 0,
"French Fries", 0,
"Root Beer", 0,
"Grape Soda", 0,
(char *)0,

}s

/*

** Tnitialization of Tmenu structure for Lunch menu
*/
Tmenu LunchMenu = { (Titem *)LunchItems, 0, 0, 0, MAP1 };

Figure 6-5: Example Program “Tmenu3.c” (Sheet 2 of 4)

6-34 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Initialize array of MyTitem’s for Dinner submenu
** Menu items do not have submenus

*/
MyTitem DinnerItems [] = {
"Salad", 0,
"Steak", 0,
"Fish", 0,
"Baked Potato", 0,
"Wine", 0,
(char *)o0,
}s
/*
** Initialization of Tmenu structure for Dinner menu
*/
Tmenu DinnerMenu = { (Titem *)DinnerItems, 0, 0, 0, MAP1 };
/*

** Initialization of array of Titeml’s for root menu
** Each Titem in the root menu has a submenu

*/
MyTitem MainItems [] = {
"Breakfast", &BreakfastMenu,

"Lunch", &LunchMenu,
"Dinner", &DinnerMenu,
(char *)o0,
}s
/*
** Initialization of Tmenu structure for root menu
*/
Tmenu MainMenu = { (Titem *)MainItems, 0, 0, 0, MAP1 };

Figure 6-5: Example Program “Tmenu3.c” (Sheet 3 of 4)

USER INTERFACE TOOLBOX 6-35

Example Programs

main()

{

MyTitem *item;

request (MOUSE) ;
lprintf("\n Press button 2 to get menu.");
for(;;) {
wvait(MOUSE);
if (buttonl())
exit();
else if (button2()) {
/*
*+ Display menu.
+/
item=(MyTitem *)tmenuhit(&MainMenu, BUTTON2, TM_EXPAND);
if(item)
1printf("\n Your selection was %s",item->text);
} else if(button3()) {
/*
** Release ownership of the mouse and
** sleep for two ticks of the 60Hz clock
** to let the control process take care of
** processing button 3 of the mouse.
*/
request(0);
sleep(2);
/*
**+ Back on the "air," get the mouse back.
*/
request (MOUSE);

Figure 6-5: Example Program “Tmenu3.c”” (Sheet 4 of 4)

6-36 630 MTG SOFTWARE DEVELOPMENT GUIDE

#include <dmd.h>
#include <menu.h>
#include "Menulcons.h"

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) */
void lprintf(); /* PRINTF ./
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
Titem *tmenuhit(); /* TMENUHIT(3R) */
int wait(); /* RESOURCES (3R) */
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) ./
/*int button2(); BUTTONS (3R) +/
/*int button3(); BUTTONS (3R) */

#define BUTTON2 2

/*
** definition for menumap
*/
#define MAP1 TM_TEXT | TM_NEXT | TM_ICON
/*
** definition of customized Titem structure
*/
typedef struct MyTitem {
char *text;
struct Tmenu *next;
Bitmap *icon;
} MyTitem;
/*

**+ Initialize array of MyTitem’s for Breakfast submenu
** Menu items do not have submenus

Figure 6-6: Example Program “Tmenu4.c” (Sheet 1 of 5)

USER INTERFACE TOOLBOX 6-37

+/

MyTitem BreakfastItems

"Pancakes",
"French Toast",
"Bacon & Eggs",
"Coffee",
"Orange Juice",
(char *)0,

}s
/t

o,
0,
o,
o,
o,

[1={
&pancake,
&toast,
&bacneggs,
&coffee,
&juice,

** Tnitialization of Tmenu structure for Breakfast menu

*/

Tmenu BreakfastMenu = { (Titem *)BreakfastItems, 0, 0, O,

/.

** Initialize array of MyTitem’s for Lunch submenu
** Menu items do not have submenus

*/

MyTitem LunchItems [] = {

"Hamburger",
"Hot Dog",
"French Fries",
"Root Beer",
"Grape Soda",
(char *)0,

}s
/t

o,

0,
0,
0,
0,

&hamburger,
&hotdog,
&fries,
&rootbeer,
&grapesoda,

** Tnitialization of Tmenu structure for Lunch menu

+/

Tmenu LunchMenu

/#

** Initialize array of MyTitem’s for Dinner submenu

Figure 6-6: Example Program “Tmenu4.c” (Sheet 2 of 5)

MAP1 };

= { (Titem *)LunchItems, 0, 0, 0, MAP1 };

6-38 630 MTG SOFTWARE DEVELOPMENT GUIDE

** Menu items do not have submenus

*/

MyTitem DinnerItems [] = {
"Salad", 0, &salad,
"Steak", 0, &steak,
"Fish", 0, &fish,
"Baked Potato", 0, &potato,
"Wine", 0, &wineglass,
"Anti-Acid", 0, &antiacid,
(char *)o0,

}s

/*

** Initialization of Tmenu structure for Dinner menu

*/

Tmenu DinnerMenu = { (Titem *)DinnerItems, 0, 0, 0, MAP1 };

MyTitem DessertItems [] = {

"Cupcakel", 0, &Cupcake,

"Cake", 0, &cake,

"Cupcake2", 0, &cup_cake,

"Fruit", 0, &fruit,

"Ice Cream", 0, &ice_cream,

"Parfait", 0, &parfait,

"Pie", 0, &pie,

"Banana Split", 0, &split,

(char *)o0,
}s
/*
** Initialization of Tmenu structure for Dinner menu
*/
Tmenu DessertMenu = { (Titem *)DessertItems, 0, 0, 0, MAP1 };
/*

** Initialization of array of Titeml’s for root menu
** Each Titem in the root menu has a submenu

Figure 6-6: Example Program “Tmenu4.c” (Sheet 3 of 5)

USER INTERFACE TOOLBOX 6-39

+/
MyTitem MainItems [] = {
"Breakfast", &BreakfastMenu, 0,

"Lunch", &LunchMenu, 0,
"Dinner", &bDinnerMenu, 0,
"Dessert", &DessertMenu, 0,
(char *)0,

}s
/t

** Initialization of Tmenu structure for root menu
+/
Tmenu MainMenu = { (Titem *)MainItems, 0, 0, 0, MAP1 };

main()

{

MyTitem *item;

request (MOUSE) ;
1printf("\n Press button 2 to get menu.");
for(;;) {
wait (MOUSE);
if (buttonl())
exit();
else if (button2()) {
/*
** Display menu.
*/
item=(MyTitem *)tmenuhit(&MainMenu, BUTTON2, TM_EXPAND);
if (item)
1printf("\n Your selection was %s",item->text);
} else if(button3()) {

Figure 6-6: Example Program “Tmenu4.c” (Sheet 4 of 5)

6-40 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Release ownership of the mouse and

** gleep for two ticks of the 60Hz clock
** to let the control process take care of
** processing button 3 of the mouse.

*/

request(0);

sleep(2);

/*

** Back on the "air," get the mouse back.
*/

request (MOUSE) ;

Figure 6-6: Example Program “Tmenud.c” (Sheet 5 of 5)

USER INTERFACE TOOLBOX 6-41

#include <dmd.h>
#include <menu.h>
#include <font.h>
#include "MenuIcons.h"

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) */
void lprintf(); /* PRINTF ./
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
Titem *tmenuhit(); /* TMENUHIT(3R) */
int wait(); /* RESOURCES(3R) ./
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) */
/*int button2(); BUTTONS (3R) */
/*int button3(); BUTTONS (3R) */

#define BUTTON2 2

/* ,

¢+ definition for menumap

*/

#define MAP1 TM_TEXT ! TM_NEXT | TM_ICON | TM_FONT

/* definition of customized Titem structure */
typedef struct MyTitem {

char *text;
struct Tmenu *next;
Bitmap *icon;
Font *font;
} MyTitem;

/*
** Tnitialize array of MyTitem’s for Breakfast submenu
** Menu items do not have submenus

Figure 6-7: Example Program “Tmenu5.c” (Sheet 1 of 5)

6-42 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

*/

MyTitem BreakfastItems [] = {
"Pancakes", 0, &pancake, 0,
"French Toast", 0, &toast, 0,
"Bacon & Eggs", 0, &bacneggs, O,
"Coffee", 0, &coffee, 0,
"Orange Juice", 0, &juice, 0,
(char *)0,

s

/*

** Tnitialization of Tmenu structure for Breakfast menu
*/
Tmenu BreakfastMenu = { (Titem *)BreakfastItems, 0, 0, 0, MAP1 };

/* Initialize array of MyTitem’s for Lunch submenu */
/* Menu items do not have submenus */
MyTitem LunchItems [] = {

"Hamburger", 0, &hamburger, 0,

"Hot Dog", 0, &hotdog, 0,

"French Fries", 0, &fries, 0,

"Root Beer", 0, &rootbeer, 0,

"Grape Soda", 0, &grapesoda, 0,

(char *)0,
}s
/*
** Tnitialization of Tmenu structure for Lunch menu
*/
Tmenu LunchMenu = { (Titem *)LunchItems, 0, 0, 0, MAPI };
/*

*+ Tnitialize array of MyTitem’s for Dinner submenu
** Menu items do not have submenus

Figure 6-7: Example Program “Tmenu5.c” (Sheet 2 of 5)

USER INTERFACE TOOLBOX 6-43

Example Programs

*/

MyTitem DinnerItems [] = {
"Steak", 0, &steak, 0,
"Fish", 0, &fish, 0,
"Salad", 0, &salad, 0,
"Baked Potato", 0, &potato, 0,
"Wine", 0, &wineglass, 0,
"Anti-Acid", 0, &antiacid, O,
(char *)0,

}s
/t

** Initialization of Tmenu structure for Dinner menu
*/
Tmenu DinnerMenu = { (Titem *)DinnerItems, 0, 0, 0, MAP1 };

MyTitem DessertItems [1={

"Cupcakel", 0, &Cupcake, 0,
"Cake", 0, &cake, 0,
"Cupcake2", 0, &cup_cake, O,
"Fruit", 0, &fruit, 0,
"Ice Cream", 0, &ice_cream, 0,
"Parfait", 0, &parfait, 0,
"Pie", 0, &pie, 0,
"Banana Split", 0, &split, 0,
(char *)o0,

}s

/*

** Tnitialization of Tmenu structure for Dinner menu
*/
Tmenu DessertMenu = { (Titem *)DessertItems, 0, 0, 0, MAP1 };

/lt

Initialization of array of Titeml’s for root menu
** Each Titem in the root menu has a submenu

Figure 6-7: Example Program ‘“Tmenu5.c” (Sheet 3 of 5)

6-44 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

*/

MyTitem MainItems [] = {

}s
/t

*/

Tmenu MainMenu

"Breakfast", &BreakfastMenu, 0, 0,
"Lunch", &LunchMenu, 0, O,
"Dinner", &DinnerMenu, 0, 0,

0

"Dessert", &DessertMenu, o,

(char *)0,

-

Initialization of Tmenu structure for root menu

main()

{

Figure 6-7:

MyTitem *item;

= { (Titem *)MainItems, 0, 0, 0, MAP1 };

/* Initialize fonts in the MyTitem arrays */
BreakfastItems[0].font = &largefont;
BreakfastItems[1].font = &largefont;
BreakfastItems[2].font = &largefont;
BreakfastItems[3].font = &smallfont;
BreakfastItems[4].font = &smallfont;

LunchItems[0]. font
LunchItems|1].font
LunchItems[2].font
LunchItems[3].font
LunchItems[4].font

DinnerItems{0].font
DinnerItems[1].font
DinnerItems[2].font
DinnerItems[3].font
DinnerItems[4].font

DinnerXItems[5].font .

&largefont;
&largefont;
&mediumfont;
&smallfont;
&smallfont;

&largefont;
&largefont;
&mediumfont
&mediumfont
&smallfont;
&largefont;

H
H

Example Program “Tmenub5.c¢” (Sheet 4 of 5)

USER INTERFACE TOOLBOX 6-45

Example Programs

DessertItems[0].font = &largefont;
DessertItems[1].font = &largefont;
DessertItems[2].font = &largefont;
DessertItems[3].font = &largefont;
DessertItems[4].font = &largefont;
DessertItems[5].font = &largefont;
DessertItems[6].font = &largefont;
DessertItems[7].font = &largefont;

MainItems[0].font = &largefont;
MainItems[1].font = &largefont;
MainItems[2].font = &largefont;

request(MOUSE) ;
lprintf("\n Press button 2 to get menu.");
for(s;) {
wait (MOUSE);
if (buttonl())
exit();
else if (button2()) {
/*
** Display menu.
*/
item=(MyTitem *)tmenuhit(&ainMenu, BUTTON2, TM_EXPAND);
if (item)
lprintf("\n Your selection was %s",item->text);
} else if(button3()) {
/*
** Release ownership of the mouse and
** sleep for two ticks of the 60Hz clock
** to let the control process take care of
** processing button 3 of the mouse.
*/
request(0);
sleep(2);
/*
** Back on the "air," get the mouse back.
*/
request (MOUSE) ;

Figure 6-7: Example Program “Tmenu5.c” (Sheet 5 of 5)

6-46 630 MTG SOFTWARE DEVELOPMENT GUIDE

#include <dmd.h>
#include <menu.h>
#include <font.h>
#include "Menulcons.h"

Example Programs

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) +/
void 1lprintf(); /* PRINTF */
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
Titem *tmenuhit(); /* TMENUHIT(3R) */
int wait(); /* RESOURCES (3R) +/
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) */
/*int button2(); BUTTONS (3R) */
/*int button3(); BUTTONS (3R) */

#define BUTTON2 2

#define MAP1 TM_TEXT!TM UFIELDITM_NEXT!TM_ICONITM_FONTITM_HFN

/*
** definition for menumap
*/
/*
** definition of customized Titem structure
*/
typedef struct MyTitem {
char *text;
struct {
unsigned short uval;
unsigned short grey;
} ufield;
struct Tmenu *next;
Bitmap *icon;
Font *font;
void (*hfn)();
} MyTitem;

Figure 6-8: Example Program “Tmenu6.c”’ (Sheet 1 of 5)

USER INTERFACE TOOLBOX 6-47

Example Programs

/*
** declare hfn function
*/

void SetGrey():;

/*
** Initialize array of MyTitem’s for Breakfast submenu
** Menu items do not have submenus

*/

MyTitem BreakfastItems [] = {
"Pancakes", {0, 0}, 0, &pancake, 0, SetGrey,
"French Toast", {0, 0}, 0, &toast, 0, SetGrey,
"Bacon & Eggs", {0, 0}, 0, &bacneggs, 0, SetGrey,
"Coffee", {0, 0}, 0, &coffee, 0, SetGrey,
"Orange Juice", {0, 0}, 0, &juice, 0, SetGrey,
(char *)0,

s

/*

*+ Tnitialization of Tmenu structure for Breakfast menu

*/

Tmenu BreakfastMenu = { (Titem *)BreakfastItems, 0, 0, 0, MAP1 };

/*
Tnitialize array of MyTitem’s for Lunch submenu
** Menu items do not have submenus

*/

MyTitem LunchItems [] = {
"Hamburger", {0, 0}, 0, &hamburger, 0, SetGrey,
"Hot Dog", {0, o}, 0, &hotdog, 0, SetGrey,
"French Fries", {0, 0}, 0, &fries, 0, SetGrey,
"Root Beer", {0, 0}, 0, &rootbeer, 0, SetGrey,
"Grape Soda", {o, 0}, 0, &grapesoda, 0, SetGrey,
(char *)o0,

Figure 6-8: Example Program “Tmenu6.c” (Sheet 2 of 5)

6-48 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
Initialization of Tmenu structure for Lunch menu

*/

Tmenu LunchMenu = { (Titem *)LunchItems, 0, 0, 0, MAP1 };
/*

** Initialize array of MyTitem’s for Dinner submenu
** Menu items do not have submenus

*/

MyTitem DinnerItems [] = {
"Steak", {0, 0}, 0, &steak, 0, SetGrey,
"Fish", {0, o}, 0, &fish, 0, SetGrey,
"Salad", {0, 0}, 0, &salad, 0, SetGrey,
"Baked Potato", {0, 0}, 0, &potato, 0, SetGrey,
"Wine", {0, 0}, 0, &wineglass, 0, SetGrey,
"Anti-Acid", {o, 0}, 0, &antiacid, 0, SetGrey,
(char *)0,

}s

/*

** Tnitialization of Tmenu structure for Dinner menu

*/

Tmenu DinnerMenu = { (Titem *)DinnerItems, 0, 0, 0, MAP1 };

/*

** Initialize array of MyTitem’s for Dessert submenu
** Menu items do not have submenus

*/

MyTitem DessertItems [] = {
"Cupcakel", {o, 0}, 0, &Cupcake, 0, SetGrey,
"Cake", {0, 0}, 0, &cake, 0, SetGrey,
"Cupcake2", {0, 0}, 0, &cup_cake, 0, SetGrey,
"Fruit", {0, 0}, o, &fruit, 0, SetGrey,
"Ice Cream", {0, 0}, 0, &ice_cream, 0, SetGrey,
"Parfait", {o, 0}, 0, &parfait, 0, SetGrey,
"Pie", {0, 0}, 0, &pie, 0, SetGrey,
"Banana Split", {0, 0}, 0, &split, 0, SetGrey,
(char *)0,

i

Figure 6-8: Example Program “Tmenué.c”’ (Sheet 3 of 5)

USER INTERFACE TOOLBOX 6-49

Example Programs

/*
** Tnitialization of Tmenu structure for Dessert menu

*/

Tmenu DessertMenu = { (Titem *)DessertItems, 0, 0, 0, MAP1 };
/*

** Tnitialization of array of Titeml’s for root menu
** Each Titem in the root menu has a submenu
*/
MyTitem MainItems [] = {
"Breakfast", {0, 0}, &BreakfastMenu, 0, 0, 0,

"Lunch", {0, 0}, &LunchMenu, 0, 0, O,
"Dinner", {0, 0}, &DinnerMenu, 0, 0, 0,
"Dessert", {0, 0}, &DessertMenu, 0, 0, O,
(char *)0,
}s
/*
** Tnitialization of Tmenu structure for root menu
*/
Tmenu MainMenu = { (Titem *)MainItems, 0, 0, 0, MAP1 };
main()

{

MyTitem *item;

/* Initialize fonts in the MyTitem arrays */
BreakfastItems[0].font = &largefont;
BreakfastItems[1l].font = &largefont;
BreakfastItems[2].font = &largefont;
BreakfastItems[3].font = &smallfont;
BreakfastItems[4].font = &smallfont;

LunchItems[0].font = &largefont;
LunchItems[1].font = &largefont;
LunchItems[2].font = &mediumfont;
LunchItems[3].font = &smallfont;
LunchItems[4].font = &smallfont;

Figure 6-8: Example Program “Tmenué.c”’ (Sheet 4 of 5)

6-50 630 MTG SOFTWARE DEVELOPMENT GUIDE

DinnerItems[0].font =
DinnerItems[1].font =
DinnerItems[2].font =
DinnerItems[3].font =
DinnerItems[4].font =
DinnerItems[5].font =

DessertItems[0].font =
DessertItems[1].font =
Dessertltems{2].font =
DessertItems[3].font =
DessertItems[4].font =
DessertItems[5].font =
DessertItems[6].font =
DessertItems[7].font =

MainItems[0].font = &1
MainItems[1].font = &1
Mainltems[2].font = &1

request (MOUSE) ;

lprintf("\n Press button 2 to get menu.");

for(;;) {
wait (MOUSE);
if (buttonl())

&largefont;
&largefont;
&mediumfont;
&mediumfont;
&smallfont;
&largefont;

&largefont;
&largefont;
&largefont;
&largefont;
&largefont;

&largefont;

&largefont;
&largefont;

argefont;

argefont;
argefont;

) {

u.

Example Programs

item=(MyTitem *)tmenuhit(&MainMenu, BUTTON2, TM_EXPAND) ;

lprintf("\n Your selection was %s",item->text);

exit();
else if (button2()
/*
** Display men
*/
if (item)
}
}
}
void
SetGrey(item)
MyTitem *item;
{
item->ufield.grey = 1;
}

Figure 6-8: Example Program “Tmenu6.c”’ (Sheet 5 of 5)

USER INTERFACE TOOLBOX 6-51

Example Programs

#include <dmd.h>
#include <menu.h>
#include <font.h>
#include "MenuIcons.h"

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) ./
void lprintf(); /* PRINTF */
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
Titem *tmenuhit(); /* TMENUHIT(3R) ./
int wait(); /* RESOURCES(3R) */
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) */
/*int button2(); BUTTONS (3R) */
/*int button3(); BUTTONS (3R) */

#define BUTTON2 2

/*

** definition for menumap

*/

#define MAP1 TM_TEXTITM_UFIELDITM NEXTITM_ICONITM_FONTITM_HFN

/*
*+ definition for flags parameter passed to tmenuhit
*/
#define FLAGS TM_STATIC
/*
**+ definition of customized Titem structure
*/
typedef struct MyTitem {
char *text;
struct {
unsigned short uval;
unsigned short grey;
} ufield;
struct Tmenu *next;
Bitmap *icon;

Figure 6-9: Example Program “Tmenu?.c” (Sheet 1 of 6)

6-52 630 MTG SOFTWARE DEVELOPMENT GUIDE

Font *font;
void (*hfn)();
} MyTitem;

/*
** declare hfn function
*/

void SetGrey();

/t

Example Programs

** Initialize array of MyTitem’s for Breakfast submenu
** Menu items do not have submenus

*/

MyTitem BreakfastItems [] = {
"Pancakes", {0, o}, o,
"French Toast", {0, 0}, O,
"Bacon & Eggs", {0, 0}, 0
"Coffee", {o, 0}, o
"Orange Juice", {0, 0}, 0
(char *)o0,

’
’
’

}s
/t

** Initialization of Tmenu structure

*/

&pancake,
&toast,
&bacneggs,
&coffee,
&juice,

0, SetGrey,
0, SetGrey,
0, SetGrey,
0, SetGrey,
0, SetGrey,

for Breakfast menu

Tmenu BreakfastMenu = { (Titem *)BreakfastItems, 0, 0, 0, MAP1 };

/a

** Initialize array of MyTitem’s for Lunch

** Menu items do not have submenus

*/

MyTitem LunchItems [] = {
"Hamburger", {o, 0}, o,
"Hot Dog", {o, o}, o,
"French Fries", {0, 0}, o0,
"Root Beer", {0, 0}, o,
"Grape Soda", {0, o}, o,
(char *)o0,

}s

Figure 6-9: Example Program

&hamburger,
&hotdog,
&fries,
&rootbeer,
&grapesoda,

submenu

0, SetGrey,
0, SetGrey,
0, SetGrey,
0, SetGrey,
0, SetGrey,

“Tmenu?7.c” (Sheet 2 of 6)

USER INTERFACE TOOLBOX 6-53

Example Programs

/*

** Initialization of Tmenu structure for Lunch menu

*/

Tmenu LunchMenu = { (Titem *)LunchItems, 0, 0, 0, MAP1 };

/*
** Initialize array of MyTitem’s for Dinner submenu
** Menu items do not have submenus

*/

MyTitem DinnerItems [] = {
"Steak", {0, 0}, 0, &steak, 0, SetGrey,
"Fish", {0, 0}, 0, &fish, 0, SetGrey,
"Salad", {0, 0}, 0, &salad, 0, SetGrey,
"Baked Potato", {0, 0}, 0, &potato, 0, SetGrey,
"Wine", {o, 0o}, 0, &wineglass, 0, SetGrey,
"Anti-Acid", {0, o}, 0, &antiacid, 0, SetGrey,
(char *)o0,

}i

/*

** Tnitialization of Tmenu structure for Dinner menu
*/
Tmenu DinnerMenu = { (Titem *)DinnerItems, 0, 0, 0, MAP1 };

/*
** Initialize array of MyTitem’s for Dessert submenu
** Menu items do not have submenus

*/

MyTitem DessertItems [] = {
"Cupcakel"”, {0, 0}, 0, &Cupcake, 0, SetGrey,
"Cake", {o, 0}, 0, &cake, 0, SetGrey,
"Cupcake2", {o, 0}, 0, &cup_cake, 0, SetGrey,
"Fruit", {0, 0}, 0, &fruit, 0, SetGrey,
"Ice Cream", {0, 0}, 0, &ice_cream, 0, SetGrey,
"Parfait", {0, 0}, 0, &parfait, O, SetGrey,
"pPie", {0, 0}, 0, &pie, 0, SetGrey,
"Banana Split", {0, 0}, 0, &split, 0, SetGrey,
(char *)O0,

}s

Figure 6-9: Example Program “Tmenu?7.c” (Sheet 3 of 6)

6-54 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Initialization of Tmenu structure for Dessert menu

*/

Tmenu DessertMenu = { (Titem *)DessertItems, 0, 0, 0, MAP1 b
/*

** Initialization of array of Titeml’s for root menu
** Each Titem in the root menu has a submenu

*/

MyTitem MainItems [] = {

"Breakfast", {0, 0}, &BreakfastMenu, 0, 0, 0,
"Lunch", {0, 0}, &LunchMenu, o, 0, 0,
"Dinner", {0, 0}, &DinnerMenu, 0, 0, 0,
"Dessert", {0, 0}, &DessertMenu, o, 0, 0,
(char *)0,

}s

/*

** Initialization of Tmenu structure for root menu

*/

Tmenu MainMenu = { (Titem *)MainItems, 0, 0, 0, MAP1 };

main()

{

MyTitem *item;

/* Initialize fonts in the MyTitem arrays */
BreakfastItems[0].font = &largefont;
BreakfastItems[1l].font = &largefont;
BreakfastItems[2].font = &largefont;
BreakfastItems[3].font = &smallfont;
BreakfastItems[4].font = &smallfont;

LunchItems[0].font = &largefont;
LunchItems[1].font = &largefont;
LunchItems[2].font = &mediumfont;
LunchItems[3].font = &smallfont;
LunchItems[4].font = &smallfont;

Figure 6-9: Example Program “Tmenu?7.c” (Sheet 4 of 6)

USER INTERFACE TOOLBOX 6-55

DinnerItems[0].font
DinnerItems[1].font
DinnerItems[2].font
DinnerXtems[3].font
DinnerXItems[4].font
DinnerItems[5].font

DessertItems[0].font
DessertItems[1].font
DessertItems[2].font
DessertItems[3].font
DessertItems[4].font
DessertItems[5].font
DessertItems[6].font
DessertItems[7].font

&largefont;
&largefont;
&mediumfont;
&mediumfont;
&smallfont;
&largefont;

&largefont;
&largefont;
&largefont;
&largefont;
&largefont;
&largefont;
&largefont;
&largefont;

Mainltems[0].font = &largefont;
MainItems[1].font = &largefont;
MainItems[2].font = &largefont;

request (MOUSE) ;

1printf("\n Click button 2 to get Menu.\n");

for(;;) {
wait (MOUSE) ;
if (buttonl())
exit();

else if (button2()) {

/t

** Vait for all buttons to be released.

*/
bttns(0);

/‘

** Display Menu.

*/

(void)tmenuhit(&MainMenu, BUTTON2, FLAGS);

/t

** Yait for all buttons to be released.

*/
bttns(0);

Figure 6-9:

Example Program “Tmenu?7.c” (Sheet 5 of 6)

6-56 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

} else if(button3()) {
/*
** Release ownership of the mouse and
** sleep for two ticks of the 60Hz clock
** to let the control process take care of
** processing button 3 of the mouse.
*/
request(0);
sleep(2);
/*
** Back on the "air," get the mouse back.
*/
request (MOUSE) ;
}
}

}

void

SetGrey(item)

MyTitem *item;

{

item->ufield.grey = 1;
}

Figure 6-9: Example Program “Tmenu?.c” (Sheet 6 of 6)

USER INTERFACE TOOLBOX 6-57

Example Programs

#include <dmd.h>
#include <menu.h>
#include <font.h>
#include "MenulIcons.h"

/* Library Routines and associated manual page. */

void exit(); /* EXIT(3R) */
void lprintf(); /* PRINTF */
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
Titem *tmenubit(); /* TMENUHIT(3R) */
Point sPtCurrent(); /* MOVETO(3L) */
int wait(); /* RESOURCES (3R) */
/* Library Macros and associated manual page. ./
/*int buttonl(); BUTTONS (3R) */
/*int button2(); BUTTONS(3R) */
/*int button3(); BUTTONS (3R) */

#define BUTTONZ 2

/*
** definition for menumap
*/
#define MAP1 TNLIEXTHM_UFIELDHM_NEXﬂTM_ICONHM_FONTHM_HFN
/*
*+ definition for flags parameter passed to tmenuhit
*/
#define FLAGS TM_STATIC | TM_NORET ! TM_POINT
/*
** definition of customized Titem structure
*/
typedef struct MyTitem {
char *text;
struct {

unsigned short uval;
unsigned short grey;
} ufield;
struct Tmenu *next;
Bitmap *icon;
Font *font;

Figure 6-10: Example Program “Tmenu8.c” (Sheet 1 of 6)

6-58 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

void (*hfn)();
} MyTitem;

/*
** declare hfn function
*/

void SetGrey();

/*
** Initialize array of MyTitem’s for Breakfast submenu
** Menu items do not have submenus

*/

MyTitem BreakfastItems [] = {
"Pancakes", {0, 0}, 0, &pancake, 0, SetGrey,
"French Toast", {0, 0}, 0, &toast, 0, SetGrey,
"Bacon & Eggs", {0, 0}, 0, &bacneggs, 0, SetGrey,
"Coffee", {0, 0}, 0, &coffee, 0, SetGrey,
"Orange Juice", {0, 0}, 0, &juice, 0, SetGrey,
(char *)o0,

}s

/*

*¢ Tnitialization of Tmenu structure for Breakfast menu
*/
Tmenu BreakfastMenu = { (Titem *)BreakfastItems, 0, 0, 0, MAP1 };

/*
** Initialize array of MyTitem’s for Lunch submenu
** Menu items do not have submenus

*/

MyTitem LunchItems [] = {
"Hamburger", {0, 0}, 0, &hamburger, 0, SetGrey,
"Hot Dog", {0, 0}, 0, &hotdog, 0, SetGrey,
"French Fries", {0, 0}, 0, &fries, 0, SetGrey,
"Root Beer", {o, 0}, 0, &rootbeer, 0, SetGrey,
"Grape Soda", {0, 0}, 0, &grapesoda, 0, SetGrey,
(char *)0,

}s

Figure 6-10: Example Program “Tmenu8.c”” (Sheet 2 of 6)

USER INTERFACE TOOLBOX 6-59

Example Programs

/*
** Tnitialization of Tmenu structure for Lunch menu

*/

Tmenu LunchMenu = { (Titem *)LunchItems, 0, 0, 0, MAP1 };

/*
** Initialize array of MyTitem’s for Dinner submenu
** Menu items do not have submenus

*/

MyTitem DinnerItems [] = {
"Steak", {0, 0}, 0, &steak, 0, SetGrey,
"Fish", {0, 0}, 0, &fish, 0, SetGrey,
"Salad", {0, 0}, 0, &salad, 0, SetGrey,
"Baked Potato", {0, 0}, 0, &potato, 0, SetGrey,
"Wine", {0, 0}, 0, &wineglass, 0, SetGrey,
"Anti-Acid", {0, 0}, 0, &antiacid, 0, SetGrey,
(char *)0,

}s

/*

** Tnitialization of Tmenu structure for Dinner menu

*/

Tmenu DinnerMenu = { (Titem *)DinnerItems, 0, 0, 0, MAP1 };

/*

** Initialize array of MyTitem’s for Dessert submenu
** Menu items do not have submenus

*/

MyTitem DessertItems [] = {
"Cupcakel", {o, 0}, 0, &Cupcake, 0, SetGrey,
"Cake", {o, 0}, 0, &cake, 0, SetGrey,
"Cupcake2", {o, 0}, 0, &cup_cake, 0, SetGrey,
"Fruit", {o, 0}, 0, &fruit, 0, SetGrey,
"Ice Cream", {o, 0}, 0, &ice_cream, 0, SetGrey,
"pParfait", {o, 0}, 0, &parfait, 0, SetGrey,
"Pie", {o, 0}, 0, &pie, 0, SetGrey,
"Banana Split", {o, 0}, o0, &split, 0, SetGrey,
(char *)0,

Figure 6-10: Example Program “Tmenu8.c” (Sheet 3 of 6)

6-60 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Initialization of Tmenu structure for Dessert menu

*/

Tmenu DessertMenu = { (Titem *)DessertItems, 0, 0, 0, MAP1 h
/*

** Initialization of array of Titeml’s for root menu
** Each Titem in the root menu has a submenu
*/
MyTitem MainItems [] = {

"Breakfast", {0, 0}, &BreakfastMenu, 0,

0, 0

"Lunch", {0, 0}, &LunchMenu, 0, 0, 0,
"Dinner", {o, 0}, &DinnerMenu, 0, 0, O,
"Dessert", {0, 0}, &DessertMenu, 0, 0, 0,
(char *)0,

}s

Iz

** Initialization of Tmenu structure for root menu

*/

Tmenu MainMenu = { (Titem *)MainItems, 0, 0, 0, MAP1 };

main()

{

MyTitem *item;

/* Initialize fonts in the MyTitem arrays */
BreakfastItems[0].font = &largefont;
BreakfastItems[1].font = &largefont;
BreakfastItems[2].font = &largefont;
BreakfastItems[3].font = &smallfont;
BreakfastItems[4].font = &smallfont;

LunchItems[0].font = &largefont;
LunchItems[1].font = &largefont;
LunchItems[2].font = &mediumfont;
LunchItems[3].font = &smallfont;
LunchItems[4].font = &smallfont;

Figure 6-10: Example Program “Tmenu8.c”” (Sheet 4 of 6)

USER INTERFACE TOOLBOX 6-61

Figure 6-10:

DinnerItems[0].font
DinnerItems[1].font
DinnerItems[2].font
DinnerItems[3].font
DinnerItems[4].font
DinnerItems[5].font

DessertItems[0].font
Dessertitems[1].font
DessertItems[2].font
DessertItems[3].font
DessertItems[4].font
DessertItems[5].font
DessertItems[6].font
DessertItems[7].font

&largefont;
&largefont;
&mediumfont;
&mediumfont;
&smallfont;
&largefont;

&largefont;
&largefont;
&largefont;
&largefont;
&largefont;
&largefont;
&largefont;
&largefont;

MainItems[0].font = &largefont;
MainItems[1].font = &largefont;
MainItems[2].font = &largefont;

request (MOUSE) ;

lprintf("\n Click button 2 to get Menu.\n");

for(;) {
wait(MOUSE);
if (buttonl())

** WVait for all buttons to be released.

(void) tmenuhit(&MainMenu, BUTTON2, FLAGS,

** Vait for all buttons to be released.

exit();
else if (button2()) {
/.
*/
bttns(0);
/*
** Display Menu.
*/
/*
*/
bttns(0);

Example Program “Tmenu8.c” (Sheet 5 of 6)

6-62 630 MTG SOFTWARE DEVELOPMENT GUIDE

sPtCurrent());

Example Programs

} else if(button3()) {
/*
** Release ownership of the mouse and
** sleep for two ticks of the 60Hz clock
** to let the control process take care of
** processing button 3 of the mouse.

*/
request(0);
sleep(2);
/*
** Back on the "air," get the mouse back.
*/
request(MOUSE) ;
h
}
}
void
SetGrey(item)
MyTitem *item;
{
item->ufield.grey = 1;
}

Figure 6-10: Example Program “Tmenu8.c” (Sheet 6 of 6)

USER INTERFACE TOOLBOX 6-63

Example Programs

#include <dmd.h>
#include <font.h>
#include <menu.h>

/* Library Routines and associated manual page. */

Point add(); /* PTARITH(3R) s/
void exit(); /* EXIT(3R) ./
void rectf(); /* RECTF (3R) ./
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
char *strcpy(); /* STRING(3L) */
Point string(); /* STRING(3R) */
Titem *tmenuhit(); /* TMENUHIT(3R) */
int wait(); /* RESOURCES(3R) ./
/* Library Macros and associated manual page. */
/*int buttonl(); BUTTONS (3R) +/
/*int button2(); BUTTONS (3R) */
/*int button3(); BUTTONS (3R) */
/*Point Pt(); PT(3L) */

void dfn(), bfn(), hfn();
extern Tmenu dmenu;

Titem ms[] =

{
"o", 0, 0, &dmenu, 0, 0, dfn, bfn, hfn,
wiv, 0, 0, &dmenu, 0, 0, dfn, bfn, hfn,
2" 0, 0, &menu, 0, 0, dfn, bfn, hfn,
"gn 0, 0, &menu, 0, 0, dfn, bfn, hfn,
ngn 0, 0, &menu, 0, 0, dfn, bfn, hfn,
ngn, 0, 0, &dmenu, 0, 0, dfn, bfn, hfn,
"g", 0, 0, &dmenu, 0, 0, dfn, bfn, hfn,
nwznw . 0, 0, &dmenu, 0, 0, dfn, bfn, hfn,
wgr 0, 0, &menu, 0, 0, dfn, bfn, hfn,
"gn 0, 0, &dmenu, 0, 0, dfn, bfn, hfn,
[}

}s

Tmenu dmenu = { ms };

char digs[64], result[64];
int store;

int ndig = 0;

Figure 6-11: Example Program “Tmenu9.c” (Sheet 1 of 3)

6-64 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

main()

{
Point p;
request (MOUSE);

while (wait(MOUSE))
if (buttonl())
exit();
else if (button2()) {
store = 1;
if (tmenuhit(&dmenu, 2, 0)) |
rectf(&display, Drect, F_CLR);
p = add(Drect.origin, Pt(8,8));
string(&largefont, result, &display,

p, F_XOR);
}
} else if (button3()) {
/t

** Release ownership of the mouse and

** sleep for two ticks of the 60Hz clock
** to let the control process take care of
** processing button 3 of the mouse.

*/

request(0);

sleep(2);

/*
** Back on the "air," get the mouse back.
*/
request (MOUSE) ;
}
}
void
dfn(mi)
register Titem *mi;
{
store = 1;
digs[ndig++] = mi->text[0];
digs[ndig] = 0;
}

Figure 6-11: Example Program “Tmenu9.c”” (Sheet 2 of 3)

USER INTERFACE TOOLBOX 6-65

Example Programs

void
bfn(mi)

register Titem *mi;
{

}

void
hfn(mi)

register Titem *mi;
{

digs[--ndig] = 0;

if (store)

{

dfn(mi);
strcpy(result, digs);
bfn(mi);

store = 0;

Figure 6-11: Example Program “Tmenu9.c” (Sheet 3 of 3)

6-66 630 MTG SOFTWARE DEVELOPMENT GUIDE

#include <dmd.h>
#include <label.h>

Example Programs

/* Library Routines and associated manual page. */

void labelicon();
void labelon();
int request();
int wait();

Bitmap B_skull;
Rectangle fRect();
main()

{
/t

/* LABELON(3R) */
/* LABELON(3R) ./
/* RESOURCES (3R) */
/* RESOURCES(3R) +/

** Dynamically initialize the Bitmap B _skull
** with the data from the texturel6 cursor

** C_skull.
*/

B_skull.base = (Word *)&C_skull;

B_skull.width = 1;
fRect(0, 0, 16, 16);

B_skull.rect =
request (MOUSE) ;

/t

** Turn on the label bar.

*/
labelon();

/‘

** Display the skull icon twice.

+/

labelicon(&B_skull, L _USER POSITION);
labelicon(&B_skull, L_USER_POSITION + 1);

/‘

** Exit when the user hits button 1.

*/

while (!buttonl()) wait(MOUSE);

Figure 6-12: Example Program “labell.c”

USER INTERFACE TOOLBOX 6-67

Example Programs

#include <dmd.h>
#include <label.h>

/* Library Routines and associated manual page. */

void labelicon(); /* LABELON(3R) «/
void labelon(); /* LABELON(3R) ./
void labeltext(); /* LABELON(3R) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES (3R) ./

Bitmap B skull;
Rectangle fRect();

main()

{
/*
** Dynamically initialize the Bitmap B_skull
**+ yith the data from the texturel6é cursor
** C_skull.
*/
B_skull.base = (Word *)&C_skull;
B_skull.width = 1;
B_skull.rect = fRect(0, 0, 16, 16);
request (MOUSE) ;
/*
** Turn on the label bar.
*/
labelon();
/*
** Display three text strings.
*/
labeltext("left", 4, L_LEFT);
labeltext("center", 6, L CENTER);
labeltext("right", 5, L RIGHT);
/*
#*+ Exit when the user hits button 1.
*/
while (!buttonl()) wait(MOUSE);

Figure 6-13: Example Program “label2.c”

6-68 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

#include <dmd.h>
#include <label.h>

/* Library Routines and associated manual page. */

void labelicon(); /* LABELON(3R) */
void labelon(); /* LABELON(3R) */
void labeltext(); /* LABELON(3R) */
int request(); /* RESOURCES (3R) */
int wait(); /* RESOURCES (3R) */

Bitmap B_skull;

Rectangle fRect();

main()

{

/* .
** Dynamically initialize the Bitmap B_skull
** with the data from the texturel6é cursor
** C_skull.

*/

B_skull.base = (Word *)&C skull;
B_skull.width = 1;

B _skull.rect = fRect(0, 0, 16, 16);

request (MOUSE);

/*
** Turn on the label bar.
*/

labelon();

/*
** Display the skull icon twice.

*/

labelicon(&B_skull, L_USER POSITION);
labelicon(&B_skull, L_USER_POSITION + 1);

Figure 6-14: Example Program “label3.c” (Sheet 1 of 2)

USER INTERFACE TOOLBOX 6-69

Example Programs

/*

** Display three text strings.

*/

labeltext(" left", 8, L LEFT);

labeltext("center", 6, L CENTER);
labeltext("right", 5, L_RIGHT);

/*

** Exit when the user hits button 1.
*/

while (!buttonl()) wait(MOUSE);

Figure 6-14: Example Program “label3.c’”” (Sheet 2 of 2)

6-70 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

#include <dmd.h>

/* Library routines and associated manual page. */

void bttns(); /* BUTTONS(3R) ./
void exit(); /* EXIT(3R) */
int kbdchar(); /* KBDCHAR(3R) */
int msgbox(); /* MSGBOX(3R) ./
int request(); /* RESOURCES (3R) */
int wait(); /* RESOURCES(3R) */
/* Library macros and associated manual page. */
/* int buttonl23() BUTTONS (3R) +/
main()
{
request (MOUSEIKBD) ;
for(;;) {
wait (MOUSE) ;
if(buttonl23()) {
/*

** Draw message box in response
** to any button pressed.
*/
msgbox("This is a Message",
"Box Demonstration",
(char *)0);
/*
** Busy loop until all mouse
** mouse buttons are released.
*/
bttns(0);

}

/*

** Exit if the user has typed any keys.
*/

if(kbdchar() != -1)

exit();

Figure 6-15: Example Program ““msgbox1.c”

USER INTERFACE TOOLBOX 6-71

Example Programs

#include <dmd.h>

/* Library routines and associated manual page. */

void bttns(); /* BUTTONS(3R) */
void exit(); /* EXIT(3R) ./
int kbdchar(); /* KBDCHAR(3R) +/
int menuhit(); /* MENUHIT(3L) */
int msgbox(); /* MSGBOX(3R) ./
int request(); /* RESOURCES (3R) */
void ringbell(); /* RINGBELL(3R) */
int wait(); /* RESOURCES(3R) */
/* Library macros and associated manual page. */
/* int buttonl() BUTTONS (3R) +/
/* int button2() BUTTONS (3R) */

char *menutext[] = {
"Message Boxes",
"Help",
"Default”,
"Small Box",
"Medium Box",
"Big Box",
"DON’T CHOOSE!",
"Style",
"Exit",
(char *)0

}s
Menu menu = { menutext };

char *stylemenutext[] = {
"Confirm",
(char *)0

}s
Menu stylemenu = { stylemenutext };

main()
{

request (MOUSE) ;
for(s;) {

Figure 6-16: Example Program “msgbox2.c”” (Sheet 1 of 3)

6-72 630 MTG SOFTWARE DEVELOPMENT GUIDE

wait(MOUSE);
if(buttonl())
break;
if(button2()) {
switch(menuhit(&menu, 2)) {

case 0:
msgbox("Hey!",
u].[ey!] N
"MESSAGE BOXES",
(char *)0

)s
bttns(0);
break;
case 1:
msgbox("Help is on the way",
(char *)0
)
bttns(0);
break;
case 2: [* default - no memory */
msgbox((char *)0);
bttns(0);
break;
case 3:
msghox("X", (char *)0);
bttns(0);
break;
case 4:
msgbox("This is an example®,
"of a slightly",
"larger message box.",
"The quick brown fox jumps over the lazy dog",

(char *)0
)

bttns(0);

break;

case 5:

msgbox("This is a",
"REALLY",
" BIG " N
"message",

Figure 6-16: Example Program “msgbox2.c”’ (Sheet 2 of 3)

Example Programs

USER INTERFACE TOOLBOX

6-73

"box",
"The quick brown fox jumps over the lazy
dog three times, turns around twice and
then drops dead",
(char *)0
)
bttns(0);
break;
case 6:
msgbox("PLEASE",
"do",
"not",
"choose",
"this",
"item",
"again",
(char *)0
)3
bttns(0);
break;
case 7:
msgbox("A different style",

"Do you want to ring the bell?",
"Press button 2 to confirm",
(char *)0
)s

if(button2())
if (menuhit(&stylemenu, 2) == 0)

ringbell();
bttns(0);
break;
case 8:
msgbox("Exit the message box demo",
"by clicking button 1",

"When there is no box on the screen",
(char *)0
)

bttns(0);

break;

Figure 6-16: Example Program “msgbox2.c” (Sheet 3 of 3)

6-74 630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 7: “jx’’ 1/O Interpreter

Introduction

How ““jx” Works
“stdout” and “‘stderr”’
“stdin”’

Using “jx” .

Functions Available with “jx” .

Example Program

TABLE OF CONTENTS

7-1

7-2
7-2

7-4

7-5

Introduction

jx is the 630 MTG’s standard I/O interpreter. The jx utility calls dmdld
to download given applications to the 630 MTG. Once downloaded, jx
continues to run to interpret I/O calls. The downloaded application can then
execute I/O routines with the host and with files on the host using standard
UNIX System V interface programs such as fopen and printf.

“jx”’ 1/O INTERPRETER 7-1

How “jx’’ Works

jx is an example of a program which "offloads" the host computer by
dividing the work between the host processor and the terminal. This
"offloading" involves the simultaneous operation of two programs: jx in the
630 MTG and sysint on the host. The jx utility first forks a dmdld process
and waits for it to complete.

- Note: Many of the dmdld options are available on the jx command
line. See the JX(1) and DMDLD(1) manual pages for more
information.

When the download completes, sysint starts running on the host. sysint
"listens" for the application to send I/O requests to the host and interprets
the message.

‘‘stdout’’ and ‘“‘stderr’’

While the application is running, stdout and stderr are redirected to two
files in $HOME called .jxout and .jxerr, respectively. After the application
completes and the default terminal emulator is started again in the window,
stdout and stderr are directed back to the terminal and the contents of .jxout
and .jxerr are displayed in the window.

‘“‘stdin’’

stdin is also properly redirected to the host by using the jx command line
and the popen function. The host does NOT receive input directly from the
630 MTG’s keyboard. Programs that want to read from the keyboard need to
use KBDCHAR(3R).

7-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using ““jx’’

There are some other important features about jx to keep in mind when
writing or modifying an application in order to properly use jx. These features
are pointed out in the following procedure for using jx. The example program
jxmouse.c, included at the end of this chapter, also exhibits these features.
The source code for jxmouse.c can be found in $DMD /examples /]x.

1.

Include the file dmdio.h. This file resembles the standard include file
stdio.h but contains some specific items for the 630 MTG. Note that
stdio.h must not be included.

Have your application call exit upon completion. See exit(3R) in the
630 MTG Software Reference Manual. When an application is not
running under jx, exit is a routine that causes your downloaded
application to terminate and be replaced by Windowproc. With jx,
exit also takes care of cleaning up the UNIX System files accessed by
your application. If an application downloaded with jx does not call
exit when it ends, the window may look "dead" since the exit is
incomplete. The situation is not hopeless—typing the DELETE key in
that window should trigger a complete exit.

Compile the program as usual using dmdcc.

Use jx to download your application instead of dmdld. An
application using the standard I/O routines will not work without jx
to interface with the host. Give the command:

jx <file>

Note: Command line arguments and dmdld options are all
allowed.

“jx’ 1/O INTERPRETER 7-3

Functions Available with ““jx’’

The standard UNIX System V I/O routines listed below can be used with
jx. In addition, the printf type routines that send output to the screen (such as
lprintf and bprintf) can still be used.

access fprintf getc putc
fclose fputs getchar putchar
fflush fread pclose puts
fgets freopen popen sprintf
fopen fwrite printf

Note: Programs which run under jx should use the above routines,
rather than sendchar and rcvchar, to send and receive
characters from the host.

7-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Program

The following program starts with the mouse tracking example from the
discussion on the mouse resource. As long as its window is current, the
application will track mouse movement with the "world" icon and send the
mouse coordinates to stdout using printf. When button three is clicked,
mouse tracking will stop and the application will read keyboard input until @
is typed.

Notice the special lines in the example source code for running under jx:
the include of the file dmdio.h, and the exit call at the end. Remember,
printf writes to stdout, which is redirected to $HOME/.jxout automatically by
jx. The fprintf to stderr will write to $HOME/ jxerr, and the contents of both
of these files will be dumped to the window after the program exits. The
results of lprintf are displayed in the window while the application is
running. The program also demonstrates how to use kbdchar to read input
from the keyboard.

A good way to observe what is taking place in this program is to open a
second window and execute:

tail -f $HOME/. jxout

This command line displays the x- and y-coordinates of the mouse as you
move it around.

Figure 7-1 gives a printout of the source code for the jxmouse example
program.

“jx’ 1/O INTERPRETER 7-5

#include <dmd.h>
#include <dmdio.h> /* Needed for jx */
#include "world.h"

/* Library Routines and associated manual page. */

void bitblt(); /* BITBLT(3R) ./
int eqpt(); /* EQ(3R) */
void exit(); /* EXIT(3R) ./
void fprintf(); /* PRINTF(3L) ./
int kbdchar(); /* KBDCHAR(3R) ./
void lprintf(); /* PRINTF(3L) */
int own(); /* RESOURCES(3R) */
int request(); /* RESOURCES(3R) s/
void sleep(); /* SLEEP(3R) */
int wait(); /* RESOURCES (3R) ./
/* Library Macros and associated manual page. */
/* int button3 BUTTONS (3R) */

#define MAXLEN 250

main()

{
Point MousePosition;
Point OldPosition;
unsigned char c;
char *p;
char words[MAXLEN};
short len;

len = 0;
p = words;

Figure 7-1: Example Program - “jxmouse’ (Sheet 1 of 4)

7-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Program

/*
** Request the use of the MOUSE resource.
*/

request (MOUSE) ;

/*
** Allow the 630 MTG control process to run
** and update the mouse position.

*/

sleep(2);

/*
** Record the current mouse position.
*/

MousePosition = mouse.xy;

/*
** Drawv the world Bitmap at the current

** mouse position.

*/

bitblt(&world, world.rect, &display, MousePosition, F _XOR);

/*
** Track the mouse until button 3 pressed
*/

for(wait(MOUSE); !button3();wait(MOUSE)) {

/*
** Frase the world Bitmap from the old

** mouse position.

*/

bitblt(&world, world.rect, &display, MousePosition, F_XOR);

/*
** Update the MousePosition.
*/

0l1ldPosition = MousePosition;
MousePosition = mouse.xy;

Figure 7-1: Example Program - “jxmouse” (Sheet 2 of 4)

“jx* 1/O INTERPRETER 7-7

Example Program

/*

** Draw the world at the new position.

*/

bitblt(&world, world.rect, &display, MousePosition, F_XOR);
/*

** Sleep for two ticks of the 60Hz clock to

¢+ release the CPU and synchronize with the

** 60Hz refresh rate of the 630 MIG screen.

*/

sleep(2);

/*

** If current window, write the mouse

*+ coordinates to stdout

*/

if ((own()&MOUSE) && !eqpt(OldPosition, MousePosition)) {
printf("x = %d\n", mouse.xy.x);
printf("y = %d\n\n", mouse.xy.y);

}

/*

** Erase the world Bitmap from the old

** mouse position.

*/

bitblt(&world, world.rect, &display, MousePosition, F_XOR);

fprintf(stderr, "Your last words...\n");
lprintf("\nAbout to exit, any last words? (type now)\n");
lprintf(" Hit @ when ready to quit.\n");

/*
** Request the keyboard resource and wait
** until there are keyboard characters to
** be serviced.

*/

request(KBD);

wait(KBD);

Figure 7-1: Example Program - “jxmouse” (Sheet 3 of 4)

7-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Program

/*
** Save what is typed (up to MAXLEN characters)
** in the string pointed te by "p" until
** the user types @°’
*/
while ((c=(unsigned char)kbdchar()) != '@’) {
if (len < MAXLEN) {
len++;
*pH+ = c;

}
/t

** Print character typed and then

** wait for more input from the keyboard.
*/

Iprintf("%ec", c);

wait(KBD);

} .
*p = °\O7;

/*

** Send the string to stderr.
*/

fprintf(stderr, "%s\n", words);

/*
** Must call exit for jx.

** stdout and stderr will be
sent to the window

*/

exit();

}

Figure 7-1: Example Program - “jxmouse” (Sheet 4 of 4)

“jx’’ 1/O INTERPRETER 7-9

Chapter 8: Fonts and the Font Cache

“Font”” and “Fontchar’’ Structures
“Font’’ Data Structure . e e
“Fontchar’’ Data Structure

Drawing Characters on the Screen

44 1

Drawing Text Strings - “string”, “jstring”, and
“strwidth”

Getting New Fonts from the Host - “getfont” .

The 630 MTG Font Cache

8-8
8-9

8-12

TABLE OF CONTENTS i

‘“Font’”’ and ‘“Fontchar’’ Structures

Font is a data structure that describes a set of character images. Fontchar
is a data structure that describes each character image in the Font.bit Bitmap.
The data type definitions for Font and Fontchar are shown below and can be
found in the file DMD /include /font.h. See Figures 8-1 (Font Bitmap) and 8-2
(Character Image Cell) for illustrations of the data fields in the Font and
Fontchar data types.

‘‘Font’”’ Data Structure

The data type definition for Font is as follows:

typedef struct Font

{

short n;

char height;

char ascent;

long unused;
Bitmap *bits;
Fontchar info[l];

} Font;

The following list explains the different entries in the "Font Bitmap."

n

height

ascent

unused

bits

Gives the number of character images in the font. n is also the
ascii value of the last character image in the font.

Gives the height in pixels of the Bitmap "bits".

Gives the number of scan-lines from the top of the Bitmap "bits"
to the baseline of the character images. All the character images
are aligned vertically on the same baseline with some characters
such as a g having a "descender" below the baseline.

Provides four extra bytes if needed.

This is the Bitmap containing the character images. It contains the
bit pattern for each character arrayed adjacently into a long
horizontal strip as illustrated below.

ABCDEFGHI JKLMNOPQRSTUVVWXYZ

FONTS AND THE FONT CACHE 8-1

“Font’” and ‘“Fontchar’ Structures

info[] This is an array of Fontchar data structures. Font.info[n] is a
dummy Fontchar descriptor used for determining the right edge of
the last character in the Bitmap "bits". The width of a "Character
Image Cell" for the i'th character is

Font.info[i+1].x - Font.info[i].x

Figure 8-1 is an illustration of the Font Bitmap.

Font..info[0].x Font.info[n-2].x
Font.info[l].x

Font. info[6].x Font.info[n].x

‘ , ! ¢

ascent *height

baseline—pp= = — = o — |- o — }— . T
f f

Font Bitmap

Figure 8-1: Font Bitmap

8-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

‘“Font” and ‘““Fontchar’” Structures

‘““Fontchar’’ Data Structure
The data type definition for Fontchar is as follows:

typedef struct Fontchar

{

short x;

unsigned char top;

unsigned char bottom;

char left;

unsigned char width;
} Fontchar;

The following list explains the different entries in the " Character Image
Cell."

X This is the pixel position of the left edge of the "Character Image
Cell" in the Bitmap Font.bits.

top This is the first non-zero scan-line of the character image.
bottom This is the last non-zero scan-line of the character image.

left This is a signed 8-bit value used for kerning. See the example
subroutine drawchar (Figure 8-3) for an example of the use of left.

width This is the width in pixels of the character image baseline. This is
not necessarily equal to the width of the "Character Image Cell".

Figure 8-2 is an illustration of the "Character Image Cell.”

- FONTS AND THE FONT CACHE 8-3

“Font” and ‘“Fontchar’ Structures

Top = 1

>
>

Bottom = 11

21> |>|>]>
>
>
>
>
>
>

l¢— Width = 8 —»

Character Image Cell

Figure 8-2: Character Image Cell

8-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Drawing Characters on the Screen

Drawing a character on the screen requires transferring the appropriate
rectangle from the Font Bitmap to the correct location on the screen. For the
F_STORE storage mode, the entire "Character Image Cell™ must be copied
from the Font Bitmap to the destination Bitmap. For the F_OR, F_XOR and
F_CLR storage modes, the minimum enclosing rectangle of the character must
be copied from the Font Bitmap to the destination Bitmap. When a character
is displayed on the screen at a Point "p", the upper left-hand corner of the
" character image cell" coincides with the Point "p".

Figure 8-3 gives the source code for the subroutine drawchar which will
draw a character on the screen.

FONTS AND THE FONT CACHE 8-5

Drawing Characters on the Screen

#include <dmd.h>
#include <font.h>

/*Library routines and associated manual pages. */

void bitblt(); /* BITBLT(3R) */
/*Library macros and associated manual pages. */
/* Point Pt() Pt(3L) */
main()

{

void

drawchar(Character, FontPointer, DestinationBitmap,
ScreenPoint, StorageCode)

char Character; /* character to be drawn */
Font *FontPointer; /* pointer to font used */
Bitmap *DestinationBitmap; /* destination Bitmap */
Point ScreenPoint; /* point to draw character */
Code StorageCode; /* graphics storage code */

{

Rectangle CharRect;
Fontchar *CharDescriptor;

1*
** Get the "Fontchar" character descriptor for "Character".
*/

CharDescriptor = FontPointer->info+Character;

/*
** Determine the enclosing rectangle for "Character"
** based on the graphical storage code used.

*/

Figure 8-3: Subroutine “drawchar” (Sheet 1 of 2)

8-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Drawing Characters on the Screen

if(StorageCode == F_STORE) {
/*
** y-coordinates of the "character image cell",
*/
CharRect.origin.y = 0;
CharRect.corner.y = FontPointer->height;
} else {
/*
** y-coordinates of the minimum enclosing rectangle.
*/
CharRect.origin.y = CharDescriptor->top;
CharRect.corner.y = CharDescriptor->bottom;

}
/‘

** x-coordinates

*/

CharRect.origin.x = CharDescriptor->x;
CharRect.corner.x = (CharDescriptor+l)->x;

/*
** Display the character.

*/

bitblt(

/*Source Bitmap */ FontPointer->bits,

/*Source Rectangle */ CharRect,

/*Destination Bitmap*/ DestinationBitmap,

/*Destination Point */ Pt(ScreenPoint.x + CharDescriptor->left,
ScreenPoint.y + CharRect.origin.y),

/*Storage code */ StorageCode);

Figure 8-3: Subroutine “drawchar” (Sheet 2 of 2)

Notice that the coordinate system places the origin of the tallest character
at the specified point instead of at the baseline. This behavior is consistent
with the coordinate system of Rectangles but requires some programming if
characters from several fonts are placed on the same baseline.

FONTS AND THE FONT CACHE 8-7

Drawing Text Strings - ‘“‘string’’,
‘“‘jstring’’, and ‘“‘strwidth”’

The routines string and jstring draw null terminated text strings. These
two functions are normally used instead of bitblt to draw characters onto the
screen.

The string routine allows font selection for the text string. The parameter
"p" accepted by string is a point that must be specified in screen coordinates.
Two macros, FONTWIDTH and FONTHEIGHT, are available for usage with
this function. FONTWIDTH returns the width of the space character in the
given font. FONTHEIGHT returns the height of the given font. strwidth
will calculate the width of a string based on the given font.

The jstring routine only draws strings with the mediumfont font. This
function implicitly uses the window coordinate point, PtCurrent, as its starting
point and returns the updated PtCurrent. The call, jstrwidth, is equivalent to
strwidth.

For further details on these routines, see the manual pages STRING(3R),
JSTRING(3L), and STRWIDTH(3R) in the 630 MTG Software Reference
Manual.

8-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Getting New Fonts from the Host -
‘“‘getfont”’

getfont will download new fonts from the host for an application; this
routine requires downloading the application with jx. See the manual page
INFONT(3R/3L) for more details on getfont. getfont returns a pointer to a
Font read from the specified UNIX System file. The following example
program can be used to download a font from the $DMD /termfonts directory
and display a text string using the downloaded font. argc and argv are used
in the program to pass the pathname of the font to be downloaded. A sample
command line to download the program would be:

jx dmda.out $DMD/termfonts/12x25round

Figure 8-4 is an example program using getfont.

FONTS AND THE FONT CACHE 8-9

Getting New Fonts from the Host - ‘‘getfont”

#include <dmd.h>
#include <font.h>
#include <dmdio.h>

/*Library routines and associated manual pages. */
Font *getfont(); /* INFONT(3L/3R) ./
Point sPtCurrent(); /* MOVETO(3L) */
/* Global Variables */
Font *fp;

/*

** This program must be downloaded using jx.

** The pathname of the desired font is passed to
** the program as a command line argument using
** v"argc" and "argv".

*/

main(arge, argv)

int argc;

char *argv[];

lprintf("\n Loading font %s\n ", argv[1l]);

/*
** Download the font into 630 MIG memory.
*/

fp = getfont(argv[1l]);

/*
** Display the string "This is a test."

** using the downloaded font.

*/

string(fp, "This is a test.", &display, sPtCurrent(), F_STORE);

/*
*+ Exit when the user types any key
** on the keyboard.

*/

request(KBD);

while(kbdchar() == -1) wait(KBD);
exit();

Figure 8-4: Example Program Using “getfont”

8-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Getting New Fonts from the Host - ‘“‘getfont”

For more information on getfont and other routines that support font
downloading, see the manual page INFONT(3R/3L) in the 630 MTG Software
Reference Manual.

FONTS AND THE FONT CACHE 8-11

The 630 MTG Font Cache

The 630 MTG Font Cache is dynamic storage for fonts in the 630 MTG
terminal. In the previous example (Figure 8-4), only the application that
downloads the font has access to the font. Fonts stored in the Font Cache are
available for use by all applications running in the 630 MTG. The fonts
largefont, mediumfont, and smallfont are stored in the 630 MTG’s ROM and
are permanent residents of the Font Cache. New Fonts can be added to the
Font Cache by downloading them from the host into the 630 MTG’s memory
and issuing the command fontcache which places the specified font into the
Font Cache. The command fontremove removes the specified font from the
Font Cache and frees its memory.

Figure 8-5 shows how the previous example program can be modified to
ncache" the downloaded font.

8-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

The 630 MTG Font Cache

#include <dmd.h>
#include <font.h>
#include <dmdio.h>

/*Library routines and associated manual pages. */

int fontcache(); /* FONTSAVE(3L) */
Font *getfont(); /* INFONT(3L/3R) ./
Point sPtCurrent(); /* MOVETO(3L) */
/* Global Variables */

Font *fp;

/*

s

%

%

*/

This program must be downloaded using jx.
The pathname of the desired font is passed to the
program as a command line argument using "argc" and "argv".

main(argc, argv)
int argc;
char *argv[];

lprintf("\n Loading font %s\n ", argv[1l]);

/*

** Download the font into 630 MIG memory.

*/

fp = getfont(argv|l]);

/*

** Place the font into the font cache.

i

fontcache(argv[1l], fp);

/*

** Display the string "This is a test."

** using the downloaded font.

*/

string(fp, "This is a test.", &display, sPtCurrent(), F_STORE);
/*

** Exit when the user types any key on the keyboard.
*/

request(KBD) ;

while(kbdchar() == -1) wait(KBD);

exit();

Figure 8-5: Example Program - Caching a Downloaded Font

FONTS AND THE FONT CACHE 8-13

The 630 MTG Font Cache

After the test string is displayed, you will be able to go to one of the other
windows on the terminal running the Windowproc terminal emulator and
select the downloaded font for use in that window. This is possible since the
Windowproc terminal emulator allows you to use any of the fonts that are
currently in the 630 MTG Font Cache.

For further details on Font Cache management and usage, see the manual
pages FONTSAVE(3L), FONTREQUEST(3R), FONTNAME(3R), and
FONTUSED(3R) in the 630 MTG Software Reference Manual.

8-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 9: Interprocess Communications

(Messages)

Introduction
What is a Message?

Creating a Message Queue .

Sending and Receiving Messages .

Sending a Message - “msgsnd” .
Receiving a Message - “msgrcv”’

Example Program - “messagesl.c”
Message Queue Control

Example Program - “messages2.c”’

9-1

9-2

9-5
9-5

9-8

9-11

9-14

TABLE OF CONTENTS

Introduction

A form of Interprocess Communication (IPC) called "messages" is
available on the 630 MTG. This feature is very similar to the message facility
available on the UNIX System V Operating System.

A message contains information to be transferred from one application to
another running in the 630 MTG. The message is posted by one application
and then read by another. The transfer of messages must be prearranged by
the applications.

Note: Message passing in the 630 MTG is a powerful facility;

however, it is an advanced feature that most applications will
not require.

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-1

What is a Message?

A message is a user-defined buffer whose first element is a message type
identifier. The example shown below is defined in message.h.

typedef struct msgbuf { /* a message */
long mtype; /* message identifier */
char mtext[1]; /* text of message */
} msgbuf;

The contents of a message is not limited to text only. The following is
another example of a perfectly legitimate message:

typedef struct msgbuf2 { /* a message */
long mtype; /* message identifier */
Rectangle msg rect; /* text of message */
Point msg pt; /* more message text */
} msgbuf;

The message identifier mtype allows for unique identification of messages
on a message queue. (This is described in more detail in the "Receiving a
message - “msgrcv”’ " section of this chapter.) mtype must be greater than
zero. The data fields that follow mtype are user definable and specify the
content of the message.

9-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Creating a Message Queue

Before any messages can be sent, a message queue must be created. The
message queue is like a bulletin board on which applications can post
messages. The message queue is created by the routine msgget. This routine
is declared as follows:

long msgget(key, msgflg)
long key;
int msgflg;

The first argument, key, is a key to the message queue. When a message
queue is created, a unique key and message queue identifier is associated with
it. msgget translates a key into a message queue identifier that is used by all
the other message routines. The key IPC_PRIVATE is guaranteed not to be
used by any existing message queue.

The second argument, msgflg, is a bit vector that gives msgget further
instructions on how to create the message queue. It should be noted that the
queue may or may not already exist for the given key when msgget is called.
The possible values of the msgflg are:

msgflg Instructions

0 If a message queue with the given key already
exists, return its identifier; otherwise fail (return -1).

IPC_CREAT If a message queue with the given key already
exists, return its identifier; otherwise, create a
message queue for the key and return the new
identifier.

IPC_CREATIPC_EXCL If a message queue with the given key already

exists, fail (return -1); otherwise, create a message
queue for the key and return the new identifier.

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-3

Creating a Message Queue

In addition to the bit vectors defined above, msgflg can be or’ed with
NO_SAVE. If NO_SAVE is set when the message queue is created, the
queue will be deleted when the application exits. Otherwise, the message
queue will exist until msgctl (see the section "Message Queue Control") is
called to remove queue or the terminal is powered down.

If successful, msgget returns a message queue identifier; otherwise, -1 is
returned. The msgget routine can fail due to lack of memory. See the
manual page MSGGET(3L) for more details.

9-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Sending and Receiving Messages

A message is added to a message queue by calling msgsnd. This routine
is declared as follows:

int msgsnd(msqid, msgp, msgsz, msgflg)
long msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

The first argument, msqid, is a message queue identifier as returned by
the msgget routine. This identifies which message queue the message is to be
added to.

The second argument, nisgp, is the address of a message to be added to
the queue. A copy of this message will be added to the queue unless
msgflg&NO_COPY is true (see NO_COPY in the following table).

The third argument, msgsz, is the number of bytes in the message text.
msgsz is the cumulative size in bytes of the data fields that follow the mtype
field. The size can be 0.

The last argument, msgflg, is a bit vector. Possible values of msgflg and
the associated instructions to msgsnd are as follows:

msgflg Instruction

IPC_NOWAIT If set, msgsnd returns immediately if it cannot put the
message on the queue because of the queue size limit
or a lack of memory. Otherwise, it will wait until there
is room and available memory.

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-5

Sending and Receiving Messages

msgflg Instruction

NO_COPY This flag requires msgp to be a value returned from a
call to alloc. Instead of copying the message into the
queue, the message itself is put in the queue. The
application will no longer own the memory pointed to

by msgp.

See the manual page MSGOP(3L) for more details.

Receiving a Message - ‘“msgrcv’’

A message can be received and removed from a message queue by calling
msgrev. This routine is declared as follows:

int msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)
long msqid, msgtyp;

struct msgbuf *msgp;

int msgsz, msgflg;

The first argument, msqid, is a message queue identifier as returned by
msgget. This identifies from which queue the message is received.

The second argument, msgp, is the address where the message is copied.
If the NO_COPY flag is set, this argument’s meaning changes (see
NO_COPY in the following table).

The third argument, msgsz, is the size of the message space pointed to by
the second argument. If the message being received is greater than this size,
msgrcv will fail unless the MSG_NOERROR flag is set (see MSG_NOERROR
in the following table). If the NO_COPY flag is set, this field is ignored.

The fourth argument, msgtyp, specifies the type of message that is to be
received. If msgtyp is zero, the first message on the queue is received. If
msgtyp is greater than zero, the first message in the queue whose mtype
equals msgtyp will be received. If msgtyp is less than zero, the first message
of the lowest mtype is received if it is less than the absolute value of msgtyp.

9-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Sending and Receiving Messages

The final argument, msgflg, is a bit vector. Possible values for msgflg are
as follows:

msgflg Instructions

IPC_NOWAIT Do not wait in msgrcv. If this is not set, msgrev will
wait until a message of the type specified by msgtyp is
in the queue.

MSG_NOERROR If set and the message received is larger than msgsz,
the message is clipped to msgsz. Otherwise, the
message must be less than or equal to msgsz bytes for
msgrcv to succeed.

NO_COPY When set, the message is not copied into the buffer
pointed to by msgp. Instead, the msgp argument is
declared as:

struct msgbuf **msgp;

msgrecv will set *msgp to the address of the received
message. The memory pointed to by *msgp can then
be used as if it was created by a call to alloc.

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-7

Example Program - ‘“messages1i.c”’

The program messagesl.c in the $DMD/examples /Messages directory is a
simple example of using messages. Figure 9-1 provides a printout of the
source code for messagesl.c. To use this program, compile’messagesl.c and
download it into several windows. Whenever button 2 is depressed in one of
these windows, a message will be sent. The window that receives the
message will ring the bell and tell you it got the message.

#include <dmd.h>
#include <message.h>

/*Library routines and associated manual pages. */

void alarm(); /* RESOURCES(3R) */
void exit(); /* EXIT(3R) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void lprintf(); /* LPRINTF */
long msgget(); /* MSGGET(3L) ./
int msgrev(); /* MSGOP(3L) */
int msgsnd(); /* MSGOP(3L) */
int request(); /* RESOURCES(3R) */
void ringbell(); /* RINGBELL(3R) */
void sleep(); /* SLEEP(3R) */
int wait(); /* RESOURCES(3R) */
/*library macros and associated manual page. */
/* int button2(); BUTTONS (3R) */
/* int button3(); BUTTONS (3R) */
/*
** buffer for message being sent/received.
*/
msgbuf mbuf;
main()
{

/*

** message queue identifier from msgget

*/

long msqid;

Figure 9-1: Example Program - “messagesl.c’”’ (Sheet 1 of 3)

9-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Program - “messagesi.c”’

/*
** Release the host connection.
*/

local();

lprintf("Use button 2 to send a message\n");

/*
** Request the needed resources.
*/

request (KBDIMOUSEIMSG) ;

/*
** Tnitialize message type.

** type must be > 0 to be valid
*/

mbuf.mtype = 1;

/*
** Create a message queue if it does not
** already exist. Exit if queue cannot
** be created.

*/

if((msqid = msgget(0x10000, IPC CREAT)) == -1)
exit(); /* couldn’t get the queue */

/*

** Continue execution until the user
** hits a key on the keyboard.
*/
wvhile(kbdchar() == -1)
{
/*
** Release the CPU until one of the requested
** resources needs servicing.
*/
wvait (MOUSEKKBDMSG) ;

Figure 9-1: Example Program - “messagesl.c” (Sheet 2 of 3)

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-9

Example Program - ‘“‘messages1.c”

/*
** Time to wake up. Something must need service.

** First check to see if there are any messages on

** the queue. If not, then check the mouse buttons.
** If that was not it then maybe the user hit a

** keyboard key.

./

if(msgrcv(msqid, &mbuf, 1, (long)0, IPC_NOVAIT) != -1)

ringbell();
lprintf("I got a message.\n");

}

if(button2())

/*
** Try to post a message when the user
** presses button 2.
*/
if(msgsnd(msqid, &mbuf, 1, IPC_NOWAIT) == -1)
lprintf("Failed to send.\n");
else
lprintf("Sent a message.\n");
/*
** Go to sleep and let someone else read the
** message.
*/
sleep(60);
}
if(button3d())
{
/*
** Release the mouse resource so that
** the control process can process
** button 3.
*/
request (KBDIMSG) ;
sleep(2);
request (MOUSEKKBDIMSG) ;

Figure 9-1: Example Program - “messagesl.c”” (Sheet 3 of 3)

9-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Message Queue Control

Another important data structure associated with messages is the message
queue msqid_ds. From this, an application can find the status of the queue.
msqid_ds contains information about who last used the message queue, when
that was, and other important information. msqid_ds is defined in the
message.h include file as follows:

typedef struct msqid_ds {
Proc * cid;
short msg qgnum;
short msg gbytes;
struct Proc * msg lspid;
struct Proc * msg lrpid;

unsigned long msg stime;
unsigned long msg rtime;
unsigned long msg ctime;

message list *msg list;
short msg curbytes;
short state;

long name;
struct msqid_ds *next;
} msqid_ds;

The meanings of these fields are:
cid designates the owner/creator of the message queue.
msg_qnum is the number of messages currently in the message queue.

msg_qbytes is the number of bytes (used by messages) that the queue
can hold before it is full.

msg_lspid designates the application that last put a message in the queue.

msg_Irpid designates the application that last read a message from the
message queue.

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-11

Message Queue Control

msg_stime is the time that the last message was put in the message
queue. The time is calculated by the routine "realtime".

msg_rtime is the time when a message was last received. Again, the time
is calculated using "realtime".

msg_ctime is the time when this data structure was last changed. A
change can occur because of a msgsnd, msgrcv, or msgctl.

msg_list points to the list of messages in the message queue.

msg_curbytes is the current total number of bytes (used by the messages)
in the queue.

state holds the NO_SAVE flag. If this flag is set, the message queue will
be deleted when the application designated by cid is terminated.

name is the key associated with the message queue.

next points to another message queue data structure. All the message
queues are in a linked list.

'The message queue data structure can be accessed by the msgctl routine.
msgctl allows a program to look at the contents of the message queue data
structure and set certain fields. It can also be used to delete message queues.
msgctl is declared as follows:

int msgetl(msqid, cmd, buf)
long msqid;

int emd;

struct msqid_ds *buf;

The first argument, msqid, is the message queue identifier.

9-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Message Queue Control

The second argument, emd, is a command that specifies an operation on
the message queue. Available commands are:

cmd

Operation

IPC_SET

IPC_STAT

IPC_RMID

Update selected fields of the specified message queue’s
data structure with that pointed to by buf. Those fields
that can be set this way are:

msg_qbytes
cid
state

If msg_qgbytes is > MAX_QBYTES (the maximum
allowable value), the command will fail. No other
fields of the message queue data structure can be
directly set by an application. This command also
updates msg_ctime.

Copy the entire message queue data structure
associated with the message queue identifier into the
message queue data structure pointed to by buf.

Delete the message queue and any messages in the
queue.

The final argument, buf, is a pointer to another message queue data
structure. This is the source for the IPC_SET command and the destination
for the IPC_STAT command. See the manual page MSGCTL(3L) for more

details.

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-13

Example Program - ‘“messages2.c’’

The program messages2.c in the $DMD /examples /Messages directory is a
graphical demonstration of messages. Figure 9-2 provides a printout of the
source code of messages2.c. To use this demo, compile messages2.c and
download it into several windows. It will begin shooting square bullets
toward the center of all the other windows running the example program.

The messages2.c example demonstration performs the following functions.
A global message queue with the key 0x44454d4f (ASCII for "DEMO™") is
created. Each instance of the messages2.c application then sends a message to
the global message queue. Each message contains the coordinates for the
center of its respective window. This information is then used by all the other
windows to determine the direction to shoot bullets.

#include <dmd.h>
#include <message.h>

/*
¢¢ Constant definitions.
*/
#define MAX TARGET 20 /* maximum number of targets */
#define MSG_TYPE (long)1l /* message type on global queue */
#define MSG_SIZE 8 /* size of my message */
#define GLB_Q KEY 0x44454d4f /* Key for Global Queue is DEMO */
#define SS 3 /* size of a shot */
#define FAILURE -1 /* message get failure */
/*
** Type Definitions.
*/
typedef struct MyMsgBuf {

long mtype;

Point VindowCenter;

long LocalMsgQid;
} MyMsgBuf;

Figure 9-2: Example Program - “messages2.c”’ (Sheet 1 of 9)

9-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

typedef struct Shot {
Point ShotCenter;
Point Velocity;

} Shot;

/‘

** Global Variables.

*/

Point Target[MAX TARGET];

int NumOfTargets;

/*Library routines and associated manual pages.

Point add();
Point div();

int kbdchar();
int local();
long msgget();
int msgetl();
int msgsnd();
int msgrev();
int request();
void sleep();
Point sub();

/l!
/t
/#
/t
/t
/#
/!
/t
/t
/.
/t

PTARITH(3R)
PTARITH(3R)
KBDCHAR (3R)
LOCAL(3R)
MSGGET (3L)
MSGCTL(3L)
MSGOP (3L)
MSGOP (3L)
RESOURCES (3R)
SLEEP(3R)
PTARITH(3R)

/* Local function declared in this file */
void AddToList();
void DrawShots();

void Failure();

Point GetWindowCenter();

void Shoot();

Figure 9-2: Example Program - “messages2.c” (Sheet 2 of 9)

Example Program - “messages2.c”

INTERPROCESS COMMUNICATIONS (MESSAGES)

9-15

Example Program - “messages2.c”’

main()

{
HMyMsgBuf MyMsg, TempMsg;
long G1lbMsgQid;
msqid_ds LocalMsgQ;
int i;

/*
** This application does not need a host connection.
*/

local();

/*
** Request the use of the Keyboard.
*/

request(KBD);

if((G1bMsgQid = msgget(GLB_Q_KEY, IPC_CREAT)) == FAILURE)
/*
** Could not open global message queue.
*/

Failure("Can’t get global message queue");

MyMsg.LocalMsgQid = msgget((long)IPC_PRIVATE, IPC_CREATINO_SAVE);
if(MyMsg.LocalMsgQid == FAILURE)

/*

** Could not open my local message queue.

*/

Failure("Can’t create local message queue");

MyMsg.mtype = MSG_TYPE;

MyMsg.WindowCenter = GetWindowCenter();

if(msgsnd(G1bMsgQid, &MyMsg, MSG_SIZE, IPC_NOVAIT))
/*
** Could not put my message into the global message queue.
*/

Failure("Can’'t send my first message");

Figure 9-2: Example Program - “messages2.c’”” (Sheet 3 of 9)

9-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Program - “messages2.c”’

/*
** Main loop of program.
*/
while (kbdchar() != ’q’) {
if (msgctl(MyMsg.LocalMsgQid, IPC_STAT, &LocalMsgQ))
/*
** Someone has removed my local message queue.
** They must want me dead.
*/

Failure("Someone wants me dead");

if (msgctl(GlbMsgQid, IPC_STAT, &LocalMsgQ))
/*
** Someone has removed the global message queue.
*/

Failure("global queue is gone");

/*
** Get number of messages currently in the
** global message queue.

*/

i = LocalMsgQ.msg gnum;

NumOfTargets = 0;

/*
** If my window was reshaped, erase the window and
** recalculate the center of the window.
*/
if(P->state & RESHAPED) {

if(P->state & MOVED)

rectf(&display, Drect, F_CLR);
P->state &= "RESHAPED;
MyMsg.WindowCenter = GetWindowCenter();

}
/t

** Read all the messages off the global message queue.

** If the application that sent the message still exists,
** then add that process to the list of targets and put
** that applications message back on the global gueue.

** Otherwise just throw the message away and read the

** next message from the queue.

*/

Figure 9-2: Example Program - “‘messages2.c” (Sheet 4 of 9)

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-17

Example Program - “‘messages2.c”

while(i-- &&
msgrcv(GlbMsgQid, &TempMsg,
MSG_SIZE, MSG_TYPE, IPC_NOVAITMSG_NOERROR) != -1) {
if(msgctl(TempMsg.LocalMsgQid, IPC_STAT, &LocalMsgQ) == 0) {

/*

** Application still exists.

*/

if(TempMsg.LocalMsgQid != MyMsg.LocalMsgQid)
/*
*+ Jf it is not my own message,
+ then add it to the list of targets.
*/
AddToList(TempMsg.VWVindowCenter);

else
/*

** T just read my own message.

** Make sure my window center is up

** to date.

*/

TempMsg.VWindowCenter = MyMsg.WindowCenter;

/*

*+ Put the message back on the global queue.

*/

if (msgsnd(GlbMsgQid, &TempMsg, MSG_SIZE, IPC_NOWAIT))

/*

*+ Oh Oh! The message send has failed.

** Remove the queue that failed.

*/

msgetl(TempMsg.LocalMsgQid, IPC_RMID, &LocalMsgQ);

Figure 9-2: Example Program - “messages2.c’”’ (Sheet 5 of 9)

9-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Program - “messages2.c”’

/*
** If i is greater than or equal to zero, then for some reason
** we were not able to read all the messages from the global
** message queue. Better quit.

*/
if (i >= 0)
Failure("I can’t read from the global queue");
/*
** Shoot bullets at the other windows running this application.
*/
Shoot();
/*

** In case the number of targets was zero, switch out
** here to let other applications run

*/
sleep(1l);
}
}
void
AddToList(p)
Point p;
/*
** Add a target to the 1list.
*/
{
if (NumOfTargets == MAX_TARGET)
/*
** Over the maximum target limit.
*/
return;

Figure 9-2: Example Program - “messages2.c” (Sheet 6 of 9)

INTERPROCESS COMMUNICATIONS (MESSAGES) 9-19

Example Program - “messages2.c”’

/*

**+ Add target to the list
*/

Target[NumOfTargets++] = p;

void
Shoot()
{
int i, j;
Shot shot[MAX TARGET];

for (i=0; i<NumOfTargets; i++) {
shot[i].ShotCenter = GetWindowCenter();
shot[i].Velocity =
div(sub(Target[i], shot[i].ShotCenter), 50);

}

DrawShots(shot);

for (j=0; j<50; j++) {
sleep(5);
if (P->state & RESHAPED)

return;

/*
**+ Erase the old shots.
*/
DrawShots(shot);
/*
#* Update the center position of each shot.
*/

for (i=0; i<NumOfTargets; i++)
shot[i].ShotCenter =
add(shot[i].ShotCenter, shot[i].Velocity);

Figure 9-2: Example Program - “messages2.c”’ (Sheet 7 of 9)

9-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

*
f‘ Draw the new shots.
*/
DrawShots(shot);
}
/*
** Erase all shots.
*/
DrawShots(shot);
}
void
DrawShots(shot)
Shot *shot;
{
int i;
for(i=0; i<NumOfTargets; i++)
/*
** Draw the shot in the display Bitmap.
*/
rectf(&display,
Rpt(sub(shot[i].ShotCenter, Pt(SS,SS)),
add(shot[i].ShotCenter, Pt(SS,SS))),
F_XOR);
}
void
Failure(string)

char *string;

{

Figure 9-2:

/‘

** Print error message and wait for user to hit q.

*/

Jjstring(string);

request(KBD);

while (kbdchar() != 'q’) wait(KBD);
exit();

Example Program - “messages2.c” (Sheet 8 of 9)

Example Program - “messages2.c”’

INTERPROCESS COMMUNICATIONS (MESSAGES)

9-21

Example Program - “messages2.c”’

Point
GetWindowCenter()
{
/*
** Calculate the center Point of the window
*/
return add(div(sub
(Drect.corner, Drect.origin), 2), Drect.origin);

Figure 9-2: Example Program - “messages2.c” (Sheet 9 of 9)

9-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 10: Application Caching

Introduction

Caching an Application

Explicit Arguments - “s” and “f” .
Use of “argv[0]”

Implicit Arguments

Return Value of Cache

Example of Caching an Apphcatlon

Notes on Caching an Application .
Restarting the Application Using the Download Command
Restarting the Application Using the “More” Menu .

Caching a Host-Connected Application .

Caching a Local or Connected Application

Caching a Shared Application (A_SHARED) .

Removing Applications from the Cache

Reshapability of Cached Applications
Non-Reshapable Application (NO_RESHAPE)
Default Window Outline (P->ctob)
Non-Reshapable, Default Window Outline (NO_RESHAPE and
P->ctob)

Cached Applications and “.text,” “.data,” and

“.bss” Sections
Sharing the “.data’ Section
Modifying the “.data’”” Section
Sharing the ““.bss” Section
Initializing the “.bss” Section
Saving the “.bss”” Section

Writing Shared Text Applications

10-1

10-2
10-2
10-3
10-3
10-4
10-4
10-5
10-5
10-5
10-6
10-6
10-6

10-8

10-9
10-9
10-9

10-10

10-11
10-12
10-12
10-12
10-13
10-13

10-14

TABLE OF CONTENTS i

Chapter 10: Application Caching

Modifying Global Variables
Eliminating Global Variables .
Method #1 - Use Only Local Vanables .
Method #2 - Use Local Variables and Constant Global
Variables .
Method #3 - Dynamic Allocatlon of Global Vanables
Porting Existing Applications to Run Shared Text
Example of Porting an Existing Application to Run Shared
Text .o
Final Notes on Shared Text Apphcatlons

Example Programs for Application Caching

10-14
10-14
10-14

10-14
10-16
10-18

10-18
10-19

10-21

Introduction

The Application Caching Facility allows the 630 MTG programmer to
cache an application after it is downloaded. Caching an application causes the
630 MTG’s operating system to retain the application’s code and data in the
630 MTG’s memory so that the application, once terminated, can be restarted
without being downloaded again. Without application caching, any
application that is deleted by the user or exits by itself can only be restarted
by another download from the host.

During execution, an application places itself in the 630 MTG application
cache by calling the routine cache. (See the manual page CACHE(3L) for
more information.) When a cached application is terminated (through deletion
or exit), it can be restarted either by executing the download command that
was used initially or by selecting the application from the Button 3 More
menu. In either case, the application restarts without another download.

Note: In the following discussion on application caching, several
example programs have been provided for demonstration
purposes. The source code for these examples is provided in
$DMD /examples/Caching. Also, a printout of each example
program (Figures 10-1 through 10-17) is provided in the
"Example Programs for Application Caching" section at the
end of this chapter.

APPLICATION CACHING 10-1

Caching an Application

The routine cache, once executed, causes the code and data for the
application to be placed in the application cache. cache is declared as follows:

#include <dmd.h>
#include <object.h>

int cache(s, f)
char *s;
int f;

Applications calling the cache routine must include the file object.h.

Explicit Arguments - ““s’’ and ‘‘f”’

The first argument, "s", is a pointer to a null terminated character string
that is used as the entry in the Button 3 More menu. If "s" is a null pointer,
then the character string pointed to by argv[0], stripped of any path name
prefix, will be used as the More menu entry.

The second argument, "3", is a bit vector composed of the bitwise
inclusive "OR™" of zero or more of the following predefined masks:

A_SHARED
Allow multiple instances of the application to run simultaneously.
If this bit is not set, only a single instance of the cached application
will be allowed to run at a time. Setting A_SHARED forces
A_DATA and A_BSS to be set.

A_NO_SHOW
Do not advertise the application in the Button 3 More menu. If not
set, the string pointed to by "s" will be placed in the More menu.
If "s" is null, the string pointed to by argv[0] will be placed in the
More menu.

A_BSS Do not reset to zero the uninitialized global and static variables
(.bss section) on subsequent startup of the cached application. If
not set, all these variables will be reset to zero. (See the section
entitled "Cached Applications and .text, .data, and .bss Sections"
in this chapter.)

10-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Caching an Application

A_DATA
Do not reset initialized global and static variables to their original
values (.data section) on subsequent startup of the cached
application. If not set, a "snapshot" of these variables is taken
when the function cache is called. This snapshot is used to restore
initialized variables to their original values on subsequent startup
of the application. (See the section entitled "Cached Applications
and .text, .data, and .bss Sections" in this chapter.)

A_NO_BOOT
Do not allow the cached application to be started using dmdld. If
not set, the cached application can be restarted in a new window
using dmdld.

A_PERMANENT
Do not allow the application to be removed from the cache.

Use of ‘“argv[0]”’

When an application is downloaded using dmdld, argv[0] is set to the
name of the executable object that is downloaded. When an application calls
cache, argv[0] (stripped from any pathname prefix) is used as the tag for the
application in the 630 MTG application cache. When any application is
downloaded using dmdld, this tag is searched for in the 630 MTG application
cache. If the tag is found in the application cache, then the application is
immediately restarted without another download.

Note: Remember, the application is tagged by argv[0] and not the
string pointed to by the argument "s". "s" is only used to
specify an alternate string to put in the More menu.

Implicit Arguments

Along with the explicit arguments to the cache routine, there are implicit
arguments as well. cache implicitly determines the need for a host
connection, window reshapability, and default window size from the current
state of the application. The implications of the explicit and implicit
arguments will be pointed out by the example programs in this chapter. The
source code for all the examples may be found in the directory
$DMD /examples /Caching.

APPLICATION CACHING 10-3

Caching an Application

Return Value of Cache

If the calling application is successfully cached, the cache routine will
return a 1. Otherwise, a 0 is returned. cache will fail if there is already an
application in the cache with the same tag or there is not enough memory in
the terminal to cache the application.

Example of Caching an Application

Figure 10-1 gives the source code for cachel.c which is a very simple
example of application caching.

Note: The function call to local will fail if your application is
running in the only window connected to the host. Therefore,
the example programs in this section should only be
downloaded when there is more than one window connected
to the host.

In cachel.c, the routine cache is called with the argument "s" set to null and
the argument "f" set to zero. This specifies the following default set of
instructions on how to cache the application:

1. Use the string pointed to by argv[0], stripped of any pathname prefix,
to advertise the application in the More menu.

2. Allow only one instance of the application to be invoked from the
cache.

3. If there are uninitialized global variables, that is, variables in the .bss
section, set them to zero every time the application is restarted.

4. Take a snapshot of the application’s .data section and restore the .data
section to this snapshot every time the application is restarted.

Use the following command lines to compile and download the example
application:

dmdcc -0 cachel cachel.c
dmdld cachel

Note: For more information on dmdcc and dmdld, refer to the
appropriate manual pages in the 630 MTG Software Reference
Manual.

10-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Caching an Application

Notes on Caching an Application

Once the compiled version of cachel.c (cachel) is downloaded, execution
begins, a local window is created, the string "Hello World" is printed, and the
application waits for you to hit any key before it exits. Hitting any key
terminates the application.

Restarting the Application Using the Downioad Command

cachel can be restarted without doing a second download by creating a
new window and issuing the download command again:

dmdld cachel

Since the code and data for cachel is in local memory, cachel will begin
execution immediately in the new window.

Note: Before restarting cachel with dmdld, you must terminate the
instance of cachel that is currently running. Otherwise, if an
instance of cachel already exists, dmdld will be told that
cachel is not available and, therefore, it will redownload
cachel. This is true for all non-shared applications.

Once the application has been cached, you no longer have to be in the
same directory as the application’s executable object to restart the application
with the download command. Once again, hitting any key terminates the
example application cachel.

Restarting the Application Using the “More’’ Menu

In the button 3 More menu, notice that cachel is a listed menu item.
Selecting cachel from the menu produces a sweep cursor that is a prompt to
sweep out a new window. Once the window has been created, cachel will
begin execution in the new window.

Note: If you select cachel in the More menu while an instance of
cachel is running, the cachel window will be made top and
current.

APPLICATION CACHING 10-5

Caching an Application

Caching a Host-Connected Application

The code for cache2.c is the same as cachel.c except that the call to local
has been removed.

Compile and download cache2.c in the same manner as shown for the
Example Program cachel.c. Figure 10-2 gives the source code of cache2.c.

Once execution of cache2.c begins, the border of the window remains
solid since cache2 retains its host connection. Notice the difference in the
More menu item for cache2. The cache2 menu item has a Host submenu that
allows you to choose which host you would like cache2 to be connected to
when it is restarted. Note, however, that the host submenu will only be
present when there is no window currently running cache2. This is because
the cache routine was instructed, by default, to allow the cached application to
run in only one window at a time. If cache2 is already running in a window,
selecting the cache2 menu item will make that window top and current.

Caching a Local or Connected Application

cache3.c demonstrates that the cache routine uses the current state of the
Host connection as an implicit argument. Compile and download cache3.c.
Figure 10-3 gives the source code for cache3.c.

The difference in cache3.c from cache2.c is that the cache routine is called
before local in cache3.c. Since cache3 still has a host connection when the
cache routine is called, the cache3 menu item will be given a Host submenu.
This means that when you restart cache3 from the More menu, you will need
to select a host even though the application releases its host connection by
calling local. Therefore, if your application does not need a host connection,
it should call local before cache.

Caching a Shared Application (A_SHARED)

The first three examples allowed only one window to run the cached
application at a time. cache4.c demonstrates how a cached application can be
shared by multiple windows simultaneously. Compile and download
cache4.c. Figure 10-4 gives the source code for cache4.c.

10-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Caching an Application

Specifying A_SHARED, tells cache that this application can have multiple
instances running simultaneously. Note that each instance of the application
will be running from the same code in memory; that is, a new copy of the
code is not created for each instance. This is commonly called a "shared
text" application. Further implications of "shared text" applications will be
discussed in the section entitled "Writing Shared Text Applications" of this
chapter.

After downloading cache4 and before terminating its execution, select
cache4 from the More menu and sweep a new window. Note that there are
now two instances of cache4 running. You can continue to create instances of
cache4 by selecting it from the More menu or typing dmdld cache4 in a new
window,

APPLICATION CACHING 10-7

Removing Applications from the Cache

The application ucache in the directory $DMD /bin allows you to remove
cached applications to free up memory and clean up your More menu.
ucache is a downloadable application that caches itself and allows you to
selectively remove cached applications. The ucache menu item has an
associated submenu listing all the applications currently in the application
cache. Items in this submenu that are not "greyed" can be selected for
removal from the cache. Greyed items in the menu are either permanent
members of the cache, such as PF Edit and Setup, or they are cached
applications that are currently in use.

10-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Reshapability of Cached Applications

The following examples (cache5.c, cacheb.c and cache7.c) demonstrate
how the NO_RESHAPE bit in the process state variable (P->state) and the
character-to-bits function (P->ctob) affect the reshapability of a cached
application.

Non-Reshapable Application (NO_RESHAPE)

cache5.c demonstrates how you can make your cached application
non-reshapable. Figure 10-5 gives the source code of cache5.c.

cacheb.c is the same as cachel.c except for the fact that the
NO_RESHAPE bit is set in the process state variable (P->state). When cache
detects that NO_RESHAPE is set, it records the current size of the
application’s window and uses that as the default window size when the
application is restarted. When you start cache5 from the More menu, you get
a default window outline and no sweep cursor. Notice that if you use dmdld
cache5 to restart cache5 in a window, the window will automatically be
reshaped to the default window size.

Default Window Outline (P->ctob)

cacheé.c demonstrates the use of P->ctob to specify a default window
outline. Figure 10-6 contains the source code for cacheé.c.

Note that P->ctob is not specific to caching only. It can be used by any
application to specify a default window size for Reshape. See the manual
page BTOC(3R) in the 630 MTG Software Reference Manual.

cacheé.c is the same as cachel.c except the pointer P->ctob is initialized
to point to the function WindowSize. WindowSize is called indirectly
through P->ctob by the 630 MTG operating system whenever the
application’s window is reshaped. It is also called by cache after the initial
download of the application to determine a default outline to display when
the application is restarted from the More menu.

APPLICATION CACHING 10-9

Reshapability of Cached Applications

The Point that WindowSize returns specifies the width and height of the
default window outline. When an instance of cache6 is started from the More
menu, you will see a sweep cursor and a default window outline. Clicking
Button 3 selects the default window. You can also sweep a window of any
size if you desire. This is the same way that Setup works when invoked from
the More menu.

Non-Reshapable, Default Window Outline
(NO_RESHAPE and P->ctob)

cache7.c demonstrates what happens when both the "NO_RESHAPE" bit
is set and P->ctob is initialized. Figure 10-7 contains the source code for
cache7.c.

When cache?.c is initially downloaded into a window, that window will
become non-reshapable regardless of what size it is. When cache? is invoked
from the More menu, however, a default outline (as specified by the
WindowSize function) is displayed without a sweep cursor. Clicking Button 3
creates the window. The window will always default to the size specified by
WindowSize and will not be reshapable. This is the same way that PF Edit
works when invoked from the More menu.

10-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Cached Applications and “.text,”
“.data,” and ‘“.bss’ Sections

The cache routine treats an application as an object with three sections:

text

.data

.bss

This section contains the executable instructions of the application.

This section contains all "initialized" external and "initialized"
static variables.

(Blank Storage Segment) This section contains all "uninitialized"
external and "uninitialized" static variables.

The cache routine saves these sections in the terminal’s memory. All
instances of the same cached application share these three sections.

For

example, consider the following program:

#include <dmd.h>

int templ;
int temp2 = 0;

main ()

{

static int temp3;
static int temp4 = 0;

foo ();

}

foo()

{
}

The globals main() and foo() are in the .text section. The globals temp1
and temp3 are respectively uninitialized external and uninitialized static
variables, thus they are in the .bss section. The globals temp2 and temp4 are
respectively initialized external and initialized static variables, thus they are in
the .data section.

The discussion that follows describes some of the implications of sharing
these sections.

APPLICATION CACHING 10-11

Cached Applications and “.text,” ‘“.data,’” and ‘“.bss’’ Sections

Sharing the ‘““.data’’ Section

Modification of variables in the .data section is common in many
applications. By default, a cached application’s .data section will be restored
every time the application is restarted to the initial snapshot that was taken
when cache was called. If, however, you set the A_DATA bit in the
argument "f", the .data section of your application will NOT be restored
upon subsequent invocations.

Modifying the ‘‘.data’’ Section

cache8.c demonstrates the feature described above. Figure 10-8 contains
the source code for cache8.c.

Normally, you would expect each instance of cache8 to produce the
following two lines of output:

n
[]

templ = 1, temp2
templ = 2, temp2

n
w

This, however, is true only the first time the application is run. The second
time the application is invoked from the cache, the output will be:

templ = 2, temp2 = 3
templ = 3, temp2 = 4
The third restart will produce:
templ = 3, temp2 = 4
templ = 4, temp2 = 5

Subsequent restarts of cache8 will follow the same pattern. This is
because cache8 modifies the contents of its .data section, which is not
reinitialized on restart.

Sharing the ‘“.bss’’ Section

Uninitialized external and static variables end up in the .bss section of
your application. The standard C language has a rule governing the default
initialization of uninitialized variables that states:

10-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Cached Applications and “.text,” ‘“.data,’”’ and ‘.bss’’ Sections

"In the absence of explicit initialization, external and static variables
are guaranteed to be initialized to zero."

Unless otherwise specified, this rule is maintained for cached applications.

The .bss section of a cached application is cleared every time the application is
invoked unless cache is called with the "A_BSS" flag set. The two following
examples (cache9.c and cachel0.c) demonstrate this feature.

Initializing the ‘“.bss’’ Section

cache9.c demonstrates that uninitialized external and static variables are
set to zero every time a cached application is restarted. Figure 10-9 contains
the source code for cache9.c.

No matter how many times you restart cache9, you will get the following
two lines of output because the .bss section is set to zero:

templ = 0, temp2 = 0
templ = 1, temp2 =1

Saving the ‘“.bss’’ Section

cachel0.c demonstrates how the A_BSS flag causes the .bss segment to
remain static. The source code for cachel0.¢ is shown in Figure 10-10.

The output from cachel0.c will be very similar to that of cache8.c.
Initially cachel0 will produce the following output:

templ = 0, temp2 = 0
templ = 1, temp2 =1

When restarted, cachel0 will produce the output:

1, temp2 1
2, temp2 = 2

templ
templ

When restarted again:

templ = 2, temp2 = 2
templ = 3, temp2 = 3
This sequence of output occurs because the global variable temp1 and the

static variable temp2 both reside in the .bss section of the code, and that
section is not being initialized to zero each time cachel0 is restarted.

APPLICATION CACHING 10-13

Writing Shared Text Applications

A shared text application has the following properties:

Multiple instances can exist simultaneously and each instance shares a
single copy of the .text, .data, and .bss sections.

Most applications can be written to run in a shared text environment. To
accomplish this, however, you must use some special programming techniques
to make sure that one instance of the application does not modify the context
of another instance of the application.

Modifying Global Variables

The most common context modification problem occurs when one instance
of the application modifies a global variable that another instance depends on.
This is a problem since all instances of the application share the same .bss and
.data section. Eliminating this problem is the key to writing shared text
applications. In the majority of cases, most, if not all, global variables must be
removed from an application to run properly in a shared text environment.

Eliminating Global Variables

The following discussion presents three different methods that you can
use to eliminate global variables from your application.

Method #1 - Use Only Local Variables

The simplest method for eliminating global variables from your
application is just not to use any. This means that all variables in your
application must be local to each function in the program. This approach
enhances modularity but can make programming very difficult.

Method #2 - Use Local Variables and Constant Global
Variables
A slightly less restrictive method is to use global variables that remain
constant during the execution of your application, such as initialized external
and static variables, and place all dynamic global variables into a data
structure that is declared locally in the routine main.

10-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

Writing Shared Text Applications

Consider the simple application shown below:

#include <dmd.h>

int globall, global2;

main()

{
globall = global2 = 0;
1printf("globall = %d, global2 = %d", globall, global2);
globall++;
global2++;
1printf("globall = %d, global2 = %d", globall, global2);
for (;;) wait (CPU);

}

If this application is to operate properly in a shared text environment, then
the two global variables globall and global2 must be eliminated. This is
accomplished in the cached application shown in Figure 10-11.

cachell.c places all dynamic global variables into a data structure that is
local to main. Local variables are always placed in the application’s stack
memory.

Note: Stack memory is not initialized to zero; therefore, variables
placed on the stack must be initialized before they are used.

Information on Parameter Passing

If there is a need for a subroutine to access the variables in a local data
structure, such as "myglobals" in cachell.c, then one of the parameters in the
subroutine call must be the address of the data structure as illustrated in the
example program cachel2.c. The source code for cachel2.c is given in
Figure 10-12.

Having all dynamic variables in a data structure local to main works out
well if the size of the data structure does not get too large (greater than
1K bytes) and use up too much of your application’s stack memory. When the
data structure becomes too large, you can either dynamically allocate the data
structure (see Method #3) or increase the stack size (see the manual pages
dmdcc(1) and dmdld(1)).

APPLICATION CACHING 10-15

Writing Shared Text Applications

Method #3 - Dynamic Allocation of Global Variables

When the size of the data structure containing your application’s dynamic
global variables becomes too large, you will want to dynamically allocate this
data structure rather than making it a local variable in main. The example
program cachel3.c, shown in Figure 10-13, demonstrates this method.

Note: Dynamically allocated memory is initialized to zero.

For more information on dynamic memory allocation, see the manual
page ALLOC(3R).

Additional Information on Parameter Passing - “P->appl”’

cachel3.c demonstrated one method of parameter passing for the data
structure containing your dynamic global variables. However, this method of
parameter passing is not always possible. For example, consider the dfn, hfn,
and bfn routines of tmenuhit. One may wish to have the routines access data
specific to one instance of an application. Normally, this would be done with
global variables. However, cachel3.c has no global variables; furthermore, the
630 MTG operating system has predefined the parameter with which dfn,
hfn, and bfn are called.

For this reason a special field called appl has been provided in the
application’s "process structure” and is unique for each application. P->appl
can be accessed globally and initialized to point to the data structure that
contains your global variables. In this way, all routines in your application
would be able to access your global variables through P->appl. The example
program, cachel4.c (Figure 10-14), demonstrates this method of parameter
passing.

cachel4 works very well but the source code is cumbersome to write
because of all the type casting that is necessary to access the global variables.
This problem can be overcome, however, by using #defines as demonstrated
in cachel5.c. The source code for cachel5.c is given in Figure 10-15.

10-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Writing Shared Text Applications

Notice the use of the underscore character "_" in the naming of the fields
in the "Globals" data structure. The reason for this is to make sure that the
variable name in the "Globals" data structure differs from the name used in
the #define. If you were to declare your global structure and #defines as
follows:

typedef struct Globals |

int globall;
int global2;

} Globals;
#aefine globall (((struct Globals *)(P->appl))->globall)
#define global2 (((struct Globals *)(P->appl))->global2)

you would get a compiler error that says something like: "D_Ref: too much
pushback." This problem occurs because we have created a recursive macro
definition.

Warnings About Using “P”’

You must be careful about the use of the variable "P" in certain routines,
especially those routines defined in your application that are called by one of
the 630 MTG system processes. For example, the routine pointed to by
P->ctob is called by the 630 MTG control process. Refer to the manual page
BTOC(3R). Even though the routine pointed by P->ctob is defined in your
application, you cannot use the variable "P" to reference your application’s
process structure. This is because "P" will be pointing to the process
structure of the 630 MTG control process when P->ctob is called. Therefore,
when the control process calls P->ctob, it passes a pointer to your
application’s process structure as a parameter. The example program,
cachelé6.c (Figure 10-16), demonstrates the use of the P->ctob routine when it
must access your "Globals" data structure.

In cachel6.c, P->ctob and the variables width and height must be
initialized before cache is called. This is because the first time cache is called,
(the first time that the application is run after the initial download) cache will
call P->ctob to determine what default outline to display for subsequent
invocations of the cached application.

APPLICATION CACHING 10-17

Writing Shared Text Applications

Porting Existing Applications to Run Shared
Text

To port an existing application to the shared text environment, declare a
data structure to hold all the dynamic global variables of the application as
demonstrated in the previous examples. Then, dynamically allocate the data
structure and set P->appl to point to the allocated structure. Near the
beginning of your source code or in an include file, declare the type of your
global data structure and #defines as shown below:

typedef struct Global {

typel _globall;
type2 _global2;

} Global;

#define globall (((struct Global *)(P->appl))->_globall)
#define global2 (((struct Global *)(P->appl))->_global2)

This will make all existing references to the global variables in your
application go through the P->appl indirection.

Example of Porting an Existing Application to Run Shared
Text

As a final example of a shared text application, the example program
message2.c from the previous chapter "Interprocess Communications
(Messages)" has been ported to cache itself as a shared text application. The
source code for this example can be found in the directory
$DMD /examples /Caching under the name cachel7.c. Figure 10-17 gives the
source code for cachel7.c.

10-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Writing Shared Text Applications

Final Notes on Shared Text Applications

Up to this point, the sharing of global variables between all instances of a
cached application has been discouraged. However, this feature of sharing
global variables can be used to your advantage in certain cases. Because
global variables are shared by all instances of the application, they can be
used as a form of inter-process communication: one instance of the
application can set a variable which another instance is watching.

There is a subtle feature of the 630 MTG operating system that makes the
sharing of global variables between instances of a cached application feasible.
This has to do with the way applications are scheduled to run. A cached
application is guaranteed that a shared global variable will not be changed by
another instance of the application as long as it does not release the CPU.

Warning: You must be careful when using this feature because
some of the 630 MTG library routines, such as
sendnchars, release the CPU for you.

For further details about caching, see the manual pages CACHE(3L),
DECACHE(3L), CMDCACHE(3L), and UCACHE(1) in the 630 MTG Software
Reference Manual,

APPLICATION CACHING 10-19

10-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application
Caching

The source code for the example programs on application caching is
included in this section (Figures 10-1 through 10-17).

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void 1lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) */
main()
{

/*

**+ Release the host connection.

*/

local();

/*

** Put application in the cache.

*/

cache((char *)0, 0);
lprintf("\n Hello Vorld.");

/*
** Wait for the user to hit a key.
*/

request(KBD);

wvhile (kbdchar() == -1) wait(KBD);

Figure 10-1: Example Program “cachel.c”

APPLICATION CACHING

10-21

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) */
main()
{

/*

** Put application in the cache.

*/

cache((char *)0, 0); /* put this application in the cache */

1printf("\n Hello Vorld.");

/*
** Vait for the user to hit a Kkey.
*/

request (KBD);

while (kbdchar() == -1) wait(KBD);

Figure 10-2: Example Program “cache2.c”

10-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) ./
int wait(); /* RESOURCES(3R) ./
main()
{

/*

** Put application in the cache.

*/

cache((cache *)0, 0);

/*

** Release the host connection.

*/

local();

1printf("\n Hello Vorld.");

/*
** Vait for the user to hit a key.
*/

request (KBD) ;

while (kbdchar() == -1) wait(KBD);

Figure 10-3: Example Program “cache3.c”

APPLICATION CACHING 10-23

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) */
main()
{

/*

#*+ Release the host connection.

*/

local();

/*

** Put application in the cache
** as a shared application.

*/

cache((cache *)0, A SHARED);

lprintf("\n Hello World.");

/*

** WVait for the user to hit a Kkey.
*/

request(KBD);

while (kbdchar() == -1) wait(KBD);

Figure 10-4: Example Program “cache4.c”

10-24 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) s/
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) */
main()
{

/*

** Release the host connection.

*/

local();

/*

** Make the window not reshapable.

*/

P->state |= NO_RESHAPE;

/*
** Put application in the cache
** as a shared application.

*/

cache((char *)0, A_SHARED) ;

lprintf("\n Hello World.");

/*
** Wait for the user to hit a key.
*/

request(KBD);

while (kbdchar() == -1) wait(KBD);

Figure 10-5: Example Program “cache5.c”

APPLICATION CACHING 10-25

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) ./
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) ./
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) s/

/* Local routines in this file */
Point WindowSize();

main()
{
/*
**+ Release the host connection.
*/
local();

/*
** Initialize P->ctob.
*/

P->ctob = WindowSize;

/*
** Put application in the cache
** as a shared application.

*/

cache((char *)0, A SHARED);

lprintf("\n Hello World.");

/*
** Vait for the user to hit a key.
*/

request(KBD);

wvhile (kbdchar() == -1) wait(KBD);

Figure 10-6: Example Program “cache6.c” (Sheet 1 of 2)

10-26 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

Point
WVindowSize()
{
Point p;
p.x = 250;
p.y = 250;
return(p);
}

Figure 10-6: Example Program “cache6.c” (Sheet 2 of 2)

APPLICATION CACHING 10-27

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) */

/* Local routines in this file */
Point WindowSize();

main()

{
/*
¢+ Release the host connection.
*/
local();

/*
**+ Make window not reshapable.
*/

P->state i= NO_RESHAPE;

/*
** Initialize ctob.
*/

P->ctob = WindowSize;

/*
** Put application in the cache
** as a shared application.

*/

cache((char *)0, A SHARED);

lprintf("\n Hello VWorld.");

Figure 10-7: Example Program “cache?.c” (Sheet 1 of 2)

10-28 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*
** Vait for the user to hit a key.
*/

request(KBD);

while (kbdchar() == -1) wait(KBD);

}

Point

WindowSize()

{
Point p;
p.x = 250;
P.y = 250;
return(p);

Figure 10-7: Example Program “cache7.c” (Sheet 2 of 2)

APPLICATION CACHING 10-29

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) ./
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) ./
int vait(); /* RESOURCES(3R) ./
/*

#* templ is an initialized external variable
#* that is placed in the data section.

*/

int templ = 1;

main()

{
/*
** temp2 is an initialized static variable
*+ that is placed in the data section.
*/
static temp2 = 2;

/*

** Release the host connection.
*/

local();

/*
** Put application in the cache and give the
** instruction not to reinitialize the data

** section to its original contents on subsequent

** jinvocations.
*/
cache((char *)0, A DATA);

Iprintf("\n templ = %d, temp2 = %d", templ, temp2);

templtt;
temp2++;

lprintf("\n templ = %d, temp2 = %d", templ, temp2);

Figure 10-8: Example Program “cache8.c” (Sheet 1 of 2)

10-30 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*
** Wait for the user to hit a key.
*/

request (KBD) ;

while(kbdchar() == -1) wait(KBD);

Figure 10-8: Example Program “cache8.c” (Sheet 2 of 2)

APPLICATION CACHING 10-31

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) ./
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) ./
/*

** templ is an uninitialized global variable
** and is placed in the bss section.

*/

int templ;

main()

{
/*
** temp2 is an uninitialized static variable
** and is placed in the bss section.
*/
static temp2;

/*

** Release the host connection.
*/

local();

/*

** Put application in the cache
** as a shared application.

*/

cache((char *)0, 0);

Figure 10-9: Example Program “cache9.c” (Sheet 1 of 2)

10-32 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

lprintf("\n templ = %d, temp2 = %d", templ, temp2);
templd+;
temp2++;
lprintf("\n templ = %d, temp2 = %d", templ, temp2);

/*.

*+ Wait for the user to hit a key.
*/

request(KBD);

while (kbdchar() == -1) wait(KBD);

Figure 10-9: Example Program “cache9.c”” (Sheet 2 of 2)

APPLICATION CACHING 10-33

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */
int cache(); /* CACHE(3L) s/
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void 1lprintf(); /* PRINTF(3L) s/
int request(); /* RESOURCES(3R) */

int wait();

/0

/* RESOURCES(3R) ./

** templ is an uninitialized global variable
** and is placed in the bss section.

*/
int templ;

main()

{
/*
s
*/

sta

/.

%

*/

temp2 is an uninitialized static variable
and is placed in the bss section.

tic temp2;

Release the host connection.

local();

/O
s
s
s
%
s
*/

cac

Put application in the cache and do not
initialize the bss section to zero on
subsequent invocations. Note that the
bss section is initialized to zero the
first time the application runs.

he((char *)0, A_BSS);

Figure 10-10: Example Program “cachel0.c”” (Sheet 1 of 2)

10-34 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

lprintf("\n templ = %d, temp2 = §d", templ, temp2);
templi+;
temp2++;
lprintf("\n templ = %d, temp2 = %d", templ, temp2);

/*
** Vait for the user to hit a key.
*/

request(KBD);

while (kbdchar() == -1) wait(KBD);

Figure 10-10: Example Program “cachel0.c” (Sheet 2 of 2)

APPLICATION CACHING 10-35

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) ./
void lprintf(); /* PRINTF(3L) ./
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES (3R) .

typedef struct Globals {
int globall;
int global2;

} Globals;

main()

{

Globals myglobals;

/*
** Release the host connection.
*/

local();

/*
Put application in the cache
** as a shared application.

*/

cache((char *)0, A_SHARED);

myglobals.globall = 0;
myglobals.global2 = 0;

1printf("\n globall = %d, global2 = g§d",
myglobals.globall, myglobals.global2);

myglobals.globalltt;

myglobals.global2++;

lprintf("\n globall = %d, global2 = Gd",
myglobals.globall, myglobals.global2);

Figure 10-11: Example Program “cachell.c” (Sheet 1 of 2)

10-36 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*
** Vait for the user to hit a key.
*/

request(KBD);

while (kbdchar() == -1) wait(KBD);

Figure 10-11: Example Program “cachell.c”” (Sheet 2 of 2)

APPLICATION CACHING 10-37

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) ./

/* local routines */
void print();

typedef struct Globals {
int globall;
int global2;

} Globals;

main()

{

Globals myglobals;

/*
** Release the host connection.
*/

local();

/*
** Put application in the cache
** as a shared application.

*/

cache((char *)0, A SHARED);

myglobals.globall = 0;
myglobals.global2 = 0;

print(&myglobals);
myglobals.globall++;
myglobals.global2++;
print(&myglobals);

Figure 10-12: Example Program “cachel2.c” (Sheet 1 of 2)

10-38 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*
** Wait for the user to hit a key.
*/

request (KBD);

while (kbdchar() == -1) wait(KBD);

}
void
print(globals)
Globals *globals;
{
Iprintf("\n globall = %d, global2 = §d",
globals->globall, globals->global2);
}

Figure 10-12: Example Program “cachel2.c”” (Sheet 2 of 2)

APPLICATION CACHING 10-39

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

char *alloc(); /* ALLOC(3R) */
int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) ./
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES (3R) +/

/* local routines */
void print();

typedef struct Globals {
int globall;
int global2;

} Globals;

main()

{

Globals *myglobals;

/*
*¢ Release the host connection.
*/

local();

/*
** Put application in the cache
** as a shared application.

*/

cache((char *)0, A SHARED);

myglobals = (Globals *)alloc(sizeof(Globals));
print(myglobals);
myglobals->globall++;

myglobals->global2++;
print(myglobals);

Figure 10-13: Example Program “cachel3.c”” (Sheet 1 of 2)

10-40 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*
** Vait for the user to hit a key.
*/
request(KBD);
while (kbdchar() == -1) wait(KBD);
}
void
print(globals)

Globals *globals;

{
lprintf("\n globall = %d, global2 = gd»,
globals->globall, globals->global2);

Figure 10-13: Example Program “‘cachel3.c” (Sheet 2 of 2)

APPLICATION CACHING 10-41

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* Library routines and associated manual page. */

char *alloc(); /* ALLOC(3R) */
int cache(); /* CACHE(3L) */
int kbdchar(); /* KBDCHAR(3R) s/
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) +/
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) */

/* local routines */
void print();

typedef struct Globals {
int globall;
int global2;

} Globals;
main()
{
/*
** Release the host connection.
*/
local();
/*

** Put application in the cache
** as a shared application.

*/

cache((char *)0, A SHARED);

P->appl = (long)alloc(sizeof(Globals));
print();
(((struct Globals *)(P->appl))->globall)++;

(((struct Globals *)(P->appl))->global2)++;
print();

Figure 10-14: Example Program “cachel4.c” (Sheet 1 of 2)

10-42 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*

** Vait for the user to hit a key.
*/

request(KBD);

while (kbdchar() == -1) wait(KBD);

}

void

print()

{

lprintf("\n globall = %d, global2 = gd",

(((struct Globals *)(P->appl))->globall),
(((struct Globals *)(P->appl))->global2));

}

Figure 10-14: Example Program ““cachel4.c”” (Sheet 2 of 2)

APPLICATION CACHING 10-43

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* Library routines and associated manual page. */

char *alloc();
int cache();
int kbdchar();
int local();
void 1printf();
int request();
int wait();

/* local routines */
void print();

typedef struct Globals {

int _globall;
int _global2;
} Globals;

#define globall
#define global2

/* ALLOC(3R) */
/* CACHE(3L) */
/* KBDCHAR(3R) ./
/* LOCAL(3R) */
/* PRINTF(3L) */
/* RESOURCES(3R) ./
/* RESOURCES(3R) ./

(((struct Globals *)(P->appl))-> globall)
(((struct Globals *)(P->appl))->_global2)

** Release the host connection.

main()

{
/*
*/
local();
/*

** Put application in the cache
** as a shared application.

*/

cache((char *)0, A SHARED);

P->appl = (long)alloc(sizeof(Globals));

Figure 10-15: Example Program ““cachel5.c” (Sheet 1 of 2)

10-44 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

print();
globall+t;
global2++;
print();

/*

** Vait for the user to hit a key.
*/

request(KBD) ;

while (kbdchar() == -1) wait(KBD);

}

void
print()

{
}

lprintf("\n globall = %d, global2 = %d", globall, global2);

Figure 10-15: Example Program ““cachel5.c”” (Sheet 2 of 2)

APPLICATION CACHING 1045

Example Programs for Application Caching

#include <dmd.h>
#include <object.h>

/* List of routines and associated manual page */

char *alloc(); /* ALLOC(3R) ./
int cache(); /* CACHE(3L) s/
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) */
void lprintf(); /* PRINTF(3L) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES (3R) */

/* local routines */
void print();
Point SetSize();

typedef struct Globals {
int _globall;
int _global2;
int _width;
int _height;

} Globals;
#define globall (((struct Globals *)(P->appl))->_globall)
#define global2 (((struct Globals *)(P->appl))->_global2)
#define width (((struct Globals *)(P->appl))->_width)
#define height (((struct Globals *)(P->appl))->_ height)
main()
{

/*

** Release the host connection.

*/

local();

/*

** Initialize ctob.

*/

P->ctob = SetSize;
P->appl = (long)alloc(sizeof(Globals));

width = 325;
height = 100;

Figure 10-16: Example Program “cachel6.c” (Sheet 1 of 2)

10-46 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*
** Put application in the cache
** as a shared application.

./

cache((char *)0, A SHARED);

print();
globallH+;
global2++;
print();

/*
** Put application in the cache

** as a shared application.

*/

request(KBD);

while (kbdchar() == -1) wait(KBD);

}

void

print()

{

lprintf("\n globall = %d, global2 = %d", globall, global2);

}

Point

SetSize(x, y, p)

int x, y;

struct Proc *p;

{
Point pt;
pt.x = (((struct Globals *)(p->appl))->_width);
pt.y = (((struct Globals *)(p->appl))->_height);
return(pt);

}

Figure 10-16: Example Program ““cachel6.c”” (Sheet 2 of 2)

APPLICATION CACHING 10-47

Example Programs for Application Caching

#include <dmd.h>
#include <message.h>
#include <object.h>

/*
** Constant definitions.
*/
#define MAX TARGET 20 /* maximum number of targets */
#define MSG_TYPE (long)1 /* message type on global queue */
#define MSG_SIZE 8 /* size of my message */
#define GLB_Q KEY 0x44454d4f /* Key for Global Queue is DEMO */
#define SS 3 /* size of a shot */
#define FAILURE -1 /* message get failure */
/*
** Type Definitions.
*/
typedef struct MyMsgBuf {

long mtype;

Point VindowCenter;

long LocalMsgQid;
} MyMsgBuf;
typedef struct Shot {

Point ShotCenter;

Point Velocity;
} Shot;
/*
** Global Variables.
*/
typedef struct Globals {

Point _Target[MAX TARGET];

int _NumOfTargets;
}Globals;
#define Target (((struct Globals *)(P->appl))->_Target)
#define NumOfTargets (((struct Globals *)(P->appl))->_NumOfTargets)

Figure 10-17: Example Program “cachel7.c”” (Sheet 1 of 8)

10-48 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*Library routines and associated manual pages. */

Point add(); /* PTARITH(3R) */
char *alloc(); /* ALLOC(3R) */
Point div(); /* PTARITH(3R) */
int Kkbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) ./
long msgget(); /* MSGGET(3L) */
int msgetl(); /* MSGCTL(3L) */
int msgsnd(); /* MSGOP(3L) */
int msgrev(); /* MSGOP(3L) */
int request(); /* RESOURCES(3R) */
void sleep(); /* SLEEP(3R) */
Point sub(); /* PTARITH(3R) ./

/* local routines */
void AddToList();

void DrawShots();

void Failure();

Point GetWindowCenter();
void Shoot();

Point WindowSize();

main()

{
MyMsgBuf MyMsg, TempMsg;
long GlbMsgQid;
msqid_ds LocalMsgQ;

int i;

/*

** This application does not need a host connection.
*/

local();

/*

** Dynamically allocate global variables.

*/

P->appl = (long)alloc(sizeof(Globals));

Figure 10-17: Example Program ““cachel7.c”” (Sheet 2 of 8)

APPLICATION CACHING 10-49

Example Programs for Application Caching

/*
** Tnit ctob function.
*/

P->ctob = WindowSize;

/*
** Cache as a local shared text application,
** and advertise the application with the name
¢+ "Messages".

*/

cache("Messages", A _SHARED);

/*
** Request the use of the Keyboard.
*/

request(KBD);

if((GlbMsgQid = msgget(GLB_Q KEY, IPC CREAT)) == FAILURE)
/*
** Could not open global message queue.
*/

Failure("Can’t get global message queue");

MyMsg.LocalMsgQid = msgget((long)IPC_PRIVATE, IPC_CREATWO_SAVE);
if(MyMsg.LocalMsgQid == FAILURE)

/*

** Could not open my local message queue.

*/

Failure("Can’t create local message queue");

MyMsg.mtype = MSG_TYPE;

MyMsg.VWindowCenter = GetWindowCenter();

if(msgsnd(GlbMsgQid, &MyMsg, MSG_SIZE, IPC_NOWAIT))
/*
** Could not put my message into the global message queue.
*/

Failure("Can’t send my first message");

Figure 10-17: Example Program ““cachel7.c” (Sheet 3 of 8)

10-50 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*
** Main loop of program.
*/
while (kbdchar() != ’q’) {
if (msgectl(MyMsg.LocalMsgQid, IPC_STAT, &LocalMsgQ))
/*
** Someone has removed my local message queue.
** They must want me dead.
*/

Failure("Someone wants me dead");

if (msgctl(GlbMsgQid, IPC_STAT, &LocalMsgQ))
/*
** Someone has removed the global message queue.
*/

Failure("global queue is gone");

/*
** Get number of messages currently in the
** global message queue.

*/

i = LocalMsgQ.msg_gnum;

NumOfTargets = 0;

/*
** If my window was reshaped, erase the window and
** recalculate the center of the window.
*/
if(P->state & RESHAPED)

if(P->state & MOVED)

rectf(&display, Drect, F_CLR);
P->state &= “RESHAPED;
MyMsg.WindowCenter = GetWindowCenter();

}
/t

** Read all the messages off the global message queue.

** If the application that sent the message still exists,
** then add that process to the list of targets and put
** that applications message back on the global queue.

** Otherwise just throw the message away and read the

** next message from the queue.

*/

Figure 10-17: Example Program “cachel7.c” (Sheet 4 of 8)

APPLICATION CACHING 10-51

Example Programs for Application Caching

while(i-- &&
msgrcv(GlbMsgQid, &TempMsg,
MSG_SIZE, MSG_TYPE, IPC_NOVAITMSG_NOERROR) != -1) {
if (msgctl(TempMsg.LocalMsgQid, IPC_STAT, &LocalMsgQ) == 0) {

/*
** Application still exists.
*/
if(TempMsg.LocalMsgQid != MyMsg.LocalMsgQid)
/*
¢* Jf it is not my own message,
** then add it to the list of targets.
./ .
AddToList(TempMsg.VindowCenter);
else
/*
** I just read my own message.
** Make sure my widow center is up
** to date.
*/
TempMsg.WindowCenter = MyMsg.VindowCenter;
/*
**+ Put the message back on the global queue.
*/
if (msgsnd(GlbMsgQid, &TempMsg, MSG_SIZE, IPC_NOWAIT))

/*

** Oh Oh! The message send has fail.

** Remove the queue that failed.

*/

msgctl(TempMsg.LocalMsgQid, IPC_RMID, &LocalMsgQ);

/*
*+ If i is greater than or equal to zero, then for some reason
we were not able to read all the messages from the global
** message queue. Better quit.
*/
if (i >= 0)

Failure("I can’t read from the global queue");

Figure 10-17: Example Program “cachel7.c” (Sheet 5 of 8)

10-52 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

/*
** Shoot bullets at the other windows running this application.
*/

Shoot();

/*
** In case the number of targets was zero, switch out
** here to let other applications run

*/

sleep(1l);

void

AddToList(p)

Point p;

/*

** Add a target to the list.

*/

{

if (NumOfTargets == MAX TARGET)

/*
** Over the maximum target limit.
*/

return;

/*
** Add target to the list
*/

Target[NumOfTargets++] = p;

void
Shoot ()

{

Figure 10-17: Example Program “cachel7.c”” (Sheet 6 of 8)

APPLICATION CACHING 10-53

Example Programs for Application Caching

int i, j;
Shot shot[MAX TARGET];

for (i=0; i<NumOfTargets; i++) {

shot[i].ShotCenter = GetVWindowCenter();
shot[i].Velocity = div(sub(Target[i], shot[i].ShotCenter), 50);

}

DrawShots(shot);
for (j=0; j<50; j++) {
sleep(5);
if (P->state & RESHAPED)
return;

/*

** Erase the old shots.
*/

DrawShots(shot);

/‘

** Update the center position of each shot.

*/
for (i=0; i<NumOfTargets; i++)

shot[i].ShotCenter = add(shot[i].

*
f‘ Draw the new shots.
*/
DrawShots(shot);
}
/*
** Erase all shots.
*/
DrawShots(shot);
}
void
DrawShots(shot)

Shot *shot;

Figure 10-17: Example Program “cachel7.c”

ShotCenter, shot[i].Velocity);

(Sheet 7 of 8)

10-54 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs for Application Caching

{
int i;
for(i=0; i<NumOfTargets; i++)
/*
** Drawv the shot in the display Bitmap.
*/
rectf(&display,
Rpt(sub(shot[i].ShotCenter, Pt(SS,SS)),
add(shot[i].ShotCenter, Pt(SS,SS))),
F_XOR);
}
void
Failure(string)
char *string;
{
/*
** Print error message and wait for user to hit q.
*/
jstring(string);
request (KBD);
wvhile (kbdchar() != ’q’) wait(KBD);
exit();
}
Point
GetWindowCenter()
{
/*
** Calculate the center Point of the window
*/
return add(div(sub(Drect.corner, Drect.origin), 2), Drect.origin);
}
Point
VindowSize()
{
Point p;
p.x = 200;
p.y = 200;
return(p);
}

Figure 10-17: Example Program “cachel7.c”” (Sheet 8 of 8)

APPLICATION CACHING 10-55

Chapter 11: Redefining Keyboard Operations

Introduction

Redefining Key Clusters .
Function Keys
Example of Redefmmg Functlon Keys (NOPFEXPAND) -
“kbd1.c” .o .
Cursor Keys .
Numeric Key Pad
Scroll Lock Key

Redefining the Entire Keyboard
630 MTG Keyboard Operation .
NOTRANSLATE Protocol

Keystrokes
Keyboard Identlflcatlon
Process Switch Notification

Demonstrations of Keyboard Redefinition
Modes

Keyboard Modes and Process Sw1tch Notlflcatlon ”kbd2.c"

Graphical Demonstration of the NOTRANSLATE Mode -
“kbd3.c”

Example Programs

Keyboard Transmittal Codes and Keyboard
Layout

11-1

11-9

11-11

11-21

TABLE OF CONTENTS i

Introduction

When an application requests the keyboard resource in the following
manner:

request(KBD);

the results of each subsequent keystroke are placed on the application’s
keyboard queue. Data is then read from the keyboard queue one character at
a time using the routine kbdchar.

Many times it is convenient to redefine the functions of certain groups of
keys in order to simplify processing. For example, you may want to redefine
the cluster of cursor keys to eliminate processing the corresponding escape
sequences. At other times you may want to redefine the entire keyboard to
suit the special needs of your application. These two features, redefining
groups of keys and redefining the entire keyboard, are discussed in this
chapter.

REDEFINING KEYBOARD OPERATIONS Page 11-1

Redefining Key Clusters

The following four key clusters can be redefined by applications:
1. Function keys

2. Cursor keys

3. Numeric key pad

4. Scroll Lock key.

Function Keys

An application can suppress the normal definition of the programmable
and static function keys by requesting the keyboard resource and setting the
NOPFEXPAND bit in the application’s state variable as shown below:

request(KBD);
P->state i= NOPFEXPAND;

This will cause the following predefined constants, defined in the include
file $DMD /include /keycodes.h, to be placed in the keyboard queue when a
function key is depressed.

Function Key | Constant Definition | 8-bit code
F1 FUNCI1KEY 0x80
F2 FUNC2KEY 0x81
F3 FUNC3KEY 0x82
F4 FUNC4KEY 0x83
F5 FUNC5KEY 0x84
F6 FUNCG6KEY 0x85
F7 FUNC7KEY 0x86
F8 FUNCS8KEY 0x87
F9 FUNC9KEY 0x88

F10 FUNC10KEY 0x89
F11 ' FUNC11KEY 0x8a
F12 FUNCI12KEY 0x8b
F13 FUNCI13KEY 0x8c
F14 FUNC14KEY 0x8d

Each of the 8-bit constants defined in the previous table has the most
significant bit set to "1". This allows your application to differentiate the
function key constants from other characters received from the keyboard.

11-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Redefining Key Clusters

Example of Redefining Function Keys (NOPFEXPAND) -
“kbd1.c”
kbdl.c demonstrates how the normal definition of the programmable and
static function keys can be redefined. The source code for kbdl.c is provided
in $DMD /examples /Keyboard. A printout of kbd1.c is given in Figure 11-1 at
the end of this chapter. Compile and download this program using the
following commands:

dmdcc -0 kbdl kbdl.c
dmd1ld kbdl

Cursor Keys

The 98-key keyboard contains a cluster of cursor keys which are the four
"arrow" keys and the "Home™" key.

Each cursor key is assigned a predefined escape sequence. (See the 630
MTG Terminal User’s Guide for a list of the cursor key escape sequences.) To
avoid the overhead of processing escape sequences, an application that has
requested the keyboard can set the NOCURSEXPAND bit in the process state
variable. When P->state&NOCURSEXPAND is true, the following
predefined constants, defined in the include file $DMD /include /keycodes.h,
will be placed on the application’s keyboard queue for each cursor key:

CURSOR KEY | Constant Definition | 8-bit Code
up arrow UP_ARROW 0xe0
down arrow DOWN_ARROW Oxel
right arrow RIGHT_ARROW Oxe2
left arrow LEFT__ARROW Oxe3
home HOME_KEY Oxe4

Each of the 8-bit constants defined in the previous table has the three
most significant bits set to "1". This allows your application to differentiate
between the cursor key constants and other characters received from the

keyboard.

REDEFINING KEYBOARD OPERATIONS Page 11-3

Redefining Key Clusters

Numeric Key Pad

The numeric key pad on the keyboard can be redefined by requesting the
keyboard resource and setting the NOPADEXPAND bit in the process state
variable:

request(KBD);
P->state i= NOPADEXPAND;

When P->state&NOPADEXPAND is true, the predefined constants
received in response to a key pad depression are shown below:

Pad Key | Constant Definition | 8-bit Code
Enter PAD_ENTER 0xc0
Equals PAD_EQUALS 0Oxcl

Asterisk PAD__ASTERISK 0xc2
Slash PAD_SLASH 0xc3

Plus PAD_PLUS Oxc4
Seven PAD_7 0xc5
Eight PAD_38 0xcé
Nine PAD_9 0xc7
Minus PAD_MINUS 0xc8
Four PAD_4 0xc9
Five PAD_5 Oxca
Six PAD_6 Oxcb
Comma PAD_COMA Oxcc
One PAD_1 Oxcd
Two PAD_2 Oxce
Three PAD_3 Oxcf
Zero PAD_O 0xd0
Dot PAD_DOT 0xd1

Each of the 8-bit constants defined in the previous table have the two
most significant bits set to "1". This allows your application to differentiate
between the key pad constants and other characters received from the
keyboard.

11-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Redefining Key Clusters

Scroll Lock Key

The 630 MTG keyboard has a Scroll Lock key and an associated status
LED. This key is a "dead" key (no special processing) unless it is requested
and processed by an application. The function of the Scroll Lock key is
controlled by the application that has ownership of the keyboard, which is the
current window. For example, the terminal emulator Windowproc stops
reading characters received from the host when a user hits the Scroll Lock
key. This has the effect of freezing the display until the user depresses the
Scroll Lock key again.

To define the function of the Scroll Lock key, your application must
request it by setting a bit in the process state variable:

P->state i= SCRLOCKREQD;

Your application can then determine if the Scroll Lock key has been
depressed by checking the SCR_LOCK bit in the state variable:

if (P->state & SCR_LOCK)
process_scroll lock();
}

The SCR_LOCK bit in the process state variable is set whenever the Scroll
Lock key is depressed. Therefore, the condition P->state&SCR_LOCK will
remain true until the user depresses the Scroll Lock key a second time. When
the Scroll Lock key is requested as shown above, the Scroll Lock LED will be
properly updated by the 630 MTG keyboard process. Also, if your application
uses the "label bar," the Scroll Lock icon will turn on and off appropriately.

REDEFINING KEYBOARD OPERATIONS Page 11-5

Redefining the Entire Keyboard

Your application can turn off the normal translation performed by the 630
MTG keyboard process by setting the NOTRANSLATE bit in the process state
variable.

P->state i= NOTRANSLATE;

Setting the NOTRANSLATE bit enables your application to totally
redefine the keyboard. In order to properly use this capability, you need to be
familiar with the 630 MTG keyboard operation and the NOTRANSLATE
protocol between the keyboard and a requesting application.

630 MTG Keyboard Operation

The 630 MTG keyboard is a transparent keyboard. The fundamental
characteristic of a transparent keyboard is that each key transmits a unique
8-bit code for a downstroke and an upstroke. The code sent for each
downstroke and upstroke is equivalent except that the most significant bit is
set to one for a "downstroke." For example, the "raw code" for the key
corresponding to the letter “A” has the hexadecimal value 0x5c. For the
downstroke, the value sent by the keyboard is Oxdc; for an upstroke, it is 0x5c.
See the table of transmitted codes for the 98-key keyboard at the end of this
chapter (Figure 11-4).

NOTRANSLATE Protocol

When the NOTRANSLATE bit is set in the process state variable, three
different data types can be placed on the keyboard queue:

® Keystroke
= Keyboard identification
m Process switch notification.

Each data type is sent in a two-byte packet: the first byte identifies the
data type, and the second byte contains the data. The following sections
describe these different data types.

11-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Redefining the Entire Keyboard

Keystrokes

Keystrokes are identified by the predefined constant "KEYSTROKE". For
example, when the "A’ key is depressed, the following two bytes will be
placed in the keyboard input queue:

<KEYSTROKE><0xdc>
When the "A’ key is released, the two bytes
<KEYSTROKE><0x5¢c>

will be placed in the queue. Each keystroke, whether it is a downstroke or an
upstroke, is preceded by the constant "KEYSTROKE™".

Keyboard Identification

The routine reqkbdID is used to request the "keyboard identification
sequence". The keyboard identification sequence has the following format:

[keyboard ID] [keys currently depressed] [keyboard ID]

The first segment of the keyboard identification sequence [keyboard ID]
consists of two bytes. The first byte is a predefined constant called
"BEFOREID" that identifies the next byte as a "keyboard ID", and the
second byte is the "keyboard ID" itself as shown in the following format:

<BEFOREID><KEY98ID>

The second segment of the keyboard identification sequence [keys
currently depressed] is a report of all the keys that are currently depressed.
The data received in this segment will look like multiple key downstrokes.
For example, if the keys A’ and “CTRL’ are currently depressed, the data
placed on the keyboard queue will have the following format:

<KEYSTROKE><0xdc><KEYSTROKE><0xc4>

The third segment of the keyboard identification sequence [keyboard ID]
terminates the entire sequence. Therefore, if the ‘A" and ‘CTRL’ keys are
depressed, the entire "keyboard identification sequence" would be:

<BEFOREID><KEY98ID>
<KEYSTROKE><0xdc><KEYSTROKE><0xc4>
<BEFOREID><KEY98ID>

REDEFINING KEYBOARD OPERATIONS Page 11-7

Redefining the Entire Keyboard

If no keys are depressed when reqkbdID is called, the keyboard
identification sequence will consist of two back-to-back "keyboard IDs" as
shown in the following format:

<BEFOREID> <KEY98ID><BEFOREID><KEY98ID>

When your application is using the NOTRANSLATE mode and is made
the current window, reqkbdlID is called by the 630 MTG operating system to
notify your application of the current status of the keyboard. See the manual
page KEYBOARD(3R) for more details on reqkbdID.

Process Switch Notification

The "process switch notification" is used to notify an application, which
is running in the current window in the NOTRANSLATE mode, that another
window has been made current and owns the keyboard. The two-byte packet
received has the following format:

<SWITCHCHAR><SWITCHCHAR>

Note: The constants KEYSTROKE, BEFOREID, KEY98ID, and
SWITCHCHAR are defined in the include file
$DMD /example /Keyboard /keycodes.h.

11-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Demonstrations of Keyboard
Redefinition Modes

Keyboard Modes and Process Switch
Notification - “kbd2.c”’

kbd2.c is a menu-driven application that demonstrates the different
modes: NOPFEXPAND, NOCURSEXPAND, NOPADEXPAND, and
NOTRANSLATE. The source code for kbd2.c is provided in
$DMD /examples /Keyboard, and a printout is given in Figure 11-2.

After kbd2.c has been compiled and downloaded, depressing mouse
button 2 brings up the application’s menu. The application will set the mode
specified by the menu selection and will print out the hexadecimal values of
data received from the keyboard. This allows you to view how each mode
described in this chapter operates. The current mode(s) is marked by a check
mark in the menu.

kbd2.c can also be used to demonstrate the process switch notification
protocol. Select the No Translate mode from the menu on mouse button 2,
and then make another window current. Notice the process switch
notification. Now, make the kbd2.c window current again. This causes a
keyboard identification sequence to be sent that consists of two back-to-back
"keyboard IDs". Make another window current and depress and hold two or
three keys. With the keys depressed, make the kbd2.c window current and
notice the change in the keyboard identification sequence. This time
reqkbdID reports not only the "keyboard ID" but also the keys that are
currently depressed.

Graphical Demonstration of the
NOTRANSLATE Mode - “kbd3.c”

kbd3.c is a graphical demonstration of the NOTRANSLATE mode. When
the example starts running, it draws a picture of the keys on the keyboard. As
you depress keys on the keyboard, the corresponding key in the picture will
be highlighted. The source code for kbd3.c is provided in
$DMD /examples /Keyboard and a printout is shown in Figure 11-3.

REDEFINING KEYBOARD OPERATIONS Page 11-9

Demonstrations of Keyboard Redefinition Modes

The important data structures for this example are the two arrays
Positions and Keys found in the include files
$DMD /examples /Keyboard /positions.h and $DMD /examples/Keyboard /keys.h,
respectively. Positions is an array of "key positions" indexed by the "raw
code" received from the keyboard, with the most significant bit set to zero.
For example, the ‘A’ key sends the code Oxdc when depressed. Masking the
most significant bit gives an index of 0x5c, which corresponds to key
position 66. (See the table of transmittal codes in Figure 11-4 for "raw code"
and "key position" data.)

The "key position" obtained from the array Positions is used to index the
array of "Key" structures, Keys, which contains the current status of the key,
the relative location of the key on the screen, and rectangle type used to draw
the key. See the array KeyRects in the include file:

$DMD /examples /keyboard /keyrects.h

for the different rectangle types used. Figures 11-5 and 11-6 illustrate the
layout of the 98-key keyboard and the associated key positions, respectively.

11-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

The source code for the example programs on redefining the keyboard is

included in this section (Figures 11-1, 11-2, and 11-3).

#include <dmd.h>
#include <keycodes.h>

/*Library routines and associated manual pages.

void exit(); /*
int kbdchar(); /*
void lprintf(); /*
void rectf(); /*
int request(); /*
void texture(); /*
int wait(); /*

EXIT(3R)
KBDCHAR (3R)
PRINTF (3L)
RECTF (3R)
RESOURCES (3R)
TEXTURE (3R)
RESOURCE (3R)

extern Texturel6 T_lightgrey;
extern Texturel6é T darkgrey;

main()
{
unsigned char c;

request (KBD);

/#

** Set no pf key expansion.

*/

P->state i= NOPFEXPAND;

lprintf("\n Hit any PF Key.");
lprintf("\n Use ’q’ to quit");

Figure 11-1: Example Program “kbdl.c” (Sheet 1 of 3)

REDEFINING KEYBOARD OPERATIONS

Page 11-11

for(;;) {

wait(KBD);

¢ = (unsigned char)kbdchar();

switch(c) {

/*

** Display a different texture for each

** function key hit.

*/

case FUNCIKEY:
texture(&display, Drect, &T grey, F_STORE);
break;

case FUNC2KEY:
texture(&display, Drect, &T lightgrey, F_STORE);
break;

case FUNC3KEY:
texture(&display, Drect, &T_ darkgrey, F_STORE);
break;

case FUNC4KEY:
texture(&display, Drect, &T_black, F_STORE);
break;

case FUNCSKEY:
texture(&display, Drect, &T white, F_STORE);
break;

case FUNCGKEY:
texture(&display, Drect, &T_background, F_STORE);
break;

case FUNC7KEY:
texture(&display, Drect, &T checks, F_STORE);
break;

case FUNCSKEY:
texture(&display, Drect, &C_target, F_STORE);
break;

case FUNCYKEY:
texture(&display, Drect, &C_arrows, F STORE);
break;

case FUNC10KEY:
texture(&display, Drect, &C_insert, F_STORE);
break;

Figure 11-1: Example Program “kbdl.c” (Sheet 2 of 3)

11-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

case FUNC11KEY:
texture(&display, Drect, &C_cup, F_STORE);
break;

case FUNC12KEY:
texture(&display, Drect, &C_deadmouse, F_STORE) ;
break;

case FUNC13KEY:
texture(&display, Drect, &C_skull, F_STORE);
break;

case FUNC14KEY:
rectf(&display, Drect, F_XOR);
break;

case ’'q’:
exit();

Figure 11-1: Example Program “kbd1.c”” (Sheet 3 of 3)

REDEFINING KEYBOARD OPERATIONS Page 11-13

Example Programs

#include <dmd.h>
#include <font.h>
#include <menu.h>

/*Library routines and associated manual pages.

void exit();

int kbdchar();

int local();

void lprintf();
int request();
void sleep();
Titem *tmenuhit();
int wait();

/.
/t
/O

EXIT(3R)
KBDCHAR (3R)
LOCAL (3R)
PRINTF (3L)
RESOURCES (3R)
ALARM(3R)
TMENUHIT (3R)
RESOURCE (3R)

/*Library macros and associated manual pages

/*int button23()

#define KBD NORM
#define KBD_NOTRAN
#define KBD_NOPFXPAN
#define KBD NOPADXPAN
#define KBD_NOCURXPAN
#define KBD_ EXIT

Titem kbditems[] = {
"Normal",
"No Translate",
"No PF Expand",
"No Pad Expand",
"No Cursor Expand",
"Exit",
(char *)0

b

SN =S

BUTTONS (3R)

KBD_NORM,
KBD_NOTRAN,
KBD_NOPFXPAN,
KBD_NOPADXPAN,
KBD_NOCURXPAN,
KBD_EXIT,

Tmenu kbdmenu = { kbditems };

Figure 11-2:

0,

0,
o,

0,

Example Program “kbd2.c”” (Sheet 1 of 4)

0,

0,
o,

o,

11-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

main()

{

int c¢;
Titem *titemptr;
int kbdstart = 0;

/*
** Release the host connection.

*/

local();

/*

** Place check mark in menu next to

** current mode.

*/

kbditems[KBD_NORM].icon = &B checkmark;

/*
** Request keyboard and mouse resources.
*/

request (KBD | MOUSE) ;

/*
** Main loop of program.
*/
while (1) {
/*
** Wait on MOUSE, means wait until I'm current.
** WVait on KBD, means wait until I receive a char.
*/
wait(KBD | MOUSE);
switch(button23()) {
case 1: /* button 3 */
/*
** Let control process handle
** button 3.
*/
request(KBD);
sleep(2);
request (KBD | MOUSE);
break;

Figure 11-2: Example Program “kdb2.c”” (Sheet 2 of 4)

Example Programs

REDEFINING KEYBOARD OPERATIONS

Page 11-15

case 2: /* button 2 */
if ((titemptr = tmenuhit(&kbdmenu, 2, 0)) == (Titem *)

break;

switch(titemptr->ufield.uval) {

/‘

®%

*/

Normal Keyboard processing.

case KBD NORM:

/‘
%
%

*/

kbditems [KBD NORM].icon = &B_checkmark;
kbditems [KBD_NOTRAN].icon = 0;
kbditems [KBD_NOPFXPAN].icon = 0;
kbditems [KBD NOPADXPAN].icon = 0;
kbditems [KBD NOCURXPAN].icon = 0;
P->state &= “(NOPFEXPAND | NOCURSEXPAND
NOPADEXPAND | NOTRANSLATE) ;
break;

Turn of the normal translation of
all keys typed on the keyboard.

case KBD NOTRAN:

/‘

s

*/

kbditems [KBD NOTRAN].icon = &B checkmark;

kbditems[KBD_NORM].icon = 0;

kbditems [KBD NOPFXPAN].icon = 0;

kbditems [KBD NOPADXPAN].icon = 0;

kbditems [KBD NOCURXPAN].icon = 0;

P->state i= NOTRANSLATE;

P->state &= ~“(NOPFEXPAND ! NOCURSEXPAND
NOPADEXPAND) ;

break;

Turn off pf key expansion.

case KBD_ NOPFXPAN:

Figure 11-2:

kbditems[KBD NOPFXPAN].icon = &B checkmark;
kbditems [KBD NORM].icon = 0;
kbditems[KBD_NOTRAN].icon = 0;

P->state i= NOPFEXPAND;

P->state &= "NOTRANSLATE;

break;

Example Program “kbd2.c”” (Sheet 3 of 4)

0)

11-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Example Programs

/*
** Turn off expansion of keypad.
*/
case KBD NOPADXPAN:
kbditems [KBD_NOPADXPAN].icon = &B checkmark;
kbditems[KBD_NORM].icon = 0;
kbditems [KBD NOTRAN].icon = 0;
P->state i{= NOPADEXPAND;
P->state &= "NOTRANSLATE;

break;
/*
** Turn of expansion of cursor keys.
*/

case KBD NOCURXPAN:
kbditems [KBD_NOCURXPAN].icon = &B_checkmark;
kbditems [KBD_NORM].icon = 0;
kbditems [KBD_NOTRAN].icon = 0;
P->state i= NOCURSEXPAND;
P->state &= "NOTRANSLATE;

break;
case KBD_EXIT:
exit();
break;
1
}
/*
** display data received from the keyboard.
*/
while((c = kbdchar()) != -1) {
kbdstart=1;
lprintf("\n hex=0x%x", c);
}

if (kbdstart) {
kbdstart = 0;
1printf("\n");

Figure 11-2: Example Program “kbd2.c” (Sheet 4 of 4)

REDEFINING KEYBOARD OPERATIONS Page 11-17

Example Programs

#include <dmd.h>
#include <keycodes.h>
#include "positions.h"
#include "keys.h"
#include "keyrects.h"

[*Library routines and associated manual pages. */

Point add(); /* PTARITH(3R) */
void box(); /* BOX(3R) s/
int cache(); /* CACHE(3L) */
Rectangle inset(); /* INSET(3R) */
int kbdchar(); /* KBDCHAR(3R) */
int local(); /* LOCAL(3R) s/
int min(); /* INTEGER(3R) */
Point mul(); /* PTARITH(3R) ./
Rectangle raddp(); /* RECTARITH(3R) */
void rectf(); /* RECTF(3R) */
int request(); /* RESOURCES(3R) */
int wait(); /* RESOURCES(3R) */

/* Local routines */
void ClearAllKeys();
void DrawKeyboard();
Rectangle GetKeyRect();
void PaintTheKey();

main()

{

unsigned char c;

local();
cache("Keyboard", 0);

request (KBD);
P->state {= NOTRANSLATE;

DrawKeyboard();

for(;;) {
wait(KBD);
¢ = (unsigned char)kbdchar();
switeh(e) {

Figure 11-3: Example Program “kbd3.c”” (Sheet 1 of 3)

11-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

case KEYSTROKE:
¢ = (unsigned char)kbdchar();
if (¢ & DOWNSTROKE)
PaintTheKey(c & DOWNSTROKE, 1);
else
PaintTheKey(c, 0);
break;
case BEFOREID:
¢ = (unsigned char)kbdchar();
break;
case SWITCHCHAR:
¢ = (unsigned char)kbdchar();
ClearAllKeys();

}

void

PaintTheKey (RawCode, KeyDown)
unsigned char RawCode;

int KeyDown;

{
int KeyPosition;
KeyPosition = Positions[RawCode];
/*
** If the state of the key has changed, then
** F_XOR the keys rectangle.
*/
if (Keys[KeyPosition].depressed != KeyDown) {
Keys[KeyPosition].depressed = KeyDown;
rectf(&display, GetKeyRect(KeyPosition), F_XOR);
}
}
void
ClearAllKeys()
{

int KeyPosition;

Rectangle r;

/*

** Clear all the rectangles for each key.

*/

Figure 11-3: Example Program “kbd3.c” (Sheet 2 of 3)

Example Programs

REDEFINING KEYBOARD OPERATIONS Page 11-19

for (KeyPosition=0; KeyPosition<128; KeyPosition++) {
if((Keys[KeyPosition].RectType != -1) &&
(Keys[KeyPosition].depressed)) {
Keys[KeyPosition].depressed = 0;

rectf(&display, r = GetKeyRect(KeyPosition), F_CLR);

box(&display, r, F_STORE);

}
}
}
void
DrawKeyboard()
{
int KeyPosition;
for(KeyPosition=0; KeyPosition<128; KeyPosition++) {
if (Keys[KeyPosition].RectType != -1) {
Keys[KeyPosition].depressed = 0;
box(&display, GetKeyRect(KeyPosition), F_STORE);
}
}
}
Rectangle
GetKeyRect (KeyPosition)
{
Point TmpPoint;
Rectangle TmpRect;
int mx, my, mult;
/*
** Return the rectangle for a given key position.
*/
mx = (Drect.corner.x - Drect.origin.x)/125 + 1;
my = (Drect.corner.y - Drect.origin.y)/125 + 1;
mult = min(mx, my);
TmpRect = KeyRects[Keys[KeyPosition].RectType];
TmpRect = raddp(TmpRect, Keys[KeyPosition].Location);
TmpRect.origin = mul(TmpRect.origin, mult);
TmpRect.corner = mul(TmpRect.corner, mult);
TmpPoint = add(display.rect.origin, Pt(2*mult, 2*mult));
TmpRect= raddp(TmpRect, TmpPoint);
return(TmpRect);
}

Figure 11-3: Example Program “kbd3.c” (Sheet 3 of 3)

11-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

Keyboard Transmittal Codes and
Keyboard Layout

Mlustrations of the key transmittal codes, the keyboard layout, and
keyboard key positions are included in this section (Figures 11-4, 11-5, and
11-6).

REDEFINING KEYBOARD OPERATIONS Page 11-21

Keyboard Transmittal Codes and Keyboard Layout

98-Key Keyboard Transmitted Codes

Description Position | Raw Code* Hexadecimal Codes Sent
criptio o ™ Unshift___ Shift ___ Control

F1 3 20 Up to 80 programmed characters
F2 4 26 Up to 80 programmed characters
F3 5 05 Up to 80 programmed characters
F4 8 3e Up to 80 programmed characters
F5 9 50 Up to 80 programmed characters
Fé6 12 42 Up to 80 programmed characters
F7 13 03 Up to 80 programmed characters
F8 14 2c Up to 80 programmed characters
F9 15 06 ESC No ESCNO ESC NO
F10 16 0d ESCNp ESCNP ESC NP
F11 17 67 ESCNq ESCNQ ESCNQ
F12 18 7d ESCNr ESCNR ESCNR
F13 19 72 ESCNs ESCNS ESC NS
ESC 25 62 1b 1b 1b
1! 26 68 31 21
2@ NUL 27 6e 32 40 00
3# 28 22 33 23
4% 29 15 34 24
5 % 30 63 35 25
6" RS 31 74 36 5e le
7& 32 02 37 26
8* 33 08 38 2a
9 (34 24 39 28
0) 35 2a 30 29
-_Us 36 30 2d 5f 1f
=+ 37 2b 3d 2b
BACK SPACE 38 64 08 08 08
DLETE 39 18 7f 7f 7f
BREAK DISCON 40 Oe break disconnect
CLEAR RESET 41 5b ESC [2] ESC ¢
= ((pad) 42 49 3d 28 28
*) (pad) 43 11 2a 29 29
/ (pad) 44 61 2f 2f 2f

*Raw codes shown are for upstrokes of a key. Downstroke codes have the
eighth bit set to 1. These codes are for use with the NOTRANSLATE mode.

Figure 11-4:

98-Key Keyboard Transmittal Codes (Sheet 1 of 3)

11-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

Keyboard Transmittal Codes and Keyboard Layout

98-Key Keyboard Transmitted Codes

Descrinti Positi Raw Code* Hexadecimal Codes Sent

escription osition aw Code Unshift Shift Control
TAB 45 4a 09 ESC[Z ESC[Z
QDC1 46 56 71 51 11
W ETB 47 1c 77 57 17
E ENQ 48 of 65 45 05
R DC2 49 5d 72 52 12
T DC4 50 57 74 54 14
Y EM 51 7a 79 59 19
U NAK 52 la 75 55 15
IHT 53 Oc 69 49 09
O s8I 54 1f 6f 4f of
P DLE 55 25 70 50 10
[{ ESC 56 10 5b 7b 1b
1} GS 57 5e 5d 7d 1d
! 59 55 60 7e
7 (pad) 60 32 37 37 37
8 (pad) 61 12 38 38 38
9 (pad) 62 2f 39 39 39
CAPS LOCK 64 71
CTRL 65 44
A SOH 66 5¢c 61 41 01
S DC3 67 4c 73 53 13
D EOT 68 09 64 44 04
F ACK 69 69 66 46 06
G BEL 70 4b 67 47 07
H BS 71 3f 68 48 08
JLF 72 14 6a 4a Oa
KVT 73 37 6b 4b 0b
L FF 74 19 6¢c 4c Oc
e 75 Oa 3b 3a
- 76 16 27 22
RETURN 77 6a CR or LF or CR-LF
{FS 78 3d 5¢ 7c 1c
*Raw codes shown are for upstrokes of a key. Downstroke codes have the
eighth bit set to 1. These codes are for use with the NOTRANSLATE mode.

Figure 11-4: 98-Key Keyboard Transmittal Codes (Sheet 2 of 3)

REDEFINING KEYBOARD OPERATIONS Page 11-23

Keyboard Transmittal Codes and Keyboard Layout

98-Key Keyboard Transmitted Codes
Description Positi Raw Code* Hexadecimal Codes Sent
eserpy osition | TaW 0% ["Unshift __shift __ Control

il 79 17 ESC[A ESCIA ESC [A
4 (pad) 80 1b 34 34 34
5 (pad) 81 75 35 35 35
6 (pad) 82 23 36 36 36
SCROLL LOCK 83 27
SHIFT 84 41
Z SUB 85 01 7a 5a la
X CAN 86 6f 78 58 18
CETX 87 51 63 43 03
V SYN 88 45 76 56 16
B STX 89 33 62 42 02
N SO 90 21 6e 4e Oe
M CR 91 28 6d 4d 0d
, < NUL 92 70 2c 3c 00
.>RS 93 58 2e 3e le
/?US 94 52 2f 3f 1f
SHIFT 95 34
ENTER 96 04 Up to 4 programmed characters
-« 97 13 ESC[D ESC[D ESC [D
HOME 98 31 ESC[H ESC[H ESCI[H
- 99 4f ESC[C ESC|C ESC [C
1 (pad) 100 6d 31 31 31
2 (pad) 101 6b 32 32 32
3 (pad) 102 78 33 33 33
SPACE 104 5f 20 20 20
| 107 76 ESC[B ESC[B ESC[B
0 (pad) 108 53 30 30 30
. (pad) 109 2e 2e 2e 2e
F14 110 7e ESCNt ESCNT ESCNT
+ (pad) 111 7f 2b 2b 2b
- (pad) 112 73 2d 2d 2d
, (pad) 113 35 2c 2¢ 2c
ENTER (pad) 114 00 Up to 4 programmed characters
*Raw codes shown are for upstrokes of a key. Downstroke codes have the
eighth bit set to 1. These codes are for use with the NOTRANSLATE mode.

Figure 11-4: 98-Key Keyboard Transmittal Codes (Sheet 3 of 3)

11-24 630 MTG SOFTWARE DEVELOPMENT GUIDE

Keyboard Transmittal Codes and Keyboard Layout

- ~ < - o
| 4
i
1
‘e - m >
% 18 -
2 $ s =
[BT o
¢ ®
Y
el
&
Lo |--~]s ..m
L S~
. £ vﬁN
il HEE
-_ 1% 2
1= —| —]
+ 0 . * K.
_ |~ — | o~ %
R S ——
o A - ..
il 4 Bt
o] -
12 v - —
- o
I e P @
H — = -
e [T g
f > i =
= z &
o~ z .m
Rl o | ¢
< o)
P >

%
5

H

“ - a
— Pl

H EXJ "

2 =

T — N

]

' X < —

| o

} &

t I £

) 1 - F3

13| T

'3 UL S
ix |7
LEREE

REDEFINING KEYBOARD OPERATIONS Page 11-25

Keyboard Transmittal Codes and Keyboard Layout

o
-~ bl L L g
- v~ |- | |
o o |l (Y (S
A < |o [@ 22
® o |~ |= |e
-~ < [0 |0 |+~
O |
~ a o o jo |o
- < |[@ |0 |+~ |+
o2}
[de] -~ *
— < N~
2138 |2
2
2| |2
~
<
N
< c
o | |o |@
- ™ [|~ O .m
™ 2
- @ ~ &
>
o 77 (]
- 5 e % v
w el
67 -
w [<
™ P-4 e
n |w e]
w (1 I~ 2
™
449 »
4572
3 9 .
m | by
~ 1
m | — —
» 3229 —
2570 m
o] @ 19M 5
~— &0
157 - H
™ 2
o |©
o v |™ s
™ 5
99
9467
N ©
88
o [« [© f,
N ©
n ~ |Ts
~ |« [€ 1o
N ®
o |©
<« o |& |@©
o
n |<
< I
< |,
o |

11-26 630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 12: Dmdpi Debugger

Introduction

Dmdpi User Interface .
Dmdpi Mouse Operation .
Dmdpi Keyboard Input
Special Cursor Icons
Help Window

Using the Dmdpi Debugger
Dmdpi Example Demonstration
Demonstration Procedure

Other Dmdpi Features

Keyboard Expressions .

Conditional Breakpoints .

Spy and Journal

Assembler-Raw Memory

Dmdpi Working Directory .
Changing the Dmdpi Working Dlrectory
Changing Path to the Source Code

Debugging Crashed Processes .

“clock.c” Source Code

12-1

12-2
12-2
12-4
12-4
12-5

12-6
12-6
12-6

12-25
12-25
12-27
12-28
12-29
12-31
12-32
12-32
12-33

12-35

TABLE OF CONTENTS i

introduction

This chapter provides an overview of the AT&T 630 MTG Dmdpi
C-Language Program Debugger. After a review of the dmdpi user interface,
the user is guided through an actual debugging session.

Dmdpi ("pi" stands for process inspector) is a programmer’s tool for
debugging C-language programs. It allows the user to inspect and control a
process (or multiple processes) in order to pin-point otherwise hard-to-find
" bugs L

Dmdpi’s mouse-driven, browser-like user interface allows for:
= Opening "windows" for inspecting various aspects of a process
m Controlling the execution of the process.

Dmdpi gives you power and flexibility without having to learn a complex
set of commands. Through dmdpi’s windows, you can get multiple "views"
of a process:

m A process status/callstack window
m Several source text windows

m A global variables window

m Stack frame windows

m A breakpoint list window

w A disassembly window

® A raw memory window

m Others (user types, journal, help, etc.).

Furthermore, you can debug several processes simultaneously.

Note: The DMDPI(1) manual page in the "630 MTG Software
Reference Manual" gives more complete coverage of the
specific features of dmdpi. This chapter is not intended to be
a substitute for the manual page.

DMDPI DEBUGGER 12-1

Dmdpi User Interface

One of the reasons the dmdpi debugger is easy to use is its mouse-driven
user interface. All operations for setting up the various process windows and
selecting different functions are made with the mouse. In addition to the
mouse, keyboard input is also available, where applicable.

Dmdpi Mouse Operation

Each button on the mouse performs the same basic functions regardless of
which dmdpi window you are in. The following list describes these functions:

Button 1 This button "points" to make a selection in the following
manner:

= Pointing at a window and clicking button 1 makes that
window top and current; this is identified by a
highlighted border.

= Pointing at a line of text in a current window and
clicking button 1 selects that line; this is indicated by
inverted video on that line.

= A scroll bar at the left of each window shows how much
of the window’s text is visible. Pointing into the scroll
region, holding down button 1, and moving the mouse
controls what text is displayed. Releasing button 1 after
the desired text is located completes the operation.

Button 2 This button displays a menu of operations that apply to the
current line. Positioning the cursor over the desired operation
highlights that operation. Releasing button 2 selects that
operation. Operations shown above the tilde line separator
(~mmmmem } are specific to each line. Operations below the separator
are generic line operations and are listed below:

cut removes the line.

sever removes the line and all lines above it.

12-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Button 3

Dmdpi User Interface

fold wraps a line that is past the right margin of a
window onto the following line.

truncate truncates a line at the right margin.

This button displays a menu of operations that apply to the
current window. Positioning the cursor over the desired
operation highlights that operation. Releasing button 3 selects
that operation. Operations shown above the tilde line separator
 (o——) are specific to each window. Operations below the
separator are generic window operations and are listed below:

reshape changes the size of the window.

move moves a window to a different place in the dmdpi
window.

close deletes a window.

fold like fold under button 2, except it wraps every line

in a window that is past the right margin onto the
following line.

truncate like truncate under button 2, except it truncates all
lines in the window at the right margin.

top gives a sub-menu which lists the currently accessible
dmdpi windows. Selecting one of these windows in
the sub-menu makes that window top and current.
Window names appear in this sub-menu from front
to back screen order; current is at the top. The
dmdpi, pwd/cd, and help windows are always
listed in this sub-menu.

Button 3 is also used to sweep out new windows, when so
directed by an instruction line at the bottom of the dmdpi
window. In this case, clicking button 3 gives a window of
default size. A different size window can be drawn by holding
down button 3 and moving the mouse.

DMDPI DEBUGGER 12-3

Dmdpi User Interface

Dmdpi Keyboard Input

The keyboard may be used in place of the mouse in many instances.
Keyboard characters accumulate at the bottom of the dmdpi window. If the
current line accepts input, the line flashes with each keystroke. Otherwise, if
the current window accepts input, its borders flash. Characters are not
interpreted until a carriage return is entered, whereupon the input line is sent
to the line or window.

The following keyboard commands are also available:

>file This saves the contents of the current line, or current window if
there is no current line, into the named file. To achieve the status
of no current line in the window, scroll off the top or bottom of the
window.

<file Each line of the named file is sent to the line or window as though
it had come from the keyboard.

? Each line or window that accepts keyboard input produces some
help in response to ?. These messages specify the format of what
may be typed. Items in brackets [] are optional parameters in the
keyboard input expression. Explanations are contained within
braces {}.

Special Cursor Icons
The following special cursor "icons" occasionally appear:

arrow-dot-dot-dot This indicates that the host is completing an
operation; the terminal is ready asynchronously.

coffee cup This indicates the terminal is receiving input from the
host; the terminal is momentarily blocked.

exclamation mark This indicates a dangerous menu selection. It is
confirmed by pressing the menu’s button again.

12-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Dmdpi User Interface

Help Window

A special help window, containing a reminder of the user interface
mechanics, can be created from any dmdpi window by selecting help from the
sub-menu under top in the window menu (button 3).

DMDPI DEBUGGER 12-5

Using the Dmdpi Debugger

In the dmdpi example demonstration that follows, you will see how to:

Open the different dmdpi windows

Look at your program’s source text and scan for specific statements and
subroutines

Set and remove program breakpoints
Step through statements and observe the results

Inspect local and global variables.

Dmdpi Example Demonstration

The example demonstration shows how to use dmdpi to examine a copy
of the clock demonstration program. You will find this example most helpful
if you actually follow the steps on your 630 MTG.

Remember, this example demonstration is only a training tool to
familiarize you with dmdpi. For a more exhaustive description of dmdpi,
consult the manual page.

While going through this demonstration, remember the usage of the three
buttons on the mouse:

Button 1 makes a window or line in a window current.

Button 2 gives a line menu for the current line.

Button 3 gives the window menu and also opens new windows.

Also, the help window provides a review of the user interface.

Demonstration Procedure

Note: In the following demonstration, it is assumed that when

1.

12-6

instructed to input from the keyboard, you know to hit
<return> to enter the input.

Execute layers. The 630 MTG must be operating in the layers
environment before you can download dmdpi.

630 MTG SOFTWARE DEVELOPMENT GUIDE

Using the Dmdpi Debugger

Copy the demonstration program clock.c into your current directory
using the following command line:

cp $DMD/examples/clock.c exclock.c

While going through this demonstration, you may find it useful to
refer to the printed copy of clock.c at the end of the chapter.

Compile exclock.c using the following command line:
dmdecc -g -o exclock exclock.c

The executable object code will be called exclock. The -g option
generates the symbol table and debugging information that is needed
by dmdpi.

In a new window, download the compiled exclock file using:
dmdld -z exclock "‘date'"

The -z option prevents the program from executing after being
downloaded. This will allow you to take control of the exclock
process with dmdpi before it starts running.

In real debugging situations, the -z option is often useful for
debugging programs that crash when the program first boots after
download. When the program is downloaded with -z, you can use
dmdpi to take control of the process in order to set breakpoints, look
at variables, etc., before the crash occurs.

The "‘date'" evaluates the UNIX System V date function and sends
this to the program as an argument. exclock will use this to set the
current time.

Note: The date command should be enclosed by grave
accent marks rather than single quotes.

In a new window, download dmdpi by typing the following
command. (Make sure that you are in the same directory as exclock.)
dmdpi

Note: For the purpose of this demonstration, make the size
of this ' window about one-third of the screen. (Once
you become familiar with dmdpi, you can decide
what size window works best for you.)

DMDPI DEBUGGER 12-7

Using the Dmdpi Debugger

The directory where dmdpi is executed becomes dmdpi’s initial
working directory. By default, dmdpi searches its working directory
for the object code and source code files of the process being
debugged. In real debugging situations, however, these files may not
be in dmdpi’s initial working directory. The "Dmdpi Working
Directory" section (in "Other Dmdpi Features") explains what to do
in these situations.

Changing directories will not be a problem in the following dmdpi
demonstration, since the exclock process and dmdpi have been
downloaded from the same directory.

Dmdpi Window

6. Once dmdpi has finished downloading, you will be instructed to
sweep a dmdpi window (button 3). If dmdpi is not running in the
current window, a small dmdpi window will be created
automatically.

dmdpi v3.1

P=0x¢8957C windowproc

P=0x¢8A984 /dé6/sw/official/lib/dmdps.m
P=0x?8B7?88 /d6/sw/jas/src/dmdpi/dmndpi/term
P=8x7?8C31C windowproc

P=0x78CF94 exclock

P=0x) d6/su/ jas/src/dmdpi /dmdpi /term F

The dmdpi window gives the listing of all processes currently
running in the terminal. Each line gives the hexadecimal key and
pathname to the executable file on the host that is associated with
that process. Dmdpi uses the pathnames in this window to locate
host resident symbol tables for processes being debugged.

12-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using the Dmdpi Debugger

7. Point to the exclock process line and make it current (button 1).
Select open process from the line menu (button 2).

dmdpi v3.1

P=0x7895¢C windowproc

P=0x78A984 /d6/sw/official/lib/dmdps.m
=0x 8B 7?88 /d6/sw/ jas/src/d

P'0x78C31C windowproc

I P s B By By Ay Ay Ay Ay Ay Aoy

cut
sever

fold

You will be prompted to open a process control window.

Process Control Window

The process control window (sometimes called process window) controls
exactly one process. It allows you to start and stop the execution of a process.
The process control window displays the state of the process, and allows you
to create process inspection windows to see more detailed views of the
process.

The process control window will also display a callstack trace when a
process is stopped. The callstack trace gives a list of functions that were called
in order to reach the location where the process stopped. This is the dynamic
chain of activation records.

8. As instructed, open a process control window (button 3).

DMDPI DEBUGGER 12-9

Using the Dmdpi Debugger

P=0x¢8CF94

pc=16874 7()

Notice that the state of the process is STOPPED.

9. In the process control window, select src text
under the window menu (button 3).

run p—
Process:

sto
STOPPED: ore toxt
Globals

pc=16874 7() RawMemory
more m

reshape
move

close
fold

top =

You will be prompted to open a source files window.

Source Window(s)

10. Open a source files window (button 3). This window lists all the
source files associated with the demonstration program. Make the

exclock.c line in that window current (button 1).

12-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using the Dmdpi Debugger

Note: If there has been only one source file associated with
exclock, you would have been prompted to open a
source text window (step 12).

Source Files: P=0x/¢8CF94
cosdeg.c

disc.c

exclock.e |
strcpy.c
user.c

11. Select open source file from the line menu (button 2).

Source Files: P=0x?¢8CF94
cosdeg.c
disc.c

exclock.e]

strcpy.c
user.c

open source filef

I Py Pt g Py g Ay oy Py Py A Ay Ay Py Ay P

cut
sever
truncate

You will be prompted to open a new window.

12. Open a source text window (button 3). This window displays the
source code of the demonstration program.

Note: Since this window displays the actual lines of the
program source code, you may want to make this
window larger than the default window size.

DMDPI DEBUGGER 12-11

Using the Dmdpi Debugger

.Source Text: exclock.c

/*

7 *

I*
7*
7*

#include <{sccsid.h>
VERSION(®#(#)clock.c 1.1.1.1);

#include <dmd.h>
#include <font.h>

Copyright (c) 1987 ATRT */
All Rights Reserved */

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF
The copyright notice above does not evidence a
actual or intended publication of such source

13.

You probably noticed that when the source text window was first
opened, only the line numbers appeared, then the source was
displayed. This is because the source text window works on a "per
request basis." Opening the window initiated a request to the host
to download only the lines of source on the screen which, in this
case, are the first lines of source. As you request more lines of source
(by scrolling or searching through the text window), additional lines
will be downloaded and displayed. Once the lines of source have
downloaded, they remain in local memory as long as this text
window remains open.

Point to the scroll bar (left margin of the source text window). With
button 1 depressed, move the scroll bar down. As you move the
mouse, you should be scrolling through lines of the source file (lines
may only be numbers initially).

From the keyboard, you can initiate a search for a specific data
pattern in the file (pattern should be preceded by a slash " /"),

You can also go to a specific line number. In the source window
with no line current (scroll the pointer off the window), type in the

desired line number.

To go to a subroutine in the program, just select the subroutine from

12-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using the Dmdpi Debugger

the list in the window menu (button 3).

Select the subroutine main from window menu (button 3).

.Snurc:é. Text: exclock.c ,
/* Copyright (c) 1987 AT&T step 2 stmts
/* All Rights Reserved step 3 stmts

step 4 stmts
/* THIS IS UNPUBLISHED PROP step >4 stmts = OF
/* The copyright notice abo step into fcn
/* actual or intended publi inittface()...128¢

T‘E)’()----...-lsq‘

P A At Ay g Ao A g Aag Aoy oy Iy Py Ay Ay Ay

W
]

#include <{sccsid.h>
VERSION(e(#)clock.c 1.1.1.1)

reshape
#tinclude <dmd.h> move
#include <font.h> close
fold

Breakpoints

Dmdpi allows you to place breakpoints in the source text of a program.
When the program reaches a breakpoint during execution, it stops, and control
is given to the debugger. At this point, dmdpi can be used to inspect and /or
modify program variables or to resume execution.

In dmdpi, when a breakpoint is set on a certain statement, this statement
does not get executed. In other words, execution "breaks" after the last
statement before the breakpoint.

14. From the previous step, the process should be at the subroutine
main. Make the line containing the rectf statement below main
current (button 1). In the line menu (button 2), select set bpt. This
sets a breakpoint at the rectf statement.

Notice that >>> appears at the beginning of the source line to
indicate a breakpoint has been set.

DMDPI DEBUGGER 12-13

Using the Dmdpi Debugger

register long ds;
register olds;

/* do initialization */
oldtime=realtime();
request[KBD],

trace on
cond bpt
assembler
JmDVBtO(Pt(G 8)); open frame
jstring("Usage: dmdld clock |~~~~~~mnna).

sleep(208); cut
exit(); sever
> fold

15. From the window menu again (button 3), go to the initface
subroutine and set another breakpoint (button 2) at the disc
statement below initface.

rad = Drect.corner.y = Drect.origin.y;
rad = rad/2 - 2;
rh =6 * rad / 10;
rm =9 * rad / 19;
rs =rad - 1;
rspread = rad / 10;

/* draw ray r at angle ang.
/* actually draws a clock hand at angle ang, with

r

12-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using the Dmdpi Debugger

Call Stacks and Stack Frames

16. From the window menu (button 3) in the source text window, select
the run item. The program will run until it hits the first breakpoint
at the rectf statement in the main subroutine. The program stops at
the breakpoint but does not execute the rectf statement.

Notice that when the program stops at the breakpoint, the contents of
the process control window changes. The state now reads
BREAKPOINT, the callstack shows that the program is in main, and
there is one item on the callstack.

Process: P=0x ¢8CF94
BREAKPOINT:

exclock.c:40 main(argc=2,argv=08x78C7E8)

17. Make the process control window current and highlight the line for
main in the callstack. From the line menu (button 2), select open
main() frame.

DMDPI DEBUGGER 12-15

shonw exclock.c:40
Py g Py Ay Py Py Aoy Py Pog Iy g Py Ao Py Aoy Py Ay
cut
sever

fold

You will be prompted to open a new window. The new window is
called a stack frame window and is illustrated below.

Note: You could also have opened the stack frame window
from the source text window by selecting open frame
from the line menu (button 2).

exclock.c: 40 main(argc=2,argv=0x¢8C7E8):

12-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using the Dmdpi Debugger

A stack frame window allows inspection of a subroutine’s activation
record which contains information such as passed parameters, local
variables and register contents. Each subroutine on the callstack has
a corresponding activation record and, therefore, each can have a
corresponding stack frame window.

Local Variables

18. From the stack frame window menu (button 3), select and look at the
current values of local variables argc and argv.

src text
changed spies
2Vscesid sta

exclock.c:48 main(argc=2

argv arg
date aut
ds reg
olds reg
oldtime reg
registers L

At A P Pt Ay Ry Py Ay Ay Ay Ry Ay Py Ay

reshape
move

19. Now the contents of the variables argv[0] and argv[1] can be
displayed. From the line menu (button 2) on argv (button 2),
select $[1.

The operator $ always refers to the current (highlighted) expression.

Therefore, the $[] menu item says that you want to look at the
array contents of the current expression (argv).

DMDPI DEBUGGER 12-17

Using the Dmdpi Debugger

spy on $
eval $

& $

non = |
cast

typeof %
sizeof $

* $

exclock.c:49 main(argc=2,arg
argc=2

forma

At Ay Ay Ay Ay Ay Ay Ay

cut
sever

This menu item generates a new line, argv [?], in the stack frame
window.

20. The line menu (button 2) for argv [?] displays a list of values that
you can set argv equal to. Select a value of 0.

-2
exclock.c:48 main(argc=2,argv= 1
argc=2 1 !i;
argv=0x78C7ES 2
z 3 |
4.
5
6
?
8 pE———
9
10

Now select a value of 1. Notice the results in the stack frame
window.

12-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using the Dmdpi Debugger

exclock.c:40 main(argc=2,argv=0x¢8C7E8):
argc=2
argv=0x7¢8C7/EB

argv[1]=6x ="Hed Mar
argv[0]1=0x¢8C7F4="exclock"

21. Highlight the argv[1] line and select "wider" on under format of
the line menu (button 2). This will give you the full string of
argv[1].

exclock.c:48 ma
argc=2
argv=9§??C?E8

rgv=0x78CYEB):

on
symbolic on

You may want to take time at this point to look at some of the other
items associated with the stack frame window.

DMDPI DEBUGGER 12-19

Step Statements

22. Make the source text window current. With the current stmt item
under the window menu (button 3), verify that the program is still at
the first breakpoint (rectf). (The current stmt menu item highlights
the current statement in the source text window.)

rad = Brect.c--

iain.y;
rad = rad/2 - 2;

reopen exclock.c

rh =6 * rad /7 10 run
:g = za:l ta'il ;, 10; step 1 stmt N

step 2 stmts
step 3 stnls —
step 4 stmts F
step >4 stmts =
step into fcn
initface()...128
main().eeenea.31
ray().eene.a..154

ase of th

rgpread_ rad / 1

/* actually draws a c
/* point length r fro

r;’* draw ray r at angls

Under the same menu (button 3), select step 2 stmts. The program
will stop at local(). Notice that the rectf() function executed and the
exclock window was filled with reverse video.

Step 1 statement: notice the exclock window becomes a local
window (checkered border).

23. The program should now be at line initface. This line initiates the
call to initface. You can enter this function by the step into fcn
window menu item. However, since there is already a breakpoint at
disc in this function, just select run. The program will stop at the
breakpoint. Notice that a new item is displayed at the top of the call
stack in the process control window.

12-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

24,

25.

Using the Dmdpi Debugger

rocess: P=0x/8CF9%4

BREAKPOINT :

exclock.c:142 initface()
exclock.c:49 main(argc=2,argv=0x78C7EB)

Step 3 statements: you should get the clock face on the clock window
which was drawn by the call to disc. Notice that the initface
subroutine has returned; therefore, initface is no longer in the call
stack. The program should stop at strepy.

From the line menu (button 2), select open frame. This will make
the stack frame main current. (If you removed the stack frame
window, you will be prompted to open a new one.) Look at the
value of date from the window menu (button 3). Step the program
one statement (executing strcpy) and then look at the values of date
again.

exclock.c:58 main(argc=2,argv=0x78C7E8):
date=0x78DA7?4=""
date=0x78DA74="Hed Mar 25 12:10:44 ..."

DMDPI DEBUGGER 12-21

Using the Dmdpi Debugger

Global Variables

26. To display global variables, select the Globals item from the window
menu (button 3) of the process control window. You will be
prompted to open a Globals window.

The values of global variables can be displayed by either choosing
the variable from the Globals window menu (button 3) or by typing
an expression from the keyboard. ‘

Remember that each line or window that accepts keyboard input
produces some help in response to typing ?. Type ? to see the help
message for the Globals window. The help message says that an
expression can be entered.

Type in the following expression for variables h, m, and s.

h,m,s

Now step the program 3 statements and look at these variables again.
This time use the eval $ menu item (button 2) in the Globals window
(the variables line has to be highlighted). The eval $ menu item re-
evaluates the current expression.

cast %
typeof $
sizeof $
formatm
By Py g Ay Pg Pog Py Py
cut
sever
truncate l—

As you might have guessed, these variables are the hours, minutes,
and seconds for the clock program. :

12-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using the Dmdpi Debugger

27. Look at the value of ctr in the globals window. This is the center
point on the clock window. Select graphics $ from the line menu
(button 2). This shows where the center point is in the clock
window. To exit this mode, just click any button on the mouse.

e—— spy on $
Globals: P=0x/8CF9%4 eva
h=12, m=10, s=44 &%
Ctr=ix=928,y=902; ERATETIEEE |
sizseof $
Lk

$.x

$l E
Pt Ay Ay Mg Ay Ay Py Aoy Ag Ay

cut
sever
truncate

Clearing Breakpoints

Before you begin running the program, you need to go back and clear the
breakpoints.

28. The easiest way to remove all breakpoints is from the process control
window. Select Bpt List from the sub-menu under more of the
window menu (button 3). You will be prompted to open a
Breakpoint List window. Select the clear all? item from the window
menu (button 3). An exclamation mark inside a diamond (which
indicates a dangerous menu selection) will be displayed. This is
considered dangerous only because all breakpoints will be removed,
which is something you may not want to do in all situations.
Clearing all breakpoints is confirmed by pressing the window menu’s
button (3) again.

DMDPI DEBUGGER 12-23

Using the Dmdpi Debugger

Breakpoint List: P=0x jifjsbidayy
exclock.c:40 clean list
exclock.c:142 N N

reshape
move
close
truncate
tup | ¢ — |

29. Breakpoints can be individually removed by using the clear bpt in
the line menu (button 2) with the desired breakpoint line highlighted
in the Breakpoint list window. A breakpoint can also be removed
from the source text window with the clear bpt item (button 2) and
the appropriate source line highlighted.

30. You can now start the program executing. From either the process
control or source text window, select run from the window menu
(button 3). The clock window will graphically display a clock.

Note: The time is not correct because some time has
elapsed since date was executed on the host (when
exclock was downloaded).

In the following section, "Other Dmdpi Features,” you will see how

to reset the clock to the correct time plus other features of dmdpi that
were not covered in this initial section of the demonstration.

12-24 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Dmdpi Features

This section gives examples of using other dmdpi features that were not
included in the previous section for the dmdpi demonstration. These features
are:

m Keyboard Expressions

@ Conditional Breakpoints

® Spy and Journal

® Assembler-raw memory

® Pathnames/dmdpi working directory
a Crashed processes.

This section again uses the exclock.c demonstration for its examples. If
you need help in downloading and setting up the dmdpi windows for
exclock.c, refer to the previous section, "Using the Dmdpi Debugger-Example
Demonstration. "

Keyboard Expressions

From the previous section, you saw how to use the stack frame and
Globals windows to display the values of local and global variables. These
windows can also be used to evaluate valid C-language expressions that are
entered from the keyboard.

1. Open a Globals window from the process control window.
You may use this window to perform calculations. Enter each of the
following expressions from the keyboard:
242
50*4/2
0x512*4

DMDPI DEBUGGER 12-25

Other Dmdpi Features

Look at the hexadecimal value of 0x512*4 by selecting the hex on
item from the sub-menu under format in the line menu (button 2).

?9 *4 /2=100 cast S

4

unsd_dec on
sign_dec off

doctal on
triascii on
float on

unixtime on

2. Use the window to evaluate other expressions. Enter each of the
following ascii expressions:

Ial
Isl-lol

3. Look at the values of variables h, m, and s. Enter the following
expressions to change the contents of h, m, and s. (Notice the results
in the clock window.)

h=6
m=30
s=0

The following expression is also valid:
m=h+*2 '

4. Now set the correct time in the clock window.

12-26 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Dmdpi Features

Conditional Breakpoints

A conditional breakpoint can be inserted into the source code to test for a
certain condition. When the condition is true, the program’s execution is
stopped at the breakpoint.

1.

To demonstrate this feature in the exclock example, search for the
following line in the source text window:

s += ds / 60; /* calculate seconds */
This line calculates the seconds.

Select cond bpt from the line menu (button 2). This places an
if(?) >>> expression in front of the line. The (?) is where the
condition is to be defined.

For the condition, we want to initiate a breakpoint when the second
hand in the clock window is between the 55- and 5-second points on
the clock face. In order to see all that happens, type in the following
expression and wait until the second hand has passed the 5-second
point before hitting <return>. This allows you to see the condition
being installed, the condition becoming true, and the results of the
breakpoint.

s,s>55lls<5

(passed 5-second point?)
hit <return>

A series of expressions may be entered, separated by the
comma-operator. The value of each sub-expression will be printed,
but it is the value of the last expression that sets the condition for the
breakpoint. In the example, the sub-expression s will be evaluated
and printed each time the conditional breakpoint is evaluated.
However, execution of the clock will stop only when the value of the
last expression (s>55is<5) becomes true (not equal to 0).

DMDPI DEBUGGER 12-27

Other Dmdpi Features

for (ds =061;;) {
/* process times */
while (realtime() <{= oldtime)
sleep(20);
ds += realtime()-oldtime; /* elapsed tick
oldtime=realtime(); i

%

S K= ; *]Jett over ticks #*
if (olds == s)
continue;
/* calculate seconds, minutes and hours */
while (s >= 60) £
s -= 60;
m++;

3. Now clear the breakpoint (clear bpt from line menu - button 2) and
select run from the window menu (button 3).

The trace on item under the source text line menu (button 2) sets a
conditional breakpoint of 0 that will never be true. This serves the purpose of
tracing the statement without stopping execution on the breakpoint.

Spy and Journal

Spy allows you to observe changes in the value of an expression. The
value of the expression is evaluated each time dmdpi looks at the expression.
If the value of the expression has changed, then dmdpi will notify you of that
fact.

Note: The value of the expression may change several times before
dmdpi actually gets a chance to look at the process. More
specifically, dmdpi will only see the expression change when
the process being debugged calls wait() or sleep(). Therefore,
you may not see every change in the value of an expression.

1. In the Globals window, look at the current value of m. From the line
menu (button 2), select spy on $.

12-28 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Dmdpi Features

sizeof $
forma
B Pop Ao Ay By Py Py Ay
cut
sever
truncate

When the second hand on the clock passes 60, the value of m
changes and dmdpi flashes a message in the process window and
updates the value of m in the Globals window.

The Journal window (from the process control window under the
more sub-menu) keeps a record of major debugger activities that are
taking place in the process. For example, while "spying" on the
variable m, the Journal window keeps record of the state of the
process and each spy update.

Remove the spy on $ the same way it was initiated (from the Globals
window’s line menu (button 2) with m line current), except this time
the line menu item says unspy $.

Assembler-Raw Memory

The Assembler window displays the assembler code for statements that
you select.

1.

2.

In the source text window for exclock, highlight the following line of
code.

olds = s

Select the assembler item from the line menu (button 2).

Open the assembler window.

DMDPI DEBUGGER 12-29

Other Dmdpi Features

3.

In the Assembler window, observe the assembler code for this
statement.

Assembler: P=0x¢/8CF94 » I

B: mov.W S,o0lds=dq

From the line menu (button 2), you can also look at the assembler
code for the next instructions using the next menu items (next 1,
next 5, etc.).

With the mov.w line highlighted, select raw mem from the line
menu (button 2).

Open the Memory window. This window displays the actual
contents of the memory locations.

vem?ry: P=0x?§CE94

) O &

This is the first byte of the mov.w opcode.

Selecting .+1 from the line menu (button 2) gives the next memory
location. (0x3839 is the full opcode for the mov.w instruction.)

12-30 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Dmdpi Features

Dmdpi Working Directory

As discussed earlier, the directory where dmdpi is executed becomes
dmdpi’s initial working directory. Dmdpi’s working directory is important
when opening process control and source windows.

When opening a process control window, if a process is downloaded
without a full pathname, dmdpi will look for the object module in its working
directory. For example, if a process is downloaded with the following
command line:

dmdld -z demo.m

the process is listed in the dmdpi window as demo.m. When you open a
process control window for that process, dmdpi (by default) looks for the
demo.m object file in the dmdpi working directory. If dmdpi cannot find the
object file, which contains the symbol table and debugger information, the
following message is displayed in the process control window:

Process: P=0x ¢8F 064
STOPPED:
symbol table header: Cannot find symbol

table (try pud/cd); go on
pc=16874 7(}

The process, however, may be downloaded with a full pathname such as
in the following command line.

dmdld -z /usr/tac/demo/demo.m

In this case, the process will be listed in the dmdpi window as
/usr/tac/demo/demo.m. Since dmdpi now knows the full pathname to the
object module, the object module can be located when a process control
window is opened for that process regardless of dmdpi’s working directory.

DMDPI DEBUGGER 12-31

Other Dmdpi Features

When opening a source file window, dmdpi will look for the source file in
its working directory. If dmdpi cannot find the source file, the following
message will be displayed in the source text window:

ource lext: demo.c
annot open: No such tile or directory

Changing the Dmdpi Working Directory
To change the dmdpi’s working directory, do the following:

1. In any window, you may select pwd/cd sub-menu item of top in the
window menu (button 3).

2. Sweep a working directory window (button 3).

3. From the keyboard, type in the name of a directory to change
dmdpi’s working directory. This enables dmdpi to locate the object
and source code. Selection of a new directory may also be made with
the mouse.

Changing Path to the Source Code

In order for dmdpi to find the source code of a process without changing
its working directory, you may enter a textual prefix into the source files
window. (This can only be done if there is more than one source file.)

12-32 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Dmdpi Features

1. From the process control window, select src text from the window
menu (button 3). Sweep the source text window. If there is more
than one source file, a window listing the file names will appear.

2. From the keyboard, type in a directory name where dmdpi can find
these source files.

3. Aline at the top of the window will appear containing this prefix.
Dmdpi will look for these files in this directory rather than looking
for them in its working directory.

Debugging Crashed Processes

If a process crashes, one of the major steps in determining the problem is -
locating where it crashed. Dmdpi can help do this.

A program crashing commonly causes a process exception. When this
happens, a message will be displayed at the bottom of the application’s
window. At this point, the crashed process can be opened for debugging by
dmdpi, and a callstack traceback can be generated. The callstack traceback can
be used to find the line of source text where the exception occurred.

The following program will crash when it is downloaded.

main()

{

int *loc = 0;

*loc = 0;
sleep(2);

}

This code attempts to write the value 0 to memory address 0. Since the
630 MTG has ROM memory at address 0, this code will cause a bus error
process exception.

DMDPI DEBUGGER 12-33

Other Dmdpi Features

To observe how dmdpi can be used to determine where a program
crashed, do the following:

1.

Type the previous code into a file, compile it using dmdcc with the
-g option, and download it with dmdld. After it has finished
downloading, notice the PROCESS EXCEPTION message in the
application’s window.

Choose the crashed process for debugging and open a process control
window. The process control window will indicate that a process
exception has occurred, and a callstack traceback will be generated
showing where the process was executing when the exception
occurred.

Now you can determine exactly which line of source code caused the
process to crash. In the process control window, make the callstack
traceback line for function main() current.

Note: In the example, there is only one line in the callstack;
however, in real debugging situations, there may be
several lines in the callstack. In these situations, the
current function will be the top line on the callstack.

Select show filename from the line menu (button 2). You will be
prompted to sweep a source text window. In the source text window,
the line containing sleep(2) will be hlghhghted Since sleep(2) is the
next line to execute, this implicates the previous line, *loc=0, as the
problem.

12-34 630 MTG SOFTWARE DEVELOPMENT GUIDE

““clock.c’’ Source Code

The following is a printout of the source code for the clock.c program that
was used in the example demonstration of dmdpi.

/* Copyright (c) 1987 AT&T s/

/* All Rights Reserved s/

VA THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T */
/* The copyright notice above does not evidence any */
/* actual or intended publication of such source code. */

#include <scesid.h>
VERSION(@(#)clock.c 1.1.1.1);

#include <dmd.h>
#include <font.h>

#define atoi2(p) ((*(p)-"0")*10 + *((p)+1)-’0’)
#define itoa2(n, s) { (*(s) = (n)/10 + ’0”); (*((s)+1) = n 4 10 + *0’); }

extern Point string();
extern Point add();
extern long realtime();

Point ctr; /* center point of window */
int h, m, s; /* hour, min, sec */
int rh, rm, rs; /* radius of h m and s */
int rspread; /* spread of base of hands at ctr */
int ah = 0, am = 0, as = 0;/* angles based on 360 degrees of circle*/
int lah, lam, las; /* last angles */
int first ;

main(arge, argv)
char *argv[];

char date[40];
register long oldtime;
register long ds;
register olds;

/* do initialization */
oldtime=realtime();

request (KBD);

rectf(&display, Drect, F_XOR);

DMDPI DEBUGGER 12-35

ssclock.c” Source Code

if(arge!=2){
jmoveto(Pt(0, 0));
jstring("Usage: dmdld clock
sleep(200);
exit();

}

local();

initface();

strcpy(date, argv[l]);

h = atoi2(date+1l);

m = atoi2(date+l4);

s = atoi2(date+l17);

/* main loop for clock */
for (ds = 01;;) {
/* process times */
while (realtime() <= oldtime)
sleep(20);
ds += realtime()-oldtime; /* elapsed ticks (1/60 sec) */
oldtime=realtime();
s += ds / 60; /* calculate seconds */
ds %= 60; /* left over ticks */
if (olds == s)
continue;
/* calculate seconds, minutes and hours */
while (s >= 60) {
s -= 60;
L]
}
olds = s;
while (m >= 60) {
m -= 60;
h++;
if (h >= 24)
h = 0;

}

/* save old angle */

lah = ah;

lam = am;

las = as;

/* calculate new angles */

ah = (30 * (h%12) + 30 * m / 60);
am = 6 * m;

as = 6 * s;

12-36 630 MTG SOFTWARE DEVELOPMENT GUIDE

if (P->state & RESHAPED) {
initface();
P->state &= "RESHAPED;

}

if (kbdchar() == ’q’)
exit();

/* write digital time to display */
strcpy(date, "00:00:00");

itoa2(h, date);

itoa2(m, date+3);

itoa2(s, date+6);

“clock.c” Source Code

string(&mediumfont,date,&display,add(Drect.origin,Pt(1,1)),

F_STORE) ;

/* draw the hands of the clock */
if(first) {
ray(rs, as, rspread/2);
ray(rm, am, rspread);
ray(rh, ah, rspread);

first = 0;
}
else {
if(lah != ah) {
ray(rh, lah, rspread);
ray(rh, ah, rspread);
}
if(lam != am) {
ray(rm, lam, rspread);
ray(rm, am, rspread);
h
ray(rs, las, rspread/2);
ray(rs, as, rspread/2);
}

/* longest */

DMDPI DEBUGGER 12-37

“clock.c” Source Code

/* set up clock circle in window */
initface()

{
int rad;
rectf(&display, Drect, F_CLR);
ctr.x = (Drect.corner.x + Drect.origin.x) / 2;
ctr.y = (Drect.corner.y + Drect.origin.y) / 2;
rad = Drect.corner.x - Drect.origin.x;
if (rad > Drect.corner.y - Drect.origin.y)
rad = Drect.corner.y - Drect.origin.y;
rad = rad/2 - 2;
rh = 6 * rad / 10;
rm = 9 * rad / 10;
rs = rad - 1;
rspread = rad / 10;
disc(&display, ctr, rad, F_STORE);
first = 1;
1
/* draw ray r at angle ang. */

/* actually draws a clock hand at angle ang, with the hand at a */
/* point length r from the ctr, and the base of the hand spread */
/* by rspr. ./

ray(r,ang,rspr)
register int r, ang, rspr;
{
register int dx, dy;
register int ddx1, ddx2, ddyl, ddy2;

dx = muldiv(r, Isin(ang), 1024);

ddx1l = muldiv(rspr, Isin(ang-90), 1024);

ddx2 = muldiv(rspr, Isin(ang+90), 1024);

dy = muldiv(-r, Icos(ang), 1024);

ddyl = muldiv(-rspr, Icos(ang-90), 1024);

ddy2 = muldiv(-rspr, Icos(ang+90), 1024);

segment (&display, add(ctr, Pt(ddxl,ddyl)), add(etr, Pt(dx,dy)), F_XOR);
segment (&display, add(ctr, Pt(ddx2,ddy2)), add(ctr, Pt(dx,dy)), F_XOR);

12-38 630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 13: Jim Text Editor

Introduction
The Jim Window

Jim Operations

Using the Mouse in Jim .

Getting Started - Creatmg a Text Frame

Loading Files into “jim”

Selecting Text .o
Positioning the ““text cursor”
Selecting Words .

Selecting a Line .

Selecting an Arbitrary Contmuous Text Stnng .

Deleting Text
Deleting Text with the Mouse
Deleting Text Using the Keyboard
Adding New Text . .o
Moving and Copying Text .
Moving or Copying Text within a Frame
Moving or Copying Text to Another Frame .
Changing Text . .
Save Buffer Considerations .
Write Commands .
Writing a File Using Button 3
Writing Files with the “w’” Command
Naming Files . .
Naming or Renaming a Flle .

Determining the Filename of a Current Frame .

String Searches .

Other jim Commands
Editor Commands
Miscellaneous Commands
I/0 Redirection Commands .

Frame Positioning and Scrolling

13-1
13-2

13-4
13-4
13-4
13-5
13-6
13-6
13-6
13-7
13-7
13-7
13-7
13-8
13-8
13-8
13-8
13-9
13-9
13-10
13-10
13-10
13-11
13-11
13-11
13-12
13-12
13-13
13-13
. o o .. 1313
e+ o« . . 1313
13-14

TABLE OF CONTENTS i

Chapter 13: Jim Text Editor

Positioning Cursor from the Active Command Line
Using the Mouse to Position the Cursor .
Scrolling within a Frame

Special Characters .

Button 3 Menu Features .

Quitting Jim . e e e e

Command Line Diagnostic Messages

Interactively Recovering Lost Files

Keyboard Command Summary

13-14
13-14
13-14
13-15
13-15
13-17
13-17
13-22

13-24

Introduction

The jim visual text editor allows you to use a mouse to manipulate text in
a file. The mouse can be used to copy, move, or delete text. Several files can
be edited at the same time and data can be transferred easily between the files
being edited. The layers environment must be loaded before you can use jim.

You will find jim easy, fast, and fun to use. It may, however, take some
practice to become acclimated to using the mouse as an editing device.

The instructions in this chapter for using jim are presented in a tutorial
sequence. First-time users should try each step while they are reading the
tutorial. After gaining familiarity with jim operations, use the JIM(1) manual
page in the 630 MTG Software Reference Manual for quick reference.

JIM TEXT EDITOR 13-1

The Jim Window

The jim window is the jim application program downloaded into the
layers environment. After the program is loaded, a one-line command and
diagnostic frame will appear at the bottom of the jim window. This frame can
be used to enter jim commands. It will also display diagnostic messages (see
“Command Line Diagnostic Messages™ at the end of this chapter).

You may open one or more multiline text frames inside the jim window.
These frames are used for viewing and editing files on the host computer.
The size of each frame is determined by the user. Each frame has a scroll bar,
a positional “tick,” and a movable “text cursor.”

Note: The maximum number of frames that can be made is
dependent on file sizes and the amount of 630 MTG memory
that is available.

The jim editor can be downloaded into more than one window.
However, first-time users should download jim into only one window to
avoid confusion. The frames in jim are made and reshaped similarly to
windows.

Figure 13-1 shows a jim window with three frames. Two other windows
are shown for demonstration purposes.

13-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

TEXT
CURSOR T~

TICK ~—U | CURRENT

SCROLL TEXT
BAR —__ FRAME

‘ﬁ

TEXT TEXT

FRAME 2 FRAME 3
COMMAND

LINE
FRAME ~_|

$1s $
filel
file2
filed

OTHER %‘
WINDOWS

Figure 13-1: Sample 630 MTG Screen with Three Jim Frames Open

JIM TEXT EDITOR 13-3

Jim Operations

When using jim for the first time, it is suggested that you use “junk’ files
for practice.

Using the Mouse in Jim

In general, button 1 is used for text selection, button 2 provides a menu of
text manipulation functions, and button 3 provides control for frame
operation.

Avoid moving the mouse and clicking button 2 or button 3 at the same
time. You may accidentally select a menu item that you did not mean to
select. If button 2 or button 3 is depressed accidentally, move the cursor
outside the menu and then release the button to avoid selecting a menu item.

Getting Started - Creating a Text Frame

1. In the layers environments, create a window about two-thirds the
height of the screen.

2. Type jim and press Return. The jim editor program will begin to
download into the window. When the download is completed, the
command line frame will appear at the bottom on the window.

3. Move the arrow cursor inside the jim window.
4. Press (and hold) button 3. The jim command menu will appear.

5. Point the cursor at new in the menu (inverse video) and then release
button 3. This makes the menu selection to create a new frame. The
arrow will change to a sweep cursor (small square with an arrow).
(Clicking button 1 or button 2 cancels this request for a new frame.)

6. Position the sweep cursor in the area of the jim window where one
corner of the new frame will be. Press (and hold) button 3 and move
the mouse, forming a rectangular frame the size that you desire. For
demonstration purposes, make a text frame that covers the lower
one-half of the jim window. This frame will have an inverse video
scroll bar to indicate that it is the current text frame.

13-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

Note: Before any additional frames can be opened, the frame
created last must receive some type of input; such as a
character typed in it, a file loaded, etc.

7. You can now start typing text into this new frame. Try it; type in
your favorite quote. Later in this chapter, you will see how to
change, delete, and add text to a frame. You will also see how to
name a new file and write it after it has been modified. But first,
you need to know how to load an existing file into a frame.

Loading Files into ‘‘jim”’
To load an existing file into a frame in jim, do the following:

1. Create a new frame in the upper half of the jim window. (If you
need help, refer to the previous Steps 5 and 6.)

2. Make the jim command line active (inverse video) either by:
® Moving the arrow cursor inside the command line and

clicking button 1

or

a Entering Ctrl-j from the keyboard. This will work only if at
least one frame is open.

The command line is now ready to accept commands.

3. In the command line, enter e filename (file to be edited) and press
Return. The arrow cursor will change to a dead mouse until
filename is completely loaded into the current jim frame.

Note: An easy way to create a new frame and load a
specific file into it is the g (grab) command which is
discussed in the "Other jim Commands" section of
this chapter.

JIM TEXT EDITOR 13-5

Jim Operations

Selecting Text

In jim, the text is edited after it has been selected. Selected text is
highlighted in inverse video. Button 1 and the “text cursor”” are used to select
areas of text. An area of text can be anything from a single character to the
entire displayed contents of a frame.

Positioning the ‘‘text cursor”’

The “text cursor” is the narrow vertical bar that marks text position in a
frame (shown in Figure 13-1). All text selection either precedes or follows the
“text cursor.” You can change the location of the “text cursor”” by moving the
mouse arrow cursor and clicking button 1. The “text cursor” will move to the
null space nearest the arrow cursor when button 1 is clicked. Button 1 can be
clicked to move the “text cursor” any number of times without affecting the
text.

Selecting Words

1. In the current text frame, position the arrow cursor near the middle of a
word and click button 1. The “text cursor”” should appear within the
word.

2. Without moving the mouse, click button 1 a second time. The word
with the “text cursor” within it will be selected (highlighted) in inverse
video.

Note: If the mouse is moved before button 1 is clicked the
second time, the “text cursor” will change position and
the word will not be selected.

Notice that the word is selected up to the next delimiter (space, comma, colon,
semicolon, bracket, and so forth). If button 1 is clicked a third time, the word
will become normal video (unselected state) again.

Note: Words can also be selected with the “text cursor’ at either end
of the word.

13-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

Selecting a Line

1. Position the “text cursor” at the beginning or ending of a line.

2. Without moving the mouse, click button 1. The entire line will be
selected in inverse video.

Selecting an Arbitrary Continuous Text String
1. Position the “text cursor’” at the beginning or ending of the text string
to be selected.

2. Depress (and hold) button 1. Move the mouse around and notice that
as the mouse moves, text is being highlighted in relation to mouse
cursor movement.

3. When the desired text is highlighted, release button 1. The text should
remain highlighted.

Deleting Text

Text (including blank lines and spaces) can be deleted by using the mouse
or the keyboard.

Deleting Text with the Mouse

1. In a current text frame, select the text string to be deleted as previously
explained under ““Selecting Text.”

2. Depress button 2 and highlight the cut item from the menu.
3. Release button 2. The highlighted text will be deleted from the frame.

Note: The text from the last deletion is stored in the "save
buffer" and can be retrieved if you need it. However,
the next deletion rewrites the contents of the "save
buffer" and the previously "saved" text can no longer
be retrieved. (See "Save Buffer Considerations" of this
chapter for more information.)

JIM TEXT EDITOR 13-7

Jim Operations

Deleting Text Using the Keyboard

Position the “text cursor” to the right side of the text to be deleted and
press the Back Space key. Every time you hit Back Space, a character will be
deleted.

Adding New Text

Use one of the following methods to add text to a frame:

m Input text directly into an existing or empty frame by typing in the
desired text (explained earlier in this chapter).

Note: Typed text always follows the ““text cursor.”
= Move and copy text within the frame and/or to another frame.

m Use standard input/output redirection. (Discussed in the "I/O
Redirection Commands" section of this chapter.)

Moving and Copying Text

Moving and copying text within a frame and/or to another frame is
mouse dependent. Button 2 is used to cut (remove), snarf (copy), and paste
(add) text in the same frame or between frames. Buttons 1 and 3 are used for
cursor positioning and frame selection.

Moving or Copying Text within a Frame

1. In the current frame, select the text to be moved or copied.
2. Depress button 2 and select cut or snarf from the menu.

3. Release button 2. If cut was selected, the highlighted text is removed
from the frame and placed in the “’save buffer.” If snarf was selected,
the highlighted text is copied into the “save buffer” and the original
text remains unchanged.

4. Using button 1, position the “text cursor” to the desired location of text
insertion.

13-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

5. Depress button 2 and select paste from the menu.
6. Release button 2. The text will be inserted at the “text cursor.”

Note: The pasted text remains selected and highlighted after
the paste operation is completed.

Moving or Copying Text to Another Frame

1. Select the text with cut or snarf.

2. Make the receiving frame current either by positioning the cursor in the
receiving frame and clicking button 1 or by selecting the receiving
frame from the button 3 menu.

Note: A new frame that has not been named is listed in the
button 3 menu either as an asterisk (*) if the frame is
not current or by a period(.) if it is current.

3. In the receiving frame, position the “text cursor” to the immediate right
of where text is to be inserted.

4. Depress button 2 and select paste.

5. Release button 2. The previously selected text will be inserted at the
“text cursor.”

Note: The pasted text remains selected and highlighted after
the paste operation is completed.

Changing Text
To quickly change text:

1. Use button 1 to select the text string to be changed, highlighting it in
inverse video.

2. Type in the replacing text. The highlighted string will be replaced (an
implicit cut) as soon as the first character of the replacing text is typed.

The replaced (highlighted) text is stored in the ““save buffer.” It can be
retrieved with a button 2 paste command.

JIM TEXT EDITOR 13-9

Jim Operations

Save Buffer Considerations

The jim editor has a single save buffer. The save buffer stores selected
inverse video text after an editing command action. Each new editing
command action overwrites what was previously stored in the save buffer.
The cut, snarf, and “changing text” (previous section) operations store the
selected text in the save buffer. The Esc key can also store text in the save
buffer. (The use of the Esc key is explained in the "Special Characters"
section of this chapter.)

The paste command is used to insert or retrieve the save buffer contents.

If you want to keep the save buffer contents intact while continuing to
perform other edit functions, you can either:

m Make a new (empty) frame and then paste the save buffer contents into
it for retrieval when needed

or

m Use a combination of the Back Space key, keyboard keys, and “text
cursor” to perform editing functions without disturbing the save buffer
contents.

Write Commands

The write command is used to save the contents of a file. Once the
contents are saved, you have a permanent record of the file to use later.
There are two ways to write a file in jim: use mouse button 3 write or the
keyboard w command.

Writing a File Using Button 3

1. Depress button 3 and select write on the menu.
2. Release button 3. The cursor will change to a target sight.

3. Move the target sight inside the frame to be written. (Clicking button 1
or button 2 will abort the write command selection.)

13-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

4. Clicking button 3 will write the file. The following message will appear
in the command line: wrote filename (filename is the name of the file).

Note: If "no filename" appears in the command line, see the
"Naming Files" section of this chapter.

Writing Files with the “w’’ Command

The keyboard w command with no argument is used to write a named
file. The w filename command is used to write the current frame to the
specified filename. To write files with w:

1. Make the desired frame current and then activate the command line.

2. On the keyboard, type w and press Return. The message wrote
filename should appear in the command line. If no file name appears,
the file has not yet been named. If this happens, type w filename and
press Return. The message wrote filename appears in the command
line.

Naming Files
The keyboard f command is used to name, rename, or determine a frame

filename.

Naming or Renaming a File

1. Make the frame to be named current.
2. Activate the command line.

3. Type f filename and press Return. ‘. filename will appear in the
command line. The file is now named or renamed.

Note: To make a newly named or renamed file permanent, the file
must be written.

JIM TEXT EDITOR 13-11

Jim Operations

Determining the Filename of a Current Frame

1. Activate the command line.

2. Type f and press Return. The current frame’s filename will appear in
the command line.

String Searches

The ‘ /’ command searches forward and the ‘?’ command searches
backward. Both will search from the current line for the next occurrence of a
predetermined text string.

To perform a string search, do the following steps:
1. In a current text frame, determine a known text string.
2. Activate the command line.

3. Type /[any existing text string] to search forward or ?[any existing text
string] to search backward and press Return. The string will be
highlighted in inverse video when located.

The frame will be redrawn when necessary. Either string search will wrap
around in the frame. When a “/’ is used, the search starts immediately
following the “text cursor.” When a ‘?’ is used, the search starts immediately
preceding the “text cursor.” If the text string is not found, the following
message will appear on the command line:

string not found

The most recent search string is added to the button 2 menu. You can
repeat a search by selecting the string in the button 2 menu. Typinga‘/’ or
‘?’ in the command line without a string will also repeat the most recent
string search.

Text strings in jim obey the same rules as full regular expressions, as in
the UNIX System V command egrep(l). As an example, to search for a *, you
must type /* or 2*.

13-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

Other jim Commands

Editor Commands

The active jim command line can also execute the following commands:
E Edits the file unconditionally.
q Conditional quit.
Q Unconditional quit.

= Displays the text cursor line number location.

Miscellaneous Commands

These commands can be executed from the command line:

g filename Initiates the creation of a new frame for editing the
named file. The cursor in the jim window will change to
a sweep cursor (arrow inside a square) which is an
indication to sweep a new frame. Button 3 is used to
sweep the new frame. (If a frame already exists for the
named file, the g (grab) command makes that frame
current.)

cd dir Sets the working directory to dir. There is no CDPATH
search, but $HOME is the default dir.

1/0 Redirection Commands

An active jim command line can execute the following UNIX System
commands:

> Sends the selected text to the standard input of a command.
< Replaces the selected text by the standard output of a command.

I Replaces the selected text by the standard output of a command,
given the original selected text as standard input.

JIM TEXT EDITOR 13-13

Jim Operations

Note: If any of these commands are preceded by an asterisk (*), the
command is applied to the entire file, not just the selected text.

As an example, typing > pwd in the active command line will cause
the working directory to be printed. As a second example, typing <Is in
the active command line will cause the listing of the current working
directory to be inserted at the current cursor position of the last active
frame.

The most recent I/O redirection command is added to the button 2
menu for easy repetition.

Frame Positioning and Scrolling

Positioning in a current text frame can be done from the command
frame or with the mouse. Scrolling can only be done with the mouse.

Positioning Cursor from the Active Command Line

Type any existing line number and press Return. The text of the line
number typed will be highlighted in inverse video. The frame will be
redrawn if necessary.

Using the Mouse to Position the Cursor

1. Move the mouse arrow to a place on the current frame.

2. Press button 1 on the mouse. The cursor will move to the point
immediately preceding the mouse arrow.

Scrolling within a Frame

Notice the small “tick” inside the current text frame’s inverse video
“scroll bar.” The tick indicates the relative position of the file displayed
inside the frame. By moving the tick inside the scroll bar, you can scroll
text within a frame. To position the tick, move the mouse arrow up or
down in the scroll bar area and press a mouse button, as determined from
the following:

® Button 1 moves the line at the top of the frame to the location
where button 1 is clicked within the scroll bar. This causes the file
to scroll backward until the first line of the file is at the top of the
frame.

13-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

m Button 2 moves the frame file absolute position (indicated by the ““tick”)
to where button 2 is clicked. If button 2 is clicked in the middle of the
scroll bar, the middle portion of the file will be displayed. When
clicked at the end, beginning, or any fraction thereof, that portion of the
file will appear in the frame. This feature is useful for scrolling in long
files.

m Button 3 moves the line of text where button 3 is clicked within the
scroll bar to the top of the frame. This causes the file to scroll forward.

Note: Buttons 1 and 3 can be held down to repeat.

Special Characters
The following characters cannot be inserted in the text of a jim frame:
s Back Space (Ctrl-h) erases characters to the left of the cursor.

m Ctrl-w erases back to the word boundary preceding the selected text or
“text cursor.”

® Esc key selects the text typed since the last mouse button was clicked.
If an Esc key is pressed twice immediately after typing text, it is
identical to a cut and the text will be stored in the save buffer. After
pressing Esc twice, the button 2 paste command can then be used to
“undo” changes.

Button 3 Menu Features

Mouse button 3 has four commands in its menu: new, reshape, close,
and write which provide control of the selected frame.

As you have already seen, the new command is used to create frames
inside the jim window.

Note: When the sweep cursor appears after selecting new, clicking
button 3 causes the new frame to be automatically drawn to
the size of the entire jim window.

JIM TEXT EDITOR 13-15

Jim Operations

The reshape command changes the shape of a frame, as follows:
1. Press button 3 and select reshape.

2. Release button 3. The cursor is now a target sight.

3. Move the target sight cursor over the frame to be reshaped.

4. Click button 3. The “sweep cursor”’ (square cursor with an arrow)
appears as the cursor. Now, you have a choice:

m Click button 3 again and the selected frame will automatically
reshape itself to fill the jim window.

or

m Move the sweep cursor to locate a corner of the frame being
reshaped. Depress button 3 and move the cursor to reshape the
frame. The frame will be defined and loaded with the file when
button 3 is released.

The close command removes a selected frame from the jim window. The
file still exists as a UNIX System file; only the associated frame is shut down.
To close a frame:

1. Depress button 3 and select close on the menu.
2. Release button 3. The cursor is now a target sight.
3. Move the target sight inside the frame to be closed.

4. Click button 3. The frame disappears. If you click button 1 or button
2, the close command is canceled.

Note: The message filename changed will appear in the command
line if changes were made to the file and not written. A
second close selection will succeed.

The rest of the button 3 menu lists frame filenames that are available for
editing. To work in a different file, select the filename from the menu. If the
frame is already open, it is simply made the current frame. If the file is not
open on the screen, the cursor will switch to a sweep cursor to prompt for a
rectangle to be swept out with button 3.

13-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

The filename line may include:

® An apostrophe, indicating the file (frame) has been modified since last
written

® An asterisk or a period, indicating the frame is open (asterisk) or the
current frame (period)

® A blank, indicating a frame with no name

Note: The filename may be abbreviated, but the last component is
always complete.

Note: If the entire jim window is moved or reshaped, all open text
frames will be closed. The text frames can be reopened by
selecting the filenames in jim’s button 3 menu.

Quitting Jim

The q command is used to quit the jim editor. Typing q in the command
line may cause the files changed message to appear (this is a reminder that a
file[s] has been modified and a write should be done). Typing a second q will
cause jim to exit and return to a UNIX System V shell. The capital Q
command ignores modifications and exits jim immediately. See the JIM(1)
manual page in the 630 MTG Software Reference Manual for detailed
information.

Command Line Diagnostic Messages

Figure 13-2 gives a list of diagnostic messages that appear in the jim
command line. An explanation of each message is also included.

JIM TEXT EDITOR 13-17

Jim Operations

Diagnostic Message

Explanation

bad directory

You entered an incorrect path name or
you do not have permission to access the
named directory. Use the correct path
name and check directory access
permissions.

can’t open filename

You are trying to access an illegal file or
you do not have read permission for the
named file. Make sure filename is
accessible.

file already exists

You tried to write a file that already exists
in the current working directory. Enter
write command again to overwrite the
file.

files changed

File changes were made but not written.
Either write the file or enter q again. A
second q or Q command ignores previous
file changes and quits immediately.

Figure 13-2: Diagnostic Messages (Sheet 1 of 4)

13-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

Diagnostic Message Explanation
file modified since An attempt was made to write a file that
last read/written was changed in another frame. To avoid

confusion, close the frame you don't
want. Then, you can write the other
frame without receiving a diagnostic
message.

no file name You tried to write a file that does not have
a filename assigned. Give the frame a
filename by using the f or w command.

--RE error: operand An attempt was made to search for a
expected for *, + or ? string that has the characters *, +, or ? in
it. Precede these characters with a back
slash (“\”). If one of these characters is at
the end of the string, the character will be
ignored and this message will not appear.

sorry; can't edit Selected text is beyond the area of the
huge selection or sorry; frame. Redraw the frame, making it
first deselect larger.

that huge thing

Figure 13-2: Diagnostic Messages (Sheet 2 of 4)

JIM TEXT EDITOR 13-19

Jim Operations

Diagnostic Message

Explanation

string not found

The text string searched for was not
found. Check string to make sure you
typed it correctly. If string was typed
correctly, an invisible character (i.e.,
control characters) may be part of the
string, or the string does not exist in the
file. Control characters cannot be
searched for in jim.

syntax

An illegal command was entered. This
usually happens when ed instead of e is
used to open a file for editing. Enter
command with correct syntax.

too many files open

Message is displayed when too many files
are open. Reduce the number of opened
frames.

UNIX message unknown?

A message was written to your jim
window. No action is required but you
may want to make another window active
and investigate the message.

Figure 13-2: Diagnostic Messages (Sheet 3 of 4)

13-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

Diagnostic Message Explanation
warning: filename Message is displayed if an opened file is
already loaded loaded into a second jim frame. No

action is required but you may want to
close one of the frames.

last char not You tried to write a file but the last
newline; wrote filename character of the file is not a new line. In
the frame, make sure the text cursor is on
the last blank line by pressing the Return
key at end of last file line; then write the
file again.

wrote filename The file in the current frame was written
as requested. No action is required.

you typed: The typed input is not acceptable. Enter
repeat of your typed input an acceptable command.

Figure 13-2: Diagnostic Messages (Sheet 4 of 4)

JIM TEXT EDITOR ' 13-21

Jim Operations

Interactively Recovering Lost Files

If jim is exited abnormally (loss of power, etc.), the 630 MTG will attempt
to create a recovery file for each window where jim was downloaded. The
recovery file(s) will be located in the $HOME directory. The name of the
recovery file will be in the form:

jim.string

where string is a unique alphanumeric code for each jim window. Mail will
be sent to your login id stating that the files were saved and specifying the
executable file name.

The recovery file is then used interactively to recover the files that had
been modified but not written when the jim window was removed.

To restore files to your $HOME directory, type in the following:
jim.string

To restore files to another directory, cd to that directory and type in the
following:

$HOME/ jim.string

The recovery program causes each modified file to be listed individually in
the following manner: '

file (modified)?

You can choose whether or not to restore each file by entering y (yes) or n
(no).

13-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

Jim Operations

Files that have not been named will be listed as "nameless_1, nameless_2,
etc.

Caution: Anytime a file is being recovered, the "recovered" file
overwrites the contents of another file with the same
filename. Also, if jim has been downloaded into more than
one window, the "nameless" files from one window will
have the same filename (nameless_1, nameless_2, etc.) as
those from the other jim window(s). There are a couple of
ways to avoid overwriting these files during/recovery.
Recover the nameless files from the first window and then
rename them before recovering the files from the other
window(s). Or, recover the nameless files in different
directories.

See the JIM(1) manual page in the 630 MTG Software Reference Manual for
more information on recovering files.

JIM TEXT EDITOR 13-23

Keyboard Command Summary

The following list is a summary of the jim keyboard commands and their
functions that are used in this chapter.

e filename

E filename

f filename

g filename

q

Q

w

cd dir

Ctrl-h

Ctrl-j

Ctrl-w

Esc

Used to load filename into a jim frame for editing.

Edits unconditionally; loads filename regardless of
the content of the current frame.

Used to name or rename the current frame.

Used to create a new frame and load filename for editing (grab).

Is a conditional quit to jim; if all modified frames have
been written.

Is an unconditional quit; ignores all modifications.

With no argument is used to write a named file. w filename
writes the current frame to the specified filename.

Sets working directory to dir.
Control Characters

(Back Space) erases characters to the left of the cursor.

Toggles between activating the command line frame to receive
keyboard input and activating the last active frame.

Erases back to the word boundary preceding the selected text
or "text cursor."

Escape Character

Used to select, cut, and pastes text that has been typed since
the last mouse button was clicked.

13-24 630 MTG SOFTWARE DEVELOPMENT GUIDE

Keyboard Command Summary

/ string

? string

(line #)

Symbol Characters

Displays the text cursor line number for the current frame.

Performs a forward search for the next occurrence of string.
/ without string will repeat the last string search.

Performs a backward search for the next occurrence of string.
? without string will repeat the last string search.

Sends selected text to the standard input of a command.
Replaces selected text by the standard output of a command.

Replaces the selected text by the standard output of a command,
given the original selected text as standard input.

Positions the current frame to the specified line number.

JIM TEXT EDITOR 13-25

Chapter 14: Icon Editing

Introduction 14-1
Bitmaps and Texturel6s . 14-2
How Icons Are Stored 14-2
Using Icon : 14-3
Initiating an Icon Session . 14-3
Selecting Bitmap or Texturel6 . 14-4
The Icon Menu . 14-5
Drawing With Icon 14-9
Move Icon 14-9
Copy Icon . 14-10
Invert 14-10
Erase Icon . 14-10

Flip Icon 14-11
Shear Icon 14-11
Stretch Icon 14-12
Duplicate Icon 14-12
Read Icon File 14-12
Background Grid 14-13
Change Mouse Cursor . 14-13
Bitblt Operator 14-13
Write Icon Files 14-15

Quit Icon . 14-15
Using Icons in Programs 14-15
Using Icons in Bitmaps .o 14-15
Using Icons for Background Textures and Mouse Cursors .. 1417
Supplied Icons 14-18

TABLE OF CONTENTS i

Introduction

icon is a visual editor for graphical images commonly referred to as
"icons". Icons are used as image data for Bitmaps and Texturel6s which are
ultimately incorporated into application programs to enhance user interface.
See the "Graphics Environment" Chapter for details on the Bitmap and
Texture16 graphical data types.

Before going any further, a few definitions are necessary:

icon This is the graphical image editor for the 630 MTG. It is
shown in lower case, bold type.

icon This is a pattern drawn in the grid of the icon editor.

Texturel6 This is a 630 MTG graphical data type. The size of this data
type is always 16 by 16 bits.

Bitmap This is a 630 MTG graphical data type. There is no size
restriction on the image data of a Bitmap.

After gaining familiarity with the icon operations presented in this
chapter, you can use the ICON(1) manual page in the 630 MTG Software
Reference Manual as a reference.

ICON EDITING 14-1

Bitmaps and Texture16s

Icons created with the icon editor can be used in two different 630 MTG
graphical data types: Bitmaps and Texturel6s. In the case of Bitmaps, the icon
is used as the Bitmap’s image data. This is the array of data pointed to by
base in a Bitmap data structure. The Bitmap image data has no size
restrictions. Texturel6s, on the other hand, require an icon that is 16 by 16
bits. Texturel6 data structures can be used as background textures and mouse
cursors.

How Icons Are Stored

Depending on whether you are creating image data for a Bitmap or
Texturel6, the icon editor will store the icon differently. The image data for a
Bitmap will be stored in a file as a list of 32-bit hexadecimal quantities. The
file will not include any of the header and trailer information to declare the
image data as a Bitmap. This allows you to combine the files to create larger
Bitmaps.

When an icon is stored as a Texturel$, the appropriate Texturel6 header
and trailer information is added. You do not have to add any additional
information to use the Texturel6 data structure in an application.

14-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using Icon

Initiating an Icon Session

To download the icon program, create a new window and type in: icon.
The default display consists of a large grid representing 50 by 50 pixels in the
lower right-hand corner of the window. Each square in the grid represents
one pixel on the 630 MTG display.

The default size of the grid may be changed by using the "-x" and "-y"
options. For example, to display a 42 by 34 pixel grid, type:

icon -x 42 -y 34

While the cursor is positioned over the grid, and the icon window is
current, pressing mouse button 1 draws a pixel, and pressing button 2
undraws a pixel. In the upper left-hand corner of the display, the icon you
are drawing will appear in actual size. Figure 14-1 shows the icon window
with the supplied icon "banana" drawn in the grid. Icons supplied with the
630 MTG Software Development Package can be found in the subdirectories
located under $DMD /Icons.

ICON EDITING 14-3

Using icon

Figure 14-1: The icon Editor Display

Selecting Bitmap or Texture16

The icon editor reads, writes, or changes icons for both Bitmap image data
and Texturel6 data structures. You select the icon type by pressing mouse
button 2 (for a Texturel6 data structure) or button 3 (for Bitmap image data)
after selecting a write, read, or change command from the icon editor’s menu.
For example, when you have drawn an icon and select the write command,
icon requests the type of icon you want written by changing the mouse cursor
to the "Sweep Rect or Get 16 x 16 Box" cursor.

14-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using Icon

When button 2 is pressed and held down, the cursor changes to a " large
box™ that covers a 16 by 16 area in the icon grid. The "large box" can be
positioned over the section of the grid you want defined as a Texturelé.
Releasing button 2 will execute the write command.

Pressing button 3 will change the cursor to a "sweep cursor," which is a

prompt to sweep out the rectangular portion of the icon grid you want to
define as the Bitmap image data. Releasing button 3 will execute the write

command.

The Icon Menu

Pressing button 3 raises a menu consisting of commands represented
graphically. For example, a "quill pen" icon represents the write command

Figure 14-2 shows the icon menu.

¢@¢ﬁ
59 d & Q

;"l mii *,,"

R

Figure 14-2: The icon Menu

There are nineteen icon commands (one of which is help).

To select an icon command, press and hold button 3. Move the mouse
cursor (now a "box") over the desired icon. Releasing button 3 will select the
command. For example, to select the help command:

1. Press and hold mouse button 3.
2. Move the mouse cursor over the help icon; release button 3.

ICON EDITING 14-5

Using Icon

3. Every icon that appears in the menu is shown in the help message
with a short description.

4. Click any mouse button to remove the help message.

The following gives a short description of each command in order from
left to right, top to bottom (as shown in the menu):

MENU DESCRIPTION

Arrow: Moves the icon to another portion of the grid.

Invert: Inverts (bitwise complements) an icon.

Erase: Erases the icon.

Ej Copy: Copies the icon to another portion of the grid.
|

.-

]

. '!;.%

"ILJI".I Reflect X: Flips the icon on the x axis.
R

tj't"j Reflect Y: Flips the icon on the y axis.
g L Rotate +: Rotates the icon clockwise 90 degrees.

g B
-
-rLJ Rotate -: Rotates the icon counterclockwise 90 degrees.

14-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using Icon

MENU

DESCRIPTION

Shear X: Shears the icon along the x axis. (For example, a
rectangle will change to a parallelogram shifted along the x
axis.)

Shear Y: Shears the icon along the y axis. (For example, a
rectangle will change to a parallelogram shifted along the y
axis.)

Stretch: Stretches (or shrinks) the icon.

Duplicate: Duplicates an icon over a larger (or smaller) area
of the grid.

Read File: Reads a file containing Bitmap image data or a
Texturel6 data structure.

Background Grid: Draws a reference grid divided into 16 by
16 squares with borders highlighted.

Pick Cursor Icon: Changes the mouse cursor to a Texturel6
selected in the grid.

ICON EDITING 14-7

Using Icon

MENU DESCRIPTION

Write File: Writes the icon to a file as Bitmap image data or
a Texturel6 data structure.

Bitblt: The bitblt operator allows you to alter the source and
destination areas specified on the grid.

H Help: Prints the icon help message. Press any mouse button
to continue.

i
F" Exit: Exits the icon program. Confirm request with a button
3 press.

The following icons appear as mouse cursors after selecting one of the
icons from the command menu:

ICON DESCRIPTION
=
{ ﬂ Wait: Wait while icon requests I/0.
-
i

-r,-.." Mouse Inactive: The mouse is inactive; wait.

E& Menu on Button 3: Press button 3 to display menu.

14-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using Icon

ICON DESCRIPTION

N

l Sweep Rect: A prompt to sweep a rectangle (button 3).

& (button 2 or 3). Button 2 defines a Texture16 by displaying a
l large 16 by 16 "box". Button 3 defines a Bitmap by allowing
you to sweep a rectangle.

— Sweep Rect or Get 16 x 16 Box: Select Texture16 or Bitmap
|

Drawing With Icon

Generally, you can create icons by pointing to the icon grid with the
mouse cursor. The bits pointed to by the mouse cursor are set by clicking
button 1 and cleared by clicking button 2. You may draw (or undraw) a bit at

“a time by clicking the button; or, by holding the button down, draw (or
undraw) many bits while moving the cursor.

Note: In the following procedures, you will be instructed to select a
Texturel6 or Bitmap. For more information, refer to the
previous section "Selecting Bitmap or Texturel6" in this
chapter.

Move Icon
An icon is moved within the icon grid by using the arrow menu selection
as follows:

1. Select the arrow from the icon command menu.

2. In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select an
area of the grid as a Texture16 or Bitmap image data (see "Selecting
Bitmap or Texturel6").

3. Move the mouse cursor, now a "large box", over the area of the grid
where you want the icon to appear; then click button 2 or 3.

4. The icon is drawn into the new location on the grid.

ICON EDITING 14-9

Using lcon

Copy Icon

After you have drawn an icon, you may copy it to another portion of the
grid using the icon copy command as follows:

1.
2.

Not

Invert

Select the copy command from the icon command menu.

In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select a
Texturel6 or Bitmap.

Move the cursor, now a "large box", to the portion of the grid where
you want the copy to appear and click button 2 or 3.

The copy appears in the desired area. Note that copies are clipped to
the grid area.

e: You can copy the icon as many times as you wish. However,
the icon may become garbled and unrecognizable as copies
overlap. Watch the actual size representation of the icon in
the upper left-hand corner of the icon window. This is a true
indication of the icon in the grid.

To invert (bitwise complement) a section of the icon grid:

1.
2.

3.

Select the invert from the icon command menu.

In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select a
Texturel6 or Bitmap.

When button 2 (or 3) is released, the selected area is inverted.

icon

To clear an area of the icon grid:

1.
2.

14-10

Select the erase from the icon command menu.

In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select a
Texturel6 or Bitmap.

When button 2 (or 3) is released, the area selected is deleted.

630 MTG SOFTWARE DEVELOPMENT GUIDE

Using Icon

Flip Icon

The reflect X, reflect Y, rotate -, and rotate + commands flip the icon in
the indicated direction. The procedure is the same for each operation:

1. Select the desired command from the icon command menu.

2. In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select a
Texturel6 or Bitmap.

3. At the release of mouse button 2 or button 3, the icon flips.

Shear Icon
The shear x command shears an icon along the horizontal axis. To shear
the icon:

1. Select the shear x icon from the menu.

2. In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select a
Texturel6 or Bitmap. The cursor changes to a "small box".

3. Move the "small box" left or right.

4. Click button 3. The shear x command causes the y-axis to tilt in the
direction of the "small box". The icon tilts (or skews) in the direction
and distance determined by the direction and distance of the "small
box" relative to the closest corner of the Texture16 or Bitmap.

The shear y command shears an icon along the vertical axis. To shear the
icon:

1. Select the shear y icon from the menu.

2. In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select a
Texturel6 or Bitmap. The cursor changes to a "small box".

3. Move the "small box" up or down.

4. Click button 3. The shear y command causes the x-axis to tilt in the
direction of the "small box". The icon tilts (or skews) in the direction
and distance determined by the direction and distance of the "small
box" relative to the closest corner of the Texturel6 or Bitmap.

ICON EDITING 14-11

Using icon

Stretch icon
The stretch command stretches (or shrinks) the icon. To change icon size:

1.
2.

Select the stretch icon from the menu.

In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select a
Texturel6 or Bitmap.

Fix one corner of the new icon by pressing and holding button 3.
Move the cursor to the diagonally opposite corner of the new icon.

Release the button that you pressed. The icon changes to fill the
"box".

Duplicate Icon

The duplicate command duplicates an icon over a larger (or smaller) area
within the grid. To duplicate a texture:

1.
2.

4.

Select the duplicate from the icon command menu.

In response to the "Sweep Rect or Get 16 x 16 Box" cursor, select a
Texturelé or Bitmap.

Using either button 2 or button 3, define the area where the icon is to
be duplicated as a Texturel6 or a Bitmap.

The icon is repeatedly duplicated until it fills the new area.

Read Icon File

To read an existing Bitmap image or Texturel6 data structure stored in a
file, do the following;:

1.

3.

Select the read file command from the icon menu. You are required
to type in the name of the file to be read.

If the file contains a Texturelé6 data structure, the mouse cursor
changes to a 16 by 16 box, defining the area the Texture16 covers on
the grid. Move the "box" to the position on the grid where you want
the Texturel6 to appear.

Click button 2. The Texturel6 is drawn in the grid.

14-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using Icon

4. 1If the file contains Bitmap image data, the cursor changes to a "box"
enclosing the area of the grid covered by the Bitmap. Move the
"box" to the position where you want the Bitmap to appear.

5. Click button 3. The Bitmap is drawn in the grid.

Note: Files to be read by icon that have been modified or manually
created must correspond precisely to the format used by icon
when it writes a file,

Background Grid

The icon grid can be divided into 16 by 16 pixel areas by selecting the
background grid command from the menu. Selecting the background grid
command again removes it. These 16 by 16 areas are useful when drawing
Texturel6s or to determine how many 16 by 16 pixel areas an icon occupies.

Change Mouse Cursor
You can change the mouse cursor to display the Texture1l6 you are
developing by doing the following:
1. Select the pick cursor icon from the icon command menu. The cursor
changes to a 16 by 16 pixel "box".

2. Move the "box" over the area you want, then click button 2. The
cursor changes to the area you selected. This lets you test the
Texturel6 for its suitability as a mouse cursor.

3. Clicking any mouse button cancels the command and returns the
cursor to its previous shape.

Bitbit Operator

The bitblt command is used to alter the source and destination areas
specified on the grid. You can perform bitwise copies and moves on textures
in the grid.

To perform a bitwise move:

1. Select the bitblt command from the icon command menu. The cursor
changes to the "menu on button 3" icon.

ICON EDITING 14-13

Using Icon

2. Press and hold button 3. A menu is displayed showing:

SI'C := SIC
src:= 0

where:src := src copies icons and src := 0 moves icons.
3. Select src := src or src := 0.
4. The cursor changes to "menu on button 3" icon.

5. Press and hold button 3. A menu is displayed showing;:

dst := src
dst := src or dst
dst := src xor dst

dst:= 0

where:

dst := src
copies (or moves) the selected icon to another portion of
the grid. If the new icon overlaps the original icon, the
original is erased.

dst := src or dst
copies (or moves) the selected icon to another portion of
the grid. If the new icon overlaps the original icon, the bits
are or’ed.

dst := src xor dst
copies (or moves) the original icon to another portion of the
grid. If the new icon overlaps the original icon, the bits are
exclusive or’ed.

dst:=0
erases the icon.

6. Select an entry from the menu. The mouse cursor changes to the
"Sweep Rect or Get 16 x 16 Box" icon.

14-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

Using Icon

Select a Bitmap or Texturel6.

Move the cursor to the area in the grid you want the texture to appear
and click button 2 or 3.

The icon is moved (or copied) to the new location in the grid defined
by the menu selection.

Write Icon Files
To write an icon from the icon grid to a file:

1.
2.
3.

Select the write file from the icon command menu.
Select a Bitmap or Texturel6.

Type in a name for the file. While writing the file, the icon window
changes to reverse video.

Files are saved in the window’s current directory unless a full path name
is specified.

Quit lcon
To exit the icon editor:

1.

Select exit from the icon command menu. The cursor changes to a
"smoking gun".

Click button 3 to exit the icon editor. Click button 1 or 2 to cancel the
exit request.

Using Icons in Programs

After saving an icon in a file as a Texture16 or as Bitmap image data, it
can be incorporated into an application program. The following sections
discuss how to use the saved icons in an application.

Using Icons in Bitmaps

When the icon editor writes an icon to a file as Bitmap image data, the file
contains a comma-separated list of 32-bit hexadecimal values. There may be
one or more 32-bit values on each line depending on the width of the icon
that was written to the file.

ICON EDITING 14-15

Using Ilcon

The image data written by icon must be edited in order to use it as the
image data for a Bitmap. To do this, you must declare the list of 32-bit
quantities as an array of unsigned longs and then initialize base in the Bitmap
data structure to point to this array. (Be sure to typecast the address as a
pointer to a Word.) The width and rect fields of the Bitmap must be
initialized according to the image data size. See the "Graphics Environment"
Chapter for more details on the Bitmap data type.

The following example program shows the results of editing a file output
by icon to incorporate it into a program as the image data for a Bitmap.

#include <dmd.h>

unsigned long bits[] = { /* Header line - defines */
/* the icon data as an array */
/* of unsigned longs. */

0x0001FFFE, /* Start of the data file */
0x00021086, /* that was saved by the */
0x00042104A, /* icon program for the */
0x000FFFF2, /* icon named "cube". */
0x00108432,
0x00210852,
0x007FFF96,
0x0084219A,
0x01084292,
0x03FFFCB2,
0x021084D2,
0x02108496,
0x0210859A,
0x02108692,
0x03FFFCB2,
0x021084D2,
0x02108494,
0x02108598,
0x02108690,
0x03FFFCAO,
0x021084C0,
0x02108480,
0x02108500,
0x02108600,
0x03FFFC00,
0x00000000

14-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

}s /* trailer for icon bitmap */
/* beginning of sample program */
Point add();

Bitmap example = {
(VWord *)bits, /* pointer to data */
2, /* width in Words of data area */
0,0,32,26, /* rectangle */
0 /* unused, always zero */

/* This program draws the icon bitmap. */
/* It makes the icon "walk" down the window */
main()

{

int i;
Point j;

for (i=10; i<1000; i+=40)

{

J = add(Pt(i,i), Drect.origin);
sleep(15);
bitblt (&example, example.rect, &display,
J +F_STORE);
}
request(KBD);
wvait(KBD);

}

See the "Graphics Environment" Chapter in this document and the
manual pages GLOBALS(3R), STRUCTURES(3R), BITBLT(3R), and
RESOURCES(@3R) in the 630 MTG Software Reference Manual for details on
how this sample program works.

Using Icons for Background Textures and Mouse Cursors

The Texturel6 data structures written by icon can be used in two different
ways: background textures and mouse cursors. The graphics routine texture is
used to display background textures. See the manual page TEXTURE(3R) in
the 630 MTG Software Reference Manual for an example.

ICON EDITING 14-17

Using Icon

An application can call the mouse cursor control routine cursswitch to
switch the standard mouse cursor to any Texturel6 data structure. See the
manual page CURSOR(3R) in the 630 MTG Software Reference Manual for an
example of how to use the cursswitch routine with Texturel6 data structures.

Supplied Icons

Icons supplied for the 630 MTG are provided under the directory
$DMD /icons. To display these icons, download the icon program and read
the icon files into it.

14-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 15: C Compilation System

Introduction 151

The 630 MTG Compller C e e o 153
Compiler Options . . . T R

Other Utilities 155
meb8ar e e e e e e e e e e e e 15-5
me68conv e e e e e e e e e e e 15-6
meb8cprs 0 . e e e e e e e e 157
me68dis o oo e e e e e e e 15-7
mc68dump 15-8
me68ld L . . oo e e e e e 15-9
mc68lorder o ..o e e 15-9
me68mm« « « « W« v « .+ .+ . 15-10
me68size+« « « W« « W« v W« . . . 15-11
mc6b8strip 0 o o o o0 e . 151

Register Use 1512

CLlanguage 1516

TABLE OF CONTENTS i

Introduction

This chapter describes the 630 MTG C Compilation System (CCS)
Compiler. See the "MC68000 UNIX System Assembler" Chapter for more
details on the CCS.

The CCS is a package of tools used to create and test programs for the
630 MTG. These tools allow high-level program coding and source-level
testing of code. Within the CCS, a C language compiler converts C language
programs into assembly language programs that are ultimately translated into
object files by the mc68as assembler. The mc68ld link editor collects and
merges object files into executable loads. Each of these tools preserves all
symbolic information necessary for meaningful symbolic testing at the C
language source level. In addition, a utility package aids in testing and
debugging.

The default output file from the C language compiler is an obiject file
named dmda.out. It has a format called the Common Object File Format
(COFF). The object file is executable in the 630 MTG if no errors or
unresolved references are found. The file contains a header with size
information, program sections, and a symbol table. Each section is composed
of a section header, data, and relocation and line number information.
Depending on the assembler or link editor options used to produce the object
file, the file may be devoid of relocation entries, line number entries, the
symbol table, or compiler-generated symbols.

The CCS provides a variety of utilities to read and manipulate object files.
Among the functions performed by the utilities are listing, reducing, or
deleting various parts of an object file or symbol table.

This chapter gives an overview of the CCS utilities. The most commonly
used of these utilities is the 630 MTG Compiler dmdcc which is described in
the following section. The other CCS utilities are described in the " Other
Utilities" section of this chapter. The CCS utilities are:

dmdcc Compiles programs for the 630 MTG. Invokes the
compiler, the assembler (mc68as), and the link editor
(mc681d) as appropriate.

mc68ar Creates and updates an archive.

C COMPILATION SYSTEM 15-1

Introduction

mc68as

mcé68conv

mc68cprs

mc68dis

Assembles MC68000* microprocessor source code files. See
the "MC68000 UNIX System Assembler" Chapter for a
discussion of mcé68as.

Converts MC68000 microprocessor object files from one host
machine format to another host machine format.

Compresses object files by removing duplicate structure and
union descriptors.

Disassembles object files to allow assembly level debugging.

mc68dump Dumps selected parts of the named object files.

mc68ld

Links together object files for execution.

mcé8lorder Generates an ordered listing of object files suitable for link

mc68nm

mc68size

mc68strip

editing in one pass, as done by mcé8ld.
Prints the symbol table for an object file.

Reports the number of bytes of text, uninitialized data, and
initialized data (and their sum) included in an object module.

Reduces file storage overhead by removing symbolic testing
information from an object file.

For more information on the CCS utilities, see the associated manual page in
the 630 MTG Software Reference Manual.

* Trademark of Motorola, Inc.

15-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

The 630 MTG Compiler

The main command of the CCS is dmdcc; it operates much like the UNIX
System cc command. To use the compiler, first create a file (typically by using
any UNIX System text editor) containing C language source code. The name
of the file created must have a special format; the last two characters of the
file name must be “.c”” — as in, file.c.

Next, enter the CCS command
dmdcc file.c

to invoke the compiler on the C language source file file.c. The compilation
process creates a binary file named dmda.out that reflects the contents of file.c
and any referenced library routines. The resulting binary file, dmda.out, can
then be downloaded to the 630 MTG.

Options can control the steps in the compilation process. When none of
the controlling options are used and only one file is named, dmdcc
automatically calls the assembler, mc68as, and the link editor, mc681d, thus
resulting in a downloadable file named dmda.out. If more than one file is
named in a command,

dmdcc filel.c file2.c file3.c

then the output will be placed in files filel.o, file2.0, file3.0, and the
downloadable file, dmda.out.

The dmdcc compiler also accepts input file names with the last two
characters .s. The .s signifies a source file in assembly language. If the
-¢ option is specified, the dmdcc compiler passes this type of file directly to
mc68as, which assembles the file and places the output in a file of the same
name with .0 substituted for .s. Otherwise, dmdcc calls mc68ld and creates
dmda.out.

dmdcc is based on a portable C language compiler and translates C
language source files into MC68000 assembly language. Whenever dmdcc is
used, the mc68cpp C language preprocessor is called. The preprocessor
performs file inclusion and macro substitution. The preprocessor is always
invoked by dmdcc and need not be called directly by the programmer. The
expanded files are translated from C language to MC68000 assembly
language. Then, unless the appropriate flags are set, dmdcc calls the
assembler and the link editor to produce an executable file.

C COMPILATION SYSTEM 15-3

The 630 MTG Compiler

Compiler Options

All options recognized by the dmdcc command are listed in the
DMDCC(1) manual page of the 630 MTG Software Reference Manual.

By using the appropriate options, compilation can be terminated early to
produce one of several intermediate translations, such as:

m Relocatable object files (-c option)
m Assembly source expansions for C language code (-S option)
= Output of the preprocessor (-P option).

In general, the intermediate files may be saved and later resubmitted to
the dmdcc command, with other files or libraries included as necessary.

When compiling C language source files, the most common practice is to
use the -c option to save relocatable files. Subsequent changes to one file do
not then require that the others be recompiled. A separate call to dmdcc
without the -c option then creates the linked dmda.out file. A relocatable
object file created under the -c option is named by adding a .o suffix to the
source file name.

15-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Utilities

mc68ar

The mc68ar utility is used to maintain groups of files that are part of a
single archive file. It is mainly used to create and update library files that are
used by the link editor (mc68ld command), but it can be used for any similar
purpose. When mcé8ar creates an archive, the archive file is put into a format
with headers that are portable across all computers. These headers are placed
at the beginning of each archive.

The header is followed by an archive symbol table which is included in
each archive that has common object files. This symbol table is automatically
created by mcé8ar. The archive symbol table is used by the link editor to
determine what archive members must be loaded during the link edit process.
The archive symbol table is rebuilt each time the mc68ar command is used to
create or update the contents of an archive.

The archive symbol table is followed by the archive file members. A file
member header precedes each file member. The file member header format is
described in the UNIX System V ar(4) manual page.

All the information in the archive header, the archive symbol table, and
the archive file member headers is stored in a machine (computer)
independent fashion. Archive members can be extracted on any machine,
although some members may be host computer dependent and require
conversion due to byte ordering differences on different machines.

Suppose you have the following files that you want to archive:

cars
cities
people
states
streets

To archive these files, enter the following command:

mcé8ar q archivel cars cities people states streets

C COMPILATION SYSTEM 15-5

Other Utilities

You should receive the following response:

mcé68ar: creating archivel

To see what is in the archive you just created, enter the following command:
mc68ar t archivel
You should receive the following response:

cars
cities
people
states
streets

mc68conv

~ Whenever a COFF file is moved from one machine to another of different
architecture, mc68conv should be used to format the resulting file.

Differences in byte ordering and data formats cause object file formats to
differ in their symbolic information when produced on machines of disparate
architectures. mc68conv converts a MC68000 microprocessor object file (for
example, dmda.out) from the internal format of one machine architecture to
that of another architecture. For example, to move a MC68000 microprocessor
object file produced on an AT&T 3B20S minicomputer to a VAX*-11/780
minicomputer, one must use mc68conv or the resulting file will not be in a
usable format.

File conversion is necessary and effective between machines of the
following three architectures:

1. A DEC*-style byte ordering with 16-bit word length (for example,
PDP*-11/70 Computer)

* Registered trademark of Digital Equipment Corporation

15-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Utilities

2. A DEC-style byte ordering with 32-bit word length (for example,
VAX-11/780 Computer)

3. An IBM*-style byte ordering with 32-bit word length (for example,
AT&T 3B20 Computer).

The output of mc68conv is a file having the same name as the input file
with the suffix of .v. Output cannot be redirected from the mc68conv
command.

mc68conv is best used within a procedure for sending object files from
one machine to another. Attempting to convert a file when no conversion is
necessary results in an error message, although the input file is copied to the
output file.

mc68cprs

The utility mc68cprs reduces the size of a MC68000 microprocessor object
file by removing duplicate structure and union descriptors. For example:

mc68cprs dmda.out sma.out

will take dmda.out and produce an equivalent file called sma.out that will
have all duplicate structure and union descriptors removed.

mc68dis

The MC68000 microprocessor disassembler, mc68dis, produces an assembly
language listing of each input object file. The listing has a two-column format
with assembly language statements in the right column and the corresponding
binary object code and machine address of the code in the left column.

The disassembler produces a likeness of the assembly language file that
was assembled to produce a given object file. Note that the assembly
language file produced by mc68dis is not the same file that was accepted by
the assembler, mc68as. mc68dis provides a convenient method to obtain a
MC68000 microprocessor assembly language listing of C language source
programs.

* Registered trademark of International Business Machines Corporation

C COMPILATION SYSTEM 15-7

Other Utilities

Three features of the mc68dis listing are:

1. The disassembler prints line numbers for each C source line where
a breakpoint can be set in square brackets (for example, “[5]"
shows the fifth line where execution can be halted for debugging).
The line numbers appear in the first column, at the instruction
corresponding to the line where a breakpoint can be inserted.

2. The disassembler prints C function names followed by parentheses
(for example, “printf()"” for the function printf). The function
names appear in the first column, one line above the instruction
that begins the function.

3. The disassembler prints computed addresses within a section
when control is to be transferred to those addresses. They are
printed within triangular brackets (for example, “<40>" is
computed address 40). These addresses appear in the operand
field of control transfer instructions following a relative
displacement. The computed address is the sum of the relative
displacement and the address of the instruction currently being
disassembled.

Note that items 1 and 2 occur only if the information exists in the object
file (for example, the code was compiled with the -g option given to dmdcc
and the information was not stripped out by a utility or link editor option).

mc68dump

The mc68dump utility allows examination of an object file by listing the
contents of the file. The dump utility is normally used to look at different
parts of an object file, with the parts being selected by options. mc68dump
attempts to format the information it dumps in a meaningful way by printing
certain information in ASCII, hexadecimal, octal, or decimal, as appropriate.
The input file is unchanged after execution of me68dump, and no new files
are created. mc68dump accepts as input both object files and archive libraries
of object files.

A simple example of an mc68dump is the CCS command

mc68dump -t dmda.out

15-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Utilities

that displays the symbol table from the file dmda.out. The command
mc68dump -tv dmda.out

displays the symbol table from the file dmda.out in symbolic form. The
command

mc68dump -f -h -r -t 3 +t 10 test.o >testdump

lists the file and section headers, the relocation information, and the symbol
table entries three through ten for the object file test.o. This command also
places the output on the file testdump.

mc68id

The link editor, mc68ld, combines object files into one file. To do this,
mc68ld resolves external symbols. If any argument is a library, it is searched,
loading only those routines defining unresolved external references. The
library does not have to be ordered using mcé68lorder because mc68ld passes
through the library’s (archive) symbol table as many times as necessary.

mc68lorder

The CCS command for library ordering, mc68lorder, like the other
utilities, works the same way as its UNIX System V counterpart.

The output of mc68lorder is a list of pairs of object file names, where the
first file of the pair contains references to external identifiers defined in the
second.

The names of input object files must end with .0, even when contained in
library archives. Files with names not adhering to this rule have their global
symbols and references attributed to some other file, and nonsense results.

C COMPILATION SYSTEM 15-9

Other Utilities

The output from mc68lorder may be processed by the UNIX System V
command tsort to find an ordering of a library suitable for one-pass access by
the link editor, mc68ld. The following example shows the use of tsort, along
with the archive maintainer, mcé8ar, to build a new library from all existing
files with names ending in .0. The archive library is named libx.a both before
and after the operation.

mcé68ar cr libx.a ‘mcé8lorder *.o | tsort’

mc68nm

The name list utility, mc68nm, displays the symbol table for each
MC68000 microprocessor file that is given as input. The input may be a
relocatable or an absolute MC68000 microprocessor object file; or it may be an
archive library of relocatable or absolute object files.

For each symbol in the table, the following information is printed:
Name: the name of the symbol.

Value: the symbol value expressed as an offset or an address
depending on storage class.

Class: the storage class.

Type: the symbol’s type and derived type. If the symbol is an
instance of a structure or of a union, then the structure or
union tag is given following the type (for example, “struct-
person’’ where “person’’ is the structure tag). If the symbol is
an array, then the array dimensions are given following the
type (for example, char[n][m]).

Size: the size in bytes, if applicable. Special symbols have
undefined size.

Line: the source line number where it is defined, if applicable.

Section: for storage classes static and external, the object file section
containing the symbol.

15-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Other Utilities

mc68size

mc68size prints the number of bytes required for each section (.text, .data,
and .bss) of the input MC68000 microprocessor file and the total number of
bytes for all sections.

mc68strip

The strip utility removes the symbol table and line number information
from MC68000 microprocessor files and archive libraries, thus saving space.
The effect of mc68strip is the same as the -s option of mc681ld. After a file
has been stripped, no symbolic debugging access is available for that file. This
command should be run only on production versions of object files that have
been debugged and tested.

C COMPILATION SYSTEM 15-11

The MC68000 microprocessor provides sixteen 32-bit, general-purpose
registers (d0-d7, a0-a7). The first eight registers (d0-d7) are used as data
registers for byte (8-bit), word (16-bit), and long word (32-bit) operations. The
next seven registers (a0-a6) and the stack pointer (a7) act as software stack
pointers and base address registers. Operations using registers are smaller in
size than memory-accessing ones, sometimes by nearly seventy percent.

The high level C language offers a storage class called register to take
advantage of the corresponding hardware feature. As an example, dmdcc
generates the following optimized assembler code from two equivalent
functions: one function using register variables extensively; the other function
using stack variables.

C code:
fool (a)
register int a;
{ register int x;
x=1;
b
foo2 (a)
int a;
{ int x;
x=1;
}
Assembler code:
#: assembler: opcode:
fool:
0: 4e56 fff4 link %fp,&-0xc
4: 48ee 000c fff8 movm.l &0xc,-0x8(%fp)
a: 342e 0008 mov.w 0x8(%fp),%d2
e 7601 movq.] &0x1,%d3

15-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Register Use

10: 4cee 000c fff8 = movm. -0x8(%fp),&0xc

16: 4ebe unlk %fp
18: 4e75 rts
foo2:
0: 4e56 fffa link %fp,&-0x6
4: 3d7c 0001 fffe mov.w &0x1,-0x2(%fp)
a: 4eSe unlk %fp
c 4e75 rts

It can be seen that:

1.

There is an overhead by using register variables in the initialization
step. Two mowvm.l instructions are needed to implement the
transparency principle of saving register contents on entry and
restoring them on exit. In addition, if any function argument is
declared as register, there is a corresponding mov.w instruction to
store that value into a physical register.

There is substantial code reduction in the body of the function. In the
example above, "movq.l &0x1,%d3" assembles to 2 bytes while the
equivalent non-register instruction "mov.w &0x1,-0x2(%fp)" uses

6 bytes, so a size reduction of almost 70 percent is achieved.

There is a limit to the number of declared register variables that are
actually stored into hardware registers. From the example above, d2 is
used as the first data register; therefore, the user can use five more
registers (d3-d7) to store integer variables. Additional data register
declarations will be ignored, and the variables will be stored into
memory (stack). The following table lists all the MC68000 general-
purpose registers and their usage availability.

C COMPILATION SYSTEM 15-13

Register Use

Registers | Number Usage

d0-d1 2 Scratch data registers (N/A)
d2-d7 6 Data register variables

a0-al 2 Scratch address registers (N/A)
a2-a5 4 Register pointer variables

a6-a7 2 Frame and stack pointers (N/A)

The previous observations suggest the following conclusions concerning
register variable usage for code reduction:

1. Do not use register variables when the initialization overhead is larger
than the gain in the function body. This applies to:

« any function argument that is used only once in the function
body (you save the "mov.w " instruction)

- an automatic variable inside a function that has only one such
variable and uses it only once (you save the two "mov.m "
instructions).

2. Declare as register any heavily used variable. Once this is done, the
code for register transparency is generated, and declaring additional
variables as register can only improve code size. The rule is: when
register has been used once, use it all the time from then on.

3. Do not restrict register usage to simple variables. Global and complex
variables that are heavily referenced may be conveniently stored into
declared register variables for optimal access. Note that this method
works only if the variable being substituted is referred (i.e., its value is
used [read] but not updated [write]) throughout the function. For
example:

15-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

Register Use

struct date { int day; int month; int year};

int newyear;

setdate (d)
register struct date *d;

{

register int myday = d->day; /* substitute for complex variable */
register int myyear = newyear; /* substitute for global variable */
register int mymonth = d->month; /* potential error here */

e /* "myday" and "myyear" must be referred several times */
/* in order to recover the overhead of initializing them */

d->month++; /* now, "mymonth" and "d->month" have
different values !!! */

4. Identify function arguments and automatic variables as data (long, int,
short) variables or pointer variables. In each category, rank them
according to usage criteria. The most heavily-used variables should be
declared first, so they can be physically assigned to a hardware
register.

C COMPILATION SYSTEM 15-15

C Language

The 630 MTG CCS compiles the C language described in the Kernighan
and Ritchie book* with the following enhancements:

1. The dmdcc compiler includes recent enhancements to the C language.
These enhancements allow structures to be assigned or copied as a unit
and to be passed to and returned from functions.

2. The compiler does not have the restriction that only eight characters of
a variable name are significant. The entire name is significant.

On the MC68000 microprocessor, C language data types map in the
natural way for a 16-bit processor; that is, char maps to the type byte, int and
short map to 16-bit word, and long maps to 32-bit double word. The dmdcc
compiler implements both the float and double data type specifiers using
32-bit precision floating point arithmetic.

Standard C language leaves identification of the assembler escape
keyword asm to the system designer. asm has been implemented for dmdcc
with the syntax asm (" assembly instruction "). For example,
asm("mov.1 &0,%d0 ") loads data register zero with a zero. The assembly
language instruction contained within the quotation marks is transmitted
unchanged to the assembler.

* B. W. Kernighan and D. M. Ritchie, The C Programming Language (Englewood Cliffs, New
Jersey: Prentice-Hall, 1978)

15-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Chapter 16: MC68000 UNIX System

Assembler
Introduction 161
Warnings 162
Comparison Instructions 162
Overloadingof Opcodes 16-3

Use of the Assembler 164

General Syntax Rules 165
Format of Assembly Language Line 165
Comments« + « « v 4 v e e e e e e 16-6
Identifiers 16-6
Register Identifiers 167
Constants e e e e e e e e e e e e e e e e 16-7

Numerical Constants e e e e e e e e e e e e e e 16-7
Character Constants + + « + . . 16-8

Other Syntactic Details 168

Segments, Location Counters, and Labels 169
Segments . . . s (X0
Location Counters and Labels o VX ()

Types 161

Expressions 1612
Pseudo-Operations 1613
Data Initialization Operations 16-13
Symbol Definition Operations 16-14
Location Counter Control Operations 16-15

TABLE OF CONTENTS i

Chapter 16: MC68000 UNIX System Assembler

Symbolic Debugging Operatlons
“file” and “In"”’
Symbol Attribute Operatlons
Switch Table Operation

Span-Dependent Optimizatioh
Address Mode Syntax .

Machine Instructions

16-16
16-16
16-16
16-18

16-19

16-21

16-24

Introduction

This chapter is a reference manual for MC68AS, the assembler language
interpreted by the mc68as assembler. The mc68as assembler is a component
of the 630 MTG C Compilation System.

Programmers familiar with the MC68000 processor should be able to
program in MC68AS by referring to this chapter, but this is not a manual for
the processor itself. Details about the effects of instructions, meanings of
status register bits, handling of interrupts, and many other issues are not dealt
with here. This chapter, therefore, should be used in conjunction with a
MC68000 processor handbook such as the "MC68000 16-Bit Microprocessor
User’s Manual*."

* wMC68000 16-Bit Microprocessor User's Manual," Third Edition; Englewood Cliffs, N.J.:
Prentice-Hall, 1982

MC68000 UNIX SYSTEM ASSEMBLER 16-1

Warnings

A few important warnings to the MC68AS user should be emphasized at
the outset. Though for the most part there is a direct correspondence between
MC68AS notation and the notation used in the MC68000 User’s Manual, the
following exceptions could lead the unsuspecting user to write an incorrect
code. :

Comparison Instructions

First, the order of the operands in compare instructions follows one
convention in the MC68000 16-Bit Microprocessor User’s Manual and the
opposite convention in MC68AS. Using the convention of the User’s Manual,
you might write:

CMP.V D5,D3 Is D3 less than D5 ?
BLE IS LESS Branch if less.

Using the MC68AS convention, you would write:

cmp.w %d3,%d5 # Is d3 less than d5 ?
ble is_less # Branch if less.

MC68AS follows the convention used by other assemblers supported in the
UNIX System. This convention makes for straightforward reading of
compare-and-branch instruction sequences, but does nonetheless lead to the
peculiarity that if a compare instruction is replaced by a subtract instruction,
the effect on the condition codes will be entirely different. This may be
confusing to programmers who are used to thinking of a comparison as a
subtraction whose result is not stored. But users of MC68AS who become
accustomed to the convention will find that both the compare and subtract
notations make sense in their respective contexts.

16-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Overloading of Opcodes

Another issue that users must be aware of arises from the MC68000’s use
of several different instructions to do more or less the same thing. For
example, the MC68000 User’s Manual lists the instructions SUB, SUBA, SUBI,
and SUBQ, which all have the effect of subtracting their source operand from
their destination operand. MC68AS provides the convenience of allowing all
these operations to be specified by a single assembly instruction sub. On the
basis of the operands given to the sub instruction, the MC68AS assembler
selects the appropriate MC68000 operation code.

The danger created by this convenience is that it could leave the
misleading impression that all forms of the SUB operation are semantically
identical when, in fact, they are not. The careful reader of the MC68000
User’s Manual will notice that whereas SUB, SUBI, and SUBQ all affect the
condition codes in a consistent way, SUBA does not affect the condition codes
at all. Consequently, the MC68AS user must be aware that when the
destination of a sub instruction is an address register (which causes the sub to
be mapped into the operation code for SUBA), the condition codes will not be
affected.

MC68000 UNIX SYSTEM ASSEMBLER 16-3

Use of the Assembler

The UNIX System command mc68as invokes the assembler and has the
following syntax:

mcé68as [-o output] file

This causes the named file to be assembled. The output of the assembly is left
in the file output specified with the -o flag. If no such specification is made,
the output is left in the file whose name is formed by removing the .s suffix, if
there is one, from the input file name and appending a .o suffix. For more
information on mc68as, see the manual page MC68AS(1) in the 630 MTG
Software Reference Manual.

16-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

General Syntax Rules

Format of Assembly Language Line
Typical lines of MC68AS assembly code look like these:

Clear a block of memory at location %a3

text 2
mov.w &const,%d1l
loop: clr.1 (%ad)+
dbf %d1,loop # go back for const
repetitions

init2:
clr.l count; clr.l credit; clr.1l debit;

These general points about the example should be noted:

® An identifier occurring at the beginning of a line and followed by a
colon (:) is a label. One or more labels may precede any assembly
language instruction or pseudo-operation. See also "Location Counters
and Labels" in this chapter.

m A line of assembly code need not include an instruction. It may consist
of a comment alone (introduced by #), a label alone (terminated by :),
or it may be entirely blank.

m]t is good practice to use tabs to align assembly language operations
and their operands into columns, but this is not a requirement of the
assembler. An opcode may appear at the beginning of the line, if
desired, and spaces may precede a label. A single blank or tab suffices
to separate an opcode from its operands. Additional blanks and tabs
are ignored by the assembler.

m It is permissible to write several instructions on one line by separating
them by semicolons. The semicolon is syntactically equivalent to a new
line. But a semicolon inside a comment is ignored.

MC68000 UNIX SYSTEM ASSEMBLER 16-5

General Syntax Rules

Comments

Comments are introduced by the character # and continue to the end of
the line. Comments may appear anywhere and are completely disregarded by
the assembler.

Identifiers

An identifier is a string of characters taken from the set a-z, A-Z, _, <, and
0-9. The first character of an identifier must be a letter (upper or lower case)
or an underscore. Upper and lower case letters are distinguished;

con35 and CON35

are two distinct identifiers.
There is no limit on the length of an identifier.

The value of an identifier is established by the set pseudo-operation (see
"Symbol Definition Operations" in this chapter) or by using it as a label (see
"Location Counters and Labels" in this chapter).

The character < has special significance to the assembler. A < used alone,
as an identifier, means ‘“the current location.” A < used as the first character
in an identifier becomes a “’.”” in the symbol table, allowing symbols such as
.eos and .0fake to make it into the symbol table, as required by the Common

Object File Format.*

* See the UNIX System V Programmer Reference Manual

16-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

General Syntax Rules

Register Identifiers

A register identifier is an identifier preceded by % the character and
represents one of the MC68000 microprocessor’s registers. The predefined
register identifiers are:

%do %d4 %a0 Gad %ee %usp
%d1 %d5 %al %ab %pc %fp
%d2 %dé %a2 %a6 %sp

%d3 %d7 %a3 %a7 %sr

Important Note: The identifiers %17 and %sp represent one and the same
machine register. Likewise, %16 and %fp are equivalent. Use of both %7 and
%sp, or %m6 and %p, in the same program may result in confusion.

Constants

MC68AS deals only with integer constants. They may be entered in
decimal, octal, or hexadecimal, or they may be entered as character constants.
Internally, MC68AS treats all constants as 32-bit binary two’s complement
quantities.

Numerical Constants
A decimal constant is a string of digits beginning with a non-zero digit.

An octal constant is a string of digits beginning with zero.

A hexadecimal constant consists of the characters 0x or 0X followed by a
string of characters from the set 0-9, a-f, and A-F. In hexadecimal constants
upper and lower case letters are not distinguished.

Examples:
set const, 35 # Decimal 35
mov.w &035,%d1 # Octal 35 (decimal 29)
set const,0x35 # Hex 35 (decimal 53)
mov.w &O0xff,%dl1 # Hex ff (decimal 255)

MC68000 UNIX SYSTEM ASSEMBLER 16-7

General Syntax Rules

Character Constants

An ordinary character constant consists of a single-quote (*) followed by
an arbitrary ASCII character other than \. The value of the constant is equal
to the ASCII code for the character. Special meanings of characters are
overridden when used in character constants; for example, if ‘# is used, the #
is not treated as introducing a comment. ‘

A special character constant consists of * \ followed by another character.
All the special character constants and examples of ordinary character
constants are listed here:

Constant Value Meaning

’\b 0x08 Backspace

"\t 0x09 Horizontal Tab

’\n 0x0a Newline (Line Feed)
*\v 0x0b Vertical Tab

*\f 0x0c Form Feed

'\r 0x0d Carriage Return

"\ 0x5¢ Backslash (\)

’ 0x27 Single-Quote
0 0x30 Zero

A 0x41 Capital A

’a 0x61 Lower Case A

Other Syntactic Details

A discussion of expression syntax appears under ‘‘Expressions” in this
chapter. Information about the syntax of specific components of MC68AS
instructions and pseudo-operations is given under “’Pseudo-Operations,”
“Address Mode Syntax,” and ““Machine Instructions” in this chapter.

16-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Segments, Location Counters, and
Labels

Segments

A program in MC68AS assembly language may be broken into segments
known as text, data, and bss segments. The convention regarding the use of
these segments is to place instructions in text segments, initialized data in data
segments, and uninitialized data in bss segments. However, the assembler
does not enforce this convention; for example, it permits intermixing of
instructions and data in a text segment.

Primarily to simplify compiler code generation, the assembler permits up to
four separate text segments and four separate data segments named 0, 1, 2,
and 3. The assembly language program may switch freely between them by
using assembler pseudo-operations (see “Location Counter Control
Operations” in this chapter). When generating the object file, the assembler
concatenates the text segments to generate a single text segment, and the data
segments to generate a single data segment. Thus, the object file contains
only one text segment and only one data segment.

There is only one bss segment to begin with, and it maps directly into the
object file.

Because the assembler keeps together everything from a given segment
when generating the object file, the order in which information appears in the
object file may not be the same as in the assembly language file. For example,
if the data for a program consisted of:

data 1 # segment 1
word 0x1111

data 0 # segment 0
long Oxffffffff

data 1 # segment 1

byte 0x2222

MC68000 UNIX SYSTEM ASSEMBLER 16-9

Segments, Location Counters, and Labels

then equivalent object code would be generated by:

data 0

long Oxffffffff
word 0x1111
wvord 0x2222

Location Counters and Labels

The assembler maintains separate location counters for the bss segment and
for each of the text and data segments. The location counter for a given
segment is incremented by one for each byte generated in that segment.

The location counters allow values to be assigned to labels. When an
identifier is used as a label in the assembly language input, the current value
of the current location counter is assigned to the identifier. The assembler
also keeps track of which segment the label appeared in. Thus, the identifier
represents a memory location relative to the beginning of a particular segment.

16-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Types

Identifiers and expressions may have values of different types.

® In the simplest case, an expression (or identifier) may have an absolute
value, such as 29, -5000, or 262143.

® An expression (or identifier) may have a value relative to the start of a
particular segment. Such a value is known as a relocatable value. The
memory location represented by such an expression cannot be known
at assembly time, but the relative values (i.e., the difference) of two
such expressions can be known if they refer to the same segment.

Identifiers which appear as labels have relocatable values.

® If an identifier is never assigned a value, it is assumed to be an
undefined external. Such identifiers may be used with the expectation
that their values will be defined in another program, and hence known
at load time; but the relative values of undefined externals cannot be
known.

MC68000 UNIX SYSTEM ASSEMBLER 16-11

Expressions

For conciseness, the following abbreviations will be useful:

abs absolute expression
rel relocatable expression
ext undefined external

All constants are absolute expressions. An identifier may be thought of as
an expression having the identifier’s type. Expressions may be built up from
lesser expressions using the operators +, -, *, and /, according to the following
type rules:

abs + abs = abs
abs + rel = rel + abs = rel
abs + ext = ext + abs = ext

abs - abs = abs

rel - abs = rel

ext - abs = ext

rel - rel = abs,
provided that the two relocatable expressions
are relative to the same segment

abs * abs = abs
abs / abs = abs
- abs = abs

Important Note: Use of a rel-rel expression is dangerous, particularly when
dealing with identifiers from text segments. The problem is that the assembler
will determine the value of the expression before it has resolved all questions
concerning span-dependent optimizations. Use this feature at your own risk!

The unary minus operator takes the highest precedence; the next highest
precedence is given to * and /, and the lowest precedence is given to + and
binary - . Parentheses may be used to coerce the order of evaluation.

If the result of a division is a positive non-integer, it will be truncated
toward zero. If the result is a negative non-integer, the direction of truncation
cannot be guaranteed.

16-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Pseudo-Operations

Data Initialization Operations

byte abs, abs, ...
One or more arguments, separated by commas, may be given.
The values of the arguments are computed to produce successive
bytes in the assembly output.

short abs, abs, ...
One or more arguments, separated by commas, may be given.
The values of the arguments are computed to produce successive
16-bit words in the assembly output.

long expr, expr, ...
One or more arguments, separated by commas, may be given,
Each expression may be absolute, relocatable, or undefined
external. A 32-bit quantity is generated for each such argument
(in the case of relocatable or undefined external expressions, the
actual value may not be filled in until load time).

Alternatively, the arguments may be bit-field expressions. A
bit-field expression has the form

n : value

where both n and value denote absolute expressions. The
quantity n represents a field width; the low-order #n bits of value
become the contents of the bit-field. Successive bit-fields fill up
32-bit long quantities starting with the high-order part. If the
sum of the lengths of the bit-fields is less than 32 bits, the
assembler creates a 32-bit long with zeroes filling out the low-
order bits. For example,

MC68000 UNIX SYSTEM ASSEMBLER 16-13

Pseudo-Operations

long 4:-1, 16:0x7f, 12:0, 5000
and
long 4:-1, 16:0x7f, 5000

are equivalent to
long 0xf007£000, 5000

Bit-fields may not span pairs of 32-bit longs. Thus,
long 24:0xa, 24:0xb, 24:0xc

yields the same thing as

long 0x00000a00, 0x00000b00, 0x00000c00

space abs The value of abs is computed, and the resultant number of bytes
of zero data is generated. For example,

space 6
is equivalent to

byte 0,0,0,0,0,0

Symbol Definition Operations

set identifier, expr
The value of identifier is set equal to expr, which may be absolute
or relocatable.

comm identifier, abs
The named identifier is to be assigned to a common area of size
abs bytes. If identifier is not defined by another program, the
loader will allocate space for it.

The type of identifier becomes undefined external.

16-14 630 MTG SOFTWARE DEVELOPMENT GUIDE

Pseudo-Operations

lcomm identifier, abs

The named identifier is assigned to a local common of size abs
bytes. This results in allocation of space in the bss segment.

The type of identifier becomes relocatable.

global identifier

This causes identifier to be externally visible. If identifier is
defined in the current program, then declaring it global allows
the loader to resolve references to identifier in other programs.

If identifier is not defined in the current program, the assembler
expects an external resolution; in this case, identifier is global by
default.

Location Counter Control Operations

data abs
text abs
org expr
even

The argument, if present, must evaluate to 0, 1, 2, or 3; this
indicates the number of the data segment into which assembly is
to be directed. If no argument is present, assembly is directed
into data segment 0.

The argument, if present, must evaluate to 0, 1, 2, or 3; this
indicates the number of the text segment into which assembly is
to be directed. If no argument is present, assembly is directed
into text segment 0.

Before the first data or text operation is encountered, assembly is
by default directed into text segment 0.

The current location counter is set to expr. Expr must represent a
value in the current segment and must not be less than the
current location counter.

The current location counter is rounded up to the next even
value.

MC68000 UNIX SYSTEM ASSEMBLER 16-15

Pseudo-Operations

Symbolic Debugging Operations

The assembler allows for symbolic debugging information to be placed
into the object code file with special pseudo-operations. The information
typically includes line numbers and information about C language symbols,
such as their type and storage class. The 630 MTG CCS C compiler generates
symbolic debugging information when the -g option is used. Assembler
programmers may also include such information in source files.

“file’’ and “In”’

The file pseudo-operation passes the name of the source file into the
object file symbol table. It has the form

file "filename"

where filename consists of one to 14 characters.

The In pseudo-operation makes a line number table entry in the object
file. That is, it associates a line number with a memory location. Usually the
memory location is the current location in text. The format is

In line [,value]

where line is the line number. The optional value is the address in text, data,
or bss to associate with the line number. The default when value is omitted
(which is usually the case) is the current location in text.

Symbol Attribute Operations

The basic symbolic testing pseudo-operations are def and endef. These
operations enclose other pseudo-operations that assign attributes to a symbol
and must be paired.

def name
Attribute
Assigning
. # Operations
endef

Note 1: def does not define the symbol, although it does create a
symbol table entry. Because an undefined symbol is treated
as external, a symbol which appears in a def, but which

16-16 630 MTG SOFTWARE DEVELOPMENT GUIDE

Pseudo-Operations

never acquires a value, will ultimately result in an error at link
edit time.

Note 2: To allow the assembler to calculate the sizes of functions
for other CCS tools, each def/endef pair that defines a
function name must be matched by a def/endef pair
after the function in which a storage class of -1 is
assigned.

The paragraphs below describe the attribute-assigning operations.
Keep in mind that all of these operations apply to symbol name which
appeared in the opening def pseudo-operation.

val expr Assigns the value expr to name. The type of the expression
expr determines with which section name is associated. If
value is , the current location in the text section is used.

scl expr Declares a storage class for name. The expression expr must
yield an ABSOLUTE value that corresponds to the C
compiler’s internal representation of a storage class. The
special value -1 designates the physical end of a function.

type expr Declares the C language type of name. The expression expr
must yield an ABSOLUTE value that corresponds to the
C compiler’s internal representation of a basic or derived

type.
tag str Associates name with the structure, enumeration, or union

named str which must have already been declared with a
def/endef pair.

line expr Provides the line number of name, where name is a block
symbol. The expression expr should yield an ABSOLUTE
value that represents a line number.

size expr Gives a size for name. The expression expr must yield an
ABSOLUTE value. When name is a structure or an array
with a predetermined extent, expr gives the size in bytes. For
bit fields, the size is in bits.

dim exprl, expr2, ...
Indicates that name is an array. Each of the expressions must

MC68000 UNIX SYSTEM ASSEMBLER 16-17

Pseudo-Operations

yield an ABSOLUTE value that provides the corresponding array
dimension.

Switch Table Operation

The 630 MTG CCS C compiler generates a compact set of instructions for
the C language switch construct, of which an example is shown below.

sub.1l &1,%d0
cmp.l %do0,&4
bhi L%21
add.w %do0,%do0
mov.w 10(%pc,%d0.w) ,%d0
jmp 6(%pc,%d0.w)
swbeg &5

L%22:
short L%15-L%22
short L%21-L%22
short L%16-L%22
short L%21-1L%22
short L%17-1L%22

The special swbeg pseudo-operation communicates to the assembler that
the lines following it contain rel-rel subtractions. Remember that ordinarily
such subtractions are risky because of span-dependent optimization. In this
case, however, the assembler makes special allowances for the subtraction
because the compiler guarantees that both symbols will be defined in the
current assembler file, and that one of the symbols is a fixed distance away
from the current location.

The swbeg pseudo-operation takes an argument that looks like an
immediate operand. The argument is the number of lines that follow swbeg
and that contain switch table entries. Swbeg inserts two words into text. The
first is the ILLEGAL instruction code. The second is the number of table
entries that follow. The 630 MTG CCS disassembler needs the ILLEGAL
instruction as a hint that what follows is a switch table. Otherwise, the
disassembler would get confused when trying to decode the table entries
(differences between two symbols) as instructions.

16-18 630 MTG SOFTWARE DEVELOPMENT GUIDE

Span-Dependent Optimization

The assembler makes certain choices about the object code it generates
based on the distance between an instruction and its operand(s). Choosing
the smallest, fastest form is called span-dependent optimization. Span-
dependent optimization occurs most obviously in the choice of object code for
branches and jumps. It also occurs when an operand may be represented by
the program counter relative address mode instead of as an absolute 2-word
(long) address. The span-dependent optimization capability is normally
enabled; the -n command line flag disables it. When this capability is
disabled, the assembler makes worst-case assumptions about the types of
object code that must be generated.

In the 630 MTG CCS, the compiler generates branch instructions without
a specific offset size. When the optimizer is used, it identifies branches which
could be represented by the short form, and it changes the operation
accordingly. The assembler chooses only between long and very long
representations for branches.

Branch instructions, e.g., bra, bsr, bgt, etc., can have either a byte or a
word pc-relative address operand. A byte-size specification should be used
only when the user is sure that the address intended can be represented in the
byte allowed. The assembler will take one of these instructions with a byte-
size specification and generate the byte form of the instruction without asking
questions.

Although the largest offset specification allowed is a word, large programs
could conceivably have need for a branch to a location not reachable by a
word displacement. Therefore, equivalent long forms of these instructions
might be needed. When the assembler encounters a branch instruction
without a size specification, or with a word size specification, it tries to choose
between the long and very long forms of the instruction. If the operand can
be represented in a word, then the word form of the instruction will be
generated. Otherwise, the very long form will be generated. For
unconditional branches, e.g., br, bra and bsr, the very long form is just the
equivalent jump (jmp and jsr) with an absolute address operand (instead of
pe-relative). For conditional branches, the equivalent very long form is a
conditional branch around a jump, where the conditional test has been
reversed.

MC68000 UNIX SYSTEM ASSEMBLER 16-19

Span-Dependent Optimization

Figure 16-1 summarizes span-dependent optimizations. The assembler
chooses only between the long form and very long form, while the optimizer
chooses between the short and long forms for branches (but not bsr).

Instruction Short Form Long Form Very Long Form

br, bra, bsr byte offset word offset jmp or jsr with
absolute long
address

conditional byte offset word offset short

branch conditional
branch with
reversed
condition
around jmp
with absolute
long address

jmp, jsr — pc-relative absolute long
address address

lea.l, pea.l — pc-relative absolute long
address address

Figure 16-1: Assembler Span-Dependent Optimizations

16-20 630 MTG SOFTWARE DEVELOPMENT GUIDE

Address Mode Syntax

Figure 16-2 summarizes the MC68AS syntax for MC68000 addressing
modes.

In the table, the letter n represents any digit from 0 to 7. The notations Ri
and ri represent any of the MC68000 data or address registers.

The letter d, when used to represent a displacement, may stand for any
absolute expression.

It is important to note that expressions used for the Absolute addressing
modes need not be absolute expressions in the sense defined under “Types” in
this chapter. Although the addresses used in those addressing modes must
ultimately be filled in with constants (which can be done by the loader) there
is no need for the assembler to be able to compute them. Indeed, the
Absolute Long addressing mode is commonly used for accessing undefined
external addresses.

MC68000 UNIX SYSTEM ASSEMBLER 16-21

Address Mode Syntax

Motorola MC68AS .

Notation Notation Effective Address Mode

Dn %dn Data Register Direct

An %an Address Register Direct

(An) (%an) Address Register Indirect

An@+ (%an)+ Address Register Indirect with Postincrement

An@- -(%an) Address Register Indirect with Predecrement

An@(d) d(%an) Address Register Indirect with Displacement
(d signifies a signed 16-bit absolute
displacement)

An@(d,Ri.W) | d(%an,%ri.w) | Address Register Indirect with Index

An@(d,Ri.L) | d(%an,%ri.l)
(d signifies a signed 8-bit absolute
displacement)

xxx. W XXX Absolute Short Address
(xxx signifies an expression yielding a signed
16-bit memory address)

xxx.L, XXX Absolute Long Address
(xxx signifies an expression yielding a 32-bit
memory address)

Figure 16-2: Effective Address Modes (Sheet 1 of 2)

16-22 630 MTG SOFTWARE DEVELOPMENT GUIDE

Address Mode Syntax

Motorola MC68AS .
| Notation Notation Effective Address Mode
PC@(d) d(%pc) Program Counter with Displacement

(d signifies a signed 16-bit absolute
displacement)

PC@(d,Ri.W) d(%pc, %rn.w) Program Counter with Index
PC@(d,Ri.L) d(%pc,%rn.1)
(d signifies a signed 8-bit absolute
displacement)

#XXX &xxx Immediate Data

(xxx signifies an absolute constant
expression)

Figure 16-2: Effective Address Modes (Sheet 2 of 2)

MC68000 UNIX SYSTEM ASSEMBLER 16-23

Machine Instructions

Figure 16-3 shows how MC68000 instructions should be written in order

to be understood correctly by the MC68AS assembler. Several abbreviations
are used in the table:

S

A

CcC

The letter S, as in add.S, stands for one of the operation size attribute
letters b, w, or I, representing a byte, word, or long operation.

The letter A, as in add.A, stands for one of the address operation size
attribute letters w or I, representing a word or long operation.

In the contexts bCC, dbCC, and sCC, the letters CC represent any of the
following condition code designations (except that f and ¢ may not be
used in the bCC instruction):

cc carry clear Is low or same
cs carry set It less than

eq equal mi minus

f false ne not equal

ge greater or equal pl plus

gt greater than t true

hi high ve overflow clear
hs high or same (=cc) vs overflow set
le less or equal

lo low (=cs)

An absolute expression evaluating to a 16-bit displacement.
This represents an arbitrary effective address.

An absolute expression, used as an immediate operand.

An absolute expression evaluating to a number from 1 to 8.

A label reference, or any expression representing a memory address in
the current segment.

%dx, %dy, %dn, %ax, %ay, and %an These represent registers.

16-24 630 MTG SOFTWARE DEVELOPMENT GUIDE

Machine Instructions

=Operation MC68AS Syntax Meaning

ABCD - abcd.b %dy,%dx Add Decimal with Extend
-(%ay),-(%ax)

ADD add.S EA,%dn Add Binary
%dn,EA

ADDA add.A EA,%an Add Address

ADDI add.S &LEA Add Immediate

ADDQ add.S &Q,EA Add Quick

ADDX addx.S %dy,%dx Add Extended
-(%ay),-(%ax)

AND and.S EA,%dn AND Logical
%dn,EA

ANDI and.S &LEA AND Immediate

ANDI and.b &I, %cc AND Immediate

to CCR to Condition Codes

ANDI and.w &I, %sr AND Immediate

to SR to the Status Register

Figure 16-3:

MC68000 Instruction Formats (Sheet 1 of 9)

MC68000 UNIX SYSTEM ASSEMBLER

16-25

Machine Instructions

QOperation MC68AS Syntax MeaningL
ASL asl.S %dx,%dy Arithmetic Shift (Left)
&Q,%dy
asl.w &1,EA
ASR asr.S %dx,%dy Arithmetic Shift (Right)
&Q,%dy
asrw &1,EA
Bec bCC L Branch Conditionally
(16-bit Displacement)
bCCb L Branch Conditionally (Short)
(8-bit Displacement)
BCHG bchg %dnEA Test a Bit and Change
&ILEA
Note: bchg should be written
with no suffix. If the second
operand is a data register, .1 is
assumed; otherwise .b is.
BCLR bclr %dn,EA Test a Bit and Clear
&IEA
Note: bclr should be written
with no suffix. If the second
operand is a data register, .l is
assumed; otherwise .b is.
Figure 16-3: MC68000 Instruction Formats (Sheet 2 of 9)

16-26 630 MTG SOFTWARE DEVELOPMENT GUIDE

Machine Instructions

Operation MC68AS Syntax Meaning
BRA bra L Branch Always
(16-bit Displacement)
bra.b L Branch Always (Short)
(8-bit Displacement)
br L Same as bra
br.b L Same as bra.b
BSET bset %dn,EA Test a Bit and Set
&IEA

Note: bset should be written
with no suffix. If the second
operand is a data register, .1 is
assumed; otherwise .b is.

BSR bsr L Branch to Subroutine
(16-bit Displacement)

bsr.b L Branch to Subroutine (Short)
(8-bit Displacement)
BTST btst %dn,EA Test a Bit
&LEA

Note: btst should be written
with no suffix. If the second
operand is a data register, .1 is
assumed; otherwise .b is.

CHK chk.w EA,%dn Check Register Against Bounds

CLR cr.S EA Clear an Operand

Figure 16-3: MC68000 Instruction Formats (Sheet 3 of 9)

MC68000 UNIX SYSTEM ASSEMBLER 16-27

Machine Instructions

Operation MC68AS Syntax Meanin&

CMP cmp.S %dn,EA Compare

CMPA cmp.A %an,EA Compare Address

CMPI cmp.S EA&I Compare Immediate

CMPM cmp.S (%ax)+,(%ay)+ | Compare Memory
Note: The order of operands in
MC68AS is the reverse of that in
the MC68000 User’s Manual.

DBcc dbCC %dn,L Test Condition, Decrement, and
Branch

dbra %dn,L Decrement and Branch Always
dbr %dn,L Same as dbra

DIVS divs.w EA,%dn Signed Divide

DIVU divu.w EA,%dn Unsigned Divide

EOR eor.S %dn,EA Exclusive OR Logical

EORI eor.S &IEA Exclusive OR Immediate

EORI eorb &I, %cc Exclusive OR Immediate

to CCR to Condition Codes

EORI eorw &I, %sr Exclusive OR Immediate

to SR to the Status Register

EXG exg %rx, %1y Exchange Registers

Figure 16-3: MC68000 Instruction Formats (Sheet 4 of 9)

16-28 630 MTG SOFTWARE DEVELOPMENT GUIDE

Machine Instructions

Operation MC68AS Syntax Meanin&
EXT extA %dn Sign Extend
JMP jmp EA Jump
JSR jsr EA Jump to Subroutine
LEA lea.l EA,%an Load Effective Address
LINK link %an, &I Link and Allocate
LSL 1s1.S %dx, %dy Logical Shift (Left)
&Q,%dy
Istw &1,EA
LSR Isr.S %dx, %dy Logical Shift (Right)
&Q,%dy
Isr.w &1,EA

Figure 16-3: MC68000 Instruction Formats (Sheet 5 of 9)

MC68000 UNIX SYSTEM ASSEMBLER 16-29

Machine Instructions

Operation MC68AS Syntax Meaning

MOVE mov.S EA,EA Move Data from Source to
Destination
Note: If the destination is an
address register, the instruction
generated is MOVEA,

MOVE mov.w EA,%cc Move to Condition Codes

to CCR

MOVE mov.w EA,%sr Move to the Status Register

to SR

MOVE mov.w %sr,EA Move from the Status Register

from SR

MOVE mov.l %usp,%an Move User Stack Pointer

USP %an,%usp -

MOVEA mov.A EA,%an Move Address

MOVEM movm.A &[LEA Move Multiple Registers

EA &I
Note: The immediate operand is
a mask designating which
registers are to be moved to
memory or which registers are to
receive memory data. Not all
addressing modes are permitted,
and the correspondence between
mask bits and register numbers
depends on the addressing mode
used! See MC68000 User’s
Manual for details.
Figure 16-3: MC68000 Instruction Formats (Sheet 6 of 9)

16-30 630 MTG SOFTWARE DEVELOPMENT GUIDE

Machine Instructions

Operation MC68AS Syntax Meaning_
MOVEP movp.A %dx,D(%ay) Move Peripheral Data
D(%ax), %dy
MOVEQ mov.l &I, %dn Move Quick (when I fits in one
byte)
MULS muls.w EA,%dn Signed Multiply
MULU muluw EA,%dn Unsigned Multiply
NBCD nbedb EA Negate Decimal with Extend
NEG neg.S EA Negate
NEGX negx.S EA Negate with Extend
NOP nop No Operation
NOT notS EA Logical Complement
OR or.S EA,%dn Inclusive OR Logical
%dn,EA
ORI or.S &LEA Inclusive OR Immediate
ORI or.b &I,%cc Inclusive OR Immediate
to CCR to Condition Codes
ORI or.w &I,%sr Inclusive OR Immediate
to SR to the Status Register
Figure 16-3: MC68000 Instruction Formats (Sheet 7 of 9)

MC68000 UNIX SYSTEM ASSEMBLER

16-31

Machine Instructions

Operation MC68AS Syntax Meaning
PEA peal EA Push Effective Address
RESET reset Reset External Devices
ROL rol.S %dx, %dy Rotate (without Extend) (Left)
rolw &1,EA
ROR ror.S %dx, %dy Rotate (without Extend) (Right)
rorw &1,EA
ROXL roxl.S %dx,%dy Rotate with Extend (Left)
&Q,O/ody
roxlw &1,EA
ROXR roxr.S5 %dx,%dy Rotate with Extend (Right)
&Q,%dy
roxrtw &1,EA
RTE rte Return from Exception
RTR rir Return and Restore
Condition Codes
RTS rts Return from Subroutine
Figure 16-3: MC68000 Instruction Formats (Sheet 8 of 9)

16-32 630 MTG SOFTWARE DEVELOPMENT GUIDE

Machine Instructions

Operation MC68AS Syntax Meaning

SBCD sbcd.b %dy,%dx Subtract Decimal with Extend
-(%ay),-(%ax)

Scc sCCb EA Set According to Condition

STOP stop &I Load Status Register and Stop

SUB sub.S EA,%dn Subtract Binary
%dn,EA

SUBA sub.A EA,%an Subtract Address

SUBI sub.S &LEA Subtract Immediate

SUBQ sub.S &Q,EA Subtract Quick

SUBX subx.S %dy,%dx Subtract with Extend
-(%ay),-(%ax)

SWAP swap.w %dn Swap Register Halves

TAS tas.b EA Test and Set an Operand

TRAP trap &I Trap

TRAPV trapv Trap on Overflow

TST tst.S EA Test an Operand

UNLK unlk %an Unlink

Figure 16-3: MC68000 Instruction Formats (Sheet 9 of 9)

MC68000 UNIX SYSTEM ASSEMBLER

16-33

Appendix A: Installation and Administration

General Considerations A1
Dependencies A1
Windowing Utilities . . . ¥ |
C++ Programming Language . S
Storage Requirements A2
Location A2
Time-out Feature A2
Processes A3
PermissionModes A3

Installation of 630 MTG Software Development

Package e
Installation Procedure for 3B2 Computers .o . . A4
Installation Procedure for 3B15, 3B4000, and 3B20 Computers . . A5
Windowing Utilities Installation A5

UNIX Systems Distributed with AT&T Wmdowmg Ut111t1es . . A5
UNIX Systems Distributed without AT&T Windowing Utilities . A-5
Building SourceCode A-8
Local Software Al0

TABLE OF CONTENTS i

General Considerations

This appendix contains general information and instructions for loading,
installing, and maintaining the 630 MTG Software Development Package for
the 630 MTG. The package should be installed by your UNIX System
Administrator.

Dependencies

Windowing Utilities

The 630 MTG is most powerful when used with the AT&T Windowing
Utilities Package. This package provides the xt UNIX System device driver,
the layers window manager, and support programs necessary for operating
the terminal in the layers environment. The layers environment allows seven
terminal sessions over a single physical host connection.

The AT&T Windowing Utilities Package is supplied with UNIX System V
Release 3 on AT&T computers (Release 2.1.1 and beyond for the AT&T
3B20 Computers).

If your computer does not have the AT&T Windowing Utilities Package,
you can use the 5620 DMD V2.0-Core Package to provide the layers
environment for the 630 MTG. See "Windowing Utilities Installation" in this
chapter for detailed instructions.

C++ Programming Language

The host portion of the dmdpi debugger is written in the C++ programming
language. You will need this programming language only if you will be
compiling the dmdpi debugger source code. Binary distributions of the 630
MTG Software Development Package do not require the C++ programming
language. The C++ programming language is available from AT&T Software
Licensing in Greensboro, N.C. - Phone: 1-800-828-UNIX.

INSTALLATION AND ADMINISTRATION A-1

General Considerations

Storage Requirements

The 630 MTG Software Development Package source code takes over
7000 blocks of free space while the binary (executable) code takes over
5400 blocks of free space.

If you intend to compile the 630 MTG Software Development Package
source code, you will need at least 25,000 blocks of free space in your file
system when performing the compilation.

Location

The 630 MTG Software Development Package accepts the shell variable
DMD, which points to the directory where the 630 MTG software is stored.
The DMD variable lets you install the software in any directory.

The suggested installation location is /usr/opt/630. When installing the
package on a 3B2 Computer, the Simple Administration Package will
automatically place the software under /usr/opt/630. After installation is
completed, the software can be moved to any directory. When installing the
package on a 3B20 Computer, you have a choice of where to install the
software. It is suggested that you install the software under /usr/opt/630;
however, you are not required to do so.

Time-out Feature

If your host computer uses a "time-out" feature to log off users when
there is no terminal activity for a predetermined period of time, then this
time-out feature must be disabled when using the 630 MTG. Many 630 MTG
programs communicate with the UNIX System only when required. If you
execute one of these programs while time-out is enabled, the system may log
you off before execution is complete. Your System Administrator can disable
the time-out feature.

A-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

General Considerations

Processes

The user process limit may require changing. The 630 MTG consumes
processes as windows are created and programs are downloaded. When you
are not creating windows or loading programs, the number of processes is
usually less than 10. However, when creating windows or loading programs,
the number of current processes can easily exceed 25. Therefore, tuning of the
user process limit may be required.

Permission Modes
The following permission modes must be set:

® Read and execute permission on the directories from root (/) through
$DMD /bin

s Execute permission on the commands located in $DMD /bin and
$DMD//lib

m Read and write permission on /dev /tty.

INSTALLATION AND ADMINISTRATION A-3

Installation of 630 MTG Software
Development Package
This section tells how to install the 630 MTG Software Development
Package on the 3B2, 3B15, 3B4000, and 3B20 Computers. If you are installing

both a binary and a source package, install the binary package before the
source package.

Installation Procedure for 3B2 Computers

Installation of the binary software package for 3B2 Computers is
performed through the 3B2 Simple Administration Facility. To install the
binary package, place the first floppy disk into the internal floppy disk drive

and type:
sysadm installpkg

The simple administration facility will gﬁide you through the rest of the
installation, and the package will be installed under /usr/opt/630.

To install the source package, first determine a root directory where you
want the software installed. If the 630 MTG binary package has previously
been installed, it is recommended that the root directory of the 630 MTG
source package be the same as the root directory of the 630 MTG binary
package.

To complete installation of the source package:
1. Log in as root.

2. Place the 630 MTG Software Development Package 3B2 Source Code
cartridge tape into the cartridge tape drive.

3. Change directories (cd) to your chosen root directory.
Type the following (except on 3B2/600):
ctecpio -iduvT /dev/rSA/ctapel

On a 3B2/600 use the following:
cpio -idcumv < /dev/rSA/qtapel

For instructions on compiling the source code, see the section "Building
Source" in this chapter.

A-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Installation of 630 MTG Software Development Package

Iinstallation Procedure for 3B15, 3B4000, and
3B20 Computers

Installation instructions for the binary package on a 3B15, 3B4000, or 3B20
Computer are as follows:

1. Change (cd) to the directory where you want to install the package
(such as /usr/opt/630).

2. Mount the 630 MTG Software Development Package tape on a
1600 BPI (bits per inch) tape drive and type:

cpio -idcBumv < /dev/rmt/Om

Windowing Utilities Installation

The AT&T Windowing Utilities Package is a standard Utilities package
delivered with UNIX System V, starting with Release 2.1.1 for the 3B20 and
Release 3.0 for other AT&T processors. For earlier releases, windowing
utilities are obtained from the 5620 V2.0 Core Binary package.

UNIX Systems Distributed with AT&T Windowing Utilities

If you are running a version of UNIX for which AT&T Windowing Utilities
are available and they are not installed, install the AT&T Windowing Utilities
Package using the UNIX System documentation that came with the package.
To determine if the AT&T Windowing Utilities Package is installed, check (1s)
to see if the file /usr/bin/layers exists. If it does, the utilities are already
installed.

UNIX Systems Distributed without AT&T Windowing
Utilities
If you are running a version of UNIX that does not have AT&T Windowing
Utilities, install the 5620 Core Binary Package, including the xt driver, using
the 5620 Dot-Mapped Display Administrator Guide (Release 2.0)
(Select Code 306-141).

For instructions on compiling the source code, see the section "Building
Source" in this chapter.

INSTALLATION AND ADMINISTRATION A-5

Installation of 630 MTG Software Development Package

On the 3B2 computer, this installation will place files in the directory
Jusr/dmd. On a 3B20 computer, files can be installed anywhere, with
/usr/dmd being the recommended location. The remainder of this section
should be completed while logged in as root.

Copy the following files from the 5620 Core Binary tree into the same
relative directories of the 630 MTG Software Development Package tree:

Note: Remember the suggested location of the 630 MTG Software
Development Package tree is /usr/opt/630.

& bin/layers
m bin/relogin
® bin/xtd

® bin/xts

® bin/xtt

® bin/ismpx
m bin/jwin
® bin/jterm
m bin/32ld
m bin/32reloc

For example, copy:
Jusr/dmd /bin/layers
to:
Jusr/opt/630/bin/layers

by typing:
cp /usr/dmd/bin/layers [usr/opt/630/bin/layers

and so on....

A-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Installation of 630 MTG Software Development Package

After you have finished copying the files, set user identification (uid) to
root for the files layers and relogin. To accomplish this, change to the
directory bin under the 630 MTG Software Development Package tree and
execute the following commands:

chown root layers relogin
chmod 4755 layers relogin

The file $DMD/lib/hostagent.o in the 5620 Core Package has been made
into an archive file for the 630 MTG and relocated to /usr/lib/libwindows.a.
libwindows.a is a library of routines which enables a program running on a
host UNIX System to perform windowing terminal functions such as New()
and Reshape(). To convert and relocate hostagent.o, execute the following
command:

cd /usr/1lib
ar cr libwindows.a /usr/dmd/lib/hostagent.o

The path to hostagent.o on the ar command line should be modified if
the package is not installed in the /usr/dmd directory.

If you are on the 3B2 Computer, the ar command is part of the Software
Generation Utilities package. If this package is not installed, skip this step.
ar and libwindows.a are not usable without the Software Generation Utilities.
If you later install the Software Generation Utilities package, convert and
relocate hostagent.o at that time. Note that C language programs on the host
computer will not be able to perform windowing terminal functions until
libwindows.a is available.

A zero length file must now be created in the directory lib/layersys under
the 630 MTG Software Development Package tree to inform the 5620 layers
program of the terminal version of the 630 MTG. The name of this file must
be in the form:

1sys. TERMINAL_VERSION

INSTALLATION AND ADMINISTRATION A-7

Installation of 630 MTG Software Development Package

Terminal version is displayed in the 630 MTG setup window. For
example, if the first line of your setup window says:

8;8;6 ROMS

then your terminal version is 8;8;6. The zero length file must be called
Isys.8;8;6. To create the file, change to the directory lib/layersys under the
630 MTG Software Development Package tree and type:

>"1sys.8;8;6"

If multiple 630 MTG terminals are used on your computer and the
terminals have different firmware versions, more than one file will have to be
created. Some zero length files already exist in this directory. If the zero
length file for a particular firmware version is missing, the following error
message will be displayed when the person using the terminal with that
firmware version executes the layers command:

5620 Software - Firmware mismatch.; .

If no 5620 terminals will be used on the system, files under the root
directory of the 5620 may now be removed, if desired, in order to recover disk
space.

If you installed the binary 630 MTG Software Development Package,
installation is now complete.

Building Source Code

When installing source code, it is recommended that you also install the
appropriate binary package. If you do not install the binary package, you will
have to compile all the source code.

The host portion of the dmdpi debugger is written in the C++
programming language. C++ is available from AT&T Software Licensing in
Greensboro, N.C. - Phone: 1-800-828-UNIX. Before compiling the 630 MTG
Software Development Package from source, C++ must be installed on your
computer. See the file $DMD /src/dmdpi/README for additional information
about compiling dmdpi.

A-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Installation of 630 MTG Software Development Package

To build the entire 630 MTG Software Development Package:

1. Your environment should be set up for a 630 MTG (described under
"User’s .profile" in the "Overview" Chapter of this document).

2. Verify that there are at least 25,000 blocks of free space in the file
system that contains $DMD.

3. Execute the following commands:

cd $DMD
make ACTION=install all

Note: The newly compiled software will be installed in the
directories $DMD /bin and $DMD /lib.

If you want to free up disk space after the package has been built, use the
following command to remove temporary files from your source directories:

make ACTION=clobber all
To build manual pages for the 630 MTG Software Development Package:

cd $DMD/man/src
makeall

Note: You must have DOCUMENTER’S WORKBENCH* software
installed on your host computer to build manual pages.

* Trademark of AT&T.

INSTALLATION AND ADMINISTRATION A-9

Local Software

Partitioning of local and official software is recommended to ensure proper
software support. The executable version of locally developed software
should be placed in $DMD/local /bin and have execute permission for 630
MTG users. Users of locally developed software will have to add this
directory to their $PATH variable.

Source for locally developed software should be stored in $DMD /local /src,
with manual pages stored in $DMD/local /doc.

A-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Appendix B: 5620 Compatibility

Co-existence of 5620 DMD and 630 MTG on the
Same Host Computer

Porting 5620 DMD Programs to the 630 MTG
Change in Processors - Different Word Size .
The File “5620.h”

When to Use “5620.h"" .

How to Use “5620.h”

What “5620.h" Fixes .
Assorted Problems Not Fixed by Includmg “5620 h"
Host-Related Changes . .o e e

“New’” and “Reshape”

Using Identical Source Files on Both Termmals

B-3
B-3
B-6

B-6
B-7
B-10
B-12
B-12
B-12

TABLE OF CONTENTS i

Co-existence of 5620 DMD and 630 MTG
on the Same Host Computer

When the 5620 DMD and 630 MTG terminals and associated software
packages co-exist on the same host computer, users who need the ability to
use both types of terminals must set their PATH variables to the appropriate
software tree, depending on the type terminal being used. This section
provides two simple ways to set up the user’s environment that will ensure
the correct software package is accessed.

The following sample .profile will ask a user for the terminal type and set
up an appropriate environment for either a 630 MTG or 5620 DMD based

upon the user’s response:

echo Terminal? \\c
read TERM
case $TERM in .
630)
stty tabs ixon erase \ h
DMD=/usr/opt/630 # or wherever the 630 MTG software is located
PATH=$PATH: $DMD/bin
export TERM DMD PATH
5620)
stty tabs ixon erase \'h
DMD=/usr/dmd # or wherever the 5620 DMD software is located
PATH=$PATH: $DMD/bin
export TERM DMD PATH
Y

esac

5620 COMPATIBILITY B-1

Co-existence of 5620 DMD and 630 MTG on the Same Host Computer —

Alternatively, a shell program similar to the following can be used to
switch between terminal environments. This program assumes that the two
variables, $DMD5620 and $DMD630, are set in the user’s .profile. These
variables should point to the 5620 DMD and 630 MTG software trees,
respectively. When executed, this program switches environments between
5620 DMD and 630 MTG depending on the terminal being used.

This program can be typed into a file and then executed when a user
switches between terminals.

if ["$DMD5620" = nn -0 "$DMD630" = "n]
then

echo "\$DMD5620 and/or \$DMD630 not set"
elif ["$DMD" = "$DMD630"]

then
PATH=‘echo $PATH | sed "s’$DMD630’$DMD5620°g" ¢
DMD=$DMD5620
TERM=5620
echo "Now set for 5620"
else
PATH=‘echo $PATH | sed "s’$DMD5620°’ $DMD630’g"*
DMD=$DMD630
TERM=630
echo "Now set for 630"
fi

export DMD PATH TERM

Note: This program must be executed in the shell process by typing
the command as follows: . file

B-2 630 MTG SOFTWARE DEVELOPMENT GUIDE

Porting 5620 DMD Programs to the
630 MTG

This section describes several areas that should be considered when
porting 5620 DMD ‘C’ language programs for execution in the 630 MTG
environment.

Note: This section is primarily intended for users who are porting
programs to the 630 MTG. If more information is needed on
the 5620 DMD, consult the appropriate 5620 DMD
documentation.

Although the execution environments for the 5620 DMD and 630 MTG
are basically compatible, some programming changes are necessary due to the
fact that the 5620 DMD and 630 MTG have different processors. The effects
on ‘C’ language programs, as a result of this difference, are explained in this
section.

The 630 MTG Software Development Package provides the include file
5620.h that resolves many, but not all, of the discrepancies between the two
execution environments. This file may be included in all 5620 DMD programs
ported to the 630 MTG.

This section covers the following areas:
s Porting difficulties that are inherent with the change in processors

8 How to use 5620.h and a description of problems that can be solved by
including 5620.h in the source file

s Descriptions of other potential problems (not resolved in 5620.h) and
ways to solve them

m Host agent differences between the 5620 DMD and 630 MTG

s How to use the same source file for both terminals.

Change in Processors - Different Word Size

In C language, the size of an integer is defined as the word size of the
machine. This is a portability issue for any ‘C’ code and is generally solved
by not assuming word size. For example, always defining variables as either
short or long instead of int can prevent this from becoming a problem in

porting code.

5620 COMPATIBILITY B-3

Porting 5620 DMD Programs to the 630 MTG

The 5620 DMD uses a WE*32100 microprocessor, which has a 32-bit data
bus. The size of a word, then, is defined as 4 bytes. With the Motorola
MC680001 and its 16-bit data bus, a word is only 2 bytes.

Problems that can result from incorrectly assuming an integer is 32 bits on
the 630 MTG are:

A. Value Does Not Fit in 16 Bits—The integer may take on a value
larger than can be represented with only 16 bits. If an integer is
expected to take on large values, it should be changed to a long.

B. Parameter Passing Errors—Sometimes an integer is passed where a
long or a pointer is expected. Integers are now the size of a short, not
of a long or pointer. Passing an integer can have unpredictable
results.

Routines that accept an integer on the 5620 DMD but require a long
on the 630 MTG are: itox, sqrt, and gcalloc. (sqrt has been renamed
Isqrt on the 630 MTG.) See the manual page ITOX(3L), LSQRT(3L),
and GCALLOC(3R) in the 630 MTG Software Reference Manual for
more details.

For example, for the itox routine declared as:

char *itox(i, s)
long i;
char *s;

The call:
itox(10, &buf);

should be written as:
itox((long)l0, &buf);

The reverse case of using a long or pointer in place of an integer is
less common though still a problem. For example, in printf, passing a

* Registered trademark of AT&T
t Trademark of Motorola, Inc.

B-4 630 MTG SOFTWARE DEVELOPMENT GUIDE

Porting 5620 DMD Programs to the 630 MTG

pointer to be displayed as an integer will display only the first two
bytes and will alter the remaining arguments.

This problem can be corrected by using a cast, declaring the integer as
a long, or changing the type of the parameter.

. Relying on a Structure Being a Certain Size—Any structure that had
a field defined as an integer has changed size. Also, structures are
now rounded to the nearest 2 instead of 4 bytes. This should not
affect programs that used the "sizeof’ operator to communicate the size
of a structure.

The following data types and structures have changed sizes between
the 5620 DMD and the 630 MTG.

sizeof() | 5620 | 630

int 4 2
Word 4 2
Code 4 2

Bitmap 20 18

vMouse 12 10

Fontchar 8 6

Font 20 18

. Change in Bitmap "width"—A common problem with porting 5620
DMD code to the 630 MTG occurs with the declaration of Bitmaps.
Because of the change in the value of sizeof(Word), the width field of
the Bitmap must be doubled. To make Bitmaps compatible with both
the 5620 DMD and 630 MTG, the following guidelines should be
followed:

1. Declare the image data as an array of unsigned longs or
unsigned shorts rather than an array of Words since the size of
Word changes for different processors.

2. As aresult of the previous step, you will need to cast base in
the Bitmap data structure as a pointer to a Word.

5620 COMPATIBILITY B-5

Porting 5620 DMD Programs to the 630 MTG

3. Declare the width field in the Bitmap data structure as follows:
N/sizeof(Word);

where N is the number of bytes in a single scan-line of the
Bitmap’s image data. N must be a multiple of sizeof(Word).

The File “5620.h”’

When to Use “5620.h”’

The 5620.h file is useful for porting code from the 5620 DMD to the 630
MTG. New programs written for the 630 MTG do not need to include 5620.h
in their source code. 5620.h mostly contains definitions of 5620 DMD
functions in terms of their 630 MTG counterparts. Including 5620.h can save
you some editing of your source files. The 5620.h file is located in directory
$DMD /include.

How to Use ‘5620.h”’

If you are trying to compile a 5620 DMD source file for the 630 MTG, you
can edit the file to add the line:

#include <5620.h>

5620.h should be included AFTER dmd.h, since it redefines a few items in
dmd.h.

If you have a large number of source code files, you may wish to make a
local copy of the include file dmd.h and have it include 5620.h. It is not
recommended that you edit the dmd.h in $DMD /include. Make your own
copy to ensure proper software support of your official 630 MTG software.

If compatibility with the 5620 DMD is not an issue once your programs
are running on the 630 MTG, it is recommended that you remove the
dependency, if any, on 5620.h after the initial port. At some time, edit the 630
MTG file to take better advantage of 630 MTG features and to avoid extra
macro calls.

B-6 630 MTG SOFTWARE DEVELOPMENT GUIDE

Porting 5620 DMD Programs to the 630 MTG

What “5620.h’’ Fixes

This section describes potential porting problems that are resolved by
including 5620.h.

A. A Few Function Name Changes—Because the 630 MTG has both
floating point and integer approximation routines, there are name
conflicts with the integer approximation routines of the 5620 DMD.
On the 630 MTG, the "I" and "L" in the name indicate integer and
long to differentiate from the regular floating point routines. This is
shown in the table.

OLD NAME | NEW NAME
sin Isin

cos Icos

atan2 Tatan2

floor Ifloor

ceil Iceil

sqrt Lsqrt -

Also, the functions outline and getrect have been replaced with the
more general functions box and newrect. 5620.h resolves these
changes by defining macros that do the name translation. For
example, outline is defined as:

#define outline(olr) box(&physical, olr, F_XOR)

Finally, the 5620 DMD function texture is not supported on the

630 MTG, and the 5620 DMD function texturelé6 is called texture in
the 630 MTG. The include file 5620.h performs this translation for
programs ported to the 630 MTG.

B. New Method of Linking Firmware Functions—On the 5620 DMD,
firmware routines are accessed by a macro definition that casts an
absolute address to a pointer, to a function, and then calls that
function. This is a burden on cpp and creates error messages when
the address of the function is used or a variable or function is declared
with the same name as that of a firmware function.

5620 COMPATIBILITY B-7

Porting 5620 DMD Programs to the 630 MTG

The new method of accessing firmware routines is done by linkages,
similar to the way UNIX System calls are done. When the program is
linked together, the library libfw is searched to satisfy undefined
external functions. This library holds small (3 lines) assembly
language routines that call firmware routines via their addresses stored
in a vector table. This has the following effects on source files:

a On the 5620 DMD, a function with the same name as one in
the firmware has to be undefined first in every file referencing
it. This is unnecessary but harmless on the 630 MTG.

m Because of this new linkage, firmware functions that do not
return an integer must be defined as external to get the correct
return type. 5620.h does this for documented 5620 DMD
routines. '

C. A Few New Macro Definitions—The macros Pt, Rpt, and Rect have
new definitions in dmd.h. The new macros are declared as:

#define Pt(x,y) . X, ¥y
#define Rpt(x,y) ‘ X, y
#define Rect(a,b,c,d) a, b, ¢, d

This works because of the way the 68000 C Compilation System
(CCS) passes a structure, and it is more efficient than calling another
routine to construct the structure. 5620.h redefines these macros as
calls to the routines fPt, fRpt, and fRect. These routines are
functionally equivalent to the 5620 DMD’s routines which were
recommended for parameter passing.

D. No Defont Font—There is no longer a font called defont. Use
mediumfont instead. In 5620.h, defont is defined as mediumfont.

B-8 630 MTG SOFTWARE DEVELOPMENT GUIDE

Porting 5620 DMD Programs to the 630 MTG

E. Certain Font Definitions No Longer Meaningful—In the 5620 DMD

include file setup.h, some font properties are listed as:

#define CVW 9 /* width of a character */
#define NS 14 /* newline size; */

/* height of a character */
#define CURSOR "\1"

#define XMARGIN 3 /* inset from border */
#define YMARGIN 3

#define XCMAX ((XMAX-2*XMARGIN)/CV-1)

#define YCMAX ((YMAX-2*YMARGIN)/NS-3)

These are still defined, but as a part of 5620.h. On the 630 MTG, use
the macros FONTWIDTH and FONTHEIGHT to find the width and
height of characters in a given font (documented in the 630 MTG
Software Reference Manual under string(3R)). The old CW, NS,
XCMAX, and YCMAX are only applicable to mediumfont on the 630
MTG. The problem with the CURSOR definition is that ascii "\1" is
not a cursor in mediumfont as it was in defont. The function rectf
will have to be used to create a rectangular cursor.

“MPX"” Defined in “5620.h”’-—Since there is no stand-alone
environment on the 630 MTG (see below), MPX should always be
defined for 5620 DMD applications. This is set in 5620.h.

5620 COMPATIBILITY B-9

Porting 5620 DMD Programs to the 630 MTG

Assorted Problems Not Fixed by Including
¢“5620.h”’

There are other differences between the application environments of the
5620 DMD and the 630 MTG that can potentially cause porting problems.
Some will only affect a small number of 5620 DMD programs. Read through
this section to see if your program is affected. Code changes will be necessary
to resolve these issues; they are not resolved in the include file 5620.h.

A. No “Stand-Alone” Environment—If you have a program written for
the stand-alone programming environment of the 5620 DMD, you
will need to port it to the layers environment before trying to run it
on the 630 MTG. The 630 MTG does not support stand-alone; a
program written for the layers environment will run in non-layers,
although it must compensate for the lack of an error-correcting
protocol if it does so. This is why MPX is defined in 5620.h.

B. Names of Include Files—The 5620 DMD Application Development
Package has some include files that are linked together. This is not
done in the 630 MTG Software Development Package. Some of the
include files have changed names. These are shown in the following

table.
| OLD NAME | NEW NAME
| blith dmd.h
blitio.h dmdio.h
jerg.h dmd.h
jergio.h dmdio.h
jergproc.h dmdproc.h

Also, pandora.h is no longer available; it defined macros for calling
unsupported firmware functions. These values in the old file are not
valid for the 630 MTG. However, many of the routines are now
supported and documented in the 630 MTG Software Reference Manual.

The files duart.h, kbd.h, line.h, queue.h, sa.h, sys/2681.h, sys/xt.h,
sys/jioctLh, and sys/xtproto.h in the 5620 DMD'’s include directory
do not exist for the 630 MTG because they are hardware specific or
not applicable to the 630 MTG environment.

B-10 630 MTG SOFTWARE DEVELOPMENT GUIDE

Porting 5620 DMD Programs to the 630 MTG

. Textures—The 630 MTG does not support a 32-bit Texture structure.
The 5620 DMD supports both Texture and Texturel6. The 630 MTG
has only one: Texturel6. On both terminals, the Texturel6 is a 16 by
16 bit array, so those are completely compatible. The declaration of
Textures in programs will have to be changed. Often a 32 by 32 bit
Texture is a small pattern repeated over and over, and reducing the
size saves space without losing any detail. (See texture(3R) in the

630 MTG Software Reference Manual.)

. Sign Extension of Characters—The 630 MTG’s C Compilation
System (CCS) does sign extension on characters. For example, if a
char is assigned to an int, the sign bit will be propagated. This is not
true in the 5620 DMD’s Software Generation System (5GS). A way to
handle this is to use unsigned char rather than just char.

Graphical Displays of Memory Usage—Since the memory allocation
scheme in the 630 MTG is different from that in the 5620 DMD,
programs which display memory usage will have to be rewritten. The
630 MTG program dmdmemory is a good example of how to display
630 MTG memory usage.

“Hostagent.o” is now “libwindows.a”—The file

$DMD /l1ib /hostagent.o in the 5620 DMD Core Package is made into
the library /usr/lib/libwindows.a by the system administrator when
the 630 MTG software is installed on systems with UNIX System V
Release 2. (This procedure is described in the "Windowing Utilities
Installation" section of Appendix A.) This change affects programs
that use hostagent.o, since they must now include -lwindows on the
compile line or in their makefile.

. PF Keys—The PF keys have the values 0x80 to 0x97 on the 630 MTG
in NOPFEXPAND mode. On the 5620 DMD, they have the values
0x82 to 0x89. See keyboard(3R) in the 630 MTG Software Reference
Manual for more information about NOPFEXPAND mode.

5620 COMPATIBILITY B-11

Porting 5620 DMD Programs to the 630 MTG

Host-Related Changes

‘“New”’ and ‘“Reshape”’

The host agents New and Reshape windowing utilities commands have
changed such that the exterior includes the window’s border and the interior
does not. For example, when called with the rectangle (8,8,264,264), the
resulting window will be:

TERMINAL Exterior Interior

5620 v1.1 (8,8,264,264) | (10,10,262,262)
5620 v2.0 (6,6,266,266) (10,10,262,262)
630 (8,8,264,264) | (12,12,260,260)

Both routines will also now clip the rectangle to the screen.

Using Identical Source Files on Both
Terminals

It is possible to use the same source file in both the 5620 DMD and
630 MTG programming environments. However, the parts of the source code
specific to a terminal or programming environment need to be indicated when
the file is compiled.

For the 630 MTG, the variable DMD®630 is automatically defined when a
source file is compiled with dmdcc. The environment specific code can then
be enclosed in #ifdef DMD630...#endif directives (or, alternatively, #ifndef
DMD630...#endif for 5620 DMD code).

As an example, if all of your porting problems can be fixed by 5620.h, you
can add the following lines to your file and the code would compile correctly
for both environments.

#ifdef DMD630
#include <5620.h>
#endif

B-12 630 MTG SOFTWARE DEVELOPMENT GUIDE

Index

5620 Compatibility,B-1
630 MTG Documentation,1-2
630 MTG font cache,8-12
630 MTG operating system,3-2
630 MTG Software Development
Package
features,1-5
introduction,1-1

A

alarm,5-14
ALARM resource,5-14
application caching facility,10-1
application resource management,-
5-1
applications,
all users,1-5
programmers,1-6
archive,15-5
archive file member header,15-5
archive headers,15-5
archive symbol table,15-5
argument,
argc,2-8
argv,2-8
assembler window,12-29
attach,5-11

bfn demonstration - Tmenu9.c,6-14
bitblt,4-32

illustrations,4-33
Bitmap,4-5 :
Bitmap illustrations,4-6
breakpoints - clearing,12-23

breakpoints - setting,12-13

bttns,5-6

button interface function - “bttns”’,-
5-6

button interface macros,5-5

C

C Compilation System (CCS),15-1
C language,15-16
C++ Programming Language,A-1
cache routine,10-2
cached application - removing,10-8
cached application - reshapability,-
10-9
cached application - restarting,10-5
cached application - .text, .data,
.bss,10-11
caching an application,10-2
caching,
host-connected application,10-6
local or connected application,-
10-6
shared application,10-6
call stacks,12-15
CCS utilities,15-1
chapter descriptions,1-7
co-existence - 5620 DMD and 630
MTG,B-1
co-existence - PATH variable,B-1
co-existence - user’s .profile,B-1
Comparisons,4-15
compiling source code,A-8
conditional breakpoints,12-27
Conversions,4-15
coordinate system transformations,-
4-25

INDEX I-1

coordinate systems,4-21

copies of applications,5-12

CPU resource,5-13

CPU Sharing,3-4

creating an archive,15-5

current point,4-23
screen coordinate system,4-24
window coordinate system,4-24

current screen point,2-7

cursallow,5-6

cursinhibit,5-6

cursor keys,11-3

cursset,5-7

cursswitch,5-7

data type conversions,4-19
data types,4-2
data types - Menu,6-2
data types,

Bitmap,4-5

Point,4-2

Rectangle,4-2

Word,4-4
debugging crashed processes,12-33
DELETE resource,5-13
dfn demonstration - Tmenu9.c,6-14
displaying icons,6-16
displaying text,6-17
displaying text and icons,6-17
DMD variable,A-2
dmda.out file,15-3
dmdcc command,15-3
dmdce command options,15-4
dmddemo,1-5
dmdman,1-5
dmdpi window,12-8

dmdpi,
demonstration,12-6
description,12-1
help window,12-5
keyboard input,12-4
mouse operation,12-2
other features,12-25
special cursor icons,12-4
user interface,12-2
working directory,12-31
documentation,1-2
Reference Manual,1-2
Release Notes,1-2
User’s Guide,1-2
drawing characters,8-5
drawing routines,4-27
screen coordinates,4-27
window coordinates,4-29
drawing text strings,8-8
drawing with the mouse,5-7

example of caching,10-4

Example Program, ’
arguments.c,2-8
cachel0.c,10-34
cachell.c,10-36
cachel2.¢,10-38
cachel3.c,10-40
cachel4.c,10-42
cachel5.c,10-44
cachel6.c,10-47
cachel7.c,10-48
cachel.c,10-21
cache2.c,10-22
cache3.c,10-23
cached.c,10-24

Example Program (Continued)

cache5.c,10-25
cache6.c,10-26
cache7.c,10-28
cache8.c¢,10-31
cache9.c,10-32

caching a downloaded font,-

8-14
clock.c,12-35

compiling - dmdcc,2-3
downloading - dmdld,2-4

drawchar,8-6
general,2-1
getfont,8-10
hello.c,2-3
HELLO.c,2-5
jxmouse,7-6
kbd1l.c,11-11
labell.c,6-67
label2.c,6-68
label3.c,6-69
Menul.c,6-21
Menu2.c,6-23

messagesl.c,9-8
messages2.c,9-14

mouse.c,5-17
msgbox1.c,6-71
msgbox2.c,6-73
screen.c,4-43
star.c,5-29
Tmenul.c,6-27
Tmenu2.c,6-30
Tmenu3.c,6-33
Tmenu4.c,6-37
Tmenu5.c,6-42
Tmenub.c,6-47
Tmenu?7.c,6-52
Tmenu8.c,6-59

Example Program (Continued)
Tmenu9.c,6-64
TrackMouse.c,5-27
twist.c,4-41
type.c,5-35
vsterml.c,5-37

exceptions,3-5

explicit arguments - “s”” and ““f”,10-2

F

features,
software package,1-5
font cache,8-12
Font data structure,8-1
font field - initialization,6-12
Fontchar data structure,8-3
fonts from the host,8-9
function codes - graphics routines,-
4-26
function keys,11-2

getfont,8-9
Getting Started,
materials needed,2-2
porting 5620 programs,2-2
what you need to know,2-1
global structure “mouse”,5-4
global structures - coordinate
systems,4-21
global variable “P”,3-2
global variables - inspect,12-22
global variables, eliminating,10-14
Globals window,
keyboard expressions,12-25
graphic routine built-in mouse
interface,5-7

INDEX 13

graphical coordinate systems,4-21
graphical routines,4-26

greying menu items - Tmenué.c,6-13

hfn demonstration - Tmenu9.c,6-14
host communications,5-10
hostagent.o file,A-7

host-related changes,B-12

icon commands,14-6

icon editor,14-1
arrow command,14-9
arrow menu,14-9
background grid command,-

14-13

bitblt command,14-13
copy command,14-10
drawing with,14-9
duplicate command,14-12
erase command,14-10
exit command,14-15
invert command,14-10
mouse command,14-13
read file command,14-12
Reflect X command,14-11
Reflect y command,14-11
Rotate + command,14-11
Rotate - command,14-11
Shear X command,14-11
shear y command,14-11
stretch command,14-12
Texturel6 command,14-12
write file command,14-15

icon menu,14-5

icons,
initiating an icon session,14-3
selecting bitmap or texturel6,-
14-4
storing,14-2
supplied,14-18
two data types,14-2
use in programs,14-15
using,14-3
Image of the world,2-7
implicit arguments,10-3
include file - world.h,4-13
include file 5620.h,B-6
inclusion operations,4-19
initializing the .bss section,10-13
installation and administration,A-1
installing software,A-4
installing windowing utilities,A-5
interprocess communications,9-1

J

jim editor,13-1
adding new text,13-8
button 3 menu,13-15
changing text,13-9
command summary,13-24
commands,13-13
copying text,13-8
diagnostic messages,13-17
file loading,13-5
frame positioning,13-14
how to quit,13-17
moving text,13-8
naming files,13-11
operations,13-4
recovering lost files,13-22
save buffer,13-10

Index

jim editor (Continued)
scrolling,13-14
special characters,13-15
string searches,13-12
text deletion,13-7
text selection,13-6
using mouse,13-4
work frame,13-4
writing files,13-10

jim window,13-2

Journal,12-28

jstring,8-8

jx,
functions,7-4
how it works,7-2
I/0 interpreter,7-1
using,7-3

K

kbdchar,11-1, 5-8
key clusters,11-2
keyboard and printer as a
typewriter,5-9
keyboard expressions,12-25
keyboard modes - “kbd2.c¢”,11-9
keyboard redefinition,
demonstration,11-9
keyboard resource,5-8
keyboard,
cursor keys,11-3
entire keyboard,11-6
function keys,11-2
identification,11-7
key clusters,11-2
key positions,11-26
layout,11-25
NOTRANSLATE,11-6

keyboard (Continued)
numeric key pad,11-4
operation,11-6
redefining,11-1
scroll lock key,11-5
transmittal codes,11-22
keystrokes,11-7

L

label bar,6-15

label bar - requesting,6-16
labelicon,6-16
labeloff,6-16

labelon,6-16

labeltext,6-17

lib/layersys directory,A-7
library files,15-5

link editor,15-5

linking the menus,6-11
loadfont,1-5

local,5-11

local software,A-10

local variables - inspect,12-17
lprintf,2-4, 2-7

maintaining text and icons,6-18
mc68ar command,15-5
MC68AS,16-1
mc68as command,
format,16-4
MC68AS sub instruction,16-3
MC68AS,
address mode syntax,16-21
comments,16-6
constants,16-7

INDEX 15

MC68AS (Continued)
expressions,16-12
identifiers,16-6
line format,16-5
machine instructions,16-24
pseudo-operations,16-13
register identifiers,16-7
segments, location counters,
labels,16-9

span-dependent optimization,-
16-19

syntax rules,16-5

types,16-11

mc68as,
use of,16-4

MC68AS,
warnings,16-2

mc68conv command,15-6

mc68cprs command,15-7

mc68dis command,15-7
mc68dump command,15-8
mc68ld command,15-9
mcé68lorder command,15-9
mc68nm command,15-10
mc68size command,15-11
mc68strip command,15-11

Menu, 6-2

menu expansion - Tmenu3.c,6-11

menu item bitmaps - Tmenu4.c,6-12

menu, simple - Menul.c,6-5

menu, simple - Tmenul.c,6-10

menuhit,6-2
use of,6-5

message boxes,6-19

message,
creating,9-3
definition,9-2
queue control,9-11

message (Continued)
receiving,9-6
messages,9-1
message,
sending,9-5
modifying the .data section,10-12
mouse cursor control,5-6
mouse interaction,6-4
mouse resource,5-4
mouse tracking,5-5
MSG resource,5-15
msgget,9-3
msgrcv,9-6
msgsnd,9-5
msqid,9-6
msqid_ds,9-11
multiple fonts - Tmenu5.c,6-12
multiple menus - Menu2.c,6-5

newrect,5-7

next field - Tmenu2.c,6-11

NOTRANSLATE demonstration -
“kbd3.c”,11-9

NOTRANSLATE protocol,11-6

numeric key pad,11-4

o

operating system,3-2
processes,3-2

Operations,4-15

operations on Points,4-15

organization,1-7

own,5-2

P->appl,10-16
parameter passing,10-15
parameter passing - “P->appl”,10-16
peel,5-12
permission modes,A-3
Point,4-2
Point comparison,4-16
Point operations,4-15
porting 5620 DMD programs,B-3
printer and keyboard as a
typewriter,5-9
printer resource,5-9
printing, dmdcat,1-5
printing text,
lprintf,2-4
process control window,12-9
process exceptions,3-5
process inhibit - lockup,3-4
process scheduling,3-3
process states,3-3
process structure,3-2
process switch,3-4
process switch notification,11-8
processes,3-2
profile, user,1-3
psendchar,5-9
psendchars,5-9
“P”, warnings,10-17

rcvchar,5-10

receiving and sending data,5-10
Rectangle,4-2

Rectangle comparison,4-18

Rectangle operations,4-17
regaining the host connection,5-11
register use,15-12
releasing the host connection,5-11
request,5-1
requesting a resource - “request’,5-1
reshapability - cached application,-
10-9

RESHAPED resource,5-14
resources command,

own,5-2

request,5-1

wait,5-3
Resources,

ALARM,5-14

CPU,5-13

DELETE,5-13

keyboard,5-8

mouse,5-4

MSG,5-15

printer,5-9

RESHAPED,5-14
return value of cache,10-4
ringbell,5-8

save buffer,13-10

saving the .bss section,10-13

scroll lock key,11-5

sections - .text, .data, .bss,10-11

sendchar,5-10

sending data to the printer,5-9

servicing a resource - “own”’,5-2

setting the mouse position,5-7

shared text applications,
writing,10-14

sharing the .bss section,10-12

INDEX 1-7

sharing the CPU,3-4
sharing the CPU - “wait(CPU)",2-5
sharing the .data section,10-12
software dependencies,A-1
software installation,A-4
software package directory,A-2
source files - 5620 DMD/630MTG,-
B-12)
source window,12-10
Spy,12-28
stack frame,
keyboard expressions,12-25
stack frames,12-15
starting a jim session,13-4
static menus - Tmenu?.c,6-13
static menus and multiple selections
- Tmenu8.c,6-14
stderr,7-2
stdin,7-2
stdout,7-2
step statements,12-20
storage requirements,A-2
string,8-8
structure of label bar,6-15
strwidth,8-8
subroutine calls - Tmenu6.c,6-13
syntax rules,16-5
system exceptions,3-5
system services,5-13

T

terminal emulator - “vsterm1.¢”,5-11
Textures - data type,4-30

time-out feature,A-2

Titem definition,6-8

Tmenu definition,6-7

tmenuhit - tree menus,6-6

tmenubhit data types - Tmenu and
Titem,6-6
tmenuhit,
calling,6-9
return value,6-10
~ use of,6-10
tools - user interface,6-1
turning the mouse cursor Off and
On,5-6

user interface tools,6-1

user process limit,A-3

user responsibilities,1-3
install software,1-3
profile,1-3

using different mouse cursors,5-7

W

wait,5-3
wait(CPU),2-5
waiting on a resource - “wait”,5-3
windowing utilities,A-1
Word,4-4
word size,B-3
writing shared text applications,-
10-14
eliminating global variables,-
10-14
modifying global variables,-
10-14
porting existing applications,-
10-18

	00001
	00002
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	13-001
	13-002
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	15-001
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	16-001
	16-002
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-001
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08

