ATaT

i

999-300-340
Issue 1

630 MTG

Software Reference Manual

TRADEMARKS

The following is a listing of the trademarks that are used in this manual:

« MC68000 — Trademark of Motorola, Inc.
. UNIX — Registered trademark of AT&T

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

NOTICE

The information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

Copyright © 1987 AT&T
All Rights Reserved
Printed in U.S.A.

INTRODUCTION

This reference manual contains manual pages for the AT&T 630 MTG
Software Development Package. It is intended that this manual will be used in
conjunction with the 630 MTG Software Development Guide. The 630 MTG
Software Development Guide contains tutorial descriptions of many of the com-
mands and library subroutines discussed in this reference manual.

This manual contains a table of contents and a permuted index to help you in
locating a certain manual page.

The table of contents lists the manual pages by the categories (or sec-
tions) that they are found in this manual. Within each category the
manual page is listed in alphabetical order with a short description
about the manual page.

The permuted index is divided into three columns. The middle
column is used to search for a key word or phrase. The right column
will then contain the name of the manual page that contains that
command. The left column contains additional useful information
about the command.

The manual pages are divided into four sections, with Section 3 containing

sub-classes. Note that the section numbers correspond to the section number-
ing scheme of UNIX* System reference manuals.

* Registered trademark of AT&T

Since Section 2 is not pertinent to the 630 MTG, it is omitted.

1. Commands and Application Programs
3. Subroutines:
3L. Host Resident General Library Routines
3R. ROM Resident General Library Routines
3R/3L. Combination of 3L and 3R Routines
3M. Host Resident Mathematical Library Routines
4. File Formats
5. Miscellaneous Facilities

Section 1 (Commands and Application Programs) describes commands intended
to be accessed directly by the user or by a command language program.

Section 3 (Subroutines) describes library subroutines which can be called by
application programs which execute in the terminal. To access 3M routines,
include -Im on the dmdcc command line. For example:

dmdcc prog.c -lm

3L and 3R libraries are automatically searched by dmdcc and do not have to
be explicitly included on the dmdcc command line.

Section 4 (File Formats) documents the structure of particular kinds of files; for
example, the format of font files is given in font(4).

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of math functions and machine dependent values.

Each section contains a number of independent entries (commonly referred to
as “‘manual pages”’). The name of the manual page appears in the upper
corners of the page. All manual pages within each section are in alphabetical
order. Some manual pages may describe several routines, commands, etc.

Manual pages use a common format. Parts of a manual page that do not
apply to a specific command may be omitted. The parts of the format are
described as follows:

The NAME gives the name(s) of the command and briefly states
the purpose of the command.

The SYNOPSIS summarizes the use of the command (program).
This part uses special typesetting characteristics of the command to
denote:

Boldface strings are literals and are to be typed just as
they appear.

Italic strings usually represent substitutable arguments and
program names found on other manual pages. If the string
is underlined, the item is typed just as it appears.

Square brackets [] around an argument indicate that the
argument is optional. When an argument is given as name
or file, it always refers to a file name.

Ellipses (...) show that the previous argument may be
repeated.

The DESCRIPTION part discusses the subject.

The EXAMPLES part gives examples of usage, where appropriate.
The FILES part gives the file(s) associated with the command.
The SEE ALSO part gives references to other related information.

The DIAGNOSTICS part describes the diagnostic indications that
may be produced. Self-explanatory messages will not be described.

The WARNINGS part tells of potential pitfalls.

The BUGS part gives known bugs and occasional deficiencies. The
recommended repair may be described.

TABLE OF CONTENTS

1. Commands and Application Programs

dmdeat L. send files to a 630 MTG connected printer
dmdec L 630 MTG C compiler
dmddemo demonstratlons available on the 630 MTG
dmdldo 630 MTG application bootstrap loader
dmdman 0oL print manual pages
dmdmemory 630 MTG memory profiler
dmdpi 630 MTG process inspector and debugger
dmdversion inquire terminal /host software version
fcon ... Lo interactive icon drawing program
Mmoo e e 630 MTG text editor
) 22 630 MTG execution and stdio interpreter
loadfont 0oL font managing program
mec68ar archive and library maintainer for portable archives
meb8as Lo e e MC68000 assembler
mc68conv . . L ..o MC68000 object file converter
meb8eppo o the C language preprocessor
meb8cprs Lo .. compress a MC68000 object file
me68dis L. L. MC68000 disassembler
meb8dump . . . L. Lo dump parts of an MC68000 object file
me68ld Lo, link editor for MC68000 object files
mc68lorder L L L L. find ordering relation for an object library
me68nm L., print name list of a MC68000 object file
mc68size L. L. L. print section sizes of MC68000 object files
mc68strip, strip symbolic information from MC68000 object file
ucache 0L L, List and remove objects in the Application cache
wtinit 0000 initialize 630 MTG terminal for layers environment

2 return integer absolute value
addr. oL return the Word address of a Point in a Bitmap
alloco Lo L memory allocation
1 convert string to double-precision number
attach oL o L connect process to host
balloc bitmap allocation
bessel L Bessel functions
bitblt o bit-block transfer
box ... e draw a Rectangle
bputchar oo, 630 MTG debugging putchar function
bsearch binary search a sorted table
btoc specify rows and columns and default outline
buttons Lo L button state
cache put the calling application into the Application cache
canon return canonical Rectangle format from two corner Points
cgrcle 0oL e circle routines
emdcache L. L. L, cache a command in the Application cache
CONV L v v vttt e et e e e e e e e e e e e e e e e translate characters

Table of Contents

ctype...........................characterhandling
CUrsor . . .« « .« .+ . . e e e e e ce e cursor control
decacheremove the callmg apphcatlon from the Apphcatlon cache

drand48 generate uniformly distributed pseudo-random numbers
eVt .+ « v v e e v v« convertfloating-point number to string
ellipse...........................drawanelhpse

€ v e e e e e e e e e e e .+compare for equality
eff...............error functlon and complementary error function
exitcease execution
XP « v e e e e e e e e exponentlal logarlthm power square root functions

floorfloor ceiling remainder, absolute value functions
fontname+ 4 4+ 4 e e+« o+ o+getthename of afont
fontrequesto oo . .request/release use of a font
fontsave . . . « « « + s« « « .+«save/remove a font from the cache
fontused . . . » + + « +« + + e e e« e+«font menu generator routines
fpt oo .createaPomt or Rectangle from arguments
frexp . .« « «manipulate parts of floating-point numbers
gamma................ .+log gamma function
gealloco .. garbage compacting memory allocation
getwbufaccess the 630 MTG default terminal emulator buffer
globalsglobalsdescribing display and mouse
hypot oo oo Euclidean distance function
infont 000 .readafont from the UNIX Operating system
inset . . « + « « « « e e+« e e+ insetaborder for a Rectangle
integer o e oointeger functions
BSMPX « v v v e e e e e e e e test if connected toamultlplexed host
HOX . « « » 4 w4« w + + « + « .«convertinteger to string representation

itigcosine sine and arc tangent trigonometric functions
jaircle L. o e e e e e e e e e e e . draw circle on display
jellipse Ce e e e draw ellipse on display
jmovemove current wmdow point on dlsplay, relative or absolute

jpoint o e e e e e e . draw single pixel on display
jrectf oo e e .rectangle function on display
iSegment 4 v 4 s+ 4 e e e w e e drawlineon displa
Jseg play

jstringdraw character string on display
jtexture« « .«draw Texture in Rectangle on display
kbdcharo . . . read character from keyboard
keyboardo per process keyboard states, keyboard ID
labelon window labeling

local v e e e e e e make the calling process local
lputchar oo oo o 630 MTG local putchar function
lsearch . = « = « « v v v e v v e v e e« linearsearch and update
Isqrt . . « . v+ . e v e e e+ e+ e+ einteger square root
matherr . . « « « « « « « v v e s v e« .+« .+ .. .error-handling function
MEMOTY « « v v o o o o o o e e e e e memory operations
menuhit o0 o present user w1th menu and get selection
moveto e . change and return the value current screen point
MSZDOX + v v v o e e e e e e e e e e e e e e putupamessagelnabox
meget!mMessage control operations

Table of Contents

msggetgetmessage queue
mSGOP+ .« e e e emessage operations
muldivo 000 .calculate (a*b)/c accurately
newrect, get swept or default rectangle
normreturn norm or coordmate of three-dimensional vector
peelmakeprocesslocal and create new process
pfkeygetprogrammable function (PF) key strings
pointdraw asingle pixel in a Bitmap
polygon.polygon routines
printf printformatted output
printgprnter queue management
psendchar, send character to printer port
<L createaPomt or Rectangle from arguments
pt2winfind process table address of a window
ptaritharithmetic on Points
ptinrecto 0L L. check for Point mclusmn in a Rectangle
gsort quicker sort
rand L., simple random—number generator
revcharreceive character from host
realtimeterminal clock
rectarith00 . arlthmenc on Rectangles
rectclip00 oL oL .chpaRectangle to another Rectangle
rectfperform function on Rectangle in Bitmap
rectxrectcheck for overlapping Rectangles
resourcesroutines dealing with resources
ringbell . . ering, click the 630 MTG
rol ©rotatebits
screenswapSwapscreen Rectangle and Bitmap
segmentdrawa line segmentin a Bitmap
sendcharsend character(s) to host
setledset the caps lock and scroll lock LEDs
setupval Lo . « . . .return a setup option
sinhhyperolic functions
sleep L e .suspendprogramexecution
ssignalsoftware signals
stateperprocess wmdowmg states
Strsting operations
sting.draw string in bitmap
strtolconvert string to integer
structureso oL 00 .o oL L.630 MTG Structures
strwidthwidth of character string
A o - - - - . .swap bytes
texture L0000 L. draw Texture16 in Rectangle in Bitmap
tmenuhit presentuser with menu and get selection
transformwindow to screen coordinates
tig trigonometric functions
versionreturn terminal version number
whathostdetermine host connection
window.window operations

.
.
.
.

Table of Contents

4. Files Format

FONE & o v v e e e e e e e e e e e e e e e e e o w . . . font file format

5. Miscellaneous Routines

ascii « + + 4 + v 4 4 e e s e o e vmapof ASCII character set
math+ uevveeewweoeoenw....mathfunctionsand constants
values v .+ v+machine-dependent values

PERMUTED INDEX

/NOPADEXPAND, NOTRANSLATE, reqkbdID()
/NOPADEXPAND, NOTRANSLATE, reqkbdID()
P: >state, MOVED, RESHAPED, NO_RESHAPE
btoc: setjwin, P: >btoc, P->ctob

dmdld:

dmdcc:

dmdcat: send files to a

bputchar:

getwbuf, putwbuf, Wbufsize: access the
dmddemo: demonstrations available on the

jx:

Iputchar:

dmdmemory:

dmdpi:

ringbell, click: ring, click the

msgbuf, message_list, msqgid_ds:

wtinit: initialize

jim, jim.recover:

muldiv: calculate

window point on display, relative or
abs: return integer

fmod, fabs: floor, ceiling, remainder,
emulator/ getwbuf, putwbuf, Wbufsize:
muldiv: calculate (a*b)/c

functions. trig: sin, cos, tan, asin,
Points. ptarith:

in a Bitmap.

addr: return the Word

pt2win: point2window: find process table
resources: request, own, wait,
allocation.

alloc, lallo, free, allocown: memory
balloc, bfree: bitmap

geallocown: garbage compacting memory
alloc, lalloc, free,

dmdld: 630 MTG

put the calling application into the
useritems: cache a command in the
remove the calling application from the
ucache: List and remove objects in the
decache: remove the calling

cache: put the calling

circle, disc, discture,

/Icos, Isin, latan2: cosine, sine and
portable archives. mcé68ar:

and library maintainer for portable
fRect: create a Point or Rectangle from
Rect: create a Point or Rectangle from
ptarith: add, sub, mul, div:

rectarith: raddp, rsubp:

- per process keyboard states,/ keyboard(3R)
- per process keyboard states, keyboard/ . . . keyboard(3R)
- per process windowing states. state: state(3R)

- specify rows and columns and default/ . . . btoc(3R)

630 MTG application bootstrap loader. . dmdld(1)
630 MTG C compiler. dmdcc(1)
630 MTG connected printer. dmdcat(1)
630 MTG debugging putchar function. . bputchar(3L)
630 MTG default terminal emulator/ getwbuf(3R)
630 MTG. dmddemo(1)
630 MTG execution and stdio interpreter. . jx(1)

630 MTG local putchar function. Iputchar(3L)
630 MTG memory profiler. dmdmemory(1)
630 MTG process inspector and debugger. . dmdpi(1)
630MTG. ringbell(3R)
630 MTG Structures. /Font, Fontchar, . structures(3R)
630 MTG terminal for layers environment. . wtinit(1)

630 MTG texteditor. jim(1)
(@a*b)/caccurately. muldiv(3L)
abs: return integer absolute value. abs(3L)
absolute. jmove, jmoveto: move current . . . jmove(3L)
absolute value. abs(3L)
absolute value functions. floor, ceil, floor(3M)
access the 630 MTG default terminal getwbuf(3R)
accurately. L. L. L muldiv(3L)
acos, atan, atan2: trigonometric trig(3M)

add, sub, mul, div: arithmeticon ptarith(3R)
addr: return the Word address of a Point . addr(3R)
address of a Point in a Bitmap. addr(3R)
address of awindow. pt2win(3L)
alarm: routines dealing with resources. . resources(3R)
alloc, lallo, free, allocown: memory alloc(3R)
allocation., alloc(3R)
allocation. balloc(3R)
allocation. gealloc, gefree, gealloc(3R)
allocown: memory allocation., alloc(3R)
application bootstrap loader. dmdld(1)
Application cache. cache: cache(3L)
Application cache. cmdcache, cmdcache(3L)
Application cache. decache: decache(3L)
Application cache. oL L. ucache(1)

application from the Application cache. . . .
application into the Application cache.

arc: circle routines.,
arc tangent trigonometric functions.
archive and library maintainer for
archives. mc68ar: archive
arguments. fpt: fPt, fRpt,
arguments. pt: Pt, Rpt,
arithmetic on Points.
arithmetic on Rectangles.

-1-

. decache(3L)
. cache(3L)

circle(3L)
itrig(3L)
mcé68ar(1)
mc68ar(1)
fpt(3L)
ptL)
ptarith(3R)
rectarith(3R)

Permuted Index

ascii: map of

functions. trig: sin, cos, tan,
mcé68as: MC68000

trig: sin, cos, tan, asin, acos,

trig: sin, cos, tan, asin, acos, atan,
number.

strtol, atol,

strtol,

bessel: jO, j1, jn, y0, y1, yn:
functions.

balloc,

bsearch:

bitblt:

return the Word address of a Point in a
balloc, bfree:

point: draw a single pixel in a

rectf: perform function on Rectangle in
screenswap: swap screen Rectangle and
segment: draw a line segment in a
mediumfont, largefont: draw string in
msgbuf,/ /Word, Code, Point, Rectangle,
texture: draw Texturel6 in Rectangle in
rol, ror: rotate

dmdld: 630 MTG application

inset: inset a

operations. window: reshape, move, top,

msgbox: put up a message in a
printf, fprintf, sprintf, lprintf,
function.

columns and default/ btoc: setjwin, P:
specify rows and columns and default/
button[123],

button[123], bttn{123],

the 630 MTG default terminal emulator
button[123}, bttn[123], bttns:

state.

swab: swap

dmdcc: 630 MTG

mc68cpp: the

cache. cmdcache, useritems:

calling application into the Application
cache a command in the Application
calling application from the Application
fontremove: save/remove a font from the
the Application cache.

and remove objects in the Application
muldiv:

ASCII character set.« . ascii(5)

ascii: map of ASCII character set. ascii(5)

asin, acos, atan, atan2: trigonometric trig(3M)
assembler. Lo mc68as(1)
atan, atan2: trigonometric functions. trig(3M)
atan2: trigonometric functions. trig(3M)

atof: convert string to double-precision atof(3L)

atoi: convert string to integer. strtol(3L)
atol, atoi: convert string to integer. strtol(3L)
attach: connect process to host. attach(3R)
balloc, bfree: bitmap allocation. balloc(3R)
Bessel functions. 0. bessel(3M)
bessel: j0, j1, jn, y0, y1, yn: Bessel bessel(3M)
bfree: bitmap allocation. balloc(3R)
binary search a sorted table. bsearch(3L)
bit-block transfer. bitblt(3R)
bitblt: bit-block transfer. bitblt(3R)
Bitmap. addr: oo addr(3R)
bitmap allocation. balloc(3R)
Bitmap.o point(3R)
Bitmap.o oo o rectf(3R)
Bitmap. e e e e e e screenswap(3R)
Bitmap.o segment(3R)
bitmap. /FONTHEIGHT, smallfont, string(3R)
Bitmap, Texturel6, Font, Fontchar, structures(3R)
Bitmap.o oo texture(3R)
bits. e e e e e rol(3L)
bootstrap loader.o dmdld(1)
border for a Rectangle. inset(3R)
bottom, current, delete: window window(3L)
box: draw a Rectangle. box(3R)

box. . .. oo e e msgbox(3R)
bprintf: print formatted output. printf(3L)
bputchar: 630 MTG debugging putchar . bputchar(3L)
bsearch: binary search a sorted table. bsearch(3L)
>btoc, P->ctob - specify rowsand btoc(3R)
btoc: setjwin, P: >btoc, P->ctob- btoc(3R)
bttn[123], bttns: button state. buttons(3R3)
bttns: button state.00 buttons(3R31)
buffer. /putwbuf, Wbufsize: access getwbuf(3R)
buttonstate. o000 buttons(3R31)
button[123], bttn[123), bttns: button buttons(3R31)
bytes. oo swab(3L)

C compiler. e e e e e dmdec(1)

C language preprocessor. o« . . mc68cpp(1)
cache a command in the Application cmdcache(3L)
cache. cache:putthe cache(3L)
cache. cmdcache, useritems: cmdcache(3L)
cache. decache: removethe decache(3L)
cache. fontsave, fontcache, fontsave(3L)
cache: put the calling application into cache(3L)
cache. ucache: List ucache(l)
calculate (a*b)/c accurately. muldiv(3L)

2.

cache. decache: remove the

cache. cache: put the

local: make the

from two corner Points.

corner Points. canon: return

setled: setLEDcap, setLEDscr: set the
exit:

remainder, absolute value/ floor,
floor, ceil, fmod, fabs: floor,
rcvchar: receive

kbdchar: read

ispunct, isprint, isgraph, isascii:
ascii: map of ASCII

jstring: draw

strwidth, jstrwidth: width of
xpsendchar, xpsendnchars: send
—toupper, _tolower, toascii: translate
sendchar, sendnchars: send
rectxrect: rectXrect:

Rectangle. ptinrect:

routines.

jcircle, jdisc, jarc: draw

circle, disc, discture, arc:

ringbell,

ringbell, click: ring,

rectclip:

realtime: terminal

the Application cache.

Texturel6, Font,/ structures: Word,
P: >btoc, P->ctob ~ specify rows and
cmdcache, useritems: cache a
gealloc, gcfree, geallocown: garbage
eq: eqpt, eqrect:

dmdcc: 630 MTG C

erf, erfc: error function and
mcé8cprs:

attach:

dmdecat: send files to a 630 MTG
ismpx: test if

whathost: determine host

math: math functions and
Cursallow, Cursswitch: cursor
msgctl: message

_tolower, toascii: translate/

ecvt, fovt, gevt:

representation. itox, itoa, itoo:
number. atof:

strtol, atol, atoi:

mcé68conv: MC68000 object file
norm, sqrtryz: return norm or
transform, rtransform: window to screen
canonical Rectangle format from two
trigonometric functions. trig: sin,

Permuted Index

calling application from the Application
calling application into the Application
calling process local.
canon: return canonical Rectangle format . .
canonical Rectangle format from two
caps lock and scroll lock LEDs.
cease execution.
ceil, fmod, fabs: floor, ceiling,
ceiling, remainder, absolute value/
character from host.
character from keyboard.
character handling. /isspace, iscntrl,
character set.
character string on display.
character string.
character to printer port. /psendnchars,
characters. conv: toupper, tolower,
character(s) to host.
check for overlapping Rectangles.
check for Point inclusion in a
circle, disc, discture, arc: circle
circle on display.
circle routines.
click: ring, click the 630 MTG.
click the 630 MTG.
clip a Rectangle to another Rectangle.
clock.
cmdcache, useritems: cache a command in

. decache(3L)
. cache(3L)

local(3R)

. canon(3R)

canon(3R)
setled(3L)
exit(3R)
floor(3M)
floor(3M)
rcvchar(3R)
kbdchar(3R)
ctype(3L)
ascii(5)
jstring(3L)
strwidth(3R)

. psendchar(3R)

conv(3L)
sendchar(3R)
rectxrect(3R)
ptinrect(3R)
circle(3L)
jeircle(3L)
circle(3L)
ringbell(3R)
ringbell(3R)
rectclip(3R)
realtime(3R)

. cmdcache(3L)

Code, Point, Rectangle, Bitmap, structures(3R)
columns and default outline. /setjwin, . btoc(3R)
command in the Application cache. cmdcache(3L)
compacting memory allocation. gcalloc(3R)
compare for equality. eq(3R)
compiler. oL dmdcc(1)
complementary error function. erf(3M)
compress a MC68000 object file. mc68cprs(1)
connect process tohost. attach(3R)
connected printer. dmdcat(1)
connected to a multiplexed host. ismpx(3R)
connection. L. L. whathost(3R)
constants. 0.0 math(5)
control. /cursxyoff, Cursinhibit, cursor(3R)
control operations. msgctl(3L)
conv: toupper, tolower, _toupper, conv(3L)
convert floating-point number to string. ecvt(3L)
convert integer to string itox(3L)
convert string to double-precision atof(3L)
convert string to integer. strtol(3L)
converter. e e e e e e mc68conv(1)
coordinate of three-dimensional vector. . norm(3L)
coordinates. transform(3R31)
corner Points. canon:return canon(3R)
cos, tan, asin, acos, atan, atan2: trig(3M)

-3-

Permuted Index

sinh,

itrig: Icos, Isin, Tatan2:

arguments. fpt: fPt, fRpt, fRect:
arguments. pt: Pt, Rpt, Rect:

peel: make process local and

isupper, isalpha, isalnum, isspace,/
window: reshape, move, top, bottom,
sPtCurrent: change and return the value
relative or/ jmove, jmoveto: move
/cursxyon, cursxyoff, Cursinhibit,
cursxyon,/ cursor: cursinhibit,

cursor/ /cursset, cursxyon, cursxyoff,
cursset, cursxyon, cursxyoff,/ cursor:
Cursinhibit, Cursallow, Cursswitch:
cursswitch, cursset, cursxyon,/
cursinhibit, cursallow, cursswitch,
cursxyoff, Cursinhibit, Cursallow,
cursor: cursinhibit, cursallow,
/cursswilch, cursset, cursxyon,
/cursallow, cursswitch, cursset,
request, own, wait, alarm: routines
dmdpi: 630 MTG process inspector and
bputchar: 630 MTG

from the Application cache.

P->ctob — specify rows and columns and
newrect: get swept or

/putwbuf, Whufsize: access the 630 MTG
reshape, move, top, bottom, current,
dmddemo:

Jrect, PtCurrent, P, mouse: globals
whathost:

mc68dis: MC68000

circle,

circle, disc,

PtCurrent, P, mouse: globals describing
mouse: globals/ globals: physical,
jeircle, jdisc, jarc: draw circle on
jeldisc, jelarc: draw ellipse on

jpoint: draw single pixel on

jrectf: rectangle function on

jsegment, jline, jlineto: draw line on
jstring: draw character string on
jtexture: draw Texture in Rectangle on
jmoveto: move current window point on
hypot: Euclidean

/seed48, lcong48: generate uniformly
ptarith: add, sub, mul,

connected printer.

630 MTG.
loader.

cosh, tanh: hyperbolic functions. sinh(3M)
cosine, sine and arc tangent/ itrig(3L)
create a Point or Rectangle from fpt(3L)
create a Point or Rectangle from pt(3L)

create NEW Process. . . . « « « 4 . . 4o« . peel(3R)
ctype: isdigit, isxdigit, islower, ctype(3L)
current, delete: window operations. window(3L)
current screen point. moveto, moveto(3L)
current window point on display, jmove(3L)
Cursallow, Cursswitch: cursor control. cursor(3R)
cursallow, cursswitch, cursset, cursor(3R)
Cursinhibit, Cursallow, Cursswitch: cursor(3R)
cursinhibit, cursallow, cursswitch, cursor(3R)
cursor control. /cursxyon, cursxyoff, cursor(3R)
cursor: cursinhibit, cursallow, cursor(3R)
cursset, cursxyon, cursxyoff,/ cursor: cursor(3R)
Cursswitch: cursor control. /cursxyon, cursor(3R)
cursswitch, cursset, cursxyon,/ cursor(3R)
cursxyoff, Cursinhibit, Cursallow,/ cursor(3R)
cursxyon, cursxyoff, Cursinhibit,/ cursor(3R)
dealing with resources. resources: resources(3R)
debugger.o . . . dmdpi(1)
debugging putchar function. bputchar(3L)
decache: remove the calling application decache(3L)
default outline. /setjwin, P: >btoc, btoc(3R)
default rectangle. newrect(3R)
default terminal emulator buffer. getwbuf(3R)
delete: window operations. window: window(3L)
demonstrations available on the 630 MTG. . dmddemo(1)
describing display and mouse. /Drect, globals(3R)
determine host connection. whathost(3R)
disassembler. oL mc68dis(1)
disc, discture, arc: circle routines. circle(3L)
discture, arc: circle routines. circle(3L)
display and mouse. /Drect, Jrect, globals(3R)
display, Drect, Jrect, PtCurrent, P, globals(3R)
display. e e e e e e e e jeircle(3L)
display. jellipse, jellipse(3L)
display.o oo jpoint(3L)
display.o o0 e jrectf(3L)
display.00 e jsegment(3L)
display.o oo jstring(3L)
display. 0000 s o jtexture(3L)
display, relative or absolute. jmove, jmove(3L)
distance function. hypot(3M)
distributed pseudo-random numbers. drand48(3L)
div: arithmetic on Points. ptarith(3R)
dmdcat: send files to a 630 MTG dmdcat(1)
dmdcc: 630 MTG C compiler.« . dmdce(1)
dmddemo: demonstrations available on the . dmddemo(1)
dmdld: 630 MTG application bootstrap dmdld(1)
dmdman: print manual pages. dmdman(1)
dmdmemory: 630 MTG memory profiler. . . . dmdmemory(1)

-4 -

debugger.

software version.

atof: convert string to

mrand48, jrand48, srand48, seed48,/
segment:

box:

point:

ellipse, eldisc, eldiscture, elarc:
jstring:

jcircle, jdisc, jarc:

jellipse, jeldisc, jelarc:

jsegment, jline, jlineto:

jpoint:

smallfont, mediumfont, largefont:
jtexture:

texture:

icon: interactive icon

globals/ globals: physical, display,
mc68dump:

number to string.

mc68Id: link

jim, jim.recover: 630 MTG text
ellipse, eldisc, eldiscture,

ellipse. ellipse,

ellipse, eldisc,

an ellipse.

eldisc, eldiscture, elarc: draw an
jellipse, jeldisc, jelarc: draw

access the 630 MTG default terminal
initialize 630 MTG terminal for layers

eq:

eq: eqpt,

eq: eqpt, eqrect: compare for
jrand48, srand48, seed48,/ drand48,
complementary error function.

error function. erf,

function. erf, erfc:

erfc: error function and complementary
matherr:

hypot:

jx: 630 MTG

exit: cease

sleep, nap: suspend program

logarithm, power, square root/

root/ exp, log, log10, pow, sqrt:
absolute value/ floor, ceil, fmod,
number to string. ecvt,

Operating/ infont, getfont, outfont,
mc68conv: MC68000 object

font: font

mc68cprs: compress a MC68000 object

dmdpi: 630 MTG process inspector and

dmdversion: inquire terminal /host
double-precision number.

drand48, erand48, lrand48, nrand48, . .

draw a line segment in a Bitmap.
draw a Rectangle.
draw a single pixel in a Bitmap.
draw an ellipse.

draw character string on display.

draw circle on display.
draw ellipse on display.
draw line on display.
draw single pixel on display.
draw string in bitmap. /FONTHEIGHT,
draw Texture in Rectangle on display.

draw Texturel6 in Rectangle in Bitmap. .

drawing program.
Drect, Jrect, PtCurrent, P, mouse:
dump parts of an MC68000 object file.

ecvt, fevt, gevt: convert floating-point . .

editor for MC68000 object files.
editor.

elarc: draw aneellipse.

eldisc, eldiscture, elarc: draw an
eldiscture, elarc: draw an ellipse.

ellipse, eldisc, eldiscture, elarc: draw . .

ellipse. ellipse,
ellipse on display.
emulator buffer. /putwbuf, Wbufsize:
environment. wtinit:
eq: eqpt, eqrect: compare for equality.
eqpt, eqrect: compare for equality.

egrect: compare for equality.

equality.

erand48, Irand48, nrand48, mrand48, . .

erf, erfc: error function and
erfc: error function and complementary
error function and complementary error
error function. erf,

error-handling function.

Euclidean distance function.
execution and stdio interpreter.
execution.
execution.
exit: cease execution.
exp, log, log10, pow, sqrt: exponential,
exponential, logarithm, power, square
fabs: floor, ceiling, remainder,

fevt, gevt: convert floating-point
ffree: read a font from the UNIX
file converter.
file format.

file. L

Permuted Index

dmdpi(1)

. . . dmdversion(1)

atof(3L)

. . . drand48(3L)

segment(3R)

. . . box(3R)

point(3R)

. . . ellipse(3L)

jstring(3L)
jeircle(3L)
jellipse(3L)
jsegment(3L)
jpoint(3L)
. string(3R)
. jtexture(3L)
texture(3R)
icon(1)
globals(3R)
. mc68dump(1)
ecvt(3L)
mc68ld(1)
jim(1)
ellipse(3L)
ellipse(3L)
ellipse(3L)
ellipse(3L)
ellipse(3L)
jellipse(3L)
. getwbuf(3R)
witinit(1)
. eq(3R)
eq(3R)
eq(3R)
eq(3R)
drand48(3L)
erf(3M)
. . erf(3M)

. erf(3M)

. . . erf(3M)

. . . matherr(3M)
. . . hypot(3M)
C e ix(D)

. . . exit(3R)

. . . sleep(3R)

. . . exit(3R)

. . exp(3M)
. exp(3M)

. . . floor(3M)

. . . ecvt(3L)

. . . infont(3R3l)

. . . mc68conv(l)
. . . font(4)

. . . mc68cprs(l)

Permuted Index

dump parts of an MC68000 object
print name list of a MC68000 object
symbolic information from MC68000 object
mc681d: link editor for MC68000 object
print section sizes of MC68000 object
dmdcat: send

library. mcé68lorder:

pt2win: point2window:

ecvt, fevt, gevt: convert

frexp, ldexp, modf: manipulate parts of
remainder, absolute value functions.
value/ floor, ceil, fmod, fabs:

absolute value functions. floor, ceil,
font:

/Point, Rectangle, Bitmap, Texturel6,
fontname: get the name of a

fontavail: request/release use of a
fontcache, fontremove: save /remove a
infont, getfont, outfont, ffree: read a
loadfont:

fontused, fontiname:

font. fontrequest, fontrelease,

font from the cache. fontsave,
Rectangle, Bitmap, Texturel6, Font,
largefont: draw/ string, FONTWIDTH,
fontused,

use of a font. fontrequest,

cache. fontsave, fontcache,
request/release use of a font.
save/remove a font from the cache.
routines.

mediumfont, largefont: draw/ string,
font: font file

canon: return canonical Rectangle
sprintf, lprintf, bprintf: print

print formatted output. printf,
Rectangle from arguments.

Rectangle from arguments. fpt:
arguments. fpt: fPt, fRpt,

alloc, lalloc,

floating-point numbers.

fRpt, fRect: create a Point or Rectangle
Rpt, Rect: create a Point or Rectangle
rcvchar: receive character

kbdchar: read character

mc68strip: strip symbolic information
decache: remove the calling application
fontremove: save/remove a font
getfont, outfont, ffree: read a font
canon: return canonical Rectangle format
from arguments. fpt: {Pt,

file. mc68dump: oL oL
file. me68nm:

file. mc68strip: strip Lo
files.o
files. mc68size:o
files to a 630 MTG connected printer.

find ordering relation for an object
find process table address of a window.
floating-point number to string.
floating-point numbers.
floor, ceil, fmod, fabs: floor, ceiling,
floor, ceiling, remainder, absolute
fmod, fabs: floor, ceiling, remainder,
font file format.
font: font file format.

Font, Fontchar, msgbuf, message_list,/
font.
font. fontrequest, fontrelease,
font from the cache. fontsave,
font from the UNIX Operating system.
font managing program.
font menu generator routines.
fontavail: request/release use of a
fontcache, fontremove: save/remove a

Fontchar, msgbuf, message_list,/ /Point, . .
FONTHEIGHT, smallfont, mediumfont, . . .
fontiname: font menu generator routines.
fontname: get the name of a font.
fontrelease, fontavail: request/release
fontremove: save/remove a font from the . .

mc68dump(1)

. mec68nm(1)

mc68strip(1)
mc681d(1)
mc68size(1)

. dmdcat(1)

mc68lorder(1)

. pt2win(3L)

ecvt(3L)
frexp(3L)
floor(3M)
floor(3M)
floor(3M)
font(4)
font(4)

. structures(3R)

fontname(3R)
fontrequest(3R)
fontsave(3L)
infont(3R31)
loadfont(1)
fontused(3R)
fontrequest(3R)

. fontsave(3L)
. structures(3R)

string(3R)

. fontused(3R)

fontname(3R)
fontrequest(3R)

. fontsave(3L)

fontrequest, fontrelease, fontavail: . fontrequest(3R)
fontsave, fontcache, fontremove: fontsave(3L)
fontused, fontiname: font menu generator . . . fontused(3R)
FONTWIDTH, FONTHEIGHT, smallfont, . string(3R)
format. o000 font(4)
format from two corner Points. canon(3R)
formatted output. printf, fprintf, printf(3L)
fprintf, sprintf, lprintf, bprintf: printf(3L)
fpt: fPt, fRpt, fRect: create a Pointor fpt(3L)

fPt, fRpt, fRect: create a Pointor fpt(3L)
fRect: create a Point or Rectangle from . fpt(3L)

free, allocown: memory allocation. alloc(3R)
frexp, ldexp, modf: manipulate parts of . frexp(3L})
from arguments. fpt: fPt, fpt(3L)

from arguments. pt: Pt, L. pt(3L)
fromhost.o rcvchar(3R)
from keyboard. e e kbdchar(3R)
from MC68000 object file. mc68strip(1)
from the Application cache. decache(3L)
from the cache. fontsave, fontcache, fontsave(3L)
from the UNIX Operating system. infont, . infont(3R31)
from two corner Points. canon(3R)
fRpt, fRect: create a Point or Rectangle . fpt(3L)

_6 -

function. erf, erfc: error

bputchar: 630 MTG debugging putchar
error function and complementary error
gamma: log gamma

hypot: Euclidean distance

Iputchar: 630 MTG local putchar
matherr: error-handling

jrectf: rectangle

rectf: perform

pfkey: get programmable

math: math

bessel: j0, j1, jn, y0, y1, yn: Bessel
logarithm, power, square root

ceiling, remainder, absolute value

Iceil, Ifloor, min, max: integer

sine and arc tangent trigonometric
sinh, cosh, tanh: hyperbolic

asin, acos, atan, atan2: trigonometric
gamma: log

gcalloc, gefree, geallocown:
compacting memory allocation.
allocation. gcalloc, gcfree,

memory allocation. gealloc,

string. ecvt, fevt,

jrand48, srand48, seed48, Icong48:
rand, srand: simple random-number
fontused, fontiname: font menu
msgget:

strings. pfkey:

menuhit: present user with menu and
tmenuhit: present user with menu and
newrect:

fontname:

from the UNIX Operating system. infont,
630 MTG default terminal emulator/
/Drect, Jrect, PtCurrent, P, mouse:
Jrect, PtCurrent, P, mouse: globals/
ssignal,

isprint, isgraph, isascii: character
attach: connect process to

whathost: determine

test if connected to a multiplexed
rcvchar: receive character from
sendnchars: send character(s) to

sinh, cosh, tanh:

trigonometric/ itrig: Icos, Isin,
functions. integer:
icon: interactive

tangent trigonometric functions. itrig:
— per process keyboard states, keyboard

Permuted Index

function and complementary error
function.
function.
function. . .
function.
function. .
function.
function on display.
function on Rectangle in Bitmap.
function (PF) key strings.
functions and constants.
functions. .
functions. /pow, sqrt: exponential,
functions. /ceil, fmod, fabs: floor,
functions. integer:
functions. /Icos, Isin, latan2: cosine,
functions. . .
functions. trig: sin, cos, tan, . .
gamma function.
gamma: log gamma function.
garbage compacting memory allocation. . . .
gealloc, gefree, geallocown: garbage
gcallocown: garbage compacting memory
gcfree, geallocown: garbage compacting . . .

erf(3M)
bputchar(3L)
erf(3M)
gamma(3M)
hypot(3M)
Iputchar(3L)
matherr(3M)
jrectf(3L)
rectf(3R)
pfkey(3R)
math(5)
bessel(3M)
exp(3M)
floor(3M)
integer(3R)
itrig(3L)

. sinh(3M)

trig(3M)
gamma(3M)
gamma(3M)
gcalloc(3R)

. gcalloc(3R)
. gcalloc(3R)
. gealloc(3R)

gevt: convert floating-point number to . ecvt(3L)
generate uniformly distributed/ /mrand48, . drand48(3L)
generator. rand(3L)
generator routines. fontused(3R)
get message queue. L. L. msgget(3L)
get programmable function (PF) key . . pfkey(3R)
getselection. menuhit(3L)
getselection. L. tmenuhit(3R)
get swept or default rectangle. newrect(3R)
getthe nameofafont. fontname(3R)
getfont, outfont, ffree: read a font infont(3R31)
getwbuf, putwbuf, Wbufsize: access the getwbuf(3R)
globals describing display and mouse. . globals(3R)
globals: physical, display, Drect, globals(3R)
gsignal: software signals. ssignal(3L)
handling. /isspace, isentrl, ispunct, ctype(3L)
host. attach(3R)
host connection. L. whathost(3R)
host. ismpx: 0L, ismpx(3R)
host. rcvchar(3R)
host. sendchar, sendchar(3R)
hyperbolic functions. sinh(3M)
hypot: Euclidean distance function. hypot(3M)
latan2: cosine, sine and arc tangent itrig(3L)

Iceil, Ifloor, min, max: integer integer(3R)
icon drawing program. icon(1)

icon: interactive icon drawing program. . icon(1)

Icos, Isin, latan2: cosine, sine and arc itrig(3L)

ID. /NOTRANSLATE, reqkbdID() keyboard(3R)

-7

Permuted Index

integer: Iceil,

ptinrect: check for Point

font from the UNIX Operating system.
environment. wtinit:

dmdversion:

inset:

dmdpi: 630 MTG process

abs: return

integer: Iceil, Ifloor, min, max:
integer functions.

Isqrt:

strtol, atol, atoi: convert string to
itox, itoa, itoo: convert

icon:

jx: 630 MTG execution and stdio
/isxdigit, islower, isupper, isalpha,
/isdigit, isxdigit, islower, isupper,
iscntrl, ispunct, isprint, isgraph,
/isupper, isalpha, isalnum, isspace,
isalpha, isalnum, isspace,/ ctype:
/isspace, iscntrl, ispunct, isprint,
tangent trigonometric/ itrig: Icos,
isspace,/ ctype: isdigit, isxdigit,
multiplexed host.

/isalnum, isspace, iscntrl, ispunct,
/isalpha, isalnum, isspace, iscntrl,
/islower, isupper, isalpha, isalnum,
ctype: isdigit, isxdigit, islower,
isalnum, isspace,/ ctype: isdigit,
representation. itox,
representation. itox, itoa,

string representation.

and arc tangent trigonometric/
functions. bessel:

bessel: j0,

jcircle, jdisc,

display.

jcircle,

jellipse, jeldisc,

display. jellipse,

on display.

jim,

jsegment,

jsegment, jline,

point on display, relative or absolute.
display, relative or absolute. jmove,
bessel: j0, j1,

/erand48, lIrand48, nrand48, mrand48,
globals: physical, display, Drect,

Ifloor, min, max: integer functions. integer(3R)
inclusion in a Rectangle. ptinrect(3R)
infont, getfont, outfont, ffree:reada infont(3R31)
initialize 630 MTG terminal for layers . wtinit(1)
inquire terminal/host software version. dmdversion(1)
inset a border for a Rectangle. inset(3R)
inset: inset a border for a Rectangle. inset(3R)
inspector and debugger. dmdpi(1)
integer absolute value. e e e abs(3L)
integer functions.o integer(3R)
integer: Iceil, Ifloor, min, max: integer(3R)
integer square root. Isqrt(3L)
Integer. e e e e e e e e e e e strtol(3L)
integer to string representation. itox(3L)
interactive icon drawing program. icon(1)
interpreter.o jx(1)
isalnum, isspace, isentrl, ispunct,/ ctype(3L)
isalpha, isalnum, isspace, iscntrl,/ ctype(3L)
isascii: character handling. /isspace, ctype(3L)
isentrl, ispunct, isprint, isgraph,/ ctype(3L)
isdigit, isxdigit, islower, isupper, ctype(3L)
isgraph, isascii: character handling. ctype(3L)
Isin, [atan2: cosine, sineand arc itrig(3L)
islower, isupper, isalpha, isalnum, ctype(3L)
ismpx: test if connected toa ismpx(3R)
isprint, isgraph, isascii: character/ ctype(3L)
ispunct, isprint, isgraph, isascii:/ ctype(3L)
isspace, isentrl, ispunct, isprint,/ ctype(3L)
isupper, isalpha, isalnum, isspace,/ ctype(3L)
isxdigit, islower, isupper, isalpha, ctype(3L)
itoa, itoo: convert integer to string itox(3L)
itoo: convert integer to string itox(3L)
itox, itoa, itoo: convert integerto itox(3L)
itrig: Icos, Isin, latan2: cosine, sine itrig(3L)
j0,j1,jn, y0, y1, yn: Bessel bessel(3M)
j1, jn, y0, y1, yn: Bessel functions. bessel(3M)
jarc: draw circle on display. jeircle(3L)
jcircle, jdisc, jarc: draw circleon jcircle(3L)
jdisc, jarc: draw circle on display. jeircle(3L)
jelarc: draw ellipse on display. jellipse(3L)
jeldisc, jelarc: draw ellipseon jellipse(3L)
jellipse, jeldisc, jelarc: draw ellipse jellipse(3L)
jim, jim.recover: 630 MTG text editor. . jim(1)
jim.recover: 630 MTG text editor. jim(1)

jline, jlineto: draw line on display. jsegment(3L)
jlineto: draw line on display. jsegment(3L)

jmove, jmoveto: move current window
jmoveto: move current window. point on
jn, y0, y1, yn: Bessel functions.
jpoint: draw single pixel on display.
jrand48, srand48, seed48, lcongd8:/
Jrect, PtCurrent, P, mouse: globals/
jrectf: rectangle function on display.

-8 -

. . jmove(3L)
. jmove(3L)

bessel(3M)
jpoint(3L)
drand48(3L)
globals(3R)
jrectf(3L)

display.
display.
strwidth,
display.
interpreter.

pfkey: get programmable function (PF)

) — per process keyboard states,

kbdchar: read character from
SCR_LOCK, NOPFEXPAND, NOCURSEXPAND, /
/NOTRANSLATE, reqkbdID() - per process
labelon, labeloff,

labeloff, labelicon, labeltext: window
labeling. labelon,

window labeling.

labelon, labeloff, labelicon,

allocation. alloc,

mc68cpp: the C

/FONTHEIGHT, smallfont, mediumfont,
wtinit: initialize 630 MTG terminal for
/mrand48, jrand48, srand48, seed48,
floating-point numbers. frexp,

set the caps lock and scroll lock
archives. mcé8ar: archive and

find ordering relation for an object
jsegment, jline, jlineto: draw

segment: draw a

Isearch:

mc681d:

Application cache. ucache:

mce68nm: print name

dmdld: 630 MTG application bootstrap

setLEDcap, setLEDscr: set the caps
setLEDscr: set the caps lock and scroll
gamma:

logarithm, power, square root/ exp,
logarithm, power, square root/ exp, log,
exp, log, log10, pow, sqrt: exponential,
output. printf, fprintf, sprintf,

function.

srand48, seed48,/ drand48, erand48,

values:

mcé68ar: archive and library

process. peel:

local:

printgspace, printqclear: printer queue
loadfont: font

numbers. frexp, Idexp, modf:
dmdman: print

ascii:

Permuted Index

jsegment, jline, jlineto: draw lineon jsegment(3L)
jstring: draw character stringon jstring(3L)
jstrwidth: width of character string. strwidth(3R)
jtexture: draw Texture in Rectangle on . jtexture(3L)
jx: 630 MTG execution and stdio jx(1)
kbdchar: read character from keyboard. kbdchar(3R)
keystrings. pfkey(3R)
keyboard ID. /NOTRANSLATE, reqkbdID(. . keyboard(3R)
keyboard. kbdchar(3R)
keyboard: P: >state, SCRLOCKREQD, . keyboard(3R)
keyboard states, keyboard ID., keyboard(3R)
labelicon, labeltext: window labeling. labelon(3R)
labeling. labelon, labelon(3R)
labeloff, labelicon, labeltext: window labelon(3R)
labelon, labeloff, labelicon, labeltext: labelon(3R)
labeltext: window labeling. labelon(3R)
lallog, free, allocown: memory alloc(3R)
language preprocessor. mc68cpp(1)
largefont: draw string in bitmap. string(3R)
layers environment. wtinit(1)
lcong48: generate uniformly distributed/ . drand48(3L)
Idexp, modf: manipulate partsof frexp(3L)
LEDs. setled: setLEDcap, setLEDscr: setled(3L)
library maintainer for portable mc68ar(1)
library. me68lorder: mc68lorder(1)
lineon display. jsegment(3L)
line segment in a Bitmap. segment(3R)
linear search and update. Isearch(3L)
link editor for MC68000 object files. mc68ld(1)
List and remove objectsinthe ucache(1)
list of a MC68000 object file. mc68nm(1)
loader. dmdid(1)
loadfont: font managing program. loadfont(1)
lock and scroll lock LEDs. setled: setled(3L)
lock LEDs. setled: setLEDcap, setled(3L)
log gamma function. gamma(3M)
log, logl0, pow, sqrt: exponential, exp(3M)
log10, pow, sqrt: exponential, exp(3M)
logarithm, power, square root functions. . exp(3M)
Iprintf, bprintf: print formatted printf(3L)
lputchar: 630 MTG local putchar Iputchar(3L)
Irand48, nrand48, mrand48, jrand48, drand48(3L)
Isearch: linear search and update. Isearch(3L)
Isqrt: integer square root. Isqrt(3L)
machine-dependent values. values(5)
maintainer for portable archives. mc68ar(1)
make process local and create new peel(3R)
make the calling process local. local(3R)
management. printq: printgempty, printq(3R)
managing program. loadfont(1)
manipulate parts of floating-point frexp(3L)
manual pages., dmdman(1)
map of ASCII characterset. ascii(5)

9.

Permuted Index

math:

integer: Iceil, Ifloor, min,
mcé8as:

mc68dis:

mc68conv:

mc68cprs: compress a
mc68dump: dump parts of an
mc68nm: print name list of a
strip symbolic information from
mc68ld: link editor for
mc68size: print section sizes of
for portable archives.

converter.
file.

object file.

files.

an object library.

object file.

object files.

from MC68000 object file.
/FONTWIDTH, FONTHEIGHT, smallfont,
memory operations. memory:
operations. memory: memccpy,
operations. memory: memccpy, memchr,
memory: memccpy, memchr, memcmp,
alloc, lalloc, free, allocown:

gcfree, geallocown: garbage compacting
memset: memory operations.

memccpy, memchr, memcmp, memcpy, memset:
dmdmemory: 630 MTG

memory: memccpy, memchr, mememp, memcpy,
menubhit: present user with

tmenubhit: present user with

fontused, fontiname: font

selection.

msgctl:

msgbox: put up a

msgop:

msgget: get

Texturel6, Font, Fontchar, msgbuf,
integer: Iceil, Ifloor,

numbers. frexp, ldexp,

/display, Drect, Jrect, PtCurrent, P,

P, mouse: globals describing display and
relative or absolute. jmove, jmoveto:
window operations. window: reshape,
process windowing/ state: P: >state,
the value current screen point.

math functions and constants. math(5)
math: math functions and constants. math(5)
matherr: error-handling function. matherr(3M)
max: integer functions. integer(3R)
MC68000 assembler. mc68as(1)
MC68000 disassembler. mc68dis(1)
MC68000 object file converter. mc68conv(1)
MC68000 object file. mc68cprs(1)
MC68000 object file. mc68dump(1)
MC68000 object file. mc68nm(1)
MC68000 object file. mc68strip: mcé8strip(1)
MC68000 object files. mc681d(1)
MC68000 object files. mc68size(1)
mcé68ar: archive and library maintainer . . mc68ar(l)
mc68as: MC68000 assembler. mc68as(1)
mc68conv: MC68000 object file mc68conv(1)
mc68cpp: the C language preprocessor. . mc68cpp(1)
mc68cprs: compress a MC68000 object . mc68cprs(1)
mcé68dis: MC68000 disassembler. mc68dis(1)

mc68dump: dump parts of an MC68000
mc68ld: link editor for MC68000 object . . .

. mc68dump(1)
. mc68ld(1)

mcé8lorder: find ordering relation for . mcé68lorder(1)
mc68nm: print name list of a MC68000 mc68nm(1)
mcé8size: print section sizes of MC68000 . mc68size(1)
mc68strip: strip symbolic information mc68strip(1)
mediumfont, largefont: draw string in/ . string(3R)

memccpy, memchr, mememp, memcpy, memset:
memchr, memcmp, memcpy, memset: memory
memcmp, memcpy, memset: memory
memcpy, memset: memory. operations.

memory(3L)
memory(3L)
. memory(3L)
. memory(3L)

memory allocation.o oL alloc(3R)
memory allocation. gealloc,” gealloc(3R)
memory: memccpy, memchr, memcmp, memcpy, memory(3L)
memory operations. memory: memory(3L)
memory profiler. . e dmdmemory(1)
memset: memory operations. memory(3L)
menu and get selection. menuhit(3L)
menu and get selection. tmenuhit(3R)
menu generator routines. fontused(3R)
menuhit: present user.with menu and get . menuhit(3L)
message control operations. msgctl(3L)
messageinabox. msgbox(3R)
message operations. msgop(3L)
message qUeUe. e . e s e e e msgget(3L)
message_list, msqid_ds: 630 MTG/ /Bitmap, . structures(3R)
min, max: integer functions: integer(3R)
modf: manipulate parts of floating-point . frexp(3L)
mouse: globals describing display and/ . globals(3R)
mouse. /Drect, Jrect, PtCurrent, globals(3R)
move current window point on display, . jmove(3L)
move, top, bottom, current, delete: window(3L)

MOVED, RESHAPED, NO_RESHAPE - per
moveto, sPtCurrent: change and return

. state(3R)
. moveto(3L)

-10 -

drand48, erand48, lrand48, nrand48,

/Bitmap, Texturel6, Font, Fontchar,

/Font, Fontchar, msgbuf, message_list,
dmdld: 630

dmdcc: 630

dmdcat: send files to a 630

bputchar: 630

/putwbuf, Wbufsize: access the 630
demonstrations available on the 630
jx: 630

Iputchar: 630

dmdmemory: 630

dmdpi: 630

ringbell, click: ring, click the 630
msgbuf, message_list, msqid_ds: 630
wtinit: initialize 630

jim, jim.recover: 630

ptarith: add, sub,

ismpx: test if connected to a
sleep,

/SCRLOCKREQD, SCR_LOCK, NOPFEXPAND,

per/ /SCR_LOCK, NOPFEXPAND, .

/P: >state, SCRLOCKREQD, SCR_LOCK,
state: P: >state, MOVED, RESHAPED,
vector. norm, sqrtryz: return

of three-dimensional vector.
/NOPFEXPAND, NOCURSEXPAND, NOPADEXPAND,
seed48,/ drand48, erand48, Irand48,
mc68conv: MC68000

mc68cprs: compress a MC68000
mc68dump: dump parts of an MC68000
mc68nm: print name list of a MC68000
strip symbolic information from MC68000
mc68ld: link editor for MC68000
mcé8size: print section sizes of MC68000
find ordering relation for an

ucache: List and remove

ffree: read a font from the UNIX

memchr, memcmp, memcpy, memset: memory
msgctl: message control

msgop: message

strpbrk, strspn, strespn, strtok: string

top, bottom, current, delete: window
setupval: return a setup

mcé68lorder: find

UNIX Operating system. infont, getfont,
- specify rows and columns and default

" NO_RESHAPE - per process windowing/

Permuted Index

mrand48, jrand48, srand48, seed48,/
msgbox: put up a message in a box.

msgbuf, message_list, msqid_ds: 630 MTG/
msgctl: message control operations. .

drand48(3L)
msgbox(3R)

. structures(3R)
. msgctl(3L)

msgget: get message queue. msgget(3L)
mMSgop: message operations., ., msgop(3L)
msqid_ds: 630 MTG Structures., structures(3R)
MTG application bootstrap loader. dmdld(1)
MTG C compiler. dmdcc(1)
MTG connected printer. dmdcat(1)
MTG debugging putchar function. bputchar(3L)
MTG default terminal emulator buffer. . getwbuf(3R)
MTG. dmddemo: dmddemo(1)
MTG execution and stdio interpreter. , ix(1)

MTG local putchar function. Iputchar(3L)
MTG memory profiler. dmdmemory(1)
MTG process inspector and debugger. . dmdpi(1)
MIG. ringbell(3R)
MTG Structures. /Font, Fontchar, structures(3R)
MTG terminal for layers environment, . . wtinit(1)
MTGtexteditor. jim(1)

mul, div: arithmetic on Points., ptarith(3R)
muldiv: calculate (a*b)/c accurately. muldiv(3L)
multiplexed host. ismpx(3R)
nap: suspend program execution., . . sleep(3R)

newrect: get swept or default rectangle. newrect(3R)
NOCURSEXPAND,|NOTRANSLATE,/ keyboard(3R)
NOPADEXPAND, NOTRANSLATE, reqkbdID() - keyboard(3R)
NOCURSEXPAND, NOPADEXPAND,/ keyboard(3R)

. . state(3R)

norm or coordinate of three-dimensional . norm(3L)
norm, sqrtryz: return norm or coordinate . norm(3L)
NOTRANSLATE, reqkbdID() - per process/ . keyboard(3R)
nrand48, mrand48, jrand48, srand48, drand48(3L)
object file converter. mc68conv(1)
objectfile. mc68cprs(1)
objectfile., mc68dump(1)
objectfile. mc68nm(1)
object file. mc68strip: mc68strip(1)
objectfiles. mc681d(1)
objectfiles. mc68size(1)
object library. mc68lorder: mc68lorder(1)
objects in the Application cache. ucache(1)
Operating system. /getfont, outfont, infont(3R31)
operations. memory: memccpy, memory(3L)
operations. msgctl(3L)
operations., msgop(3L)
operations. /strlen, strchr, strrchr, L . str(3L)
operations. window: reshape, move, window(3L)
option. L ..., setupval(3R)
ordering relation for an object library. + mcé68lorder(1)
outfont, ffree: read a font fromthe infont(3R3l)
outline. /setjwin, P: >btoc, P->ctob btoc(3R)

11 -

Permuted Index

lprintf, bprintf: print formatted
rectxrect: rectXrect: check for

resources. resources: request,

columns and default/ btoc: setjwin,
/display, Drect, Jrect, PtCurrent,

- per process windowing states. state:
NOPFEXPAND, NOCURSEXPAND,/ keyboard:
dmdman: print manual

default/ btoc: setjwin, P: >btoc,
process.

rectf:

pfkey: get programmable function

key strings.

PtCurrent, P, mouse: globals/ globals:
point: draw a single

jpoint: draw single

Font, Fontchar,/ structures: Word, Code,
of a window. pt2win:

polygon:

routines.

polygon: polyf, ptinpoly:
xpsendnchars: send character to printer
archive and library maintainer for
power, square root/ exp, log, log10,
pow, sqrt: exponential, logarithm,
mc68cpp: the C language

fprintf, sprintf, Iprintf, bprintf:
dmdman:

file. mc68nm:

files. mc68size:

send files to a 630 MTG connected
xpsendnchars: send character to
printqempty, printgspace, printqclear:
bprintf: print formatted output.
printqclear: printer queue management.
printq: printgempty, printqspace,
printer queue management. printq:
management. printq: printgempty,
dmdpi: 630 MTG

/NOTRANSLATE, reqkbdID() ~ per
peel: make

local: make the calling

peel: make process local and create new
pt2win: point2window: find

attach: connect

MOVED, RESHAPED, NO_RESHAPE - per
dmdmemory: 630 MTG memory
pfkey: get

xpsendnchars: send character to printer/
send character to printer/ psendchar,
Icong48: generate uniformly distributed
Rectangle from arguments.

Rectangle from arguments. pt:

output. printf, fprintf, sprintf,
overlapping Rectangles.
own, wait, alarm: routines dealing with . . .
P: >btoc, P->ctob - specify rows and

P, mouse: globals describing display and/

printf(3L)
rectxrect(3R)

. resources(3R)
. btoc(3R)
. globals(3R)

P: >state, MOVED, RESHAPED, NO_RESHAPE state(3R)

P: >state, SCRLOCKREQD, SCR_LOCK,

. keyboard(3R)

PABES. « v v v e e e e e e e e e e e e dmdman(1)
P->ctob - specify rows and columns and . . btoc(3R)
peel: make process local and create new . peel(3R)
perform function on Rectangle in Bitmap. . rectf(3R)

(PP key strings.« pfkey(3R)
pfkey: get programmable function (PF) . pfkey(3R)
physical, display, Drect, Jrect, globals(3R)
pixel in a Bitmap. point(3R)
pixel ondisplay.o jpoint(3L)
Point, Rectangle, Bitmap, Texturel6, structures(3R)
point2window: find process table address . . . pt2win(3L)
polyf, ptinpoly: polygon routines. polygon(3L)
polygon: polyf, ptinpoly: polygon polygon(3L)
polygon routines. polygon(3L)
port. /psendnchars, xpsendchar, psendchar(3R)
portable archives. mc68ar: mc68ar(1)
pow, sqrt: exponential, logarithm, exp(3M)
power, square root functions. /logl0, . exp(3M)
Preprocessor. .« . o« ¢ .+ o+ e e e e v e mc68cpp(1)
print formatted output. printf, printf(3L)
print manual pages. dmdman(1)
print name list of a MC68000 object mc68nm(1)
print section sizes of MC68000 object . mc68size(1)
printer. dmdeat:o dmdcat(1)
printer port. /psendnchars, xpsendchar, . psendchar(3R)
printer queue management. printq: printq(3R)
printf, fprintf, sprintf, lprintf, printf(3L)
printq: printgempty, printqspace, printq(3R)
printqclear: printer queue management. printqg(3R)

printgempty, printgspace, printqclear:
printgspace, printqclear: printer queue

. . printq(3R)
. printq(3R)

process inspector and debugger. dmdpi(1)
process keyboard states, keyboard ID. . keyboard(3R)
process local and create new process. peel(3R)
process local. local(3R)
PIOCESS. & v v o v e v e e e e e e e peel(3R)
process table address of a window. pt2win(3L)
processtohost. oo attach(3R)
process windowing states. /P: >state, . state(3R)
profiler.o dmdmemory(1)
programmable function (PF) key strings. . pfkey(3R)
psendchar, psendnchars, xpsendchar, psendchar(3R)

psendnchars, xpsendchar, xpsendnchars:

pseudo-random numbers. /srand48, seed48
pt: Pt, Rpt, Rect: create a Point or
Pt, Rpt, Rect: create a Point or

12 -

. . psendchar(3R)
. drand48(3L)

address of a window.

on Points.

/physical, display, Drect, Jrect,
polygon: polyf,

Rectangle.

bputchar: 630 MTG debugging
Iputchar: 630 MTG local

default terminal emulator/ getwbuf,

printgspace, printqclear: printer
msgget: get message

qsort:

rectarith:

generator.

rand, srand: simple

infont, getfont, outfont, ffree:
kbdchar:

rcvchar:

arguments. pt: Pt, Rpt,

screenswap: swap screen

structures: Word, Code, Point,

box: draw a

canon: return canonical

fpt: fPt, fRpt, fRect: create a Point or
pt: Pt, Rpt, Rect: create a Point or
jrectf:

rectf: perform function on

texture: draw Texture16 in

inset: inset a border for a

newrect: get swept or default
jtexture: draw Texture in

ptinrect: check for Point inclusion in a
rectclip: clip a Rectangle to another
rectclip: clip a

rectarith: raddp, rsubp: arithmetic on
rectXrect: check for overlapping
Rectangles.

Rectangle.

Bitmap.

Rectangles. rectxrect:

overlapping Rectangles.

mcé8lorder: find ordering

move current window point on display,
floor, ceil, fmod, fabs: floor, ceiling,
ucache: List and

Application cache. decache:

itoa, itoo: convert integer to string
/NOCURSEXPAND, INOTRANSLATE,
dealing with resources. resources:
fontrequest, fontrelease, fontavail:
delete: window operations. window:

pt2win: point2window: find process table . . .
. ptarith(3R)
. globals(3R)

ptarith: add, sub, mul, div: arithmetic

PtCurrent, P, mouse: globals describing/
ptinpoly: polygon routines.
ptinrect: check for Point inclusion in a

Permuted Index

pt2win(3L)

polygon(3L)

. ptinrect(3R)

putchar function. bputchar(3L)
putchar function., Iputchar(3L)
putwbuf, Wbufsize: access the 630 MTG . getwbuf(3R)
gsort: quickersort., gsort(3L)
queue management. printq: printgempty, . printq(3R)
qUeue. e e e e msgget(3L)
quickersort., gsort(3L)
raddp, rsubp: arithmetic on Rectangles. . rectarith(3R)
rand, srand: simple random-number, . rand(3L)
random-number generator. rand(3L)
revchar: receive character from host. rcvchar(3R)
read a font from the UNIX Operating/ . infont(3R31)
read character from keyboard. kbdchar(3R)
realtime: terminal clock. realtime(3R)
receive character from host. rcvchar(3R)
Rect: create a Point or Rectangle from . pt(3L)
Rectangle and Bitmap. screenswap(3R)
Rectangle, Bitmap, Texturel6, Font,/ structures(3R)
Rectangle. box(3R)
Rectangle format from two corner Points. . canon(3R)
Rectangle from arguments. fpt(3L)
Rectangle from arguments. pt(3L)
rectangle function on display. jrectf(3L)
Rectangle in Bitmap. rectf(3R)
Rectangle in Bitmap. texture(3R)
Rectangle. inset(3R)
rectangle. newrect(3R)
Rectangleon display. jtexture(3L)
Rectangle. ptinrect(3R)
Rectangle., rectclip(3R)
Rectangle to another Rectangle. rectclip(3R)
Rectangles. rectarith(3R)
Rectangles. rectxrect: rectxrect(3R)
rectarith: raddp, rsubp: arithmeticon rectarith(3R)
rectclip: clip a Rectangle to another rectclip(3R)
rectf: perform function on Rectangle in . . . rectf(3R)
rectXrect: check for overlapping rectxrect(3R)
rectxrect: rectXrect: check for rectxrect(3R)
relation for an object library. mcé68lorder(1)
relative or absolute. jmove, jmoveto: . . ., . . jmove(3L)
remainder, absolute value functions. floor(3M)
remove objects in the Application cache. . ucache(1)
remove the calling application from the decache(3L)
representation. itox, itox(3L)
regkbdID() - per process keyboard/ keyboard(3R)
request, own, wait, alarm: routines resources(3R)
request/release use of a font. fontrequest(3R)
reshape, move, top, bottom, current, window(3L)

13 -

Permuted Index

windowing/ state: P: >state, MOVED,
routines dealing with resources.

own, wait, alarm: routines dealing with
setupval:

two corner Points. canon:

abs:

three-dimensional/ norm, sqrtryz:
version:

moveto, sPtCurrent: change and
Bitmap. addr:

ringbell, click:

MTG.

exponential, logarithm, power, square
Isqrt: integer square

rol,

rol, ror:

circle, disc, discture, arc: circle

resources: request, own, wait, alarm:
fontused, fontiname: font menu generator
polygon: polyf, ptinpoly: polygon
/setjwin, P: >btoe, P->ctob - specify
from arguments. pt: Pt,

rectarith: raddp,

coordinates. transform,

fontsave, fontcache, fontremove:
transform, rtransform: window to

change and return the value current
screenswap: swap

Bitmap.

keyboard: P: >state, SCRLOCKREQD,
NOCURSEXPAND,/ keyboard: P: >state,
setLEDscr: set the caps lock and

bsearch: binary

Isearch: linear

mcé8size: print

/nrand48, mrand48, jrand48, srand48,
Bitmap.

segment: draw a line

menuhit: present user with menu and get
tmenuhit: present user with menu and get
/psendnchars, xpsendchar, xpsendnchars:
sendchar, sendnchars:

printer. dmdcat:

to host.

sendchar,

rows and columns and default/ btoc:
caps lock and scroll lock LEDs.

and scroll lock LEDs. setled:

lock LEDs. setled: setLEDcap,

setupval: return a

ssignal, gsignal: software

RESHAPED, NO_RESHAPE - per process . . state(3R)
resources: request, own, wait, alarm: resources(3R)
resources. resources: request, resources(3R)
return a setup option. setupval(3R)
return canonical Rectangle format from canon(3R)
return integer absolute value. abs(3L)
return norm or coordinate of norm(3L)
return terminal version number. version(3R)
return the value current screen point. moveto(3L)
return the Word address of a Pointina addr(3R)
ring, click the 630 MTG. ringbell(3R)
ringbell, click: ring, click the 630 ringbell(3R)
rol, ror; rotate bits. rol(3L)

root functions. /log, log10, pow, sqrt: exp(3M)
root. e e e e e e e e e e Isqrt(3L)

ror: rotate bits. rol(3L)
rotatebits.o oL rol(3L)
routines. e e+« . . . circle(3L)
routines dealing with resources. resources(3R)
routines. e v e e e e e e e e e fontused(3R)
routines. polygon(3L)
rows and columns and default outlme btoc(3R)

Rpt, Rect: create a Point or Rectangle pt(3L)

rsubp: arithmetic on Rectangles. rectarith(3R)
rtransform: window to screen transform(3R3l)
save/remove a font from the cache, fontsave(3L)
screen coordinates.+ . . . transform(3R3l)
screen point. moveto, sPtCurrent: moveto(3L)

screen Rectangle and Bitmap. . .
screenswap: swap screen Rectangle and . . .

. screenswap(3R)
. screenswap(3R)

SCR_LOCK, NOPFEXPAND, NOCURSEXPAND,/ keyboard(3R)

SCRLOCKREQD, SCR_LOCK, NOPFEXPAND,
scroll lock LEDs. setled: setLEDcap,
search a sorted table. . .
search and update. . . .
section sizes of MC68000 ob]ect fxles e
seed48, lcong48: generate uniformly /

segment: draw a line segmentina

keyboard(3R)
setled(3L)
bsearch(3L)

. lsearch(3L)

. mc68size(1)
. drand48(3L)
. segment(3R)

segment in a Bitmap. segment(3R)
selection.o 0o menuhit(3L)
selection. oo . . . tmenuhit(3R)
send character to printer port. psendchar(3R)
send character(s) tohost. sendchar(3R)
send files to a 630 MTG connected dmdcat(1)
sendchar, sendnchars: send character(s) . sendchar(3R)
sendnchars: send character(s) to host. sendchar(3R)
setjwin, P: >btoc, P->ctob — specify btoc(3R)
setled: setLEDcap, setLEDscr: set the setled(3L)
setLEDcap, setLEDscr: set the caps lock setled(3L)
setLEDscr: set the caps lock and scroll . setled(3L)
setup option. N setupval(3R)
setupval: return a setup option. setupval(3R)
signals. e e e e e e e e e ssignal(3L)

- 14 -

rand, srand:

trigonometric functions. trig:
itrig: Icos, Isin, latan2: cosine,
point: draw a

jpoint: draw

mc68size: print section

string/ string, FONTWIDTH, FONTHEIGHT,
ssignal, gsignal:

dmdversion: inquire terminal /host
gsort: quicker

bsearch: binary search a

btoc: setjwin, P: >btoc, P->ctob ~
formatted output. printf, fprintf,
current screen point. moveto,

square root/ exp, log, log10, pow,
three-dimensional vector. norm,

sqrt: exponential, logarithm, power,
Isqrt: integer

rand,

/Irand48, nrand48, mrand48, jrand48,

per process windowing states. state: P:
NOPFEXPAND, NOCURSEXPAND,/ keyboard: P:
reqkbdID() - per process keyboard

jx: 630 MTG execution and

strepy, strnepy, strlen, strchr,/

strepy, strnepy, strlen, strchr,/ str:
/strnemp, strepy, strnepy, strlen,
strlen, strchr,/ str: strcat, strncat,

str: strcat, strncat, stremp, strnemp,
/strchr, strrchr, strpbrk, strspn,

gevt: convert floating-point number to
smallfont, mediumfont, largefont: draw/
smallfont, mediumfont, largefont: draw
jstring: draw character

strpbrk, strspn, strespn, strtok:

itox, itoa, itoo: convert integer to
strwidth, jstrwidth: width of character
atof: convert

strtol, atol, atoi: convert

get programmable function (PF) key
object file. mc68strip:

/stremp, strncmp, strepy, strncpy,
strnepy, strlen, strchr,/ str: streat,
strchr,/ str: strcat, strncat, stremp,
/strncat, stremp, strnemp, strepy,
/strnepy, strlen, strchr, strrchr,
/strepy, strnepy, strlen, strchr,

/strlen, strchr, strrchr, strpbrk,

strrchr, strpbrk, strspn, strespn,
integer.

simple random-number generator.
sin, cos, tan, asin, acos, atan, atan2:
sine and arc tangent trigonometric/
single pixel in a Bitmap.
single pixel on display.
sinh, cosh, tanh: hyperbolic functions.
sizes of MC68000 object files.
sleep, nap: suspend program execution. .
smallfont, mediumfont, largefont: draw
software signals.
software version.
sort.
sorted table.
specify rows and columns and default/
sprintf, lprintf, bprintf: print
sPtCurrent: change and return the value
sqrt: exponential, logarithm, power,
sqrtryz: return norm or coordinate of
square root functions. /log, log10, pow,
square root.
srand: simple random-number generator.
srand48, seed48, lcong48: generate/

ssignal, gsignal: software signals.
>state, MOVED, RESHAPED, NO_RESHAPE —

>state, SCRLOCKREQD, SCR_LOCK,
states, keyboard ID. /NOTRANSLATE,
stdio interpreter.
str: strcat, strncat, stremp, strnemp,
strcat, strncat, strcmp, strnemp,
strchr, strrchr, strpbrk, strspn,/
stremp, strnemp, strepy, strnepy,
strepy, strnepy, strlen, strchr,/
strespn, strtok: string operations.
string. ecvt, fcvt,
string, FONTWIDTH, FONTHEIGHT,
string in bitmap. /FONTHEIGHT,

stringondisplay.

string operations. /strchr, strrchr,
string representation.

string to double-precision number.
string to integer.
strings. pfkey:
strip symbolic information from MC68000
strlen, strchr, strrchr, strpbrk,/
strncat, strcmp, strnemp, strepy,
strnemp, strcpy, strnepy, strlen,
strnepy, strlen, strchr, strrchr,/
strpbrk, strspn, strespn, strtok: string/
strrchr, strpbrk, strspn, strespn, /
strspn, strespn, strtok: string/
strtok: string operations. /strchr,
strtol, atol, atoi: convert string to

-15 -

Permuted Index

rand(3L)
trig(3M)
itrig(3L)
point(3R)
jpoint(3L)
. sinh(3M)
mc68size(1)
sleep(3R)
. string(3R)
ssignal(3L)
dmdversion(1)
gsort(3L)
bsearch(3L)
. btoc(3R)
printf(3L)
. moveto(3L)
exp(3M)
norm(3L)
. exp(3M)
Isqrt(3L)
. rand(3L)
drand48(3L)
ssignal(3L)
state(3R)
. . keyboard(3R)
. keyboard(3R)
jx(1)
str(3L)
str(3L)
str(3L)
str(3L)
str(3L)
str(3L)
ecvt(3L)
. . string(3R)
. . string(3R)
jstring(3L)
str(3L)
. . itox(3L)
. . strwidth(3R)
. . atof(3L)
. . strtol(3L)
. . pfkey(3R)
. . mc68strip(1)
. . str(3L)
. . str(3L)
. . str(3L)
. . str(3L)
. str(3L)

. . str(3L)

. . str(3L)
. . str(3L)
. . strtol(3L)

Permuted Index

msgbuf, message_list, msqid_ds: 630 MTG
Rectangle, Bitmap, Texture16, Font,/
string.

ptarith: add,

sleep, nap:

swab:

screenswap:

newrect: get

file. mc68strip: strip

pt2win: point2window: find process
bsearch: binary search a sorted
trigonometric/ trig: sin, cos,

Icos, Isin, latan2: cosine, sine and arc
sinh, cosh,

realtime:

Whufsize: access the 630 MTG default
wtinit: initialize 630 MTG

version: return

dmdversion: inquire

ismpx:

jim, jim.recover: 630 MTG

Bitmap.

jtexture: draw

/Word, Code, Point, Rectangle, Bitmap,
texture: draw

sqrtryz: return norm or coordinate of
selection.

toupper, tolower, _toupper, —tolower,
conv: toupper, tolower, _toupper,
translate characters. conv: toupper,
operations. window: reshape, move,
characters. conv: toupper, tolower,
toascii: translate characters. conv:
bitblt: bit-block

coordinates.

tolower, _toupper, _tolower, toascii:
atan2: trigonometric functions.
JTatan2: cosine, sine and arc tangent
sin, cos, tan, asin, acos, atan, atan2:
Application cache.

/srand48, seed48, lcong48: generate
Isearch: linear search and

menuhit: present

tmenuhit: present

Application cache. cmdcache,

abs: return integer absolute
sPtCurrent: change and return the
floor, ceiling, remainder, absolute

values: machine-dependent
norm or coordinate of three-dimensional
inquire terminal/host software

Structures. /Texturel6, Font, Fontchar, structures(3R)
structures: Word, Code, Point, structures(3R)
strwidth, jstrwidth: width of character strwidth(3R)
sub, mul, div: arithmetic on Points. ptarith(3R)
suspend program execution. . sleep(3R)
swab: swap bytes. e e e e e swab(3L)
swapbytes. swab(3L)
swap screen Rectangle and Bitmap. . screenswap(3R)
swept or default rectangle. newrect(3R)
symbolic information from MC68000 object . mc68strip(1)
table address of a window. pt2win(3L)
table. s e s s s e e e . bsearch(3L)
tan, asin, acos, atan, atan2 e e e e e e s . trig(3M)
tangent trigonometric functions. itrig: itrig(3L)

tanh: hyperbolic functions. . . sinh(3M)
terminal clock. . . . e . realtime(3R)
terminal emulator buffer /putwbuf getwbuf(3R)
terminal for layers environment. wtini(1)
terminal version number. version(3R)
terminal /host software version. dmdversion(1)
test if connected to a multiplexed host. ismpx(3R)
text editor. e e e e e e e e e e jim(1)
texture: draw Texturelé in Rectangle in texture(3R)
Texture in Rectangle on display. jtexture(3L)
Texturel6, Font, Fontchar, msgbuf,/ structures(3R)
Texturel6 in Rectangle in Bitmap. texture(3R)
three-dimensional vector. norm, norm(3L)
tmenuhit: present user with menu and get . tmenuhit(3R)
toascii: translate characters. conv: . . conv(3L)
_tolower, toascii: translate characters. conv(3L)
tolower, _toupper, —tolower, toascii: conv(3L)

top, bottom, current, delete: window window(3L)
_toupper, _tolower, toascii: translate conv(3L)
toupper, tolower, _toupper, _tolower, conv(3L)
transfer. v 0 e e e e e e e e e e bitblt(3R)
transform, rtransform: wmdow to screen . . transform(3R3l)
translate characters. conv: toupper, conv(3L)

trig: sin, cos, tan, asin, acos, atan, trig(3M)
trigonometric functions. /Icos, Isin, itrig(3L)

trigonometric functions. trig:

. trig(3M)

ucache: List and remove objects in the ucache(1)
uniformly distributed pseudo-random/ drand48(3L)
update.o e . lsearch(3L)
user with menu and get selection. menuhit(3L)
user with menu and get selection. . . tmenuhit(3R)
useritems: cache a command in the cmdcache(3L)
value. [. abs(3L)

value current screen pomt moveto, moveto(3L)
value functions. /ceil, fmod, fabs: floor(3M)
values: machine-dependent values. values(5)
values. v v e e e e e e e e e . values(5)
vector. norm, sqrtryz: return norm(3L)
version. dmdversion: 0. dmdversion(1)

- 16 -

Permuted Index

version: return terminal version number., . . . version(3R)
version: return terminal version number. . . . version(3R)
resources. resources: request, own, wait, alarm: routines dealing with resources(3R)
terminal emulator/ getwbuf, putwbuf, Whbufsize: access the 630 MTG default getwbuf(3R)
whathost: determine host connection. whathost(3R)
strwidth, jstrwidth: width of character string. strwidth(3R)
labelon, labeloff, labelicon, labeltext: window labeling. labelon(3R)
move, top, bottom, current, delete: window operations. window: reshape, window(3L)
absolute. jmove, jmoveto: move current window point on display, relative or jmove(3L)
find process table address of a window. pt2win: point2window: pt2win(3L)
current, delete: window operations. window: reshape, move, top, bottom, window(3L)
transform, rtransform: window to screen coordinates. transform(3R31)

RESHAPED, NO_RESHAPE - per process windowing states. /P: >state, MOVED, . . . state(3R)
Texture16, Font, Fontchar,/ structures: Word, Code, Point, Rectangle, Bitmap, structures(3R)
layers environment. wtinit: initialize 630 MTG terminal for wtinit(1)
to printer/ psendchar, psendnchars, xpsendchar, xpsendnchars: send character . . . psendchar(3R)
psendchar, psendnchars, xpsendchar, xpsendnchars: send character to printer/ . . . psendchar(3R)

bessel: jO, j1, jn, y0, y1, yn: Bessel functions. bessel(3M)
bessel: j0, j1, jn, y0, y1, yn: Bessel functions. bessel(3M)
bessel: jO, j1, jn, y0, y1, yn: Bessel functions. bessel(3M)

17 -

DMDCAT(1) (630 MTG) DMDCAT(1)

NAME
dmdcat - send files to a 630 MTG connected printer.
SYNOPSIS
dmdcat[—s][—b][—v][-u][-t][—e][file...]
DESCRIPTION

The dmdcat command is intended to be used to send files to a printer con-
nected to the Printer port of the 630 MTG terminal. Dmdcat will send the
concatenation of files specified on its command line, or the standard input if
no files are specified.

The data is sent to the terminal preceded by a Printer-On Request escape
sequence, and is terminated by a Printer-Off request escape sequence. The
Printer-On request escape sequence commands the terminal emulator to
start sending incoming data to the printer if the printer is available. The
Printer-Off request escape sequence tells the terminal emulator to stop the
sending. The escape sequences sent are:

Printer On - ESC[?5;1i

Printer Off - ESC[?4i
If the -s is present, dmdcat uses this set of escape sequences:

Printer On (no screen) - ESC[?5;2i
Printer Off (no screen) - ESC[4i

which tells the terminal emulator to start/stop sending incoming data to the
printer (if the printer is available) as before but not to display this data on
the screen.

The terminal responds with:
ESC[?psi where:
ps=0 indicates printer was not granted
ps=1 indicates printer was granted.

If the printer was not granted, or if the terminal does not respond, dmdcat
displays a message and aborts.

The second option, -b, strips backspaces from the output of dmdcat. If
backspaces result in two or more characters appearing in the same place,
only the last character read is output. This means that the printed output
appears exactly as it appears on the 630 MTG screen, without bold and
underline. This option is useful for printers which either cannot process
backspaces or are slow in processing backspaces.

Dmdcat is a shell program that calls cat(1) and will pass the options -u, -v,
-t, and -e to ca#(1).

DMDCAT(1) (630 MTG) DMDCAT(1)

FILES
$DMDy/lib/dmdgetpr reads terminal response

SEE ALSO
cat(1), col(1) in the UNIX System V User Reference Manual.
630 MTG Terminal User’s Guide.

DIAGNOSTICS
Dmdcat uses the col(1) command to strip backspaces with the -b option.
Col(1) is not available on all UNIX systems. The -b option will give an error
message if it cannot locate the col(1) command.

Dmdcat only works if it is executed from the default 630 MTG terminal
emulator or any terminal emulator that supports the escape sequence sets
described above.

DMDCC(1) (630 MTG) DMDCC(1)

NAME

dmdcc - 630 MTG C compiler
SYNOPSIS

dmdcc [options] file ...
DESCRIPTION

The dmdcc command is the 630 MTG C compiler. Any software to be
downloaded into the 630 MTG must be compiled using this command.

Dmdcc works in a similar manner to other compiler (cc) commands but is
enhanced to call mc68cpp and mc68ld with special arguments for the 630
MTG development environment. In particular, the dmdcc command defines
the variable DMD$630, it sets the include search path to $DMD/include, it
sets the library search path to $DMD/Ilib, it includes the standard 630 MTG
libraries, it links in the 630 MTG C run-time start-up routine crtm.o, and it
tells mc68ld to retain relocation information so the resulting executable file
can be relocated before download into the 630 MTG.

The exact arguments passed to mcé68cpp and mc68ld can be viewed by
including the -# debugging argument on the dmdcc command line.

The dmdcc utility accepts three types of arguments:
.c
s
.0

Arguments whose names end with .c are the C source programs, and those
with .s are the assembly programs. They are compiled /assembled, and
each object program whose name is that of the source with .0 substituted
for .c or .s is left in the file. The .o file is normally deleted if a single C pro-
gram is compiled and link-edited all at one time.

The following flags are interpreted by dmdcc. See mc68cpp (1), mc68as(1)
and mc68ld(1) for other useful flags.

-C Suppress the link-editing phase of the compilation, and force an
object file to be produced even if only one program is compiled.

-g Flag to the compiler to produce additional information needed for the
use of dmdpi(1).

-O Invoke an object-code optimizer. The optimizer will move, merge,
and delete code; this option should not be used if it is expected that
compiled code may be debugged with dmdpi(1).

-We,argl[,arg2...]
Hand off the argument][s] to pass ¢ where ¢ is one of [p02al] indicat-
ing preprocessor, compiler, optimizer, assembler, or link editor,
respectively. For example:
-Wa,-m
invokes the m4 macro preprocessor on the input to the assembler.

~§ Compile the named C programs, and leave the assembler-language
output on corresponding files suffixed .s.

DMDCC(1) (630 MTG) DMDCC(1)

FILES

-P Run only the macro preprocessor on the named C programs, and
leave the output on corresponding files suffixed .i.

-E Same as the -P option except the output is directed to the standard
output. This allows the preprocessor to be used as a filter for any
other compiler.

-# Debug flag. Show the command lines passed to mc68cpp, mc68ccom,
mc68as and mc68ld.

-x Turn off special processing for the 630 MTG environment. This argu-
ment should not be used when compiling programs to be down-
loaded into the 630 MTG.

-Z n Allocate n bytes of stack for process. If not specified the default is
2048, Note that stack size can be overridden at download time with
the dmdld -Z option. If n is specified smaller than 2048, it is defaulted
to 2048.

Other arguments are taken to be either C preprocessor or link-editor flag
arguments, or C-compatible object programs, typically produced by an ear-
lier dmdcc run, or perhaps libraries of C-compatible routines. These pro-
grams, together with the results of any compilations specified, are link-
edited (in the order given) to produce an executable program with name
dmda.out unless the -o option of the link-editor is used.

The dmdcc command expects the DMD shell variable to be set and exported
in the user’s environment. This variable must point to the "root" directory
of the 630 MTG software node.

Dmdcc tags the downloadable ouput file with a programming environment
identification number (PEID) which is used by dmdld prior to download to
verify compatibility with terminal firmware. The PEID is determined by
dmdce from the firmware routine linkages included in the process. Every
firmware routine called by the process causes a linkage to the routine to be
retrieved from archive and included in the load module. Each of these link-
age routines is tagged with a PEID related to the firmware version that sup-
ports the called firmware routine. The PEID associated with the latest level
of firmware required to support those linkages retrieved from archive is
tagged to the load module. Compatibility with earlier firmware releases is
maintained as long as new firmware functions not supported by older
firmware are not used in the program.

file.c input file

file.o object file

file.s assembly language file
dmda.out link-edited output
/usr/tmp/mc68? temporary file

$DMD/lib/mc68cpp preprocessor
$DMD/lib/mc68ccom compiler
$DMD/lib/mc68optim optimizer
$DMD /bin/mc68as assembler

DMDCC(1) (630 MTG) DMDCC(1)

$DMD /bin/mc681d link loader

SEE ALSO
dmdpi(1), mc68as(1), mc68cpp(1), mc681d(1).
m4(1) in the UNIX System V Programmer's Reference Manual.

The C Programming Language, by Kernighan, B. W., and Ritchie, D. M.,
Prentice-Hall, 1978.

Programming in C-A Tutorial by Kernighan, B. W.

C Reference Manual by Ritchie, D. M.

DIAGNOSTICS
The diagnostics produced by the C compiler are sometimes cryptic. Occa-
sional messages may be produced by the assembler or link-editor.

DMDDEMO(1)

NAME

(630 MTG) DMDDEMO(1)

dmddemo - demonstrations available on the 630 MTG

SYNOPSIS

dmddemo [options]

DESCRIPTION

The dmddemos are graphical demonstration programs that run on the 630
MTG. All programs will become local unless they are downloaded into a
window which is the last window connected to a host. Exiting each pro-
gram can be done by typing ‘q" when that window is current or by deleting
the window. Typing dmddemo with no options gives you a list of demons-

trations available.

Options (demos) available are:

ball
bounce

clock

doodle

rose

star

A bouncing ball
Ricocheting lines. Button 1 controls speed.

Displays face of clock with moving hands in
addition to a digital time display.

An interactive doodler. Button 1 draws and
button 2 erases.

Rotates trigonometric figures to produce various
flower shapes.

Interactive drawing. Button 1 draws and button 2 erases.

DMDLD(1) (630 MTG) DMDLD(1)

NAME

dmdld - 630 MTG application bootstrap loader
SYNOPSIS

dmdld [options] file [application - arguments]
DESCRIPTION

The dmdld program downloads the named file from the host, for execution
in the 630 MTG terminal’s window connected to its standard output. It can
also be used to invoke cached applications.

The dmdld program works in layers(1) and non-layers environments. In
layers(1), the download runs on top of the existing xt error-correcting proto-
col. In non-layers, dmdld temporarily puts the 630 MTG terminal into xt
protocol, and mimics that protocol from its side, thus insuring an error-free
download.

Dmdld first asks the terminal if there is a cached application of name file
already in the terminal. The inquiry uses the filename clipped from any
pathname prefix. If such an application exists and is available, that applica-
tion will be booted in the window without going through the download
sequence.

If a cached application of inquired filename does not exist in the terminal or
is not available (see cache(3L) for reasons), dmdld will attempt to download
file from the host. Files to be downloaded by dmdld must be 630 object files
created with dmdce(1).

During compilation, dmdcc(1) looks for the programming environment iden-
tification (PEID) number of all the library functions link-loaded, and
assumes the highest number as the PEID of the application. During the
download initialization, dmdld will send this number to the terminal. If the
terminal’s firmware version does not support this PEID - in other words, the
firmware does not have some new library functions used by the application,
the download will bé aborted. The argument flag -f will override this check-
ing, but the sanity of the application (after being downloaded and running)
cannot be guaranteed,

The optional application-arguments are also sent to the terminal in order to
initialize the parameters argc and argv of the function main of the applica-
tion. :

During the download, the 630 mouse cursor will turn into a "coffee cup"
and the progress of the download is shown by a gradual filling of the win-
dow with inverse video. The code to be downloaded is relocated on-the-fly
by dmdld to the memory area allocated for it by the terminal. If the down-
load succeeds, the application will take over the window and start execu-
tion.

The following options are supported by dmdld:

-d causes a printout of the download information on the diagnostic
output (standard error).

-p prints non-layers protocol statistics on the diagnostic output (stan-
dard error). Note that this option forces the -d option. In layers(1),

-1 -

DMDLD(1)

-Z

(630 MTG) DMDLD(1)

this option is the same as the -d option.

loads the process but does not run it. The process can then be
started using dmdpi(1). This option works only under layers(1)..

forces the download even if the programming environment identifi-
cation number of the application is not supported by the terminal it
is downloaded into.

is a null option, and is ignored by dmdld. It is used by processes
that want to fork dmdld with a variable argument option.

overrides the inherent stack size of the download application and
sets it to n bytes. N must be greater than or equal to 2048, or else
stack size is defaulted to 2048. Inherent stack size of the download
application is specified through the -Z option of dmdcc(1) (or
defaulted to 2048).

loads an absolute file (already link-loaded to a fixed address) such
as a new version of the terminal’s firmware into the terminal’'s RAM
space. This download is called a takeover (overlay) download
because it will close all physical ports except for the one running
dmdld. The whole terminal screen will turn blank, and will be gra-
dually filled up with inverse video representing the code being
downloaded. When the download is finished, execution will begin
at the first address of file. Relocation will be done by dmdld only if
the first address of file is lower than the first available RAM address
of the terminal. This is necessary because low-addressed RAM is
used to store the terminal’s system tables and variables, and
overwriting them with the downloaded data may put the terminal
into undetermined states. The -N option can be used instead, if the
relocation possibility is not wanted.

loads an absolute file into the terminal’'s RAM space. The difference
between the -T and -N options is that the -N does not relocate the
absolute file. Therefore the absolute file can be generated without
relocation information.

The -T and -N options only work in the non-layers environment, and are
exclusive of each other.

The environment variable JPATH is the analog of the shell’s PATH variable
to define a set of directories in which to search for file.

NOTE: Standard error should be redirected when using the -d or -p

EXAMPLE

options.

Invoking the terminal resident PF Edit application using dmdld:

dmdld "PF Edit"

Invoking a dmdcc(1) compiled application:

dmdld dmda.out

Invoking a dmdcc(1) compiled application with the -d flag, redirecting stan-
dard error to temp:

DMDLD(1) (630 MTG) DMDLD(1)

dmdld -d dmda.out 2>temp

Invoking a dmdcc(1) compiled application with application-argument:
dmdld $DMD/lib/demolib/clock "‘date‘"

SEE ALSO

cache(3L), dmdcc(1), dmdpi(1), jx(1).
layers(1) in the UNIX System V Release 3 User’s Reference Manual.
layers(1) in the 5620 Dot-Mapped Display Reference Manual.

DIAGNOSTICS

BUGS

The error message "dmdld: ... is not compatible with terminal™ means that
the application the user attempts to download cannot execute safely in the
terminal because it calls library routines which do not exist in the terminal’s
firmware version (i.e. the programming environment ID of the application is
"newer" than the one supported by the terminal). A firmware upgrade is
necessary, or the user can force the download by using the -f flag,

The error messages "dmdld: cannot access ..." or "dmdld: cannot open .."
appearing when the named file is known to be in the cache, indicate that
the application is not available for booting, and dmdld cannot find or open
the named file in the host.

The error message "dmdld: no memory in terminal" indicates that the termi-
nal has run out of memory to accept the download. The user may free up
memory (by deleting windows, etc..) and re-try.

Other error messages are self-explanatory.

The application-arguments are not sent to the terminal to update argc and
argv if the named file is found in the terminal’s application cache.

DMDMAN(1) (630 MTG) DMDMAN(1)

NAME

dmdman - print manual pages
SYNOPSIS

dmdman [options] [sections] titles
DESCRIPTION

- The dmdman utility prints the on-line manual pages for the given titles.

Titles are entered in lower case. The sections are numbers from one to
eight and correspond to the manual page section numbers. The section
number may not have a letter suffix. If no section is specified, the whole
manual is searched for title and all occurrences of it are printed.

Options and their meanings are:
-c Preprocess output with col(1).
-d Search the current directory rather than $DMD /man.

-w Prints on the standard output only the pathname of the entries, rela-
tive to $DMD /man, or the current directory for -d option.

-Tterm ;
Set TERM (refer greek(1)) before printing the manual page. In addi-
tion, a null term will clear the term variable for the duration of the
dmdman invocation.

-12 Indicates that the terminal type specified on the -T option or in the
$Term variable is to be placed in 12 pitch mode. If this option is used,
then the terminal type must not include the “-12” string; otherwise,
this string will occur twice in the $Term variable, thus making it
invalid.

Since the manual pages are not available on the AT&T 3B2 Computer, this
command will not work on that computer.

FILES
$DMD/man/?_man/man[1-8]/* Packed manual entries

SEE ALSO
col(1), greek(1) in the UNIX System V User’s Reference Manual.

DMDMEMORY(1) (630 MTG) DMDMEMORY(1)

NAME

dmdmemory - 630 MTG memory profiler
SYNOPSIS

dmdmemory [-c |
DESCRIPTION

The dmdmemory utility presents a graphical representation of the memory
usage in the 630 MTG terminal. Memory in the 630 MTG terminal is
divided into two types of memory which can be requested by user level
function calls:

- non-compactibility alloc memory [alloc(3R)],
- garbage-collectible gcalloc memory [gcalloc(3R)).

The alloc memory pool starts from the low addressed end of the user
memory pool and grows upward. The gcalloc memory pool begins at the
other end of the user memory pool (i.e. at the highest address) and grows
downward. The mobile boundaries of the alloc and gealloc pools are named
respectively alloclevel and gclevel

To contain fragmentation due to the non-compactibility of the alloc
memory, there is an alloclimit which restricts the expansion of the alloc
pool.

In order to make better use of alloc fragments, the 630 MTG memory allo-
cation scheme converts a gcalloc request that cannot fit into the gcalloc pool
to an alloc request. If there is a fragment big enough to satisfy the request,
it becomes a gcastray block. Geastray memory is of the same type as gcal-
loc but resides inside the alloc pool. Note that this type of memory is only
known by the terminal memory allocation system and cannot be requested
directly by a user level function call.

A user is able to monitor all three types of memory with a scope (or zoom)
facility, modify the alloclimit, and ook at the memory or stack usage of a
particular process.

The —c option causes dmdmemory to be cached in the 630 MTG application
cache.

The window size used by dmdmemory is fixed. If the window size is not
correct, a Core icon and a "menu on button 2" string are displayed. The
window must be reshaped if this appears by selecting either the reshape
option from the mouse button 2 menu or the reshape function from the
mouse button 3 menu. If reshape is selected from the button 2 menu, the
window is automatically reshaped to the proper size. If the reshape func-
tion from the button 3 menu is selected, the default window size presented
is the correct window for dmdmemory.

DMDMEMORY(1) (630 MTG) DMDMEMORY(1)

If a different window size is swept, the core icon and message string are
again displayed. Similarly, if at any time the window is reshaped back to
an incorrect size, the core icon and string are again displayed. When the
window size is incotrect, dmdmemory is largely inactive, so at times it may
be desirable to place dmdmemory in this state to free cpu resources for
other processes. Reshaping the window back to the correct size reactivates
dmdmemory.

In the working mode, the dmdmemory window contains the following,
from top to bottom:

— Three numerical upper fields which are, from left to right:

the scoped number of alloc blocks.
the scoped number of gcastray blocks,
the scoped number of gcalloc blocks.

The number of scoped blocks is the number of those blocks that fall
within the range of memory represented by the dmdmemory window.

—A bar graph which represents the user memory pool in
the viewing scope. Alloc blocks are reverse-videoed, gcastray blocks are
background textured, and gcalloc blocks are grey shaded. To help the
visualization, the bar graph is marked by 100 tick marks, 8 pixels apart.
The alloclimit is represented by a longer vertical bar.

— Five numerical lower fields which are, from left to right:

the starting address of the viewing scope,
the alloclevel address,

the alloclimit address,

the gclevel address,

the ending address of the viewing scope.

In full view the viewing scope addresses are the same as the boundary
addresses of the total user memory pool. In a scoped view, the alloclevel,
alloclimit or gclevel addresses may not be displayed if they are out of the
viewing scope.
—An alphanumeric field which displays information or
help messages. Information includes the scope setting (full view or
scoped view) and the number of bytes per pixel. Help messages depend
on the command selected.

The dmdmemory facility supports five commands, all accessed from mouse
button 2. Note that when a command is being executed, the dmdmemory
window cannot be reshaped. The five commands are described below.

DMDMEMORY(1) (630 MTG) DMDMEMORY(1)

Base
This command toggles between decimal and hexadecimal bases. Hexade-
cimal numbers are preceded by a "0x" prefix.

Process
This command changes the mouse cursor to a "target" cursor and asks the
user to pick a window by clicking button 1 over it. Picking nothing (i.e., the
screen background) or clicking other buttons will cancel the command.

Clicking button 1 over a window will cause the three numerical upper fields
to blink. They now represent scoped amounts of alloc, gcastray and gcalloc
memory used by the process running inside the selected window. The
display inside the bar graph also blinks to mark the corresponding positions
of these memory blocks. The alphanumeric field displays the address of the
process.

When the dmdmemory window is current clicking or holding any button
stops the blinking, exits this command mode, and returns dm dmemory to
the normal viewing mode.

If a cached process is selected, dmdmemory displays only that memory used
by the process that was allocated via an alloc or gealloc procedure call. The
memory actually occupied by the process code and data is not displayed by
the process command.

Stack
This. command is similar to the process command, except that the informa-
tion now deals with the stack assigned to the specified process. :

Since the process stack is alloc’ed, only the alloc field can have a non-zero
value (assuming the stack is inside the viewing scope). The alphanumeric
field shows how many bytes of its stack a process has used. :

The stack command displays the amount of assigned stack space whether
the process is cached or not.

DMDMEMORY(1) (630 MTG) DMDMEMORY(1)

Scope

This command allows the user to zoom in (or out) in order to have a closer
look at a particular region of the user memory pool.

When this command is selected, a full-length vertical bar blinks at the left
side of the bar graph. The user drags the vertical bar by holding down but-
ton 1. Note that the starting address of the viewing scope (left-most lower
numerical field) also blinks, and changes with new values corresponding to
the dragged bar positions. Releasing button 1 will select the new starting
address of the viewing scope.

The ending address of the viewing scope is modified in the same manner
with a blinking bar appearing at the right end of the bar graph. If this bar is
positioned to the left of the previous one, dmdmemory takes it as a zoom-
out, back to full view setting. Otherwise, the action results in a zoomed-in
(or scoped) view of the memory pool, and the numerical fields are updated
accordingly. Note that some addresses in the lower fields are now out of
scope and therefore are not displayed.

During this process, if any button other than button 1 is pressed and held,
the command is aborted and the current viewing scope is retained.

The smallest scope is one byte per pixel. Attempts to zoom in further will
automatically re-expand the viewing scope to this minimum setting.

Limit

FILES

This command allows the user to modify the value of alloclimit.

When this command is selected, the vertical bar which represents the posi-
tion of alloclimit in the graphical bar starts to blink. The same thing hap-
pens to the alloclimit numerical field (middle lower field). To modify its
value, the user holds down button 1 and drags the vertical bar to new posi-
tions. The numerical field changes accordingly. Note that alloclimit cannot
go lower than alloclevel; otherwise, some alloc blocks would be out of the
alloc pool.

This command does nothing if the alloclimit is not within the scope.

Caution: a value for alloclimit that is too low restricts the expansion of the
alloc pool, causing alloc requests to fail.

$DMD/lib/dmdmemory.m downloadable file

SEE ALSO

ucache(1), alloc(3R), gcalloc(3R).

DMDPI(1) (630 MTG) DMDPI(1)

NAME

dmdpi - 630 MTG process inspector and debugger
SYNOPSIS

dmdpi [-c]
DESCRIPTION

Dmdpi is a C language debugger that is bound dynamically to multiple sub-
ject processes executing in a 630 MTG window in the layers environment.
In order to use dmdpi to its full capabilities, it is necessary to compile the
source program with the -g option of dmdcc. However, if the target pro-
gram is not compiled with -g, or no symbol tables at all are available, dmdpi
works as well as possible with the information provided to it.

If the -c option is selected, dmdpi will be cached in the 630 MTG cache sys-
tem. This will enable dmdpi to be executed again without the need for
another download.

Dmdpi uses a multi-window user interface. There are three types of win-
dows: debugger control windows, which access the global state of the
debugger; process control windows (exactly one per process), which start
and stop processes and connect to process-specific functions; and process
inspection windows, which include viewers for source text and memory,
formatted various ways. Initially, there are three debugger control windows
available: dmdpi, help and pwd/cd.

One might need to debug some initialization code that would ordinarily be
executed before dmdpi has a chance to gain control of the process. The -z of
dmdld is useful for this purpose. This allows you to take control of a pro-
cess before the first statement is executed. See the dmdld(1) manual page
for details on using this option.

User Interface
Button 1 points. Pointing at a window makes it current, noted with a
highlighted border; pointing at a line of text makes it current and inverts its
video. A scroll bar at the left of each window shows how much of the text
of a window is visible; pointing into the scroll region and moving the
mouse controls what text is displayed.

Button 2 has a menu of operations that apply to the current line. Opera-
tions above the ™~ separator are specific to each line; operations below the
separator are generic line operations:

cut Remove the line.

sever Remove the line and all lines above it.

fold Wrap the line, if it extends past the right margin.
truncate Truncate the line at the right margin.

Button 3 has a menu of window-level operations and is in two parts.
Operations above the separator are specific to each window. Operations
below the separator are the following generic window operations:

DMDPI(1) (630 MTG) DMDPI(1)

reshape Change the size of a window.

move Move a window to a different place.

close Delete a window.

fold Like button 2 fold above except it applies to all lines in

the window.

truncate Like button 2 truncate above except it applies to all lines
in the window.

top The sub-menu off the top is a list of windows; selecting
one makes it top and current.

Button 3 is also used to sweep out new windows.

Keyboard characters accumulate at the bottom of the window. If the
current line accepts input, it flashes with each keystroke; otherwise, if the
current window accepts input, its border flashes. Carriage return is ignored
until a line or window accepts the text, whereupon the input line is sent to
the line or window.

The following keyboard commands are also available:

'~file’ This saves the contents of the current line, or current window if
there is no current line, into the named file. To achieve the status of
no current line in the window, scroll off the top or bottom of the
window.

‘<file’ Each line of the named file is sent to the line or window as though
it had come from the keyboard.

? Each line or window that accepts keyboard input produces some
help in response to ?. These messages specify the format of what
may be typed. Items in brackets ([]) are optional parameters in the
keyboard input expression. Explanations are contained within
braces ({}).

Special cursor icons occasionally appear:

arrow-dot-dot-dot
The host is completing an operation; the terminal is ready asynchro-
nously.

coffee cup
The terminal is receiving input from the host; the terminal momen-
tarily is blocked.

exclamation mark
Confirm a dangerous menu selection by pressing that menu’s button
again.

Debugger Control Windows
Dmdpi Window
The most important debugger control window is the dmdpi window,
which is the first window created after the debugger downloads.

-92-

DMDPI(1) (630 MTG) DMDPI(1)

Each line within the dmdpi window refers to a specific process run-
ning in the terminal. A process is identified by its 630 MTG process
table address. Along with each process is a path to its host resident
download module (argv[0]). This pathname is used by dmdpi to
find the symbol table and debugger information for the process.

Lines may be introduced to the dmdpi window by running list
processes from the button 3 menu or by typing a process table
address and symbol table path from the keyboard. Typing the
information at the keyboard may be useful if one wishes to change
the pathname of where the process symbol table might be found.

Lines are also introduced into the dmdpi window when opening or
closing a process control window for a process which is currently
not listed in the dmdpi window.

Note that the list of processes in the dmdpi window is not dynami-
cally updated as new processes are created or deleted, or when
application programs exit. This can lead to invalid processes being
listed in the dmdpi window until list processes is again chosen from
the button 3 menu.

Pwd/cd Window
The pwd/cd window controls the working directory of the
debugger. The initial working directory is the directory in which
dmdpi is executed. The working directory can be changed either by
typing a path from the keyboard or by selecting directory listings in
button 2 and button 3 menus.

Help Window
The help window contains a reminder of user interface mechanics.

Process Control Windows
A process control window is created from the dmdpi window in one of two
ways. Open process on the button 2 menu opens the process currently
highlighted in the dmdpi window. Pick process on the button 3 menu causes
the mouse cursor to change to a target cursor which can be used to point to
a window containing a process to debug.

The paths to symbol tables shown in the dmdpi window are not full path
names if the location of the host resident download module for the program
being debugged is specified to dmdld as a relative path name. If this is the
case, the debugger is not able to find symbol tables unless the working
directory of the debugger is the same as the directory in which the applica-
tion was downloaded. If symbol tables cannot be found, close the process
window, change the working directory of the debugger from the pwd/cd
window, and then reopen the process window.

A process control window indicates the process’s state and shows the call
stack traceback if the process is halted or dead. The call stack is the

-3-

DMDPI(1) (630 MTG) DMDPI(1)

dynamic chain of activation records. The process control window also con-
nects to process inspection windows that access source text, local variables
within a stack frame, raw memory, and so on. These windows are cross-
connected; so, for example, an instruction in a process’s assembly language
window can be inspected as a hexadecimal opcode in the raw memory win-
dow. Closing the process control window closes all the process inspection
windows associated with it.

States are:

RUNNING running normally

STOPPED stopped asynchronously by the debugger
BREAKPOINT halted on reaching breakpoint

STMT STEPPED halted after executing C source statement(s)
INSTR STEPPED halted after executing machine instruction(s)
PROCEESS EXCEPTION a process exception has occurred

ERROR STATE the process has probably exited.

When in the RUNNING state, the status of selected bits of the P->state
variable is displayed and updated.

The menu operations on the process are:

run let the process run

stop stop the process

src text open source text window(s)

Globals open window for evaluating expressions in global scope
RawMemory open window for editing uninterpreted memory
Assembler open window for disassembler

User Types open window for setting user types

Journal open debugging session journal window

Bpt List open breakpoint list window

Each line of the call stack traceback describes one function. Each function
in the traceback can open a stack frame expression evaluator window or
display its current source line.

Process Inspection Windows
Source Text Windows

The source text window contains a listing of a source file. If there is
more than one source file for the process, selecting the src text item
in the process control window will give you a source files window
in which there is a listing of all the source files associated with that
process. Library function source files are included in this list, even
though one might not actually have the source for these functions.
By highlighting a source line and selecting open source file in the
button 2 menu, you can open a source listing for that file. Each
source file is in a separate window, which can be opened when
needed. The source files are searched for in the working directory.
Entering a pathname from the keyboard (when the Source files win-
dow is current) enters a pathname prefix which points to a directory
where the source can be found, without changing the working
directory.

DMDPI(1)

(630 MTG) DMDPI(1)

When opening a source file, dmdpi checks to see whether the source
file is in time sync with the object module. If not, dmdpi gives a
message of this fact. One may override this condition with the reo-
pen item in the button 3 menu of the source text window. Source
lines are displayed on a "per request basis." In other words, only
the lines that are currently visible are sent from the host. More lines
are sent to be displayed on the terminal as needed.

Specific strings may be searched for in the source text by using
/string, or the ?string entered at the keyboard, for searching forward
and backward in the source text respectively. The search will begin
at the next (previous for backwards search) C language statement
rather than at the next source line. Note that repeated reverse
searches for the same pattern must be specified as ?? rather than ?
due to a conflict with the help operator (?). Line numbers can also
be searched for by entering a line number at the keyboard when a
line is not current within the window. If a line is current, the
number is evaluated as a constant expression (see expressions
below). To achieve the status of no current line, scroll the current
line off the top or bottom of the window.

Breakpoints are set on source lines. A breakpoint is set by
highlighting the line on which you wish to break execution and
selecting set bpt from the button 2 menu. A breakpoint is denoted
by a ’>>>" next to the source line. When the process reaches this
line the process halts and will not execute the line on which the
breakpoint is set. Clearing the breakpoint is done by highlighting
the line on which a breakpoint is set and selecting clear bpt from
the button 2 menu. Clearing the breakpoint can also be done from
the breakpoint list window (see below). A conditional breakpoint
is a breakpoint that is set with a certain condition. When this condi-
tion evaluates to TRUE, the process is halted. Any valid dmdpi
expression may be used as a condition (see expressions). To set a
conditional breakpoint, select cond bpt from the button 2 menu.
You are prompted to enter an expression from the keyboard as a
condition. An example of a condition would be (x==1). When the
variable x becomes equal to 1, then execution breaks. The trace on
item in the button 2 menu is actually a conditional breakpoint with
the condition of 0, meaning that the condition never evaluates to
TRUE. This has the effect of tracing a statement but never breaking
execution. The conditional breakpoint is removed in the same way
a regular breakpoint is removed.

Once the process has been halted, select run to start the process
running again. You can also step (execute) a number of source lines
and then stop again after these statements have been executed.
When statements are stepped, the debugger will not enter functions
unless the step into fcn item is actually specified. The current state-
ment can always be seen by selecting the current stmt item in the
button 3 menu. This highlights the statement currently in the PC.

DMDPI(1)

(630 MTG) DMDPI(1)

Another option that is available in the source text window is the
ability to look at the assembly code for a specified line. Highlighting
a line and selecting assembler in the button 2 menu displays the
first assembler instruction of the statement.

Globals and Stack Frame Windows

A stack frame window is opened from a line in the call stack trace-
back in the process control window or from a line of source text. A
globals window is opened from the button 3 menu in the process
control window. These windows evaluate expressions with respect
to global scope, and scope in a function, respectively.

Expressions

Expressions may be entered from the keyboard or with the mouse.
The syntax for expressions in dmdpi is the same as C language
expressions, except for differences noted below. The expressions are
most commonly used for inspecting values of variables in the pro-
gram that is being debugged. An example of an expression is
r.origin.x. This may be typed in order to inspect the x coordinate
value of a rectangle origin point if the process has a rectangle r.

A summary of dmdpi’s expression syntax is presented here only to
aid comprehension, rather than an exact statement of the language.

expression :
constant
primary
*expression
&expression
-expression
lexpression
“expression
sizeof expression
typeof expression
fabs (expression)
(type-name) expression /* from menu only */
{expression} identifier
expression binop expression
expression = expression
expression , expression

primary:
$

identifier

(expression)

primary ([expression-list])
primary[expression |
lvalue.identifier

primary -> identifier

-6 -

DMDPI(1)

(630 MTG)

lvalue:
identifier
primary[expression]
lvalue.identifier
primary -> identifier
*expression
(lvalue)

binop:
* /% 4+ - >> << < ><= >= ==
I &&

DMDPI(1)

= &

The major differences in the expressions which dmdpi understands

and the C expressions are:

The unary operators fabs and typeof are supported. fabs
evaluates the absolute value of a floating point number.
typeof evaluates the type of an expression. Examples are:
fabs(-2.0)=2
typeof(r.origin)= struct Point

The concept of a "current expression" has been introduced
with the $ operator. $ is equal to the current highlighted
expression. For example, if the line containing r.origin is
highlighted, one may type $.x to see the value of the x coor-
dinate. Another example of the $ expression is $=<expres-
sion>. This can be used, for instance if $ is equal to a vari-
able x and you wish to change the value of x to <expres-
sion>.

Expressions are evaluated within the scope boundaries of
the window in which they are typed. One can cross scope
boundaries in order to evaluate an expression with the syn-
tax { expression } function-name. This, for example, is use-
ful for using the globals window to look at static variables
that are local to a function without having to open up a
stack frame window.

Type casting may only be done through the use of the
menu.

The bfollowing is not supported by dmdpi: ++ -- 2. op=
string.
NOTE: expressions are always evaluated internally with a

32-bit precision. Therefore, results may not correspond in all
cases with those generated by a C program.

Expressions are also used to specify the condition in the conditional
breakpoint. Note that the C comma operator is very useful in speci-
fying the condition. Expressions separated by a comma are
evaluated left-to-right and all but the rightmost expression are dis-
carded. For example, a condition of (x,y,x==y) evaluates all three
expressions; however, only the last expression (x==y) determines

7.

DMDPI(1)

(630 MTG) DMDPI(1)

the result of the overall condition. The result is that the values of x
and y are printed but execution halts only when x==y.

Registers in the stack frame windows are prefixed with the character
$, for example, $d0. The address of a register is the location at
which it was saved. Register values are only available after execu-
tion has been halted at a breakpoint or after a step. The exception to
this rule is that one may look at register variables in calling func-
tions if they happened to be saved in the called function.

An expression may be made spy, in order to observe changes in the
expression. The value of a spy expression is evaluated and
displayed each time the debugger looks at the process, i.e., when
the process calls wait() or sleep(). If the value of a spy changes, the
expression is updated and a message is given that the expression
has changed. If a conditional breakpoint (or trace on) is set, then the
process will be halted. The option changed spies in the button 2
menu will manually force all spies to be re-evaluated.

A maximum of 150 global variables will fit into the globals menu. If
the targeted program has more than 150 global variables, the
remaining variables must be accessed by typing their name from the
keyboard.

Raw Memory Window

The raw memory window is a “memory editor” in which memory is
viewed as a sequence of 1-, 2-, 4- or 8-byte cells. The ’” operator is
a special symbol which denotes a cell address. Therefore, commands
such as .+1 in the button 2 menu give the next increment of
memory after the current cell address. The keyboard command
.=<expression> displays the cell with address equal to expression.
The expression syntax is the same as defined above. The format of
the displayed memory cells is x/y: <contents>, where x is the cell
address, and y is the viewing increment.

Some of the functions available are:

change cell size and display format
Use the size and format items in the menu.

display cells above and below current cell.
Use the .[+-]<amount> options in the menu.

indirect to cell
Look at the cell using the contents of the current
cell as an address. Use the * thru . option.

change cell value
This is done with the keyboard expression:
$=<expression>

spy on memory cell
If the memory contents change, dmdpi will give
notification.

DMDPI(1) (630 MTG) DMDPI(1)

disassemble instruction at cell.
Display the assembler instruction in the assembler
window. Use the asmblr option in the button 2
menu.

(Dis)Assembler Window
Allows viewing of memory as a sequence of assembler instructions.
The menu options of this window are similar to those in the source
text window. The difference is that this window deals with assem-
bler instructions rather than the high-level source code.

An instruction at a certain address can be displayed by entering the
keyboard expression .=<expression>. The expression syntax is the
same as defined above. More instructions can be viewed in a
sequential manner using the next options in the button 2 menu. The
next 1, 5, or 10 instructions starting from the current instruction can
be displayed.

When setting a breakpoint or stepping into an assembler function,
one must step through the link and the movm.l instructions before
dmdpi will be able to generate the stack frame for the function.

Some of the other functions available are:
change display format
open a stack frame window for instruction’s function
display instruction as cells in the raw memory window
set/clear breakpoint on instruction
display instruction at current PC
single step instruction(s)

User Types Window
Shows user-defined types and allows the display format of user-
defined types displayed in the globals and stack frame windows to
be changed. For example, the display format of a structure may be
changed so that certain fields are not displayed (hidden) and other
fields are displayed (shown).

Journal Window
Keeps a log of significant events in the course of a debugging ses-
sion.

Breakpoint List Window
Lists all active source and assembler breakpoints. Allows clearing of
specified breakpoints or all breakpoints.

Functions available include:
show source or assembler line at which a breakpoint is set
clear a single breakpoint
clear all breakpoints

DMDPI(1) (630 MTG) DMDPI(1)

SEE ALSO

dmdcc(1), dmdld(1), ucache(1).

WARNINGS

BUGS

Do not use the -O optimizer option of dmdcc when compiling a program to
be debugged with dmdpi. This will confuse dmdpi.

It is possible to receive a message that there is no more memory on the host
system. This will happen if the process you are debugging has a very large
symbol table, or if you are debugging many processes at the same time.
The maximum amount of memory that a UNIX process is allowed to con-
sume can be changed by a system administrator. For a 3B2 host computer
running System V Release 2.0, how to change the per process memory limit
is documented in the manual AT&T 3B2 Computer Unix System V Release 2.0
System Administration Utilities Guide in the chapter "Administrative Tasks"
under "Tunable Parameters." An alternative to changing the host
computer’s per process memory limit is to use the mc68cprs CCS utility to
compress the size of process symbol tables before they are opened for
debugging with dmdpi.

In switch statements there is no boundary between the last case and the
branch code; the program appears to jump to the last case (but is really in
the branch) and then to the real case.

The structure P which is of type "struct Proc *" within applications is inter-
preted by dmdpi as "struct proc". This implies that one must type P.state
rather than P->state when accessing the structure P from the keyboard.

If a program contains multiple global structure declarations of the same
name, dmdpi will ignore all but the first declaration.

A breakpoint cannot be set on a goto or return statement. Attempting to do
so will set a breakpoint on the following line. Also, stepping onto a goto or
return statement will execute the goto or return instead of stopping on the
line.

When stepping past an if statement that is the last statement within a while
loop and the if condition fails and does not have an else condition, the pro-
gram will appear to jump to the last line within the if statement. It is really
jumping to the statement that will branch back to the top of the while loop.

- 10 -

DMDVERSION(1) (630 MTG) DMDVERSION(1)

NAME

dmdversion - inquire terminal/host software version
SYNOPSIS

dmdversion | -ehlst]
DESCRIPTION

The dmdversion utility displays the version numbers of the 630 MTG termi-
nal and host software. The terminal version number is the equivalent to the
ASCII string which contains three fields (f1;2;f3) defined as follows:

f1 identifies the 630 MTG as a windowing terminal
f2 identifies the terminal as a 630 MTG
£3 identifies the firmware release

Host software version is read from the file $DMD /VERSION.

The -t option is used to display the terminal version number. The -h
option is used to display the host software version number. The default
action is to display both terminal and host software version numbers.

In the layers environment, terminal version is found through an ioctl(2) call
to the xt device driver. In non-layers, or if the -e flag is specified, the termi-
nal version is found through the Request Terminal Type escape sequence
ESClc.

The -1 option can be used to inquire if Local Area Network (LAN) Encoding
is set for the terminal through terminal setup. This is found through the
Request Encoding escape sequence ESC[F. This option excludes the -e
option and does not inquire the terminal version number.

When the -s flag is present, no output is printed but an exit value is
returned as follows. If the -t or -e options are present, the decimal ascii
value of the last digit of the terminal’s version is returned. If the -1 option is
present, 1 is returned if LAN encoding is enabled; 0 otherwise. The -1
option will overide the -t or -e options. In all other cases, 255 (-1) is
returned.

EXAMPLE
The following example can be used to determine if a 630 MTG or some
other windowing terminal (such as a 5620) is being used.
case 4Ymdversion -t' in
'8;8')
echo I am a 630
'8;7")
echo I am a 5620
*)
echo Unknown terminal type
esac

DMDVERSION(1) (630 MTG) DMDVERSION(1)

FILES
$DMD/VERSION the host version

SEE ALSO
version(3R).
ioctl(2) in the UNIX System V Programmer’s Reference Manual.
layers(1) in the UNIX System V Release 3 User’s Reference Manual.
layers(1) in the 5620 Dot-Mapped Display Reference Manual.
630 MTG Terminal User’s Guide.

DIAGNOSTICS
The -e and -1 flags only work if the window connected to the standard out-
put is running the default 630 MTG terminal emulator or any other emula-
tor that supports the described escape sequences.

ICON(1) (630 MTG) ICON(1)

NAME

icon - interactive icon drawing program

SYNOPSIS

DESCRI

icon [-xm [-yn][~c]

PTION

The icon utility is a menu-driven interactive icon and picture drawing pro-
gram. It runs under layers using the "mouse" and keyboard for command
and text entry. The default icon display consists of a 50X50 cell grid in the
lower right-hand corner of the layer in which icon is invoked. By invoking
icon with the -x and -y flags, the grid size may be specified to be mXn,
overriding the default. Each cell in this grid corresponds to a single bit in
the icon being created or edited. In the upper left-hand corner of the layer,
an actual size view of the icon is displayed.

The -c option causes icon to be cached in the 630 MTG application cache.

The grid size parameters m and n must be in the range of 1 to 480. A
parameter larger than 480 is reduced to 480, and a parameter smaller than 1
is set to the default value of 50.

If icon is invoked in a window that is too small for the specified grid size,
icon will display a grid icon in the upper left corner of the window along
with a message “menu on button 2”. The window must be reshaped before
icon will continue. At this point a menu on button 2 will contain a reshape
selection. If selected, icon will automatically reshape its window to a size
and shape appropriate for the grid size. Alternately, the button 3 reshape
function can be used to manually reshape the window. If at any time the
window is again reshaped to a size too small to display the selected grid
size, icon will redisplay the grid icon and the ““menu on button 2” message.

When using icon, the meanings of the three mouse buttons are as follows:

Button 1 Button 1, when depressed and held in, fills in the grid posi-
tion pointed to by the mouse cursor.

Button 2 Button 2, when depressed and held in, clears the grid posi-
tion pointed to by the mouse cursor.

Button 3 Button 3, when depressed, displays a matrix of icons. By
moving the cursor (now a box) over the desired icon and
releasing the button, commands will be invoked. If the
command requires a section of the grid display to be
selected, depressing button 2 will select a 16x16 grid out-
line. To specify other than this 16x16 grid outline, depress
button 3 and sweep out the rectangle you wish the com-
mand to act on.

ICON(1)

Commands

(630 MTG) ICON(1)

The command selection matrix icons are described below from the upper
left by rows to the bottom right. On the bottom row is a help command
designated by the word "help.”

Arrow
Copier
Black and white squares

Garbage can
Horizontal wrap arrow
Vertical wrap arrow
To right and down arrow
Up and to left arrow
Horizontal lines
Vertical lines

Four line sets
Pinwheels

Eyeglasses

Grid

Mouse

Quill pen

Grid, arrow to grid
HELP

Smoking gun

Cursor Icons

move selection to another portion of the grid.
copy selection to another portion of the grid.

change light squares to dark and dark squares to
light (invert video).

erase.

flip on the x-axis.

flip on the y-axis.

rotate 90 degrees clockwise.

rotate 90 degrees counterclockwise.
shear along the x-axis.

shear along the y-axis.

stretch (expand).

take one pattern and make many copies of it.
read an icon file.

draw a reference grid.

change current mouse cursor to selected 16 x 16
grid.

write an icon file.
bitblt operator.
prints the help menu.

exit the icon program.

The following are status indicator icons that the mouse cursor changes to

under various conditions:
Alarm clock

Dead Mouse

Dark square in stack
Square with arrow
Double square with arrow

wait.

mouse inactive.

menu on button 3.

sweep rectangle (button 3).

sweep rectangle (button 3) or get 16x16 grid
frame (button 2).

ICON(1) (630 MTG) ICON(1)

FILES
$DMD/lib/icon.m terminal support program
$DMD /icons/* icons

SEE ALSO
ucache(1).

layers(1) in the UNIX System V Release 3 User’s Reference Manual.
layers(1) in the 5620 Dot-Mapped Display Reference Manual.

JIM(1) (630 MTG) JIM(1)
NAME
jim, jim.*~ 630 MTG text editor
SYNOPSIS ‘
jim [-c¢][files . . .]
jims [~f][-t][files ...]
DESCRIPTION

Jim is the text editor for the 630 MTG terminal.

It is a shared cached application if the -c¢ option is specified. This means
that multiple instances of jim may run simultaneously without needing to
do a download for each instance. Once jim is downloaded it does not have
to be downloaded again.

Jim relies on the mouse to select text and commands; it runs only under
layers(1). Jim’s screen consists of a number of frames, a one-line command
and diagnostic frame at the bottom, and zero or more larger file frames
above it. Except where indicated, these frames behave identically. One of
the frames is always the current frame, to which typing and editing com-
mands refer, and one of the file frames is the working frame, to which file
commands such as pattern searching and I/O refer.

A frame has at any time a selected region of text, indicated by reverse video
highlighting. The selected region may be a null string between two charac-
ters, indicated by a narrow vertical bar between the characters. The editor
has a single save buffer containing an arbitrary string. The editing com-
mands simply invoke transformations between the selected region and the
save buffer.

The mouse buttons are used for the most common operations. Button 1 is
used for selection. Clicking button 1 in a frame which is not the current
frame makes the indicated frame current. Clicking button 1 in the current
frame selects the null string closest to the mouse cursor. Making the same
null selection twice (‘double clicking’) selects (in decreasing precedence) the
bracketed or quoted string, word, or line enclosing the selection. By
depressing and holding button 1, an arbitrary contiguous visible string may
be selected. Button 2 provides a small menu of text manipulation functions,
described below. Button 3 provides control for inter-frame operations.

The button 2 menu entries are:

cut Copy the selected text to the save buffer and delete it from the
frame. If the selected text is null, the save buffer is unaffected.

paste Replace the selected text by the contents of the save buffer.

snarf Copy the selected text to the save buffer. If the selected text is null,
the save buffer is unaffected.

JIM(1)

(630 MTG) JIM(1)

Typing replaces the selected text with the typed text. If the selected text is
not null, the first character typed forces an implicit cut. Control characters
are discarded, but BS (control H), ETB (control W), NL (control J) and ESC
(escape) have special meanings. BS is the usual backspace character, which
erases the character before the selected text (which is a null string when it
takes effect). ETB erases back to the word boundary preceding the selected
text. There is no line kill character. NL toggles the current frame between
the workframe and the diagnostic frame, and can be a substitute for manual
frame selection with the mouse. ESC selects the text typed since the last
button hit or ESC. If an ESC is typed immediately after a button hit or
ESC, it is identical to a cut. ESC followed by paste provides the functional-
ity of a simple undo feature.

The button 3 menu entries are:
new Create a new frame by sweeping with the mouse.

reshape
Change the shape of the indicated frame. The frame is selected by
clicking button 3 over the frame.

close Close the indicated frame and its associated file. The file is still
available for editing later; only the associated frame is shut down.

write Write the indicated frame’s contents to its associated file.

The rest of the menu is a list of file names available for editing. To work in
a different file, select the file from the menu. If the file is not open on the
screen, the cursor will switch to an outline box to prompt for a rectangle to
be swept out with button 3. (Clicking button 3 without moving the mouse
creates the largest possible rectangle.) If the file is already open, it will sim-
ply be made the workframe and current frame (for typing), perhaps after
redrawing if it is obscured by another frame. The format of the lines in the

" menu is:

- possibly an apostrophe, indicating that the file has been modified
since last written,

- possibly a period or asterisk, indicating the file is open (asterisk) or
the workframe (period),

- a blank,

- and the file name. The file name may be abbreviated by compact-
ing path components to keep the menu manageable, but the last
component will always be complete.

JIM(1)

(630 MTG) JIM(1)

The work frame has a scroll bar — a black vertical bar down the left edge.
A small tick in the bar indicates the relative position of the frame within the
file. Pointing to the scroll bar and clicking a button controls scrolling opera-
tions in the file:

Button 1 Move the line at the top of the screen to the y position of
the mouse.

Button 2 Move to the absolute position in the file indicated by the y
position of the mouse.

Button 3 Move the line at the y position of the mouse to the top of
the screen.

The bottom line frame is used for a few typed commands, modeled on
ed(1), which operate on the workframe. When a carriage return is typed in
the bottom line, the line is interpreted as a command. The bottom line
scrolls, but only when the first character of the next line is typed. Thus,
typically, after some message appears in the bottom line, a command need
only be typed; the contents of the line will be automatically cleared when
the first character of the command is typed. The commands available are:

e file Edit the named file, or use the current file name if none specified.
Note that each file frame has an associated file name.

E file Edit the named file unconditionally, as in ed(1).

ffile Set the name of the file associated with the work frame, if one is
specified, and display the result.

g files Enter the named files into the filename menu, without duplication,
and set the work frame to one of the named files. If the new work
frame’s file is not open, the user is prompted to create its frame.
The arguments are passed through echo(1) for shell metacharacter
interpretation.

w file Write the named file, or use the current file name if none specified.
q Quit the editor.

JiM(1)

(630 MTG) JIM(1)

Q Quit the editor unconditionally, as in ed(1).

/ Search forward for the string matching the regular expression after
the slash. If found, the matching text is selected. The regular
expressions are exactly as in egrep(1), with two additions: the char-
acter ‘@’ matches any character including newline, and the sequence
‘\n’ specifies a newline, even in character classes. The negation of a
character class does not match a newline. An empty regular expres-
sion (slash-newline) repeats the last regular expression.

? Search backwards for the expression after the query.

94 Select the text of line 94, as in ed.

$ Select the text of the last line.

cd dir Set the working directory to dir, as in the shell. There is no
CDPATH search, but $HOME is the default dir.

= Display the line number of selection in the current frame.

>Unix-command
Sends the selected text to the standard input of Unix-command.

<Unix-command
Replaces the selected text by the standard output of Unix-command.

tUnix-command
Replaces the selected text by the standard output of Unix-command,
given the original selected text as standard input.

If any of <, > or | is preceded by an asterisk *, the command is applied to
the entire file, instead of just the selected text. If the command for < or |
exits with non-zero status, the original text is not deleted; otherwise, the
new text is selected. Finally, the standard error output of the command,
which is merged with the standard output for >, is saved in the file
$HOME /jim.err . If the file is non-empty when the command completes,
the first line is displayed in the diagnostic frame. Therefore the command
“>pwd” will report jim’s current directory.

o

The most recent search command (/' or '?") and Unix command ('<’, ¥, or
’>’) are added to the button 2 menu, so that they may be easily repeated.

Attempts to quit with modified files, or edit a new file in a modified frame,
are rejected. A second ‘q’ or ‘e’ command will succeed. The ‘Q" or ‘E’ com-
mands ignore modifications and work immediately. Some consistency
checks are performed for the ‘w’ command. jim will reject write requests
which it considers dangerous (such as writes that change files which are
modified when read into memory). A second ‘w’ will always write the file.

JIM(1)

FILES

(630 MTG) JIM(1)

If jim receives a hang-up signal, it writes a recover file, which is a shell
command file that, when executed, will retrieve files that were being edited
and had been modified. The name of the file will be of the form jim. fol-
lowed by a uniquely generated alphanumeric string. Jim will send mail to
the logon id saying files may be recovered and specifying the path and
name of the recover file. If it cannot write this file in the home directory, it
writes it in the current working directory. The -t option prints a table of
contents. By default, the jim recover file is interactive; the -f option
suppresses the interaction. If no file argument is given to the jim.recover
shell file, the recovery will apply to all modified files at the time when jim
received the hang-up signal. If there is a file argument, only those files will
be recovered.

$DMD/lib/jim.m terminal support program

/tmp/jim.* temporary file

$HOME /jim.err diagnostic output from Unix commands
jim.* recovery script created upon jim failure

SEE ALSO

ucache(1).

ed(1), echo(1), egrep(1) in the UNIX System V User’s Reference Manual,
layers(1) in the Unix System V Release 3 Uset’s Reference Manual.
layers(1) in the 5620 Dot-Mapped Display Reference Manual.

WARNING

BUGS

Jim is reshapable, but a reshape clears the screen space of all open frames.

The regular expression matcher is non-deterministic (unlike egrep), and may
be slow for complicated expressions.

The < and | operators don’t snarf the original text.

IX(1) (630 MTG) JX(1)
NAME
jx — 630 MTG execution and stdio interpreter
SYNOPSIS
jx[-d][-p][-z][-£][-Zn][-n] fie
[command line arguments]
DESCRIPTION

The jx utility downloads the program in file to the 630 MTG and runs it
there, simulating most of the standard 1/O library functions. This gives
application programs downloaded into the 630 MTG the ability to perform
operations such as file I/O to files resident on the host computer, using the
same interface as programs written for execution on the host computer.

The jx utility calls dmdld to do the download into the terminal. Therefore,
the -d, -p, -z, -f, -Z, and -n options are available for use with jx. See the
dmdld(1) manual page for information on these options.

Stdin directed to the host portion of jx, either through the jx command line
or with the popen function, is properly redirected. Note that input from the
630 MTG keyboard is not translated to stdin to the host portion of jx.
Rather, programs wishing to read from the keyboard should use
kbdchar(3R).

Stdout and stderr, written to by the below library functions, will be stored in
a buffer during execution. After the terminal program has been rebooted,
stdout and stdin will be redirected to the terminal.

Programs intended for use by jx should include <dmd.h> and <dmdio.h>
and call exit(3R) upon termination. Exit() returns control to the shell and
causes a reboot of the default terminal emulator.

What follows is a list of stdio library functions available under jx. These
functions are called from an application downloaded into the 630 MTG by
jx. The jx library routines in the terminal then translate the call into a mes-
sage which is sent to the host portion of jx for processing.

getc getchar fgets fflush

putc putchar puts fputs

fopen freopen fclose access

popen pclose fread fwrite

printf Printf fprintf Fprintf
The functions fprintf and printf are stripped down versions of those on

UNIX. The functions that start with an upper case letter are identical to
those on UNIX. See printf(3L) for more details.

X(1)

FILES

(630 MTG) 1X(1)

$DMD /include/dmdio.h
$DMD/1ib/sysint host portion of jx after download is complete
$HOME/ jxout saved standard output

$HOME/ .jxerr saved standard diagnostic output

SEE ALSO

dmdld(1), exit(3R), kbdchar(3R), printf(3L).
access(2), fopen(3S), fread(3S), getc(3S), popen(3S), printf(3S), putc(3S),
puts(3S) in the UNIX System V Programmer’s Reference Manual.

WARNING

BUGS

Because 630 MTG keyboard data is not sent to the stdin of the host com-
ponent of jx, applications running under jx which read from the stdin will
hang if their stdin is not redirected.

The stdin can be redirected either from the command line or by function
calls inside the application process running on the 630 MTG terminal.

Jx does not work when su’ed to another user.
Jx does not work in the nonlayers environment.

Jx does not work with application cached with A_SHARED, A_BSS or
A_DATA.

Stderr is buffered. Use fflush (stderr) if this is a problem.

getc(), getchar(), putc(), and putchar() are not macros as described in getc(3S)
and putc(3S).

The fopen() routine does not support the following modes: 1+, w+, a+.

LOADFONT(1) (630 MTG) LOADFONT(1)

NAME

loadfont — font managing program
SYNOPSIS

loadfont [-r name,name...] [-p directory] [-s] [-c] [file...]
DESCRIPTION

The loadfont program lets the user load and remove fonts from the
terminal’s cache. It will download its terminal side which interacts with the
user. The command line arguments have the following meanings:

-r Removes the given font from the terminal’s cache.

-p Sets default search path for font files. If this isn’t set, it
defaults to $DMD/termfonts. All the file names in this direc-
tory are put in the load submenu.

-s Makes loadfont stay running after executing the earlier com-
mand line options.
-C Causes loadfont to be cached in the 630 MTG cache system.

When this option is used, the loadfont program will remain in
the terminal after the program exits. Then, the next time load-
font is executed, it will not have to be downloaded again.

Another effect of downloading loadfont with the —c option is
that it can be executed in more than one window without
additional downloading.

file Loads the given font file into the terminal’s cache.

If a file argument and/or the -r option are given, loadfont will exit after
loading /removing the specified fonts, unless the -s is also given to make it
stay running.

The user interacts with loadfont by using a button 2 menu and, when
prompted, the keyboard. When button 2 is depressed, a menu with the fol-
lowing items appears.

Load Load has a submenu of fonts that can be downloaded. The fonts
listed are all the files in the default search directory. If the first
item, Keyboard, is selected, the user is prompted for the name of a
font file to download. ;

Remove Remove has a submenu of all the fonts in the terminal’s cache.
Selecting one will remove it from the cache and free the memory it
was using. Fonts in ROM or being used by another process will be
greyed in the menu and cannot be removed.

Quit Will make the program exit.

While a font is downloading, the button 2 menu will have only one item,
Terminate Download. Selecting it will stop the download and switch the
user back to the original menu.

The three fonts in ROM, resident to the 630 MTG, are called "small font,"
"medium font," and "large font." Brief descriptions of these fonts follow.

-1 -

LOADFONT(1)

(630 MTG)

LOADFONT(1)

In the tables, cell size indicates the dimensions of the rectangle containing
the character image. All the characters in a particular font have the same
cell size. Character size is the dimension of the largest character in the font.
Max chars indicates how many characters in that font size will fit horizon-
tally and vertically in a full screen window. See the section on fonts in the
630 MTG Software Development Guide for more information on font data

structures.

Font Name
Character Size
Cell Size

Max Chars

small font

6 pixels wide by 9 pixels high
7 pixels wide by 14 pixels high
140 across, 69 down

Font Name
Character Size
Cell Size

Max Chars

medium font

8 pixels wide by 11 pixels high
9 pixels wide by 14 pixels high
109 across, 69 down

Font Name
Character Size
Cell Size

Max Chars

large font

9 pixels wide by 12 pixels high
11 pixels wide by 16 pixels high
89 across, 61 down

LOADFONT(1) (630 MTG) LOADFONT(1)

FILES
The default search path for font files is $DMD/termfonts. This directory
contains nine fonts.

Font Name noseprint

Character Size | 5 pixels wide by 7 pixels high

Cell Size 6 pixels wide by 9 pixels high

Max Chars 163 across, 108 down

Comments The characters are a single pixel thick and all

are smaller than the characters found in the
resident "small font".

Font Name 7x14thin

Character Size | 6 pixels wide by 9 pixels high

Cell Size 7 pixels wide by 14 pixels high

Max Chars 140 across, 69 down

Comments The difference between "7x14thin" and the resident

"small font" is in the thickness of the characters.
The "7x14thin" consists of characters which are a
single pixel in thickness whereas the "small font"
consists of characters which are two pixels in thickness.

LOADFONT(1)

(630 MTG) LOADFONT(1)

Font Name 12x18norm

Character Size | 10 pixels wide by 13 pixels high

Cell Size 12 pixels wide by 18 pixels high

Max Chars 81 across, 54 down

Comments The characters are 2 pixels thick.

Font Name 12x25thin

Character Size | 9 pixels wide by 18 pixels high

Cell Size 12 pixels wide by 25 pixels high

Max Chars 81 across, 39 down

Comments The characters are a single pixel thick.

Font Name 12x25norm

Character Size | 9 pixels wide by 18 pixels high

Cell Size 12 pixels wide by 25 pixels high

Max Chars 81 across, 39 down

Comments The characters are 2 pixels thick.

Font Name 12x25round

Character Size | 9 pixels wide by 18 pixels high

Cell Size 12 pixels wide by 25 pixels high

Max Chars 81 across, 39 down

Comments The main difference between this font and the
font called "12x25norm" is in the STYLE of the
characters. The characters in "12x25round" are
rounder in appearance, whereas the characters in
n12x25norm™" are squarer in appearance.

Font Name 12x25BOLD

Character Size | 9 pixels wide by 18 pixels high

Cell Size 12 pixels wide by 25 pixels high

Max Chars 81 across, 39 down

Comments The characters are 3 pixels thick.

Font Name script

Character Size | 15 pixels wide (approx.) by 15 pixels high

Cell Size 16 pixels wide by 24 pixels high

Max Chars 61 across, 40 down

Comments The characters in this font are created in
script style.

Font Name twice_big

Character Size | 18 pixels wide by 24 pixels high

Cell Size 22 pixels wide by 32 pixels high

Max Chars 44 across, 30 down

Comments The characters are twice as tall and twice as

wide as the resident "large font"

LOADFONT(1) (630 MTG) LOADFONT(1)

SEE ALSO
ucache(1), font(4).
630 MTG Software Development Guide.

WARNING
Fonts that do not have 128 characters require the proper parity setting when
used in the default window process in the non-layers environment. This is
needed because a mod is done on characters received from the host with
the number of characters in the font being used.

This implies that parity bits are ignored for fonts with exactly 128 charac-
ters, since c&0x7F == ¢%128. Fonts with less than 128 characters need
identical parity settings on the host and in the terminal so that parity bits
get stripped properly. Characters with more than 128 characters require 8
bits with no parity on both the host and in the terminal, because the eighth
bit is used to access characters greater than 128.

MC68AR(1) (630 MTG) MC68AR(1)

NAME

mc68ar — archive and library maintainer for portable archives
SYNOPSIS

mcé68ar key [posname | afile name ...
DESCRIPTION

Mc68ar maintains groups of files combined into a single archive file. Its
main use is to create and update library files as used by the link editor. It
can be used, though, for any similar purpose.

When mc68ar creates an archive, it creates headers in a format that is port-
able across all machines. The portable archive’s format and structure are
described in detail in ar(4). The archive symbol table [described in ar(4)] is
used by the link editor [mc68ld(1)] to effect multiple passes over libraries of
object files in an efficient manner. Whenever the mc68ar(l) command is
used to create or update the contents of an archive, the symbol table is
rebuilt. The symbol table can be forced to be rebuilt by the s option
described below. ‘

Key is one character from the set drqtpmx, optionally concatenated with
one or more of vuaibcls. Afile is the archive file. The names are consti-
tuent files in the archive file. The meanings of the key characters are:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. If the optional charac-
ter u is used with r, then only those files with modified dates later
than the archive files are replaced. If an optional positioning char-
acter from the set abi is used, then the posname argument must be
present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. Use-
ful only to avoid quadratic behavior when creating a large archive
piece-by-piece.

t Prints a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

P Prints the contents of named files in the archive.

m Moves the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

X Extracts the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive file.

MC68AR(1) (630 MTG) MC68AR(1)

\4 Verbose. Under the verbose option, mc68ar gives a file-by-file
description of the making of a new archive file from the old archive
and the constituent files. When used with t, it gives a long listing
of all information about the files. When used with x, it precedes
each file with a name.

c Create. Normally, mc68ar will create afile when it needs to. The
create option suppresses the normal message that is produced when
afile is created.

1 Local. Normally, mc68ar places its temporary files in the directory
/tmp. This option causes them to be placed in the local directory.

s Symbol table creation. Forces the regeneration of the archive sym-
bol table even if mc68ar(1) is not invoked with a command which
will modify the archive contents. This command is useful to restore
the archive symbol table after the mc68strip(1) command has been
used on the archive.

FILES

/tmp/ar* temporaries
SEE ALSO

mc681d(1), mc68lorder(1), mc68strip(1).

a.out(4), ar(4) in the UNIX System V Programmer’s Reference Manual.
BUGS

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

MC68AS(1) (630 MTG) MC68AS(1)

NAME

mc68as - MC68000 assembler
SYNOPSIS

mc68as [-o objfile] [-n] [-m] [-R] [-V] file-name
DESCRIPTION

The mc68as command assembles the named file. The following flags may
be specified in any order:

-0 objfile Puts the output of the assembly in objfile. By default, the output
file name is formed by removing the .s suffix, if there is one, from
the input file name and appending a .0 suffix.

-n Turns off long/short address optimization. By default, address
optimization takes place.

-m Runs the m4 macro pre-processor on the input to the assembler.

-R Removes (unlinks) the input file after assembly is completed.

-V Writes the version number of the assembler being run on the

standard error output.

FILES
/tmp/mc68a[A-L]JAAaXXXXXX temporary files

SEE ALSO
mc681d(1), mc68nm(1), mc68strip(1).
a.out(4) in the UNIX System V Programmer’s Reference Manual.
m4(1) in the UNIX System V User’s Reference Manual,
UNIX Assembler User’s Guide for the Motorola 68000 in the 630 MTG Software
Development Guide.

WARNING
If the -m (m4 macro pre-processor invocation) option is used, keywords for
m4 [see m4(1)] cannot be used as symbols (variables, functions, labels) in the
input file since m4 cannot determine which are assembler symbols and
which are real m4 macros.

BUGS
The even assembler directive is not guaranteed to work in the .text section
when optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per
expression.

MC68CONV(1) (630 MTG) MC68CONV(1)

NAME

mc68conv — MC68000 object file converter
SYNOPSIS

mc68conv [-] [-a] [-0] [-p] [-s] -t target files
DESCRIPTION

The mc68conv command converts object files from their current format to
the format of the target machine. Mc68conv can read an archive file in any
of three formats: the UNIX pre-5.0 format, the 5.0 random access format,
and the 6.0 portable ASCII format. It produces a file in the format specified
(-a, -0, or -p). The converted file is written to file..

Command line options are:
- indicates files should be read from stdin.

-a If the input file is an archive, produces the ouput file in the 6.0
portable ASCII archive format.

-0 If the input file is an archive, produces the output file in the
UNIX pre-5.0 format.

-p If the input file is an archive, produces the ouput file in the

UNIX 5.0 random access archive format. This is the default.

-s Functions exactly as 3bswab, i.e. "preswab" all characters in
the object file. This is useful only for AT&T 3B20 Computer
object files which are to be "swab-dumped" from a DEC
machine to a 3820 Computer.

-t target Converts the object file to the byte ordering of the machine
(target) to which the object file is being shipped. This may be
another host or a target machine. Legal values for target are:
pdp, vax, ibm, i80, x86, b16, n3b, m32, and mc68.

Mc68conv can be used to convert all object files in common object file for-
mat. It can be used on either the source ("sending") or target ("receiving")
machine.

Mc68conv is meant to ease the problems created by a multi-host cross-
compilation development environment. Mc68conv is best used within a pro-
cedure for shipping object files from one machine to another.

EXAMPLE
ship object files from pdp11 to ibm
$echo *.out } mc68conv -t ibm -$OFC/foo.0
$uucp *.v my370!" /rje/

DIAGNOSTICS
All diagnostics are intended to be self-explanatory. Fatal diagnostics on the
command lines cause termination. Fatal diagnostics on an input file cause
the program to continue to the next input file.

MC68CONV(1) (630 MTG) MC68CONV(1)

WARNINGS
Mc68conv will not convert archives from one format to another if both the

source and target machines have the same byte ordering. The UNIX tool
convert(1) should be used for this purpose.

MC68CPP(1) (630 MTG) MC68CPP(1)

NAME

mc68cpp - the C language preprocessor
SYNOPSIS

$DMD/lib/mc68cpp [option ...] [ifile [ofile]]
DESCRIPTION

Mc68cpp is the C language preprocessor which is invoked as the first pass
of any C compilation using the dmdcc(1) command. Thus, the output of
mc68cpp is designed to be in a form acceptable as input to the next pass of
the C compiler. As the C language evolves, mc68cpp and the rest of the C
compilation package will be modified to follow these changes. Therefore,
the use of mc68cpp other than in this framework is not suggested. The pre-
ferred way to invoke mc68cpp is through the dmdcc(1) command, since the
functionality of mc68cpp may some day be moved elsewhere. See m4(1) for
a general macro processor.

Mc68cpp optionally accepts two file names as arguments. Ifile and ofile are
respectively the input and output for the preprocessor. They default to
standard input and standard output if not supplied.

The following options to mc68cpp are recognized:

-P Preprocesses the input without producing the line control informa-
tion used by the next pass of the C compiler.

-C By default, mc68cpp strips C-style comments. If the ~C option is
specified, all comments (except those found on mc68cpp directive
lines) are passed along.

-Uname N
Removes any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. The
current list of these possibly reserved symbols includes:
operating system: ibm, gcos, o0s, tss, unix

hardware: interdata, pdpl1, u370, u3b, u3b5, vax,
mc68000, mc68k16, mc68k32
UNIX variant: RES, RT
-Dname
-Dname=def

Defines name as if by a #define directive. If no =def is given, name
is defined as 1.

MC68CPP(1) (630 MTG) MC68CPP(1)

-Idir Changes the algorithm for searching for #include files whose
names do not begin with / to look in dir before looking in the
directories on the standard list. Thus, #include files whose names
are enclosed in " " will be searched for first in the directory of the
ifile argument, then in directories named in -I options, and last in
directories on a standard list. For #include files whose names are
enclosed in <>, the directory of the ifile argument is not searched.

Two special names are understood by mc68cpp. The name __LINE__ is
defined as the current line number (as a decimal integer) as known by
mc68cpp, and —_FILE__ is defined as the current file name (as a C string)
as known by mcé68cpp. They can be used anywhere (including in macros)
just as any other defined name.

All mc68cpp directives start with lines whose first character is #. The direc-
tives are:

#define name token-string
Replaces subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string
Notice that there can be no space between name and the (. Replaces
subsequent instances of name followed by a (, a list of comma
separated tokens, and a) by token-string where each occurrence of
an arg in the token-string is replaced by the corresponding token in
the comma separated list.

#undef name
Causes the definition of name (if any) to be forgotten from now on.

#include " filename"

#include <filename>
Include at this point the contents of filename (which will then be
run through mc68cpp). When the <filename> notation is used,
filename is only searched for in the standard places. See the -1
option above for more detail.

#line integer-constant "filename"
Causes mc68cpp to generate line control information for the next
pass of the C compiler. Integer-constant is the line number of the
next line and filename is the file where it comes from. If
nfilename" is not given, the current file name is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

MC68CPP(1) (630 MTG) MC68CPP(1)

#ifdef name
The lines following will appear in the output if, and only if, name
has been the subject of a previous #define without being the sub-
ject of an intervening #undef.

#ifndef name
The lines following will not appear in the output if, and only if,
name has been the subject of a previous #define without being the
subject of an intervening #undef.

#if constant-expression

Lines following will appear in the output if, and only if, the
constant-expression evaluates to non-zero. All binary non-
assignment C operators, the ?: operator, the unary -, !, and ~ opera-
tors are all legal in constant-expression. The precedence of the
operators is the same as defined by the C language. There is also a
unary operator defined, which can be used in constant-expression in
these two forms: defined (name) or defined name. This allows
the utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, and names which are known by
mc68cpp ‘should be used in constant-expression. In particular, the
sizeof operator is not available.

#else Reverses the notion of the test directive which matches this direc-
tive. So if lines previous to this directive are ignored, the following
lines will appear in the output, and vice versa.

The test directives and the possible #else directives can be nested.

FILES

/Jusr/include standard directory for #include files
SEE ALSO

dmdcc(1).

m4(1) in the UNIX System V User’s Reference Manual.
DIAGNOSTICS

The error messages produced by mc68cpp are intended to be self-
explanatory. The line number and filename where the error occurred are
printed along with the diagnostic.

WARNING
When newline characters were found in argument lists for macros to be
expanded, previous versions of mc68cpp put out the newlines as they were
found and expanded. The current version of mc68cpp replaces these new-
lines with blanks to alleviate problems that the previous versions had when
this occurred.

MC68CPRS(1) (630 MTG) MC68CPRS(1)

NAME

mc68cprs ~ compress a MC68000 object file
SYNOPSIS

mc68cprs [-pv] infile outfile
DESCRIPTION

The mc68cprs command reduces the size of a Motorola 68000 object file,
infile, by removing duplicate structure and union descriptors. The reduced
file, outfile, is produced as output.

The options are:
-p Prints statistical messages including:

total number of tags
total duplicate tags
total reduction of infile.

-v Prints verbose error messages if error condition occurs.

EXAMPLE
mc68cprs dmda.out sm3b

SEE ALSO
mc68strip(1).

MC68DIS(1) (630 MTG) MC68DIS(1)

NAME

mc68dis - MC68000 disassembler

SYNOPSIS

mc68dis [-o] [-V] [-L] [-d sec] [-da sec] [-F function] [-t sec]
[-1 string] files

DESCRIPTION

The mc68dis command produces an assembly language listing of each of its
object file arguments. The listing includes assembly statements and a hexa-
decimal or octal representation of the binary that produced those state-
ments.

The following options are interpreted by the disassembler and may be speci-
fied in any order.

-0 Prints numbers in octal. Default is hexadecimal.

-V Version number of the disassembler is written to standard
error.

-L Invokes a look-up of C source labels in the symbol table for

subsequent printing.

-d sec Disassembles the named section as data, printing the offset of
the data from the beginning of the section.

-da sec Disassembles the named section as data, printing the actual
address of the data.

-F function Disassembles the named function in each object file that is
specified on the command line.

-t sec Disassembles the named section as text.

-1 string Disassembles the library file specified as string. For example,
one would issue the command mc68dis -1 x -1 z to disassem-
ble libx.a and libz.a. All libraries are assumed to be in
$DMD/l1ib.

If the -d, -da or -t options are specified, only those named sections from
each user supplied file name are disassembled. Otherwise, all sections con-
taining text will be disassembled.

If the -F option is specified, only those named functions from each user
supplied file name are disassembled. -F only works with object files that
have been compiled with the dmdcc -g option.

MC68DIS(1) (630 MTG) MC68DIS(1)

On output, a number enclosed in brackets at the beginning of a line, such as
[5], represents a C break-pointable line number that starts with the follow-
ing instruction. These line numbers are present only when the object file
has been compiled with the dmdcc -g option. An expression such as <40>
in the operand field, following a relative displacement for control transfer
instructions, is the computed address within the section to which control is
transferred. Similarly, an expression such as <40>+%d0, following a pro-
gram counter index plus displacement operand, indicates that the effective
address of the operand in the current section is 40 plus the content of %dO0.
A C function name will appear in the first column, followed by (), if the
function was compiled with -g.

SEE ALSO
dmdcc(1), mc68as(1), me681d(1).

DIAGNOSTICS
The self-explanatory diagnostics indicate errors in the command line or
problems encountered with the specified files.

MC68DUMP(1)

NAME

(630 MTG) MC68DUMP(1)

mc68dump ~ dump parts of an MC68000 object file

SYNOPSIS

mc68dump [-acfghlorst] [-z name] files

DESCRIPTION

The mc68dump command dumps selected parts of each of its object file

arguments.

This command accepts both object files and archives of object files. It
processes each file argument according to one or more of the following

options:
-a

-8
-f

-Z name

-C

Dumps the archive header of each member of each archive file
argument.

Dumps the global symbols in the symbol table of a 6.0 archive.
Dumps each file header.

Dumps each optional header.

Dumps section headers.

Dumps section contents.

Dumps relocation information.

Dumps line number information.

Dumps symbol table entries.

Dumps line number entries for the named function,

Dumps the string table.

The following modifiers are used in conjunction with the options listed
above to modify their capabilities.

~-d number

+d number

- name

P

-t index

+t index

-u

-V

Dumps the section number or range of sections starting at
number and ending either at the last section number or number
specified by +d.

Dumps sections in the range either beginning with first section
or beginning with section specified by -d.

Dumps information pertaining only to the named entity. This
modifier applies to -h, -s, -r, -1, and -t.

Suppresses printing of the headers.

Dumps only the indexed symbol table entry. The -t, used in
conjunction with +t, specifies a range of symbol table entries.

Dumps the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table entry
or at the entry specified by the -t option.

Underlines the name of the file for emphasis.

Dumps information in symbolic representation rather than
numeric (e.g., C_STATIC instead of 0X02). This modifier can be

-1-

MC68DUMP(1) (630 MTG) MC68DUMP(1)

used with all the above options except -s and -0 options of
mc68dump.

-z name,number
Dumps line number entry or range of line numbers starting at
number for the named function.

+z number Dumps line numbers starting at either function name or number
specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the -z option may be
replaced by a blank.

The -z and -n options that take a name modifier will only work with object
files that have been compiled with the dmdcc -g option.

The mc68dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal or
decimal representation as appropriate.

SEE ALSO
dmdcc(1).
a.out(4), ar(4) in the UNIX System V Programer’s Reference Manual.

MC68LD(1) (630 MTG) MC68LD(1)

NAME

mce68ld - link editor for MC68000 object files
SYNOPSIS

mc68ld [options] file-names
DESCRIPTION

The mc68ld command combines several object files into one, performs relo-
cation, resolves external symbols, and supports symbol table information for
symbolic debugging. In the simplest case, the names of several object pro-
grams are given, and mc68ld combines them, producing an object module
that can either be executed or used as input for a subsequent mc68ld run.
The output of mc68ld is left in mc68a.out. This file is executable if no errors
occurred during the load. If any input file, file-name, is not an object file,
mc68ld assumes it is either a text file containing link editor directives or an
archive library. (See the Link Editor in the UNIX System V Support Tools
Guide for a discussion of input directives.)

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an
unresolved external reference are loaded. The order of library members is
unimportant because mc68ld passes through each library’s (archive) symbol
table as many times as necessary until no new external symbols are resolved
and no new references are generated.

The following options are recognized by mc68ld.

-a Produces an absolute file; gives warnings for undefined refer-
ences. Relocation information is stripped from the output
object file unless the -r option is given. The -r option is
needed only when an absolute file should retain its relocation
information (the normal case for the 630 MTG downloaded
programs). If neither -a nor -r is given, -a is assumed.

-e epsym Sets the default entry point address for the output file to be
that of the symbol epsym.

~f fill Sets the default fill pattern for “holes” within an output sec-
tion as well as initialized bss sections. The argument fill is a
two-byte constant.

-Ix Searches a library libx.a, where x is up to seven characters.
A library is searched when its name is encountered, so the
placement of a -1 is significant. By default, libraries are
located in $DMD/Ilib .

-m Produces a map or listing of the input/output sections on the
standard output.

~0 outfile Produces an output object file by the name outfile. The name
of the default object file is mc68a.out.

-r Retains relocation entries in the output object file. Relocation
entries must be saved if the output file is to become an input
file in a subsequent mc68ld run. Unless -a is also given, the
link editor will not complain about unresolved references.

-1-

MC68LD(1)

-S

—u symname

(630 MTG) MC68LD(1)

Strips line number entries and symbol table information from
the output object file.

Enters symname as an undefined symbol in the symbol table.
This is useful for loading entirely from a library, since initially
the symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

-Ldir Changes the algorithm of searching for libx.a to look in dir
before looking in $DMD/lib. This option is effective only if it
precedes the -1 option on the command line.

-N Puts the data section immediately following the text in the
output file.

-V Outputs a message giving information about the version of
mc68ld being used.

~-VS num Uses num as a decimal version stamp identifying the
mcé8a.out file that is produced. The version stamp is stored
in the optional header.

-X Generates a standard UNIX file header within the “optional
header” field in the output file.

FILES

$DMD/lib/lib?.a libraries

mc68a.out output file
SEE ALSO

dmdcc(1), mc68as(1).

a.out(4), ar(4) in the UNIX System V Programmer’s Reference Manual.
WARNINGS

Through its options and input directives, the Motorola 68000 link editor
gives users great flexibility; however, those who use the input directives
must assume some added responsibilities. Input directives and options
should insure the following properties for programs:

- C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the data space.

- When the link editor is called through dmdcc(1), a startup routine is
linked with the user’s program. This routine usually calls exit(} [see
exit(3R)] after execution of the main program. If the user calls the link
editor directly, then the user must insure that the program always calls
exit() rather than falling through the end of the entry routine.

The -VS num option has an effect only when the -X option is also selected.

MC68LORDER(1) (630 MTG) MC68LORDER(1)

NAME

mc68lorder - find ordering relation for an object library

SYNOPSIS

mc68lorder file ...

DESCRIPTION

The input is one or more object or library archive files [see mcé68ar(1)]. The
standard output is a list of pairs of object file names, meaning that the first
file of the pair refers to external identifiers defined in the second file. The
output may be processed by tsort(1) to find an ordering of a library suitable
for one-pass access by mc68ld(1). Note that the link editor mc68ld(1) is
capable of multiple passes over an archive in the portable archive format
[see ar(4)] and does not require that mc68lorder(1) be used when building an
archive. The usage of the mcé8lorder(1) command may, however, allow for
a slightly more efficient access of the archive during the link edit process.

The following example builds a new library from existing .o files.

mc68ar cr library Wwcé68lorder *.0 | tsort:

FILES
*symref, *symdef temporary files
SEE ALSO
mc68ar(1), mc681d(1).
ar(4) in the UNIX System V Programmer’s Reference Manual.
tsort(1) in the UNIX System V User Reference Manual.
BUGS

Object files whose names do not end with .0, even when contained in)
library archives, are overlooked. The global symbols and references are
attributed to some other file.

MC68NM(1)

NAME

(630 MTG) MC68NM(1)

mc68nm — print name list of a MC68000 object file

SYNOPSIS

mcé68nm [options] file-names

DESCRIPTION

The mcé68nm command displays the symbol table of each Motorola 68000
object file file-name. File-name may be a relocatable or absolute Motorola
68000 object file; or it may be an archive of relocatable or absolute
Motorola 68000 object files. For each symbol, the following information is
printed. For the TYPE, SIZE, or LINE information, the object file must be
compiled with the -g option of the dmdcc(1) command.

Name

Value

Class
Type

Size
Line

Section

The name of the symbol.

Its value expressed as an offset or an address depending on its
storage class.

Its storage class.

Its type and derived type. If the symbol is an instance of a struc-
ture or of a union, then the structure or union tag is given follow-
ing the type (e.g. struct-tag). If the symbol is an array, then the
array dimensions are given following the type (eg., char[n][m]).

Its size in bytes, if available.

The source line number at which it is defined, if available.

For storage classes static and external, the object file section con-
taining the symbol (e.g., text, data or bss).

The output of mc68nm may be controlled using the following options:

-d
-0

-X

-h
-v
-n
-e
~f

Prints the value and size of a symbol in decimal (the default).
Prints the value and size of a symbol in octal instead of decimal.

Prints the value and size of a symbol in hexadecimal instead of
decimal.

Does not display the output header data.

Sorts external symbols by value before they are printed.
Sorts external symbols by name before they are printed.
Prints only external and static symbols.

Produces full output. Prints redundant symbols (.text, .data and
.bss), that are normally suppressed.

MC68NM(1)

(630 MTG) MC68NM(1)

Prints undefined symbols only.

Prints the version of the mc68nm command executing on the
standard error output.

By default, mc68nm prints the entire name of the symbols listed.
Since object files can have symbol names with an arbitrary
number of characters, a name that is longer than the width of the
column set aside for names will overflow its column, forcing
every column after the name to be misaligned. The -T option
causes mc68nm to truncate every name which would otherwise
overflow its column and place an asterisk as the last character in
the displayed name to mark it as truncated.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both mc68nm name -e
-v and mc68nm -ve name print the static and external symbols in name,
with external symbols sorted by value.

FILES

SEE ALSO

dmdcc(1), mc68as(1), mc68ld(1).
a.out(4), ar(4) in the UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS

“mc68nm: name: cannot open”

if name cannot be read.

“mc68nm: name: bad magic”’

if name is not an appropriate Motorola 68000 object file.

“mc68nm: name: no symbols”

WARNINGS

if the symbols have been stripped from name.

When all the symbols are printed, they must be printed in the order they
appear in the symbol table in order to preserve scoping information. There-
fore, the -v and -n options should be used only in conjunction with the -e

option.

MC68SIZE(1) (630 MTG) MC68SIZE(1)

NAME

mc68size — print section sizes of MC68000 object files
SYNOPSIS

mc68size [-o] [-x] [-V] files
DESCRIPTION

The mc68size command produces section size information for each section in
the Motorola 68000 object files. The size of the text, data, and bss (unini-
tialized data) sections are printed along with the total size of the object file.
If an archive file is input to the mc68size command the information for all
archive members is displayed.

Numbers are printed in decimal unless either the -0 or the -x option is
used, in which case they are printed in octal, or in hexadecimal, respec-
tively.

The -V flag will supply the version information on the mcé68size command.

SEE ALSO
dmdcc(1), mc68as(1), mc68ld(1).
a.out(4), ar(4) in the UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS
"mc68size: name: cannot open"
if name cannot be read.

"mc68size: name: bad magic"
if name is not a Motorola 68000 object file.

MC68STRIP(1) (630 MTG) MC68STRIP(1)

NAME

mce68strip - strip symbolic information from MC68000 object file

SYNOPSIS

mc68strip [-1] [-m] [-x] [-1] [-s] [-V] file-names

DESCRIPTION

FILES

The mcé8strip command strips the symbol table and line number informa-
tion from Motorola 68000 object files, including archives. Once this has
been done, no symbolic debugging access is available for that file; therefore,
this command is normally run only on production modules that have been
debugged and tested.

The amount of information stripped from the symbol table can be controlled
by using the following options:

-1 Strips line number information only; does not strip any symbol
table information.

-m Strips symbol table information only; does not strip any relocation
information. Used for 630 MTG applications which need reloca-
tion information for downloads, but do not necessarily need sym-
bol table information. This option does not work on archives.

-X Does not strip static or external symbol information.
-r Resets the relocation indices into the symbol table.
-s Resets the line number indices into the symbol table (does not

remove). Resets the relocation indices into the symbol table.

-V Prints the version of the mc68strip command executing on the
standard error output.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, mc68strip will complain and terminate without
stripping file-name unless the -r or -m flags are used.

If the mc68strip command is executed on a common archive file [see ar(4)]
the archive symbol table will be removed. The archive symbol table must
be restored by executing the mc68ar(1) command with the s option before
the archive can be link edited by the mc68ld(1) command. Mcé8strip(1) will
instruct the user with appropriate warning messages when this situation
arises.

The purpose of this command is to reduce the file storage overhead taken
by the object file.

SEE ALSO

dmdcc(1), mcé68ar(1), mc68as(1), mc681d(1).
a.out(4), ar(4) in the UNIX System V Programmer’s Reference Manual.

DIAGNOSTICS

mc68strip: name: cannot open
if name cannot be read.

-1 -

MC68STRIP(1) (630 MTG) MC68STRIP(1)

mc68strip: name: bad magic
if name is not a Motorola 68000 object file.

mc68strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r or -m flag is
not used, the symbol table information cannot be stripped.

mc68strip: name: other options set with "m" option
if other flags are used with the -m option which is mutu-
ally exclusive.

mc68strip: "m™" option not allowed on archive files
if file name is an archive file.

UCACHE(1) (630 MTG) UCACHE(1)

NAME
ucache - List and remove objects in the Application cache

SYNOPSIS
ucache

DESCRIPTION
After being downloaded, the program ucache will cache itself as a global
command and exits. The user can access the command through the More
submenu under the item ucache displayed with a garbage can icon. An
arrow from the item directs the user to a submenu that lists sequentially all
objects (commands and applications) that are currently in the terminal’s
Application cache.

The names listed in the ucache submenu are the menu names of the objects.
Menu names are names that cached applications use to advertise themselves
in the More menu. They may be different from tag names which uniquely
identify an object in the Application cache. (For further discussion, see
cache(3L).) If an object in the Application cache does not have a menu
name, its tag name is displayed instead.

Items in the ucache submenu may be greyed. Greyed items mean they can-
not be selected for removal because:

— they have been cached with the A_PERMANENT bit set (see
cache(3L)). In this case, the item names are displayed with a lock
icon, and they can never be uncached by ucache.

or

— they have been requested (used) by some running process. If all
processes using the object exit or are deleted, then the item’s name
corresponding to the object will be un-greyed.

Itemns that are not greyed can be selected for removal. All caching informa-
tion concerning the object will be erased and the memory freed. Note that
ucache can remove itself from the Application cache. :

SEE ALSO
cache(3L), cmdcache(3L), decache(3L).

WTINIT(1) (630 MTG) WTINIT(1)

NAME
wtinit - initialize 630 MTG terminal for layers environment

SYNOPSIS
wiinit

DESCRIPTION
Wtinit is used by the UNIX layers(1) command to initialize the 630 MTG
terminal for the layers environment. This is the 630 MTG terminal specific
version of the UNIX windowing utilities wtinit command. Layers(1) will
use $DMD /bin/wtinit if the $DMD variable is set.

DIAGNOSTICS
Wtinit is a shell program which uses the dmdversion(1) command to deter-
mine if LAN encoding is set. If dmdversion is not found a message is
displayed.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO
layers(1) in the UNIX System V Release 3 User’s Reference Manual.
wtinit(1) in the UNIX System V Release 3 System Administrator’s Reference
Manual.

ABS(3L) (630 MTG) ABS(3L)

NAME
abs — return integer absolute value

SYNOPSIS
int abs (i)
int i;
DESCRIPTION
abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M).

WARNING
In two’s-complement representation, the absolute value of the negative

integer with largest magnitude is undefined.

ADDR(3R) (630 MTG) ADDR(3R)

NAME
addr - return the Word address of a Point in a Bitmap

SYNOPSIS
#include <dmd.h>

Word *addr (b, p)
Bitmap #*b;
Point p;
DESCRIPTION
The addr function returns the address of the Word containing the bit
corresponding to the Point p in the Bitmap b.
EXAMPLE
The following subroutine can be used to determine whether a Point pin a
Bitmap b is on or off (returning 1 or 0, respectively).

#include <dmd.h>
Word *addr();

pixel (b, p)

Bitmap *b;
Point p;
Word *w;
UWord bit;

w = addr (b, p);
bit = FIRSTBIT >> (p.x%WORDSIZE);
return (*wgbit)==bit;

}

This routine is implemented differently in rol(3L).

SEE ALSO
rol(3L), structures(3R).

ALLOC(3R) (630 MTG) ALLOC(3R)

NAME
alloc, lalloc, free, allocown — memory allocation

SYNOPSIS
#include <dmd.h>
char *alloc (nbytes)

char #lalloc (Inbytes)
void free (s)
void allocown (s, p)

unsigned nbytes;
unsigned long Inbytes;
Proc #*p;

char #*s;

DESCRIPTION
The alloc function is equivalent to the standard C function malloc(3C). It
either returns a pointer to a block of nbytes, contiguous bytes of storage or a
0 (NULL) if there is no available memory. The storage is aligned on 4-byte
boundaries. Unlike malloc, alloc, clears the storage to zeros.

The lalloc function is identical to alloc except it takes an unsigned long as an
argument.

The free function frees storage allocated by alloc. The space is made avail-
able for further allocation.

The allocown function changes the ownership of memory allocated by alloc.
The argument s is a value previously returned from alloc. The argument p
is the process taking over ownership of the memory. If p is zero, the
memory belongs to no one, and only an explicit call to free will free it.

The terminal automatically frees all memory allocated by a process when
the process terminates or when the window it is running in is deleted. If
the ownership of allocated memory is changed, it will only be freed when
the new owner is deleted or when free is called. However, it is recom-
mended that a process free its allocated memory when the storage is no
longer needed so that other processes will be able to use it.

EXAMPLE
The following example shows the use of alloc and free in dynamically allo-
cating memory for a Point.

#include <dmd.h>

main()

{
Point *p;
char *alloc();
void free();

p = (Point *)alloc (sizeof(Point));

ALLOC(3R) (630 MTG) ALLOC(3R)

free (p);
}
SEE ALSO

balloc(3R), gcalloc(3R), structures(3R).
malloc(3C) in the UNIX System V Programmer’s Reference Manual.

WARNINGS
The alloc function accepts an integer as argument; therefore, it can only
allocate a contiguous block of memory of 64K bytes or less.

ATOF(3L) (630 MTG) ATOF(3L)

NAME

atof — convert string to double-precision number

SYNOPSIS

double atof (str)
char =*str;

DESCRIPTION

atof returns (as a double-precision floating-point number) the value
represented by the character string pointed to by str. The string is scanned
up to the first unrecognized character.

atof recognizes an optional string of “white-space” characters [as defined by
isspace in ctype(3L)], then an optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E followed by an optional
sign or space, followed by an integer.

SEE ALSO

ctype(3L), strtol(3L).

DIAGNOSTICS

If the correct value would cause overflow, =HUGE (as defined in
<ccs/math.h>) is returned (according to the sign of the value), and errno is
set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set
to ERANGE.

ATTACH(3R) (630 MTG) ATTACH(3R)

NAME
attach ~ connect process to host
SYNOPSIS
int attach (host)
int host;
DESCRIPTION
A process that is already local may connect itself to a host by calling the
function attach. It takes a single argument indicating the host to be con-
nected to. There are currently only two valid values, 0 and 1, that refer to
logical Host 1 and Host 2, respectively. When a process is successfully
attached, the border for the window of that process becomes solid.
The resources owned by the process remain unchanged except for the addi-
tion of a host connection. The attach function operates correctly indepen-
dent of whether the host is already in layers mode or not.
The function can fail if the host has not been configured in the set-up
options; if there are not any available connections for the specified host; if
the process is already connected; or if the host argument is invalid. A
failure is indicated to the calling process by a return value of zero.
EXAMPLE
This example shows how the attach function may be used in a process that
wishes to be connected to the logical Host 2.
#include <dmd.h>
switchhost ()
{
if (local())
attach(1);
}
SEE ALSO
local(3R), peel(3R).
WARNING

The host values may change in meaning and /or be expanded in the future.

BALLOC(3R) (630 MTG) BALLOC(3R)

NAME
balloc, bfree — bitmap allocation

SYNOPSIS
#include <dmd.h>

Bitmap *balloc (r)
Rectangle r;

void bfree (b)
Bitmap *b;

DESCRIPTION)
The balloc function either returns a pointer to a Bitmap large enough to con-
tain the Rectangle 7, or a 0 (NULL) for failure. The bitmap is allocated first
by a call to alloc(3R) for the Bitmap data structure and then to gcalloc(3R)
for the actual Bitmap storage. The coordinate system inside the Bitmap is
set by r. The origin and corner of the Bitmap are those of r which must
itself be in screen coordinates.

The bfree frees the storage associated with a Bitmap allocated by balloc.

The terminal automatically frees all memory balloc’ed by a process when
the process terminates or when the window it is running in is deleted.
However, it is recommended that a process free its balloc’ed memory when
the storage is no longer needed so that other processes will be able to use it.

EXAMPLE
The following example shows the use of balloc and bfree in dynamically
allocating memory for a Bitmap.

#include <dmd.h>

main()

{
Bitmap *b;
Bitmap *balloc();
void bfree();

b = balloc (Rect (0, 0, 48, u48));

bfree (b);
}

SEE ALSO
alloc(3R), gcealloc(3R), structures(3R).

BALLOC(3R) (630 MTG) BALLOC(3R)

BUGS
If the bitmap image requested needs over 7000000 bytes, balloc may pro-

duce a process exception. If this happens, gcalloc memory will be corrupted,
and other programs running in the terminal may be damaged.

BITBLT(3R) (630 MTG) BITBLT(3R)

NAME
bitblt — bit-block transfer

SYNOPSIS
#include <dmd.h>

void bitblt (sb, r, db, p, 9
Bitmap #*sb, *db;
Rectangle r;

Point p;

Code f;

DESCRIPTION
The bitblt function copies the data from Rectangle r in Bitmap sb to the
congruent Rectangle with origin p in Bitmap db. Copy is specified by the
function Code f.

The source and destination Bitmaps may be the same or different and the
source and destination Rectangles may even overlap; bitblt always does the
assignments in the correct order.

EXAMPLES
The following subroutine paints a mouse icon into the upper left corner of
the applications window.

unsigned short mouseiconl] = {
0x0000, 0x0000, 0x03EO, Ox17F0,
Ox3FF0, OxSFFE, OxFFF1, 0x0421,
0x0002, 0xO00FC, 0x0100, 0x0080,
0x0040, 0x0080, 0x0000, 0x0000,

I
Bitmap mousemap = {
(Word *)mouseicon,
1,
(short)o, (short)o, (short)1s, (short)i1se,
(char *)o0
i
paintmouse()
{
bitblt(&émousemap, mousemap.rect, §display,
Drect.origin, F XOR);
!

BITBLT(3R) (630 MTG) BITBLT(3R)

The following subroutine paints the character ¢ of font *ffont into the upper
left corner of the applications window. This is similar to the library func-
tion string, which paints strings of characters.

#include <font.h>

character(ffont, c)

Font *ffont;

char c¢;

{
Fontchar *fchar;
Rectangle r;
Rectangle fRect();

fchar = ffont->info + c¢;

r = fRect(fchar->x, 0, (fchar+1)->x,
ffont- >height);

bitblt(ffont->bits, r, &display,
Drect.origin, F _STORE);

}

The following subroutine scrolls a Rectangle r in a Bitmap *b by n pixels.

scroll(b, r, n)
Bitmap *b;
Rectangle r;

{

Rectangle s;

s = r;

s.origin.y += n; /* scroll up */

bitblt (b, s, b, r.origin, F STORE);

s.origin.y = r.corner.y - nj; /% clear bottom */
rectf (b, s, F CLR);

}

SEE ALSO
structures(3R), string(3R).

BOX(3R) (630 MTG) BOX(3R)

NAME
box - draw a Rectangle

SYNOPSIS
#include <dmd.h>

void box (bp, 1,)
Bitmap *bp;
Rectangle r;

Code f;

DESCRIPTION
The box function draws the Rectangle r in the Bitmap bp using function
Code f. The coordinates of the corner point of the Rectangle r are decre-
mented by one before the outline is drawn so that abutting Rectangles do
not have common edges.

EXAMPLE
The following subroutine can be used to draw a rectangle in the window
and have its position follow mouse movement.

#include <dmd.h>

int request();

int wait();
Rectangle raddp();
void box();

int egpt();

trackRect(tr)
Rectangle tr;

Rectangle r;
Point pP.q;
int half height, half width;

half width = (tr.corner.x - tr.origin.x)/2;
half height = (tr.corner.y - tr.origin.y)/2;
request (MOUSE);
while (!buttoni())
wait (MOUSE) ;
qd = mouse.xy;
/%
* position the rectangle with mouse position
*¥ in the middle
*/
r = raddp (tr, Pt(qg.x - half width,
g.y - half height));
box (&display, r, F XOR);
do {
/*
* NOTE: This do-while loop does not

-1-

BOX(3R) (630 MTG) BOX(3R)

* give up the CPU for other processes
* to run.
*/

p = mMouse.XY;

if (tegpt(p, q)){

/* allow update of mouse and video
* refresh

*/

nap(2);

box (&display, r, F XOR);

r = raddp (tr, Pt(p.x - half width,

p.y - half height));

nap(2);
box (&display, r, F XOR);
q = pi
}
} while(bttn(1));
}
SEE ALSO
structures(3R).

BPUTCHAR(3L) (630 MTG) BPUTCHAR(3L)

NAME

bputchar - 630 MTG debugging putchar function
SYNOPSIS

void bputchar (c)

char ¢
DESCRIPTION

Bputchar is syntactically equivalent to the UNIX standard I/0 putchar func-
tion. It can be called by downloaded application programs who want to
display characters but do not want them displayed in their window. When
first called, the bottom third of the 630 MTG'’s screen is cleared. All charac-
ters to be printed are displayed in this area as if it was a window. This will
corrupt any windows already in this area. Therefore, this routine is only
useful for debugging.

How characters are eventually displayed on a user’s terminal when using
the UNIX putchar function is affected by the UNIX host stty(1) settings and
the user’s terminal characteristics. Since bputchar displays directly onto the
630 MTG screen, it makes assumptions about desired stty settings. In gen-
eral, bputchar does as little processing of the output stream as practical.

The following are the only control characters processed by bputchar. All
other characters will be displayed as ASCII characters:

\r Carriage Return. Move the current point to the left edge of the
screen.
\n Newline. Move the current point down one line and to the left edge

of the window. Scroll the display area if necessary.

\t Horizontal tab. Tab characters are expanded to spaces with tab stops
at every eighth space.

EXAMPLE

If a programmer wanted a record of every character it sends to the printer,
he can replace every call to psendchar with dpsendchar shown below.

int psendchar();

int

dpsendchar(c)

char c;

{
int retval;
retval = psendchar(c);
if(retval)

bputchar(c);

return{retval);

BPUTCHAR(3L) (630 MTG) BPUTCHAR(3L)

SEE ALSO
lputchar(3L), printf(3L), psendchar(3R).
putc(3S) in the UNIX System V Program mer’s Reference Manual.

BSEARCH(3L) (630 MTG) BSEARCH(3L)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <ccs/search.h>
char *bsearch ((char *) key, (char *) base, nel, sizeof (+key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION
bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm
B. It returns a pointer into a table indicating where a datum may be found.
The table must be previously sorted in increasing order according to a pro-
vided comparison function. Key points to a datum instance to be sought in
the table. Base points to the element at the base of the table. Nel is the
number of elements in the table. Compar is the name of the comparison
function, which is called with two arguments that point to the elements
being compared. The function must return an integer less than, equal to, or
greater than zero as accordingly the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE

The example below searches a table containing pointers to nodes consisting
of a string and its length. The table is ordered alphabetically on the string
in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node
and prints out the string and its length, or prints an error message.

#include <dmd.h>
#include <dmdio.h>
#include <ccs/search.h>

#define TABSIZE 1000

struct node ({ /% stored in the table ¥
char #string;
int length;

struct node tablelTaBsizEl; /* table searched #

struct node mode ptr, node;
int node compare(); /* compares 2 nodes ¥
char str spacel20]; /* to read string into #

node.string = str space;
while (gets(node.string) 1!= nuLL) {

-1-

BSEARCH(3L) (630 MTG) BSEARCH(3L)

node ptr = (struct node *)bsearch(
(char #) (&node),
(char #)table, TABSIZE,
sizeof (struct node),
node compare);
if (node ptr != nunn) {
printf(“"string = %s, length = %d\n",
node_ptr—>string,
node ptr—>length);
} else {
printf("not found: %s\n", node.string);

}
}

/*
This routine compares two nodes based on an
alphabetical ordering of the string field.
+/
int

node_compare(node1, node2)
char "model, Mmode2;

{

return (strcmp(
((struct node #*nodel)—>string,
((struct node #*node2)—>string));

}
Notes
The pointers to the key and the element at the base of the table should be
* of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
Although bsearch is declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO
Isearch(3L), gsort(3L).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

BTOC(3R) BTOC(3R)

NAME

btoc: setjwin, P->btoc, P->ctob - specify rows and columns and default
outline

SYNOPSIS

#include <dmd.h>

void setjwin (cols, rows)
int cols, rows;

Point (+P->btoc)x, y, p)
int x,y;
struct Proc *p;

Point (+P->ctob)(x, y, p)
int x,y;
struct Proc *p;

DESCRIPTION

The purpose of the setjwin and btoc functions is to report the number of
character rows and columns available in an application’s window. These
routines are intended to be used by terminal emulator applications executing
in the 630 MTG. If the application is running in a layers window, the char-
acter rows and columns information is sent to the host. This information is
then made available to application programs running on the host through
an ioctl() call to the xt device driver with the request argument of JWIN-
SIZE. The windowing utilities jwin program is a simple host application
which uses this facility to print rows and columns on its standard output.
Other host applications, such as the vi editor, also use this facility to deter-
mine available rows and columns.

The setjwin function is called directly from an application program when
the application begins execution, either after being downloaded or started
from the application cache. The parameters cols and rows correspond to
character columns and character rows respectively.

Btoc is called indirectly by the 630 MTG system control process whenever
the application’s window is reshaped. P->btoc is a pointer stored in the
application’s process table. The application’s process table is simply a struc-
ture of type Proc that contains system information about the application
program and is maintained and used by the 630 MTG's system processes.
P->btoc points to a function named, for example, bits_to_char(), which
returns a Point structure. The function bits_to_char() must be specified in
the application program and the P->btoc pointer must be set in the
application’s initialization routine to point to these functions. The
bits__to_char() function will then be called by the 630 MTG's system control
process whenever the application’s window is reshaped.

The parameters passed to the btoc() function are:
x = the width of the application’s window in pixels
y = the height of the application’s window in pixels
P = a pointer to the application’s process table.

-1 -

BTOC(3R) BTOC(3R)

The two integers x and y (returned in the Point structure) are the character
rows and columns, respectively.

Setjwin and the btoc() functions serve similar purposes, but both functions
are necessary for the following reasons. Setjwin is used to inform the host
of character rows and columns when an application boots. The btoc() func-
tion cannot be used in this situation because the application has not yet exe-
cuted, and therefore P->btoc has not been initialized. On the other hand,
the btoc() function is used to inform the host of character rows and columns
when an application’s window is reshaped. The 630 MTG system control
process needs to send a message specifying current window size to the host
xt driver when a window is reshaped, and it is not possible to wait for the
application to call setjwin. This makes the btoc() function necessary.

If an application does not use the setjwin and btoc facilities, the host will be
told the character row and columns which would be available if Win-
dowproc was running in a window the size of the application’s window.

The purpose of a ctob() function is to specify a default outline for a window
being reshaped based on the Host default rows and columns settings speci-
fied during the 630 MTG Setup procedure. See the 630 MTG Terminal
User’s Guide for more information about Setup and Host default rows and
columns settings.

Initialization of P->ctob is identical to initialization of P->btoc as described
above. P->ctob is set to point to a function named, for example,
char_to_bits(). The char—to_bits() function is called by the 630 MTG sys-
tem control process before an application’s window is reshaped to deter-
mine the default window outline to display for the application during the
reshape procedure. ‘

The parameters passed to ctob() are, in order, x and y (the Host default
rows and columns, respectively), specified for a window in Setup; and p, a
pointer to the application’s process table. The two integers x and y
(returned by ctob() in the Point structure) are the width and height, respec-
tively, in pixels, of the window outline to be displayed.

Note that ctob could disregard the parameters x and y and always return a
predetermined outline. This is commonly done by non-terminal emulator
applications that want to display a default outline which is not necessarily
based upon Setup options.

If a ctob function is not specified, a sweep cursor will appear without a
default outline when the application program is reshaped.

The cache(3L) function calls ctob to determine the default outline for appli-
cations which are invoked from the More menu.

EXAMPLE
A simple example of a bits_to_char() and a char_to_bits() function is
shown below.

#include <dmd.h>
#include <font.h>

Point bits to _char();

-2 -

BTOC(3R) BTOC(3R)

Point char to bits();

main()

{

P->btoc = bits_to_char;
P->ctob = char to bits;

}

Point

bits to char(x,y,p)
int x,y;

struct Proc *p;

{

Point q;

/* INSET is a constant equal to pixel width of */
/* 630 window border. Defined in dmdproc.h. */

/* Dmdproc.h is included by dmd.h. #*/

g.x = (x - 2*INSET) / FONTWIDTH(largefont);

q.y = (y - 2*INSET) / FONTHEIGHT(largefont);
return q;

}

Point i
char to bits(x,y,p)
int x,y;

struct Proc #*p;

{

Point q;

q.X = FONTWIDTH(largefont) * x 4+ 2%INSET;
q.y = FONTHEIGHT(largefont) * y + 2%INSET;
return q; ’

SEE ALSO
cache(3L), globals (3R), structures(3R).
630 MTG Terminal User’'s Guide.
jwin(1), vi(1) in the UNIX System V Release 3 User’s Reference Manual.
ioctl(2) in the UNIX System V Programmer Reference Manual.
xt(7) in the UNIX System V Release 3 System Administrator’s Reference
Manual.

BTOC(3R) BTOC(3R)

WARNINGS
Since btoc() and ctob() are called from the terminal’s control process, the
variable P should not be referenced within these routines. Instead, the
parameter p should be used to reference the application’s process table.

The two integers x and y returned by ctob in the point structure must be
less than or equal to XMAX and YMAX, respectively.

BUTTONS(3R/3L) (630 MTG) BUTTONS(3R/3L)

NAME

button[123], bttn[123), bttns — button state

SYNOPSIS

#include <dmd.h>

int buttonl (), button2 (), button3 ()
int button12 (), button13 (), button23 (), button123 ()

int button (b)

int bttnl (), bttn2 (), bttn3 ()
int bttn12 (), bttn13 (), bttn23 (), bttn123 ()

int bttn (b)
void bttns (updown)

int b;
int updown;

DESCRIPTION

The functions buttonl, button2, and button3 return the state of the associated
mouse button. They return a non-zero if the button is depressed, 0 if not.

The button12 function and the other multi-button functions return a Boolean
OR of their states, e.g., true if either button 1 or button 2 is depressed (as
opposed to button 1 and button 2).

The button function takes as an argument the button number 1, 2, or 3 and
returns the state of the button. The process must be current and have pos-
session of the mouse. Furthermore, the mouse must be within the bounds
of the window.

The bttn routines operate in the same manner as the corresponding button
routines except that they do not clip to the process’s window. This means
that the calling processs must be current and have possession of the mouse.
It is not necessary, however, for the mouse cursor to be inside the process’s
window.

The ability to detect button transitions outside the window is necessary in
applications which have menus that may go outside the window. The but-
ton routines should be used in preference to the bttn routines unless there is
a specific need to be able to detect button state changes outside of the
process’s window.

Usage of the bttn routines is restricted to routines which do not release the
CPU, because the 630 MTG control process also watches for button transi-
tions outside of the current process’s window. The control process is the
system process which normally handles button operations when the mouse
is not in the selected window. Race conditions would otherwise arise as to
whether the application process or the control process should interpret the
button’s state change.

BUTTONS(3R/3L) (630 MTG) BUTTONS(3R/3L)

The bttn function takes as an argument the button number 1, 2, or 3 and
returns the state of the button. It does not clip to the window.

The bttns function is used to determine when the mouse state changes.
When bitns is called, it “busy loops”; not returning and not releasing the
CPU until the mouse state changes. If updown is 0, bttns “busy loops” until
all buttons are released. If updown is 1, bttns “busy loops” until any button
is depressed. If updown is not 0 or 1, bttns returns immediately.

Note that these functions are only valid when own()&MOUSE is true.

EXAMPLE
The following code segment could be written to “doodle” in a window.

#include <dmd.h>

main()
{
request (MOUSE);
for (;;){
wait (MOUSE);
if (button3())
break;
if (buttoni())
point (&display, mouse.Xxy,
F _STORE);

}

SEE ALSO
resources(3R), transform(3R/3L).

CACHE(3L) CACHE(3L)

NAME

cache — put the calling application into the Application cache

SYNOPSIS

#include <dmd.h>
#include <object.h>

int cache (s, f)
char #s;
int f;

DESCRIPTION

An application can put itself into the terminal’s Application cache by calling
the function cache. When this has been done, the window the application is
running in can be deleted by the user or the application can exit, but the
application itself is still resident in the terminal’s memory.

There are two ways to bring up a cached application. If the menu name of
the application shows up under the More menu, the user can select it and
open a new window to run the application. Otherwise, an application can
be booted from a window running a 630 terminal emulator by calling
dmdld(1) with the tag name of the application. The cached application then
replaces the terminal emulator in the window.

The tag name of a cached application is the filename it is downloaded under
(i.e. argv[0]) stripped from any pathname prefix. For example the tag name
of $HOME /dmda.out is dmda.out. This name is used to uniquely identify a
cached application.

The menu name of a cached application is the name as appeared on the
More menu. If the argument s is a null pointer, the default menu name is
the same as the tag name. If s is initialized to some character string, that
string will be the menu name of the cached application.

The programmer can also specify how an application is cached and how it
will be subsequently invoked through the bit-vector argument f by OR’ing
these constant flags:

A_SHARED
The application is cached as a shared application. A shared applica-
tion can have multiple copies of it running at the same time. All ini-
tialized or un-initialized global and static variables of the application
are also shared between all the running copies, so shared applica-
tions must be written accordingly. By definition the A_SHARED
flag forces the A_DATA and A_BSS flags.

A_NO_SHOW
The application does not want to advertise itself through the More
menu. Usually this type of application requires host support to run,
thus locally opening a window through the More menu is not suffi-
cient. In this case, it is preferable to let the host side boot the termi-
nal side (i.e., the cached application) with dmdld(1).

CACHE(3L) CACHE(3L)

A_BSS The application does not want its un-initialized global and static
variables (.bss section) to be reset to null for subsequent invocations.
To conform with the default initialization rule of the C language
which states that un-initialized global and static variables are
guaranteed to be set to zero, the default for a cached application is
to have its un-initialized global and static variables to be cleared of
all updates made by previous runs before a new invocation of the
application starts to execute. However, for shared applications or
special applications that want to keep data accumulated from previ-
ous runs, the A_BSS flag can be set to prevent the .bss section from
being cleared.

A_DATA

The application does not want its initialized global and static vari-
ables (.data section) to be reset to the original values when the func-
tion cache is called. By default, when the function cache is called,
an instant snapshot of the .data section is made and stored into
memory. Whenever the cached application is invoked again, the
saved copy is used to re-initialize the .data section with the original
values. However, for shared applications, or special applications that
want to keep data accumulated from previous runs, or applications
that do not change the values of the variables in the .data section
and do not want memory wasted for a snapshot, the A_DATA flag
can be set to forgo the savings and copy.

NOTE: The original values of the variables in the .data section are
the values at the time the function cache is called. If any of these
variables are modified before cache is called, the values remembered
may not be the same as appeared in the source code.

A_NO_BOOT
The application does not want to be booted from dmdld. Note that
if both A_NO_BOOT and A_NO_SHOW are set, there is no way
to access the cached application for invocation.

A_PERMANENT
The application cannot be removed by decache(3L) or ucache(1).
ROM-resident applications are cached this way.

The default when the bit-vector argument f is null is to cache the applica-
tion as a non-shared text, which can be accessed from the More menu and
from dmdld(1), has its .bss section cleared and its .data initialized before
execution, and can be removed from the application cache.

Besides the information supplied by the arguments, caching a downloaded
application requires other parameters. The most useful ones are:

- host connection
- capability to reshape
- default window size

The cache function extracts the above information from the current disposi-
tion of the application itself. This relieves the programmer from supplying
the many parameters, and ensures a uniform user interface among different

-2

CACHE(3L) CACHE(3L)

cached applications.

The state of host connection of a cached application is the same as of the
application when the function cache is called. If the application is already
local (no host connection), the application will be cached as local; otherwise,
it will be cached as connected. When using the More submenu to create a
connected cached application, the user has to select the host he wants the
application to be connected to through a Host submenu (like the one under
the item New in the global menu). On the other hand, when dmdld is used
to bootstrap a local cached application to replace the default terminal emu-
lator, the previously connected window will automatically loose its connec-
tion (i.e. its border is changed to a checkered pattern of a local window).

The capability to reshape a cached application depends on the
NO_RESHAPE bit of the process state variable when the function cache is
called. If this bit is set, the application is cached as non-reshapable. When
using the More submenu to create a non-reshapable cached application, the
user gets the application’s default window size without a sweep cursor.
When dmdld is used to bootstrap a non-reshapable cached application to
replace the default terminal emulator, the window is automatically reshaped
to the application’s default window size.

The cached application’s default window size is determined by the
char_to_bits function (see btoc(3R)) and the NO_RESHAPE bit. If a func-
tion char_to_bits is defined for the application, the function cache will call
it with three arguments: 0, 0, and a pointer to the application’s process table
to calculate the default window size. The result will be stored in the Appli-
cation cache, and used by the terminal to generate the default outline if the
application is selected from the More menu, or to reshape the window if the
application is not reshapable and is invoked from dmdid. If the
char_to_bits function is not defined, but the NO_RESHAPE bit is set, the
default window size will be taken as the current window size of the applica-
tion when the function cache is called. If neither the function char_to_bits
is defined nor the NO_RESHAPE bit is set, no default window size will be
displayed when the user selects the application’s name under the More
menu, and the user will have to sweep a window to run the application.

All applications that are not cached with the A_NO_SHOW bit on, will be
shown on the More menu. What happens when selected depends on how
they are cached, as explained below.

If an application is cached as shared and local, selection of the application’s
name in the More submenu always results to the creation of a local window
running the chosen application.

If an application is cached as shared and connected, there will be always a
Host submenu connected to the application’s name in the More submenu.
Selection will be effective only when an item in the Host submenu is
picked. Selection of the application’s name in the More submenu is a null
operation.

If an application is cached as non-shared and local, selection of the
application’s name in the More submenu results in the creation of a local
window running the application, if and only if no other window is running

-3-

CACHE(3L) CACHE(3L)

that application at the time. Otherwise the window running the application
will be made Top and Current.

If an application is cached as non-shared and connected, there will be a
Host submenu connected to the application’s name in the More submenu, if
and only if no other window is running that application at the time. Selec-
tion is effective only when an item in the Host submenu is picked. If there
is a window running the application already, there will be no Host sub-
menu, and selection of the application’s name in the More submenu results
in the window running the application being made Top and Current.

Return Value

If the calling application is successfully cached, the cache function returns a
1. Otherwise a 0 is returned.

A failure may be due to the following reasons. Another application of the
same tag nante is already in the cache, or the terminal runs out of memory
when saving the caching information.

EXAMPLE

This is an example of a very crude terminal emulator that only prints what
it receives from the host. This program, called term.c is compiled as fol-
lowed:

dmdcc -0 term term.c
in order to have the name term in the More submenu.

#include <dmd.h>
#include <object.h>

main ()

{
register int c;
Point setsize();

P->ctob = setsize;
cache ((char *)0, A SHARED);
/* cache as shared application */

request (RCV);

while (1) { /* never ending loop */
wait (RCV); /* wait for a character */
while ((c = rcvchar()) t= -1)

lprintf ("%c", c);
/* print anything received */

}

Point
setsize () /* do not need arguments 0, 0, P */

-4 -

CACHE(3L) CACHE(3L)

{
Point fPt();
return (fpPt(728, 344)); /% just a nice size */
!
SEE ALSO
dmdld(1), ucache(l), btoc(3R), cmdcache(3L), decache(3L), local(3R),
state(3R).

CANON(3R) (630 MTG) CANON(3R)

NAME
canon — return canonical Rectangle format from two corner Points

SYNOPSIS
#include <dmd.h>

Rectangle canon (p1, p2)
Point p1, p2;

DESCRIPTION
The canon function returns a Rectangle created from two Points pl and p2
such that:

r.origin.x equals the minimum of p1.x and p2.x
r.origin.y equals the minimum of p1.y and py
r.corner.x equals the maximum of p1.x and p2.x
r.corner.y equals the maximum of p1.y and py

In other words, the rectangle defined by the two corner points, p1 and P2,
is returned in the standard format of (upper left, lower right).

EXAMPLE
Each of the following cases will yield the Rectangle.

{o, 0, 32, 32}
canon(Pt(0, 32), Pt(32, 0))
canon(Pt(32, 32), pt(0, 0))

canon(Pt(32, 0), Pt(0, 32))

SEE ALSO
structures(3R).

CIRCLE(3L) (630 MTG) CIRCLE(3L)

NAME
circle, disc, discture, arc — circle routines

SYNOPSIS
#include <dmd.h>

void circle (b, p, 1, f)
void disc (b, p, 1,)

void discture (b, p, 1, t, 9
void arc (b, p, p1, p2, 9

Bitmap +*b;
Point p, p1, p2;
int r;
Texturel6 *t;
Code f;

DESCRIPTION
The circle function draws the best approximate circle of radius r centered at
Point p in the Bitmap b with Code f. The circle is guaranteed to be sym-
metrical about the horizontal, vertical, and diagonal axes.

The disc function draws a disc of radius r centered at Point p in the Bitmap
b with Code f. A disc is a circle which has been completely filled.

The discture function draws a disc of radius r centered at Point p in the Bit-
map b using the Texturel6 t with Code f. The discture function is similar to
the disc function except it allows one to specify a pattern to fill the disc.

The arc function draws a circular arc centered on p, traveling counter-
clockwise from p1 to the point on the circle closest to p2.

EXAMPLE
The following routine draws a “smiling face” in the display Bitmap with
center specified by clicking button 1.

#include <dmd.h>

main()
int radius;
extern Texture16 T darkgrey;
Point s;

request (MOUSE) ;
wait (MOUSE);
bttns(1);

S = mouse.Xxy;
radius = 50;

CIRCLE(3L)

SEE ALSO

(630 MTG) CIRCLE(3L)

/* smiling will draw the face. Nose will be
* placed wherever the mouse is clicked in

* the window.
x/

smiling(&display, s, radius, &¢T darkgrey,
F _XOR);

request (KBD);
wait (KBD);

smiling(b, c, rad, t, f)
Bitmap *b;
Point c;

int

rad;

Texturel16 *t;

Code

{

}

£;

int mino, e; /* offsets for placing */
/* eyes, nose and mouth */
int enrad; /* radius of eyes and nose */

mino = rad/2;

e = rad/3;

enrad = e/3;

circle (b, c, rad, f); /* face outline */
disc (b, Pt(c.x-e, c.y-mino),

enrad, f); /* left eye */
disc (b, Pt(c.x+e, c.y-mino),
enrad, f); /* right eye */

discture (b, c, enrad, t, f); /* nose */
arc (b, ¢, Ptl{c.x-mino, c.y+mino),
Pt(c.x+mino, c.y+mino),f);
/* mouth */

ellipse(3L), jcircle(3L), jellipse(3L), texture(3R).

CMDCACHE(3L) CMDCACHE(3L)

NAME

cmdcache, useritems - cache a command in the Application cache

SYNOPSIS

#include <dmd.h>
#include <menu.h>
#include <object.h>

Titem1 useritems;

int cmdcache (s, m, b, u, e)
char #*s;

Tmenu *m;

Bitmap #*b;

void (xu)();

void (+e)();

DESCRIPTION

The cmdcache function allows the caching of an application as a command
to expand the basic set of global menu commands accessed from button 3,
such as New, Reshape, etc.. Although the basic set of commands mostly
deals with window operations, a cached command can have other func-
tionalities. The criteria to decide if an application should be cached as a
command or as an application is as follows:

The application runs without a window.

The application is compact and specialized, and its user interface
must be done through the mouse.

The scope of the application is global to the whole terminal.
An example of a cached command is the terminal resident Exit command.

The application format is just a vehicle to download the code of the com-
mand into the terminal; therefore, it should use a template similar to the
one used in the EXAMPLE section, which has main() that calls the
cmdcache function with the right parameters and exits immediately.

The cmdcache function will use the null terminated ASCII string s as the tag
name (see cache(3L) for a definition of a tag name), and also as the meny
name of the command. The menu name will be displayed on the More
menu for user selection. Note that a command can only be accessed from
the More menu, and booting it through dmdld will not work.

The bitmap b, if not null, will be displayed as an icon on the left on the
menu name of the command. It is recommended that cached commands
have an icon to differentiate them from cached applications, since the More
menu lists all of them nondiscriminatively.

The cached command can have a submenu of its own if the argument m is
defined. The submenu m has to be generated dynamically, and the menu
generator must use the globally defined wuseritems (see tmenuhit(3R) for
details of a dynamic menu generation). The structure for useritems is
Titem1, which is used for all global commands and is defined as follows:

-1 -

CMDCACHE(3L) CMDCACHE(3L)

typedef struct Titeml {
char *text;
struct {
unsigned short uval;
unsigned short grey;
} ufield;
struct Tmenu *next;
Bitmap *icon;
void (*dfn)();
} Titem1;
The field next does not apply for items in a cached command’s submenu
(i.e., the terminal does not support fourth-level global submenus). Since
submenu off the item is not supported, the field dfn is also not relevant.
All other fields can be updated by the command’s menu generator.

The argument function u is called by the terminal during the generation of
the dynamic More menu. (The More menu keeps changing because applica-
tions and commands can constantly cache in and decache out.) When the
terminal processes a cached command, it copies the static information of the
command into useritems: the argument s goes into the item field text, the
argument b into item field icon, the argument m into item field next. Then
the terminal will call the function of type void pointed to by u, if present,
with two arguments: the first one is a pointer to the command object under
consideration (this argument is reserved) , and the other is a pointer to the
item structure being initialized (i.e., useritems). The function pointed by u
may dynamically update the item’s ufield.grey, and also re-initialize any
fields of the item structure (e.g., if the current conditions dictate that all
items in the command’s submenu are invalid, the command may decide not
to have a submenu, so the function pointed by u may change the field next
to null).

Note The fields ufield.uval and dfn are used by the terminal for house-
keeping: they differentiate between selections of cached applica-
tions, cached commands in the More menu and items in third-level
submenus of those applications and commands. Even though it is
possible to modify them, it is strongly not recommended unless the
programmer understands the terminal’s internals.

If the argument u is not specified, the cmdcache supplies a default function
which initializes the grey field of the item to null (no greying).

The argument function e of type void is called when the command or an
item from its submenu m is selected. The function ¢ accepts two arguments:
the first one is -1 if the command does not have a submenu, or the index of
the selected item (i.e., useritems.ufield.uval) if the command has a submenu.
The second argument is the pointer to the cached command object, but it is
reserved. The function e is executed in the context of the terminal’s control
process like other global menu commands; therefore, some global variables
relating to the downloaded application template and window parameters
such as P, display, Drect, etc., do not have any meaning.

CMDCACHE(3L) CMDCACHE(3L)

If the argument function e is not specified, no action is taken if the item is
selected. Also if the command has a submenu, selecting the command menu
name in the More menu instead of an item in the command’s submenu will
result in a null operation.

Return Value
If the command is successfully cached, the function ¢cmdcache returns a 1.
Otherwise, a 0 is returned.

A failure may be due to the following reasons. Another command or appli-
cation of the same name is already in the cache, or the terminal runs out of
memory when initiating the caching operation.

EXAMPLE
The following application caches a command which lets the user pick a
window and displays the name of the application running in that window.
The command supports two options: the full option displays the full name,
and the clipped option displays the full name clipped from any path name
prefix. The uargv field of the selected process p holds the argv used by that
process.

Note that if the chosen application is cached, the displayed clipped name is
the tag name it is cached under.

#include <dmd.h>
#include <menu.h>
#include <object.h>

struct Tmenu obmenu;
Word gmarkdatall]l .= {
0x3C00,
0x7E00,
0XE700,
0xC300,
0x0300,
0x0700,
0x0EOQO0,
0x1C00,
0x1800,
0x1800,
0x0000,
0x1800,
0x1800
i
Bitmap gmark = {
(Word *)gmarkdata,

CMDCACHE(3L) CMDCACHE(3L)

main ()

{

Titem1 *genesis{); /% command's submenu generator *x/
void showname(); /#* command's executing code */

obmenu.item = (Titem *)0; /* dynamic submenu */
obmenu.generator = (Titem *(*)())genesis;
obmenu.menumap = TM_TEXTITM_UFIELDITM_NEXTI

TM ICON ITM DFN;

cmdcache ("name", &obmenu, &gmark, 01, showname) ;

Titem1 *

genesis (i, m)

int i;

Tmenu *m;

{
register Titem1 *item = guseritems;
/% MUST use "useritems" */

switch (i) {

case 0: /* first item */
item->text = "full";
break;

case 1:
item->text = "clipped";
break;

default: /* last item */
item->text = (char *)0;

return (item);

!
item->ufield.uval = ij;

/* WARNING: "useritems" is a global variable
** used by all cached commands that have a
x* gubmenu, so we cannot assume that fields
x% that are not initialized by genesis() are
** cleared since other

** commands may initialize

** them when they are running.

* ok

*% To be sure, just clear any unused fields.
*/

item->ufield.grey = 0;

item->icon = (Bitmap *)0;

return (item); /* returns "useritems" */

_4 -

CMDCACHE(3L) CMDCACHE(3L)

void
showname (val)
int val;
{
register Proc *p;
register char *s;
Proc *point2window();
char *clipprefix();
P = point2window (3); /#* pick a window */
s = p->uargv[0]; /% "full" name */
if (val)
s = clipprefix(s); /#* "clipped" name */
msgbox (s, (char *)0); /* display name */
}
SEE ALSO

ucache(1), cache(3L), decache(3L), tmenuhit(3R).

CONV(3L) (630 MTG) CONV(3L)

NAME

conv: toupper, tolower, __toupper, _tolower, toascii ~ translate characters

SYNOPSIS

#include <ccs/ctype.h>

int toupper (c)
int ¢

int tolower (c)
int ¢

int _toupper (c)
int ¢

int _tolower (c)
int ¢

int toascii (c)
int ¢

DESCRIPTION

Toupper and tolower have as domain the range of jx(1) getc: the integers
from -1 through 255. If the argument of toupper represents a lower-case
letter, the result is the corresponding upper-case letter. If the argument of
tolower represents an upper-case letter, the result is the corresponding
lower-case letter. All other arguments in the domain are returned
unchanged.

The macros _toupper and _tolower, are macros that accomplish the same
thing as toupper and tolower but have restricted domains and are faster.
—toupper requires a lower-case letter as its argument; its result is the
corresponding upper-case letter. The macro _tolower requires an upper-case
letter as its argument; its result is the corresponding lower-case letter. Argu-
ments outside the domain cause undefined results.

Toascii yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other systems.

SEE ALSO

jx(1), ctype(3L), ascii(5).

CTYPE(3L)

NAME

(630 MTG) CTYPE(3L)

ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl,
ispunct, isprint, isgraph, isascii — character handling

SYNOPSIS

#include <ccs/ctype.h>

int isdigit (c)
int ¢

isascii (c)
int ¢

DESCRIPTION

The character classification macros listed below return nonzero for true, zero
for false. isascii is defined on all integer values; the rest are defined on
valid members of the character set and on the single value -1 (guaranteed
not to be a character set member).

isdigit
isxdigit

islower
isupper
isalpha

isalnum
isspace

iscntrl
ispunct

isprint

isgraph

isascii

tests for the digits 0 through 9.

tests for any character for which isdigit is true or for the
letters a through f or A through F.

tests for any lowercase letter as defined by the character
set.

tests for any uppercase letter as defined by the character
set.

tests for any character for which islower or isupper is true
and possibly any others as defined by the character set.

tests for any character for which isalpha or isdigit is true.

tests for a space, horizontal-tab, carriage return, newline,
vertical-tab, or form-feed.

tests for “control characters” as defined by the character
set.

tests for any character other than the ones for which isal-
num, iscntrl, or isspace is true or space.

tests for a space or any character for which isalnum or
ispunct is true or other “printing character”” as defined by
the character set.

tests for any character for which isprint is true, except for
space.

tests for an ASCI character (a non-negative number less
than 0200.)

All the character classification macros do a table lookup.

CTYPE(3L) (630 MTG) CTYPE(3L)

SEE ALSO
conv(3L), ascii(5).

DIAGNOSTICS
If the argument to any of the character handling macros is not in the
domain of the function, the result is undefined.

CURSOR(3R) (630 MTG) CURSOR(3R)

NAME

cursor: cursinhibit, cursallow, cursswitch, cursset, cursxyon, cursxyoff, Cur-
sinhibit, Cursallow, Cursswitch — cursor control

SYNOPSIS

#include <dmd.h>

void cursallow ()
void Cursallow ()

void cursinhibit ()
void Cursinhibit ()

Texturel6 *cursswitch (t)
Texturel6 *Cursswitch (t)

void cursset (p)
void cursxyon ()
void cursxyoff ()

Texturel6 *t;
Point p;

Texturel6 C__target, C_arrows, C_insert;
Texturel6 C_cup, C_deadmouse, C_skull;

DESCRIPTION

The cursinhibit function turns off the interrupt-time cursor tracking (the
drawing of the cursor on the screen), but the mouse coordinates are still
kept current and available in the global structure mouse.

The cursallow function enables interrupt-time cursor tracking.

The functions cursallow and cursinhibit stack. To enable cursor tracking
after two calls to cursinhibit, two calls to cursallow are required.

The cursswitch function changes the mouse cursor to the Texturel6 specified
by t. If t is (Texturel6 *)0, the cursor is restored to the default arrow. The
cursswitch function returns the previous value of the cursor, the argument of
the previous call to cursswitch.

The Cursallow, Cursinhibit, and Cursswitch functions are the same as those
described above, but they do not require ownership of the mouse or that
the mouse be in the window.

The cursset function moves the mouse cursor from the current screen posi-
tion to the new screen position at Point p.

The cursxyon function restricts interrupt-time cursor tracking to only the
vertical or horizontal axis. The choice of movement along an axis is deter-
mined at interrupt-time and depends on the greater mouse movement along
the axes. The lesser movement is ignored. This function is used by
tmenuhit to help restrict the mouse’s movement.

The cursxyoff function restores normal cursor tracking.

CURSOR(3R)

(630 MTG)

CURSOR(3R)

All of these functions require the mouse to be requested first. They work
on a per process basis. They will not affect the mouse operation of other
processes.

The Texturel6s listed are resident in the 630 MTG. Their names explain
what they look like.

EXAMPLE

The following example divides a window into four Rectangles. Based on
which Rectangle the mouse is in, this program either switches the cursor to
the default arrow, switches the cursor to the AT&T Logo, inhibits the cursor,
or sets the cursor to Drect.origin.

#include <dmd.h>
Texturel16 att = {

I

0x07E0, 0x1F08, 0x0000, Ox7FFE,
0x3FC2, 0x0000, OxFFFF, 0x7FC1,
0x0000, OxFFFF, 0x1F01, 0x0000,
Ox7FFE, 0x0000, 0x1008, 0x07EO,

Point div(), sub(), add();

main()

{

Point o, p;
Rectangle tl, tr, bl, br;
int lastr = 0;

o = div (sub (Drect.corner,
Drect.origin), 2);
tl.origin = tr.origin = bl.origin
= br.origin = Drect.origin;
tr.origin.x += 0.X;
bl.origin.y += 0.Y:
br.origin = add (br.origin, 0);
tl.corner add (tl.origin, o0);
tr.corner = add (tr.origin, o);
bl.corner = add (bl.origin, 0);
br.corner = add (br.origin, o);
request (MOUSE IKBD);
while(kbdchar() == -1){
wait (MOUSE);
p = mouse.XYy;
if(ptinrect (p, tl) && lastr!=1
if(lastr==3) cursallow ();
lastr = 1;
cursswitch((Texturel16 *)0);
} else if(ptinrect (p, tr) &&
lastrt!=2){

if(lastr==3) cursallow ();

_92-

CURSOR(3R) (630 MTG) CURSOR(3R)

lastr = 2;
cursswitch (gatt);
} else if(ptinrect (p, bl) &g
lastr!=3){
lastr = 3;
cursinhibit ();
} else if(ptinrect (p, br) &
lastr!=4) {
if(lastr==3) cursallow ();
lastr = 4;
cursset (Drect.origin);

}
}
}
SEE ALSO
resources(3R), sleep(3R), structures(3R).
WARNING ‘

The Cursallow, Cursinhibit, and Cursswitch functions change the state of the
mouse cursor without informing the 630 MTG operating system. Any action
they do must be undone before calling sleep or wait. Also, they should not
be mixed with the other cursor control routines.

DECACHE(3L) DECACHE(3L)

NAME
decache - remove the calling application from the Application cache

SYNOPSIS
int decache ()

DESCRIPTION
The function decache lets the calling application remove itself from the
Application cache.

The function decache frees up all the system’s information used to cache the
application but does not delete the application itself; it just returns the
memory occupied by the application back to the application, so it can be
automatically freed when the application exits or is deleted.

The function decache returns a 1 if the operation is successful, a 0 other-
wise. Failure can be caused by not finding the calling application in the
Application cache, and by finding the cached application is currently in use,
or cannot be removed (i.e. see the discussion on A_PERMANENT flag in
cache(3L)).

EXAMPLE
The following program illustrates the relationship between decache and
cache(3L).

#include <dmd.h>
#include <object.h>

main ()

{

register int n;

lprintf ("Type ¢ to cache\n");
lprintf ("Type u to uncache\n");
lprintf ("Type q to quit");
request (KBD);
while (wait(KBD)}) |
n = kbdchar();
lprintf ("\ncharacter typed: %c", n);

if (n == '¢')

n = cache ("test", 0);

lprintf (" -- cache returns %d", n);
else if (n == 'u') {

n = decache ();

lprintf (" -- decache returns %d", n);
else if (n == 'g')

break;

DECACHE(3L) DECACHE(3L)

SEE ALSO
ucache(1), cache(3L), cmdcache(3L).

DRANDA48(3L) (630 MTG) DRANDA48(3L)

NAME

drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi [3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi [3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi [3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void lcong48 (param)
unsigned short param|[7);

DESCRIPTION

This family of functions generates pseudo-random numbers using the well-
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [0, 2%!).

Functions mrand48 and jrand48 return signed long integers uniformly distri-
buted over the interval [-2%!, 2%1),

Functions srand48, seed48 and Icong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48 or mrand48 is
called. (Although it is not recommended practice, constant default initializer
values will be supplied automatically if drand48, lrand48 or mrand48 is
called without a prior call to an initialization entry point) Functions
erand48, nrand48 and jrand48 do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer values, X;,
according to the linear congruential formula

DRAND48(3L) (630 MTG) DRAND48(3L)

Xn +1 = (aXn + C)mod n n=0.

The parameter m = 2%; hence 48-bit integer arithmetic is performed. Unless
lcong48 has been invoked, the multiplier value 4 and the addend value ¢ are

given by
a = 5DEECE66D ;4 = 2736731631554
c = Blé =13 8

The value returned by any of the functions drand48, erand48, Irand4s8,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-bit
X; in the sequence. Then the appropriate number of bits, according to the
type of data item to be returned, are copied from the high-order (leftmost)
bits of X; and transformed into the returned value.

The functions drand48, Irand48 and mrand48 store the last 48-bit X; gen-
erated in an internal buffer, and must be initialized prior to being invoked.
The functions erand48, nrand48 and jrand48 require the calling program to
provide storage for the successive X; values in the array specified as an
argument when the functions are invoked. These routines do not have to
be initialized; the calling program must place the desired initial value of X;
into the array and pass it as an argument. By using different arguments,
functions erand48, nrand48 and jrand48 allow separate modules of a large
program to generate several independent streams of pseudo-random
numbers, i.e., the sequence of numbers in each stream will not depend upon
how many times the routines have been called to generate numbers for the
other streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32
bits contained in its argument. The low-order 16 bits of X; are set to the
arbitrary value 330E,.

The initializer function seed48 sets the value of X; to the 48-bit value speci-
fied in the argument array. In addition, the previous value of X; is copied
into a 48-bit internal buffer, used only by seed48, and a pointer to this
buffer is the value returned by seed48. This returned pointer, which can just
be ignored if not needed, is useful if a program is to be restarted from a
given point at some future time — use the pointer to get at and store the
last X; value, and then use this value to reinitialize via seed48 when the pro-
gram is restarted.

The initialization function Icong48 allows the user to specify the initial X;,
the multiplier value 4, and the addend value c. Argument array elements
param[0-2] specify X;, param[3-5] specify the multiplier 4, and param[6]
specifies the 16-bit addend c. After lcong48 has been called, a subsequent
call to either srand48 or seed48 will restore the “standard” multiplier and
addend values, 4 and ¢, specified on the previous page.

SEE ALSO
rand(3L).

ECVT(3L) (630 MTG) ECVT(3L)

NAME
ecvt, fevt, gevt — convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
ecvt converts value to a null-terminated string of ndigit digits and returns a
pointer thereto. The high-order digit is non-zero, unless the value is zero.
The low-order digit is rounded. The position of the decimal point relative
to the beginning of the string is stored indirectly through decpt (negative
means to the left of the returned digits). The decimal point is not included
in the returned string. If the sign of the result is negative, the word pointed
to by sign is non-zero, otherwise it is zero.

Feot is identical to ecvt, except that the correct digit has been rounded for
printf “%f” (FORTRAN F-format) output of the number of digits specified by
ndigit. S

Geot converts the value to a null-terminated string in the array pointed to
by buf and returns buf. Gcot attempts to produce ndigit significant digits in
FORTRAN F-format if possible; otherwise, E-format that is ready for printing.
A minus sign, if there is one, or a decimal point will be included as part of
the returned string. Trailing zeros are suppressed.

SEE ALSO
printf(3L).

BUGS ‘
The values returned by ecvt and fcvt point to a single static data array
whose content is overwritten by each call.

ELLIPSE(3L) (630 MTG) ELLIPSE(3L)

NAME
ellipse, eldisc, eldiscture, elarc — draw an ellipse

SYNOPSIS
#include <dmd.h>

void ellipse (bp, p, a, b, f)

void eldisc (bp, p, a, b, f)

void eldiscture (bp, p, a, b, t,)
void elarc (bp, p, a, b, p1, p2, f
Bitmap *bp;

Point p, p1, p2;

int a, b;

Texturel6 *t;

Code f;

DESCRIPTION
The ellipse function draws an ellipse centered at p with horizontal semi-axis
a and vertical semi-axis b in Bitmap bp with Code f.

The eldisc function draws an elliptical disc centered at p with horizontal
semi-axis 4 and vertical semi-axis b in Bitmap bp with Code f.

The eldiscture function draws an elliptical disc centered at p with horizontal
semi-axis a4 and vertical semi-axis b in Bitmap bp using Texturel6 ¢ with
Code f.

The elarc function draws the corresponding elliptical arc, traveling counter-

clockwise from the ellipse point closest to pl to the point closest to p2.

Note: Differences exist between the calling conventions for arc and elarc.
EXAMPLE

The following routine can be used to allow a user to sweep out an ellipse

by holding button 1 down. When button 1 is released, the ellipse is filled

using the elliptical disc routine.

#include <dmd.h>

main()

{

sweep eldisc();
request (KBD) ;
wait (KBD);

}

sweep eldisc()

Point p, c;
int a, b;

request (MOUSE) ;

ELLIPSE(3L) (630 MTG) ELLIPSE(3L)

while (!buttoni())
wait (MOUSE);
c = p = mouse.XYy;
while (buttoni())
if (leqgpt(p, mouse.xy)){
if(tegpt(p, ¢)) /* undraw old ellipse */
ellipse (&display, ¢, a, b, F _XOR);
p = mouse.Xxy;
a = abs (p.x - c.x);
b = abs (p.y - c.y}):
ellipse (g&display, ¢, a, b, F _XOR);

ellipse (¢display, ¢, a, b, F _XOR);
eldisc (&display, ¢, a, b, F XOR);

}

SEE ALSO
circle(3L), jecircle(3L), jellipse(3L).

EQ(3R) (630 MTG) EQ(3R)

NAME

eq: eqpt, eqrect — compare for equality
SYNOPSIS

#include <dmd.h>

int eqpt (p, q
Point p, q;
int eqrect (r, s)
Rectangle t, s;
DESCRIPTION
The eqpt function compares two Points and returns a 1 if the Points are
equal or a 0 if they are unequal. Two Points are equal if the corresponding
coordinates ¥ and y are equal.

The eqrect function compares two Rectangles and returns a 1 if the Rectan-
gles are equal or a 0 if they are unequal. Two Rectangles are equal if all
four corresponding coordinates are equal.

EXAMPLE ’
The eqmouse function determines if the current mouse coordinate equals p.
The eqDrect function determines if the Rectangle passed equals Drect.

#include <dmd.h>

egmouse(p)
Point p;

{
}

eqDbrect(r) -
Rectangle r;

{
}

SEE ALSO
structures(3R).

return egqpt (mouse.xy, p):

return eqrect (Drect, r);

EXIT(3R) (630 MTG) EXIT(3R)

NAME
exit - cease execution

SYNOPSIS
void exit ();

DESCRIPTION
The exit function terminates a process. Calling exit replaces the running
process with the default terminal program. When a process calls exit, all
local resources [keyboard, mouse, storage, etc.] are deallocated automati-
cally. Any associated UNIX system process must be terminated separately.

Exit is called automatically when an application program returns from
main().

When dmdio.h is included, exit acts differently. In addition to the above, it
will terminate the host side of jx. Therefore, exit must be called
explicitly by a process downloaded with jx to terminate the host side.

EXAMPLE
The following code fragment shows how a process can exit when a “q” is
typed.

#include <dmd.h>
main()
{

char c¢;

request (KBD);

.

if ((c = kbdchar()) == 'q')
exit();

FONTNAME(3R) (630 MTG) FONTNAME(3R)

NAME
fontname - get the name of a font

SYNOPSIS
#include <dmd.h>
#include <font.h>

char *fontname (f)

Font *f;

DESCRIPTION
The fontname function returns a pointer to the name of the font in the font
cache that f points to. If #f is not in the font cache, fontname returns a null
character pointer.

SEE ALSO
fontrequest(3R), fontsave(3L), infont(3R/3L), structures(3R).

FONTREQUEST(3R) (630 MTG) FONTREQUEST(3R)

NAME

fontrequest, fontrelease, fontavail — request/release use of a font

SYNOPSIS

#include <dmd.h>
#include <font.h>

Font *fontrequest (fname)
void fontrelease (fname)
Font *fontavail (fname)

char *fname;

DESCRIPTION

Fname points to a font name, a null terminated string of up to 14 characters.

The fontrequest function returns a pointer to a font of the given name in the
font cache. This routine will return 0 if one of the following conditions is
true:

- there is no font of the given name in the cache,

- there is no more memory to attach the request information to the
font,

- the calling process has already requested the named font.

While the font is requested, no process can remove it from the cache until it

is released.

The fontrelease function tells the cache that the named font is no longer
being used by the calling process. This is automatically done for all the
fonts that a process has requested when that process exits or is deleted.

The fontavail function returns a pointer to the named font if it is in the font
cache; 0, otherwise. This function is used only to check if a given font is in
the cache, and it cannot substitute for fontrequest if the application intends
to make use of the font.

SEE ALSO

fontname(3R), fontsave(3L), infont(3R/3L), structures(3R).

FONTSAVE(3L) (630 MTG) FONTSAVE(3L)

NAME

fontsave, fontcache, fontremove - save /remove a font from the cache

SYNOPSIS

#include <dmd.h>
#include <fonth>

int fontcache (fname, f)
Font *fontsave (fname, f)
void fontremove (fname)

char *fname;
Font #f;

DESCRIPTION

Fname points to a font name, a null terminated string of up to 14 characters.

The fontsave and fontcache functions put the given font into the font cache
and give it the name fname. Once the font is in the cache, any other pro-
cess within the terminal can use it by calling fontrequest,

The fontcache function expects the given font to be already in- allocated
memory through calls to alloc and gealloc. This function also does a fon-
trequest for the calling application. If the caching or subsequent request
fails, fontcache will return a 0; otherwise, a 1 is returned on success, Note
that once the font is put into the cache, the font should only be freed by
calling fontremove, ~ ; '

The fontsave function is used to cache fonts not in memory allocated
through calls to alloc and gcalloc. Fontsave first attempts to allocate
memory, then duplicates the given font into the allocated memory, and
finally calls fontcache to cache the newly created font. On success, fonfsave
returns the pointer to the new font. If it cannot allocate enough memory
for the creation of the new font, of if fontcache fails, fontsave will return a
null pointer,

The fontremove function removes the named font from the cache and frees
its memory. A request to remove a font that is currently requested by some
other process will be ignored.

SEE ALSO

alloc(3R), fontname(3R), fontrequest(3R), gcalloc(3R), infont(3R/3L),
structures(3R).

FONTUSED(3R) (630 MTG)

NAME
fontused, fontiname - font menu generator routines

SYNOPSIS
int fontused (fname)

char *fontiname (i)

char *fname;

int i;
DESCRIPTION

FONTUSED(3R)

The fontused function tests if a given font has been requested by some pro-
cess. This is a way to test if a call to fontremove will succeed. A font
requested by a process cannot be removed. Fontused returns 1 if the font

has been requested and 0 otherwise.

The fontiname function returns the name of the ith+1 font in the font queue.
This is useful for generating a menu of fonts in the cache. If there are less

than i+1 fonts, (char *)0 is returned.
EXAMPLE

The following example is a menu generator function that holds all the fonts

in the cache. The fonts in use are greyed.

Titem *

fontmenu(i, m)

int i;

Tmenu *m;

{
static Titem ti;
int fontused();
char *fontiname();

if(ti.text = fontiname(i))

ti.ufield.grey = fontused(ti.text);

return(éeti);

SEE ALSO

fontname(3R), fontrequest(3R), fontsave(3L), tmenuhit(3R).

FPT(3L)

NAME

(630 MTG) FPT(3L)

fpt: fPt, fRpt, fRect - create a Point or Rectangle from arguments

SYNOPSIS

#include <dmd.h>

Point fPt (x, y)
int x, y;

Rectangle fRpt (p, q)
Point p, q;

Rectangle fRect (a, b, ¢, d)
int a, b, ¢, d;

DESCRIPTION

The fPt function returns a point made from the two arguments.
The fRpt function returns a rectangle made from the two points.

The fRect function returns a rectangle made from the four arguments. This
function differs from canon(3R) in that the points are not sorted first to
guarantee a positive area.

The above functions are not macros as are the ones in pt(3L); therefore,
allow C language assignment constructs.

EXAMPLE

The following subroutine draws two boxes in the upper left corner of the

window.
#include <dmd.h>

Point fPt();
Rectangle fRpt();
Rectangle fRect();

Point add();
Rectangle raddp();

drawboxes()

{
Rectangle r;
r = fRpt(Drect.origin, add(Drect.origin,
Pt(100,100))); box(e&display, r, F STORE);
r = fRect(0,0,200,200);
box(é¢display, raddp(r, Drect.origin), F STORE);
}
SEE ALSO

canon(3R), pt(3L).

FREXP(3L) (630 MTG) FREXP(3L)

NAME

frexp, ldexp, modf - ménipulate parts of floating-point numbers

SYNOPSIS

double frexp (value, eptr)
double value;

int *eptr;

double ldexp (value, exp)
double value;

int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION

Every non-zero number can be written uniquely as x* 2", where the
“mantissa” (fraction) x is in the range 0.5 < ix} < 1.0, and the “exponent”’
n is an integer. frexp returns the mantissa of a double value, and stores the
exponent indirectly in the location pointed to by eptr. If value is zero, both
results returned by frexp are zero.

Ldexp returns the quantity value * 27,

Modf returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

DIAGNOSTICS

If ldexp would cause overflow, +HUGE (defined in <ces/math.h>) is
returned (according to the sign of value), and errno is set to ERANGE.

If ldexp would cause underflow, zero is returned and ermo is set to
ERANGE.

GCALLOC(3R) (630 MTG) GCALLOC(3R)

NAME

gealloc, gefree, geallocown - garbage compacting memory allocation

SYNOPSIS

#include <dmd.h>

char *gcalloc (nbytes, where)
void gcfree (s)
void gcallocown (s, p)

unsigned long nbytes;
long **where;

char #s;

Proc #*p;

DESCRIPTION

The gcalloc function provides a simple garbage-compacting memory alloca-
tor. It returns either a pointer to a block of nbytes contiguous bytes of
storage or a NULL if unavailable. The storage is not initialized to zeros.
The pointer where points to the location where the address of the storage
block is to be saved. The contents of where will be updated after each com-
paction. That is, if garbage collection occurs, your storage will be moved,
and your. pointer will be changed to point to the new location of your
storage area. Therefore, a program using gcalloc should never store the
location of geallocated memory anywhere other than the location handed to
the allocator. Typically, this location is contained in a structure such as a
Bitmap.

The gcallocown function changes the owning process of the memory
returned by gcalloc. 'If p is zero, the memory will belong to no one and wil
only be freed by an explicit call to gcfree.

The gcfree function frees the storage block at s, thus making it available for
future allocation.

The terminal automatically frees all memory gcalloc’ed and owned by a pro-
cess when the process terminates or when the window it is running in is
deleted. However, it is recommended that a process free its garbage com-
pactable memory when the storage is no longer needed so that other
processes will be able to use it.

EXAMPLE

These routines could be used for allocating and freeing space used to store
Points in a polygon.

#include <dmd.h>
Point *poly;

Point *
polyalloc(n)

{

char *gcalloc();

-1 -

GCALLOC(3R) (630 MTG) GCALLOC(3R)

return (poly = (Point *)gcalloc(sizeof(Point)*n,
gpoly));

polyfree()

{

void gcfreel();

gcfree (poly);
}

SEE ALSO
alloc(3R), balloc(3R), structures(3R).

DIAGNOSTICS
When garbage compaction is in effect, a small rectangle flashes on the
upper left corner of the terminal’s screen.

BUGS
If gcalloc is called to attempt to allocate over 7000000 bytes, it will fail, but
it may say it succeeded. If this happens, the memory used by gcalloc is cor-
rupted and may damage other programs running in the terminal.

GETWBUF(3R) (630 MTG) GETWBUF(3R)

NAME

getwbuf, putwbuf, Wbufsize ~ access the 630 MTG default terminal emula-
tor buffer

SYNOPSIS

int getwbuf (buf, size)
int putwbuf (buf, size)

char *buf;
int size;

int Wbufsize;

DESCRIPTION

These functions give access to the global text buffer used by the 630 MTG
default terminal emulator to hold the last cut, sent or saved text. They offer
the ability for cut-and-paste communication between the default terminal
emulator and user’s applications.

The getwbuf function reads from the global text buffer. Up to size bytes are
copied into the buffer pointed to by buf. The actual number of bytes copied
is returned.

The putwbuf function writes from the character buffer pointed to by buf into
the global text buffer. The number of bytes copied is returned. The previ-
ous content of the global text buffer is thrown away.

The global variable Whufsize is the current number of characters in the glo-
bal buffer used by getwbuf and putwbuf.

EXAMPLE

The following example is a function that takes the global text buffer and
converts every 8 continuous spaces into a tab.

tabexpand()

{
char buf1(120];
char buf2[120];
int i,j,k,space;

k = 0;

space = 0;

i = getwbuf(buftl, 120);
for(j=0; j<i; ++3)

{
buf2lk] = bufiljl;
if(buf2lk] == ' ')
space++;
else

space = 0;
if(space == 8)

{

GETWBUF(3R)

(630 MTG)
k -= 7;
buf2lk]l = "\t';
space = 0;

}

++k;

putwbuf (buf2, k);

GETWBUF(3R)

GLOBALS(3R) (630 MTG) GLOBALS(3R)

NAME

globals: physical, display, Drect, Jrect, PtCurrent, P, mouse — globals
describing display and mouse

SYNOPSIS

#include <dmd.h>

Bitmap physical;
Bitmap display;
Rectangle Drect;
Rectangle Jrect;
Point PtCurrent;

#define XMAX 1024
#define YMAX 1024
#define INSET 4
struct Mouse {
Point xy;
Point jxy;
short buttons;
} mouse;

Proc *P;

DESCRIPTION

Each global is defined when dmd.h is included. One should not include
these definitions in their source code.

The global physical is a Bitmap describing the entire screen display in screen
coordinates.

The global display is the Bitmap describing an individual window in screen
coordinates.

The global Drect is a Rectangle defining, in screen coordinates, the display
area available to the program. It is not display.rect, which includes the
border around each window.

The global Jrect is the Rectangle { 0, 0, XMAX, YMAX }

The global PtCurrent is the current Point in window coordinates which the
j-routines reference and update.

The values XMAX and YMAX define the maximum x and y coordinates of
the 630 MTG screen. These are the same as physical.rect.corner.x and
physical.rect.corner.y.

The value INSET is the width of the border around a window. Therefore,
Drect is the same as inset(display.rect, INSET).

The global mouse is a location containing the current mouse coordinates and
button states. The Point xy is in screen coordinates; jxy is in window coor-
dinates. The buttons field is a bit vector of the mouse buttons that is most
easily interpreted by using the button macros. The mouse is updated only

-1-

GLOBALS(3R) (630 MTG) GLOBALS(3R)

when requested and the window is current.

P is a special variable used by the 630 MTG. It represents the running pro-
cess. A process can be a downloaded application or the default terminal
emulator or an internal maintenance process. An example is the “control”
process that puts up the button 3 global menu.

The 630 MTG changes the value of P whenever one process switches out
through “‘wait” or ““sleep” to let another run. It always points to the run-
ning process’s table (Proc). Many routines either update P or use P to find
information specific to the process. For example, the memory allocator
“alloc” uses P to record who owns the memory requested. The “allocown”
routine can be used to change this.

SEE ALSO
alloc(3R), btoc(3R), buttons(3R/3L), inset(3R), resources(3R), sleep(3R),
structures(3R), transform(3R/3L).

WARNING
These globals (except XMAX, YMAX, and INSET) reside in the terminal.
They cannot be used in automatic initializations of a program’s global vari-
ables.

INFONT(3R/3L) (630 MTG) INFONT(3R/3L)

NAME

infont, getfont, outfont, ffree — read a font from the UNIX Operating system

SYNOPSIS

#include <dmd.h>
#include <font.h>

Font *infont (inch)
int (*inch)();

Font *getfont (file)
char #file;

int outfont (f, ouch)
Font *f;

int (*ouch)();

void ffree (f)
Font *f;

DESCRIPTION

The infont function creates a Font by reading the byte-wise binary represen-
tation returned by successive calls to inch. Inch must return successive
bytes of the UNIX system file representation of the font, and -1 at end-of-file
Or on encountering an error. Infont will return 0 if memory to store the font
cannot be allocated, or if the inch routine returns an error.

The getfont function is a higher level form of infont which can be used by
programs running under jx. Getfont returns a pointer to a Font read from
the named UNIX file. It accomplishes this by opening file, and then calling
infont with the routine getc as an argument. The getfont function also
returns 0 on error.

The outfont function calls the routine ouch to write successive bytes of the
binary representation of Font #f. The outfont function returns a -1 on error,
as must the routine ouch. ‘

Programs which use infont or getfont will normally want to cache the font
with fontcache.

The ffree function frees the memory used by a Font allocated by infont or
getfont if that font has not been added to the cache with fontcache. Pro-
grams which add fonts to the font cache with fontcache should release the
font with fontrelease.

EXAMPLE

See the example for string(3R).

SEE ALSO

jx(1), fontrequest(3R), fontsave(3L), structures(3R).

INSET(3R) (630 MTG) INSET(3R)

NAME
inset — inset a border for a Rectangle

SYNOPSIS
#include <dmd.h>

Rectangle inset (r, n)
Rectangle r;
int n;
DESCRIPTION
The inset function returns the Rectangle:

{ roriginx+n, roriginy+n, r.corner.x-n, r.cornery-n } .
EXAMPLE

The following simple program creates a clear Rectangle r with a 5-dot wide
border inside r:

#include <dmd.h>

Rectangle inset();
Point add();

main()

{
make horder();
request (KBD) ;
wait (KBD);

}

make border ()

{
Rectangle r;
Point s;
s.x = 100;
s.y = 100;
r.origin = add(Drect.origin, s);
r.corner = add(r.origin, s);
rectf(é¢display, r, F STORE);
rectf(gdisplay, inset(r, 5), F CLR);
return;

}

SEE ALSO
structures(3R).

INTEGER(3R) (630 MTG) INTEGER(3R)

NAME
integer: Iceil, Ifloor, min, max — integer functions

SYNOPSIS
short Iceil (a, b)

short Ifloor (a, b)
int min (b, ¢
int max (b, ¢)

long a;
int b, ¢

DESCRIPTION
The Iceil function returns the smallest short integer which, when multiplied
by b, is not less than a.

The Ifloor function returns the largest short integer which, when multiplied
by b, is not greater than a.

For both Iceil and Ifloor if b is equal to 0 or 1, the long integer a is truncated
to a short and returned. Otherwise, if the result is greater than a short, it is
truncated before being returned.

The min function returns the minimum of the two integers.
The max function returns the maximum of the two integers.

EXAMPLE
Iceil (7, 2) and 1Iceil (10, 3) both equal 4.

Ifloor (9, 2) and Ifloor (13, 3) both equal 4.
min (32, 16) equals 16.

max (32, 14) equals 32.

ISMPX(3R) (630 MTG) ISMPX(3R)

NAME

ismpx - test if connected to a multiplexed host
SYNOPSIS

int ismpx ();
DESCRIPTION

The ismpx function tests if the application program is connected to a host
via a multiplexed connection. If so, a 1 is returned; otherwise, 0 is returned.
Layers is one example of a multiplexed connection protocol.

SEE ALSO
attach(3R), local(3R), peel(3R).
layers(1) in UNIX System V Release 3 User’s Reference Manual.
layers(1) in 5620 Dot-Mapped Display Reference Manual.

ITOX(3L) (630 MTG) ITOX(3L)

NAME
itox, itoa, itoo — convert integer to string representation

SYNOPSIS
char *itox (n, s)

char *itoa (n, s)
char *itoo (n, s)

long n;
char *s;
DESCRIPTION

The itox function returns the hexadecimal string representation of the long
integer 7 prefixed with "0x".

The itoa function returns the decimal string representaion of the integer 1.
The itoo function returns the octal string representation of the integer
prepended with "0".

The argument s must point to a buffer large enough to hold the string. The
return value is s.

EXAMPLE
The following example produces a hexadecimal string without the "0x"
prefix.

#include <dmd.h>
char *itox();

char *
myitox(buf)
char *buf;

{
t

Note: the return value is buf + 2, which is the hexadecimal string “/C0"".

return(itox((long) 192, buf) + 2);

ITRIG(3L) (630 MTG) ITRIG(3L)

NAME
itrig: Icos, Isin, Iatan2 ~ cosine, sine and arc tangent trigonometric functions

SYNOPSIS
int Icos (d)

int Isin (d)

int Iatan2 (x, y)
int d;

int x, y;

DESCRIPTION
The Icos and Isin functions return scaled integer approximations to the tri-
gonometric functions. The argument values are in degrees. The values
returned are scaled so that Icos(0)==1024.

The Jatan2 function returns the approximate arc-tangent of y/x. The return
value is in integral degrees. The error in approximation may be as large as
five degrees.

EXAMPLE
These routines can be used to calculate mathematical expressions such as:

x=x0%Icos(d)
or to calculate a projection:
x=muldiv(x0, Icos(d), 1024)

Note, the multiplication must be scaled.

SEE ALSO
muldiv(3L).

JCIRCLE(3L) (630 MTG) JCIRCLE(3L)

NAME
jeircle, jdisc, jarc — draw circle on display

SYNOPSIS
#include <dmd.h>

void jcircle (p, r, f)
void jdisc (p, r, f)
void jarc (p, p1, p2, 9
Point p, p1, p2;
int r;
Code f;

DESCRIPTION

The jcircle function draws the approximate circle of radius r centered at 4
with Code f in the display bitmap.

The jdisc function draws a disc of radius r centered at p with Code f in the
display bitmap.

The jarc function draws the circular arc centered at p counterclockwise from
p1 to the point on the circle closest to p2 with Code f in the display bitmap.

All coordinates and radii are in window coordinates. Because the window is
scaled, these routines are actually implemented by calls to the ellipse rou-
tines.

EXAMPLE
The following routine draws a row of eight circles, a row of eight discs, and
a row of eight arcs, scaled to the shape of the window.

#include <dmd.h>

draw()

Point p;
int i, r;

r = 50;
pP.y = 200;
for (p.x=100; p.x < XMAX-50; p.x+=120)

jecircle (p, r, F XOR);

P.y = 600;

for (p.x=100; p.x < XMAX-50; p.x+=120)
jdisc (p, r, F XOR) ;

P-Y = 900;

for (p.x=100; p.x < XMAX-50; p.x+=120)
jarc (p, Pt(p.x-r, p.y), Pt(p.x+r,

p.y), F XOR);

request (KBD);
wait (KBD);

JCIRCLE(3L) (630 MTG) JCIRCLE(3L)

SEE ALSO
circle(3L), ellipse(3L), globals(3R), jellipse(3L), structures(3R),

transform(3R/3L).

JELLIPSE(3L) (630 MTG) JELLIPSE(3L)

NAME
jellipse, jeldisc, jelarc — draw ellipse on display

SYNOPSIS
#include <dmd.h>

void jellipse (p, a, b, f)
void jeldisc (p, a, b,)
void jelarc (p, a, b, p1, p2, H
Point p, pl, p2;
int a, b;
Code f;
DESCRIPTION
The jellipse function draws an approximate ellipse centered at p, with hor-
izontal semi-axis 4 and vertical semi-axis b with Code f in the display bit-
map.
The jeldisc function draws an elliptical disc centered at p, with horizontal
semi-axis # and vertical semi-axis b with Code f in the display bitmap.

The jelarc function draws the corresponding elliptical arc, centered at p,
counterclockwise from the ellipse point closest to pl to the ellipse point
closest to p2 with Code f in the display bitmap.

All coordinates and semi-axes are in window coordinates.

EXAMPLE
The following routine draws a row of eight ellipses, a row of eight discs,
and a row of eight arcs, scaled to the shape of the window.

#include <dmd.h>

draw()

Point p;
int i, r;

r = 50;

pP.y = 200;

for (p.x=100; p.x < XMAX-50; p.x+=120)
jellipse {(p, r, r-25, F _XOR);

P.y = 600;

for (p.x=100; p.x < XMAX-50; p.x+=120)

jeldisc (p, r-25, r, F _XOR);
p.y = 900;
for (p.x=100; p.x < XMAX-50; p.x+=120)
jelarc (p, r, r, Ptip.x~r, p.y),
Ptip.x+r, p.y), F XOR);

reguest(KBD);
wait(KBD);

JELLIPSE(3L) (630 MTG) JELLIPSE(3L)

SEE ALSO
circle(3L), ellipse(3L), globals(3R), jeircle(3L), structures(3R),
transform(3R/3L).

JMOVE(3L) (630 MTG) JMOVE(3L)

NAME
jmove, jmoveto — move current window point on display, relative or abso-
lute

SYNOPSIS
#include <dmd.h>

void jmove (p)
void jmoveto (p)
Point p;

DESCRIPTION
The jmove function moves the current window point by the relative vector p
which is in window coordinates.

The jmoveto function sets the current window point to the absolute location
p which is in window coordinates.

EXAMPLE
See the example in jsegment(3L).

SEE ALSO
jsegment(3L), moveto(3L), structures(3R), transform(3R/3L).

JPOINT(3L) (630 MTG) JPOINT(3L)

NAME

jpoint ~ draw single pixel on display
SYNOPSIS

#include <dmd.h>

void jpoint (p, f)
Point p;
Code f;
DESCRIPTION
The jpoint function sets the pixel at location p (in window coordinates) in
the display bitmap according to the Code f.
EXAMPLE
The following routine can be used to “doodle” on the screen.

#include <dmd.h>

doodle()
{
request (MOUSE);
for (;;) {
wait (Mousge)
if(button3())
break;
if(button2())
jpoint (mouse. jxy, F STORE) ;

1

SEE ALSO
globals(3R), point(3R), structures(3R), transform(3R /3L).

JRECTE(3L) (630 MTG) JRECTF(3L)

NAME
jrectf — rectangle function on display

SYNOPSIS
#include <dmd.h>

void jrectf (r, f)
Rectangle r;
Code f;

DESCRIPTION
The jrectf function performs the action specified by the Code f on the Rec-
tangle r in the display bitmap. The Rectangle r is in window coordinates.

EXAMPLE
The following subroutine will “doodle” on the screen using a Rectangle,
whose coordinates are scaled to the window.

#include <dmd.h>
Point add();

rectdoodle()

{
Rectangle r;
Point s;

s.x = 16;
s.y = 16;
request (MOUSE);
for (;;)
wait (MOUSE)
r.origin = mouse. jxy;
r.corner = add (r.origin, s);
if (button3())
break;
if (buttoni())
jrectf (r, F _STORE);
if (button2())
jrectf (r, F CLR);

}

SEE ALSO
globals(3R), rectf(3R), structures(3R), transform(3R/3L).

JSEGMENT(3L) (630 MTG) JSEGMENT(3L)

NAME o
jsegment, jline, jlineto — draw line on display
SYNOPSIS o
#include <dmd.h>

void jsegment {p, q,
void jline tp, O
void jlineto 1p, H
Point p, g;
Code f;
DESCRIPTION ‘ ‘ .
The jline function draws a line in the display bitmap with Code f from the
current window point (initially (0, 0) in window coordinates) along the rela-
tive vector p which is in window coerdinates.
The flineto function draws a line in the display bitmap from the current win-
dow point to the absolute window coordinate p with Code f.
The jsegment function draws a line in the diplay bitmap from the window
coordinate p to the window coordinate g with Code f.
The line functions jline, flineto, and jsegment leave the current window
point at the end of the line.
PtCurrent is the global used to refer to the current window point.
EXAMPLE
The following program draws three boxes on the screen using three dif-
ferent methods.
#include <dmd.h>

main()

{ _
box(Rect (400,100,600,300));
rbox(Rect(0,0,200,200),Pt(0,300));
sbox(Rect(1400,700,600,900));
request (KBD) ;
wait(KBD):;

}

/% draw absolute */

box(r)

Rectangle r;

{
jmoveto (r.origin); ,
jlineto (Pt (r.corner.x, r.origin.y), F XOR);
jlineto (r.corner, F XOR); h
jlineto (Pt (r.origin.x, r.cornmer.y), F _XOR);
jlineto (r.origin, F XOR);

JSEGMENT(3L) (630 MTG) JSEGMENT(3L)

/% draw relative */
rbox(r, p)
Rectangle r;

Point p;

{

jmove (p);

jline (Pt (r.corner.x - r.origin.x, 0), F XOR);
jline (Pt (0, r.cormer.y - r.origin.y), F _XOR);
jline (Pt (r.origin.x - r.corner.x, 0), F XOR);

jline (Pt (0, r.origin.y - r.corner.y), F:XOR);

}

/% draw with segments */
sbox(r)
Rectangle r;
{
jsegment (r.origin, Pt(r.corner.x,
r.origin.y), F XOR);
jsegment (Pt(r.corner.x, r.origin.y),
r.corner, F XOR);
jsegment (r.corner, Pt(r.origin.x,
r.corner.y), F XOR);
jsegment (Pt(r.origin.x, r.corner.y),
r.origin, F_XOR);

}

SEE ALSO
globals(3R), pt(3L), segment(3R), structures(3R), transform(3R/3L).

JSTRING(3L) (630 MTG) JSTRING(3L)

NAME
jstring — draw character string on display

SYNOPSIS
#include <dmd.h>

Point jstring (s)
char #s;

DESCRIPTION
The jstring function draws, in the F_XOR mode, the null-terminated string s
in the display Bitmap using mediumfont so that the origin of the rectangle
enclosing the first character is at the current window point. It returns the
current window point, which is left after the last character of the string, so
adjacent calls to jstring can appear to concatenate their argument strings on
the screen.

EXAMPLE
The following program shows how jstring automatically updates PtCurrent.

#include <dmd.h>
Point jstring();

main()

{
jmove (Pt(16,16));
jstring ("I");
jline (Pt(40,0), F XOR);
jstring ("love");
jline (Pt(40,0), F XOR);
jstring ("my");
jline (Pt(40,0), F XOR);
jstring ("630MTG");

request (KBD);
wait (KBD);

SEE ALSO
globals(3R), string(3R), structures(3R).

JTEXTURE(3L) (630 MTG) JTEXTURE(3L)

NAME
jtexture — draw Texture in Rectangle on display

SYNOPSIS
#include <dmd.h>

void jtexture (r, t, f)
Rectangle r;
Texturel6 *t;

Code f;

Texture16 T_grey, T_lightgrey, T_darkgrey;

Texturel6 T_black, T_white, T_background, T_checks;

DESCRIPTION
The jtexture function fills the Rectangle r in the display Bitmap with Tex-
turel6 ¢ using function Code f. The Rectangle r is in window coordinates.
The Texturelé6s listed above are predefined.

EXAMPLE
The following routine allows one to doodle with a Texturel6.

#include <dmd.h>
Point add();

main()
Rectangle r;
Point s;

s.x = 16;
s.y = 16;
request (MQUSE);
for (;;) {
wait (MOUSE)
r.origin = mouse.jxy;
r.corner = add (r.origin, s);
if (button3())
break;
if (buttoni())
jtexture (r, €T grey, F STORE);
if (button2())
jtexture (r, €T grey, F CLR);

}

SEE ALSO
globals(3R), structures(3R), texture(3R), transform(3R /3L).

KBDCHAR(3R) (630 MTG) KBDCHAR(3R)

NAME
kbdchar - read character from keyboard
SYNOPSIS
int kbdchar ()
DESCRIPTION

The kbdchar function returns the next keyboard character typed to the pro-
cess. If no characters have been typed, kbdchar returns —1. If KBD has not
been requested, kbdchar will always return —1, even if characters have been
typed to the process.

EXAMPLE
This code will prevent a program from exiting until the ‘q" character has
been typed on the keyboard.

#include <dmd.h>

main()

{

request (KBD);

do
wait (KBD);
while(kbdchar () != 'q');
}
SEE ALSO
resources(3R).
WARNING

Since the keyboard routine is a process, you must release the CPU in order
to have typed characters placed on the application’s keyboard queue.

KEYBOARD(3R) (630 MTG) KEYBOARD(3R)

NAME
keyboard: ~P->state, SCRLOCKREQD, SCR_LOCK, NOPFEXPAND,
NOCURSEXPAND, NOPADEXPAND, NOTRANSLATE, reqkbdID() - per
process keyboard states, keyboard ID

SYNOPSIS
#include <dmd.h>

long P->state;

void reqkbdID ()

DESCRIPTION
P->state is the state variable for an application running in the 630 MTG.

An application can give different interpretations on groups of 630 MTG sup-
ported keyboard keys by setting corresponding bits in the process state vari-
able. The groups are Scroll Lock key, programmable function keys, arrow
keys, numerical keypad keys, or the whole keyboard. If the bits are not set,
when a key is depressed, the keyboard will send to the process the
ASClI/hexadecimal code(s) as specified by the 630 MTG Terminal User’s
Guide. An exception is the Scroll Lock key which is a "dead" key (no spe-
cial processing) if it is not requested and processed by the application itself.

If an application program wishes to implement local terminal flow control
with the keyboard Scroll Lock key, it must request the use of the Scroll
Lock key by setting the SCRLOCKREQD in the state variable as follows:

P->state |= SCRLOCKREQD;

The application program can then determine if the Scroll Lock key has been
depressed by checking the SCR_LOCK bit as follows:

P->state & SCR _LOCK;

The SCR_LOCK bit is set whenever the Scroll Lock key is depressed. It is
automatically cleared by the keyboard when the Scroll Lock key is
depressed a second time.

The programmable function (PF) keys, when depressed are expanded by
default, i.e., the corresponding character strings (minus the NULL character)
stored in the non-volatile BRAM memory will be sent to the process as
would be typed from the keyboard. If an application prefers to have its own
interpretation of the programmable function keys, it is necessary to set a bit
in the process state variable:

P->state |= NOPFEXPAND;

In this case, the keyboard will only send to the process the PF key keycode
which is 0x80 for PF key F1, 0x81 for PF key F2, and so forth.

KEYBOARD(3R) (630 MTG) KEYBOARD(3R)

If a program wants to interpret the arrow keys without having to parse their
entire sequence, it can set a bit in the process state variable:

P->state |= NOCURSEXPAND;
When an arrow key is then depressed, it will have the value:

up arrow 0xEO
down arrow 0xE1
right arrow OxE2
left arrow 0xE3
home key 0xE4

If a program wants to have its own interpretation of the numerical keypad
keys, it is necessary to set a bit in the process state variable:

P->state |= NOPADEXPAND;

When a numerical keypad key is then depressed, it will have the value:

0xCO0
0xC1
0xC2
0xC3
0xC4
0xC5
0xCé6
0xC7
0xC8
0xC9
0xCA
0xCB
0xCC
0xCD
0xCE
0xCF
0xDO
0xD1

If a program wants to remap the entire keyboard, it must set a bit in the
state variable:

[gs
=3
=
o
=

QAU ! OO N 4N ¥

SOWN =T

P->state |= NOTRANSLATE;

The application will then receive from the keyboard the raw keycodes as
listed in the 630 MTG Terminal User’s Guide. Also, the keyboard LEDs will
no longer be automatically updated. At this point, calling the regkbdID
function will ask the keyboard for its identity (ID). The keyboard will send
back its ID and all keys currently depressed, followed again by the ID. Refer
to the 630 MTG Software Development Guide for more information.

_2-

KEYBOARD(3R) (630 MTG) KEYBOARD(3R)

SEE ALSO
kbdchar(3R), state(3R), pfkey(3R), resources(3R), setled(3L).
630 MTG Terminal User’s Guide.
630 MTG Software Development Guide.

WARNING
If the process has not requested the keyboard (see resources(3r)), all per
process keyboard states will be ignored, and the key’s ASCII /hexadecimal
code(s) as specified in the 630 MTG Terminal User’s Guide will be sent to
the host (if the process is connected) or ignored (if the process runs locally).

The exception is the Scroll Lock key which does not require the application
to request the whole keyboard. However in order to process that key, the
application has to set the SCRLOCKREQD bit in P->state.

LABELON(3R) (630 MTG) LABELON(3R)

NAME

labelon, labeloff, labelicon, labeltext — window labeling

SYNOPSIS

#include <dmd.h>
#include <label.h>

void labelon ()
void labeloff ()

void labelicon (bp, pos)
Bitmap =*bp;
int pos;

labeltext (s, n, f)
char #*s;

int n;

int f;

DESCRIPTION

The labelon function puts a label at the top of the window. The label area is
LABEL_HEIGHT pixels high and spans the full interior width of the win-
dow. The label area is automatically updated to indicate the window’s
current host and if that host is multiplexed. It also indicates if scroll lock or
caps lock is active for that window and if the application running in the
window has requested the printer. Drect is changed to the new smaller size
of the interior of the window.

The labeloff function removes the label from the window and changes Drect
to the new larger size.

The labelicon function draws the given bitmap into the label. The bitmap is
clipped to 16 pixels high and to the right edge of the label area. Its leftmost
edge is aligned to position pos. Positions are 16 pixels apart, starting with
position 1 (L_HOST_POSITION) at the left edge of the label area. The first
5 positions (1 to 5) are used by the terminal for the following default infor-
mation:

L_HOST_POSITION current host connection
L_MUX_POSITION current host environment
L_PRINT_POSITON printer request status
L_SCROLL_POSITION scroll lock key status
L_CAP_POSITION caps lock key status

It is not recommended for an application to override those fields with its
own bitmaps. The first position index that an application should use is
L_USER_POSITION which guarantees non-interference with the terminal.

Clipped portions of a label bitmap are not remembered by the terminal if
the window is made larger.

LABELON(3R) (630 MTG) LABELON(3R)

The function labeltext displays the string s of n characters in the label area
of the window based on the flag f. The possible values for f are:

L_LEFT left justify the string from the
L_USER_POSITION index position

L_RIGHT right justify the string in the label area

L_CENTER center the string in the full length label area

The font used to display the string is the terminal’s medium font. The
display mode is F_XOR; therefore, labeltext will superimpose the new string
over any existing label strings. If there is not enough room in the label area
for all characters to fit, the string will be clipped off.

When the window is reshaped, the terminal only redraws the label area
with the default information. Any user supplied icons and strings must be
redrawn by the application.

Any application that makes use of both labelicon and labeltext should make
sure that they do not write to the same positions of the label area.

LOCAL(3R) (630 MTG) LOCAL(3R)

NAME
local ~ make the calling process local

SYNOPSIS
int local ()

DESCRIPTION
The local function provides the application developer with the means to
change the disposition of a process from the connected state (e.g. using a
layers connection and host resources) to a local state. The host side
processes are killed as if the process were deleted. However the terminal
retains all local information and other resources that were requested through
the request(3R) function. If the process does not own the KBD resource, typ-
ing on the keyboard will sound the bell.

When a process is made local, the border surrounding the process’s window
is changed to a checkered pattern to differentiate it with connected win-
dows.

The local function will fail if the process is already local or is the last pro-
cess connected to the host. Therefore, the local function will always fail if
the process is operating in the non-layers environment which, by definition,
supports only one host connection. A local function failure results in a zero
value being returned. On success, a 1 is returned.

SEE ALSO
attach(3R), peel(3R).
layers(1) in UNIX System V Release 3 User’s Reference Manual,
layers(1) in 5620 Dot-Mapped Display Reference Manual.

LPUTCHAR(3L) (630 MTG) LPUTCHAR(3L)

NAME

lputchar — 630 MTG local putchar function
SYNOPSIS

void lputchar (¢)

char ¢
DESCRIPTION

Lputchar is syntactically equivalent to the UNIX standard 1/0 putchar func-
tion. It can be called by downloaded application programs who want to
display characters within their window on the 630 MTG screen. Where
(within the applications window) characters are displayed can be affected
with the moveto(3L) function. Lputchar calls the moveto routine to update
the current screen point after it displays the charcter c.

How characters are eventually displayed on a user’s terminal when using
the UNIX putchar function is affected by the UNIX host stty(1) settings and
the user’s terminal characteristics. Since Iputchar displays directly onto the
630 MTG screen, assumptions were made about desired stty settings. In
general, [putchar does as little processing on the output stream as practical.
If more extensive processing of control characters is needed, it can be
accomplished as shown in the example program below.

The following are the only control characters processed by Iputchar. All
other characters will be displayed as ASCII characters:

\r Carriage Return. Move the current point to the left edge of the win-
dow.
\n Newline. Move the current point down one line and to the left edge

of the window. Scroll the window if necessary.

\t Horizontal tab. Tab characters are expanded to spaces with tab stops
at every eighth space.

EXAMPLE

If an application program wanted to, for example, process bells and back-
spaces rather than display the ASCH bell and backspace characters, it could
define a function mylputchar as follows:

#include <dmd.h>
#include <font.h>

void lputchar();
void moveto();

void ringbell();
Point sPtCurrent();

mylputchar(c)
char c;

{

Point curpos;

switch(¢) {
case '\007':

LPUTCHAR(3L) (630 MTG) LPUTCHAR(3L)

ringbell();
break;
case '\b':
/* get the current position
x* if(not already at the left edge of the

*k window) {

* % move back one character position

* %k lputchar a space to erase the last
* % character and move back again

**]

*/

curpos = sPtCurrent();

if(curpos.x - FONTWIDTH(largefont)
>= Drect.origin.x) {

curpos.x —-= FONTWIDTH(largefont);
moveto(curpos);
lputchar(' ');
moveto(curpos);

}

break;

default:
lputchar(c);
break;

}

SEE ALSO
bputchar(3L), moveto(3L), printf(3L), structures(3R).
stty(1) in the UNIX System V User’s Reference Manual.
putc(3S) in the UNIX System V Programmer’s Reference Manual.

LSEARCH(3L) (630 MTG) LSEARCH(3L)

NAME

Isearch - linear search and update

SYNOPSIS

#include <ccs/search.h>

char #lsearch ((char ¥)key, (char *)base, nelp, sizeof(+key), compar)
unsigned *nelp;
int (*compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S,
It returns a pointer into a table indicating where a datum may be found. If
the datum does not occur, it is added at the end of the table. Key points to
the datum to be sought in the table. Base points to the first element in the
table. Nelp points to an integer containing the current number of elements
in the table. The integer is incremented if the datum is added to the table.
Compar is the name of the comparison function which the user must sup-
ply (strcmp, for example). It is called with two arguments that point to the
elements being compared. The function must return zero if the elements
are equal and non-zero otherwise.

The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element.

EXAMPLE

This fragment will read in less than TABSIZE strings of length less than
ELSIZE and store them in a table, eliminating duplicates.

#include <dmd.h>
#include <dmdio.h>
#include <ccs/search.h>

#idefine TABSIZE 50
#define ELSIZE 120

char linelerLsizel, tablraBsizellELsSIZE],
¥lsearch();

unsigned nel = 0;

int stremp();

while (fgets{(line, ELSIZE, stdin) != NULL &&

nel < TABSIZE)

(void) 1search(line, (char *)tab, é¢&nel,

ELSIZE, strcmp);

SEE ALSO

bsearch(3L), str(3L).

LSEARCH(3L) (630 MTG) LSEARCH(3L)

DIAGNOSTICS
If the searched for datum is found, Isearch return a pointer to it. Otherwise,
Isearch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add
a new item.

LSQRT(3L) (630 MTG) LSQRT(3L)

NAME
Isqrt — integer square root

SYNOPSIS
long lIsqrt (x)
long x;
DESCRIPTION
The Isqrt function returns the signed long integer closest to the square root
of the signed long argument.

SEE ALSO
norm(3R).

MEMORY(3L) (630 MTG) MEMORY(3L)

NAME

memory: memccpy, memchr, mememp, memcpy, memset — memory opera-
tions

SYNOPSIS

#include <ccs/memory.h>

char *memccpy (sl, s2, ¢, n)
char *s1, *s2;
int ¢, n;

char *memchr (s, ¢, n)
char *s;
int ¢, n;

int memcmp (s1, s2, n)
char #s1, *s2;

int n;

char *memcpy (s1, s2, n)
char #s1, *s2;

int n;

char *memset (s, ¢, n)
char =*s;

int ¢, n;

DESCRIPTION

These functions operate as efficiently as possible on memory areas (arrays
of characters bounded by a count, not terminated by a null character). They
do not check for the overflow of any receiving memory area.

Memccpy copies characters from memory area s2 into sl1, stopping after the
first occurrence of character ¢ has been copied, or after n characters have
been copied, whichever comes first. It returns a pointer to the character
after the copy of ¢ in s1, or a NULL pointer if ¢ was not found in the first n
characters of s2.

Memchr returns a pointer to the first occurrence of character ¢ in the first n
characters of memory area s, or a NULL pointer if ¢ does not occur.

Memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, according as s1 is
lexicographically less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to s1. It returns sl.

Memset sets the first n characters in memory area s to the value of character
¢. It returns s.

For user convenience, all these functions are declared in the optional
<ccs/memory.h> header file.

MEMORY(3L) (630 MTG) MEMORY(3L)

WARNING
Memcmp is implemented by using the most natural character comparison on
the machine. Thus the sign of the value returned when one of the charac-
ters has its high order bit set is not the same in all implementations and
should not be relied upon.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

MENUHIT(3L) (630 MTG) MENUHIT(3L)

NAME
menuhit — present user with menu and get selection

SYNOPSIS
#include <dmd.h>

int menuhit (m, n)

Menu *m;

int n;

typedef struct Menu {
char **item; /* string array, ending with 0 */
short prevhit; /% retained from previous call =*/
short prevtop; /* retained from previous call */
char *(*generator)(); /% used if item == 0 */

} Menu;

DESCRIPTION

The menuhit function presents the user with a menu specified by the Menu
pointer m and returns an integer indicating the selection made. A returned
0 would indicate that the first item in the menu had been selected; if a 1 is
returned, the second item has been selected, etc. A -1 indicates no selec-
tion. The n argument is an integer which specifies which button to use for
the interaction: 1, 2 or 3. The menuhit function assumes that the button is
already depressed when it is called. The user makes a selection by lifting
the button when the cursor points to the desired selection. Lifting the but-
ton outside the menu indicates no selection.

The maximum number of menu items displayed at any one time is 16 items.
When the number of items is 16 or less, all the items are displayed and are
centered one entry per line in the menu. This is the normal menu mode.
When there are more than 16 menu items to be displayed, the menu
becomes a scrolling menu. The left portion of the menu contains a scroll
bar which is used for scrolling quickly through the menu selections. The
vertical size of the scroll bar is an indication of the size of the user’s view of
the menu (16 items) relative to the number of selections in the entire menu.

There are two ways to scroll through the menu items. The first is to move
the mouse cursor to the left side of the menu into the scroll bar area. By
moving the mouse cursor up or down within the scroll bar area, the menu
items will scroll accordingly. The second method used to scroll through the
menu items is to place the mouse cursor on the top or bottom entry of the
menu list. The menu will scroll up or down by one item at a time if there
are additional items to be displayed in that direction.

The prevhit variable is used to store the menu’s previous selection. When
menuhit is called, the menu is displayed such that, if possible, the mouse
cursor will be displayed over the previous selection. Prevhit holds the index
from the top of the displayed menu. The prevtop variable is used to store
the previous topmost item displayed in a scrolling menu. The values of
prevhit and prevtop are initialized to 0 and need not normally be

-1-

MENUHIT(3L) (630 MTG) MENUHIT(3L)

manipulated by the application program.

Menus may be generated dynamically from a program by specifying a gen-
erator function in the Menu structure. If item is set to 0 when menuhit is
called, then the routine specified by generator is called with one parameter
which is an integer index beginning at 0. The generator must return a
pointer to a character string containing the text for the corresponding menu
item. This generator function is called repeatedly with the index increasing
by 1 until the generator returns a NULL, indicating the end of the menu
selections. The generator function is called each time the menuhit routine is
called with item set to NULL (i.e., 0).

Another facility provided by menuhit is that of a spread character. A spread
character is any ascii character with the high-order bit set. The spread char-
acter acts somewhat like a spring pushing against the adjacent text and
borders within a menu entry. The spread character can be placed at the
beginning, middle, or end of the string defining the menu entry. If placed
at the beginning of the string, the text in the menu item will be right-
justified. If placed at the end of the string, the text will be left-justified. If
placed in the middle of the string, the text on each side of the spread char-
acter will be pushed against the corresponding menu border. In each case,
the space created by the spread character will be filled in with the ascii
character contained in the spread character. For entries without a spread
character, the default is to have the text centered.

Whenever a menu is displayed, the original screen image obscured by the
menu is saved in the terminal and then later restored when the menu disap-
pears. If the terminal is out of memory and therefore cannot save the
screen image, then the menu will be displayed in XOR (exclusive or) mode
on top of the existing screen image. Menu items may still be selected in
this mode but the items might be hard to read. To remedy this problem,
memory may be freed up by either deleting or reshaping windows before
the menu is displayed.

EXAMPLE
The following example includes both a menu with the spread character and
a menu that is dynamically generated. Button 2 and Button 3 are used to
bring up the two menus and Button 1 exits.

#include <dmd.h>

char *menutext{] = {
"left\240", /* space char with
high bit set */
"\256right", /* . char with high
bit set */
"middle",
"left\337right", /* char with high

bit set */
"a very long string”,
NULL };
Menu menu = { menutext }; /* static menu */

MENUHIT(3L) (630 MTG) MENUHIT(3L)

/* Note the above menu will appear as:
Illeft |
Lo i i right i
! middle |
I1left right|

*/
char scrlstr(8l="scroll";

char *
generate(i)
int i;
{
if (i>99) /* generator stopping condition */
return NULL;
else { /* generate test for items (ie. "scroll56") */
scrlstrl6] = i/10 + '0';

scrlstr{7] = i - (i/10 *10) + '0';
scrlstrl8] = '\0';
}
return scrlstr;
!
Menu menugen = {0, 0, O, generate };

/* dynamically generated menu */

main()

{

int m;

for (;;) {
request (MOUSE) ;
wait (MOUSE);
if (buttoni())
break;
else if (button2()) {
m = menuhit(&menugen,2);
lprintf("your selection was %d\n",m);
1
else if (button3()) ({
m = menuhit(&menu,3);
lprintf("your selection was %d\n",m);

MENUHIT(3L)

SEE ALSO

tmenuhit(3R).

(630 MTG)

MENUHIT(3L)

MOVETO(3L) (630 MTG) MOVETO(3L)

NAME

moveto, sPtCurrent - change and return the value current screen point

SYNOPSIS

#include <dmd.h>

void moveto (p)
Point p;

Point sPtCurrent ()

extern int didmoveto;

DESCRIPTION

These functions can be used to change or return the value of the current
screen point. The current screen point is simply a place holder that applica-
tions can use to manage current screen position. For example, the Iputchar
function uses sPtCurrent to find the point at which to print the next charac-
ter and uses moveto to update the current screen point after it prints the
character.

The current screen point is similar to but distinct from PtCurrent (see
globals(3R)). The primary difference is that the current screen point is stored
in screen coordinates, and the PtCurrent is stored in window coordinates
(see transform(3R)). This makes the current screen point easier to deal with
for applications that want to work completely in screen coordinates.

The moveto function will move the current screen point to the point p. The
sPtCurrent function returns the value of the current screen point.

The current screen point is actually stored in the variable P->scurpt. It is
stored as an offset from Drect.origin (i.e., sub[p, Drect.origin]). Note that this
refers only to internal representation. The functions moveto and sPtCurrent
work in actual screen coordinates and translate the offset on each call.

Storing the current screen point as an offset from Drect.origin has the
advantage that successive calls to sPtCurrent will return the proper position
within a window even if the window was moved between calls.

MOVETO(3L) (630 MTG) MOVETO(3L)

Reshapes of a window between successive calls to sPtCurrent are handled
as follows. If the offset of the current screen point from Drect.origin is still
within the window after the reshape, sPtCurrent will return the current
screen point within the new window at the same offset from Drect.origin
that existed in the old window. If the offset from Drect.origin is no longer
within the window (i.e., the window was reshaped smaller), sPtCurrent will
return Drect.origin as the current screen point. If an application wants to
handle reshape more elegantly, it can use the following code fragment after
each call to the wait function. This code fragment will cause the current
screen point to move to the upper left-hand corner of the window after a
reshape.

if (P- >state&§RESHAPED) {
if (! (P->state&MOVED))
moveto(Drect.origin);
P->state &= “(MOVED IRESHAPED);

}

The current screen point must be initialized with the moveto function before
sPtCurrent is called the first time. Library routines which use this facility
can check if initialization is necessary by looking at the global variable
didmouveto each time they are called. This variable will be set to 0 if moveto
has not been called. An example below shows how the didmoveto variable
is used to determine if initialization is necessary within a simple putchar
function.

EXAMPLES
There are two types of users of the current screen point. The first type of
user is calling existent library routines such as lprintf and Iputchar, and is
only interested in using the moveto function to control the library routines.
The following code fragment illustrates how moveto can be used with
Iprintf to display a prompt at the bottom of the window.

#include <dmd.h>
#include <font.h>

extern Point fPt();
Point p;

p = fPt(Drect.origin.x,

Drect.corner.y - FONTHEIGHT(largefont));
moveto(p);
lprintf("Choose an Option> ");

MOVETO(3L) (630 MTG) MOVETO(3L)

The second type of user of the current screen point is writing new library
routines which use this facility. The following example shows how to
accomplish this by implementing a simple putchar routine. In the example
below, didmoveto is checked first to see if initialization of the current point
is required. Then the code obtains the value of the current screen point,
prints a character, and updates the current screen point for the next call to
myputchar.

myputchar(c)

char c;

{
extern int didmoveto;
extern Point sPtCurrent();
extern Point string();
char si21;
Point curpos;

sl0] = ¢;
s(11 = "\0';

if(!didmoveto)
moveto(Drect.origin);

curpos = sPtCurrent();

curpos = string(é¢largefont, s, &display,
curpos, F STORE);

moveto(curpos);

SEE ALSO

BUGS

globals(3R), jmove(3R), printf(3L), Iputchar(3L), resources(3R),
structures(3R), transform(3R/3L).

The didmoveto initialization scheme will not work with shared text applica-
tions because didmoveto is a global variable shared by all invocations of a
shared text application. Shared text applications must explicitly initialize the
current screen point by calling moveto.

MSGBOX(3R) (630 MTG) MSGBOX(3R)

NAME

msgbox — put up a message in a box
SYNOPSIS

int msgbox (s,...)

char #s;
DESCRIPTION

The msgbox function puts up a message in a box that tracks with the mouse.
Its argument(s) are strings terminated by the argument (char *)0. Each
string is placed on a separate line in the message box and is centered and
displayed with the medium font. The message box replaces the mouse cur-
sor and follows the mouse around the screen until a button is depressed.

If the first argument to msgbox is (char *)0, a message box with the message
"No Memory" is displayed.

If there is no memory for displaying the given message, msgbox puts up a
message box with the message "No Memory" and returns the value 0.
Otherwise, it returns 1.

MSGCTL(3L) (630 MTG) MSGCTL(3L)

NAME
msgctl ~ message control operations

SYNOPSIS
#include <message.h>

int msgctl (msqid, cmd, buf)
long msqid;

int ¢md;

struct msqid_ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations as specified by cmd.
The following cmds are available:

IPC_STAT
Place the current value of each member of the data structure associ-
ated with msgid into the structure pointed to by buf.

IPC_SET
Set the value of the following members of the data structure associ-
ated with msgid to the corresponding value found in the structure
pointed to by buf:
msg_qbytes
cid
state

The creator process id can be changed. This is done so that when
this process is deleted, the queue will be deleted with it.

IPC_RMID
Remove the message queue identifier specified by msgid from the sys-
tem and destroy the message queue and data structure associated
with it. This can be executed by any process.

Msgctl will fail if one or more of the following are true:
Msgqid is not a valid message queue identifier.
Cmd is not a valid command.

Cmd is equal to IPC_SET and an attempt is being made to increase
the value of msg_qgbytes over MAX_QBYTES (8192).

A side effect of msgctl is that it clears the MSG resource ready condition
used by the wait and own resource functions.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned.

SEE ALSO
msgget(3L), msgop(3L), realtime(3R), resources(3R), structures(3R).

MSGGET(3L) (630 MTG) MSGGET(3L)

NAME
msgget — get message queue

SYNOPSIS
#include <message.h>

long msgget (key, msgflg)
long key;
int msgflg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure
are created for key if one of the following is true:

Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with
it, and (msgflg & IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

Msg_qnum;- ‘msg_curbytes, msg_list, msg lspid, msg lrpid,
msg_stime, and msg_rtime are set equal to 0.

Msg_ctime is set equal to the current time (realtime).

Msg_qbytes is seé equal to MAX_QBYTES.

State is set to (msgflg & NO_SAVE).

Cid is set to the calling process’s id (P).

Name is set to key.

If state is ““true”, the meésage queue will be deleted when the process cid is
deleted.

Msgget will fail if one or more of the following are true:

A message queue identifier does not exist for key and (msgfly &
IPC_CREAT) is ““false”.

A message queue identifier is to be created but there isn't enough
memory.

A message queue identifier exists for key but ([msgfly &
IPC_CREAT] && [msgflg & IPC_EXCL]) is ““true”.

Each message queue identifier that msgget returns is added to a list main-
tained for the application. This list defines which message queues constitute
the MSG resource when using the waif(MSG) and own(MSG) functions.

MSGGET(3L) (630 MTG) MSGGET(3L)

Return Value
Upon successful completion, a non-negative long, namely a message queue
identifier (pointer to msqid_ds structure), is returned. Otherwise, a value of
-1 is returned.

SEE ALSO
msgctl(3L), msgop(3L), realtime(3R), resources(3R), structures(3R).

MSGOP(3L) (630 MTG) MSGOP(3L)

NAME
msgop — message operations

SYNOPSIS
#include <message.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
long msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

int msgrev (msqid, msgp, msgsz, msgtyp, msgflg)
long msqid;
struct msgbuf [*]*msgp;
int msgsz;
long msgtyp;
int msgflg;
DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message
queue identifier specified by msgid. Msgp points to a structure containing
the message. This structure is composed of the following members:

long mtype; /* message type */
char mtext]], /* message text */

Mtype is a positive integer that can be used by the receiving process for
message selection (see msgrcv below). Mtext is any text of length msgsz
bytes. Msgsz can range from 0 to what memory will allow.

Msgflg specifies the action to be taken if one or more of the following are
true:

The number of bytes already on the queue is equal to msg_qbytes.
There is not enough memory to put the message on the queue.
These actions are as follows:

If (msgfls & IPC_NOWAIT) is “true”, the message will not be sent
and the calling process will return immediately.

If (msgfly & IPC_NOWAIT) is “false”, the calling process will
suspend execution until one of the following occurs:

The condition responsible for the suspension no longer exists,
in which case the message is sent.

Msgid is removed from the system (see msgctl).

Msgsnd will fail and no message will be sent if one or more of the following
are true:

MSGOP(3L) , (630 MTG) MSGOP(3L)

Msgid is not a valid message queue identifier.
Mtype is less than 1.

The message cannot be sent for one of the reasons cited above and
(msgflg & IPC_NOWAIT) is “true”.

Msgsz is less than zero.

Upon successful completion, the following actions are taken with respect to
the data structure associated with msgid.

Msg_qnum is incremented by 1.
Msg_lspid is set equal to the process id of the calling process.

Msg_stime is set equal to the current time.

An extra feature of msgsnd lets the user send messages without a copy being
made. If (msgfls & NO_COPY) is “true”, the message pointed to by msgp is
put directly into the message queue. This can only be done if the msgbuf
was allocated (created by a call to alloc). This is because the ownership of
that memory must be changed. The sending process then no longer owns
that memory and should not try to access it or free it.

Msgrev reads a message from the queue associated with the message queue
identifier specified by msgid and places it in the structure pointed to by
msgp. This structure is composed of the following members:

long mtype; /* message type */
char mtext[]; /* message text */

Mtype is.the received message’s type as specified by the sending process.
Mtext is the text of the message. Msgsz specifies the size in bytes of mtext.
The received message is truncated to msgsz bytes if it is larger than msgsz
and (msgfls & MSG_NOERROR) is “true”. The truncated part of the mes-
sage is lost and no indication of the truncation is given to the calling pro-
cess.

Msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is
received.

If msgtyp is less than 0, the first message of the lowest type that is
less than or equal to the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not
on the queue. These are as follows:

If (msgflg & TIPC_NOWAIT) is “true”, the calling process will return

-2

MSGOP(3L) (630 MTG) MSGOP(3L)

immediately with a return value of -1.

If (msgfly & IPC_NOWAIT) is “false”, the calling process will
suspend execution until one of the following occurs:

A message of the desired type is placed on the queue.

Msgid is removed from the system. When this occurs, a value
of -1 is returned.

Msgrev will fail and no message will be received if one or more of the fol-
lowing are true:

Msgid is not a valid message queue identifier.
Msgsz is less than 0.

Mtext is greater than msgsz and (msgfly & MSG_NOERROR) is
“false”.

The queue does not contain a message of the desired type and
(msgtyp & IPC_NOWAIT) is “true”.

Upon successful completion, the following actions are taken with respect to
the data structure associated with msgid.

Msg_qnum is decremented by 1.
Msg_lIrpid is set equal to the process id of the calling process.

Msg_rtime is set equal to the current time.

Again, the option of not copying the message is available. If (msgflg &
NO_COPY) is “true”, msgp is treated as a pointer to a pointer to a message.
In other words, *msgp is set to the address of the received message. The
ownership of the message is then set to the receiving process. The receiving
process can then read the message and free it.

A side effect of msgrcv is that it clears the MSG resource ready condition
used by the wait and own resource functions.

Return Values
Upon successful completion, the return value is as follows:

Msgsnd returns a value of 0.

Msgrcv returns a value equal to the number of bytes actually placed
into mtext.

Otherwise, a value of -1 is returned.

SEE ALSO
alloc(3R), msgctl(3L), msgget(3L), realtime(3R), resources(3R), structures(3R).

-3-

MULDIV(3L) (630 MTG) MULDIV(3L)

NAME
muldiv - calculate (a*b)/c accurately

SYNOPSIS
#include <dmd.h>
short muldiv (a, b, c)
int a, b, ¢

DESCRIPTION
The muldiv function is a macro that returns the 16-bit result (a*h)/c. (a*b) is
calculated to 32 bits to minimize the precision lost. The muldiv function is
convenient for calculating transformations.

EXAMPLE

The following subroutine implements the transform(3R) function. It converts
a point from window coordinates to screen coordinates:

#include <dmd.h>

Point
transform(p)
Point p;

{

Point Do, Dc, ret;

Do = Drect.origin;

Dc = Drect.corner;

ret.x = muldiv(p.x, Dc.x-Do.x, XMAX) + Do.x;
ret.y = muldiv(p.y, Dc.y-Do.y, YMAX) + Do.y;

return(ret);

}

The following subroutine does the opposite of the transform(3R) function. It
converts a point from screen coordinates to window coordinates.

#include <dmd.h>

Point
untransform(p)
Point p;
Point Do, Dc, ret;
Do = Drect.origin;
Dc = Drect.corner;
ret.x = muldiv(p.x-Do.x, XMAX, Dc.x-Do.x);
ret.y = muldiv(p.y-Do.y, YMAX, Dc.y-Do.y);

-1-

MULDIV(3L) (630 MTG) MULDIV(3L)

return(ret);

}

SEE ALSO
globals(3R), ptarith(3R), transform(3R/3L).

NEWRECT(3R) (630 MTG) NEWRECT(3R)

NAME , ,
newrect — get swept or default rectangle

SYNOPSIS
#include <dmd.h>

Rectangle newrect (btn, rect)
int btn;
Rectangle rect;

DESCRIPTION ;

The newrect function prompts the user with a sweep cursor and an outline
of the specified Rectangle rect, which then moves with the mouse. The
function then busy waits for a Rectangle to be swept out with the specified
btn button, or for the outline to be chosen by a click of btn. The function
then returns the screen coordinates of the created Rectangle. If any button
other than bin is depressed at any stage of the operation, newrect returns‘a
null size Rectangle (i.e., the lower right corner is equal to the upper left ori-
gin). If rect is a null size Rectangle, no outline will be presented only a
sweep cursor w111 appear. :

EXAMPLE
The following routine will permit the user to sweep out a Rectangle. As
long as the Rectangle swept out does not have any points in common with
Drect, the user will be prompted to sweep out another Rectangle. Once the
swept out Rectangle has points within Drect, the Rectangle will be clipped
to Drect and returned.

#include <dmd.h>

Rectangle
sweep rect()

{

Rectangle r;

do

r = newrect(2, Drect);
while (!rectclip(ér, Drect));
return r;

SEE ALSO
box(3R), rectclip(3R).

DIAGNOSTICS
A mouse click is detected by the amount of mouse movement, not by the
time between a button depression and release. The function newrect will see
as a click any sweeping action whose result is a Rectangle less than 20 by
20 pixels.

NORM(3L) (630 MTG) NORM(3L)

NAME
norm, sqrtryz — return norm or coordinate of three-dimensional vector

SYNOPSIS
int norm (x, y, z)

int sqrtryz (r, y, 2)

intr, x, y,

DESCRIPTION
The norm utility returns the norm of the vector (x, y, z). It is defined by the
equation:

Va2 +y2+z2

The sqrtryz call returns the x-coordinate when passed the norm r and y and
z coordinates. It is defined by the equation:

PEEL(3R) (630 MTG) PEEL(3R)

NAME

peel — make process local and create new process

SYNOPSIS

#include <dmd.h>

Proc *peel (dstrect, flag)
Rectangle dstrect;
int flag;

DESCRIPTION

The peel function is an uncommon feature that allows a process to be made
local and reshaped (or moved). The peel function then creates a new pro-
cess that uses the previous process’s window and host connection. The rec-
tangle dstrect defines the new window (display) to be used by the peeled
local process. The remaining window is associated with a new process that
takes on the status of the connection of the previous process.

If argument flag is zero, the terminal’s default process is started in the old
window. If argument flag has a non-zero value, the process that is used to
replace the peeled process is another invocation of the same process. The
process must be cached to do this.

The peeled process will have its P->state variable updated. If the dstrect
rectangle is the same size as the original window, both the MOVED and
RESHAPED bits will be.set; otherwise, just the RESHAPED bit is set. If the
MOVED bit is set, the new window will have the contents of the old win-
dow copied into it. Otherwise, it is the responsibility of the peeled process
to draw the new window’s contents. The old window is always cleared.

The function will return -1 if it failed due to a lack of memory. It will
return 0 if it failed because dstrect is smaller than 32x32. Otherwise, it will
return a pointer to the newly created process running in the old window.

EXAMPLE

The following example shows how a process can peel itself and leave
behind the default terminal process. The rectangle dstrect is specified
through the mouse interface that allows the user to position or sweep out a
rectangle using a default size as specified by the rectangle of the window or
a new size using the mouse and button 2.

#include <dmd.h>
Proc *peel();
Rectangle newrect();

int
peelme()

{

Proc *p;

p = peel(newrect(2, display.rect), 0);
if(p == (Proc *)-1)

msgbox("no memory", (char *)0);
else if(p == (Proc *)0)

-1-

PEEL(3R) (630 MTG) PEEL(3R)

msgbox("swept window too small", (char *)0);
return((longlp > 0);

SEE ALSO
cache(3L), local(3R), state(3R).

PFKEY(3R) (630 MTG) PFKEY(3R)

NAME
pfkey — get programmable function (PF) key strings

SYNOPSIS
int pfkey (keynum, str, maxlen)
int keynum, maxlen;
char #str;

DESCRIPTION
The pfkey function places up to (maxlen-1) characters from the given pro-
grammable function (PF) key keynum into the character array str which must
be big enough to accept them. When pfkey encounters a null value or it has
processed the (maxlen-1) th character, pfkey terminates the string with a
NULL and returns the length of the string.

The value of keynum must be between 0x80 and 0x87, inclusive, which
corresponds to PF key F1 to F8 on the keyboard. Each PF key can store up
to 80 characters plus a NULL in the non-volatile BRAM space of the termi-
nal.

EXAMPLE
The following code displays the value of programmable function key F1 on
the window.

#include <dmd.h>
#define MAXPFKEY 80

showf1 () {
char pfval[MAXPFKEY+1];

pfkey (0x80, pfval, MAXPFKEY+1);
jstring (pfval);

SEE ALSO
keyboard(3R).

POINT(3R)

NAME

(630 MTG)

point — draw a single pixel in a Bitmap

SYNOPSIS

#include <dmd.h>

void point (b, p, O
Bitmap *b;

Point p;
Code f;

DESCRIPTION

POINT(3R)

The point function draws the pixel at Point p in the Bitmap *b according to
function Code f.

EXAMPLE

The following program determines the Point at the middle of the window

and draws

it. Hitting any key will exit the program.

#include <dmd.h>

Point
Point
Point
Point

main()

{

Point

SEE ALSO
jpoint(3R).

middle();
add();
div();
sub();

Point centerdot;

centerdot = middle();

point (&display, centerdot, F _XOR);
request (KBD) ;

wait (KBD);

middle()

Point center, offset;

offset = div (sub (Drect.corner,
Drect.origin), 2);
center = add (Drect.origin, offset);

return center;

POLYGON(3L) (630 MTG) POLYGON(3L)

NAME
polygon: polyf, ptinpoly — polygon routines

SYNOPSIS
#include <dmd.h>

int polyf (bp, poly, np, t,)
int ptinpoly (pt, poly, np)

Bitmap *bp;
Point poly| |;
short np;
Texturel6 *t;
Code f;
Point pt;

DESCRIPTION
The polyf function is used to fill a closed polygon defined by the np Points
in the array of Points poly. The Points are absolute with respect to the Bit-
map bp. The polygon is filled with the Texturel6 t using Code f. The polyf
call returns 0 if the polygon is filled and -1 if a memory allocation error
occurred during processing, in which case the polygon is not filled.

The ptinpoly call determines whether the Point pt is contained in the
polygon defined by poly and np. The ptinpoly function returns 1 if the Point
is inside the polygon, 0 if the Point is not inside the polygon, and -1 if a
memory allocation error occurs.

The polygon can consist of an arbitrary number of filled and unfilled
regions. For example, a doughnut shape could be formed without filling the
portion of the Bitmap corresponding to the hole of the doughnut. This per-
mits a preservation of any background information previously placed in the
Bitmap. Each region, filled or unfilled, is delimited by a Point whose x-
coordinate has a value of POLY_F (defined in dmd.h). This Point in poly is
ignored and merely serves as a flag indicating the start of a new region.
There is always an assumed line connecting the first and last Point of each
region.

EXAMPLE
The following code permits interactive drawing of a polygon with interior
regions, fills it, and then uses ptinpoly to determine if the mouse is inside
the polygon. Button 1 is used to draw the points, and button 2 sets a point
to POLY_F. After the polygon fills, clicking button 1 with the mouse inside
the polygon will ring the terminal bell. Clicking button 3 will exit the
drawing and exit the program.

POLYGON(3L) (630 MTG)

#include <dmd.h>
Point npolyl[10001];

main()
register int i, J;
register char c;

request (MOUSE IKBD);

i=0;
for (;3;)
{
while (i < 1000){
wait (MOUSE);
if(buttont ()){

npolyli++] = mouse.xy;

POLYGON(3L)

point (&gdisplay, mouse.Xxy,

F _STORE);
sleep (10);
continue;
}
if(button2 ()){
npolyli++].x =
continue;

}

if(button3 ()) break;

}
polyf (&display, npoly, i,
F _STORE);

wait (MOUSE);

while(!button3()) {
wait (MOUSE);

if(buttoni1() && ptinpoly
(mouse.xy, npoly,

ringbell();

break;

&T black,

PRINTE(3L) (630 MTG) PRINTF(3L)

NAME

printf, fprintf, sprintf, lprintf, bprintf — print formatted output
SYNOPSIS

int Printf (format [, arg] ...)

void printf (format [, arg] ...)

char *format;

int Fprintf (stream, format [, arg] ...)

void fprintf (stream, format [, arg] ...)

char *format;
FILE #*stream;

int Sprintf (s, format [, arg] ...)
void sprintf (s, format [, arg | ...)
char *s, format;

int Lprintf (format [, arg] ...)
void lprintf (format [, arg | ...)
char *format;

int Bprintf (format [, arg] ...)
void bprintf (format [, arg | ...)
char *format;

DESCRIPTION

Lprintf places output in the calling process’s window. Bprintf places output
at the bottom part of the 630’s screen. Printf places output on the standard

output stream stdout. Fprintf places output on the named output stream.

Sprintf places “output,” followed by the null character (\0), in consecutive
bytes starting at #s; it is the user’s responsibility to ensure that enough
storage is available. Each function returns the number of characters
transmitted (not including the \0 in the case of Sprintf), or a negative value
if an output error was encountered. The printf, Iprintf, bprintf, forintf, and
sprintf functions operate the same as those starting with a capital letter but
support only a limited number of format options and no return value.

Each of these functions converts, formats, and prints its args under control
of the format. The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output stream, and
conversion specifications, each of which results in fetching of zero or more
args. The results are undefined if there are insufficient args for the format.
If the format is exhausted while args remain, the excess args are simply
ignored.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width.
If the converted value has fewer characters than the field width, it
will be padded on the left (or right, if the left-adjustment flag -’
(described below) has been given) to the field width. If the field
width for an s conversion is preceded by a 0, the string is right

-1 -

PRINTF(3L)

(630 MTG) PRINTF(3L)

adjusted with zero-padding on the left.

A precision gives the minimum number of digits to appear for the d,
0, u, x, or X conversions, the number of digits to appear after the
decimal point for the e and f conversions, the maximum number of
significant digits for the g conversion, or the maximum number of
characters to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit string; a
null digit string is treated as zero.

An optional 1 (ell) specifying that a following d, o, u, x, or X
conversion character applies to a long integer arg. A 1 before any
other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a
digit string. In this case, an integer arg supplies the field width or precision.
The arg that is actually converted is not fetched until the conversion letter is
seen, so the args specifying field width or precision must appear before the
arg (if any) to be converted.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the field.
The result of a signed conversion will always begin with a sign
(+ or -).

If the first character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and
+ flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an “alter-
nate form.” For ¢, d, s, and u conversions, the flag has no effect.
For o conversion, it increases the precision to force the first digit
of the result to be a zero. For x or X conversion, a non-zero
result will have 0x or 0X prefixed to it. For e, E, f, g, and G
conversions, the result will always contain a decimal point, even
if no digits follow the point (normally, a decimal point appears
in the result of these conversions only if a digit follows it). For g
and G conversions, trailing zeroes will not be removed from the
result (which they normally are).

The conversion characters and their meanings are:

d,0,u,x,X The integer arg is converted to signed decimal, unsigned octal,

decimal, or hexadecimal notation (x and X), respectively; the
letters abcdef are used for x conversion and the letters ABCDEF
for X conversion. The precision specifies the minimum number
of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading
zeroes. (For compatibility with older versions, padding with
leading zeroes may alternatively be specified by prepending a
zero to the field width. This does not imply an octal value for
the field width.) The default precision is 1. The result of con-
verting a zero value with a precision of zero is a null string.

-2 -

PRINTEF(3L) (630 MTG) PRINTEF(3L)

f The float or double arg is converted to decimal notation in the
style “[-]ddd.ddd,” where the number of digits after the decimal
point is equal to the precision specification. If the precision is
missing, six digits are output; if the precision is explicitly 0, no
decimal point appears.

eE The float or double arg is converted in the style “[-]Jd.ddde +dd,”
where there is one digit before the decimal point and the number
of digits after it is equal to the precision; when the precision is
missing, six digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a
number with E instead of e introducing the exponent. The
exponent always contains at least two digits.

g.G The float or double arg is printed in style f or e (or in style E in
the case of a G format code), with the precision specifying the
number of significant digits. The style used depends on the
value converted: style e will be used only if the exponent result-
ing from the conversion is less than —4 or greater than the preci-
sion. Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and characters
from the string are printed until a null character (\0) is encoun-
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are
printed. A NULL value for arg will yield undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters generated by
Printf, printf, Fprintf, and fprintf are printed as if putc(3S) had been called.
Characters generated by Lprintf and Iprintf are printed as if Iputchar(3L) had
been called. Characters generated by Bprintf and bprintf are printed as if
bputchar(3L) had been called.

The routines printf, Iprintf, bprintf, fprintf, and sprintf support only the d, o,
u, X, 8, and ¢ conversion characters and the optional 1. They do not support
floating point format, flags, field width, or precision options. This makes
their code size small.

EXAMPLES
To print a date and time in the form “Sunday, July 3, 10:02,” where week-
day and month are pointers to null-terminated strings:

Lprintf(" %s, %s %d, %d:%.2d", weekday, month, day, hour, min);
To print 7 to 5 decimal places:
Lprintf("pi = %.5f", 4 * atan(1.0));

SEE ALSO
jx(1), bputchar(3L), ecvt(3L), lputchar(3L).
putc(3S) in the UNIX System V Programmer’s Reference Manual.

-3

PRINTQ(3R) (630 MTG) PRINTQ(3R)

NAME
printq: printqempty, printqspace, printqclear — printer queue management

SYNOPSIS
int printqempty ()

int printqspace ()

void printqclear ()

DESCRIPTION
Between terminal processes and the printer is a queue used for buffering
characters being sent to the printer. The printgempty function returns 1 if
this queue is empty. Otherwise, 0 is returned. ‘

The printgspace function returns the number of characters that can be added
to the queue before it fills. A full buffer affects the way the psendchar func-
tion operates.

The printqclear function removes all the characters currently in the queue.
This prevents them from going to the printer. This routine clears the queue
only if the printer is owned.

If the printer is not owned, printgempty returns 1 and printgspace returns 0.

SEE ALSO
psendchar(3R), resources(3R).

PSENDCHAR(3R) (630 MTG) PSENDCHAR(3R)

NAME
psendchar, psendnchars, xpsendchar, xpsendnchars — send character to

printer port

SYNOPSIS
int psendchar (c)

int xpsendchar (c)
void psendnchars (n, s)
void xpsendnchars (n, s)

char ¢
int n;
char #s;

DESCRIPTION
The psendchar function sends a single byte to the printer output queue. If
the calling process does not own the printer, psendchar will send nothing to
the printer and returns a 0. Otherwise, psendchar initiates printing and
returns a 1.

The xpsendchar function is identical to psendchar except that it may expand
tabs and filter escape sequences depending on the printer’s setup values.

The psendnchars and xpsendnchars functions send the string s of length n to
the printer. Xpsendchars handles expanding tabs and filtering escape
sequences. These routines block until all the characters fit on the printer
output queue.

If the printer output queue is full, the above functions will block the
calling process until they are able to place the data into the printer queue.

SEE ALSO
resources(3R).

PT(3L) (630 MTG) PT(3L)

NAME
pt: Pt, Rpt, Rect — create a Point or Rectangle from arguments

SYNOPSIS
#include <dmd.h>

Point Pt (x, y)
int x, y;

Rectangle Rpt (p, q)
Point p, q;

Rectangle Rect (a, b, ¢, d)
int a, b, ¢, d;

DESCRIPTION
These functions are special macros that are to be used only in an argument
list to a function. They are functionally equivalent to the ones in fpt(3L)
but are faster for the above situation.

The Pt argument passes a coordinate pair as a Point to a function.
The Rpt argument passes two Points as a Rectangle to a function.

The Rect argument passes four coordinates (two coordinate pairs) as a Rec-
tangle to a function.

EXAMPLE
The following subroutine draws two boxes in the upper left corner of the
window.
#include <dmd.h>

drawboxes ()

{
Point add();
Rectangle raddp();
box(&display,
Rpt(Drect.origin, add(Drect.origin, Pt(100 ,100))),
F _STORE) ;
box(&display,
raddp(Rect(0,0,200,200), Drect.origin),
F _STORE);
}
SEE ALSO
fpt(3L).

PT2WIN(3L) (630 MTG) PT2WIN(3L)

NAME
pt2win: point2window - find process table address of a window

SYNOPSIS
#include <dmd.h>
Proc *point2window (btn)
int btn;

DESCRIPTION
The point2window function implements the user interface for pointing to
windows that are used by the Reshape, Move, Top, etc. functions of the 630
MTG main button 3 menu.

When point2window is called by an application program, the mouse cursor
changes to a target icon. The function then busy waits for the user to move
the mouse cursor into a window and press the button specified by btn.
When this happens, the mouse cursor will change back to the previous
mouse cursor, and the process table address of the window pointed to will
be returned.

The function will return (Proc *)0 if the user either clicks button btn while
the target is over background texture or clicks a mouse button other than
button btn.

EXAMPLE
The follow subroutine will flash a window pointed to with button 3. Note
that in the following code, p->layer is equivalent to &display for process p
and that p->rect is equivalent to Drect for process p.

#include <dmd.h>

flash()
{
Proc *p;
Proc *point2window();

p = point2window(3);

if(p) {
rectf(p->layer, p->rect, F XOR);
nap(20);
rectf(p->layer, p-> rect, F XOR);

SEE ALSO
globals(3R), rectf(3R), sleep(3R).

PTARITH(3R) (630 MTG)
NAME

ptarith: add, sub, mul, div - arithmetic on Points
SYNOPSIS

#include <dmd.h>

Point add (p, q)

Point sub (p, q)

Point mul (p, a)

Point div (p, a)

Point p, q;

int a;

DESCRIPTION

The add function returns the Point sum of its arguments:
{ p.x+q.x, p.y+q.y }

The sub function returns the Point difference of its arguments:
{p.x-q.x, p.y-q.y }

The mul function returns the Point:

{ p.x*a, p.y*a }
The div function returns the Point:

{p.x/a, p.y/a }.

EXAMPLE
The following routine returns the center Point of a window.

#include <dmd.h>

Point add();

Point sub();

Point div();

Point

getcenter()

{ Point offset;
offset = div (sub

(Drect.corner,Drect.origin), 2);

return add (Drect.origin, offset);

PTARITH(3R)

PTARITH(3R) (630 MTG) PTARITH(3R)

SEE ALSO
globals(3R), rectarith(3R), transform(3R/3L).

PTINRECT(3R) (630 MTG) PTINRECT(3R)

NAME
ptinrect — check for Point inclusion in a Rectangle

SYNOPSIS
include <dmd.h>

int ptinrect (p, 1
Point p;
Rectangle r;

DESCRIPTION
The ptinrect function returns 1 if p is a Point within Rectangle r ; and 0,
otherwise.

EXAMPLE
The following routine will draw a box in the middle of a window. Then
when button 1 is depressed within the box, the bell will ring. The routine
returns when a key is typed.

#include <dmd.h>
Point add();
Point subl();
Point div();

ringbox()

{

Point center, offset;
Rectangle midbox;

offset = div (sub (Drect.corner,
Drect.origin), 2);

center = add (Drect.origin, offset);

midbox.origin = sub (center, Pt (16, 16));

midbox.corner = add (center, Pt (16, 16));
box (&display, midbox, F XOR);
request (MOUSE IKBD);
while (kbdchar () == -1){
wait (MOUSE);
if (ptinrect (mouse.xy, midbox) &¢&
buttoni1()) ringbell();

QSORT(3L) (630 MTG) QSORT(3L)

NAME

gsort — quicker sort

SYNOPSIS

void gsort ((char *) base, nel, sizeof (*base), compar)
unsigned nel;
int (*compar)();

DESCRIPTION

gsort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

The base points to the element at the base of the table. The pointer to the
base of the table should be of type pointer-to-element, and cast to type
pointer-to-character.

The nel argument is the number of elements in the table.

The compar element is the name of the comparison function which is called
with two arguments that point to the elements being compared. It need not
compare every byte, so arbitrary data may be contained in the elements in
addition to the values being compared. The function must return an integer
less than, equal to, or greater than zero based on whether the first argument
is to be considered less than, equal to, or greater than the second.

EXAMPLE

The following routine will accept Points designated by clicking button 1 and
then sort the array based on x and y coordinate values.

#include <dmd.h>
Point pl100];

ptcompar{p, q)
Point *p, *q;

{
if (p->y < g->y) return -1;
if (p->y == g->y){
if (p->x == g->x) return 0;
if (p->x < g->x) return -1;
return 1;
}
return 1;
}
Point *

sortpoints()

{

int i;

request (MOUSE IKBD);
for(i = 0; i < 100;){
wait (MOUSE);
if(buttont1 ()){

-1 -

QSORT(3L) (630 MTG) QSORT(3L)

pli++] = mouse.xy;
sleep (10);
continue;

if(button3 ()) break;

gsort ((char *)p, i, sizeof(Point),
ptcompar);
return p;

NOTES
The order in the output of two items which compare as equal is unpredict-

able.

SEE ALSO
bsearch(3L), l1search(3L), str(3L).

RAND(3L) (630 MTG) RAND(3L)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION
Rand uses a multiplicative, congruential, random-number generator with
period 2*? that returns successive pseudo-random numbers in the range
from 0 to 2°-1.

Srand can be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of 1.

NOTES
The spectral properties of rand are limited. Drand48(3L) provides a much
better, though more elaborate, random-number generator.

SEE ALSO

drand48(3L).

RCVCHAR(3R) (630 MTG) RCVCHAR(3R)

NAME

rcvchar — receive character from host
SYNOPSIS

int rcvchar ()
DESCRIPTION

The rcochar function returns the next character received from the host. If
there are no characters available, rcochar returns -1.

Since local programs have no host connection, a call to rcuchar by a local
program will always return -1.

EXAMPLE
The following program is a very simple terminal emulator.

#include <dmd.h>

main()

{

int c¢;

request (RCV);
for(;;) {
wait(RCV);
while((c=rcvchar()) t= -1)
lputchar(c);

SEE ALSO ‘
local(3R), resources(3R), sendchar(3R).

REALTIME(3R) (630 MTG) REALTIME(3R)

NAME

realtime - terminal clock
SYNOPSIS

unsigned long realtime ()
DESCRIPTION

The realtime function returns the number of 60Hz clock ticks since the ter-
minal was booted.

EXAMPLE
The following code could be used to roughly measure the performance of

bitblt.

#include <dmd.h>
unsigned long realtime();

unsigned long

perf bitblt(sb, r, db, p, f)
Bitmap *sb, *db;

Rectangle r;

Point p;

Code f£;

{

unsigned long begin;

begin = realtime ();
bitblt (sb, r, db, p, £);
return (realtime () - begin);

RECTARITH(3R) (630 MTG) RECTARITH(3R)

NAME
rectarith: raddp, rsubp - arithmetic on Rectangles

SYNOPSIS
#include <dmd.h>
Rectangle raddp (r, p)

Rectangle rsubp (r, p)

Rectangle r;
Point p;

DESCRIPTION
The raddp function returns the Rectangle defined by (add(r.origin, P
add(r.corner, p)).
The rsubp function returns the Rectangle defined by (sub(r.origin, p),
sub(r.corner, p)).

EXAMPLE
The following code will return a rectangle with the mouse coordinates at
the center of the box.

#include <dmd.h>

Rectangle
makebox ()

{

return (raddp (Rect(-15, -15, 15, 15),
mouse.xy));

SEE ALSO
ptarith(3R), structures(3R).

RECTCLIP(3R) (630 MTG) RECTCLIP(3R)

NAME
rectclip - clip a Rectangle to another Rectangle

SYNOPSIS
#include <dmd.h>

int rectclip (rp, s)
Rectangle *rp, s;

DESCRIPTION
The rectclip function clips the Rectangle pointed to by rp so that it is com-
pletely contained within the Rectangle s. The return value is 1 if any part
of *rp is within s. Otherwise, the return value is 0 and *rp is unchanged.

EXAMPLE
See the example for newrect(3R).

SEE ALSO
newrect(3R).

RECTF(3R) (630 MTG) RECTF(3R)

NAME
rectf — perform function on Rectangle in Bitmap

SYNOPSIS
#include <dmd.h>

void rectf (b, r, f)
Bitmap #*b;
Rectangle r;
Code f;

DESCRIPTION
The rectf function performs the action specified by the function Code f on
the Rectangle r within the Bitmap *b.

EXAMPLE
The following routine will “doodle” on the screen using a Rectangle.

#include <dmd.h>

int request();
int wait();
Point add();
void rectf();

main()

{
Rectangle r;
Point s;

s.Xx = 16;
s.y = .16;
request (MOUSE) ;
for (wait(MOUSE); !button3();
wait (MOUSE)) {
r.origin = mouse.jxy;
r.corner = add (r.origin, s);
if(buttoni())
rectf (édisplay, r, F _STORE);
if(" button2())
rectf (&¢display, r, F CLR);

}

SEE ALSO
jrectf(3R), structures(3R).

RECTXRECT(3R) (630 MTG) RECTXRECT(3R)

NAME
rectxrect: rectXrect — check for overlapping Rectangles

SYNOPSIS
#include <dmd.h>

int rectXrect (r, s)
Rectangle r, s;

DESCRIPTION
The rectXrect function returns 1 if r and s share any point; 0, otherwise.

EXAMPLE
The following routine will prompt the user to sweep out two Rectangles

with button 1. If they intersect, the bell will ring. Typing any key will exit
the program.

#include <dmd.h>

int request();

int wait();

void box();

void ringbell();
Rectangle newrect();

main()

{

Rectangle r, s;

request (MOUSE IKBD);
while (kbdchar () == -1) {
wait (MOUSE);

r = newrect (1, Rect(0,0,0,0));
box (&display, r, F _XOR);

s = newrect (1, Rect(0,0,0,0));
box (&display, s, F XOR);

if (rectXrect (r, s))

ringbell ();
box (&display, r, F XOR);
box (&display, s, F XOR);

wait (MOUSE | KBD);

SEE ALSO
structures(3R).

RESOURCES(3R) (630 MTG) RESOURCES(3R)

NAME
resources: request, own, wait, alarm - routines dealing with resources

SYNOPSIS
#include <dmd.h>

int request (r)
int own ()
int wait (r)

void alarm (t)

int r;
unsigned t;

DESCRIPTION
The above routines deal with the following 630 MTG resources:
KBD characters received from the 630 MTG keyboard
SEND send characters from the 630 MTG to the host
MOUSE mouse buttons and cursor position
RCV characters received by 630 MTG from host process
PSEND send characters to the printer
CPU 630 MTG cpu
ALARM alarm has "fired"
RESHAPED window has been reshaped or moved
DELETE application is being deleted
MSG state of message queues has changed

Request announces a program’s intent to use one or more resources and is
usually called once early in the program. The r argument is a bit vector
indicating which resources are being requested. Compose r by using the bit-
wise inclusive OR operator of the above resources (MOUSE!KBD means you
are referring to the mouse and keyboard resources). Request returns a bit
vector that indicates those resources for which the request succeeded.

Note that if a program calls request several times, each request overrides all
previously requested resources. This means that a resource previously
requested, but not specified in the latest call to request , will no longer be
available to the application program.

If the keyboard is not requested, characters typed will be sent to the host.
If the mouse is not requested, mouse events in the application’s window
will be interpreted by the terminal’s control process (the terminal’s control
process is the process that displays the main button 3 menu and makes win-
dows top and current when pointed to by button 1). SEND and CPU are
always implicitly requested.

A request of PSEND will fail if another application program has already
requested it. Currently, PSEND is the only resource that may fail a request.
PSEND must be requested and owned before sending characters to the
printer.

RESOURCES(3R) (630 MTG) RESOURCES(3R)

Requesting the DELETE resource tells the terminal’s control process to not
allow a user to delete the applications window from the main button 3
menu. Rather, the control process sets a flag which causes own()&DELETE to
be true. This is intended for use by applications which need to perform
some type of cleanup before being deleted. When own()&DELETE becomes
true, it is the responsibility of the application to perform its cleanup and
delete itself (see example below).

The own function returns a bit vector indicating which resources are ready
to be serviced.

The wait function suspends the application, enabling others to run, until at
least one of the resources in the bit vector r is ready for service. The return
value is a bit vector indicating which resources are ready for service. Appli-
cations wishing to give up the processor to enable other applications to run
may call wait(CPU). In this case, wait will always return as soon as all other
applications have had a chance to run.

The alarm function starts a timer which will “fire” t ticks (60ths of a second)
in the future. Calling alarm implicitly requests the ALARM . The resource
ALARM can be used to check the status of the timer. The own() &ALARM
call will indicate whether or not the alarm timer has fired. A wait(ALARM)
call allows the application to give up the CPU until the specified number of
ticks has elapsed. An alarm(0) call cancels a previous call to alarm.

An alarm call does not interfere with sleep and vice versa.

The call wait (RESHAPED) will suspend the application until the
application’s window has been either moved or reshaped. The MOVED and
RESHAPED bits of the application’s state variable (P->state) can be read to
determine which of the two has occurred. If the window was moved, both
the MOVED and RESHAPED bits are set; only the RESHAPED bit is set if
the window was reshaped. The application is responsible for clearing the
state variable MOVED and RESHAPED bits regardless of whether they are
read or not. Subsequent wait (RESHAPED) calls will return immediately if
the application has not cleared the MOVED and RESHAPED bits.
RESHAPED is always implicitly requested.

The call wait (MSG) will suspend the application until the state of any of
the message queues associated with the application changes. A list of mes-
sage queue identifiers is maintained for each application. A message queue
identifier is entered into this list during a call by the application to the func-
tion msgget when either a message queue is created or an identifier for an
existing message queue is retrieved. Once added to this list, a message
queue identifier is removed from the list only when the message queue is
deleted. The message queue can be deleted by any running application
with a call to the function msgctl or is deleted automatically if it was created
with the NO_SAVE option and the creating application is deleted or exits.

The function calls own(MSG) and wait(MSG) will return the MSG bit true
in the returned bit vector after any of three state changes occur to any of
the message queues associated with the application: 1) a message queue
when added to the application’s list already has one or more messages on it,
2) a message is received at a message queue, or 3) a message queue on the

-2

RESOURCES(3R) (630 MTG) RESOURCES(3R)

list is deleted. This condition remains true until cleared by a call to the
function msgctl to examine a message queue or by a call to the function
msgrcv to receive a message from a queue. Note that several applications
may simultaneously be waiting for the same message queue. If a message
arrives at the queue, all of the waiting applications will be restarted. If the
first application that is restarted removes the arrived message from the
queue and does not replace it back on the queue with a call to the function
msgsnd, the other applications that were waiting will find no message when
they are restarted. Similarly, an application may find no message queue
when it is restarted if the queue was deleted by another application. If an
application sends a message to a message queue that is on its own message
queue list, the wait condition becomes true for it also.

EXAMPLE
The following program fragment shows how an application can give up but-
ton 3 processing to the terminal’s control process. This is how applications
who request the mouse but do not use button 3 can let the main button 3
menu be displayed.

Note that the sleep (2) below is necessary because the terminal's control pro-
cess runs only once every tick (60th of a second) of the realtime clock.

#include <dmd.h >

main()

{

int r;

r = request (MOUSE);
if (button3()){
request (r & MOUSE); /* release the mouse */
sleep (2);/% sleep(2) since control process */
/* only runs once every clock tick */
request (r);

The following program shows how to use the DELETE resource. This pro-
gram will ring the terminals bell before it is deleted. Typically, rather than
ringing the bell, some application specific cleanup would be performed.

#include <dmd.h>

main()

{

request (DELETE IMOUSE) ;

for(;;) {
wait(DELETEIMOUSE);
if(own()&DELETE)
ringbell(); /* or cleanup */
delete(); /* delete me */

-3-

RESOURCES(3R) (630 MTG) RESOURCES(3R)

}

The following code fragment shows how to use the RESHAPED resource.
Upon return from wait it tests the state variable to determine if the window
was moved or reshaped. Depending on which occurred, an appropriate flag
is set and the state variable is cleared.

#include <dmd.h>

int moved=0;
int reshaped=0;

wait (RESHAPED) ;
if (p->state&gMOVED) {
moved++;
P->state &= “(MOVED IRESHAPED);

else if ((P->state&RESHAPED) && ! (P- >state§MOVED))
{ reshaped++;
p->state &= RESHAPED;

SEE ALSO
msgctl(3L), msgget(3L), msgop(3L), sleep(3R), state(3R).

RINGBELL(3R) (630 MTG) RINGBELL(3R)

NAME
ringbell, click - ring, click the 630 MTG

SYNOPSIS)
void ringbell ()
void click ()

DESCRIPTION
The ringbell function rings the bell on the 630 MTG.

The click function makes the 630 MTG click as if a key has been depressed.

EXAMPLE
See the example in polygon(3L).

ROL(3L) (630 MTG) ROL(3L)

NAME
rol, ror — rotate bits

SYNOPSIS
int rol (x, n)

int ror (x, n)

int x, n;

DESCRIPTION
The rol function returns x logically bit-rotated left by n.
The ror function returns x logically bit-rotated right by n.

EXAMPLE
The following subroutine can be used to determine whether a Point pina
Bitmap b is on or off (returning 1 or 0, respectively).

#include <dmd.h>

pixel (b, p)
Bitmap *b;
Point p;

{

Word *w;

w = addr (b, p);
return ((rol (*w, p.x%WORDSIZE)
& FIRSTBIT)==FIRSTBIT);

}

This routine is implemented differently in addr(3R).

SEE ALSO
addr(3R).

SCREENSWAP(3R) (630 MTG) SCREENSWAP(3R)

NAME
screenswap — swap screen Rectangle and Bitmap

SYNOPSIS
#include <dmd.h>
void screenswap (b, r, s)
Bitmap *b;
Rectangle r, s;

DESCRIPTION
The screenswap function does an in-place exchange of the Rectangle r within
the Bitmap b and screen rectangle s. This exchange is done by bithlt'ing the
bitmaps back and forth three times in XOR mode. This technique allows bit-
maps to be exchanged without need for intermediate storage.
The action of screenswap is undefined, if 7 and s are not the same size.
Screenswap writes to the physical bitmap, so the s argument is clipped to the
screen, not to the window’s rectangle (display.rect).

EXAMPLE

The following program floats a picture of a sailboat across the screen.

The 630 MTG mouse cursor is painted in XOR mode and therefore changes
to inverse video when it moves over highlighted areas. This sailboat, how-
ever, does not inverse video when it moves over parts of the screen that are
highlighted. This is accomplished by saving whatever is on the screen in the
spot where the sailboat is currently painted and restoring the screen when
the sailboat moves. The unique aspect of this is that the same physical
memory is used to alternately store the picture of the sailboat and the saved
screen rectangle, and these two bitmaps are swapped without use of inter-
mediate storage.

#include <dmd.h>

unsigned short sailiconl] = {
0XxFDFF, OXF9FF, OxF1FF, OXEOFF,
O0xFD7F, OxF9BF, OxFS5DF, OxEDEF,
0xDDF7, O0xDDF7, OxBDFB, OxBSFB,
0x0000, 0x8003, 0xE007, OxFFFF,

I

Bitmap sailmap = {
(Word *)sailicon,
1l
(short)0, (short)o, (short)1s, (short) 16,
(char *)0

Y

extern Rectangle fRpt();
extern Rectangle raddp();

main()

SCREENSWAP(3R) (630 MTG) SCREENSWAP(3R)

Rectangle r;
r = fRpt(0, YMAX/2-8, 16, YMAX/2+8);

/* put the sailboat onto the screen */
screenswap(&sailmap, sailmap.rect, r);

/* move the sailboat across the screen */
while(r.corner.x <= YMAX) {
sleep(3);
screenswap(&sailmap, sailmap.rect, r);
r = raddp(r, Pt(1,0));
screenswap(&sailmap, sailmap.rect, r);

}

/% remove the sailboat for the last time */
screenswap(&sailmap, sailmap.rect, r);

}

This example is very similar to how message boxes are implemented. Mes-
sage boxes are rectangles containing messages which float around the screen
when the mouse moves.

SEE ALSO
bitblt(3R), msgbox(3R).

SEGMENT(3R) (630 MTG) SEGMENT(3R)

NAME
segment — draw a line segment in a Bitmap

SYNOPSIS
#include <dmd.h>

void segment (b, p, q, f)
Bitmap *b;
Point p, q;
Code f;
DESCRIPTION
The segment utility draws a line segment in Bitmap b from Point p to Point g
with function Code f.

Like all the other graphics operations, segment clips the line so that only the
portion of the line intersecting the Bitmap is displayed.

EXAMPLE
The following call simply draws a line connecting a window’s origin Point
to its corner Point (a diagonal line from the upper left corner to the lower
right corner of the window).

#include <dmd.h>

connectcorners ()

{
segment (&display, Drect.origin,
Drect.corner, F XOR);
H
SEE ALSO
jsegment(3R).

SENDCHAR(3R) (630 MTG) SENDCHAR(3R)

NAME

sendchar, sendnchars — send character(s) to host

SYNOPSIS

int sendchar (c)
char ¢

void sendnchars (n, p)
int n;
char *p;

DESCRIPTION

The sendchar function sends a single byte to the host which will normally
be read on the standard input of the host process. The bytes sent will be
processed as though they were typed on the keyboard by the user.

Since local programs have no host connection, a call to sendchar by a local
program will always return -1. Sendchar will always return 1 for non-local
programs. ‘

The sendnchars function is similar to sendchar except n characters pointed to
by p are sent to the host.

A call to sendchar or sendnchars by an application program causes the bytes
to be sent to the host computer to be placed into a buffer in the terminal.
The terminal will then send the bytes in the buffer to the host as fast as the
communication lineto the host is able to transmit. An application program
is generally able to: queue requests to send bytes to the host much faster
than the terminal is able to actually send the bytes over the communication
line to the host.” So, if an application rapidly sends many bytes to the host,
internal terminal buffers:eventually fill up. When this happens, the sendchar
and sendnchars routines will call wait to block the calling process until inter-
nal buffers are no longer full. This whole process is transparent to applica-
tions, but application program writers may want to be aware that a call to
sendchar or sendnchars may not return immediately.

EXAMPLE

The following program will send a Is command to the host and display its
output. Typing a ‘q’ on the keyboard will cause the program to exit.

#include <dmd.h>

main()

{

int c¢;

request (SEND IRCV |KBD) ;
sendnchars(3, "1s\r");
do {
wait (RCV IKBD);
while((c=rcvchar()) t= -1)
lputchar(c);
} while(kbdchar() t= 'q');

SENDCHAR(3R) (630 MTG) SENDCHAR(3R)

SEE ALSO
local(3R), rcvchar(3R), resources(3R).

SETLED(3L) (630 MTG) SETLED(3L)

NAME

setled: setLEDcap, setLEDscr — set the caps lock and scroll lock LEDs

SYNOPSIS

void setLEDcap (n)
void setLEDscr (n)

int n;

DESCRIPTION

The setLEDcap and setLEDscr functions turn on and off the caps lock and
scroll lock LEDs, respectively. If n is 1, the LED is turned on. If 1 is 0, the
LED is turned off.

If the window is not current when the function is called, the state of the
LED is remembered and automatically changed when the window is made
current.

These functions also update the label area to reflect the status of the LEDs if
the label is being used. The setLEDscr function will update the SCR_LOCK
bit of P->state.

These functions should not be used unless the program is using the key-
board in NOTRANSLATE mode. Otherwise, the LEDs may not match the
actual state of the caps lock and scroll lock keys.

SEE ALSO

keyboard(3R).

SETUPVAL(3R) (630 MTG) SETUPVAL(3R)

NAME
setupval - return a setup option

SYNOPSIS
#include <setup.h>

int setupval (obj, opt)
int obj, opt;

DESCRIPTION
The setupval function returns the value of a setup option. The first argu-
ment, obj, is an object that has setup values. Possible objects are the termi-
nal (S_PREF), the printer (S_PRINT), and the host (whathost()). The second
argument, opt, is a particular option for that object. The return value is an
integer which describes that setting for that option. This is summarized in
the table below.

Object Option Returned Meaning
S_PREF S_PREF_CTRL S_PREF_CTRL_VIS visible
(user’s (control character S__PREF_CTRL_INVIS invisible
preferences) display) S..PREF_CTRL_SPACE a space
S_PREF_KCLK S_PREF_KCLK_OFF off
(keyboard click) S_PREF_KCLK_ON on
S_PREF_KVOL S_PREF_KVOL_0 off
(keyboard volume) S_PREF_KVOL_1 1
S_PREF_KVOL_2 2
S_PREF_KVOL_3 3
S_PREF_KVOL_4 4
S_PREF_KVOL_5 5
S_PREF_KVOL_6 6
S_PREF._KVOL_7 full
S_PREF_CURS S_PREF_CURS_NOBLK no blinking
(cursor mode) S_PREF_CURS_BLK blinking
S_PREF_KRPT S_PREF_KRPT_15 15 per second
(keyboard S_PREF_KRPT_20 20 per second
repeat rate) S_PREF_KRPT_30 30 per second
S_PREF_KRPT_60 60 per second
S_PREF_WBUF S_PREF_WBUF_OFF off
(windowproc buffer) S_PREF_WBUF_ON on
S_PREF_WTYP S_PREF_WTYP_BASIC basic
(windowproc type) S_PREF_WTYP_EHN enhanced

(sent return
key definition)

S_HOST_RTN_LF
S_HOST_RTN_CRLF

SETUPVAL(3R) (630 MTG) SETUPVAL(3R)

S_PRINT S_PRINT_TAB S_PRINT_TAB_NO no

(printer) (tab expansion) S_PRINT_TAB_YES yes
S_PRINT_ESC S_PRINT_ESC_NO no
(filter escapes) S_PRINT_ESC_YES yes

whathost() S_HOST_ENC S_HOST_ENC_OFF off

(process’s host) (encoding) S_HOST_ENC_ON on
S_HOST_RTN S_HOST_RTN_CR carriage return

line feed
carriage return
and line feed

S_HOST_NL S_HOST_NL_LF line feed
(newline S_HOST_NL_CRLF carriage return
definition) and line feed
S_HOST_FONT S_HOST_FONT_SMALL smallfont
(font) S_HOST_FONT_MEDIUM mediumfont
S_HOST_FONT_LARGE largefont
S_HOST_COL multiplexed columns number
S_HOST_ROW multiplexed rows number
S_HOST_NCOL nonmultiplexed columns number
S_HOST_NROW nonmultiplexed rows number
S_HOST_FIXED S_HOST_FIXED_NO no
(fixed size window) S_HOST_FIXED_YES yes

If the object is invalid, setupval returns -1. If the option for a given object is
invalid, the return value is undefined.

EXAMPLE
The following example prints out the setting of some options.

#include <setup.h>

printval()

{

int i;

lprintf("key click is ");
switch(setupval(s PREF, S PREF KCLK))

{
case S PREF KCLK OFF: lprintf("off\n"); break;
case S PREF KCLK ON: lprintf("on\n"); break;
}
i = setupval(whathost(),

-0 -

SETUPVAL(3R) (630 MTG) SETUPVAL(3R)

ismpx()? S HOST ROW: S _HOST NROW);

if(i == -1)
lprintf("I am local\n");
else

lprintf("default rows = d\n", i);

SEE ALSO
ismpx(3R), whathost(3R).

SLEEP(3R) (630 MTG) SLEEP(3R)

NAME
sleep, nap - suspend program execution

SYNOPSIS
void sleep (nticks)

void nap (nticks)

unsigned int nticks;

DESCRIPTION ;
The nap function busy loops for nticks ticks of the 60 Hz internal clock. To
avoid interfering with screen refresh, programs drawing rapidly changing
scenes should nap for a couple ticks between updates to synchronize the
display and memory.

The sleep function is identical to nap except that it gives up the processor for
the interval. Sleep should be used in preference to nap unless there is some
reason why other applications should not be allowed to run. A process that
never calls wait or sleep can lock out all other 630 MTG processes.

SEE ALSO
resources(3R).

SSIGNAL(3L) (630 MTG) SSIGNAL(3L)

NAME
ssignal, gsignal — software signals

SYNOPSIS
#include <ccs/signal.h>

int (*ssignal (sig, action))()
int sig, (+xaction)();
int gsignal (sig)
int sig;

DESCRIPTION
ssignal and gsignal implement a software facility similar to signal(2). This
facility is used by the Standard C Library to enable users to indicate the
disposition of error conditions, and it is also made available to users for
their own purposes.

Software signals made available to users are associated with integers in the
inclusive range 1 through 16. A call to ssignal associates a procedure, action,
with the software signal sig; the software signal, sig, is raised by a call to
gsignal. Raising a software signal causes the action established for that sig-
nal to be taken.

The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the
action; it is either the name of a (user-defined) action function or one of the
manifest constants SIG_DFL (default) or SIG_IGN (ignore). ssignal returns
the action previously established for that signal type; if no action has been
established or the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is
reset to SIG_DFL and the action function is entered with argument sig.
Gsignal returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes
no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes
no other action.

If sig has an illegal value or no action was ever specified for sig, gsig-
nal returns the value 0 and takes no other action.

Notes
There are some additional signals with numbers outside the range 1 through
16 which are used by the Standard C Library to indicate error conditions.
Thus, some signal numbers outside the range 1 through 16 are legal,
although their use may interfere with the operation of the Standard C
Library.

SEE ALSO
signal(2) in the UNIX System V Programmer’s Reference Manual.

STATE(3R) (630 MTG) STATE(3R)

NAME
state: P->state, MOVED, RESHAPED, NO_RESHAPE - per process win-
dowing states

SYNOPSIS :
#include <dmd.h>

long P->state;

DESCRIPTION
P->state is the state variable for an application running in the 630 MTG.

The fields in the state variable relevant to windowing operations are:
MOVED
RESHAPED
NO_RESHAPE

These bits are set or checked by the terminal during a windowing operation.

If an application program wants to do some special processing after being
moved or reshaped, it must periodically check the proper state bits. When
the pertinent event occurs, the application program should perform its spe-
cial processing and then reset the proper bits in the state variable as follows:

For a process to test whether its window has been moved , it must check:
(P->state&MOVED)

To reset the MOVED condition it is necessary to execute:

P->state &= “(MOVEDIRESHAPED);

For a process to test whether its window has been reshaped, it must check:
(P->state&RESHAPED'&& (P->state&MOVED))

To reset the RESHAPED condition it is necessary to execute:

P->state &= "RESHAPED;

The reason for the interaction of the MOVED and RESHAPED bits is purely
historical.

The NO_RESHAPE bit should be set if the application program does not
want to be reshaped by the user through the global mouse operation. A
message box with the message "Fixed size window: Cannot be reshaped "
will be displayed if the user attempts to reshape the window. Clearing the
bit makes the window reshapable again.

SEE ALSO
keyboard(3r).

STR(3L) (630 MTG) STR(3L)

NAME
str: strcat, strncat, stremp, strnemp, strepy, strnepy, strlen, strchr, strrchr,
strpbrk, strspn, strespn, strtok — string operations

SYNOPSIS
" #include <ccs/string.h>

char *strcat (s1, s2)
char *s1, *s2;

char *strncat (sl1, s2, n)
char *s1, *s2;

int n;

int strcmp (s1, s2)
char #s1, *s2;

int strncmp (s1, s2, n)
char *sl1, *s2;

int n;

char #strcpy (s1, s2)
char *s1, *s2;

char *strncpy (s1, s2, n)
char *s1, *s2;
int n;
int strlen (s)
char #s;
char sstrchr (s,)
char =*s;
int ¢
char sstrrchr (s, c)
char #s;
int ¢
char =strpbrk (s1, s2)
char *s1, *s2;
int strspn (s1, s2)
char *s1, *s2;
int strcspn (s1, s2)
char #s1, *s2;
char *strtok (sl1, s2)
char *s1, *s2;
DESCRIPTION
The arguments s1, s2 and s point to strings (arrays of characters terminated
by a null character). The functions strcat, strncat, strcpy, and strncpy all
alter s1. These functions do not check for overflow of the array pointed to
by s1.
Strcat appends a copy of string s2 to the end of string s1. Strncat appends
at most 1 characters. Each returns a pointer to the null-terminated result.

-1 -

STR(3L) (630 MTG) STR(3L)

Strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, if s is lexicographically less than, equal to, or greater than
s2. Strncmp makes the same comparison but looks at most # characters.

Strcpy copies string s2 to s1, stopping after the null character has been
copied. Strncpy copies exactly n characters, truncating s2 or adding null
characters to sl if necessary. The result will not be null-terminated if the
length of 52 is n or more. Each function returns s1.

Strlen returns the number of characters in s, not including the terminating
null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character ¢
in string s, or a NULL pointer if ¢ does not occur in the string. The null
character terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any character
from string s2, or a NULL pointer if no character from s2 exists in sI.

Strspn (strcspn) returns the length of the initial segment of string s1 which
consists entirely of characters from (not from) string s2.

Strtok considers the string s1 to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer sI specified) returns a pointer to the
first character of the first token, and will have written a null character into
s1 immediately following the returned token. The function keeps track of its
position in the string between separate calls, so that subsequent calls (which
must be made with the first argument a NULL pointer) will work through
the string s immediately following that token. In this way, subsequent
calls will work through the string s1 until no tokens remain. The separator
string s2 may be different from call to call. When no token remains in s1, a
NULL pointer is returned.

For user convenience, all these functions are declared in the optional
<ccs/string.h> header file.

WARNINGS
Stremp and strncmp are implemented by using the most natural character
comparison on the machine. Thus the sign of the value returned when one
of the characters has its high-order bit set is not the same in all implementa-
tions and should not be relied upon.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

STRING(3R) (630 MTG) STRING(3R)

NAME
string, FONTWIDTH, FONTHEIGHT, smallfont, mediumfont, largefont —

draw string in bitmap

SYNOPSIS
#include <dmd.h>
#include <fonth>

Point string (ft, s, b, p, f)
Font *ft;

char ss;

Bitmap #*b;

Point p;

Code f;

int FONTWIDTH (fnt)
int FONTHEIGHT (fnt)

Font fnt;

Font smallfont;
Font mediumfont;
Font largefont;

DESCRIPTION
The string function draws the null-terminated string s using characters from
Font #ft in Bitmap *b at Point p with function Code f. The returned Point
value is the location of the first character position following the string s.
The returned Point can be passed to successive calls to string to concatenate
strings.

The drawing of the characters is done such that the bounding rectangle of
the maximum height character in the font would have its origin at p.
Therefore, a character drawn on the screen at the point Drect.origin will
occupy the upper-leftmost character position of the application’s window.

The string function draws characters as they are in the font. No special
action is taken for control characters such as tabs and newlines.

The globals smallfont, mediumfont, and largefont are the names of, not
pointers to, the three resident fonts in the 630 MTG.

The FONTWIDTH macro returns the width of the space character in the
given font. This is only useful if all the characters in the font have the same
width. The FONTHEIGHT macro returns the height of the given font.

STRING(3R) (630 MTG) STRING(3R)

EXAMPLE
The following example demonstrates the use of string. The simple subrou-

tine prints "hello world" using the resident font called largefont .

#include <dmd.h>
#include <font.h>

Point add();
Point string();

hello world()

{

Font *f;

Point p;

f = glargefont;

p = add (Drect.origin, Pt(u,4));

string (f, "hello world", é&display, .p, F XOR);
}

SEE ALSO
loadfont(1), jstring(3R), structures(3R).

STRTOL(3L) (630 MTG) STRTOL(3L)

NAME
strtol, atol, atoi — convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, =ptr;
int base;

long atol (str)
char sstr;

int atoi (str)
char *str;

DESCRIPTION
strtol returns (as a long integer) the value represented by the character
string pointed to by str. The string is scanned up to the first character
inconsistent with the base. Leading ““white-space” characters [as defined by
isspace in ctype(3L)] are ignored.
If the value of ptr is not (char #)NULL, a pointer to the character terminat-

ing the scan is returned in the location pointed to by ptr. If no integer can
be formed, that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored, and
“0x”" or “0X" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an optional
leading sign, a leading zero indicates octal conversion, and a leading “0x”
or “0X” indicates a hexadecimal conversion. Otherwise, decimal conversion
is used.

Truncation from long to int can, of course, take place upon assignment or
by an explicit cast.

Atol(str) is equivalent to strtol(str, (char *NULL, 10).
Atoi(str) is equivalent to (int) strtol(str, (char *NULL, 10).

SEE ALSO
atof(3L), ctype(3L).

WARNING
Overflow conditions are ignored.

STRUCTURES(3R) (630 MTG) STRUCTURES(3R)

NAME
structures: Word, Code, Point, Rectangle, Bitmap, Texture16, Font, Fontchar,
msgbuf, message__list, msqid_ds — 630 MTG Structures

SYNOPSIS
#include <dmd.h>

#include <font.h>

#include <message.h>

DESCRIPTION
In the following summaries, all coordinates are screen or Bitmap coordinates
(which are scaled the same) unless specified as window coordinates. Word ,
Code , Point , Rectangle , Bitmap and Texturel6 are included in a program by
including dmd.h. Font and Fontchar are defined in font.h. Msgbuf,
message_list, and msgid_ds are defined in message.h.

Word
typedef short word;
typedef unsigned short UWord;
A Word is a 16-bit integer and is the unit of storage used in the graphics
software.
Code
typedef int Code;
Code is the functional constant used in all graphical drawing or copying
operations. Available Codes are:
F _STORE target = source
F OR target I= source
F XOR target "= source
F CLR target &= “source
Point
typedef struct Point
short x; /% x-coordinate #*/
short vy; /* y-coordinate */
} Point;
A Point is a location in a Bitmap, such as the display. The coordinate sys-
tem has x increasing to the right and y increasing down.
Rectangle
typedef struct Rectangle {
Point origin; /* Upper left corner */
Point corner; /% Lower right corner*/

} Rectangle;

A Rectangle is a rectangular area in a Bitmap. By definition
origin.x<=corner.x and origin.y<=corner.y define the rectangle. By con-
vention, the right (maximum x) and bottom (maximum y) edges are
excluded from the represented rectangle, so abutting rectangles have no
points in common. Thus corner is the coordinates of the first point beyond

-1 -

STRUCTURES(3R) (630 MTG) STRUCTURES(3R)

Bitmap

the rectangle. The data on the screen of the 630 MTG is contained in the
Rectangle {0, 0, XMAX, YMAX} where XMAX=1024 and YMAX=1024.

typedef struct Bitmap {
Word *base; /* pointer to start of data */

unsigned short width; /* width in Words of total data area */

Rectangle rect; /* rectangle describing data area */
char * null; /% unused, must always be zero */
} Bitmap;

A Bitmap holds a rectangular image stored in contiguous memory starting at
base. Each width words of memory form a scan-line of the image. The rect
argument defines the coordinate system inside the Bitmap. Argument
rect.origin is the location in the Bitmap of the upper-leftmost point in the
image and is not necessarily (0,0). Graphical operations performed on a Bit-
map are clipped to rect.

Texturel6

typedef struct Texturel6 {
Word bitsl16];

} Texturel6;
A Texturel6 is a 16X16 bit dot pattern. Texturel6’s are aligned to absolute
display positions, so adjacent areas colored with the same Texturel6 align
smoothly.

Font and Fontchar

typedef struct Fontchar

{
short x; /* left edge of character cell in Font.bits */
unsigned char top; /#* first non-zero scan-line of character image */

unsigned char bottom; /* last non-zero scan-line of character image */

char left; /% offset of baseline from x; used for kerning */
unsigned char width; /* width of baseline for character image */
} Fontchar;

typedef struct Font

{
short n; /% number of characters in font */
char height; /* height of the Bitmap bits */
char ascent; /* top of Bitmap to baseline of character image */
long unused;
Bitmap *bits; /* Bitmap where the characters are stored */
Fontchar infol1l; /#* n+1 character descriptors */

} Font;

A Font is a character set. For each character in a Font there is information
stored in a Fontchar structure. Font.info[n] is a dummy fontchar descriptor
used to determine the right edge of the last character in Font.bits. The
actual character images in the Font are stored in a single Bitmap pointed to
by bits. The Bitmap contains the bit pattern for each character, arrayed adja-
cently into a long horizontal strip. The characters in the Bitmap must

2.

STRUCTURES(3R)

(630 MTG)

STRUCTURES(3R)

appear in ASCII order and are aligned on the same baseline. Characters in
the Bitmap abut exactly, so the width of a character ¢ is Font.info[c+1].x-
Font.info[c].x. When a character is displayed on the screen at a point p ,

the upper left-hand corner of the rectan

coincides with the point p.

msqid_ds, message_list and msgbuf
typedef struct msgbuf

FILES

{

long mtype;
char mtext[1]
} msgbuf;

{

msgbuf
int
struct

*msgqg;
size;

} message list;

message list

typedef struct message list

gle enclosing the character image

/* message type */
/% text of message */

/* the message in the queue */
/* size of the message */

typedef struct msqid ds

{

$DMD /include/dmd.h

Struct Proc
short

short

Struct Proc
Struct Proc
unsigned long
unsigned long
unsigned long
message list
short

short

long

*cid;

msg gnum;
msg gbytes;
*msg lspid;
*msg lrpid;
msg stime;
msg rtime;
msg ctime;
*msg list;
msg curbytes
state;
name;

struct msqgid ds *next;

} msqid ds;
A msqid_ds is a message queue. The messages in the queue are kept in a
linked list referenced by the pointer msg_list. The actual messages are
stored in msgbufs which are pointed to by message_list. Msg_gbytes is ini-
tialized to MAX_QBYTES where MAX_QBYTES=020000 (decimal 8192).
The msgid_ds is stored in a linked list in the 630 so that the number of mes-
sage queues is limited only by memory.

$DMD /include/font.h
$DMD/include/message.h

/ *
/*
/%
/*
/*
/%
/*
/*
/%
/%
/*
/*
/*

next; / next message link */

creator process id */
number of messages */
max number of bytes */
last process to send */
last process to rcv */
time of last send */
time of last rcv */
time of last change */
linked message list */
current # of bytes */
remove queue if cid exits? */
name of queue (key) */
link to next queue */

STRWIDTH(3R) (630 MTG) STRWIDTH(3R)

NAME
strwidth, jstrwidth ~ width of character string

SYNOPSIS ‘
#include <dmd.h>
#include <fonth>

int strwidth (f, s)
int jstrwidth (s)

Font *f;
char #*s;

DESCRIPTION
The strwidth function returns the width in screen coordinates (pixels) of the
null-terminated string s, interpreted in the Font *f. The height of a charac-
ter string is simply f->height.
The call, jstrwidth(s), is equivalent to strwidth (&mediumfont, s).

EXAMPLE
The following code fragment places the width of a string that uses the
resident font largefont into a variable called width.

#include <dmd.h>
#include <font.h>

int width;
Font *f = glargefont;

width = strwidth (f, "hello world");

SEE ALSO
infont(3L), string(3R), structures(3R).

SWAB(3L) (630 MTG) SWAB(3L)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
swab copies nbytes bytes pointed to by from to the array pointed to by to,
exchanging adjacent even and odd bytes. Nbytes should be even and non-
negative. If nbytes is odd and positive, swab uses nbytes—1 instead. If nbytes
is negative, swab does nothing.

TEXTURE(3R)

NAME

(630 MTG)

TEXTURE(3R)

texture — draw Texturel6 in Rectangle in Bitmap

SYNOPSIS
#include <dmd.h>

void texture (b, 1, t, f)
Bitmap *b;

Rectangle r;

Texturel6 *t;

Code f;

Texturel6 T_grey, T_lightgrey, T_darkgrey;

Texturel6 T_black, T_white,

DESCRIPTION
The texture function draws the
in the Rectangle r in the Bitma
fined.

EXAMPLE

T_background, T_checks;

Texture16 specified by t with function Code f
p b. The Texturel6s listed above are prede-

The following program allows doodling with a Texture16.

#include <dmd.h>
main()
{
Rectangle r;
Point s;
S.X 16;
S.y 16;
request (MOUSE)
for (;;)

{

'

wait (MOUSE);

r.origin

= mouse.xy;

r.corner = add (r.origin, s);
if(button3())
break;
if(buttoni())
texture (&display, r,
§T grey, F STORE);
if(button2())
texture (é&display, r,
§T grey, F CLR);
}
}
SEE ALSO

globals(3R), jtexture(3L), structur

es(3R).

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

NAME
tmenuhit — present user with menu and get selection

SYNOPSIS
#include <dmd.h>
#include <menu.h>

Titem *tmenuhit (m, n, flags [, p])
Tmenu *m;

int n;

int flags;

Point p;

void tm__ret()

typedef struct Titem

{
char *text; /* string for menu */
struct
unsigned short uval; /* user field */
unsigned short grey; /* grey this selection */
} ufield;
struct Tmenu *next; /% ptr to sub-menu */
Bitmap *icon; /* ptr to the icons bitmap */
struct Font *font; /% font defined for this item */
void (*dfn)(); /* execute function before sub-menu */
void (*bfn)(); /* execute function after sub-menu */
void (*hfn)(); /* execute function on selection #*/
} Titem;

typedef struct Tmenu

{

Titem =*item; /* Titem array */

short prevhit; /* index to current item */

short prevtop; /* index to top item */

Titem #*(*generator)(); /% used if item == 0 */

short menumap; /* bit definition of structure */
} Tmenu;

/* bit definitions in menumap */

#define TM TEXT 0x0001 /% defines text field */
#define TM UFIELD 0x0002 /% defines ufield field */
#define TM NEXT 0x0004 /* defines next field x*/
#define TM ICON 0x0008 /% defines icon field =*/
#define TM FONT 0x0010 /* defines font field */
#define TM DFN 0x0020 /% defines dfn field */
#define TM BFN 0x0040 /% defines bfn field */
#define TM HFN 0x0080 /* defines hfn field #*/

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

DESCRIPTION
The tmenuhit function is an enhanced version of menuhit. It adds such
features as expanding menus, use of icons and various fonts within a menu
item, greying non-selectable items, and extended control over invocation
and specification of the menu facility.

Menu Trees

Menu trees allow the presentation of several menus in a hierarchical format.
Each menu is specified by a Tmenu structure. Each Tmenu structure con-
tains a array of one or more Titem structures which specify the menu items.
Each item of a menu may then, in turn, point to a submenu. Submenus
appear to the right of the parent menu. The presence of a submenu for a
menu item is indicated by an arrow icon pointing to the right. Moving the
cursor to the arrow icon allows the user to preview the submenu. Sliding
further to the right moves the cursor into the submenu and allows the user
to make a selection in this menu. Moving the cursor back to the left exits
the submenu and moves the cursor back into the parent menu.

Usage
gThe tmenuhit function presents the user with a menu tree specified by the
root Tmenu pointer m and returns a pointer to a Titem structure indicating
which item was selected. If no item was selected tmenuhit returns a 0. The
n argument is an integer which specifies the mouse button for user interac-
tion: 1, 2, 3 or 0 for all the buttons.. The flags argument is a bit vector
which indicates various modes of function in tmenuhit. These flags include:

(flags & TM_EXPAND)
If true, the menu tree will be expanded (according to the previous
selection) down to the lowest leaf on invocation of tm enuhit.

(flags & TM_NORET)
If true, tmenuhit will not return when a valid selection is made.
This feature is useful if a lot of selections are to be made from a
large menu.

(flags & TM_STATIC)
If true, tmenuhit assumes that no button is depressed when it is
called. In this case, the user makes a selection by depressing the
button specified when the cursor points to the item desired. If this is
false, tmenuhit assumes that the button is depressed when called.
The user makes a selection by lifting the button when the cursor
points to the desired item.

(flags & TM_POINT)
If true, the argument p must be present and the origin of the root
menu will appear at this point on the display.

The user may define one or more of these flags by oring them together
within the function call (e.g. (TM—_EXPANDITM_POINT)).

Structure and Functional Description
This section describes the structure fields of the Tmenu and the Titem struc-
tures and the functions of tmenuhit they serve.

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

The Tmenu structure defines a menu. It has the following fields:

item This is an array of Titem structures which defines each item in the
menu. The last item in the array must have its Titem text field equal
to 0.

prevhit
prevhit is used to store the menu’s previous selection. When
tmenuhit is called the menu is displayed such that, if possible, the
mouse cursor will be displayed over the previous selection. This
might not be possible if the menu is near the border of the screen.
Prevhit holds the index from the top of the displayed menu. The
prevhit value is initialized to 0 and normally does not need to be
manipulated by the application program.

prevtop

prevtop is used to store the topmost item displayed in the menu
when more than sixteen menu items are defined. The maximum
number of items which may be displayed within a menu is sixteen.
When there are more than sixteen the menu becomes a scrolling
menu. In this case, the left portion of the menu contains a scroll bar
that is used for scrolling quickly through the menu selections. The
vertical size of the scroll bar is an indication of the size of the user’s
view of the menu (16 items) relative to the number of selections in
the entire menu.

There are two ways to scroll through the menu items. The first is to
move the mouse cursor to the left side of the menu into the scroll
bar area. By moving the mouse cursor up or down within the scroll
bar area, the ‘menu items will scroll accordingly. The second
method used to scroll through the menu items is to place the mouse
cursor on the top or bottom entry of the menu list. The menu will
scroll up or down by one item at a time if there are additional items
to be displayed in that direction.

Like prevhit, the value of prevtop is initialized to 0 and normally
does not need to be manipulated by the application program.

generator
Menu items may be generated dynamically from a program by
specifying a generator function in the Tmenu structure. If the item
field in the Tmenu data structure is 0 when a menu is entered,
either by calling tmenuhit or through the sub-menu mechanism,
then the routine specified by generator is called with two parame-
ters that are an integer index beginning at 0 and the address of the
current Tmenu. The generator must return a pointer to a Titem
structure containing the text for the corresponding menu item. This
generator function is called repeatedly with the index increasing by
1 until the generator returns a NULL for the text field in the Titem
structure, indicating the end of the menu selections.

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

menumap

In applications where many menus are to be used, the programmer
can re-define the Titem structure to include only those fields that
are actually used. This has the advantage of requiring less data ini-
tialization on the part of the programmer. It is done with a bit vec-
tor called menumap in the Tmenu structure. If used, the user
defined structure replacing Titem must contain the specified member
variables in the same order. For example, if one wishes to use only
the text, ufield, and next fields of a Titem structure, he may define a
Titem structure with only those fields, and then set the menumap
field of the Tmenu structure to the value of
(TM_TEXT!TM_UFIELDITMNEXT). Normally, this variable has the
value zero when the standard Titem structure is used.

Each menu item is defined by a structure of the type Titem. The Titem
structure has the following fields:

text The text field is a pointer to a NULL terminated character string.
This is the character string that is displayed within the menu.

A facility provided by tmenuhit is that of a spread character. A
spread character is any ascii character with the high-order bit set
(e.g., an ascii space character defined as a spread character would
have the value of "\240’). The spread character acts somewhat like
a spring pushing against the adjacent text and borders within a
menu entry. The spread character can be placed at the beginning,
middle, or end of the string defining the menu entry. If placed at
the beginning of the string, the text in the menu item will be right-
justified. If placed at the end of the string, the text will be left justi-
fied. If placed in the middle of the string, the text on each side of
the spread character will be pushed against the corresponding menu
border. In each case, the space created by the spread character will
be filled in with the ascii character contained in the spread charac-
ter. For entries without a spread character, the default is to have
the text centered.

uval This is an integer to be used for any purpose the user wishes. It is
typically used to store a constant that is used by the application to
identify Titem structures. For instance, this field could be set to a
unique value for each menu item in the menu tree. In this way, a
switch statement can easily determine the menu item selection
regardless of the menu used and the difference in size of different
Titem structures.

grey If this field is set to 1, the item will be displayed in the menu with a
grey background. This item is non-selectable and, if selected, the
value tmenuhit returns is 0.

next The next variable points to another menu structure of type Tmenu
which defines a submenu for this particular item.

icon The icon field is a pointer to a Bitmap structure that is displayed to
the left of the menu item. The size of the bitmap is specified

-4 -

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

within the Bitmap structure and can vary from one menu item to
the next. The icon can be displayed with or without a text string.
However, if icons are to be used without text strings, the value of
text field cannot be NULL, but must point to a NULL string.

When the icon field is used to display a bitmap, all Titem structures
for the specific menu are scanned to find the largest bitmap. This is
used to determine the vertical spacing of all the menu items within
that menu. Smaller bitmaps on other menu entries will be centered
within the icon area.

font The font field is a pointer to a font to be used for the text in this
menu item. Proportional characters and different point size fonts
will be positioned appropriately. If a NULL value is specified, the
630 resident medium font is used.

dfn, bfn, hfn
These three fields may be initialized to point to functions that will
be executed by tmenuhit before entering a submenu (sliding down),
after returning from a submenu (sliding back), and upon making a
selection in the current menu (a hif), respectively. Each function is
passed, as an argument, the address of the Titem structure from
which it is called. The hfn function provides an alternative method
to using the return value of tmenuhit.

In the special case of (flags & TM_NORET), when a selection is
made, the submenu the item was in will be erased. Then the hfn
function will be called with the selected item. If there is a parent to
this menu the bfn and dfn functions will also be called in that order
(if they are initialized) after which the menu will be redrawn. This
is due to the recursiveness of tmenuhit.

If any of the dfn, bfn, or hfn functions execute calls to the function
tmret(), tmenuhit will ignore the TM_NORET flag and will return
the selection made.

EXAMPLE

The following example is a comprehensive example of how one may use
tmenuhit. The example presents a menu tree when button 3 is depressed
and, upon selection of a menu item, it prints the text of that item at the bot-
tom of the screen. The top level menu contains six items each pointing to a
submenu. They are font, test, bttn3, icons, spread, and scroll. The following is
a brief explanation of each submenu and the functions it intends to demon-
strate.

font The font submenu demonstrates the use of fonts and icons (within
the menu item) and the use of the hfn and dfn functions. An hfn
function called setfont is executed on selection and sets the font to
the selected font. Before the font submenu is displayed, a dfn func-
tion called setmark will place a checkmark icon next to the current
font in use.

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

test This submenu contains various sized strings to demonstrate how
tmenuhit alters its menu item size according to the size of the string.

bttn3 This is a replica of the button3 menu on the 630 MTG. It demon-
strates the menu greying capability. This item also demonstrates
how one may use tmenuhit to achieve the simple functionality of
menuhit plus the added capability of greying items.

icons This submenu demonstrates the use of icons within menu items.
spread This submenu demonstrates the spread character facility.

scroll This submenu demonstrates the use of generators and presents the
scrolling menu.

Another thing to notice is the use of the abbreviated Titem structures. There
are six different types of Titem structures. Each one corresponds to a menu-
map vector which defines the fields being used.

#include <dmd.h>
#include <font.h>
#include <menu.h>

void setmark(), setfont();

Titem *scrllist();

extern Tmenu menu20, menu2l1, menu22, menu23, menu2l4, menu25;
extern Tmenu menu30;

Word strawberryll = {
0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,
0x0000,0x1B80,0x0000,
0x0000,0x3D80,0x0000,
0x01F8,0x7E80,0x0000,
0x03FE,0x7D80,0x0000,
0x07AF, 0xFB80,0x0000,
0x0EF9,0xF780,0x0000,
0x1F57,0xFFFE, 0x0000,
0x 1FFB, 0xFEAB,0x8000,
0x1DAD, 0xF77D,0xC000,
0x3FFA,0x65B7,0x4000,
0x3AAF, 0x8FDE, 0xE000,
0x3FFD, 0xFECB,0xA000,
0x3BB7,0x5FEE, 0xXE000,
0x3EFD, 0xFAAB, 0xA000,
0x3FAF, 0xAFEE,0xE000,
0x3AFA,0xFD6B,0xA000,
0x3FAF,0xD7DF,0xE000,
0x3EFA,O0xFED5,0x4000,
0x 1FAF, 0xABBF,0xC000,
0x 1EFA,O0xFFAA,0x8000,
0x 1FAF,0xD77F,0x8000,

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

0x1FFD,0x7ED5,0x0000,
0x0F57,0xD9FE, 0x0000,
OxO0FFE, 0xF754,0x0000,
0x07AB, 0xCDFC,0x0000,
0x03FF,0x7EA8,0x0000,
0x00F8,0x3BF0,0x0000,
0x0000,0x1EE0,0x0000,
0x0000,0x0F80,0x0000,
0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,

I

Word help iconl] = {
0x0000, 0x0000, 0x0000, 0x0000,
OxEOEO, 0x6060, Ox7F7E, Ox7DFF,
O0x6FFB, 0x6C7B, OX6FFE, OxFFF8,
0x003C, 0x0000, 0x0000, 0x0000,

/* initialize Bitmap structures */
Bitmap bm strawberry = {
(Word*) strawberry, 3, 2, 0, 36, 34, 0
b
Bitmap bm help = |

(Word#) help icon, 1, 0, 0, 16, 16, O
b
A N T eI Y,
/% definitions for menumap */
/3K ok ok K o K K oKk Rk Kk ok ok o K kKK kK
fidefine TYPE1 TM _TEXT | TM NEXT | TM DFN
#define TYPE2 TM TEXT
#define TYPE3 TM TEXT | TM NEXT
#define TYPEY TM _TEXT | TM UFIELD
#define TYPES TM _TEXT | TM ICON
#define TYPEG6 TM TEXT | TM _ICON | TM FONT | TM _HFN

/o ke o ok KK oK oK K o ok ok ok ok ok o o o oKk K ok ok ok

/* define Titem typedef's */
/oo ok ok o ok sk ok ok ok ok ok ok ok ok oK KK Kk

/ *

* define a Titem structure with only text, next, and dfn fields
*/
typedef struct Titem01

{

char *text; /* string for menu */
struct Tmenu *next; /* pointer to sub-menu */
void (*dfn)(); /#* pointer function to execute on submenu %/

-7-

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

} Titem01;

/ *

* define a Titem structure with only text field
*/
typedef struct Titem2

{

char *text; /% string for menu */
} Titem2;
/%
* define a Titem structure with only text and next fields
*/

typedef struct Titem3

{

char *text; /* string for menu */
struct Tmenu *next; /* pointer to sub-menu */
} Titem3;
/ *
* define a Titem structure with only text and ufield fields
*/

typedef struct Titemi

{

char *text; /* string for menu */
struct {
unsigned short uval; /* user field */
unsigned short grey; /* flag shows invalid selection */
} ufield;
} Titemt;
/*
* define a Titem structure with only text and icon fields
*/

typedef struct Titem5

{

char *text; /% string for menu */
Bitmap *icon; /% pointer to the icons bitmap */
} Titem5;

/*
* define a Titem structure with only text, icon,
* font and hfn fields
*/
typedef struct Titemé
{
char *text; /% string for menu */
Bitmap *icon; /* pointer to the icons bitmap */

8-

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

void (*hfn)(); /* function to execute on selection */
} Titem6;

/*******************************/

/% initialize Titem structures */
/KA KR oK KKK o o K Kok o KoK o Kk ok o/

/*
* initialize the Titem structure for the main menu
* has only text, next and dfn fields
*/

Titem01 L1 rootl] =

{

"font", gmenu20, setmark,
"test", gmenu21, 0,
"bttn3", gmenu22, o,
"icons", gémenu23, 0,
"spread", gmenu2l, 0,
"scroll", gmenu25, 0,

(¢}

/%

* initialize the Titem structure for menu20
*¥ has only text, icon, font, hfn fields

*/
Titemé L2 fontl] =

{

"smallfont", 0, 0, setfont,
"mediumfont", 0, 0, setfont,
"largefont", 0, 0, setfont,
0

b

/ *
* initialize the Titem structure for menu2i
* has only text and next fields
*/
Titem3 L2 testl[] =
{
"A long test string so we can see what happens"”, 0,
"Short strings", &menu3o,
0

I

/*
* initialize the Titem structure for menu22

* has only text and ufield fields
*/

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

Titem# L2 bttn3l] =

{
"New", 0o, 1,
"Reshape", 0o, 1,
"Top", 0, 1,
"Bottom", o, 1,
"Current", o, 1,
"Delete", o, 1,
"Exit", 0, 0,
0

I

/*

* initialize the Titem structure for menu23
* has only text and icon fields

*/

Titem5 L2 iconsl] =

{
"strawberry", &bm strawberry,
"help", &bm help,A
o .

}i

/ *

% initialize the Titem structure for menu2l
* has only text field

*/

Titem2 L2 spreadll] =

{
"left\240", /% space character with high bit set */
"\256right", /* . char with high bit set */
"middle",
"left\337right", /* _ char with high bit set */
"a very long string"”,
0

}i

/*

¥ initialize the Titem structure for menu30
* has only text field
*/
Titem2 L3 shortsl] =
{
"abc",
"xyz",
"123",
"Xyz",
"ABC",
0

- 10 -

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

/*******************************/

/* initialize Tmenu structures */

/A K K ok o SRR KK K K ok ok ok ok ok kK KK K K K/

/*

* menu{xy), where x is the level and Y is the menu number

*/

Tmenu menu10 = { (Titem *) L1 root, 0, 0, 0, TYPE1 };

Tmenu menu20 = { (Titem *) L2 font, 2, 0, 0, TYPE6 };

Tmenu menu21 = { (Titem *) L2 test, 0, 0, 0, TYPE3 };

Tmenu menu22 = { (Titem *) L2 bttn3, 0, 0, 0, TYPE4 I
o, 0, 0

Tmenu menu23 = { (Titem *) L2 icons, 0, 0, O, TYPES }i
Tmenu menu24 = { (Titem *) L2 spread, 0, 0, 0, TYPE2 };
Tmenu menu25 = { (Titem *) 0, 0, 0, scrllist, 0 i

Tmenu menu30 = { (Titem *) L3 shorts, 0, 0, 0, TYPE2 };

char noselectl] = "no selection";
Font *font;

main()

{

Titem *ret;

/* set the font and icon fields in the proper menu */
L2 fontl[0].font = gsmallfont;
L2 font[1].font = gmediumfont;
L2 font[2].font = glargefont;
L2 font[1].icon = §B checkmark;
font = glargefont /% use the medium font to start with %/
request (MOUSE) ;
while(wait (MOUSE)) {
if (button3()) {
/* clear the text area for writing strings */
cursinhibit();
rectf(édisplay,
Rpt(Pt(Drect.origin.x, Drect.corner.y-18),
Drect.corner), F CLR};
cursallow();
if(ret = tmenuhit (&menui0, 3, TM _EXPAND)) {
/* write the menu string in text area */
string(font, ret->text, é¢display,
Pt(Drect.origin.x+5, Drect.corner.y-18),
F _XOR);
!
else { /* no selection was made */
string(font, noselect, &display,
Pt(Drect.origin.x+5, Drect.corner.y-18),
F _XOR);

}

else if (buttoni1())

-11 -

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

exit();

}

char digits[101];
Titem scrlitem;
char scrilstrl] = "scroll";

/*

* generator for scroll menu
* generate 99 menu items
*/

Titem *scrllist(i, m)

int i;

Tmenu *m;

{

int j;

if (i > 99) { /* generator stopping condition */
scrlitem.text = 0;

}

eise { /% generate text for items (i.e. "scroll5e") */
scrlitem.text = digits;
for (§=0; scrlstrljl != '\0': j++) digitsljl = scrlstrljl;

digits[j++] = i/10 + '0';
digitsl{j++] = i - (i/10 * 10) + '0';
digitsljl = "\0';

}

return (&scrlitem);

* a dfn function.
* This is executed before the font submenu is entered
* place the checkmark by the proper font
*/
void setmark(mi)
TitemO1 *mi;
{
Tmenu *tm;
Titemé6 *tmi;
int index;
int hit;

tm = mi->next;

hit = tm->prevhit + tm->prevtop;
for (index=0, tmi=(Titemé *)tm->item; tmi->text; index++,

12 -

TMENUHIT(3R) (630 MTG) TMENUHIT(3R)

tmi++) { tmi->icon = (index == hit) ? &€B checkmark:0;

}

/*
* an hfn function
*¥ this is executed after a selection is made
*/
void setfont(mi)
Titem6 *mi;
{
/* set the font to the selected font */
font = mi->font;

SEE ALSO
menuhit(3L), structures(3R).

WARNINGS
Common uses for user-provided functions in the Titem structure include
modifying the members of menu data structures such as the icon and grey
fields. The user must be careful that such menu structures are properly ini-
tialized.

Whenever a menu is displayed, the screen image obscured by the menu is
saved in a bitmap and then later restored when the menu disappears. If the
terminal is out of memory and therefore cannot save the screen image, then
the menu will be displayed in XOR (exclusive or) mode on top of the exist-
ing screen image. Menu items may still be selected in this mode but may
be difficult to read. To remedy this problem, memory may be freed up by
either deleting or reshaping windows before the menu is displayed.

Because the tmenuhit code is recursive, an arbitrary limit to a depth of eight
menus is defined to avoid stack overflow.

The user should be careful not to perform screen writes from within the dfn,
bfn, or hfn functions. Any writes to the screen from within these functions
can corrupt the displayed menu.

-13 -

TRANSFORM(3R/3L) (630 MTG) TRANSFORM(3R/3L)

NAME
transform, rtransform — window to screen coordinates

SYNOPSIS
#include <dmd.h>

Point transform (p)
Point p;

Rectangle rtransform (r)
Rectangle r;

DESCRIPTION
The transform function returns the screen coordinates of its argument win-
dow coordinate Point p.
The rtransform function returns the screen coordinates of its argument win-
dow coordinate Rectangle 7.
Screen coordinates extend from (0, 0) to (XMAX-1, YMAX-1) and represent

the terminal’s screen. Window coordinates map (0, 0) to Drect.origin and
(XMAX, YMAX) to Drect.corner.

EXAMPLE
The following code will obtain the screen coordinates of the PtCurrent used
by the j-routines.

#include <dmd.h>
Point p;
Point transform();

p = transform(PtCurrent);
The following two routines draw the same line given the same points.

#include <dmd.h>
Point transform();

drawl(p,q)
Point p,q;

jsegment (p,q,F XOR);

draw2(p,q)
Point p,q;
{
1
segment(édisplay, transform(p),
transform(q), F XOR);

SEE ALSO
globals(3R), jsegment(3R), muldiv(3L), segment(3R).

VERSION(3R) (630 MTG) VERSION(3R)

NAME

version - return terminal version number
SYNOPSIS

long version ()
DESCRIPTION

The version function returns a hex number which identifies the version of
the 630 MTG terminal.
The version number is the equivalent to the ASCII string given as the
response to the <ESC>[c escape sequence. The ASCII string has three
fields (f1;£2;f3) defined as follows:

fl identifies the 630 MTG as a windowing

terminal
f2 identifies the terminal as a 630 MTG
f3 identifies the firmware release

The long integer returned by version is a hex number rather than an ASCII
string for easier parsing by the application program. The hex number has
the same three fields in the format Oxf1f2f3, where each field is one byte.

EXAMPLE
For example the hex number:
0x080806
returned by version is equivalent to the ASCII string:
8;8;6
given in response to the escape sequence <ESC>[c. This version number

corresponds to Release 1.1 of the 630 MTG,

SEE ALSO
dmdversion(1).
630 MTG Terminal User's Guide.

WHATHOST(3R) (630 MTG) WHATHOST(3R)

NAME
whathost — determine host connection

SYNOPSIS
int whathost ()

DESCRIPTION
The whathost function returns an identifier for the host to which the process
is connected. This value is most useful as an argument to setupval. The
value -1 is returned if the process is local.

SEE ALSO
local(3R), setupval(3R).

WINDOW(3L) (630 MTG) WINDOW(3L)

NAME

window: reshape, move, top, bottom, current, delete — window operations

SYNOPSIS

#include <dmd.h>
int reshape (r)

int move (p)

void top ()

void bottom ()
void current ()
void delete ()

Rectangle r;
Point p;

DESCRIPTION

The reshape function changes the size and/or position of the window in
which the process is running. This will change the value of Drect and
display. The reshape function will fail and do nothing if the given rectangle
lies outside of the screen or is smaller than 32x32. It may also fail because
of insufficient memory. On failure, reshape will reshape the window back
to its original size or to 32x32. When successful, P->state is updated, and 1
is returned. Otherwise, 0 is returned.

The move function moves the process’s window so that display.origin lies at
the given point. It will fail and do nothing if p lies outside of the screen or
there isn’t enough memory. When successful, P->state is updated, and 1 is
returned. Otherwise, 0 is returned.

The top function brings the window to the top so that it is not obscured by
any other window. As its opposite, the bottom function puts the window on
the bottom so that every window it overlapped will now obscure it.

The current function makes the process’s window current. This directs the
keyboard and mouse input to the process.

The delete function deletes the process and its window. This is the same as
exit, only the window is also removed. The delete function will fail if the
window is the last one connected to a host.

SEE ALSO

exit(3R), globals(3R), state(3R).

BESSEL(3M)

NAME

(630 MTG)

bessel: j0, j1, jn, y0, y1, yn — Bessel functions

SYNOPSIS

#include <ccs/math.h>

double
double

double
double

double
int n;
double

double
double

double
double

double
int n;
double

DESCRIPTION

jO %)
X;

il %)
X;

jn (n, x)

X;

y0 (x)

X;

yl (x)

X;

yn (n, x)

X;

BESSEL(3M)

JO and j1 return Bessel functions of x of the first kind of orders 0 and 1,
respectively. Jn returns the Bessel function of x of the first kind of order #.

Y0 and y1 return Bessel functions of x of the second kind of orders 0 and 1,
respectively. Y# returns the Bessel function of x of the second kind of order
n. The value of x must be positive,

DIAGNOSTICS

Non-positive arguments cause y0, y1 and yn to return the value ~-HUGE and
to set errno to EDOM. In addition, a message indicating DOMAIN error is
displayed.

Arguments too large in magnitude cause j0, j1, y0 and y1 to return zero and
to set errno to ERANGE. In addition, a message indicating TLOSS error is
displayed.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO

matherr(3M).

ERF(3M) (630 MTG) ERF(3M)

NAME
erf, erfc — error function and complementary error function

SYNOPSIS
#include <ccs/math.h>

double erf (x)
double x;
double erfc (x)
double x;

DESCRIPTION

x
. . 2 2
Erf returns the error function of x, defined as -—fe" dt.
T

Erfc, which returns 1.0 - erf(x), is provided because of the extreme loss of
relative accuracy if erf(x) is called for large x and the result subtracted from
1.0 (e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

EXP(3M) (630 MTG) EXP(3M)

NAME

exp, log, log10, pow, sqrt — exponential, logarithm, power, square root func-
tions

SYNOPSIS

#include <ccs/math.h>

double exp (x)
double x;

double log (x)
double x;

double logl10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION

Exp returns e*.
Log returns the natural logarithm of x. The value of x must be positive.
Log10 returns the logarithm base ten of x. The value of x must be positive.

Pow returns x¥. If x is zero, ¥ must be positive. If x is negative, y must be
an integer.

Sqrt returns the non-negative square root of x. The value of x may not be
negative.

SEE ALSO

hypot(3M), matherr(3M), sinh(3M).

DIAGNOSTICS

Exp returns HUGE when the correct value would overflow, or 0 when the
correct value would underflow, and sets errno to ERANGE.

Log and log10 return ~-HUGE and set errno to EDOM when x is non-positive.
A message indicating DOMAIN error (or SING error when x is 0) is
displayed.

Pow returns 0 and sets errno to EDOM when x is 0 and y is non-positive, or
when x is negative and y is not an integer. In these cases a message indi-
cating DOMAIN error is displayed. When the correct value for pow would
overflow or underflow, pow returns +HUGE or 0 respectively, and sets errno
to ERANGE.

Sqrt returns 0 and sets errno to EDOM when x is negative. A message indi-
cating DOMAIN error is displayed.

These error-handling procedures may be changed with the function
matherr(3M).

FLOOR(3M) (630 MTG) FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <ccs/math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;
double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not greater
than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by y: zero if
Yy is zero or if x/y would overflow; otherwise the number f with the same
sign as x, such that x = iy + f for some integer i, and ifl<iyt,

Fabs returns the absolute value of x, ix!.

SEE ALSO
abs(3L).

GAMMA(3M) (630 MTG) GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
#include <ccs/math.h>

double gamma (x)
double x;
extern int signgam;

DESCRIPTION
<0
Gamma returns In(i]"(x)), where [(x) is defined as fe"t"‘ldt. The sign of

0
['(x) is returned in the external integer signgam. The argument x may not
be a non-positive integer.

The following C program fragment might be used to calculate [:
if ((y = gamma(x)) > LN_MAXDOUBLE)
error();
y = signgam * exp(y);
where LN_MAXDOUBLE is the least value that causes exp(3M) to return a
range error, and is defined in the <ccs/values.h> header file.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno is set to
EDOM. A message indicating SING error is displayed.

If the correct value would overflow, gamma returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
exp(3M), matherr(3M), values(5).

HYPOT(3M) (630 MTG)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include <ccs/math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x * x + y * y),

taking precautions against unwarranted overflows.

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, hypot returns HUGE and sets errno

to ERANGE.

These error-handling procedures may be changed with the function

matherr(3M).

SEE ALSO
matherr(3M).

MATHERR(3M) (630 MTG) MATHERR(3M)

NAME
matherr — error-handling function

SYNOPSIS
#include <ccs/math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are
detected. Users may define their own procedures for handling errors, by
including a function named matherr in their programs. Matherr must be of
the form described above. When an error occurs, a pointer to the exception
structure x will be passed to the user-supplied matherr function. This struc-
ture, which is defined in the <cecs/math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

%
The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW. underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function
that incurred the error. The variables argl and arg2 are the arguments with
which the function was invoked. Retval is set to the default value that will
be returned by the function unless the user's matherr sets it to a different
value.

If the user’s matherr function returns non-zero, no error message will be
printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error.
These procedures are also summarized in the table below. In every case,
errno is set to EDOM or ERANGE and the program continues.

EXAMPLE
#include <ccs/math.h>

int
matherr(x) :
register struct exception *x;
{
switch (x->type) {
case DOMAIN:

MATHERR(3M)

(630 MTG) MATHERR(3M)

/* change sqrt to return sqrt(-arg1), not 0 */
if (tstrcmp(x—>name, "sqgrt")) {
x->retval = sqrt(-x->argl);
return (0); /* print message and set
errno */
}
case SING:
/* all other domain or sing errors, print
message and abort */
lprintf("domain error in %s\n", x->name);
for(;;) sleep(300);
case PLOSS:
/* print detailed error message */
lprintf("loss of significance in %s(%g)=%g\n",
%x->name, x->argl, x->retval);
return (1); /% take no other action */

/% all other errors, execute default procedure */
return (0);

MATHERR(3M) (630 MTG) MATHERR(3M)

DEFAULT ERROR HANDLING PROCEDURES
Types of Errors
type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS |
errig EDOM EDOM ERANGE ERANGE ERANGE ERANGE
BESSEL: — — — - M, 0 *
y0, y1, yn (arg < 0) M -H - — - = =
EXP: = = H 0 = -
LOG, LOG10:
arg < 0) M, -H - — — - —
| (arg = 0) - M, -H - - - B
POW: - - +H 0 - -
neg * non-int M, 0 - - - - -
0 ** non-pos__
[SORT: MO = = = = =
GAMMA: - M H H - - -
_ _ H _ _ _
- — +H — - —
_ _ H _ _ _
IN, COS, TAN: — - - = MO *
ASIN, ACOS, ATAN2: M, 0 — - - - -
ABBREVIATIONS

* As much as possible of the value is returned.
M Message is printed (EDOM error).

H HUGE is returned.
-H ~HUGE is returned.
*H HUGE or -HUGE is returned.

0 0 is returned.

SINH(3M)

NAME

(630 MTG)

sinh, cosh, tanh - hyperbolic functions

SYNOPSIS

#include <ccs/math.h>

double
double

double
double

double
double

DESCRIPTION

sinh (x)
X;
cosh (x)
X;
tanh (x)
X;

SINH(3M)

Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and
tangent of their argument.

DIAGNOSTICS

Sinh and cosh return HUGE (and sinh may return -HUGE for negative x)

when the correct value would overflow and set errno to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO

matherr(3M).

TRIG(3M) (630 MTG) TRIG(3M)

NAME

trig: sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions

SYNOPSIS

#include <ccs/math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;
double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double vy, x;

DESCRIPTION

Sin, cos and tan return respectively the sine, cosine and tangent of their
argument, x, measured in radians.

Asin returns the arcsine of x, in the range -7 /2 to /2.
Acos returns the arccosine of x, in the range 0 to .
Atan returns the arctangent of x, in the range ~w /2 to /2.

Atan2 returns the arctangent of y/x, in the range - to w, using the signs of
both arguments to determine the quadrant of the return value.

SEE ALSO

matherr(3M).

DIAGNOSTICS

Sin, cos, and fan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there would
otherwise be a complete loss of significance. In this case, a message indicat-
ing TLOSS error is displayed. For less extreme arguments causing partial
loss of significance, a PLOSS error is generated but no message is displayed.
In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if
both arguments of atan2 are zero, zero is returned and errno is set to EDOM.
In addition, a message indicating DOMAIN error is displayed.

These error-handling procedures may be changed with the function
matherr(3M).

FONT(4) (630 MTG) FONT(4)

NAME
font — font file format

DESCRIPTION , ;
A font file is a file containing a description of a Font that can be read by
infont(3R /3L) or loadfont(1) and converted into a Font in the terminal. A font
file can be created by using outfont.

A font file begins with a structure that is similar to a Font. It looks like the

following:
struct Fontheader {
short n; /* number of chars in font */

char height; /* height of bitmap */

char ascent; /* top of bitmap to baseline * /
long unused; /*in case we think of more stuff */
Fontchar info[1]; /* n+1 character descriptors */

}

The fields in this structure have the same meanings as the ones in the Font
structure. There are really n+1 Fontchar structures in the info array. The
only field that contains valid data in the [n+1]th element is x; the leftmost
edge of the corresponding cell in the bitmap. Each Fontchar structure starts
on a long integer boundary and is padded with null characters to the next
long integer boundary and the start of the next Fontchar structure. There-
fore, there are two nulls after each of the n+1 Fontchars in the file.

Following this in the file is the bitmap image of the font. This is an array
holding the bit image of all the characters in the font. It corresponds to
bits->base in the Font structure. Its size is defined as:

char base[height][((info[n+1 |.x+31)/32)*4]

The last column of bits used by a font is info[n+1].x-1. The width is
rounded up to the nearest long integer boundary for the bitmap image.

SEE ALSO
infont(3L), loadfont(1), structures(3R).

ASCII(5) (630 MTG) ASCII(5)

NAME
ascii — map of ASCII character set

DESCRIPTION
Ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

1000 nul 1001 soh 1002 stx 1003 etx {004 eot 005 enqi006 acki007 bel!
1010 bs {011 ht 1012 nl 1013 vt {014 np 1015 cr !016 so 1017 si |
1020 dle 021 dc11i022 dc21023 dc3 1024 dc4 1025 nak 1026 syni1027 etb!
1030 cani031 em 1032 sub!033 esci034 fs 1035 gs 1036 rs 1037 us !

7

1040 sp 1041 ! 1042 » 1043 # 1044 $ 1045 % 1046 & 1047
1050 (1051) 1052 * 1053 + 1054 , 1055 - 1056 . 057 /
1060 0 1061 1 062 2 1063 3 1064 4 1065 5 1066 6 067 7
070 8 10719 072 : 073 ; 074 < 075 = 076 > 10772

1
1
i
100 @ 1101 A i102 B i103 C 1104 D i105 E 1106 F 1107 G i
I11I0H 1111 1112 1113 K 1114 L i115M 1116 N 11170 !
120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 1126 V 127w
1130 X 1131Y 1132 Z 1133 [1134 \ 1135] 136 " 137 _ i
140" i141 a 1142 b i143 ¢ 1144 d i145 e 1146 f 147 g H
150 h 11511 1152 1153 k 1154 1 1155 m {156 n 1157 o i
i160 p 1161 q 162 r 1163 s 1164 t 1165 u 1166 v 1167 w i

'

170 x 1171y 1172 z 1173 § 1174 1 1175 } 176 ~ 1177 del

{00nul ! 0lsoh 102stx !03etx ! 04eot ! 05 enqg i 06ack ! 07bel !
108bs 109ht 10anl 10bvt !Ocnp !Odc 1|0eso ! Ofsi i
1 10dle §11dcl 112dc2 t13dc3 ! 14dc4 | 15nak ! 16 syn {17 etb |
i18can i 19em | lasub ! 1lbesc ! lcfs ildgs 1lers | 1fus !
i20sp 121! 122 123 # 124% 125% 126& 127 i
128 ¢(129) 12a* 12b+ 1 2c, t2d - i 2e. t2f/ |
1300 1311 1322 1333 1344 1355 1366 1377 !
1388 1399 i 3a: 13b; i 3c< 13d= | 3e> 1 3f? !
140@ 141A 142B 143C 144D 145E 146 F 147G
148 H 1491 {4a] 14bK 1 4cL 14dM 14eN 1 4fO H
150P 151Q 152R 1538 154T 155U 156V i57W !
158X 159Y 1 5aZ { 5b] ! 5¢\ 15d] | 5e” 1 5f i
160" 16la 162D 163c¢ 1 64d 165e 1 66f 167g !
i 68h 1691 i 6aj ! 6b k i 6cl f6dm | é6en 1 6fo !
170 p 171 q 1 72r 173s 1 74t 175u 176 v V77w
178 x 179y 17az 1 7b { ! 7ct 17d} 1 7e” | 7f-del i

MATH(5) (630 MTG) MATH(5)

NAME
math — math functions and constants

SYNOPSIS
#include <ccs/math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various other functions that return
floating-point values.

It defines the structure and constants used by the matherr(3M) error-
handling mechanisms, including the following constant used as an error-
return value:

HUGE The maximum value of a single-precision floating-
point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOG10E The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LN10 The natural logarithm of 10.

M_PI m, the ratio of the circumference of a circle to its
diameter.

M_PI_2 /2.

M_PI_4 /4.

M_1_Pi 1/=.

M_2_PI 2/x.

M_2_SQRTPI —_—

M_SQRT2 V2

2
Vo
T
M_SQRT1.2 V >

For the definitions of various machine-dependent “constants,” see values(5).

FILES
$DMD /include/ccs/math.h

SEE ALSO
matherr(3M), values(5).

VALUES(5)

NAME

(630 MTG) VALUES(5)

values — machine-dependent values

SYNOPSIS

#include <ccs/values.h>

DESCRIPTION

This file contains a set of manifest constants, conditionally defined for par-
ticular processor architectures.

The model assumed for integers is two’s complement binary, where the sign
is represented by the value of the high-order bit.

BITS(type) The number of bits in a specified type (e.g., int).

HIBITS The value of a short integer with only the high-order
bit set (0x8000).

HIBITL The value of a long integer with only the high-order
bit set (0x80000000).

HIBITI The value of a regular integer with only the high-
order bit set (the same as HIBITS).

MAXSHORT The maximum value of a signed short integer (0x7FFF
= 32767).

MAXLONG The maximum value of a signed long integer
(Ox7FFFFFFF = 2147483647).

MAXINT The maximum value of a signed regular integer (the
same as MAXSHORT).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision

floating-point number, and its natural loga-
rithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double-precision

floating-point number, and its natural loga-
rithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a single-

precision floating-point number, and its
natural logarithm.

MINDOUBLE, LN_MINDOUBLE = The minimum positive value of a double-

precision floating-point number, and its
natural logarithm.

The number of significant bits in the mantissa of a
single-precision floating-point number.

The number of significant bits in the mantissa of a
double-precision floating-point number.

$DMD/include /ccs /values.h

FSIGNIF
DSIGNIF
FILES
SEE ALSO

math(5).

	00_001
	00_002
	00_003
	00_004
	01_01
	01_02
	01_03
	01_04
	02_01
	02_02
	02_03
	02_04
	03_01
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	03_11
	03_12
	03_13
	03_14
	03_15
	03_16
	03_17
	1_01
	1_02
	1_03
	1_04
	1_05
	1_06
	1_07
	1_08
	1_09
	1_10
	1_11
	1_12
	1_13
	1_14
	1_15
	1_16
	1_17
	1_18
	1_19
	1_20
	1_21
	1_22
	1_23
	1_24
	1_25
	1_26
	1_27
	1_28
	1_29
	1_30
	1_31
	1_32
	1_33
	1_34
	1_35
	1_36
	1_37
	1_38
	1_39
	1_40
	1_41
	1_42
	1_43
	1_44
	1_45
	1_46
	1_47
	1_48
	1_49
	1_50
	1_51
	1_52
	1_53
	1_54
	1_55
	1_56
	1_57
	1_58
	1_59
	1_60
	1_61
	1_62
	1_63
	1_64
	3_001
	3_002
	3_003
	3_004
	3_005
	3_006
	3_007
	3_008
	3_009
	3_010
	3_011
	3_012
	3_013
	3_014
	3_015
	3_016
	3_017
	3_018
	3_019
	3_020
	3_021
	3_022
	3_023
	3_024
	3_025
	3_026
	3_027
	3_028
	3_029
	3_030
	3_031
	3_032
	3_033
	3_034
	3_035
	3_036
	3_037
	3_038
	3_039
	3_040
	3_041
	3_042
	3_043
	3_044
	3_045
	3_046
	3_047
	3_048
	3_049
	3_050
	3_051
	3_052
	3_053
	3_054
	3_055
	3_056
	3_057
	3_058
	3_059
	3_060
	3_061
	3_062
	3_063
	3_064
	3_065
	3_066
	3_067
	3_068
	3_069
	3_070
	3_071
	3_072
	3_073
	3_074
	3_075
	3_076
	3_077
	3_078
	3_079
	3_080
	3_081
	3_082
	3_083
	3_084
	3_085
	3_086
	3_087
	3_088
	3_089
	3_090
	3_091
	3_092
	3_093
	3_094
	3_095
	3_096
	3_097
	3_098
	3_099
	3_100
	3_101
	3_102
	3_103
	3_104
	3_105
	3_106
	3_107
	3_108
	3_109
	3_110
	3_111
	3_112
	3_113
	3_114
	3_115
	3_116
	3_117
	3_118
	3_119
	3_120
	3_121
	3_122
	3_123
	3_124
	3_125
	3_126
	3_127
	3_128
	3_129
	3_130
	3_131
	3_132
	3_133
	3_134
	3_135
	3_136
	3_137
	3_138
	3_139
	3_140
	3_141
	3_142
	3_143
	3_144
	3_145
	3_146
	3_147
	3_148
	3_149
	3_150
	3_151
	3_152
	3_153
	3_154
	3_155
	3_156
	3_157
	3_158
	3_159
	3_160
	3_161
	3_162
	3_163
	3_164
	3_165
	3_166
	3_167
	3_168
	3_169
	3_170
	3_171
	3_172
	3_173
	3_174
	3_175
	3_176
	3_177
	3_178
	3_179
	3_180
	3_181
	3_182
	3_183
	3_184
	3_185
	3_186
	3_187
	3_188
	3_189
	3_190
	3_191
	3_192
	3_193
	4_01
	5_01
	5_02
	5_03

