Contents

P Preface
Important Notice to Users P-i
LIMITED WARRANTY P-ii
About Trademarks P-iii
Preface P-iv
1 Introduction
Pixel Machine Features 1-1-
Documentation Conventions 1-2
Software Structure Overview 1-3
Getting Started 1-5
Compiling and Running Programs 1-11
2 Commands and Utilities
Pixel Machine System Commands and Utilities 2-1
System Commands 2-3
PIClib Utility Programs 2-10

3 Overview of PICIib Functions

Overview of PICIlib Functions 3-1

Control Functions 3-4

Graphics Primitives — Basic Functions 3-9

Graphics Primitives — Polygons 3-20
Graphics Primitives — Quadrics and Superquadrics 3-28
Graphics Primitives — Curve Functions 3-35
Graphics Primitives — Patch Functions 3-42
Graphics Primitives — Template Functions 3-49
Fonts and Characters 3-55
Transformations 3-61

Table of Contents i



Table of Contents

Transformations — Modeling Functions 3-66
Transformations — Viewing Functions 3-78
Transformations — Projection Functions 3-84
Transformations — Controt Functions 3-87
Viewport Functions 3-94
Shading and Depth Cueing 3-98
Color Functions 3-111
Display Functions 3-113
Hidden Surface Removal 3-134
Antialiasing 3-137
Video Functions 3-140
Raster Operations 3-144
Input Device Functions 3-145
Picking and Selecting 3-152
Appendix A
Appendix A - Definition of Constants A-1
Appendix B

_Appendix B - Type Definitions B-1
Appendix C
Appendix C — Function Description C-1

PIClib User’s Guide, Version 1.2



Figures and Tables

Figure 3-1: A Superquadric Toroid

Figure 3-2: World Coordinate System

Figure 3-3: Eye Coordinate System

Figure 3-4: Screen Coordinate System

Figure 3-5: Pixel Coordinate System

Figure 3-6: Right-Hand Rule Rotation

Figure 3-7: Arbitrary Axis Rotation (PICrotate_vector(10.0,0.0,0.0,0.0,-1.0,0.0,90.0);
Figure 3-8: PlCcamera_view(100.0, 100.0, 0.0, 0.0, 0.0, 0.0)

Figure 3-9: PlCcamera_view(100.0, 100.0, 0.0, 45.0, 0.0, 0.0)

Table of Contents

3-32
3-62
3-63
3-64
3-65
3-68
3-70
3-80
3-81






P Preface

Important Notice to Users P-i
Warning P-i
LIMITED WARRBANTY P-i
About Trademarks P-ii
Preface P-iv

Table of Contents



Important Notice to Users

No part of this publication may be reproduced, transmitted, or used in any form or by any means--
graphic, electronic, electrical, mechanical, optical, chemical, or otherwise including, but not limited
to, photocopying, recording in any medium, taping, or use in any computer or information storage

and retrieval system--without prior written permission from AT&T.

This manual is intended for use by qualified computer and engineering professionals in accordance
with generally accepted engineering practices and principles. AT&T reserves the right to revise this
manual for any reason, including, but not limited to, conformity with standards promulgated by
IEEE, ANSI, EIA, CCITT, ECMA or similar agencies; utilization of new advances in the state of
technical arts; or to reflect changes in design of equipment or services described therein. While
every effort has been made to ensure the accuracy of all information in this manual, AT&T
expressly and absolutely disclaims any liability to any party of any kind in this PIClib User’s
Guide, its updates, supplements, or special editions, whether such errors are omissions or statements
resulting from negligence, accident or any other cause.

Warning

The software described in this User’s Guide runs on equipment that generates, uses, and can radiate
radio frequency energy, and if not installed and used in accordance with the instructions manual,
may cause interference to radio communications. It has been tested and found to comply with the
limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such interference when operated in a commercial
environment. Operation of this equipment in a residential area is likely to cause interference in
which case the users at their own expense will be required to take whatever measures may be
required to correct the interference.

Preface P-i



LIMITED WARRANTY

AT&T warrants this Pixel Machine is to be in good working order for a period of ninety (90) days
from the date of purchase from AT&T or an authorized AT&T dealer. Should this product fail to be
in good working order at any time during this 90-day warranty period, AT&T will, at its option,
repair or replace this product at no additional charge except as set forth below. Repair parts and
replacement Products will be furnished on an exchange basis and will either be new, remanufactured
or refurbished, at the discretion of AT&T. All replaced parts and Products become the property of
AT&T. This limited warranty does not include repair or damage to the Product resulting from
accident, disaster, misuse, abuse, unauthorized modification of the Product, or other events outside
AT&T’s reasonable control or not arising under normal operating conditions.

Limited warranty service may be obtained by returning the Product during the 90-day warranty
period to an authorized AT&T dealer, or by mail or carrier, to AT&T in accordance with the
instructions provided to you by the Pixel Machines Hotline (1-800-544-0097 or (201) 563-2288) and
providing proof of purchase date. If this Product is returned to AT&T, you agree to insure the Pro-
duct or assume the risk of loss or damage in transit, to prepay shipping charges to the designated
warranty service location and to ship the Product in the original shipping container or equivalent.
Contact your authorized AT&T dealer or, if purchased directly from AT&T, your AT&T Account
Executive for further information.

All express or implied warranties for this product including the warranties of merchantability and
fitness for a particular purpose are limited in duration to a period of 90 days from the date of pur-
chase, and no warranties, whether express or implied, will apply after this period. Some states do
not allow limitations on how long an implied warranty lasts, so the above limitations may not apply
to you.

If this product is not in good working order as warranted above, your sole remedy shall be repair or
replacement as provided above, in no event will AT&T or its dealers or suppliers be liable to you
for any damages, including any lost profits, lost savings or other incidental or consequential dam-
ages arising out of the use of or inability to use such product, even if AT&T or an authorized dealer
or supplier has been advised of the possibility of such damages, or for any claim by any other party.

Some states do not allow the exclusion or limitation of incidental or consequential damages so the
above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which may vary
from state to state.

P-il PIClib User’s Guide, Version 1.2



About Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.
UNIX® System, Operating System, is a registered trademark of AT&T.
WE® DSP32 Digital Signal Processor is a registered trademark of AT&T.
PIClib™ is a registered trademark of AT&T Pixel Machines.

RAYIib™ is a registered trademark of AT&T Pixel Machines.

RTSIib™ is a registered trademark of AT&T Pixel Machines.

IMGIib™ is a registered trademark of AT&T Pixel Machines.

DEVtools™ is a registered trademark of AT&T Pixel Machines.

Copyright© June 1990 by AT&T
All rights reserved
Printed in USA

No part of his publication may be reproduced, transmitted, or used by any means—graphic, elec-
tronic, electrical, mechanical, optical, chemical, or otherwise including but not limited to photocopy-
ing, recording in any medium, taping, or use in any computer or information storage and retrieval
system--without prior written permission from AT&T.

Preface P-iii



Preface

This document presents a description of the PXM 900 Series system commands and PIClib func-
tions and is intended for users who are familiar with C language and experienced in developing pro-
grams. The information presented here is not introductory and assumes that the reader has
knowledge of basic programming concepts and the UNIX® Operating System.

P-iv PICiib User’s Guide, Version 1.2






1 Introduction

Pixel Machine Features 1-1
Documentation Conventions 1-2
Software Structure Overview 13
PXMtools Directory Structure 1-3
PIClib Directory Structure 1-3
Getting Started 15
Defining the Software Environment 1-5
Environment Variables 1-5
Setting Environment Variables Using csh 1-8
Setting Environment Variables Using ksh 1-9
Compiling and Running Programs 1-11
Using Macros 1-11

Table of Contents






Pixel Machine Features

Pixel Machines are graphics gencration and display systems that provide high quality image com-
puting. The systems are programmable and modular, and are designed to exccute complex graphics
functions at very high speeds.

The Pixe! Machines offer a complete set of system commands and a powerful graphics library,
PIClib, for generating a multitude of images. PICIib’s functions reside in the host computer and
provide an interface between your application program and the Pixel Machine. Some of the
highlights of PIClib include:

high-level, 3D object generation (including patches, quadrics, and superquadrics)
flat, Gouraud and Phong shading

texture mapping onto 2D or 3D surfaces

multiple light sources of different types

antialiasing by supersampling for photorealistic 3D rendering

32-bit floating point z-buffer for highly accurate depth precision

32~bit double buffering

a robust set of interactive 3D graphics functions

a unique set of rgbz buffer copy routines

The application programs are written in C. For more information on the C programming language,
refer to The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie (1978,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, or the updated 1988 edition).

Introduction 1-1



Documentation Conventions

The information in this guide is presented in the following way:

1-2

W Square brackets [] indicate options; parenthesis () indicate arguments.
m Variables and user—supplied names are printed in italics.
m Constants and return values are printed in helvetica.

®m Each command and function is addressed separately. The discussion includes a description of
the command or function’s purpose and operation. This is followed by its syntax and com-
mand usage format and, finally, by an explanation of the arguments; for example:

PICcircle(x,y,r)
float x,y,1;

the coordinates of the circle’s centerpoint

i

X,y

r the circle’s radius

m Where appropriate, examples and illustrations are included to further clarify the use of a com-
mand or function,

PICiib Uset’s Guide, Version 1.2



Software Structure Overview

To set-up your software environment on the Pixel Machine for PICIib, you need two tapes:
PXMtools and PIClib. PXMtools contains the system commands and data files that are not unique
to any one Pixel Machine software library. These commands include what you need to initialize the
machine and to set-up your environment variables, along with files containing cursor and font data.

These tapes must be loaded according to the instructions in their accompanying Release Notes.

The following two sections describe the directory structures and contents of PXMtools and PIClib.

PXMtools Directory Structure

PXMtools has the following directory structure:

pxmtools:
bin - PXMtools commands
boot ~— Pixel Machine DSP executables
cpic - gamma correction data for calibrating various monitors

cursors ~ bitmaps that define cursors
fonts — vector fonts used with various demos
icons -~ icons for some of the demos
include - user include files
locks — Pixel Machine lockfile directory—permissions must be 777.
man - manual pages:
manl - source for command man pages
mand - source for image header man pages
catl - command man pages
catd — image header man pages

PIClib Directory Structure
PICIib has the following directory structure:

piclib:
bin — Shell level PIClib utilities
picclear, picdisp, picsave, piccompress, pictexture, picbroadv
boot — Pixel Machine DSP executables
demo — demonstration programs
bin — executable demo programs with scripts
data — object and image data files
obj — object files
src — source files
include — user include files

Introduction ‘ 1.3



Software Structure Overview

lib - library directory contains the following libraries:
piclib.a — host library
piclib_p.a — profiled host library
piclib_ffpa.a — host library, {loating point (Sun 3 only)
piclib_ffpa_p.a — profiled host library, floating point (Sun 3 only)

- in the FORTRAN version, this directory contains:

piclib_ffpa_pf.a - profiled host library, floating point, FORTRAN version {Sun 3 only)
piclib_ffpaf.a — host library, floating point, FORTRAN version (Sun 3 only)
piclib_pf.a — profiled host library, FORTRAN version
piclibf.a — host library, FORTRAN version

man — manual pages:
whatis — list of PIClib functions
manl - source for command man pages
man3 - source for function man pages
man4 - source for image header man pages
catl — command man pages
cat3. - function man pages
catd - image header man pages

PIClib User’s Guide, Version 1.2



Getting Started

Before you can compile and run your programs, you need to make sure that the hardware is initial-
ized and the software environment is set up correctly. When you first turn on the Pixel Machine,
you must initialize the hardware to a known state. This is accomplished by executing the hypinit
command. For more information about hypinit, see the manual page that came with the PXMtools
commands and the section on hypinit in Chapter 2 of this User’s Guide.

The software environment must be set up at installation time, after power-up, and after any changes
to the system’s configurations (for example, upgrading the Pixel Machine or changing the Transfor-
mation Pipeline configuration). The procedures for setting up the software environment are
described below.

Defining the Software Environment

Before using the Pixel Machine, the proper environment must be created. You must set the Pixel
Machine environment variables for each login on the host computer. These variables are set in one
of the following three ways:

1. As commands typed manually from the UNIX® system prompt.

2. As statements in your Jogin and .cshrc files (C shell [csh]) or as statements in your .profile
and .env files (Korn shell [ksh]).

3. As statements in a system file, such as /etc/profile.

Environment Variables

The /usr/hyper directory contains sample files for defining the Pixel Machine environment. These
files are named:

hyper_login
.hyper_cshre
Jhyper profile
hyper_env

If you are using csh, you can source .hyper_login and .hyper_cshrc into your .login file. Edit
your .login file, and add the following to the end of the file:

source /usr/hyper/.hyper login
source /usr/hyper/.hyper cshrc

Introduction 1-5



Getting Started

If you are using ksh, you can . (dot) .hyper_profile and shyper_env into your .profile. Edit
your .profile and add the following to the end of the file:

/usr/hyper/ .hyper profile
/usr/hyper/ .hyper env

When setting up your environment, refer to the variable descriptions below. These variables should
be included in your .profile, .login or system file.

The HYPER_MODEL variable specifies the Pixel Machine model and Transformation Pipeline
configuration. The table below describes the values that can be assigned to this variable.

A value of ... | Denotesa...

916 Pixel Machine 916 |single Pipe | 1024x1024
916d Pixel Machine 916 |{dual Pipe |{1024x1024
920 Pixel Machine 920 {single Pipe |1280x1024
920d Pixel Machine 920|dual Pipe |1280x1024
932 Pixel Machine 932 |single Pipe |1024x1024
932d Pixel Machine 932 |dual Pipe |1024x1024
940 Pixel Machine 940 |single Pipe [1280x1024
940d Pixel Machine 940 |dual Pipe |1280x1024
964 Pixel Machine 964 |single Pipe |1024x1024
964d Pixel Machine 964 [dual Pipe |1024x1024
964X Pixel Machine 964 single Pipe [1280x1024
964dX Pixel Machine 964 |dual Pipe |1280x1024

A lower case “n” appended to the model number indicates an NTSC model whose reso-
lution is 720x4886.

A lower case “p” appended to the model number indicates a PAL model whose resolu-
tion is XXX.

A lower case “z” appended to the model number indicates zero pipes.

An “X” appended to the model number indicates a high resolution monitor.

1-6 PIClib User’s Guide, Version 1.2



Getting Started

The HYPER PATH variable specifies the full pathname to the host directory that contains the
Pixel Machine software (for example, /ust/hyper)

The HYPER_PIPE variable specifies the pipeline configuration (serial or parallel) for systems with
two transformation pipelines.

The HYPER_UNIT variable specifies the Pixel Machine unit number. Up to four machines (num-
bered 0, 1, 2, 3) can be connected to a host computer. The HYPER_GAMMA variable controls
how the color tables are updated by hypinit. If HYPER GAMMA is set and is not null, it is
used as the the name of a file that contains a gamma correction table. If HYPER_GAMMA is
not set or is null, a linear ramp is loaded into the color tables. If HYPER GAMMA does not

contain an absolute pathname, it is used as a filename in the $HYPER PATH/cpxc directory. Rela-
tive pathnames are not supported.

The video control parameters are set based on the HYPER_MODEL and HYPER_VIDEO
environment variables. The HYPER VIDEO variable contains a string that is parsed to produce a
value that is passed to DEVset video_options(). The string in HYPER_VIDEO must be of the
format:

The value after the equal sign must be one of the values listed in braces. The first value is the
default; spaces in the string are ignored.

Examples:

In addition to defining the Pixel Machine—specific environment variables, you can also update your
PATH variable(s) to provide easy access to Pixel Machine software, demos and manual pages.

To update your PATH variable, add the following directories:

Introduction 1-7



Getting Started

$HYPER PATH/bin Allows you to run the PXMtools system commands
(e.g., hypinit (see Chapter 2 for more information))
and the PIClib utilities (e.g., picclear (see Chapter 2 for more information))
from your current working directory.

$HYPER_PATH/piclib/demo/bin  Allows you to run PIClib demos from your current
working directory.

To update your MANPATH variable, add the following directories:

$HYPER PATH/man

$HYPER_PATH/piclib/man Allows you to access PXMtools manual pages as well as PIClib manual
pages from your current
working directory.

To see a list of what your environment variables are set to, type the hypenv command. For more
information about hypenv, refer to Chapter 2 of this User’s Guide and the hypenv(l) manual page
that came with the PXMtools.

If you upgrade or change your present Pixel Machine, you need to redefine the environ-
NOTE| ment variables.

Setting Environment Variables Using csh

The following example illustrates the csh commands you need to specify to define the Pixel
Machine environment for a Model 964d with the transformation pipelines configured in serial mode.

] Be sure to enter each environment variable on a separate line.
‘NOTE

i

The following can be added to your .login file:

1-8 PIClib User’s Guide, Version 1.2



Getting Started

setenv HYPER_MODEL 964d
setenv HYPER PATH fusr/hyper

setenv HYPER_PIPE serial
setenv HYPER_UNIT 0
setenv MANPATH ${MANPATH}:$HYPER PATH/man:$HYPER PATH/piclib/man

setenv HYPER GAMMA
setenv HYPER _VIDEO

set path = ( ${path} $HYPER PATH/bin $HYPER_PATH/demo/piclib/bin \
$HYPER_PATH/demo/raylib/bin)

Aligs definitions provide a “‘short—cut” for defining variables. The following lines can be added to
your .cshre file.

alias  hypmodel ’setenv HYPER_MODEL ~ \I*’

alias  hypipe ’setenv HYPER PIPE \P*?
alias  hypunit "setenv HYPER _UNIT \I*?
alias  hypath ‘setenv HYPER_PATH P

alias hypgamma ’setenv HYPER GAMMA \I¥’
alias  hypvideo ’setenv HYPER_VIDEO \I*?

Once the above aliases have been established, you can use them to define environment variables.
For example, if you need to redefine the HYPER_PIPE variable to designate a parallel pipeline
configuration, you can type hypipe parallel instead of setenv HYPER PIPE parallel .

Setting Environment Variables Using ksh

The following example illustrates the ksh commands you need to specify to define the Pixel
Machine environment for a Model 964d with the transformation pipelines configured in serial mode.

Introduction 1-9



Getting Started

HYPER_MODEL=964d

HYPER_PATH=/usr/hyper

HYPER_PIPE=serial

HYPER_UNIT=0

HYPER_GAMMA

HYPER_VIDEO

PATH=$PATH:$HYPER_PATH/bin:3HYPER PATH/piclib/demoy/bin:
MANPATH=$MANPATH:$HYPER_PATH/man:$HYPER PATH/piclib/man

export HYPER_MODEL HYPER _PATH HYPER_PIPE HYPER_UNIT HYPER GAMMA HYPER_VIDEO
export MANPATH PATH

Alias definitions provide a “‘short—cut’’ for defining variables. The following lines can be added to
your .env file.

hypmodel() { HYPER_MODEL=$1; }
hypipe() { HYPER PIPE=$1; }
hypunit() { HYPER UNIT=$1; }
hypath() { HYPER_PATH=$1; }
hypgamma() { HYPER_ GAMMA=$1; }
hypvideo() { HYPER_VIDEO=$1; }

1-10 PIClib User’s Guide, Version 1.2



Compiling and Running Programs

At the beginning of each C application program, you must include a header file for PIClib. This file
includes type definitions, constants, and external definitions, and is included by the following state-
ment:

#include <piclib.h>

The first graphics function called within an application program is usually PICinit(). This function
initializes and resets the PICIib library, and opens the Pixel Machine device, stapic all the nodes in
the system, and resets all graphical parameters to their default values as described in PICreset()
manual page. PICinit() returns a value of PIC_ERR_OK if the initialization is successful, or a
PIC_ERR_OPEN if it failed. For a complete description of the functionality, see the PICinit(3)
manual page in the PIClib Reference Manual.

The last graphics function called within an application program is usually PICexit(). Be sure to
include it at the end of your program.

To compile your graphics program, link piclib.a and the math library as follows:

where, [file.c] is the name of the file containing the program. You can also link with versions of
PIClib that include profiling and different floating point options.

The system will compile your program and create an executable file called a.out. To run the pro-
gram, rename the file to whatever file you have chosen and type the name of this executable file.

Using Macros

The file PICMAC.h contains macros that you can use to speed up the processing of your programs
(see Appendix A for a list of the macros. These macros avoid the overhead of calling and returning
from functions and of converting floating point arguments into double precision and back into single
precision. The file is located in /usr/hyper/include. Be sure to include it at the top of your pro-
gram if you want to use the macros for faster command execution. The macro for a PIClib com-
mand is identical to the PIClib command, except the PIC prefix is replaced with PICMAC (e.g.,
PIC point 3d becomes PICMAC point 3d).

Introduction 1-11






2 Commands and Utilities

Pixel Machine System Commands and Utilities 2-1

System Commands 2-3
m hypdis 2-3
8 hypenv 2-3
a hypfree 2-4
m hypid 2-5
& hypinit 26
m hyplock 2-7
m hypstat 2-8
® hypunlock 2-8
m hypversion 2-8

PIClib Utility Programs 2-10
m picalpha 2-10
w picbars 2-10
m picboot 2-10
m picbroadv 2-10
m picbroadz 2-11
® picbtof 2-12
m picdisp 2-12
m picetof 2-14
m picftob 2-14
= picftoe 2-15
m picgamma 2-15
& picinit 2-15
® piclear 2.15
m piclens 2-16
m picsave 2-16
m pictexture 217

Table of Contents i






Pixel Machine System Commands and Utilities

The system commands (UNIX system commands typed on the command line) and utilities (PICIlib
programs) allow you to perform utility and administrative functions, such as initializing the
hardware, loading the PICIib processor programs into the transformation pipeline(s) and pixel nodes,
or simply locking your Pixel Machine.

The system commands described in this section are:

Command Function

hypdis Disables selected pixel boards.

hypenv Displays current settings of environment variables.
hypfree Releases a locked unit.

hypid Displays node ID data.

hypinit Initializes the current Pixel Machine.

hyplock Locks the current Pixel Machine.

hypstat Displays the status of the current Pixel Machine.
hypunlock Unconditionally unlocks a Pixel Machine.
hypversion Prints the software version.

For more information on the use of these commands, see the manual pages that came with your
PXMtools software.

The system utilities described in this section are:

Commands and Utilities 2-1



Pixel Machine System Commands and Utilitles

Utility Function

picalpha Turns the alpha channel display on/off

picbars Displays the color bars on the screen

picboot Loads the PIClib modules into the geometry and drawing nodes
picbroadv Broadcasts a buffer of data to VRAM

picbroadz Broadcasts a buffer of data to DRAM

picbtof Copies contents of the back buffer to the front buffer

picdisp Downloads and/or displays an image

picetof Copies the contents of the extended VRAM buffer to the front buffer
picftob Copies the contents of the front buffer to the back buffer
picftoe Copies the contents of the front buffer to extended VRAM
picgamma Creates gamma corrected lookup tables

picinit Resets the Pixel Machine to its default values

piclear Clears the screen

piclens Interactive tool that roams around and magnifies the display
picsave Saves an image to disk

pictexture Displays current texture loaded into VRAM

2-2 PICIib User’s Guide, Version 1.2



System Commands

hypdis

hypdis writes a zero to the mode register of each pixel board in a system, thereby effectively
removing the board from consideration during writes to the broadcast FIFO and during processor
synchronization operations.

hypdis is typically used to reconfigure a Pixel Machine to a lower model number for testing pur-
poses or when a pixel board becomes inoperative.

The following example shows how to configure a Pixel Machine with 64 nodes as a 940:
HYPER_MODEL=%40d
hypdis

The hypdis command should always be followed by a hypinit.

It is important to note that Pixel Machines equipped with the serial 1/O feature will not
‘NoTE| work when a system is configured as a smaller model using hypdis.

-

Also note that pipe boards are unaffected by hypdis, therefore hypdis cannot be used to configure
a 964d as a 964, for example.
hypenv

The hypenv command displays the current values of the Pixel Machine environment variables.
The environment variables must be set on the host workstation either in a login procedure or before
using the Pixel Machine. (See Chapter 1 of this Guide for procedures for setting Pixel Machine
environment variables.) If no options are specified, the status of all environment variables are
displayed.

Command usage is:

hypenv [- DI[-MI[-PI[- Ul[- GI[- VI[- A][-ul]

The options are as follows:

Commands and Utilities 2-3



System Commands

—D  Print current value of HYPER _PIPE (serial or parallel)

=M  Print current value of HYPER_ MODEL environment variable
—P  Print current value of HYPER_PATH environment variable

—U  Print current valué of HYPER_UNIT environment variable

~G  Print current value of HYPER_ GAMMA environment variable
—V  Print current value of HYPER_VIDEOQ environment variable
—A  Print current value of HYPER_ADDRESS environment variable

-u Print command usage format

If you enter hypenv, the system displays the following typical response:

Model: 964d Pipe: parallel Unit: 0 Path: /usr/hyper

The HYPER_ADDRESS environment variable should ONLY be used with the SGI
Power Series host. Please read the SGI Release Notes for more information on this
variable. HYPER_ADDRESS should NOT be used or set with any other Pixel
Machines hosts.

hypfree

The hypfree command releases one or more Pixel Machines that were locked with the hyplock
command. If no options are specified, the command releases only the current unit.

Command usage is:

hypfree [-al[-u]

The options are as follows:

—a  Free all units

—u  Print command usage format

2-4 PIClib User’s Guide, Version 1.2



System Commands

hypid
The hypid command generates a list of ID data on the nodes in the Pixel Machine.

Command usage is:

hypid [-all-d nodell-g nodell-ul

The options are as follows:

-a Print ID data on all nodes
~d node  Print ID data of pixel node number node or all
—g node  Print ID data of transformation node number node or all

-u Print command usage format

If you enter hypid —d1, the system displays the following typical response for a Pixel Machine

964 model:

The ID data provides the following information:

m node id contains the sequential numbering of the transformation and pixel nodes. The pixel
nodes range from 0 to n (n = 63 on a model 964). The transformation nodes range from 0 to
8 for a single pipe configuration; from 0 to 17 for a dual pipe configuration.

x nodes and y nodes indicate the configuration of the buffer in an N x M array.
x offset and y offset indicate the position of the processor in the 2D array.

program lists the name of the DSP executable program that is loaded into memory.

semaphore contains system information

Commands and Utilities 2-5



System Commands

hypinit

Each time you power up the system, you need to initialize it to a known state. The hypinit com-
mand initializes the Pixel Machine to its default state. If no options are specified, hypinit initial-
izes the transformation nodes and FIFOs, the pixel nodes, the drawing mode register, the transfor-
mation pipeline, and the video.

You can also use this command to reinitialize the Pixel Machine whenever you want the system to
return to its initial state.

Command usage is:
hypinit [-b] [-d] [-g] [-m] [-n] [-p] [-q] [-Q] [-1] [-¥v] [- V] [-ul]

The following options may be used to limit initialization:

-b Initialize the VME bus repeater
—-d  Initialize the pixel nodes
-g Initialize the pipe nodes

—-m Initialize the pixel mode register to the current configuration
model, disable overlay video, and turn off testing mode

-n Do not initialize the video

—p  Reconfigure pipelines in series or parallel based on the
environment variable

—q  Enables pipelined writes

~Q  Disables pipelined writes

-r Reset input and output pipeline FIFOs

—v  enable verbose mode

-V Initialize video registers and lookup tables

—u  Print command usage format

If you enter hypinit —v, the system displays the following typical response:

PIClib User’s Guide, Version 1.2



System Commands

Geomet £y output: fwrite )
Geor npit

Video csr reqiéf . 3
\ 964% no;;p‘sjnq&n@ - payTy

hyplock

The hyplock command locks the current Pixel Machine and prevents other users who are timeshar-
ing the system from accessing it. (The Pixel Machine is not multitasking.) Before you log off,
remember to unlock the system by executing the hypfree command.

Command usage:

hyplock [-u]

The options are as follows:

—u  Print command usage format

Commands and Utilities 2-7



System Commands

hypstat
The hypstat command displays the system status of the Pixel Machine.

Command usage is:
hypstat [-u]
The options are as follows:

~u  Print command usage format

If you execute hypstat, the system displays the the same message as hypinit —v, which is
described above. If you get an error message, enter the hypinit command first and then hypstat.

hypunlock

The hypunlock shell script can be used to unconditionally unlock a particular Pixel Machine. If
unit is specified, that Pixel Machine is unlocked, otherwise the machine specified by

$HYPER UNIT is unlocked. The hypunlock command is typically used when someone has pre-
viously locked the Pixel Machine (using hyplock) and forgotten to free the Pixel Machine after
using it.

Command usage is:
hypunlock [unit]
This command should only be used as a last resort when you are sure that no one else is currently
using the Pixel Machine.,
hypversion

hypversion with no options displays the software product, version, and date of the installed
software. Specific products can have version information displayed by using the appropriate option.

Command usage is:

hypversion [-p] [-d] [-1] [-s] [-u]

2-8 PIClib User’s Guide, Version 1.2



System Commands

The options are as follows:

—p  Print version of PIClib

—d  Print version of DEViools

~r  Print version of RAYlib

—s  Print version of RTSlib (Simulation Library)

—u  Print command usage format

Commands and Utilities 2-9



PIClib Utility Programs

Following are brief descriptions of the PIClib system commands. For more detailed information,
see the manual pages in section 1 of the PIClibReference Manual.

picalpha

picalpha turns the display of the alpha channel on or off. With an argument, it turns on the
display; without an argument, the display is turned off.

picbars

picbars displays color bars on the screen. Followed by an argument, it displays logarithmic color
bars, and with no argument, it displays linear color bars.

This tool is useful for calibrating equipment such as cameras and monitors.,
NOTE

!

picboot

picboot downloads PICIib into the Pixel Machine. This command checks each pipe and pixel node
1o see if the correct PIClib module is loaded. If it isn’t, picboot loads it

picbroadv

picbroadv broadcasts pixels to extended VRAM in many formats. The following image formats
are supported:

PIC_RGB_PACKED PIXELS
PIC_RGBA_PACKED PIXELS
PIC_ABGR_PACKED PIXELS

This command is useful for loading texture maps.

Command usage is:

picbroadv [-p x yl[-s npixels nlines] [0 xoffset yoffset] [-d]l[-v] filename

The options are as follows:

2-10 PIClib User’s Guide, Version 1.2



PIClib Utility Programs

“pxy Specifies the starting pixel location in the plane of memory in x and y pixel
coordinates. The default is 0 0.

—s npixels nlines  Specifies the number of pixels and number of scan lines to
download. The default is the size of the image as
specified in the image header.

—o xoffset yoffset  Specifies the number of pixels (in the x and y direction) to offset
the
image by before downloading. This number of pixels and lines will be
skipped in the image file. The default is 0 O.

-d ' Uses the default starting pixel location that is specified in the
image file. This overrides the —p option.
-V Print verbose output
picbroadz

picbroadz braodcasts pixels to extended DRAM in many different formats. The following image
formats are supported:

PIC_RGB_PACKED PIXELS
PIC_RGBA_PACKED PIXELS
PIC_ABGR_PACKED_PIXELS

Command usage is:

picbroadz [-p x yl[-s npixels nlines] [- o xoffset yoffset] [-d][-v]filename

The options are as follows:

Commands and Utilities 2-11



PIClib Utility Programs

-pxy Specifies the starting pixel location in the plane of memory in x and y pixel
coordinates. The default is 0 0.

—s npixels nlines  Specifies the number of pixels and number of scan lines to
download. The default is the size of the image as
specified in the image header.

—o xoffset yoffset  Specifies the number of pixels (in the x and y direction) to offset
the
image by before downloading. This number of pixels and lines will be
skipped in the image file. The default is 0 0.

-d Uses the default starting pixel location that is specified in the
image file. This overrides the —p option.

-v Print verbose output

picbtof

picbtof copies the contents of the back buffer to the front buffer; the result is immediately seen on
the display.

=] This command does not take any options.
NoTE

T

picdisp
picdisp downloads and/or displays an image in many different formats.
The image formats supported are:

PIC_RGB_PIXELS
PIC_RGB_PACKED PIXELS
PIC_RGBA_PACKED PIXELS
PIC_ABGR_PACKED PIXELS
PIC_RGB_ENCODED PIXELS

Command usage is:

picdisp [-p initx inity] [-s npixI nline] -0 xoffset yoffset] - b [front! back 'extended]
—[vdclfilename [- C composite_mode] filename

2-12 PICIib User's Guide, Version 1.2



PIClib Utility Programs

The options are as follows:
—p initx inity Specifies the starting pixel location on the screen in x and y pixel coordinates.
The default is 0 0.

~s npixl nline Specifies the number of pixels and number of scan lines to download. The
default is the size of the image as specified in the image header.

—o xoffset yoffset  Specifies the number of pixels (in the x and y directions) to offset the
image by before downloading. This number of pixels and lines will be skipped in the
image file. The default is 0 0.

—b buffer Specifies to which segment of memory pixels should be downloaded (front is the default).
If front is specified, pixels are downloaded to the visible buffer of VRAM.
If back is specified, pixels are downloaded to the invisible buffer of VRAM.,
If extended is specified, pixels are downloaded to the invisible buffer
of extended VRAM.

-d picdisp uses the default starting pixel location as specified in the image file.
This option overrides the —p option.

-C Copies the image to the front buffer. After the copy, the front and back buffers
are identical.

-C Specifies composite mode. The following modes, in either upper or lower case, are supported.

NO_COMPOSITE
A OVER B
B_OVER A

-V Prints verbose output

Examples:
picdisp —c¢ —b back filename

displays the image in both front and back buffers.
picdisp test.img

Commands and Utilities 2-13



PICiib Utility Programs

In this example the image is displayed on the screen from (0,0).
picdisp —d test.img

The image is displayed on the screen in the way it was stored. That is, if the image was displayed
in screen coordinate space from (500,500) to (800,800) when it was saved, the image will be
displayed in the same coordinate space.

picdisp —p 0 0 —s 255 255 —0 0 0 —b front ~v test.img

test.img is displayed on the screen at the starting point (0,0) with a size of 255,255. The offset into
the image is (0,0), and the image is displayed in the front buffer.

For this release ONLY, picdisp can also display images stored in the old image format.
NOTE

picdisp filename [initx inity [finalx finaly [ifromx ifromy [itox itoy]]]]
picetof

picetof copies the contents of the extended VRAM buffer to the front buffer; the result is immedi-
ately seen on the display. :

picetof does not take any arguments,
NOTE

picftob

picftob copies the contents of the front buffer to the back buffer. The display on the screen
remains unchanged.

picftob does not take any arguments.
NOTE

2-14 PIClib User’s Guide, Version 1.2



PIClib Utility Programs

picftoe
picftoe copies the contents of the front buffer to the extended VRAM buffer.

picftoe does not take any arguments.
NOTE

picgamma
picgamma creates gamma corrected lookup tables and loads these tables into the Pixel Machine.

Without any arguments, the gamma values used for r, g, b are 1.0. If one argument is specified, r,
g, b are set to that argument. If three arguments are specified, the gamma values for r, g, b are set
to the arguments, respectively.

picinit
picinit resets the Pixel Machine to its default values. This command is useful for returning the
machine to a normal state.

picinit does not take any arguments.
NOTE

|

piclear

piclear clears the front and back buffers with the specified rgb on the command line. If rgb is not
specified, it clears the screen to black. The alpha plane is set to zero, and the z-buffer is cleared to
its default.

Command usage is:

piclear [~b] [r g bl
float r,g,b;

The options are as follows:

Commands and Utilities 2-15



PICIlib Utility Programs

-b Clears the back buffer only

rgb Specifies the color to be used in clearing the buffers.
r, g and b range from 0.0 to 1.0.

piclens

piclens is an interactive tool that allows the user to roam around the display and magnify segments
of it. The image on the screen can be magnified up to 128 times. The image cannot be scaled
down below its original size (i.e., 1). The size of the window is 256 X 256 pixels.

When piclens is invoked, a mouse playground window appears on the host machine. The three
buttons on the mouse do the following:

Right button:  the magnification factor is doubled

Left button:  the magnification factor is halved

Middle button:  sets the point to be magnified

Keyboard keys:  the keyboard keys can be upper or lower case, and they do the following:

o G - toggle grid on/off in magnification window. The current pixel is
highlighted with a red boundary.

o arrow keys — move position by one pixel in the appropriate direction.
Pre-fixing the arrow keys with a number, moves the position by given
amount.

0 Q - quit

piclens does not take any arguments.

picsave
picsave saves an image to disk in many different formats.
Command usage is:

picsave [-p initx inity] [-s npixels nlines] [-m rgh|rgba]agbr] [-b front|back]
[-v] filename

2-16 PIClib User’s Guide, Varsion 1.2



PIClib Utility Programs

The options are as follows:

“pxy
—s npixels nlines

—m mode

-b buffer

pictexture

Specifies the starting pixel location on the screen in pixel coordinates.
The default is 0,0.

Specifies the number of pixels and number of scan lines to be saved. The default is
the entire screen.

Specifies how pixels are stored. mode is one of the following (rgba is the
default):

rgb — Pixels are stored in RED, GREEN, BLUE format, 24—bits per pixel
(P|C_RGB_PACKED_PIXELS)

rgba — Pixels are stored in RED, GREEN, BLUE, ALPHA format, 32-bits
per pixel (PIC_RGBA_PACKED_PIXELS).

agbr — Pixels are stored in ALPHA, GREEN, BLUE, RED format, 32-bits
per pixel (PIC_AGBR_PACKED_PIXELS)

Specifies from which segment of VRAM pixels should be saved (front is the
default):

front — Save pixels from the visible buffer of VRAM

back — Save pixels from the invisible buffer of VRAM

Print verbose output

pictexture maps the current texture loaded into offscreen VRAM on a 1K by 1K polygon and

displays it in the front buffer.

Commands and Utilities

pictexture does not take any arguments.

217






3 Overview of PIClib Functions

Overview of PIClib Functions 3-1
Control Functions 3-4
PICinit() 3-4
PICdsp float() 3-5
PiCexit() 3-5
PiCreset() 3-6
PiCresume() 3-8
PICswap_pipe() 3-8
PiCwait_vsync() 3-8
PlCwait_psync() 3-8
Graphics Primitives — Basic Functions 39
PlCeuclid_mode() 3-9
PICarc() 3-10
PiCarc_precision() 3-11
PICcircle() 3-12
PiCcircle_precisiory) 3-13
PICrectangle() 3-14
PiCdraw() 3-15
PICmove() 3-17
PICpoint() 3-18
Graphics Primitives — Polygons 3-20
PICclockwise() 3-20
PICpoly close() 3-21
PICpoly _normal() 3-21
PiCpoly point() 3-22
PICpoly point_nv() 3-24

Table of Contents i



Table of Contents

PICpoly_point_uv() 3-25
PICpoly_point_rgb() ‘ 3-25
PICpoly point_nv_uv() 3-26

Graphics Primitives — Quadrics and

Superquadrics / 3-28
PiCquadric_precision() 3-28
PiCsphere() 3-29
PICsuperq_ellipsoid() 3-29
PICsuperq_toroid() 3-31
PICsuperg_hyperi() 3-32
PiCsuperq_hyper2() 3-33
Graphics Primitives — Curve Functions 3-35
Generating Curves , 3-35

B Bezier Curves 3-35

B Hermite Curves 3-36

B B-spline Curves 3-36

® Four-point Curves 3-36
PICcurve_geometry 3d() 3-37
PICcurve precision() 3-37
PICput_basis() 3-37
PlCselect_curve basis() 3-38
Graphics Primitives — Patch Functions 3-42
Generating Patches 3-42

m Bezier Patches 3-43

m Hermite Patch 3-43

B B-spline Patch 3-43
PlICpatch_geometry 3d() 3-46
PiCpatch_precision() ' 3-47
PICput_basis() 3-47
PiCselect_patch_basis() 3-48

i PIClib User’s Guide, Version 1.2



Table of Contents

Graphics Primitives — Template Functions 3-49
PICatom() 3-49
PiCatom_light() 3-50
PICatom_surface() 3-50
PiCget_template() 3-51
PlCmake_template() 3-52
PICmake_sphere_template() 3-53
PiCstamp_template() 3-53
Fonts and Characters 3-55
PICopen_raster_font() 3-55
PICput_raster_font() 3-56
PICraster_text() 3-56
PlICraster_font_tex¥() 3-57
PiCopen_vector_font() 3-58
PICput_vector_font() 3-59
PlCvector_text() 3-60
PlCvector_font_text() 3-60
Transformations 3-61
Transformation Matrices 3-61
Transformations — Modeling Functions 3-66
Rotation 3-67

m PiCrotate Functions 3-68

m PliCrotate_vector() 3-69

= PICput rotate_d Functions 3-71

m PICrotate_d Functions 3-72
Translation : 3-72

m PiCtranslate Functions 3-73

m PICput translate_d Functions 3-73

® PlICtranslate_d Functions 3-74
Scaling 3-74

m PiCscale Functions 3-75

s PICput_scale_d Functions 3-75

Table of Contents ]



Table of Contents

m PICscale_d Functions 3-76
Transformations — Viewing Functions 3-78
PiCcamera_view() 3-78
PlClookat_view() 3-81
PlIClookup_view() 3-82
PICpolar_view() . 3-82
Transformations — Projection Functions 3-84
PiCpersp_project() 3-84
PiCwindow_project() 3-85
PlICortho_project() 3-85
PICortho_2D project() 3-86
Transformations — Control Functions 3-87
Modeling and Viewing Transformation Control : 3-87

m PICget inverse transform() 3-87

m PICget_normal_transform() 3-88

@ PICget_transform() 3-88

m PlCpremultiply transform() 3-88

a PiCpostmultiply_transform() 3-89

m PICpush_transform() 3-89

& PICpop_transform() 3-89

m PiCput_transform() 3-90

m PICput_identity transform() 3-91
Projection Transformation Control Functions 3-91

m PiCget_inverse project() 3-91

m PICget project() 3-92

m PlCpremultiply_project() 3-92

m PICpostmultiply project() 3-92

' PICpush project() 3-93

& PiCpop_project() 3-93

m PICput project() 3-93

iv PIClib User’s Guide, Version 1.2



Table of Contents

Viewport Functions 3-94
PICget_screen_size() 3-94
PICget_depth() 3-94
PiCget_viewport() 3-95
PICpop_viewpori() 3-95
PICpush_viewport() 3-96
PiCput_depth() 3-96
PICput_viewpori() 3-96
Shading and Depth Cueing 3-98
PICshade_mode() 3-98
PiCget shade_mode() 3-99
PiCflip() 3-99
PICclockwise() 3-100
PIClight_ambient() 3-100
PiClight_switch() 3-101
PICput_light_source() 3-101
PICput_surface_model() 3-104
PICdepth_cue() 3-104
PICdepth_cue_limits() 3-104
PiCput_texture() 3-105
PICset_texture() 3-106
PiCreset_texture() 3-107
PlCtexture_precision() 3-107
PiCpercent_texture() 3-108
Phong Shading 3-108
m Using Phong Shading 3-109
Color Functions 3-111
PiCcolor_rgb() 3-111
PICcolor_alpha() 3-111

Table of Contents \'



Table of Contents

vi

Display Functions 3-113
PiCclear_alpha() 3-114
PlCclear_rgb() 3-114
PiCclear_z() 3-114
PICclear_rgbz() 3-115
PlCget_buffer() 3-115
PICget_buffer_mode() 3-115
PiCdouble buffer() 3-116
PlCswap_buffer() 3-116
PICdisplay overlay() 3-116
PlCoverlay mode() 3-117
PICput_overlay mode() 3-118
PICget_overlay mode() 3-118
PiCalpha() 3-118
PICcomposite_mode() 3-121
PICput_scan _line() 3-123
PICget_scan_line() 3-125
PICput_image_header() 3-126
PIiCget_image_header() 3-127
PIiCbroadcast_data() 3-129
PiCcopy _front to back() 3-130
PICcopy_back_to_front() 3-130
PICcopy_back to_ext() 3-130
PICcopy_ext to_back() 3-132
PiCcopy_z to_ext() 3-133
PICcopy_ext to z() 3-133
Hidden Surface Removal 3-134
PiCzbuffer() 3-134
PiCbackface() 3-135
PiCzbuffer lines() 3-135
Antialiasing 3-137
PiCantialias_lines() 3-137
PICinit_sampling() 3-137

PIClib User’s Guide, Version 1.2



Table of Contents

PlCenter_sampling_pass() 3-138
PICexit_sampling_pass() 3-139
Video Functions 3-140
PICupdate_map() 3-140
PICput_color_map() 3-141
PICput_color_map_entry() 3-141
PICput_alpha_map() ' 3-141
PICput_alpha_map_entry() 3-142
PICget_color_map() 3-142
PICget_color_map_entry() 3-142
PICget_alpha_map() 3-143
PICget_alpha_map_entry() 3-143
Raster Operations 3-144
PiCpixel_add() 3-144
PICpixel_multiply() 3-144
Input Device Functions 3-145
PICattach_mouse() 3-145
PICdetach_mouse() 3-145
PICget_button() 3-146
PiCget valuator() 3-146
PICget locator() 3-146
PiCqueue_events() 3-147
PICget event() 3-147
PICdisplay_cursor() 3-148
PICdefine_cursor() 3-148
PiCposition_cursor() 3-148
PiCquery queue() _ 3-149
PICwait_event() 3-149
PICflush_queue() 3-150
PICget_host _screen_size() 3-150
PICput_mouse_playground() 3-151

Table of Contents vii



Table qf Contents

viii

Picking and Selecting
PlCattach_picking()
PiCdetach_picking()
PICenter_picking_mode()
PiCenter_selecting_mode()
PiCexit_picking_mode()
PICexit_selecting_mode()
PICinit_identifier_stack()
PICpop_identifier()
PICpush_identifier()
PICput_identifier()
PICput_picking_region()

3-152
3-152
3-153
3-153
3-154
3-154
3-154
3-155
3-155
3-155
3-156
3-156

PIClib User’s Guide, Version 1.2



Overview of PIClib Functions

The Pixel Machine’s graphics library, PICIib, consists of C-callable functions that allow you to
create graphics primitives, curves, surface patches, transformations, texture maps, projections,
zbuffering, Gouraud shading, double buffering, and anti-aliased lines and polygons and much more.

The PICIib functions are grouped into the following categories:

m Control Functions — initialize and exit the graphics library; load PIClib program modules
into the Pipes and Pixel Nodes; reset graphical parameters to defaunlt values; Transformation
Pipes (multiple Pipe configurations); enable or disable the use of DSP32 floating point for-
mat; and wait for vertical sync or Pixel Node processor sync.

m Graphics Primitives — render objects with points, lines or filled polygons. These functions
are categorized as follow:

o basic functions — render arcs and circles with specified precisions and rectangles.
They also render lines and points (2D, 3D, 4D ), and move the current graphics posi-
tion to a new point (2D, 3D, 4D ).

o polygon functions — define sequentially the vertices of a polygon in 2D, 3D, or 4D
coordinates and close the polygon. These functions also allow normal vectors, rgh
colors, and texture map indices to be attached to individual polygon vertices.

o quadric/superquadric functions — render spheres, hemispheres, cones, cylinders,
ellipsoids, toroids, and hyperboloids of one or two sheets.

o curve and patch functions ~ render 3D curve segments and surface patches based on
bicubic basis matrices. A basis matrix can be defined and saved. A basis matrix and a
precision is selected before rendering the curve or patch.

m Font and Character Functions — allow you to select a font type and display text using that
font.

m Transformation Functions — control the modeling and viewing transformations. These
functions are categorized as follows:

o transformation control functions — store and retrieve transformation matrices
to/from the transformation stack, get inverse transformation matrices, pre- or post-
multiply the current transformation matrix with the specified matrix, and push or pop
the transformation stack. Transformation control functions can operate on either the pro-
jection transformation stack or the modeling/viewing transformation stack.

o modeling functions — translate, rotate and/or scale the geometric mode. These
operations may be done with absolute or incremental values. Modeling transformation
functions can be applied to one coordinate axis or to all three simultaneously.

o viewing functions — define view points and view directions. A camera view can be
defined in terms of pan, tilt, and swing angles. Look at and look up views can be
defined in terms of a view point and a reference point. View points and view directions
can be defined in polar coordinates.

Overview of PIClib Functions 3-1



Overview of PIClib Functions

3-2

o projection functions — define a 2D or 3D projection. The projection can be a 3D per-
spective pyramid, a 3D perspective window, a 3D orthographic projection, or a 2D
orthographic projection.

Viewport Functions — specify a rectangular viewing space that becomes the active area of
the screen. Using these functions, the viewport’s near and far boundaries are defined and
retrieved. These definitions can be stored on the viewport stack along with their correspond-
ing depth ranges. The viewport stack can be manipulated through push and pop operations.

Shading and Depth Cueing Functions - select shading modes and light configurations
and enable/disable depth cueing. The possible shading modes are flat, Gouraud and Phong.
The light commands define light sources (direct, point, spot), set a light’s intensity value, and
turn offfon any or all light sources. A surface shading model, such as ambient, diffuse, and
specular coefficients can also be specified, as well as the object’s opacity and specular
exponent. Enabling depth cueing causes points and lines to be rendered with intensities that
vary as a function of depth. The z limits and boundary colors of depth cueing can be
changed.

Color Functions — define the current rgb and alpha colors. These values are used for
current color, point, line, polygon and clear screen commands.

Display Functions — determine what modes of operation are in effect in the frame buffer
and control certain aspects of the display. The different modes of operation are double
buffering, overlays, anti-aliasing and alpha channel reading. Other display functions swap
buffers; clear the rgb or alpha colors in the current viewport; define, draw and erase cursors;
write or read a scan line of rgb pixels; and copy image/z buffer memory from on-screen to
off-screen memory (and vice-versa).

Hidden Surface Removal Functions — enable and disable the use of zbuffering and back-
face surface removal algorithms,

Video Functions — control the updating of the video color maps. A complete rgb or alpha
color map can be loaded, or one entry of the map can be loaded. The current color maps or
a color entry can be retrieved from either the rgb map or the alpha map.

Raster Functions ~ perform logical operations on pixels, such as adds and multiplies.

Picking and Selecting Functions — can be used to identify objects on the screen based on
the object’s coordinates. The picking and selecting functions can be enabled or disabled.
Identifiers are maintained in a stack with load, push and pop commands. The size of the pick
window or selection volume may be set.

Input Device Functions — query for the current value of a locator or the current state of a
mouse or keyboard button. These input device events can be queued or sampled. These
functions also control the definition and display of cursors associated with a mouse.

PIClib User’s Guide, Version 1.2



Overview of PIClib Functions

m Compositing Functions ~ provide a full set of image compositing functions using the
alpha channel of the image.

Overview of PICIib Functions 3-3



Control Functions

The PIClib control functions perform operations that initialize and exit PIClib; reset graphical
parameters to default values; swap Transformation Pipelines (dual Pipeline configuration); wait for a
vertical sync, and wait for a Pixel Node sync.

The control functions are:

& PICinit() ®@ PICresume()

m PICdsp_float() m PICswap_pipe()
& PICexit() & PICwait_vsync()
# PICreset() # PICwait_psync()
PICinit()

PICinit() is usually the first graphics function call in every graphics program. The function initial-
izes the viewport to a full screen (1024x1024 or 1280x1024 in high resolution mode, 720x480 in
NTSC mode) and the transformation matrix to a 2D, full-screen, orthographic projection. PICinit()
also locks the Pixel Machine from other users, though it is still accessible to you from any windows
you have open.

PICinit() calls PICreset() to set all graphical parameters to default values. PICinit() also sets up
a signal handler for the following signals:

B hangup
B interrupt
# software termination.

When invoked, the signal handler calls the PICexit() function and disconnects all forked processes,
shared memories, and semaphores.

The DEVtools automatic loading facility figures out what is loaded and what additional modules
need to be loaded, therefore, the user does not have to remember what modules are already loaded
into the Pixel Machine. This makes switching between libraries transparent.

PICinit() returns an integer value of PIC_ERR_OK if the initialization is successful and should be
called only once at the beginning of a program and before calling any PIClib functions.

34 PIClib User’s Guide, Version 1.2



Control Functions

Example:

/

#include <piciib.h>

main(}
{ .
if (PICinit (}) exit I;

PICexit{);
exit (0):

}

N

PICdsp float()

The PICdsp float() function enables or disables DSP floating point format and can be used to send
DSP floating point data into the Pixel Machine. When floating point format is enabled (mode =
PIC_ON), floating point numbers on the host are assumed to be in DSP32 format and no conver-
sion is made before downloading this data to the Pixel Machine. When floating point format is dis-
abled (mode = PIC_OFF), floating point numbers on the host are assumed to be in IEEE format
and are converted to DSP32 format after being downloaded. The default mode is PIC_OFF.

PICdsp_float(mode)
int mode;

mode = PIC ON or PIC_OFF

PICexit()

The PICexit() function halts all Transformation and Pixel Nodes and closes the device. If the exit is
successful, PICexit() returns an integer value of PIC_ERR_OK. This function is always the last
graphics function in an application program, and unlocks the Pixel Machine making it accessible to
other users.

Overview of PIClib Functions 3-5



Control Functions

Example:

PlCreset()

The PICreset() function resets all possible graphical parameters to their default values as follows:

Function Default
PICalpha() PIC_OFF
PICantialias lines() PIC_OFF
PICarc_precision() PIC_ARC_DEFAULT
PICbackface() PIC_OFF
PICcircle precision() PIC_CIRCLE DEFAULT
PICclockwise() PIC_OFF
PICcolor_alpha() 0
PICcolor_rgb() PIC_WHITE

PICcomposite_mode()
PICcurve precision()
PICdefine_cursor()
PICdepth_cue()
PICdepth_cue_limits()
PICdisplay cursor()

3-6

PIC_NO_COMPOSITE
PIC_CURVE_DEFAULT

mouse

PIC_OFF
PIC_ZMIN_DEFAULT,PIC_WHITE,PIC_ZMAX_DEFAULT,PIC_WHITE
PIC_OFF

PIClib User’s Guide, Version 1.2



Control Functions

PICdisplay_overlay()
PICdouble_buffer()
PICdsp_float()
PICeuclid mode()
PICflip()

PIClight ambient()
PICopen_vector_font()
PICortho 2d_project()
PICpatch_precision()
PICpercent_texture()
PICput alpha_map_entry()
PICput_depth()
PICput picking region()
PICput_rotate_dx()
PICput rotate_dy()
PICput rotate_dz(
PICput_viewport()
PICquadric_precision()
PICselect_curve_basis()
PICselect_patch_basis()
PICshade mode()
PICupdate_map()

PICzbuffer()
PICzbuffer lines()

Overview of PIClib Functions

PIC_OFF

PIC_OFF

PIC_OFF

PIC_EUCLID_LINE

PIC_OFF

PIC_WHITE

standard1

full screen

PIC_PATCH_DEFAULT, PIC_PATCH_DEFAULT
0.7

[128 - 255], PIC_WHITE
PIC_ZMIN_DEFAULT,PIC_ZMAX_DEFAULT
8,8

0.0

0.0

0.0

full screen

PIC_QUADRIC_DEFAULT, PIC_QUADRIC_DEFAULT
PIC_BEZIER_BASIS
PIC_BEZIER_BASIS,PIC_BEZIER_BASIS
PIC_SHADE_OFF

PIC_OFF (if NTSC mode)
PIC_ON (if high resolution mode)

PIC_OFF
PIC_OFF



Contro! Functions

PICresume()

The PICresume() function initializes PIClib without resetting any graphical parameters.
PICresume() functions as PICinit() without calling PICreset() and is called once at the beginning
of a PICIlib program.

PICresume() returns PIC_ERR_OK if the initialization succeeded.

PICswap pipe()
The PICswap_pipe() function swaps the two Transformation Pipelines. This function operates only
in systems with parallel dual Pipeline configurations. By enabling the user to route commands to

different Pipelines, this function helps to optimize program performance by allowing for the simul-
taneous generation and transformation of various objects. '

PICwait_vsync()

The PICwait_vsync() function waits for a video vertical sync before executing the next graphics
function.

PICwait_psync()

The PICwait_psync() function waits for all Pixel Node processors to sync on the same instruction

before continuing. This function is used by PICexit() before halting the Transformation and Pixel
Nodes.

3-8 PIClib User’s Guide, Version 1.2



Graphics Primitives — Basic Functions

The Basic graphics primitives functions let you render points, lines, arcs, circles, and rectangles.
They also allow you to specify the drawing precision used to generate arcs and circles (i.e., you can
define the number of points, lines, or filled polygons to be used in rendering an arc or circle);
specify the drawing mode (point, line, or polygon); move the current drawing position.

The Basic functions described in this section are as follows:

= PICeuclid_mode(mode)
m PICarc(x,y,r,start,end)

m PICcircle precision(n)
m PICrectangle(x0,y0,x1,y1)
m PICdraw_2d(x,y)

m PICdraw_3d(x,y,z)

m PICdraw_4d(x,y,z,w)

m PICidraw_2d(ix,iy)

m PICidraw_3d(ix,iy,iz)

m PICidraw_4d(ix,iy,iz,iw)
m PICmove_2d(xy)

PiCeuclid _mode()

m PICmove_3d(x,y,z)

u PICmove_4d(x,y,z,w)

m PICimove_2d(ix,iy)

m PICimove_3d(ix,iy,iz)

m PICimove_4d(ix,iy,iz,iw)
m PICpoint 2d(x,y)

m PICpoint_3d(x,y,z)

m PICpoint 4d(x,y,z,w)

m PICipoint 2d(ix,iy)

m PICipoint_3d(ix,iy,iz)

m PICipoint_4d(ix,iy,iz,iw)

The PICeuclid_mode() function sets the drawing mode for generating arcs, circles, rectangles,
polygons, curves, patches, quadrics, and superquadrics. The default drawing mode is
PIC_EUCLID_LINE. Available modes are:

PIC_EUCLID_POINT

primitives are rendered with points

PIC_EUCLID_LINE

primitives are rendered with lines

PIC_EUCLID POLYGON

primitives are rendered with filled polygons

PIC_EUCLID_TEXTURE

primitives are rendered with textured polygons

Overview of PIClib Functions

3-9



Graphics Primitives — Basic Functions

PICeuclid_mode(mode)

int mode;
mode = PIC_EUCLID POINT

PIC_EUCLID LINE

PIC_EUCLID POLYGON

PIC_EUCLID_TEXTURE (currently used only for rendering bicubic patches)
PICarc()

The PICarc() command draws a circular arc in the xy plane, at z = 0, using the current atiributes.
The arc is generated according to the mode specified by PICeuclid_mode().

To draw an arc, you must specify the coordinates (x,y) of the arc’s center; the radius of the arc, 7,
and the starting and ending angles, start and end. The angles are measured from the positive x axis
and are specified in positive floating point degrees. The arc is rendered counterclockwise from the
start angle to the end angle.

The number of points, lines, or polygons used in rendering the arc is set by the PICarc_precision()
function.

PICarc(x,y,x start,end)

float x,y,r,start,end;

X,y = the x,y coordinates of the arc’s center point
r = the arc’s radius

start = the arc’s starting angle measured in degrees
end = the arc’s ending angle measured in degrees

3-10 PICIib User’s Guide, Version 1.2



Graphics Primitives —~ Basic Functions

Example:

The following program renders an arc in the positive x,y quadrant. The arc has a center point of
200.0,200.0, a radius of 100, a starting angle of 0.0, and an ending angle of 90.0. The arc is red
(specified by the PICcolor rgb() function). By default, the drawing mode is set to
PIC_EUCLID_LINE and, therefore, the arc is composed of line segments.

_/

PICarc precision()

The PICarc_precision() function is used to set the precision at which the arc will be drawn. The
number of points, lines, or polygons used in rendering the arc is specified by the argument, n. The
larger n is, the smoother the arc will be. The default value for n is PIC_ARC _DEFAULT.

PICarc_precision(n)
int n;

Overview of PIClib Functions 3-11



Graphics Primitives - Basic Functions

n = the number of points, lines, or polygons used in rendering the arc

Example:

The following program is the same as the one shown for rendering an arc. This time, however, the
arc’s precision is set at 100, which results in a smoother arc.

/

/*render an arc*/

#include <piclib.h>

main(}
{
if(PICinit{}} 'exit: (I)y;

/*clear the screen to blue*/

PICeolor rgb{0.0,0.0,1.0) ;
PICclear rgb();

/*select red drawing color*/ -
PICeolor xrgb{1.0,0.0,0.0);
/*set arc precision*/

PICarc precision{100}; : o
PICarc{200.0,200.0,100.0;0.090:0) 7
PICexRit ) ; S :
exit {0);

PICcircle()
The PICcircle() function draws a circle in the xy plane at z = 0, using the current attributes. The
circle is generated according to the mode specified by PICeuclid mode().

To draw a circle, you need to specify the circle’s center point {x,y) and its radius, . The circle’s
precision is set by the PICcircle precision() function.

PICcircle(x,y,r)
float x,y,1;

3-12 PIClib User’s Guide, Version 1.2



Graphics Primitives — Basic Functions

the x,y coordinates of the circle’s center point

X
@
1l

the circle’s radius

~t
Il

Example:

The following program renders a red circle with a center point of 200.0,200.0 and a radius of 100.0.
Since the circle’s precision is not specified, the default setting of PIC_CIRCLE_DEFAULT line
segments will be used.

- .

/*render a red circle*/
#include <piclib.h>
main )
i
if (PICinit () exit (I);
/*clear the screen to blue*/

PICcolor_rgb(0.0,0.0,1.0)7
PICclear rgb{};

/*select red drawing color*/

PiCcolor_rgb(1.0,0.0,0.0);
PICcircle (200.0,200.0,100,0)
PICexit (};

exit (0);

PiCcircle_precision()

The PICcircle precision() function is used to set the precision at which a circle will be rendered. ‘
The number of points, lines, or polygons used in rendering the circle is specified by the argument,
n. The larger n is, the smoother the circle will be. The default value for n is
PIC_CIRCLE_DEFAULT

PICcircle_precision(n)
int n;

Overview of PIClib Functions 3-13



Graphics Primitives — Basic Functions

n = specifies the number of points, lines, or polygons used to render the
circle
Example:

The following program is the same as the one shown for rendering a circle. This time, however, the
precision is set to 100, which results in a smoother circle.

o /*render 4 Yed: circlery
o <pleliBiRe

- #inelude

it ) exit )y

“screen te bluet/

PiCrectangle()

The PICrectangle() function renders a rectangle in the Xy plane, at z = 0, using the current attri-
butes. The rectangle is generated according to the mode specified by PICeuclid_mode().

To render a rectangle, you must specify its lower left corner (x0,40) and its upper right corner
(x1,yI). The sides of the rectangle are parallel with the x and y axes of the coordinate system. In
line mode, the current graphics position is (x0,y0) after the rectangle is drawn.

PICrectangle(x0,y0,x1,y1)
float x0,y0,x1,y1;

3-14 PIClib User’s Guide, Version 1.2



Graphics Primitives — Basic Functions

x0,y0 = define the lower left corner of the rectangle

define the upper right corner of the rectangle

fl

x1,yl

Example:

In the following example, the drawing mode is set to PIC_EUCLID_POLYGON. The lower left
and upper right corners of the rectangle are defined as 400.0, 300.0 and 800.0, 500.0, respectively.

Lviyerender. a green rectangle®/

f" '#'inci\‘ﬁde, e kﬁiﬁciib.hS
v Cmatni ,:‘ g ;
b PTCIREE (0) eRA (L

CTyrGlear - §ErSSn Lo WhiteX/

PICeolor rab(1.0,1:0,1
“Ipi¢clear rabityy

Ct drawing -colorrs

PiCdraw()

The PICdraw functions draw a line from the current graphics position to the given point using the
current attributes. There are six PICdraw functions:

Overview of PIClib Functions 3-15



Graphics Primitives - Basic Functions

m PICdraw 2d(x,y) m PICidraw_2d(ix,iy)
= PICdraw_3d(x,y,z) m PICidraw 3d(ix,iy,iz)
m PICdraw_4d{x,y,z,w) ® PICidraw_4d(ix,iy,iz,iw)

PICdraw_4d() uses homogeneous coordinates to draw a 3D line from the current graphics position
to the point represented in 3-space as (x/w, y/w, zfw). If w =1, the homogeneous coordinates
represent the physical coordinates (x, y, z).

PICdraw 2d(x,y)
float x,y;

X,y = the x and y floating point coordinates of the 2D point to which the
line is drawn

PICidraw_2d(ix,iy)
int ix,iy;

ix,iy = the ix and iy integer coordinates of the 2D point, to which the line is
drawn

PICdraw_3d(x,y,z)
float x,y,z;

X,y,Z = the x,y, and z floating point coordinates of the 3D point to which the
line is drawn

PICidraw_3d(ix,iy,iz)

int ix,iy,ix;

ix, iy, iz = the ix, iy, and iz integer coordinates of the 3D point to which the line
is drawn

PICdraw_4d(x,y,z,w)

float x,y,z,w;

X,¥,Z,W = the x, y, 2z, and w floating point coordinates of the 4D point to which
the line is drawn

PICidraw_4d(ix,iy,iz,iw)
int ix,iy,iz,iw;

3-16 PIClib User’s Guide, Version 1.2



Graphics Primitives — Basic Functions

ixdy,iziw = the ix, iy, iz, and iw floating point coordinates of the 4D point to
which the line is drawn

PICmove()

The PICmove functions move the current drawing position to a specified one. There are six PIC-
move functions:

@ PICmove_2d(x,y) & PICimove_2d(ix,iy)
m PICmove_3d(x,y,z) m PICimove_3d(ix,iy,iz)
® PICmove_4d(x,y,z,w) m PICimove_4d(ix,iy,iz,iw)

PICmove 4d() changes the current graphics position to the 3D point (x/wy/w.zfw). If w =1, the
homogeneous coordinates of this point represent the physical coordinates (x,y,z).

PICmove_2d(x,y)
float x,y;

X,y = the x and y floating point coordinates of the 2D point

PICimove_2d(ix,iy)
int ix,iy;

ix,iy = the x and y integer coordinates of the 2D point
PICmove_3d(x,y,z)

float x,y,z;

X,¥,Z = the x,y, and z floating point coordinates of the 3D point

PICimove_3d(ix,ly,iz)
int ix,iy,iz;

Overview of PICIlib Functions 3-17



Graphics Primitives — Basic Functions

ix,iy,iz = the x, y, and z integer coordinates of the 3D point

PICmove_4d(x,y,z,w)
float x,y,z,w;

XY Z,W = the x, y, 2, and w floating point coordinates of the 4D point
PICimove_4d(ix,iy,iz,iw)
int ix,iy,iz,iw;

ixiy,iziw = the x,y, z, and w integer coordinates of the 4D point

PICpoint()

The PICpoint function(s) draw a point at a specified location, defined by the coordinates, using the
current color.

The PICpoint functions are:

® PICpoint_2d(x,y) ® PICipoint_2d(ix,iy)
® PICpoint_3d(x,y,z) m PICipoint_3d(ix,iy,iz)
m PICpoint_4d(x,y,z,w) B PICipoint_4d(ix,iy,iz,iw)

The PICpoint 4d() function draws a point the size of a pixel at location (x/w,y/w,z/w). fw = 1,
the physical coordinates of this point are the same as the homogeneous coordinates xyzw). If w
= 0, the homogeneous point represents a point at infinity and the new graphics position becomes the
point (x/w,y/w,z/w).

PICpoint_2d(x,y)
float x,y;

X,y = the x and y floating point coordinates of the 2D point

PICipoint_2d(ix,iy)
int ix,iy;

3-18 PIClib User’s Guide, Version 1.2



Graphics Primitives - Basic Functions

ix, iy = the x and y integer coordinates of the 2D point

PICpoint 3d(x,y,z)
float x,y,z;

X,y,Z = the x, y, and z floating point coordinates of the 3D point
PICipoint_3d(ix,iy,iz)

int ix,iy,iz;

ix,iy,iz = the x, y, and z integer coordinates of the 3D point

PICpoint 4d(x,y,z,w)
float x,y,z,w;

X,¥,2,W = the x, Y, z, and w floating point coordinates of the 4D point
PICipoint 4d(ix,iziy,iw)
int ix,iz,iy,iw;

ixiz,jy,iw = thex,y, z, and w integer coordinates of the 4D point

Overview of PIClib Functions 3-19



Graphics Primitives — Polygons

The Polygon functions let you render 2D, 3D, or 4D polygons by defining a sequence of coordinates
and then closing the polygon. These functions also allow normal vectors, rgb colors, and texture
map indices to be attached to individual polygon vertices.

The maximum number of points in a polygon is defined in the PIC_MAX_POINTS constant. After
all vertices have been specified, the PICpoly_close() function must be called to close the polygon
by connecting the last polygon vertex to the first polygon vertex.

The functions described in this section are:

B PICclockwise(mode) m PICpoly point 4d(x,y,z,w)

m PICpoly_close() m PICpoly_point nv(xy,znx,ny,nz)

s PICpoly normal(nx,ny,nz) m PICpoly point uv(xy,zu,v)

® PICpoly_point 2d(x,y) m PICpoly_point rgb(x,y,zr,gb)

& PICpoly_point_3d(x,y,z) ® PICpoly point_nv_uv(x,y,znx,ny,nzu,v)
PiCclockwise()

The PICclockwise() function defines how a normal vector of a polygon is computed. The calcu-
lation of the normal vector affects backface removal and normal shading. The first three vertices

(PO, P,, P2) of a polygon are used to form two vectors. When this function is set to PIC_ON, the
normal vector is computed as

N=(P; - Py) x (Py - P,).
When this function is set to PIC_OFF, the normal vector is computed as

N = ()~ Py) x Py - P,)

The default mode is counterclockwise.

The direction of the vector is defined by the right-hand rule.
NOTE

|

3-20 PIClib User’s Guide, Version 1.2



Graphics Primitives — Polygons

PICclockwise(mode)
int mode;
mode = PIC_ON or PIC_OFF

PICpoly close()

The PICpoly_close() function closes a polygon by connecting the last polygon vertex to the first
polygon vertex.

This function must be used after a sequence of PICpoly point functions.
NOTE |

PICpoly close()

PiCpoly normal()

The PICpoly_normal() function is used to define a surface normal (nx, ny, nz) for a polygon.
The surface normal should point outward in closed solid objects and is used for backface culling,
flip tests and flat shading. PICpoly_normal() has to be specified before the corresponding
PICpoly_point functions. The surface normal does not need to be normalized.

This function must be specified before the corresponding PICpoly point commands.
NOTE

PICpoly normal (nx, ny, nz)

float nx, ny, nz;

Overview of PICIib Functions 3-21



Graphics Primitives - Polygons

nx, ny, nz = normal vector

PICpoly point()

The PICpoly_point functions are used in a sequence to render 2D, 3D, or 4D polygons. The
sequence of coordinates defined by each call to a PICpoly_point function are not connected until
the PICpoly_close() function is invoked. The polygon is rendered using the current attributes. If
shading is disabled, the specified polygon is rendered using the current color.

The PICpoly_point functions are:

® PICpoly_point 2d(x,y)

8 PICpoly_point 3d(x,y,z)

B PICpoly point 4d(xy,z,w)

The PICpoly_point_3d(x,y,z) function operates in each shading mode as follows:

& If shading is disabled, then the current color (specified with PICcolor_rgb) is used to fill the
polygon.

m If flat shading is enabled and a user-specified normal vector (PICpoly_normal()) precedes
the definition of the polygon points, then that definition is used to compute the shade of the
polygon. If a normal vector for the polygon is not specified, then a normal vector for the
polygon is computed in the Transformation Pipeline. (The points must be in counterclockwise
order to obtain an outward-pointing normal vector unless PICclockwise(PIC_ON) has been
called; this vector is then used to compute the shade of the polygon.)

® If Gouraud or Phong shading is enabled, the normal vector to the polygon is computed in the
Transformation Pipeline and copied to each vertex for use in shading,

PICpoly point 2d(xy)
float x,y;

3-22 PIClib User’s Guide, Version 1.2



Graphics Primitives — Polygons

X,y = the X, y coordinates of the 2D polygon point (z = 0.0)

PICpoly point 3d(x,y,z)
float x,y,z;

X,y,Z = the X, y, and z coordinates of the 3D polygon point

PICpoly point 4d(x,y,z,w)
float x,y,z,w;

X,Y,ZW = the x, v, z, and w coordinates of the 4D polygon point

1 ltis recommended that polygons be planar and convex. Currently, there is a limit of
-NoTe| PIC_MAX POLY_PNTS points per polygon.

Overview of PIClib Functions 3-23



Graphics Primitives - Polygons

PICpoly point nv()

ThePICpoly_point_nv() function is used in a sequence to draw a 3D polygon with a normal (nx,

ny, nz) defined at each polygon vertex (x, ¥, z). The vertex normal should point outward in closed
solid objects and is used by the Gouraud shading routines (it is ignored by flat shading routines). A
sequence of PICpoly point_nv() function calls must be followed by a PICpoly_close() function.

This function operates as follows in each shading mode:

® If shading is disabled, then the current color (specified with PICcolor_rgb()) is used to fill
the polygon.

& If flat shading is enabled, then the normal vector (nx,ny,nz) specified at each vertex is
ignored. If a user-specified normal vector (PICpoly normal()) precedes the definition of
the polygon points, then it is used to compute the shade of the polygon. If a normal vector is
not specified, then a normal vector is computed in the Transformation Pipeline. (The points
must be in counterclockwise order to obtain an outward-pointing normal vector unless
PICclockwise(PIC_ON) has been called; this vector is used to compute the shade of the
polygon.)

B If Gouraud shading is enabled, the normal vector (nx,ny,nz) is used to compute an rgb inten-
sity at each vertex.

B If Phong shading is enabled, the vertex and its normal vector are sent to the pixel nodes for
shading.

PICpoly point nv(x,y,znx,nynz)
float x,y,znx,ny,nz;

X,¥,Z = the x, y, and z coordinates of the 3D point

nxnynz = normal vector

It is recommended that polygons be planar and convex. Currently, there is a limit of

NOTE PI({__MC;;\X_POLY_PNTS points per polygon. The vertex normals do not need 1o be nor-
malized.

3-24 PIClib User’s Guide, Version 1.2



Graphics Primitives — Polygons

PICpoly point uv()

PICpoly_point uv() is used in a sequence to render a 3D polygon with a texture index (u,v)
defined at each polygon vertex (x,y,z). The intensity of each pixel is a combination of the texture
value and the shading value. The combination of these values can be set with
PICpercent_texture().

A sequence of PICpoly point_uv() functions must be followed by a PICpoly close() function.

void PICpoly point uv(x, y, z, u, v)
float x,y,2z, u,v;

Xx,y,z = thex,y, and z coordinates of the 3D point

u,v = texture index

Itis recommended that polygons be planar and convex. Currently, there is a fimit
NoTe | of PIC_MAX POLY PNTS points per polygon.

] Polygons rendered with this function are flat shaded.

PICpoly point rgb()

The PICpoly_point_rgb() function is used in a sequence to draw a 3D polygon with a rgb color
(r, 8, b) defined at each polygon vertex point (x, y, z). Each r, g, and b color parameter can range
from 0.0 to 1.0. A sequence of PICpoly point_rgb() functions must be followed by a

PICpoly close() function.

This function operates as follows in each shading mode:

m If shading is disabled, then the 7gb color is used to color each vertex. (The vertex colors are
interpolated over the polygon.)

m If flat shading is enabled, then the color at each vertex (r,g.b) is ignored. If a user-specified
normal vector precedes the definition of the polygon points, then it is used to compute the
shade of the polygon. If a normal vector is not specified, then it is computed in the Transfor-
mation Pipeline. (The points must be in counterclockwise order to obtain an outward-pointing
normal vector unless PICclockwise(PIC_ON) has been called.)

Overview of PICIlib Functions 3-25



Graphics Primitives — Polygons

If Gouraud or Phong shading is enabled, the normal vector to the polygon is computed in the
Transformation Pipeline and copied to each vertex for shading.

PICpoly_point_rgb(x,y,z,1,g,b)
float x,y,z,1,g,b;

X,y,Z

1,gb

il

the x, y, and z coordinates of the 3D vertex

the color at a polygon vertex, where each primary component is a
floating point number in the range 0.0 to 1.0 (i.e., a normalized color)

il

It is recommended that polygons be planar and convex. Currently, there is a limit of
PIC_MAX_POLY PNTS points per polygon.

PICpoly point nv_uv()

The PICpoly_point nv_uv() function is used in sequence to render 3D polygon points with nor-
mal vectors and texture indices. This function operates as follows in each shading mode:

If shading is disabled, then the current color (specified with PICcolor rgh()) is copied to
each vertex, and the normal vector value (nx,ny,nz) is ignored.

If flat shading is enabled, the user-specified normal vector or Transformation Pipeline com-
puted normal vector is used to compute a shade for the polygon. The normal vector at each
vertex is ignored.

If Gourand shading is enabled, the normal vector is used to compute an rgb intensity at each
vertex. The intensity at each pixel within the polygon is a combination of the texture map
and the shading value.

If Phong shading is enabled, the vertex, normal, and texture map indices are sent to the pixel
nodes for shading.

The intensity value at each pixel is computed according to the following equation:

Intensitypiver =texture_percent*texture_color+(1.0 — texture _percent )*surface_intensity

PIClib User’s Guide, Version 1.2



Graphics Primitives — Polygons

The value texture_percent can be set with the PICpercent texture() function.

7] When using perspective projection, objects composed of this type of polygon point
“NoTE| should be tessellated into many small polygons to ensure minimal perspective distortion.

PICpoly_point nv_uv(xy,z,nx,ny,nz,u,v)
float x,y,z,nx,ny,nz,u,v;

X,V,Z = the x, y, and z coordinates of the 3D point
nxnynz = normal vector
u,v = texture map indices

The u,v values are not restricted to the range [0.0,1.0]. Assigning values greater than 1.0 will
repeat the texture map over the surface, while assigning values less than 1.0 will allow for the
extraction of a portion of the texture map.

It is recommended that polygons be planar and convex. Currently, there is a limit of
PIC_MAX POLY_PNTS points per polygon. The vertex normals do not need to be nor-
malized.

Overview of PIClib Functions ' 3-27



Graphics Primitives — Quadrics and Superquadrics

The Quadrics and Superquadrics functions render cylinders, ellipsoids, toroids, and hyperboloids
of one or two sheets.

The maximum precision for superquadrics is limited to 160 divisions in each direction.
NOTE

l

The functions discussed in this section are:

B PICquadric_precision{nu,nv) & PICsuperq_toroid(x,y,z,r,expl,exp2)
# PICsphere() ® PICsuperq_hyperl(x,y,z,expl,exp2)
m PICsuperq_ellipsoid(x,y,z,exp1,exp2) B PICsuperq_hyper2(x,y,z,expl,exp2)

PiCquadric_precision()

The PICquadric_precision() function sets the precision used to render quadrics and superquadrics.
The precision is defined by the number of line segments (or points) used to approximate the quadric
in both the u and v directions. If the values for either direction is less than zero, the function returns
a value of PIC_ERR_ARG. The default is 16x16.

PICquadric_precision(nu,nv)
int nu,nv;

nu =  the number of line segments (or points) used to approximate the gua-
dric in the u direction

nv = the number of line segments (or points) used to approximate the qua-
dric in the v direction

3-28 PIClib User’s Guide, Version 1.2



Graphics Primitives — Quadrics and Superquadrics

PiCsphere()

The PICsphere() function renders a sphere using the current color and drawing mode (i.e., point,
line, or polygon). The sphere is centered at the current graphics position and has a unit radius. Its
precision is set by the PICquadric_precision() function.

If polygon mode is on, the sphere is shaded according to the current shading mode.

PICsphere()

PICsuperq_ellipsoid()

The PICsuperq_ellipsoid() function renders a superquadric ellipsoid using the current attributes.
A superquadric ellipsoid is a single, closed volume that ranges from a cuboid to a spheroid to a
pinched object, depending on the specified exponents, and is represented mathematically as follows:

_— X COS&? iéngc_osexr’;((m))
, @) = | ycos#P()sin®r2(w
2 3z/sinexpl@%

where, 1 and o are the longitudinal and latitudinal angles, respectively.

Values for 1 are in the range: -pif2 <= 1 <= pif2.

Values for o are in the range: -pi <= ® < pi

The shape of the ellipsoid can be modified by varying the exponents as follows:

exp <1  Square-shaped ellipsoids
exp=1  Round ellipsoids

exp =2  Flat-beveled ellipsoids
exp>2  Pinched ellipsoids

If polygon mode is on, the ellipsoid is shaded according to the current shading mode.

PICsuperq_ellipsoid(x,y,z,expl,exp2)
float x,y,z,expl,exp2;

Overview of PIClib Functions 3-29



Graphics Primitives — Quadrics and Superquadrics

x,y.Zz = the radii of the ellipsoid in the x, y, and z directions
expl = the squareness parameter in the longitudinal direction
exp2 = the squareness parameter in the latitudinal direction

Make sure all arguments specified for this function are greater than or equal to zero.

The following program fragments render a sphere, ellipsoid, cube, and cylinder, respectively:

3-30 PIClib User’s Guide, Version 1.2



Graphics Primitives — Quadrics and Superquadrics

PiCsuperq_toroid()

The PICsuperq_toroid() function renders a superquadric toroid using the current attributes. The
toroid is represented mathematically as follows:

x Ea + cos“?’lgn;; coseP2(m)

, W) = a + cos=pl sin®P2(w)
2(n, @) gsinm’l(n) N

and where 7 and o are the longitudinal and latitudinal angles, respectively.
Values for M are in the range: -pi <= 1 < pi.
Values for ® are in the range: -pi <= ® < pi.

If x and y parameters are not the same, the toroid radius is "stretched" in the direction of the larger
parameter. The shape of the toroid can be modified in each direction by varying the exponents as
follows:

exp <1  Square-shaped toroids
exp=1 Round toroids

exp =2  Flat-beveled toroids
exp > 2  Pinched toroids

If polygon mode is on, the toroid is shaded according to the current shading mode.

PICsuperq_toroid(x,y,zr,expl,exp2)
float x,y,z,r,expl,exp2;

xyz = the radii of the toroid ring

r = the distance from the center of the torus to the center of the outer
ring (see Figure 3-1) .

expl = the squareness parameter in the longitudinal direction

exp2 the squareness parameter in the latitudinal direction

Overview of PIClib Functions 3-31



Graphics Primitives - Quadrics and Superquadrics

Figure 3-1: A Superquadric Toroid

PiCsuperq _hyperi()

The PICsuperq_hyper1() function renders a superquadric hyperboloid of one sheet using the
current attributes. e hyperboloid is represented mathematically as follows:

xsec“?’lgn COS2P (M)
p(M, @) = | ysece?(n)siner2(w)
ztanerl(m

where, 1| and © are the longitudinal and latitudinal angles, respectively.

3-32 PIClb User’s Gulde, Version 1.2



Graphics Primitives — Quadrics and Superquadrics

Values for n} are in the range: -pi/2 < 1 < pi/2.

Values for o are in the range: -pi <= ® < pi.

If polygon mode is on, the hyperboloid is shaded according to the current shading mode.
The shape of the hyperboloid can be modified by varying the exponents as follows:

exp <1 Square-shaped hyperboloids
exp =1 Round hyperboleids
exp=2 Flat-beveled hyperboloids
exp > 2 Pinched hyperboloids

PICsuperq_hyperl(xy,z,expl,exp2)
float x,y,z,explexp2;

X,y = the radii of the xy cross-section of the hyperboloid at z = 0
z = the height of the hyperboloid when n = 45°

expl = the squareness parameter in the longitudinal direction

exp2 = the squareness parameter in the latitudinal direction

PICsuperq_hyper2()

The PICsuperq hyper2(} function renders a superquadric hyperboloid of two sheets using the
cutrent attributes. The hyperboloid is represented mathematically as follows:

b ) = | ysco(Manera(o)
z tan&p!

=)
where, 1 and o are the longitudinal and latitudinal angles, respectively.

Values for n are in the range: -pi2 < 1 < pi/f2.
Values for  are in the range: -pi/2 < © < pi/2 (piece 1), pif2 < ® < 3*pi/2 (piece 2)

The shape of the hyperboloid can be modified by varying the exponents as follows:

exp<1 Square-shaped hyperboloids
exp =1 Round hyperboloids

exp =2 Flat-beveled hyperboloids
exp > 2 Pinched hyperboloids

Overview of PICIib Functions 3-33



Graphics Primitives — Quadrics and Superquadrics

PICsuperq_hyper2(x,y,z,expl,exp2)
float x,y,z,r,expl,exp2;

X,y = the radii of the xy cross-section of the hyperboloid at z = 0
z = the height of the hyperboloid when | = 45°
expl = the squareness parameters in the longitudinal direction
exp2 = the squareness parameters in the latitudinal direction

3-34

PIClib User’'s Guide, Version 1.2



Graphics Primitives — Curve Functions

The Curve functions generate parametric curves which can be displayed as a set of points or con-
nected line segments. A parametric curve is a set of points obtained by interpolating or approxi-
mating a set of control points. The coordinates of the points that define a parametric curve are of

the form

=x(u) y=yuw z=zu
where u is a parametric variable with an interval of u € [0,1].

In PICIib, curves are rendered by first specifying a basis matrix and then defining a set of four 3D
control points that determine the shape of the curve. The basis matrix determines how the control
points will be used to render the curve. Complex curves are rendered by connecting several curve
segments to form one curve. However, care must be taken at curve boundaries to ensure continuity.

For more information on ensuring the continuity of a curve, refer to Mathematical Elements for
Computer Graphics by David F. Rogers and J. Alan Adams (1976, McGraw-Hill, Inc.) or Geometric
Modeling by Michael E. Mortenson (1985, John Wiley & Sons, Inc.).

The Curve functions described in this section are:

B PICcurve geometry 3d()
# PICcurve precision()
@ PICput basis()

& PICselect curve basis()

Generating Curves

PICIib offers basis matrices for four predefined classes of curves; Bezier Curves, Hermite
Curves, Four-Point Curves and B-Spline Curves. Each curve is cubic (third order polynomial)
and generated using the method of forward differences. More complicated curves can be con-
structed from several smaller curves. Each of the predefined classes of curves is described below.

To define basis matrices for other classes of curves, use the PICput_basis() function discussed
later in this section.

Bezier Curves

A Bezier curve defines the position of the curve’s end points and uses two other points (not on the
curve) to define indirectly the tangents at the curve’s end points. Bezier curves are defined with a
set of four control points (p Pq:Py, and p3) representing the vertices of a polygon. Each point (p)
consists of the components 8<,y,z). The tangent at Py is Py - Py and the tangent at P3 is Py - Ps3.
The curve always passes through Po and P3-

Overview of PICIib Functions 3-35



Graphics Primitives - Curve Functions

The control points can be easily manipulated to change the shape of the curve as desired. (Any
local changes are strongly propagated throughout the entire curve.) For example, by specifying the
first and last control points to the same position, a closed curve is generated. The control points
define a convex polygon called a convex hull, which bounds the Bezier curve and ensures that it
follows specified control points. The matrix for this type of curve is:

Xo X1 X2 X3

Lh 48

Hermite Curves

A Hermite curve is a cubic curve. The left half of the input curve matrix is filled with the end
points of the curv8 Py and Py The right half is filled with tangent vectors at the end points of the
curve pOu and Py - A Hermite curve always passes through the end points (interpolates) and
approximates the two inner points. The matrix is as follows:

Xo X1 X x

o

B-spline Curves

A B-spline curve is a class of spline curves that approximates the end points, allowing both the
first and second derivatives to be continuous at the segment’s end points. This type of curve uses a
set of blending functions to allow localized changes to be made easily by manipulating only a few
neighboring control points. No part of the curve passes through the control points.

Local changes are propagated only in the area of change. For example, if you change the position
of the first control point, the shape of the curve changes near the first point without significantly
affecting the rest of the curve.

Four-point Curves

A Four-point curve is an interpolating curve that passes through four distinct points in space. The
control points (pO,pl,pz, and p,) are assigned the parametric u values 0, 1/3, 2/3, and 1, respec-
tively. This type of curve is cugic (third order polynomial).

3-36 PICIib User’s Guide, Version 1.2



Graphics Primitives — Curve Functions

PiCcurve _geometry 3d()

The PICcurve geometry 3d() function renders a 3D curve using the current curve precision,
color, and drawing mode. The curve is rendered using the current color.

PICcurve_geometry_3d(geom)
float geom[3][4];

geom = aset of four 3D control points that determine the shape of the curve

PICcurve precision()

The PICcurve precision() function specifies the number of points, lines, or polygons used in
rendering the curve. The precision is expressed as a positive integer between 4 and infinity. The
higher the precision specified, the smoother the curve that is rendered.

PICcurve precision(n)
int n;
n = the number of points or lines used to render the curve

PICput_basis()

The PICput_basis() function defines a 4x4 basis matrix and an associated index number, which
can subsequently be used in rendering curves. The index numbers are defined by the following con-
stants:

PIC_USER BASIS 0
PIC_USER_BASIS_1

PIC_USER BASIS 7

Overview of PIClib Functions 3-37



Graphics Primitives — Curve Functions

At initialization, the first four basis matrices contain the matrix definitions for Bezier curves, Her-
mite curves, Four-point curves and B-spline curves respectively. Unless you wish to overwrite
these matrices, the index argument passed to PICput basis() should range from
PIC_USER_BASIS 4 10 PIC_MAX BASIS.

If index is less than zero or greater than or equal to PIC_MAX_BASIS, this function returns a value
of PIC_ERR_ARG.

Once defined, the basis matrix is selected by passing its associated index to the
PICselect curve basis() function,

PICput basis(basis,index)
PICmatrix basis;

int index;
basis = an matrix of 16 floating point numbers
index = the index number associated with the basis matrix

PiCselect_curve basis()

The PICselect_curve_basis() function selects the basis matrix that is used to render curves. (The
matrix and its index are defined with the PICput basis() function.) Make sure the matrix and its
index are defined before using the PICselect_basis() function. If index is less than zero or greater
than or equal to PIC_MAX_BASIS, this function returns a value of PIC_ERR_ARG.

PICselect_curve basis(index)
int index;

index = the index to the basis matrix

Example:

The following program defines the x, y, and z coordinates of the control polygon for a bicubic
curve, sets the precision in u and v direction, selects basis PIC_BEZIER BASIS; draws the control
polygon; and, finally, generates a Bezier curve.

3-38 PICIlib User’s Guide, Version 1.2



Graphics Primitives — Curve Functions

/

;*/

int
-char

i

N

PICmatrix. G ='{

/* define x,y and z coordinates of the control polygon for a bicublc curve

defined as :

KO X1 X2 X3
Y0 Y1 ¥2 Y3
20021 22 23

10020, 100.0, 0.0, 0.0,
0.0, 0.0, 100.0, 100.9,
0.0,.100.0, 100.0, 0.0,
bi

m!air;'(a‘zfgc, argv)

arge;

'*,*,érgv; .

int npixl, nline;

int precu, precy;
Lint basis;. .

Coint “ipiter;

if’(PICinit()) exit (-1);

/% animate ¥

PICdouble bUffei (PIC ON)}

’ PICget;screenﬁsivze( sripigl, enline )y’
PICput Viewport{ 0, npixl=1,"0, nline-1 )}

" PICcopy front ‘to back ():

/* ‘make drop shadow:-*7.

PICput_viewport:( 230420, 990+20; 80420, BO0LI0 )
PICpixel add{ ~0:2; 0.2, ~0.3, ~0.2 );
PICswap pbuffer (y;

PICput;viewport( 290420 /890420, 80+20,. '800+20Q. §5
PICpixel add{ ~0.2, =0.2,-=0.2, =02 );"
PICswap buffer () ;- e

/* create viewport and projection */

RPICput viewport:(-290, 990, 80, 800" );
PICput depth( 0.0, 32767.0 );

\

/

Overview of PICIib Functions

(coniinued on next pége)

3-39



Graphics Primitives — Curve Functions

/

_PICeuclid mode(PTIC_EUCLID LINE); -

/* set viewing and projection par.ameters f*:/j

PICpersp_project (45.Q , 1. 25, 1.0y 2048 0), R :
PIClookup_view{150.0, 150.0;. 150.0,+0: 0, 000, 0:04 0 0)

7% set precision in-u dlrection, v directlon and
select basis index 0 (beziér baSlS) */.

precu = 25;
basis = 0;

PICcurve precision{precu);
PICselect_ curve basis{basis);’

/* rotate curve around the'z axis 235 Efde‘grk'ee_zs'.s’ittve’aj

/*.rotate the patch *7.

PICrotate:z (2.5
/* ‘draw the-control 159‘194;571':*" :

PICcolor rqb
- PICmove g

3-40

”(cbntlnued on next page)

PIClib User’s Guide, Version 1.2



Graphics Primitives — Curve Functions

- -~

/* generate a Bezier curve */

PICcurve geometxy 3416) ;'
PICswap buffert)y

}  while (iteér=~);

PICexit{);
exit {)7

Overview of PICIib Functions 3-41



Graphics Primitives — Patch Functions

A patch is a bounded collection of points and is the simplest mathematical element used to model a
surface. The coordinates of the points that define the patch have two parameters and are of the
form:

x=x(uww) y=yuw z=zuw)
where u and w are parametric variables with an interval of u,w € [0,1].

In PIClib patches are rendered by first specifying a basis mairix and then defining the patch as
either:

1. aset of 16 control points
2. aset of four comer points with associated tangent and twist vectors

3. four boundary curves

The basis matrix determines how the control points will be used to render the patch. Complex sur-
faces can be created by connecting patches.

The patch functions discussed in this section are:

B PICpatch_geometry3d(xgeom,ygeom,zgeom)
B PICpatch_precision(nu,nv)
B PICput _basis(basis,index)

B PICselect patch_basis(uindex,vindex)

Generating Patches

PICIib offers basis matrices for four predefined classes of patches; Bezier Patches, Hermite
Patches, B-Spline Patches and Sixteen-Point Form Patches. Each of the predefined classes of
patches is described below.

To define basis matrices for other classes of patches, use the PICput basis() function discussed
later in this section. Patches can be generated as a:

& cloud of points
® line mesh

@ shaded polygon mesh

3-42 PICIlib User’s Guide, Version 1.2



Graphics Primitives — Patch Functions

a8 texture mapped shaded patch

Bezier Patches

Bezier patches are formed from a mesh of 16 control points. The four corner points actually lie on
the patch; the other control points are approximated. The Bezier surface has a characteristic
polyhedron of 16 points. The matrices defining the patch are as follows:

X0 X04 X0 X12 0 Yo4 Yos Y12 20 Zo4 208 Z12
X01 X05 X09 X13 01 Yos Yoo Yi3 Zo1 205 209 213
X02 X06 X10 X14 02 Yo6 Y10 Y14 Z02 Zo6 210 Zi4
Xo03 Xo7 X11 X15 03 Yo71 Yu Yis 203 Zo7 Z11 235

Hermite Patch
A Hermite patch is defined by the following matrix:

P#w P
bp oy BB PR
P¥ Pw P Pip

P.~* is the derivative of the point with respect to the parametric variable u; P is the
derivative of the point with respect to w; P*% is the derivative of the point with respect to
u and w.

The matrix is split into four quarters. The upper left quarter defines the four corner points; The
lower left quarter contains the u tangent vectors at the four corner points; the upper right quarter
contains the w tangent vectors at the four corner points; the lower right corner contains the twist
vector. If twist is set to zero, then the patch is a Ferguson, or F-patch. This type of patch can only
have first-order continuity with adjacent patches. An F-patch is easier to specify than a fully
specified Hermite patch because the twist vectors can be difficult to compute.

B-spline Patch

A B-spline paich is defined by a characteristic polyhedron. The shape of the entire surface approxi-
mates the polyhedron.

Overview of PIClib Functions 3-43



Graphics Primitives — Patch Functions

Example:

Generate a viewport with dropped shadows. A red Bezier bicubic patch rotates around the z axis.

/

#include <piclib.h>

/* define x,y and z coordinates of the control mesh- for ai.bivcilbic»:p‘ait:c'h: *7

PICmatrix GX = {
0.0;:0.0, 0.0, 0.0,
25.0, 25.0, 25.0, 25.0,
50.0, 50.0, 50.0, 50.0,
75.0, 75.0, .75.0, 75.0:

PICmatrix GY = §

0.0; 25.0,° 50.0, 75,0,
0.0, 25.90, 50.0, 75.0;
0.0, 25.0,.50.0, 75,0,
0.0, 25.0, 50.0,-75.0
I
PICmatrix GZ = | 3 S
5.0,. 45,0, 25,0, ~30.0,
5.0, 5510, 65,0, 20,0,
5.0, 65.0;. 25.0, -10,0;
5.0, 35.0,715.0, 0.0
Vi ' '
main{arge, argv)
int arge;
char **3rgv;
{
int npixl, nline;
int precu, precyi’
int basisy i
int ijitery::

void , . draw meshi(); -

iF (PICINIt{)) exiti{-1};

/* animate */

PICdouble buffer{ PIC ON )7
PICzbuffer( PIC ON );

(rc'onti'nbued' on bn'éxt page)

3-44 PIClib User’'s Guide, Version 1.2



Graphics Primitives — Patch Functions

PICget screen size{ &npixl, &nline );
PICput_viewport({ 0, npixl-1, 0, nline—1

PICcopy_front to_ back(};
/* make drop shadow */
PICput, viewport { 290+20, 990+20," 80420,

PICpixel_add( =0.2, -0.2, -0.2, =0.2 )7
PICswap bufferi();

800420 ¥z

PICput_viewport:( 290+20, ‘990+20," 80+20,
PICpixel add{ -0.2, -0.2, -0.2,:-0.2 )7
PICswap buffer();

/* create viewport .and projection'*/

7

PICPUC_viewport ( 290, 990; 80, 800 )
PICput_depth( 0.0, 32767.0-}3.

/* get viewing and projectlon parameters */

PICpersp. project (45.0, .1.25; 1 0 2048 0)7

precu
precv = 207
basis = 0;

PICpatch_precision(pfecu,precv{;
PICselect patch basis(basis;basis);
PICeuclid_mode(PIQ_EUCLID_LTNE};

iter 557

do {

‘pICeolor rgb{ 10, 1. 0 1o L
PICcleaxr rgbzi(}; :

PICTOtate 2(2.5)
PICcolor rgb( 1 0
PICpatch geometry

draw;mesh();

N

BOO+30 15

PIClockup view (150.0, 150.0; 150 0, 0.0,.0.0; 0. O,.

/* rotate patch around the z axis 2.5 degrees at each frame +7

780075 0.0);
3d (GX, GY, GZ), :

Overview of PICIib Functions

k(’cohtmu'e'd'on next page)

3-45



Graphies Primitives — Patch Functions

PICswap buffery);
¥ while’ {iter-—);
BICexIE ()7

exit ().

: 'f;d'ra‘w__mes'yh €

nt i g

SPICcolof roB(1.0;0.0; 1,0):
CForil =011 < 45 144

PICrove: 30/GX[1] (0], GY[1] [01,G2 (11 10]);

Cfor(y =i < 4 g
e PICdraw 3a{GXE1}{31,G6YI1) (31,62(iT (i1

(4 =05 3 < ey 3o

BIOmove 3a(GK(01 141, GY (0] [31, 62001 (3107

o 'fo:f(i' =y 1<4, iy - ’ ;
o B PICdraw 3d(GX{1] 31, 6Y (1} 131,628 [j]) 3

-

PICpatch_geometry 3d()

The PICpatch_geometry 3d() function renders a 3D surface patch using the current basis matrix
and the current patch precision.

The shape of a 3D surface patch is defined by a set of user-specified 3D control points. The shape
of a 3D patch is defined by a set of user-specified 3D control points. The surface patch is rendered
using the current color and drawing mode. If polygon mode is on, the patch is shaded according to
the current shading mode.

3-46 PICIib User’'s Guide, Version 1.2



Graphics Primitives - Patch Functions

PICpatch_geometry 3d(xgeom,ygeom,zgeom)
PICmatrix xgeom,ygeom,zgeom

xgeom,ygeom,zgeom =  a set of 3D control points

PICpatch_precision()

The PICpatch_precision() function specifies the number of points, lines, or polygons used to
represent segments of a surface patch. The precision is specified for both the u and v directions and
can be a different value for each direction. The arguments are specified as integers and must be
greater than or equal to zero. Remember, the higher the number (nu,nv), the smoother the patch. If
the arguments nu,nv are less than zero, the function returns a value of PIC_ERR_ARG.

PICpatch_precision(nu,nv)
int nu,nv;

nunv = the curve’s precision in the u and v directions

PICput_basis()
The PICput basis() function defines a 4x4 basis matrix and an associated index number, which
can subsequently be used in rendering patches. The index numbers are defined by the following

constants:

PIC_USER_BASIS 0
PIC_USER_BASIS_1

PIC_USER BASIS_7

Overview of PIClib Functions 3-47



Graphics Primitives —~ Patch Functions

At initialization, the first four basis matrices contain the matrix definitions for Bezier patches,
Hermite patches, B-spline patches and Four-point patches respectively. Unless you wish to
overwrile these matrices, the index argument passed to PICput_basis() should range from 4 to
PIC_MAX BASIS.

If index is less than zero or greater than or equal to PIC_MAX BASIS, this function returns a value
of PIC_ERR_ARG.

Once defined, the basis matrix is selected by passing its associated index to the
PICselect_patch_basis() function.

PICput_basis(basis,index)
PICmatrix basis;
int index;

basis = an matrix of 16 floating point numbers

index = the index number associated with the basis matrix

PlCselect_patch basis()

The PICselect_patch_basis() function selects the basis matrices to be used in drawing a surface
patch. A basis matrix is selected for both the u and v parametric directions of the patch. The basis
matrices and their indexes must have been previously defined by PICput basis(). If uindex or
vindex are less than zero or = PIC_MAX_BASIS, PICselect_patch_basis() returns
PIC_ERR_ARG.

PICselect_patch basis(uindex,vindex)
int uindex,vindex;

uindex = the index to the basis matrix for the u direction

vindex

Il

the index to the basis matrix for the v direction

3-48 PIClib User’s Guide, Version 1.2



Graphics Primitives — Template Functions

The Template functions create precalculated atoms that can be quickly rendered on the screen.
These atoms are not affected by geometric distortions, such as perspective projection or aspect ratio
changes. sphere and user defined templates can be created and stamped on the screen. They can be
Zbuffered, vary in size up to 256 X 256, and the user can define pixel alpha opacity percentages for
transparency. Because templates are a raster primitive, there is little /O overhead and transforma-
tion pipe computation involved, therefore, you can stamp many templates at high speed.

The Template functions are:

m PICatom(x,y,zx)

m PICatom_light(light)

8 PICatom surface(surface)

@ PICget template(templ ptrindex)

g PICmake template(index,size,ix,iy,data,zdatanpixl)

m PICmake sphere template(index,ix,iy,zradius)

@ PICstamp template(index,xyznpoint,mode)

PlCatom()

The PICatom() function draws a 3D spherical atom centered at the point (x,y,2z) and with radius 7.
The atom will be Phong shaded and will be lit according to the light source specified by

PICatom _light() and surface model specified by PICatom_surface(). PICatom() is a template
function, and, thus, will quickly render a spherical atom that is not affected by geometrical distor-
tions.

Atoms are a special primitive and are not handled in the same manner as the standard primitives.
Atoms do not work correctly with perspective projection; orthographic projection should be used.
To render atoms correcily it is recommended that the viewing volume be a cube, the viewport a
square, and the depth range set with near = 0.0 and far = the width of the viewport.

Atoms are not clipped in the pipeline. To clip atoms, set the z depth outside of the

NOTE | current viewport to a negative value, then clear the viewport to a positive z value. Also

note that modeling transformations are applied to the center of the atom but not to the

r radius. The atom’s radius should be specified with respect to World Coordinates. Tran-
sparent atoms have not been implemented.

PICatom(x,y,z,r)
float x,y,z,1;

Overview of PICIib Functions 3-49



Graphics Primitives - Template Functions

X,V,Z the coordinates of the atom’s center point

the atom’s radius

]
i

PiCatom _light()

PICatom_light() specifies a light source for a spherical atom, It has one argument, a pointer to
PIClight_source.

void PICatom_light(light)
PIClight_source *light;

light = pointer to PIClight_source

PiCatom_surface()

PICatom_surface() takes one argument, a pointer to PICsurface_model. An atom’s shading is
computed using the following equation:

I =Ka* Li+ Kd * Li * (V_normal.V_light) + Ks * Li *
(V_eye.V_reflection) ** S exponent)

where:

Li = intensity of light

Kd = diffuse coefficient of surface

Ks = specular coefficient of surface

Ka = ambient coefficient of surface '
S_exponent = specular exponent of surface
V_normal = surface normal vector

V_light = vector to light source

V_eye = vector to the eye

V_reflection = reflection vector

3-50 PIClib User’s Guide, Version 1.2



void PICatom_surface(surface)
PICsurface model *surface;

S_exponent is currently set to 10.

surface = pointer to PiCsurface_model

PiCget_template()

Graphics Primitives — Template Functions

PICget template() takes a pointer to a PICtemplate structure and stores the template associated
with index in the location pointed to by templ_ptr. The PlCtemplate structure is defined as fol-

lows:

typedef struct
{

short type:
int ix;
int iy;
int size;
float radius;
}PICtemplate;

/*
/*
/*
/*
/*

sphere (type=0)

or user defined (type=1)

template positicen in vram in x */
template position in vram in y */
size of template in pixels in x and y dimensions */

size of radius

(spheres only)

PICget template() returns PIC_TRUE on success and PIC_FALSE on failure.

int *PICget template(templ ptr,index)

int index
PICtemplate *templ pir

Overview of PIClib Functions

3-51

*/

*/



Graphics Primitives - Template Functions

il

templ ptr pointer to PICtemplate structure

index

template to be stored

PICmake template()

PICmake_template() takes index and size, broadcasts a user defined template consisting of npixl
bitmapped RGBA values and their associated z depth information into off screen memory and asso-
ciates that template with index. index is an integer that ranges from 0 to PIC_MAX_STAMP. The
template’s position is (ix, iy). The template has a height and width of variable size; size is the same
in the x and y dimensions. The maximum size of a template is PIC_MAX UDTEMPLATE.

The alpha value for each pixel in the template determines the opacity of the pixel. Alpha values
range from 0 to 255, where 0 is completely transparent and 255 is completely opaque.

void PICma.ke_template(index,size,ix,iy,data,zdata,npixl)
int index,ix,iy,size,npixl

PICrgba _pixel *data

float *zdata

index = template to be broadcast
size = height and width of template
ix, iy = position of the template
data =  bitmapped RGBA values
npixI = number of RGBA values

3-52 PIClib User’s Guide, Version 1.2



Graphics Primitives — Template Functions

PiCmake_sphere template()

PICmake_sphere_template() takes an index, radius and z-depth, renders a sphere template into
offscreen memory and associates that template with index. index is an integer that ranges from 0 to
PIC_MAX _STAMP. The template’s position is (ix, iy). The maximum size of a sphere template is
PIC MAX STEMPLATE, and the maximum radius is PIC_MAX_STEMPLATE/2 . In order for
sphere templates to be stamped correctly, zbuffering must be enabled.

void PICmake sphere template(index,ix,iy,z,radius)
int index,ix,iy,radius

float =z

index = sphere template to be rendered
ix iy = template’s position

z =  z-depth of the template
radius = radius of the template

PiCstamp_template()

PICstamp_template() takes a template index, a point array, a point count, and a mode and stamps
the template associated with index at the locations specified by xyz. The variable xyz consists of
npoint (x,y,z) locations. No more than PIC_MAX_STAMP points can be stamped in one call to
PICstamp_template(). If the template is a user defined template and mode = PIC_ON, then alpha
opacity percentages are generated for each pixel. If mode = PIC_OFF, then the alpha values are
ignored. Alpha values are ignored for sphere templates. Templates can be zbuffered or non-
zbuffered. The maximum size of a non-zbuffered template is PIC_MAX_UDTEMPLATE X
PIC_MAX UDTEMPLATE. The maximum size of a zbuffered template is

PIC MAX _UDTEMPLATE/2 X PIC_MAX _UDTEMPLATE/2 .

void PICstamp_template(index,xyz,npoint,mode)
int index,npoint,mode
float *xyz

Overview of PICIib Functions 3-53



Graphics Primitives - Template Functions

index = template to be stamped

Xyz = locations at which template is stamped

npoint = number of x, y, z locations

mode = PIC_ON - alpha opacity percentages are generated

= PIC:OFF — alpha values are ignored

3-54 PIClib User's Guide, Version 1.2



Fonts and Characters

PICIlib supports two types of fonts, raster fonts and vector fonts. Vector fonts supported by
PIClib are the standard hershey vector fonts and reside in $HIYPER _PATH/fonts. Vector fonts are
composed of a series of connected 3D lines, and are affected by the current line mode and the
current projection and modeling matrices. Vector fonts are clipped by the viewing pyramid.

Raster fonts are a series of bit patterns displayed on the screen. Raster fonts are not affected by the
projection or the modeling matrices, however they are clipped by the viewport. In regular rgb mode
the current color is used to display the raster fonts. When the alpha channel is enabled, raster fonts
are drawn in the alpha channel using the current alpha color. A set of raster font files reside in
Jusr/lib/fonts/fixedwidthfonts. You may also create your own raster fonts with the fontedit program
supplied by Sun.

The Fonts and Characters functions allow you to select a font type and write text using the font
you selected. This section discusses the following functions:

m PICopen_raster_font(font) ® PICopen_vector_font(font)

® PICput raster_font(font) B PICput vector_font(font)

m PICraster_text(ix,iy,string) E PICvector_text(string)

m PICraster font text(font,ix,iystring) u PICvector font text(font,string)

PiCopen_raster _font()
The PICopen_raster_font() selects (opens) the specified raster font and returns a pointer to the
raster font structure, PlCraster_font. If the font cannot be opened, a null pointer is returned.
The following raster fonts are currently available:

® aplr.10

B cmr.b.8, cmr.b.14, cmr.r.8, cmr.r.14

® cour.b.10, cour.b.12, cour.b.14, cour.b.16, cour.b.18, cour.b.24, cour.r.10, cour.r.12 cour.r.14,
cour.r.16, cour.r.18, cour.r.24

gacha.b.8, gacha.r.7, gacha.r.8
gallant.r.10, gallant.r.19

sail.r.6

screen.b.12, screen.b.11, screen.r.7, screen.r.12, screen.r.13, screen.r.14

Overview of PICIib Functions 3-55



Fonts and Characters

® serifr.10, serif.r.11, serif.r.12, serif.r.14, serif.r.16

The fonts listed above are the standard fonts available with Sun’s system software. You can gen-
erate new fonts by using the fontedit routine supplied by suntools.

PICopen raster_font(font)
char *font;

Example:
In the following example, the serif.r.10 font is selected:

fontl = PICopen_raster_font ("/usr/lib/fonts/fixedwidthfonts/serif.r. 10"y ;

PICput_raster font()

The PICput_raster_font() function sets the current raster font to a previously opened raster font
font. The current raster font is used by the PICraster_text() function.

PICput raster font(font)
PICraster font *font;

PiCraster text()

The PICraster_text() function writes a text string, string, using the current raster font. The upper
left corner of the text is located at point (ix,iy) with respect to the current viewport

Raster text is clipped by the viewport, but is not affected by the projection or modeling transforma-
tions. If alpha channel rendering is enabled, the raster text will be displayed in the alpha channel
using the current alpha color. PICraster_text() returns the x position of the end of the string.

PICraster_text(ix,iy,string)
int ix, iy;
char *string;

3-56 PIClib User’s Guide, Version 1.2



Fonts and Characters

Example:
In the following example, the string "hello” is written at location 100,100.

PICraster text (100, 100, "hello");

PiCraster font_text()

The PICraster font text() function writes a text string, string, using the specified raster font font.
The raster font must have been previously opened by PICopen raster_font(). The upper left
corner of the text is located at point (ix,iy) with respect to the current viewport

Raster text is clipped by the viewport, but is not affected by the projection or modeling transforma-
tions. If alpha channel rendering is enabled, the raster text will be displayed in the alpha channel
using the current alpha color. PICraster font text() returns the x position of the end of the string.

PiCraster font_text(font,ixiy,string)
PICraster font *font;

int ix, iy;

char *string;

Examples:

In the following example, the specified string "hello" will be output using serif.r.10 at location
100,100. Note that in a previous example, the serif.r.10 font was opened and stored in the
PlCraster_font structure named font1.

PIiCraster font text(fontl, 100, 100, "hello™);

Overview of PIClib Functions 3-57



Fonts and Characters

The following program illustrates the use of raster fonts for displaying text.

PiCopen_vector font()

The PICopen_vector_font() selects (opens) the specified vector font and returns a pointer to the
vector font siructure, PICvector font. If the font cannot be opened, a null pointer is returned.

3-58 PICIib User’s Guide, Version 1.2



Fonts and Characters

The following vector fonts are currently available:
m greekl

italic1, italic2

lombardic

romanl, roman2

scriptl, script2

speciall

standardl

texture

The font types that end with a “‘2”’ indicate boldface versions of those fonts.

PICopen_vector font(font)
char *font;

Example:
In the following example, the italicl font is selected:

fontl = PICopen_vector_font ("italicl");

PICput_vector font()

The PICput vector_font() function sets the current vector font to a previously opened vector font
font. The current vector font is used by the PICvector_text() function,

PICput_vector_font(font)
PICvector_font *font;

Qverview of PIClib Functions 3-59



Fonts and Characters

PICvector text()

The PICvector_text() function writes a text string, string, using the current vector font. Because
vector fonts are a series of 3D lines, the text being displayed is transformed by the current transfor-
mation matrix and affected by the current color and line mode. The text starts at location
(0.0,0.0,0.0) and the x position of the end of the string is returned.

PICvector_text(string)
char *string;

Example:
In the following example, the string "hello” is written.

PICvector_text ("hello");

PlCvector font text()

The PICvector_text() function writes a text string, string, using the specified vector font font. The
vector font must have been previously opened by PICopen_vector_font(). Because vector fonts
are a series of 3D lines, the text being displayed is transformed by the current transformation matrix
and affected by the current color and line mode. The text starts at location (0.0,0.0,0.0) and the x
position of the end of the string is returned.

PICvector_font_text(font,string)
PICvector_font *font;
char *string;

Example:

In the following example, the specified string "hello" will be output using italicl. Note that in a

previous example, the italicl font was opened and stored in the PICvector_font structure named
fontl.

PICvector_font_text(fontl, "hello"™) ;

3-60 PIClib User’s Guide, Version 1.2



Transformations

The list below describes the three major types of transformations; Modeling, Viewing and Pro-
jection.

B Modeling transformations manipulate the object coordinate system with respect to the World
Coordinate System. Objects are first defined in their own space, the object coordinate system,
and then placed in the World Coordinate System by applying the modeling transformations
(rotate, translate, and scale). The Object Coordinate System may be the same as the World
Coordinate System, thus eliminating the transformation from object to World Space. The
World Coordinate System is a right-hand system with y to the right, z up, and x out of
the page (see Figure 3-2).

m Viewing transformations transform World Space to Eye Space. The Eye Coordinate Sys-
tem is a right-hand system with x to the right, ¥ up, and z out of the page. The eye is at the
origin and the viewing direction is down the negative z axis (see Figure 3-3).

@ Projection transformations map eye space into the Screen Coordinate System. The origin of
the Screen Coordinate System is in the lower left corner with x to the right and y up (see
Figure 3-4).

Primitives that are not transformed by the current transformation matrix, such as raster operations,
cursors and viewports, are specified in the Pixel Coordinate System. The origin of the Pixel Coor-
dinate System is in the upper left corner with x to the right and i down (see Figure 3-5).

Transformation Matrices

There are two matrix stacks and two current matrices, which can be operated on separately. One
stack contains the Modeling and Viewing transformations, the other holds the Projection transforma-
tions. Objects are transformed by the product of the two current matrices: Modeling and Viewing
(MV) matrix and Projection (P) matrix. Viewing commands replace the current MV matrix with the
specified viewing matrix. Modeling functions cause the current MV matrix to be premultiplied by
the matrix representing the specified transformation. For this reason, transformations should be
specified in the reverse order in which they will be applied. Typically, transformations are specified
in the following order:

1. Projection transformations
2. Viewing transformations
3. Modeling transformations

Object vertices and light positions are transformed by the current set of transformation matrices.
Push and pop functions can be used to localize operations by saving and restoring transformations.

Overview of PIClib Functions 3-61



Transformations

Figure 3-2: World Coordinate System

® Y

X (OUT OF PAGE)

3-62 PIClib User’'s Guide, Version 1.2



Transformations

Figure 3-3: Eye Coordinate System

=B X

A_ (EYE AT 0, 0, 0: LOOKING 0. 0, -2)

Overview of PiClib Functions

3-63



Transformations

Figure 3-4: Screen Coordinate System

- <

3-64 - PIClib User’s Guide, Version 1.2



Transformations

Flgure 3-5: Pixel Coordinate System

>

vy

Overview of PIClib Functions 3-65



Transformations — Modeling Functions

The Modeling Transformations rotate, translate, and scale objects relative to the World Coordi-
nate System. Modeling functions cause the current MV matrix to be premultiplied by the matrix
representing the specified function. Because of this, modeling transformations are applied to all
objects drawn after the modeling transformation is requested. The current Modeling and Viewing
matrix can be saved with the PICpush_transform() function and restored with the
PICpop_transform() function.

This section describes the following modeling transformation functions:

Rotation Functions

@ PICrotate_x(x) m PICput_rotate_dy(dy)
& PICrotate_y(y) ® PICput _rotate dz(dz)
& PiCrotate z(z) B PICrotate_dx()
® PICrotate_vector(x,y,z,nx,ny,nz,angle) & PICrotate_dy()
® PICput_rotate dx(dx) | PICrotate_dz()

Translation Functions

s PICtranslate x(x) E PICput translate dy(ty)
® PICtranslate_y(y) @ PICput translate dz(tz)
m PICtranslate_z(z) ® PICtranslate dx()
u PICtranslate(x,y,z) ® PICtranslate_dy()
& PICput_translate_dx(tx) m PICtranslate _dz()

Scaling Functions

® PICscale x(x)

B PICscale y(y)

8 PICscale z(z)

& PICscale(x,y,z)

m PICput_scale dx(sx)

3-66

m PICput scale_dy(sy)
m PICput scale dz(sz)
m PICscale dx()
m PICscale_dy()
m PICscale dz()

PICIib User’s Guide, Version 1.2



Transformations — Modeling Functions

Rotation

All modeling commands operate with respect to the World Coordinate System.

Objects may be rotated with respect to x or y or z or an arbitrary axis. All rotations follow the
right-hand rule. Positive rotations are counterclockwise when looking from the positive axis toward

the origin (see Figure 3-6).

Rotations may be absolute or incremental. Absolute rotations rotate about the x or y or z axis by 6x,
0y, and 0z degrees. Also, arbitrary axis rotations allow you to specify an axis of rotation with a
point, x,,z and a direction, nx,ny,nz. This produces a rotation of 6 degrees about the specified axis

with the center of rotation at x,y,2.

Incremental rotations rotate about the x,y, or z axis by a prespecified Ax, Ay, and Az degrees.

rotation.

The rotation functions are:

m PICrotate_x(x)
® PICrotate_y(y)
® PICrotate_z(z)
® PICrotate_vector(x,y,z,nx,nynz,angle)

m PICput rotate_dx(dx)

Overview of PIClib Functions

Positive degrees cause counterclockwise rotation; negative degrees cause clockwise

m PICput_rotate_dy(dy)
m PICput_rotate_dz(dz)
m PICrotate_dx()
m PICrotate_dy()
® PICrotate_dz()

3-67



Transformations ~ Modeling Functions

Figure 3-6: Righi-Hand Rule Rotation

,T EYE
/ o I g

(90° ROTATION ABOUT

: THE y-AXIS) (FINGERS CURL COUNTER

CLOCKWISE FROM THE EYE)

PiCrotate Functions

The PICrotate functions (PICrotate_x(), PICrotate_y() and PICrotate_z()) rotate objects by a
specified angle about the x or y or z axis. The angle is specified in degrees according to the right-
hand rule.

PICrotate x(x)
float x;

3-68 PIClib User’s Guide, Version 1.2



x = the angle of rotation about the x axis
PICrotate_y(y)

float y;

y = the angle of rotation about the y axis
PICrotate_z(z)

float z;

z = the angle of rotation about the z axis

PiCrotate vector()

Transformations - Modeling Functions

The PICrotate_vector() function rotates objects by a specified angle about an arbitrary axis. The
axis of rotation is defined by a point and a direction as shown below:

Overview of PIClib Functions

3-69



Transformations - Modeling Functions

Figure 3-7: Arbitrary Axis Rotation (PiCrotate_vector(10.0,0.0,0.0,0.0,-1.0,0.0,90.0);
Z

ﬁ

(10.0, 0.0, 0.0) UNROTATED SPHERE (0.0, 0.0, 0.0)

1~

"Y

(0.0, -1.0, 0.0)
¢

Y,

2,
Q ROTATED SPHERE (10.0, 0.0, - 10.0)

-2

PICrotate_vector(x,y,z,nx,ny,nz,angle)
float x,y,z,nx,ny,nz,angle;

X;yZnxnynz =  the point (x,y,z) and direction (nx,ny,nz) that define the axis about
which the object will rotate
angle = the angle of the rotation expressed in degrees

3-70 PICIib User’s Guide, Version 1.2



Transformations — Modeling Functions

Example:

The following example demonstrates how to specify a rotation of 90° about the vector defined by
the point [10.0, 0.0, 0.0] and the direction [0.0, 1.0, 1.0].

PICput rotate d Functions

The PICput rotate_d functions (PICput rotate_dx(), PICput rotate_dy() and

PICput rotate_dz()) define a constant that specifies increments of rotation in A degrees. Objects
can then be rotated in increments about a World Space axis (x, y, or z) using the PICrotate_d
functions.

PICput _rotate dx(dx)
float dx;

dx = the incremental angle of rotation, in degrees, about the x axis

PICput_rotate_dy(dy)
float dy;

Overview of PIClib Functions 3-71



Transformations -~ Modeling Functions

dy = the incremental angle of rotation, in degrees, about the y axis
PICput _rotate dz(dz)

float dz;

dz = the incremental angle of rotation, in degrees, about the z axis

PiCrotate_d Functions

The PICrotate_d functions (PICrotate_dx(), PICrotate_dy() and PICrotate dz()) rotate objects
about the x, y, and/or z axis by a predefined, incremental rotation. Before using any of the

PICrotate_d functions, be sure to specify the incremental angle with one of the PICput rotate d
functions,

PICrotate dx()
PiCrotate dy()
PICrotate_dz()

Translation

Objects may be translated independently in x or y or z or in xyz There are two types of translations:
absolute and incremental. Absolute translations are applied along x or y or z. Incremental transla-
tions are applied along the x or ¥ or z axis by a specified Ax, Ay and Az.

The translation functions are:

m PICtranslate x(x) ® PICput translate_dy(ty)
® PICtranslate y(y) B PICput_translate dz(tz)
@ PICtranslate z(z) m PICtranslate_dx()

@ PICtranslate(x,y,z) w PICtranslate_dy()

# PICput_translate_dx(tx) & PICtranslate_dz()

3-72

PIClib User’s Guide, Version 1.2



Transformations — Modeling Functions

PiCtranslate Functions

The PICtranslate functions (PICtranslate(), PICtranslate x(), PICtranslate y() and
PICtranslate_z()) apply a translation along x or y or z to the current transformation matrix.

PICtranslate(x,y,z)

float x,y,z;

x,y,z = thex,y,z translation
PICtranslate x(x)

float x;

X = the x translation
PICtranslate y(y)

float y;

y = the y translation
PICtranslate z(z)

float z;

z =  the z translation

PICput translate_d Functions

The PICput translate_d functions (PICput_translate_dx(), PICput_translate_dy( and
PICput translate dz()) specify the delia translation along each axis. Objects can then be
translated in increments along a World Space axis (x,y, or z) using the PICtranslate_d functions.

PICput translate dx(tx)
float tx;

tx = the incremental translation in x

PICput translate dy(ty)
float ty;

Overview of PiClib Functions 3-73



Transformations — Modeling Functions

ty = the incremental translation in y
PICput_translate dz(tz)

float tz;

fz = the incremental translation in z

PiCtranslate _d Functions

The PICtranslate_d functions (PICtranslate_dx(), PICtranslate_dy() and PICtranslate_dz())
translate the objects along the x or y or z axis by a predefined, incremental translation. Before
using any of the PICtranslate_d functions, be sure to specify the incremental angle with one of the
PICput translate_d functions.

PICtranslate_dx()
PICtranslate_dy()
PiCtranslate dz()

Scaling
Objects may be scaled independently about x or Y or z or about xyz, simultaneously. Scale com-
mands can shrink (sx < 1), expand (sx > 1), and mirror (sx < 0) objects.

There are two types of scaling transformations: absolute and incremental. Absolute scaling is
applied about x or i or z. Incremental scaling is applied about the x or y or z axis by a specified
Ax, Ay, and Az.

The scaling functions are:

B PICscale x() ® PICput_scale_dy(sy)
m PICscale y(y) u PICput_scale_dz(sz)
B PICscale z(z) m PICscale_dx()
& PICscale(x,y,z) ® PICscale dy()
@ PICput_scale dx(sx) & PICscale_dz()

3-74 PIClib User’s Guide, Version 1.2



Transformations — Modeling Functions

PlCscale Functions

The PICscale functions (PICscale(), PICscale x(), PICscale_y() and PICscale_z()) reduce,
enlarge, and mirror objects by scaling the object’s x or y or z coordinates by the scaling factors x,
y, and z, respectively. Objects can be scaled about one axis only or about all three axes.

= Positive scaling factors larger than one expand the object; less then one, reduce the
"NoTE| object. Negative scaling factors mirror the scaled object across an axis.

PICscale(x,y,z)
float x,y,z;

XY % = the %, y, and z scaling factors

PICscale_x(x)
float x;

X = the x scaling factor

PICscale y(y)
float y;

y = the y scaling factor

PICscale z(z)
float z;

z = the z scaling factor

PICput_scale d Functions

The PICput scale_d functions (PICput scale_dx(), PICput scale_dy() and
PICput scale dz()) specify the delta scaling factor about each axis. Objects can then be scaled
about a World Space axis (x, y or z) using the PICscale_d functions.

PICput scale dx(sx)
float sx;

Overview of PIClib Functions 3-75



Transformations — Modeling Functions

sx = the incremental scaling factor in x
PICput_scale_dy(sy)

float sy;

sy = the incremental scaling factor in y
PICput scale dz(sz)

float sz;

sz = the incremental scaling factor in z

PiCscale d Functions

The PICscale_d functions (PICscale_dx(), PICscale_dy() and PICscale_dz()) scale the objects
in x or y or z by a predefined scale factor. Before using any of the PICscale_d functions, be sure
to specify the incremental angle with one of the PICput scale_d functions.

PICscale_dx()
PICscale_dy()
PICscale_dz(

3-76

PIClib User’s Guide, Version 1.2



Example:

Transformations - Modeling Functions

The following code fragment illustrates the use of the incremental scaling and rotation functions.

~

{

PICpersp project:{ 45,0, 1.25, 1. o T000.0 )r

PICput_scale dx{(3.0%;

/* set the inecremental
PICput” rotate dz (20.0);

/% set the incremental

for (i = 0; 1< MAX_TTERATIONS: &%) (-

PiCcolor_rgbi. BLACK Ji il o
PiCclear, rgbz'();

piCrotate dz{).;
PICscale dxi);

prCcolor_rgb( WHITE 37 @
PICpatch_geometry: 3d{GX,GY,!

PICswap buffer();

PIClookup view( 15070, 150.0, /150,6, 0:0; 070, 0.0,0

Overview of PIClib Functions

3-77



Transformations — Viewing Functions

Viewing Transformations map World Space into Eye Space, given the user’s view specified by
an eye position and a view direction in the World Coordinate System. PIClib provides four viewing
functions for specifying the view point and viewing direction:

® PICcamera_view(x,y,zpan,tilt,swing)

m PIClookat view(vx,vy,vz,px,py,pz,twist)

8 PIClookup_view(vx,vy,vz,px,py,pz twist)

# PICpolar view(dist,azim,inctwist)

The viewing transformations are kept on the transformation stack and are pre-multiplied by the

modeling transformations. Therefore, the viewing transformations must be specified before any
modeling transformations are applied. -

PICcamera_view(), PIClookat view(), PIClookup view() and PICpolar view() all replace
the current transformation with the specified viewing matrix. In order to preserve the current
modeling and viewing transformation, use the PICpush_transform() command.

All rotations discussed in this section follow the right-hand rule, unless otherwise noted.
All rotations are specified in degrees.

PiICcamera_view()

PICcamera_view() defines a viewing transformation in terms of pan, tilt, and swing angles. The
arguments to this function define a viewpoint (x,y,z) and specify a view direction by applying a pan
degree rotation about the y axis of the Camera Coordinate System, a #lt degree rotation about the x
axis of the Camera Coordinate System, and a swing degree rotation about the z axis of the Camera
Coordinate System.

In its initial orientation, the x, y, z axes of the Camera Coordinate System are parallel to the -x, z,
-y axes of the World Coordinate System. The eye is positioned at the origin of the Camera Coordi-
nate System (defined by x, v, z) and the viewing vector is the positive z axis of the Camera Coordi-
nate System. The orientation of the view vector is determined by the pan, tilt and swing parame-
ters. See Figures 3-8 and 3-9. Note that the view vector in Figure 3-9 points toward the origin,

3-78 PIClib User’s Guide, Version 1.2



Transformations — Viewing Functions

The Camera Coordinate System is a left-hand system and all rotations in it are left-hand
rotations.

PICcamera_view(x,y,z,pan,tilt,swing)
float x,y,z,pan,tilt, swing;

X,¥Y/Z =

pan =

tilt

swing

the x, y, and z coordinates of the viewpoint

the left-hand rule rotation about the y axis of the Camera Coordinate
System

the left-hand rule rotation about the x axis of the Camera Coordinate
System

the left-hand rule rotation about the z axis of the Camera Coordinate
System

Overview of PICIib Functions 3-79



Transformations - Viewing Functions

Figure 3-8: PiCcamera_view(100.0, 100.0, 0.0, 0.0, 0.0, 0.0)

?z

WORLD COORDINATE
SYSTEM
CAMERA COORDINATE
SYSTEM
100
X

- VIEW VECTOR

3-80 PICIib User’s Guide, Version 1.2



Transformations ~ Viewing Functions

Figure 3-9: PiCcamera_view(100.0, 100.0, 0.0, 45.0, 0.0, 0.0)

'}

WORLD COORDINATE
SYSTEM
190 -y
CAMERA COORDINATE
SYSTEM
100
X

VIEW VECTOR

PiClookat_view()

PIClookat_view() defines a viewpoint and a reference (lookat) point in World Coordinates. The
viewpoint is at (vx, vy, vz) and the reference point is (px, py, pz). These two points define the
view direction or view vector. The twist angle specifies a rotation about the view vector (directed
from the viewpoint to the reference point). The view vector defines the -z axis of the Eye Coordi-
nate System.

PIClookat_view(vx,vy,vz,px,py,pz,twist)
float vx,vy,vz,px,py,pz,twist;

Overview of PIClib Functions 3-81



Transformations - Viewing Functions

vx,vy,vz = the coordinates of the viewpoint

px,py,pz = the coordinates of the reference (af) point

twist = the rotation about the view vector (the -z axis of the Eye Coordinate
System)

PIClookup view()

The PIClookup_view() function specifies the viewpoint and view direction with a from point and
an at point in the World Coordinate System. These two points define the view direction or view
vector. The twist angle specifies a rotation about the view vector (directed from the viewpoint to the
reference point). The PIClookup_view() transformation ensures that the +y (up) vector of Eye
Space and the +z (up) vector of World Space form an acute angle. If the view direction is (0,0,%z),
then the PIClookat view() function is used.

PIClookup_view(vx,vy,vz,px,py,pz,twist)
float vx,vy,vz,px,py,pztwist;

vx,vy,vz = the coordinates of the viewpoint

px,py,pz = the coordinates of the reference (at) point

twist = the rotation about the view vector, (the -z axis of the Eye Coordinate
System)

PICpolar_view()

The PICpolar_view() function defines the viewpoint and direction in Polar Coordinates. The dist
parameter is the distance from the view point to the origin of the World Coordinate System. The
azim parameter is the azimuthal angle in the xy plane, measured from the y axis. The inc parameter
is the incidence angle in the yz plane measured from the z axis. The twist parameter specifies a
rotation about the view vector. The view vector is directed from the viewpoint to the origin of the
World Coordinate System, and defines the -z axis of the Eye Coordinate System.

PICpolar_view(dist,azim,inc,twist)
float dist,azim,inc,twist;

3-82 PIClib User’s Guide, Version 1.2



Transformations — Viewing Functions

dist = the distance from the viewpoint to the origin of the World Coordinate
System

azim = the azimuthal angle of the viewpoint in the xy plane measured from
the y axis

inc = the incidence angle of the viewpoint in the yz plane measured from
the z axis

twist = the rotation about the view vector, (the -z axis of the Eye Coordinate

System)

Overview of PIClib Functions 3-83



Transformations - Projection Functions

The PIClib Projection Transformation functions define the viewing volume and type of projec-

tion. The projection transformation maps Eye Space to Screen Space. PIClib provides four types of
projections:

@ Perspective pyramid
B Perspective window
m 2D orthographic projection
® 3D orthographic projection

The projection functions described in this section are:

® PICpersp_project(fovy,aspect,near,far)

B PICwindow _project(leftright,bottom,top,near, far)
8 PICortho _project(left,right, bottom,top,near, far)

8 PICortho_2D_project(left,right,bottom,top,near,far)

PICpersp project()

PICpersp_project() defines a 3D perspective viewing pyramid by specifying the field-of-view
angle, fooy, in the y direction, the aspect ratio of the x and ¥ Eye Space dimensions, and near and
far clipping planes. The z clipping planes are specified by distances from the eye along the -z axis
of the Eye Coordinate System. The fovy parameter and the near clipping piane establish the size of
the projection frustum in the y direction. The size of the projection frustum in the x direction is
multiplied by the aspect ratio. This ratio must match the aspect ratio of the current viewport in
order to display data without distortions.

PICpersp_project(fovy,aspect,near,far)
float fovy,aspect,near,far;

fovy = the field-of-view angle in the y direction of the Eye Coordinate System
aspect = the ratio of the x and y dimensions of the Eye Coordinate System
nearfar = the distances form the origin to the near and far clipping planes along the

view vector (the -z axis of the Eye Coordinate System)

3-84 PIClib User’s Guide, Version 1.2



Transformations — Projection Functions

PICwindow project()

The PICwindow_project() function defines a 3D perspective projection by specifying a rectangu-
lar frustum between the near and far clipping planes. The parameters left, right, bottom and top
define the position and size of the viewing window in the near clipping plane. These are specified
in the x and y dimensions of the Eye Coordinate System. The parameters near and far define the
distances from the eye to the clipping planes in the -z direction of the Eye Coordinate System.

PICwindow_project(left right,bottom,top,near,far)
float left right,bottom,top near far;

left,right,bottom,top the position and size of the viewing window in the near clipping
plane, defined in the x and y dimensions of the Eye Coordinate Sys-

tem

near,far = the distances from the eye to the near and far clipping planes in the
-z direction of the Eye Coordinate System

PiCortho_project()

The PICortho_project() function defines a 3D orthographic projection with left, right, bottom, and
top clipping planes in the x and y directions of the Eye Coordinate System. The near and far
paramelters represent the distances from the eye to the clipping planes in the -z direction of the Eye
Coordinate System.

PICortho project(left,right,bottom,top,near,far)
float left right,bottom,top near, far;

leftright,bottom,top =  the clipping plane specified along the x and y axes of the Eye Coor-
dinate System

near far = the distances from the eye to the clipping planes in the -z direction of
the Eye Coordinate System. Example: a near of -10.0 is actually
behind the eye, and a far of 1000.0 is 1000 units in from of the eye
at -1000.0 z.

Overview of PIClib Functions 3-85



Transformations - Projection Functions

PiCortho 2D project()

The PICortho 2D project() function defines a 2D orthographic projection by specifying the left,
right, bottom and top clipping planes in the xy plane of the Eye Coordinate System.

PICortho_2D_project(left,right,bottom,top)
float left,right,bottom,top;

leftright bottom,top = the left, right, bottom and top clipping planes specified along the x
and y axes of the Eye Coordinate System

3-86 PIClib User’s Guide, Version 1.2



Transformations — Control Functions

The Transformation Control functions manipulate the transformation matrix stacks by pushing
and popping matrices, pre and postmultiplying matrices, and loading or retrieving matrices. There
are two transformation matrix stacks. One stack contains the modeling and viewing transformations,
the other holds the projection transformations. Transformation Control operations are categorized
by the stack they are manipulating.

Both the modeling and viewing transformation matrix and the projection transformation matrix are
applied as follows:

[ ] w0 Co Cox Cos [ }
10 Gi1 Giz Ci3| "t
ryzw 20 G G2 € ryzw
3

The coefficients of a vector are contained in a column,

Modeling and Viewing Transformation Control

The Modeling and Viewing Transformation Control functions operate on the current MV
(Modeling and Viewing) matrix and MV stack containing the modeling and viewing transforma-
tions. These functions are listed below:

m PICget inverse transform(matrix) # PICpush_transform()

& PICget normal transform(matrix) ® PICpop_transform()

& PICget transform(matrix) m PICput transform(matrix)

m PICpremultiply transform(matrix) m PICput_identity transform()

m PICpostmultiply transform(matrix)

PICget _inverse transform()

The PICget inverse transform() function returns the inverse of the current MV transformation
matrix.

PICget inverse_ transform{matrix)
PICmatrix matrix;

Overview of PIClib Functions 3-87



Transformations — Control Functions

matrix = indicates where to store the inverse of the current MV transformation
matrix

PICget_normal_transform()

The PICget normal_transform() function returns the normal vector transformation matrix. This
matrix is only available if shading or backface removal is on; otherwise, the identity matrix is
returned. The normal vector transformation matrix is the inverse transpose of the upper 3x3 subma-
trix of the current transformation matrix.

PICget normal transform(matrix)
PICmatrix matrix;

matrix = indicates where to store the normal transformation matrix

PICget transform()

The PICget transform() function returns the current 4x4 modeling and viewing transformation
matrix. The function does not change the MV transformation stack or current transformation matrix.

PICget_transform(matrix)
PICmatrix matrix;

matrix =  indicates where to store the current transformation matrix

PICpremultiply _transform()

The PICpremultiply transform() function premultiplies the current MV transformation matrix by
a specified matrix.

PICpremultiply transform(matrix)
PICmatrix matrix;

3-88 PIClib User’s Guide, Version 1.2



Transformations — Control Functions

matrix =  a user-defined 4x4 matrix

PICpostmultiply transform()

The PICpostmultiply transform() function postmultiplies the current MV transformation matrix
by a specified matrix.

PICpostmultiply transform(matrix)
PICmatrix matrix;

matrix =  a user-defined 4x4 matrix

PICpush_transform()

The PICpush_transform() function places a copy of the current MV transformation matrix on top
of the stack. (The stack is not changed if it is full.) The MV transformation stack can be
PIC_MAX_TRANSFORM levels deep.

PICpush_transform()

PICpop transform()

The PICpop_transform() function replaces the current transformation matrix with the transforma-
tion matrix on top of the MV stack. If the MV Transformation stack is empty,
PICpop_transform() has no effect.

PICpop_transform()

Overview of PICIib Functions 3-89



Transformations -~ Control Functions

Example:

The following code fragment illustrates the use of the push and pop operations on the Transforma-

tion stack.

5.0, .25, 1.0; 10000 § ;-

10,0, 10,053

80,0, 75010;90.0, 1.0, 2:0);

e 150.0,7150.0, 150.5, 0.0, 0.0, 0.0, 0:0 ):

PICput_transform()

The PICput_transform() function loads a specified 4x4 matrix into the current MV transformation

matrix. This function replaces the current MV transforma

tion matrix with the specified matrix. If

you need to save a copy of the current transformation matrix on the stack, use

PICpush_transform().

PICput_transform(matrix)
PICmatrix matrix;

3-90

PIClib User’'s Guide, Version 1.2



Transformations -~ Control Functions

matrix =  a user-defined 4x4 matrix

PICput_identity transform()

The PICput_identity transform() function places an identity matrix into the current MV transfor-
mation matrix.

PICput identity transform()

The identity rpatrix is of the form:
1000
I= 0100
“10010
0001
L i

Projection Transformation Control Functions

The Projection Transformation Control functions operate on the current matrix and stack con-
taining the projection transformations.

The Projection Transformation Control functions are:

u PICget_inverse project(matrix) m PICpush_project()
m PICget project(matrix) e PICpop project()
@ PICpremultiply_project(matrix) m PICput_project(matrix)

m PICpostmultiply project(matrix)

PICget inverse project()

The PICget inverse project() function returns the inverse of the current projection transformation
matrix.

PICget inverse_ project(matrix)

Overview of PIClib Functions 3-91



Transformations - Control Functions

matrix = indicates where to store the inverse of the current projection matrix

PICget project()

The PICget_project() function returns the current projection transformation matrix,

PICget project(matrix)
PICmatrix matrix;

matrix = indicates where to store the current projection matrix

PICpremuiltiply project()

The PICpremultiply project() function premultiplies the current projection transformation matrix
by a specified matrix.

PICpremultiply project(matrix)
PICmatrix matrix;

matrix =  a user-defined 4x4 matrix

PICpostmultiply project()

The PICpostmultiply _project() function postmultiplies the current projection transformation
matrix by a specified matrix.

PICpostmultiply project(matrix)
PICmatrix matrix;

3-92 PIClib User’'s Guide, Version 1.2



Transformations — Control Functions

matrix =  a user-defined 4x4 matrix

PICpush_project()

The PICpush_project() function places a copy of the current projection transformation matrix on
top of the projection stack. (The stack is not changed if it is full.) The projection stack can be
PIC_ MAX_TRANSFORM levels deep.

PICpush_project()

PICpop_project()

The PICpop_project() function replaces the current projection transformation matrix with the
matrix on top of the projection stack. If the projection stack is empty, this function has no effect.

PICpop_ project)

PICput project()

The PICput_project() function loads a specified 4x4 matrix into the current projection transforma-
tion matrix, replacing the original matrix. If you need to save a copy of the current projection
transformation matrix on the projection stack, use PICpush_project().

PICput project{matrix)
PICmatrix matrix;

matrix = a user-defined 4x4 matrix

Overview of PIClib Functions 3-93



Viewport Functions

The Viewport functions let you define an active area on the screen.  Viewports are defined by speci-
fying the four limits of the viewport rectangle in the Pixel Coordinate System (see Figure 3-5).
Depending on your Pixel Machine configuration, the screen area may be 1024x1024 or 1280x1024
for high resolution monitors and 720x480 for NTSC monitors.

In addition to defining viewports, these functions allow you to manipulate the viewport stack; set
and retrieve the current viewport; set and retrieve the current depth ranges; and retrieve the current
screen size.

The functions discussed in this section are:

B PICget_screen_size(ix,iy) B PICpush_viewport()
B PICget depth(near,far) B PICput_depth(near,far)
m PICget_viewport(leftright,top,bottom) ® PICput_viewport(left,right,top,bottom)

8 PICpop_viewport()

PICget_screen size()

The PICget screen_size() function returns the dimensions of the screen in the x and y directions.
The x dimension is stored into ix; the y dimension is stored into iy.

PICget screen_size(&ix,&iy)
int ix,iy;

ix, iy = the screen’s dimensions (1024x1024 or 1280x1024 for high resolution
monitors and 720x480 for NTSC monitors)

PICget_depth()

The PICget_depth() function returns the z depth range associated with the current viewport, The z
depth of the near plane is written into near; the z depth of the far plane is written into far.

PICget depth(&near,&far)
float near far;

3-94 PIClib User’s Guide, Version 1.2



Viewport Functions

near the near (hither) plane

it

far the far (yon) plane

PiCget _viewport()

The PICget viewport() function returns the coordinates of the current viewport. The viewport’s
initial and final x Pixel Coordinates are written into the left and right arguments, respectively; the
initial and final y Pixel Coordinates are written into the top and bottom arguments, respectively.

PICget viewport(&left,&right,&top,&bottom)
int leftrighttop,bottom;

left,right

coordinates of the current viewport
top,bottom oordina the t viewpo

PICpop viewport()

The PICpop viewport() replaces the current viewport with the viewport that is on top of the
viewport stack. If the viewport stack is empty, this function has no effect. The depth values associ-
ated with each viewport are maintained on the stack with the viewport.

PICpop_viewport()

Overview of PIClib Functions 3-95



Viewport Functions

PICpush_viewport()

The PICpush_viewport() function copies the current viewport matrix to the top of the viewport
stack. If the viewport stack is full, this function has no effect. The maximum number of viewports
that can be stored is PIC_MAX_VIEWPORT.

PICpush_viewport()

PICput_depth()

The PICput_depth() function defines z range associated with the current viewport, thus establish-
ing the z range between the near and far clipping planes. With a floating point buffer, a z range of
0.0 to 1.0 is usually sufficient. The PICclear_z() function clears the z buffer to the current value of

far.
PICput_depth{near,far)

near

the minimum z value

far

1l

the maximum z value

PICput_viewport()

The PICput_viewport() function defines the coordinates of the current rectangular viewport and
loads it into the current viewport.

Viewports must be defined in accordance with the screen’s coordinates (i.e., 1024x1024
NOTE | or 1280x1024 in high resolution mode and 720x480 for NTSG mode). The left and right

coordinates range from 0 to screen_width - 1, the top and bottom coordinates range from
0 to screen_height -1,

PICput_viewport(left,right,top,bottom)

3-96 PIClib Uset’s Guide, Version 1.2



Viewport Functions

leftright = initial and final x Pixel Coordinates
top,bottom = initial and final y Pixel Coordinates
Example:

To calculate the coordinates of a viewport of size 801x801 in the screen’s center (given a model
whose screen dimensions are 1280x1024) do the following:

left = (1279 -801)2 = 239
right = 1279 -239 = 1040
top = (1023 -801)72 = 111
bottom = 1023 - 111 = 912

The coordinates of the viewport, then, are 239, 1040, 111, 912. Therefore,

PICput viewport (239,1040,111, 912) ;

Overview of PIClib Functions 3-97



Shading and Depth Cueing

The Shading and Depth Cueing functions allow you to use different shading modes, depth cueing,
different types of light sources, and different surface properties.

This section discusses the following functions:

& PICshade_mode(mode) @ PICput_surface_model(model)

E PICget_shade_mode() & PICdepth_cue(mode)

m PICflip(mode) B PICdepth_cue_limits(z0,r0,g0,b0,21,r1,g1,b1)

# PICclockwise(mode) ® PICput_texture(type,offset x,offset y,size xsize y)
@ PIClight ambient(red,green,blue) # PICset_texture(index)

B PICput_light_source(type,index,light) & PICreset_texture()

® PIClight_switch(index,state) @ PICtexture_precision{mode)

m PICpercent texture(texture contribution)

PlCshade mode()

The PICshade_mode() function allows you to select one of the following modes:
@ Flat
# Gouraud
B Phong
® No shade

PICshade_mode(mode) int mode;

mode = PIC_SHADE FLAT
PIC_SHADE_GOURAUD
PIC_SHADE_PHONG
PIC_SHADE_OFF

il

il

il

Whenever you switch to PIC_SHADE_FLAT, PIC_SHADE GOURAUD or
PIC_SHADE_PHONG, you need to specify at least one light source (see PICput_light source())
and a surface model (see PICput_surface model()). The shading mode you select remains active
and will affect all object rendered until a new shading mode is specified. See the description of
Phong shading at the end of this section for further information on the use of this shading mode.

3-98 PIClib User’s Guide, Version 1.2



Shading and Depth Cueing

PICget shade _mode()

The PICget_shade_mode() function returns a value that corresponds to one of the shade modes.
These values are:

m PIC_SHADE_OFF for no shading

s PIC_SHADE_FLAT for flat shading

m PIC_SHADE_GOURAUD for Gouraud shading
m PIC_SHADE_PHONG for Phong shading

PICget shade _mode()

PICHlip()

The PICflip() function reverses all surface normals of polygons that face away from the viewer.
The sign of the normal vectors that face away from the viewer is reversed. This causes polygons
that face away from the viewer to be illuminated so as to appear to be facing toward the viewer.

T In order for PICflip() to operate properly, the polygons must be planar. PICflip() must
‘NOTE| be disabled before PICbackface() is enabled.

PICflip(mode)
int mode;
mode = PIC_ON or PIC_OFF

Overview of PIClib Functions 3-99



Shading and Depth Cueing

PICclockwise()

The PICclockwise() function defines how a normal vector of a polygon is computed. The calcu-
lation of the normal vector affects backface removal and normal shading. The first three vertices

(PO, P,, P2) of a polygon are used to form two vectors. When this function is set to PIC_ON, the
normal vector is computed as

N =)~ Py x (P, - P,)
When this function is set to PIC_OFF, the normal vector is computed as

N=(P1—P2)X(PO——P2).

The default mode is counter-clockwise (PIC_OFF),

The direction of the vector is defined by the right-hand rule.
NOTE

PICclockwise(mode)
int mode;

mode = PIC_ON or PIC_ OFF

PiClight_ambient()

The PIClight_ambient() function sets the ambient light intensity for a 3D scene or a group of
objects. Ambient light (also called background color) is the illumination that is produced by the
combination of light reflections from objects in a scene. You can specify an ambient light intensity
only if shading is on (i.e., if you have selected PIC_SHADE_FLAT, PIC_SHADE_GOURAUD or
PIC_SHADE PHONG mode). The default setting is black (0.0, 0.0, 0.0).

PIClight ambient(red,green,blue)
float red,green,blue;

3-100 PIClib User’s Guide, Version 1.2



Shading and Depth Cueing

red,green,blue =  value of ambient light intensity

PiClight_switch()

The PIClight switch(} function allows you to selectively turn on or off any or all of the light
sources you have defined for a scene. The following constants can be used to manipulate all light
sources simultaneously:

PIC_ TYPE_ALL select all light types
PIC LIGHT ALL select all light sources
PIC_BLACKOUT switch all light sources off

PIC_SUNGLASSES  switch all light sources on

PIClight switch(type index,state)
int type,index,state;

type = PIC_LIGHT DIRECT
PIC_LIGHT SPOT
PIC_LIGHT POINT

index = a user-defined number assigned to a light source and used to control
an array of light sources
state = PIC_ON or PIC_OFF

PICput_light source()

The PICput_light source() function lets you select a light source. You can choose one of three
types:

® Directional— a unidirectional light source used to simulate global lighting effects. The
intensity of the light reflected from the light source depends only on the orientation of the
surface relative to the light source. It is independent of the relative position of the surface
being illuminated. To calculate the diffuse light contribution (Cd) from directional light
source, the following equation is used:t

Overview of PIClib Functions 3-101



Shading and Depth Cueing

3-102

Cd=Kd*Lc*(VneVl)

To calculate the specular light contribution (Cs) from directional light source, the following
equation is used:t

Cs=Ks *Lc * (Ve o Vr)**Oe
where,

Kd is the coefficient of diffuse reflection (from PICput_surface_model())
Ks is the coefficient of specular reflection (from PICput_surface_model())
Vn is the normal vector at a point on the object surface

V1 is the vector from the light source (from PICput_light source())

Lc is the color of the light source (from PICput light source())

Ve is the vector from the object to the eye point

Vr is the reflection vector from the object

Oe is the object specular exponent (from PICput_surface_model())

Point— an omnidirectional light source that is used to simulate localized lighting effects.
The intensity of the light reflected from the light source depends on the orientation and rela-
tive position of the surface being illuminated. To calculate the diffuse light contribution (Cd)
from directional light source, the following equation is used:+

Cd=Kd*Lc*(Vn eVl

To calculate the specular light contribution (Cs) from directional light source, use the follow-
ing equation:

Cs = Ks * Lc * (Ve @ Vr)*Oe
where,

Kd is the coefficient of diffuse reflection (from PICput_surface_model())
Ks is the coefficient of specular reflection (from PICput_surface model())
Vn is the normal vector at a point on the object surface

V1 is the vector from the object to the light source

Lc is the color of the light source (from PICput_light source())

Ve is the vector from the object to the eye point

Vr is the reflection vector from the object

Oe is the object specular exponent (from PICput_surface_model())

Spot— a unidirectional light source that is used to simulate localized lighting effects, but
restricts the zone of illumination to a cone. As with the point light source, the calculation of
spot light depends on the orientation and relative position of the surface being illuminated.
The size of the cone, however, can vary as the light source concentration exponent is varied.
To calculate the diffuse contribution (C4d) of spot light source, use the following equation:

Cd=Kd*Lc*(VneVD*(Ld e VD)*Le

To calculate the specular contribution (Cs) of spot light source, the following equation is

PIClib User’s Guide, Version 1.2



Shading and Depth Cueing

used:T
Cs=Ks*Lc* (Ve o Vr)*™0Oe * (Ld » VI)**Le
where,

Kd is the coefficient of diffuse reflection (from PICput surface_model())
Ks is the coefficient of specular reflection (from PICput_surface_model())
Lc is the light source color (from PICput light source())

Vn is the normal vector at a point on the object surface

Ld is the direction of the light source

V1 is the vector from the object to the light source

Le is the light source concentration exponent (from PICput light source())
Ve is the vector from the object to the eye point

Vr is the reflection vector from the object

Oe is the object specular exponent (from PICput_surface_model())

1 Adapted from PHIGS+ Functional Description; Revision 2.0; July 20, 1987; Andries van Dam.

PICput light source(type indexlight)
int type,index;
PIClight_source *light;

type = PIC LIGHT DIRECT

= PIC_LIGHT SPOT
= PIC_LIGHT POINT

index =  a user-defined number assigned to a light source and used to control
an array of light sources
light = a data structure defining the light’s position, direction, color, concen-

tration exponent, and angle

Please keep the following points in mind:

B You need to define a light source after you define the projection for a scene.
Each time you change the projection, you need to redefine the light source.
Once a light source is turned on, it remains on until it is turned off.

You can define up to 50 light sources for each light type (i.e., directional, spot, or point).

There is no default setting for PICput light source(). Therefore, you need to specify a light
source.

Overview of PIClib Functions 3-103



Shading and Depth Cueing

PICput_surface _model()

The PICput_surface_model() function lets you define a data structure of surface characteristics.

PICput_surface_model(model)
PICsurface_model *model;

model = a data structure defining the object’s ambient color (for red, green,
and blue), diffuse color (for red, green, and blue), specular color (for
red, green, and blue), specular exponent, and transparency

PICdepth_cue()

The PICdepth_cue() function allows you to turn depth cueing mode on or off. Depth cueing
applies to points and vectors. When in depth cueing mode, points and vectors vary according to
colors defined at the depth cueing limits.

PICdepth_cue(mode)
int mode;

mode PIC_ON (turn depth cueing on)

PIC_OFF (turn depth cueing off)

[T

PICdepth _cue limits()

The PICdepth_cue_limits() function sets the z limits and color range of depth cueing.

PICdepth_cue limits( 207 080b0%171:87:57)

ﬂoat Zo,ro,gO,bO/zl /rl/gllbl;

3-104 PIClib User’s Guide, Version 1.2



Shading and Depth Cueing

z, = the z depth at which to begin depth cueing
lfo,go,b0 = the color at the beginning of the depth cueing limits
zy = the z depth at which to end depth cueing

rl,gl,b1 = the color at the end of the depth cueing limits

All points or lines that fall within the specified z depth range (ZO’Zl) will have their color calculated
by the following equation:

s Z"'ZO;(.'__"
P=io+ gy (i1 — 1o)

Where z, and z, are the z limits described above, iO and i1 represent the intensities at the z limits,
z is the depth of1 the current point, and i is the computed intensity.

These z limits and colors are active until another PICdepth_cue_limits() is defined. 2,z are not
necessarily the same as near and far clipping planes.

The colors are linearly interpolated based on the position of the objects relative to the z depth lim-
its.

PICput_texture()

PICput texture() defines an area of offscreen memory to be used as a single texture. There can be
sixty-four of these texture areas. type is the type of texture, resident or virtual. Currently, only
resident is supported. type=null represents resident texture. offset_x, offset_y is the starting location
of texture in off-screen video RAM. size x, size_y is the size of texture in pixels in off-screen
video RAM.

PICput_textureltype, offset_x, offset_y, size_x, size y)
unsigned long *type;
unsigned long offset x, offset v, size x, size y;

Overview of PICIib Functions 3-105



Shading and Depth Cueing

type

type of texture

offset x, offset y starting location of texture in offscreen VRAM

il

size x, size y

it

size of texture in pixels in offscreen VRAM

PICset_texture()

PICset_texture() sets the current area to be used for texture mapping as defined by
PICput_texture().

index is the value returned by PICput_texture(), and it is used to reference the texture area defined
by the associated PICput_texture() routine for all commands that follow and use texturing.

PIC_DEFAULT_TEXTURE can be used as index to reference the entire 256x256 texture area.

If the texture maps are less than 256 X 256, PIClib supports multiple texture maps.
They can be used simultaneously.

PICset_texture(index)
int index;

index = wvalue used to reference the texture area

3-106 PICIib User’s Guide, Version 1.2



Shading and Depth Cueing

PiCreset_texture()
PICreset_texture() sets the current area to be used for texture mapping.
The current_texture id and the next_texture id are set to PIC_DEFAULT TEXTURE.

The texture area is set to 256X256.

void PICreset texture()

PiCtexture precision()

PICtexture precision() sets the precision for the display of texture mapped polygouns. This is
used in perspective mode and determines the number of times that a polygon is split when displayed
to correct the perspective distortion of the texture. The mode argument is defined as follows:

PIC_LOW (default)
PIC_MEDIUM
PIC_HIGH

mode is the number of times that the polygon is split.

PICtexture_precision() takes any integer as mode; we have defined PIC_LOW, PIC_MEDIUM,
and PIC_HIGH, but you can specify whatever integer you want.

] The default setting corresponds to no splitting of polygons and causes the texture
"NoTE| mapped polygons to appear as they have in previous releases. It should be noted that
setting the mode to anything other than PIC_LOW will impact the speed of display of tex-
] ture mapped polygons.

This function does not support the PICpoly point macros.

int PICtexture_precision(mode)
int mode;

Overview of PIClib Functions 3-107



Shading and Depth Cueing

mode = PIC_LOW (defaul)
PIC_MEDIUM
PIC_HIGH

PICpercent_texture()

The PICpercent_texture() function indicates the contribution of the texture map’s intensity value
at each pixel with a floating point argument between 0.0 and 1.0. The compliment of this argument
is the contribution of the interpolated Gouraud shaded value at each pixel. An argument of 0.0 indi-
cates that the surface intensity is all Gouraud shaded. An argument of 1.0 means the surface inten-
sity is all texture map.

PICpercent_texture(texture contribution)
float texture contribution

texture_contribution =  contribution of the texture map’s intensity value at each pixel. This
value ranges from 0.0 to 1.0.

Phong Shading
PIClib allows you to select Phong shading as the shade mode.
The following variables are used to describe the lighting calculations presented below:

Ia(x) is the ambient light intensity for the scene (from PIClight ambient(}).

Kd(x)  is a component of the object’s diffuse reflection coefficient (from the d_* ele-
ments of PICsurface_model()).

Ka(x)  is a component of the object’s ambient coefficient (from the a_* elements of
PICsurface_model()).

Ks(x)  is a component of the object’s specular reflection coefficient (from the s_* ele-
ments of PICsurface_model()).

Vn is the normal vector at a point on the object surface.

Vi is the vector from the light source to the point on the object’s surface (derived
from the x,y,z or nx,ny,nz elements of PIClight_source()).

3-108 PICIlib Uset’s Guide, Version 1.2



Shading and Depth Cueing

Le(x)  is a component of the color of the light source (from the 7, g, b elements of
PIClight source()).

Ve is the vector from the object to the eye point.

R is the reflection vector from the object which is the mirror vector of VI about
Vn.

S is the object’s specular exponent (from the exp element of
PICsurface model()).

X is the red, green, and blue components of light.

Is number of lights; 5 point light sources and 5 directional lights,

The following formula is used to determine the shading of a pixel:

Color(x) = Ia(x) * Ka(x) +Kd (x) * z‘gl Lei(x) * (N o Li) + Ks(x) * igl Lei(x) * (EoR)S

The first term of the equation is the global ambient contribution to the pixel. This depends on the
global illumination and the ambient coefficient of the object’s surface model.

The second term is the diffuse elimination of all light sources and is controlled by the diffuse
coefficient of the object’s surface model (Kd) and the color and intensity of the light (Lc) and rela-
tive orientation of each light source compared to the normal of the object at that point (N . L).

The last term is the specular contribution of all light sources, and it is controlled by the specular
coefficient of the object’s surface model (Ks), the color and intensity of each light (Lci) and the dot
product of (E . R)**S, where E is the vector in the eye direction and R is the reflection vector from
the object which is the mirror of L about N. S is the specular coefficient in the object’s surface
model. The higher the value of S the sharper and smaller the area of the specular highlights.

Using Phong Shading

Because the pixel nodes contain a fixed amount of memory allocated for program storage, PIClib
uses a pixel node code overlay mode facility. This allows PICIib to download code into the pixel
nodes whenever it is needed. For the most part, it is transparent, that is the user does not have to
keep track of what is loaded into the nodes; downloading of code is an automatic process. How-
ever, Phong shading is a special case. In order to render polygons as quickly as possible, the Phong
shading code must be manually downloaded. This is done to avoid checking the overlay mode in
PICpoly point() commands, which can slow polygonal rendering considerably.

For Phong shading to work correctly, Phong overlay mode must be downloaded, while in
PIC_SHADE _PHONG mode, before any surface model, light source (direct or point), ambient light
or poly point command is called. This is done by calling

PICput overlay mode(PIC_PIXEL PHONG). Once PICput overlay_mode() is called, lights,
ambient light and surfaces can be defined and Phong shaded polygons can be rendered. The data
structures for lights and surfaces are static, so PICput_overlay_mode() need only be called when

Overview of PIClib Functions 3-109



Shading and Depth Cueing

surface or lights change and must be called before rendering polygons. It is important to remember
that other PIClib calls can download code over the Phong shading code. You should check to make
sure that Phong overlay mode is loaded. This can be done by using the PICget overlay mode()
function. For example to render a Phong shaded polygon:

PICeuclid_mode(PIC_EUCLID_POLYGON);
PICShadewmode(PIC_SHADE_PHONGQ;

mode = PICget_ overlay mode();

if (mode != PIC_PIXEL PHONG)
PICput_overlay mode (PIC_PIXEL PHONG) ;

set_surface();

set lights{():;

draw_object () ;

The functions that download code are:
1. Overlay mode 1: everything rendered in points or lines

2. Overlay mode 2: PICatom_surface(), PICatom_light(), PICatom(), PICpixel_add(
PICpixel multiply(), PICput_scan_line(), PICbroadcast_data()

’

3. Overlay mode 3: PICmake_sphere template(), PICmake_template(),
PICstamp_template()

4. Overlay mode 4: Phong shading

To optimize program performance, it is recommended that switching between overlay modes be
kept to a minimum. Phong shading always generates alpha mattes.

3-110 PICIib User’s Guide, Version 1.2



Color Functions

The Pixel Machine uses the rgb color system. ﬁll colors are specified as percentages of red, green,
and blue. You can choose from a palette of 2" colors.

PIClib offers the following color functions:
® PICcolor_rgb()
m PICcolor_alpha()

PiCcolor _rgb()

The PICcolor_rgb() function defines the current color. The current color is used to color all
objects subsequently specified by the user (i.e., points, lines, polygons, etc.).

PICcolor rgb(r,g,b)
float r,g,b;

rgb = the specified percentages of red, green, and blue (between 0.0 and 1.0)

All colors are specified as normalized floating point numbers. A default color map is loaded each
time hypinit is executed. The specified percentages of red, green and blue are multiplied by 255
and used as an index into a color lookup table. rgb color tables are used primarily for gamma
correction. The lookup table does not affect the frame buffer, only the contents displayed on the
video screen.

PICcolor_alpha()

The PICcolor_alpha() function defines the current alpha color. You can choose from 256 colors.

PICcolor_alpha(alpha)
int alpha;

Overview of PIClib Functions 3-111



Color Functions

alpha = the index that selects the current alpha color (between 0 and 255)

The current alpha color is used when writing into the alpha channel.

PICenable_alpha() must be set before you can write into the alpha channel.
NOTE

3-112 PICIib User’s Guide, Version 1.2



Display Functions

The Display functions perform operations on pixels, images, viewports, and data memory, such as,
read or write a scan line of rgb pixels and enable or disable the alpha planes, overlay modes, or
double buffer mode.

These functions are grouped into the following categories:

m Clear functions clear the current viewport to a specified color (1gb or alpha) and clear the z
depth settings:

o PICclear_alpha()
o PICclear_rgb()
o PICclear_z()
o PICclear_rgbz()
m Buffer functions return data on the buffer and buffer mode and provide double buffering
operations:
o PICget buffer()
o PICget buffer mode()
o PICdouble buffer(mode)
o PICswap_buffer()

m Overlay functions enable or disable writing to the alpha channel and select overlay mode:

PICalpha(mode)

0

o PICdisplay overlay(mode)

o PICoverlay mode(mode)

o PICput overlay mode(mode)
o PICget overlay_mode(mode)

® Scan Line functions read and write from video and floating point memory banks:
o PICput_scan_line(ix,iy,red,green,blue,alpha,npixl,mode)
o PICget scan line(ix,iy,red,green,blue,alphanpixl,mode)

o PICbroadcast_data(memory,ix,iy,data,nword,mode)

[w]

PICcomposite_mode(mode)

Overview of PIClib Functions 3-113



Display Functions

m Copy functions copy screen and/or z data between buffers:
o PICcopy_front_to_back()
o PICcopy_back_to_ext(buffer,ix,iy)

u]

PICcopy_ext_to_back(buffer,ix,iy)

a

PICcopy z_to_ext()

[m]

PICcopy_ext to z()

PiCclear alpha()

The PICclear_alpha() function clears the alpha planes of the current viewport to the current alpha
color.

PICclear_alpha()

PiCclear _rgb()

The PICclear_rgb() function clears the rgb planes of the current viewport to the current rgb color.

PICclear rgb()

PiCclear z()

The PICclear_z() function clears the z depth of the current viewport to the far value specified by
the PICput_depth() function.

PICclear z()

3-114 PIClib User’s Guide, Version 1.2



Display Functions

PiCclear_rghz()

The PICclear rgbz() function clears the rgb planes of the current viewport to the current rgb color
and clears the z depth to the far value specified by the PICput_depth() function.

PICclear rgbz()

PiCget buffer()

The PICget buffer() function returns an integer indicating the number of the current display
buffer. The number is either PIC_BUFFER_ZERO or PIC_BUFFER_ONE. When you initialize
PIClib, the front buffer is PIC_BUFFER_ZERO (this buffer is displayed on the screen) and the
back buffer is PIC_BUFFER_ONE.

PICget buffer()

PiCget_buffer mode()

The PICget buffer mode() function returns an integer indicating which buffer mode is being used
(single or double). PIC_SINGLE_BUFFER indicates single buffer mode;
PIC_DOUBLE_BUFFER indicates double buffer mode.

PICget buffer mode()

Overview of PICIlib Functions 3-115



Display Functions

PICdouble_buffer()

The PICdouble_buffer() function enables or disables the use of double buffering. When enabled,
objects are drawn into the back buffer, which is not displayed on the screen. (When in double
buffering mode, use the PICswap_buffer() function after completing a frame.) When disabled,
objects are drawn into the front buffer only, which is displayed on the screen.

PICdouble buffer(mode)
int mode;

mode = PIC_ON or PIC_OFF

PICswap buffer()

The PICswap_buffer() function swaps the back and front buffers. This function is called during
animation. Objects are drawn in the back buffer and displayed in the front buffer. (The back buffer
is not displayed.)

Be sure to first enable double buffering (PICdouble_buffer() before using
Note| PICswap buffer().

PICswap_ buffer()

PICdisplay overlay()

The PICdisplay_overlay() function enables or disables the display of overlays. If overlays are
disabled (mode = PIC_OFF) the rgb channels are always displayed. If overlays are enabled

(mode = PIC_ON) the 1gb or alpha channels are conditionally displayed according to the mode set
by PICoverlay mode().

PICdisplay overlay(mode)
int mode;

3-116 PIClib User’s Guide, Version 1.2



Display Functions

mode = PIC_ONor PIC_OFF

PICoverlay mode()

The PICoverlay mode() function selects the overlay mode to be used when overlays are enabled.
When overlays are disabled, the rgb signal is always displayed; when enabled, the alpha channel
and inverted rgb can be displayed, or you can toggle between the alpha and rgb channels. When
rendering into the alpha channel, it is suggested that you use mode PIC_OVERLAY_NON_ZERO
and avoid the alpha entry 255. When using the cursor, the PIC_OVERLAY_HIGH_BIT mode
should be used.

PICoverlay mode(mode)
int mode;

mode = PIC_OVERLAY_OFF Disable overlays; rgb signal always displayed

= PIC_OVERLAY NON _ZERO If the alpha channel is non-zero, display it; otherwise,
display the rgb signal; if the alpha channel is all 1’s (o =
255), display inverted rgb

= PIC_OVERLAY_HIGH_BIT Toggle mode; if the most significant bit of the alpha channel
is set (i.e., bit 7 = 1), display the contents of the alpha chan-

nel; if it is not set (i.e., bit 7 = 0), display the rgb signal

Be sure to enable writing into the alpha channel before using overlays. See PICalpha().
noTE | Be sure to enable the display of overlays. See PICdisplay_overlay().

Overview of PICIib Functions 3-117



Display Functions

PICput_overlay mode()

PICput overlay_mode() takes an overlay mode and downloads the code associated with the over-
lay. At present, only a mode equal to PIC_PIXEL_PHONG will download any code. The overlay
must be loaded before any PICIlib function can be called.

void PICput_overlay mode(mode)
int mode

mode = PIC PIXEL_PHONG

PICget overlay mode()

PICget overlay mode() returns the overlay mode that is currently loaded into the pixel nodes.

int PICput_overlay mode()

PiCalpha)

The PICalpha() function enables or disables rendering into the alpha channel. When disabled,
rendering is done in the rgb channels. You should refer to PICdisplay_overlay() and
PICoverlay_mode() to display contents of the alpha channel. Objects are rendered using the
current alpha color set by PICcolor_alpha(). To load a 24 bit color into the alpha channel lookup
table, use PICput alpha map_entry(). Lines are not rendered into the overlay modes, however,
cursors, raster text, flat and filled polygons are.

PICalpha(mode)
int mode;

3-118 PIClib User’s Guide, Version 1.2



Display Functions

mode = PIC_ONor PIC_OFF

Example:

The following program illustrates alpha channel rendering.

Overview of PIClib Functions 3-119



Display Functions

/

typedef - struet {7 L B
. _'-fi’oat " :’red; s
o fleat: . green;
S fioat - oblués
Y alphazrgby :

statie alpha; rgb." pink o of

main{)
{ R
PICinit

e
v

, PICCQlOiL alpha0); ¢ f
/% curiex:it' ~3;1‘pﬁa: col:kx;' - ::’e'n =
PICclearT_a’lpha O »
P clea’jr"’é‘lbﬁa‘ “;‘:han'r'xe'l: £
P»icalpha.-(EIC;ON?; =
/* enable alpﬁa re‘ﬁ:éeringf
7% select voxtrérlay-’m'cbxc‘ie‘b e

P'ICoverlay__méde ¢ PIC OVER

A dl‘splayi overiays’

P:iCdispiayz_ c‘vefla§ (EI‘C;OM
/% disable updating’ s

/* - setalpha ’entrvy’#?
7% enable updating: From:
PICupdate map (PIC OFFY;
PICput alpha map entry

PICupdate map (PICONyz "~
PICeolor alphais)s

/* current alphaico

(continued on next page )

3-120 PICIlib User’s Guide, Version 1.2






Display Functions

Composite Mode Fy Fp
PIC_NO_COMPOSITE | 1 0
PIC_A_OVER B 1 1-oy
PIC_B OVER A l-og |1
PIC_ A INB op 0
PIC B IN A 0 oy
PIC_A OUT B l-o5 |0
PIC_ B OUT A 0 1-oy
PIC_A ATOP B op L-oy
PIC_B_ATOP_ A L-op | oy
PIC_A XOR B l-og | 1-ay
PIC_PLUS 1 1

The compositing operation requires two source images. One is the image in the current buffer (the
back buffer in double buffer mode and the front buffer in single buffer mode). The other image is
sent to the Pixel Machine via the Pipeline using the PICput_scan_line() function. The two images
are composited using the current compositing mode, and the result is stored in the current buffer,
overwriting the original image.

PICcomposite_mode(mode)
int mode;

3-122 PIClib User’s Guide, Version 1.2






Display Functions

ix iy = the coordinates of the scan line. The left-most pixel of the scan line
is positioned at Pixel Coordinates (ix,iy). (See Figure 3-5.)

red,green,blue,alpha =  arrays that determine the color of each pixel

npix} = the number of pixels in the scan line. PICput scan_line() can write

an individual pixel by setting npix! to one.

mode PIC_RGB_PIXELS

= PIC_RGB_PACKED PIXELS

= PIC_RGBA PIXELS

= PIC_RGBA_PACKED PIXELS

= PIC_ABGR_PACKED PIXELS

= PIC_RGB_ENCODED PIXELS

= PIC_EXTENDED VRAM

3-124

Each pixel is 24 bits of rgb; 8 bits from each red,
green, blue array.

Each pixel is 24 bits of rgb from a packed array
pointed to by red. The pixel components are stored
in rgb order, and the pixels are stored in rgb order.
The first byte in red contains the red component of
the first pixel. Alpha remains unchanged.

Each pixel is 32 bits of rgbo; 8 bits from each red,
green, blue, alpha array.

Each pixel is 32 bits of rgbo from a packed array
pointed to by red. The pixel components are stored
in rgba order. The first byte in red contains the red
component of the first pixel.

Each pixel is 32-bits of rgbo from a packed array
pointed to by red. The pixel components are stored
in abgr order. The first byte in red contains the
alpha component of the first pixel.

Each pixel is 24 bits of rgb; 8 bits from each red,
green blue array. The alpha array contains count
numbers that determine how many pixels of the
same color are to be wriiten. A count number can
range from 0, which means that the run is 1 pixel
long, to 255, which means that the run is 256 pixels
long. In this mode, npixl refers to the number of
runs in the scan line,

If PIC_EXTENDED VRAM is added to mode, the
scan line is written into the extended video memory.

PIClib User’s Guide, Version 1.2



PiCget scan _line()

Display Functions

The PICget _scan_line() function lets you read a scan line of rgb or rgbo pixels from the screen by
specifying the location of the first (left-most) pixel of the scan line, (ix,iy); the number of pixels in
the scan line, npixl; and the format used to read the pixels, mode.

] any scan lines are read.

If the system is in double-buffer mode, the scan line will be read from the write buffer
NOTE | and not the display buffer. It is recommended to call PICwait_psync() before the first
call to PICget scan_line(). This ensures that the entire frame has been drawn before

PICget scan line(ix,iyred,green,blue,alphanpixl,mode)

int ix,iy;

PICpixel *red, *green, *blue, *alpha;

int npixl;

int mode;

ix iy = the coordinates of the scan line. The left-most pixel of the scan line
is positioned at Pixel Coordinates (ix,iy). (See Figure 3-5).

red,green,blue,alpha =  arrays to store the scan line

npixl = the number of pixels in the scan line. PICget_scan_line() can read
an individual pixel by setting npixl to one.

mode = PIC RGB PIXELS Each pixel is 24 bits of rgb (8 bits stored to each

= PIC_RGB_PACKED PIXELS

= PIC_RGBA _PIXELS

= PIC_RGBA_PACKED_PIXELS

= PIC_ABGR_PACKED PIXELS

Overview of PIClib Functions

red, green, blue array).

Each pixel is 24 bits of rgb written to an array
pointed to by red. The pixel components are stored
in rgb order. The first byte in red contains the red
component of the first pixel.

Each pixel is 32 bits rgba (8 bits stored to each red,
green, blue, alpha array)

Each pixel is 32 bits of rgba stored to a packed
array pointed to by red. The pixel components are
stored in rgbo. order. The first byte in 7ed contains
the red component of the first pixel.

Each pixel is 32 bits of rgba written to an array
pointed to by red. The pixel components are stored
in abrg. order. The first byte in red contains the
alpha component of the first pixel.

3-125



Display Functions

PIC_RGB_ENCODED_PIXELS  Each pixel is 24 bits of rgb; 8 bits from each red,

B - green blue array. The alpha array contains count
numbers that determine how many pixels of the
same color were read. A count number can range
from 0, which means that the run is 1 pixel long, to
255, which means that the run is 256 pixels long. In
this mode, npixl refers to the number of runs in the
scan line,

PIC_EXTENDED VRAM If PIC_EXTENDED_ VRAM is added to mode, the
scan line is read from the extended video memory.

PICput_image header()

PICput image_header() writes the PICimage_header and the optional user header (if one exists)
to the specified file.

file is a file descriptor obtained from a previous call to fopen(3). The file must have been success-
fully opened for writing and the file pointer should be pointing to the beginning of the file (i.e., no
previous writes have been issued). Upon return from PICput_image_header(), the file pointer
will be set to where the pixel data should start (i.e., past the image and optional headers).

PICput image header() will convert the PICimage_header structure pointed to by image_header
into a string of decimal ASCII characters and write it to the file pointed to by file. If the magic
structure member is 0, it will be set to PIC_IMAGE_MAGIC before being written. If magic is
non-zero, it will be written as is.

If optional_header is non-zero, the characters pointed to it will be written to file immediately after
the image header. image_header->optional_header size bytes will be written.

PICput_image_header() returns 0 upon success and -1 on failure. PICput image header() will
fail for the following reasons:

® the magic number is not PIC_IMAGE_MAGIC, or

B an error was returned by the fwrite(3) system call while writing either the image header or
the optional header.

3-126 PIClib User’s Guide, Version 1.2



Display Functions

No value in the PICimage_header should be greater than 1.2,000,000.

All Pixel Machine libraries share the same image header format.

#include <stdio.h>
#include <picimage.h>

int PICput_image_header(file, image_header, optional_header)

FILE *file;

PICimage header *image_ header;

unsigned char *optional_header;

file = file to which the header is written

image header

pointer to the PICimage_header structure

optional _header pointer to characters to be written following the header

PiCget image header()

PICget_image header() reads the PiCimage_header and the optional header (if one exists) from -
the specified file and returns them to the caller.

file is a file descriptor obtained from a previous call to fopen(3). The file must have been success-
fully opened for reading and the file pointer should be pointing to the beginning of the file (i.e., no
previous reads have been issued). Upon return from PICget image header(), the file pointer will
be set to the beginning of the pixel data (i.e., past the image and optional headers).

PICget image header() reads in the first PIC_IMAGE_HEADER_SIZE bytes from the file, con-
verts them from ASCII into unsigned longs and place them into the correct locations in the structure
pointed to by image header. Except for the magic and optional_header_size fields, none of the
information in the header is checked for validity.

If an optional header is present (image header->optional header_size is not 0), memory will be allo-
cated (via malloc(3)) and image_header->optional_header_size bytes will be read. A pointer to the

Overview of PIClib Functions 3-127



Display Functions

allocated memory will be returned in *optional_header. If no optional header is present,
*optional_header will be set to NULL.

PICget_image_header() returns 0 upon success and -1 on failure. PICget image header() will
fail for one of the following reasons:

m the magic number is not PIC_IMAGE_MAGIC, or

® an error was returned by the fread(3) system call while reading either the image header or the
optional header.

All Pixel Machine libraries share the same image header format.
NOTE

#include <stdio.h>
#include <picimage.h>

int PICget_image_header(file, image header, optional header)

FILE *file;

PICimage_header *image header;

unsigned char **optional header;

file = file from which the header is read

image header = location into which the header is read

i

optional header additional bytes to be read

3-128 PIClib User’s Gulide, Version 1.2



Display Functions

PiCbroadcast_data()

The PICbroadcast_data() function broadcasts a line of data to extended video memory (memory =
PIC_BROADCAST_VRAM) or to z memory (memory = PIC_BROADCAST_ZRAM). The data
consists of 32-bit words stored in an array data.

If the data is broadcast to the extended video memory, each 32-bit word should be organized as four
8-bit pixel components. These components can be stored in rgba order or in abgr order depending
on the parameter mode. A common use of PICbroadcast_data() is to broadcast textures to VRAM
so that all nodes receive the same data.

If the data is broadcast to the z memory, each 32-bit word can contain any data (floating point, long
integer, 2 short integers or 4 bytes). The number of 32-bit words of data to be broadcast is set by
nword. The starting x and y memory addresses are ix,iy.

PICbroadcast data(memory,ix,iy,data,nword)
int memory, ix, iy;

int *data;
int nword;
int mode;
memory = PIC_ BROADCAST VRAM or
= PIC_BROADCAST ZRAM
ix, iy = the starting x and y memory addresses
data =  an array of 32-bit words
nword = the number of 32-bit words to be broadcast
mode = PIC_RGBA_PACKED PIXELS Each pixel is 32 bits of rgba from a packed array

pointed to by data. The pixel components are
stored in rgbo order. The first byte in data contains
the red component of the first pixel.

= PIC_ABGR_PACKED PIXELS Each pixel is 32-bits of rgbo from a packed array
pointed to by data. The pixel components are
stored in abgr order. The first byte in dafa contains
the alpha component of the first pixel.

Overview of PICIib Functions 3-129



Display Functions

PiCcopy front to back()

The PICcopy_front_to_back() function copies the contents of the current viewport from the front
buffer to the back buffer.

PICcopy_front_to back()

PICcopy back to front()

PICcopy_back_to_front() copies the contents of the back buffer to the front buffer. This function
only copies the contents of the current viewport.

void PICcopy back to_front()

PICcopy back to ext()

The PICcopy_back_to_ext() function copies the contents of the current viewport from the back
buffer to the extended screen buffer.

The coordinates ix, iy are used with the PIC_SCREEN_BUFFER constant to specify where in the
off-screen image buffer to copy the contents of the current viewport. The size of the off-screen
buffer varies, depending on the model, as follows:

3-130 PIClib User’s Guide, Version 1.2



Display Functions

Model [Off-screen Buffer Size
964x 2048x2048
964 2048x2048
964n 2048x2048
940 1280x2048
940n 2560x1024
932 1024x2048
932n 2048x1024
920 -
920n 1280x1024
916 -
916n 1024x1024

Because each Pixel Node processor only has access to every other Nx x Ny pixels on the screen, the
ix,iy values have to be chosen carefully when copying to/from PIC_SCREEN BUFFER. For
example, if the current viewport starts at a multiple of Nx x Ny pixels on the screen, then the ix, iy
offset values would also have to be a multiple of Nx and Ny. The table below lists the Nx and Ny
values for the various Pixel Machine models.

Model | Nx | Ny
964 8 8
940 10 | 8
932 8 8
920 10 | 8
916 8 8

There are two available extended buffers: PIC_TOP_BUFFER and PIC_BOTTOM BUFFER.
These are used for copying rgb planes to off-screen memory for 3D compositing and other purposes.
When buffer is set to PIC_SCREEN_BUFFER, the extended memory is treated as a single large
buffer and you need to specify the location indicating where to place the contents of the current
viewport. Use PIC_SCREEN_BUFFER when you want to create flipbooks or scroll through a
large image.

PICcopy back_to_ext(buffer,ix,iy)
int buffer;
int ix, iy;

Overview of PICIib Functions 3-131



Display Functions

buffer = PIC_TOP_BUFFER, PIC_BOTTOM BUFFER, or
PIC_SCREEN _BUFFER
ix, iy = coordinates in an off-screen image buffer

PICcopy ext to back()

The PICcopy_ext_to_back() function copies a region from the extended-screen buffer to the
current viewport.

PICcopy_ext_to_back(buffer,ix,iy)
int buffer;
int ix, iy;

buffer

PIC_TOP_BUFFER, PIC_BOTTOM _BUFFER, or
PIC_SCREEN BUFFER

ix, iy = coordinates in an off-screen image buffer. These coordinates are used
with the PIC_SCREEN_BUFFER constant to specify what part of
the off-screen image buffer to copy into the current viewport. The
size of the off-screen buffer varies, depending on the model. See the
description of PICcopy back to_ext() above for the buffer sizes.

Since each Pixel Node processor only has access to every other Nx x Ny pixels on the screen, the
ix,fy values have to be chosen carefully when copying to/from PIC_SCREEN BUFFER. For
example, if the current viewport starts at a multiple of Nx x Ny pixels on the screen, then the ix,iy
offset values would also have to be a multiple of Nx and Ny. The table in Figure 3-11 lists the Nx
and Ny values for the various Pixel Machine models.

There are two available extended buffers: PIC_TOP_BUFFER and PIC_BOTTOM BUFFER.
These are used for copying rgb planes to off-screen memory for 3D compositing and other purposes.
When buffer is set to PIC_SCREEN_BUFFER, the extended memory is treated as a single large
buffer and you need to specify the location indicating what part of the off-screen image buffer to

copy into the current viewport. Use PIC_SCREEN_BUFFER when you want to create flipbooks or
scrolling through a large image.

3-132 PIClib User’s Guide, Version 1.2



Display Functions

PICcopy z to_ext()

The PICcopy z_to_ext() function copies the contents of the z buffer to the extended-screen z
buffer. The region copied is defined by the current viewport.

PICcopy z_to_ext()

PICcopy ext to z()

The PICcopy ext to_z() function copies the contents of the extended-screen z buffer to the screen
z buffer. The region copied is defined by the current viewport.

PICcopy _ext to_z()

Overview of PIClib Functions 3-133



Hidden Surface Removal

The Hidden Surface Removal functions allow you to create realistic images by removing those
surfaces that are hidden from view. These functions are:

@ PICzbuffer(mode)
m PICbackface(mode)
m PICzbuffer lines(mode)

PICzbuffer()

The PICzbuffer() function enables/disables hidden surface removal. The function removes hidden
surfaces by comparing the z depth value of each pixel in a polygon to the contents of the z buffer
for that pixel, and writes only those pixels that have a value less than that of the z buffer. The z
buffer is initialized by the PICclear z() function.

The table below describes the available z buffer modes:

Mode Description
PIC_OFF neither tests against nor writes the z buffer
PIC_ON tests against and writes the z buffer

PIC_READ_ONLY | tests against but does not write the z buffer

PIC_WRITE_ONLY | writes the z buffer unconditionally

PICzbuffer(mode)
int mode;

mode = PIC_ON or PIC_OFF

3134 PICIib User’s Guide, Version 1.2



Hidden Surface Removal

PICbackface()

The PICbackface() function removes surfaces that face away from a specified viewing position. In
order for backface removal to operate properly, the object must be closed and the polygons must be
planar.

This function uses the eye position and the normal vector to the polygon to compute visibility. If
no normal is given (with PICpoly normal()), one is constructed from the first 3 vertices of the
polygon. For this reason if it important to specify your vertices in a consistent order. The default
order for specifying the vertices of a polygon is counterclockwise, viewing the polygon from the
outside. For more information, refer to the description of the PICclockwise(} function.

in order for backface removal to operate properly, make sure the polygons are planar.
Also note that PICflip() must be disabled before PICbackface() is enabled.

PICbackface(mode)
int mode;
mode = PIC_ONor PIC_OFF

PICzbuffer lines()

The PICzbuffer lines() functions controls whether lines are zbuffered or not. Zbuffered lines are
aliased and can be rendered as depth-cued or current color lines. PICinit() initializes zbuffered
lines to PIC_OFF.

Because non-zbuffered lines are more efficient than zbuffered lines, it is recommended
that you use PICzbuffer lines(PIC_OFF) when zbuffering is not required.

PICzbuffer lines(mode)
int mode;

Overview of PIClib Functions 3-135



Hidden Surface Removal

mode = PIC_ON or PIC_OFF

3-136 PiClib User’s Guide, Version 1.2



Antialiasing

The Antialiasing functions allow you to eliminate jagged lines or edges in the objects of your
scene. This section discusses the following functions:

m PICantialias_lines(mode)

m PICinit_sampling(xsamples,ysamples,xscale yscale,filter)
m PICenter sampling pass()

m PICexit_sampling pass()

Antialiasing by supersampling (PICinit_sampling(), PICenter_sampling() and
noteE| PICexit sampling()) uses the external z memory, and therefore can be used only on
models 932 and higher in high resolution mode and on all models in NTSC mode.

PICantialias_lines()

The PICantialias_lines() function determines whether lines are to be antialiased. To antialias an
object, use the PICinit sampling(), PICenter sampling pass() and PICexit_sampling_pass(}
functions described below.

PICantialias_lines(mode)
int mode;

mode = PIC_ONor PIC_OFF

PICinit_sampling()

PICinit_sampling() initializes super-sampling mode for use in antialiasing objects. Based on the
arguments passed to it, PICinit sampling() returns the number of sampling passes required on the
scene. The arguments xsamples and ysamples are the number of samples in x and y, respectively,
to take per pixel. The samples can be taken over a section of pixels, depending on xscale and
yscale. For one pixel coverage, xscale and yscale should each be 1.0. Different filters can be
defined for use in filtering the samples. The filter parameter should be an array of size (xsamples *
ysamples).

The return value npass should be used to control the loop over the scene description with calls to
PICenter_sampling pass() and PICexit sampling pass() at the beginning and end of each

Overview of PICIib Functions 3-137



Antialiasing

iteration.

If amode = PIC_OFF, alpha matte generation is ignored. If amode = PIC_ON, an alpha matte is
generated for the image. To generate an alpha matte correctly, the image must be Phong shaded.

If the function is called on a model 916 or a model 920 in high resolution mode, the return value
will be zero.

Because this function uses external z-memoty, it can only be used with Pixel Machine
models 932 and higher in high resolution mode, and on all models in NTSC mode.

xsamples,ysamples = the number of sampling points in the x and y directions

xscale,yscale = pixel scale factor.

filter = amatrix of size (xsamples x ysamples) which stores the coefficients
to be applied to the samples

amode =  PIC_ON - an alpha matte is generated for the image

PIC_OFF - alpha matte generation is ignored

PiCenter_sampling pass()

The PICenter_sampling pass() function marks the beginning of a sampling pass. This command
alters the projection matrix.

Remember to initialize the frame buffer and the z buffer before rendering the scene.
(This can be done with any of the clear or copy functions).

PICenter_sampling pass()

3-138 PIClib User’s Guide, Version 1.2



PICexit sampling_pass()

Antialiasing

The PICexit_sampling_pass() marks the end of a sampling pass. This command restores the pro-

jection matrix.

PICexit sampling pass()

Example:

.
e
U {XSAMPLES * YSAMPLES)

AL

Overview of PIClib Functions

3-139



Video Functions

The Video functions allow you to manipulate the color lookup tables and query their current status.
This section discusses the following functions:

® PICupdate_map(mode)

8 PICput_color_map(red,green,blue)

m PICput_color_map_entry(index,red,green,blue)

u PICput_alpha_map(red,green,blue)

B PICput_alpha map_entry(index,red,green,blue)
8 PICget color_map(red,green,blue)

@ PICget color_map_entry(index,red,green,blue)

® PICget_alpha map(red,green,blue)

m PICget alpha_map_entry(index,red,green,blue)

PiCupdate map()

The PICupdate_map() function displays immediately any changes made to the video. The function
is enabled by specifying the PIC_ON mode. When PIC_OFF, changes to the video are not visible
until the function is re-enabled.

Whenever altering any of the color tables, it is suggested that you first call

PICupdate_map(PIC_OFF), and then call PICupdate_map(PIC_ON) after all your changes are
complete.

PICupdate map(mode)
int mode;

mode = PIC_ON or PIC_OFF

3-140 PICIib User’s Guide, Version 1.2



Video Functions

PICput_color_map()

The PICput_color_map() function loads an entire lookup table for each rgb channel. The values
contained in these tables are in normalized form (between 0.0 and 1.0).

PICput color_map(red,green,blue)
float *red,*green,*blue;

PiCput_color_map_entry()

The PICput_color_map_entry() function loads a specified entry into the rgb color map. Index
can range from 0 to PIC_VIDEO_TABLE - 1.

PICput color map_entry(index,red,green,blue)
int index;
float red,green, blue;

index = indicates which entry is being updated

PICput_alpha map()

The PICput_alpha map() function loads an entire lookup table for the alpha channel.

PICput alpha map(red,green,blue)
float *red,*green,*blue;

Overview of PIClib Functions 3-141



Video Functions

PICput_alpha_map entry()

The PICput_alpha_map_entry() function loads a specified entry in the color map for the alpha
channel. index can range from 0 to PIC_VIDEO TABLE - 1.

PICput alpha map_entry(index,red,green,blue)
int index;
float red, green, blue;

index = indicates which entry is being updated

PICget_color_map()

The PICget_color_map() function returns arrays of r, g, and b values from the current rgb lookup
map. These arrays (red, green, and blue) are of length PIC_VIDEO TABLE.

PICget_color_map(red,green,blue)
float *red,*green,*blue;

PICget_color_map_entry()

The PICget_color_map_entry() function returns a specified 1gb entry from the current rgb lookup
table. index can range from 0 to PIC_VIDEQ TABLE - 1.

PICget color_map_entry(index,red,green,blue)
int index;
float *red,*green,*blue;

3-142 PIClib User’s Guide, Version 1.2



Video Functions

PICget_alpha_map()

The PICget alpha map() function returns arrays for the current r, g, and b values in the alpha
map. Each red, green, and blue array is of length PIC_VIDEO TABLE.

PICget alpha map(red, green, blue)
float *red,*green,*blue;

PICget alpha map entry()

The PICget alpha_map_entry() function returns a specified rgb alpha map entry. index can range
from 0 to PIC_VIDEO_TABLE - 1.

PICget alpha map entry(index,red,green,blue)
int index;
float *red,*green,*blue;

Overview of PIClib Functions 3-143



Raster Operations

The Raster Operations functions manipulate the intensities of pixels by adding, subtracting, or
multiplying them by a constant value. This section discusses the following functions:

m PICpixel_add(red,green,blue,alpha)
m PICpixels_multiply(red,green,blue,alpha)

PICpixel add()

The PICpixel add() function adds a constant value to the intensities of all pixels in the current
viewport.

PICpixel_add(red,green,blue,alpha)
float red,green,blue,alpha;

red,green,blue,alpha =  the rgb and alpha values to be added to the pixel values

PICpixel_multiply()

The PICpixel multiply() function multiplies the intensities of pixels in the current viewport by a
constant value.

PICpixel_multiply(red,green,blue,alpha)
float red,green,blue,alpha;

red,green,bluealpha =  the rgb and alpha values to be multiplied by the pixel values

3-144 PIClib User’s Guide, Version 1.2



Input Device Functions

The Input Device functions let you control the operation of a mouse; query the state of a button, a
valuator, or the current value of a 2D locator; query the event queue and sample keyboard buttons;
and define a cursor and move it with or without the mouse. The functions discussed in this section
are:

m PICattach_mouse() m PICqueue_events(mode)

m PICdetach_mouse() m PICget_event(event,value)

m PICget_button(button) m PICdisplay cursor(mode)

m PICget valuator(valuator) m PICdefine cursor{cursor)

m PICget_locator(x,y) m PICposition_cursor(ix,iy)

m PICquery_queue(event,value) & PICwait_event(event,value)

@ PICflush_queue() @ PICget host screen size(widthheight)

@ PICput_mouse_playground(left,right,top,bottom)

PiICattach_mouse()

The PICattach_mouse(} function initializes the mouse and must be called before any other Input
Device function.

PICattach mouse()

PiCdetach_mouse()

The PICdetach_mouse() function terminates the operation of the mouse and must be the last Input
Device function called.

PICdetach_mouse()

Overview of PIClib Functions 3-145



Input Device Functions

PICget_button()

The PICget button() function returns the state of a mouse button indicated by the argument but-
ton. If the button is currently pressed, the function returns a value of PIC_TRUE; if not, returns a
value of PIC_FALSE.

PICget button(button)
int button;

button = PIC_LEFTMOUSE
PIC_RIGHTMOUSE
PIC_MIDDLEMOUSE

It

PICget valuator()

The PICget_valuator() function returns the current value of a valuator.

PICget valuator(valuator)
int valuator;

valuator = PIC_XMOUSE,PIC_YMOUSE

PICget locator()

The PICget locator() function returns the current value of a locator’s x and y position. The return
values are stored in the locations pointed to by x and y respectively.

PICget_locator(x,y)
int *x, *y;

3-146 PIClib User’s Guide, Version 1.2



Input Device Functions

The Input Device functions let you control the operation of a mouse; query the state of a button, a
valuator, or the current value of a 2D locator; query the event queue and sample keyboard buttons;
and define a cursor and move it with or without the mouse. The functions discussed in this section
are:

m PICattach _mouse() & PICqueue_events(mode)

m PICdetach_mouse() u PICget_event(event,value)

® PICget button(button) m PICdisplay cursor(mode)

m PICget_valuator(valuator) # PICdefine_cursor{cursor)

B PICget_locator(x,y) ® PICposition_cursor(ix,iy)

e PICquery_queue(event,value) B PICwait_event(event,value)

8 PICflush_queue() E PICget_host screen_size(width,height)

# PICput_mouse_playground(left,right,top,bottom)

PiCattach_mouse()

The PICattach_mouse() function initializes the mouse and must be called before any other Input
Device function.

PICattach_mouse()

PiCdetach_mouse()

The PICdetach_mouse() function terminates the operation of the mouse and must be the last Input
Device function called.

PICdetach_mouse()

Overview of PIClib Functions 3-145



Input Device Functions

PICget button()

The PICget button() function returns the state of a mouse button indicated by the argument but-
ton. If the button is currently pressed, the function returns a value of PIC_TRUE; if not, returns a
value of PIC_FALSE.

PICget button(button)
int button;

button PIC_LEFTMOUSE
PIC_RIGHTMOUSE

PIC_MIDDLEMOUSE

PiCget valuator()

The PICget_valuator() function returns the current value of a valuator.

PICget valuator(valuator)
int valuator;

valuator = PIC_XMOUSE,PIC_YMOUSE

PiCget _locator()

The PICget locator() function returns the current value of a locator’s x and ¥ position. The return
values are stored in the locations pointed to by x and Yy respectively.

PICget locator(x,y)
int *x, *y;

3-146 PIClib User’s Guide, Version 1.2



Input Device Functions

X,y = the x and y coordinates of the location.

PiCqueue events()

The PICqueue_events() function enables and/or disables the event queuing process.

PICqueue_events(mode)
int mode;

mode = PIC _ON or PIC_OFF.

PiCget event()

The PICget_event() function returns an event and its value. The retum values are stored in the
locations pointed to by x and y respectively. The PICqueue_events() function must be called to
enable the queuing process before this function can be invoked. The possible events that can occur
and their possible values are as follows:

Event Value

PIC_LEFTMOUSE PIC_UP PIC_DOWN
PIC_RIGHTMOUSE | PIC_UP PIC_DOWN
PIC_MIDDLEMOUSE | PIC_UP PIC_DOWN

PIC_XMOUSE X screen coordinate
PIC_YMOUSE y screen coordinate
PIC_KEYBOARD keyboard event code

PICget event(event,value)
short *event, *value;

Overview of PIClib Functions 3-147



Input Device Functions

PiCdisplay cursor()

The PICdisplay_cursor() function displays a cursor on the screen at a specified location.

PICdisplay_cursor(mode)
int mode;

mode = PIC_ON or PIC_OFF.

PiCdefine_cursor()

The PICput_cursor() function defines a cursor to be displayed on the screen. The cursor is
attached to the mouse input device and can be moved by moving the mouse.

The cursor is defined according to the PICcursor data structure. See Appendix B for a definition of
the PICcursor structure. Once a cursor is defined, it can be displayed on the screen with the
PICdisplay cursor() function.

PICdefine_cursor(cursor)
PICcursor *cursor;

cursor = 32x4 byte array with a center point at initx,inity.

PICposition_cursor()

The PICposition_cursor() function positions the cursor on the screen.

PICposition_cursor(ix,iy)
int ix, iy;

3-148 PIClib User’s Guide, Version 1.2



Input Device Functions

ix, iy = the x and y screen coordinates of the position

PICquery queue()

The PICquery_queue() function returns the state of the queue without altering the queue. The
next event and value are returned in the location pointed to by event and value. A return event of
indicates that the queue is empty.

Event queuing must be enabled before invoking PICquery queue(). To enable event queuing use
the PICqueue_events() function.

PICquery_queue(event,value)
long *event, *value;

event = the event that occurred

value = the value associated with the event

PICwait_event()

The PICwait_event() function waits for a particular event to occur. The value of the event param-
eter indicates which event to wait for. A value of PIC_ANY_ EVENT causes the function to return
after any event occurs. The event and value of the event that occurred are stored in the location
pointed to by event and wvalue respectively.

Event queuing must be enabled before invoking PICwait_event(). To enable event queuing use
the PICqueue_events() function,

PICwait_event(event,value)
long *event, *value;

Overview of PICIlib Functions 3-149



Input Device Functions

event = PIC_LEFTMOUSE
PIC_RIGHTMOUSE
PIC_MIDDLEMOUSE
PIC_XMOUSE
PIC_YMOUSE
PIC_KEYBOARD
PIC_ANY_EVENT

i

il

honou

value the value of the event

PiCflush_queue()

The PICflush_queue() function clears the event queue. Event queuing must be enabled before
invoking PICflush_queue(). To enable event queuing use the PICqueue_events() function.

PICflush_queue()

PICget_host screen size()

The PICget_host _screen_size() function returns the x and y dimensions of the host screen. The
width and height of the screen are stored in the locations pointed to by width and height respec-
tively.

PICget_host screen_size(width height)
long *width, *height;

width = the x screen dimension in pixels

height = the y screen dimension in pixels

3-150 PiClib User’s Guide, Version 1.2



Input Device Functions

PICput mouse playgroundy)

The PICput mouse_playground() function initializes the mouse playground window. If this
function is not called before the PICattach _mouse() function, the coordinates of the mouse play-
ground will default to a pre-determined size and location.

PICput_mouse_playground(left,righttop,bottom)
int left, right, top, bottom;

left = the left x position of the playground in pixels
right = the right x position of the playground in pixels
top =  the top y position of the playground in pixels
bottom = the bottom y position of the playground in pixels

Overview of PIClib Functions 3-151



Picking and Selecting

The Picking and Selecting functions enter and exit picking and selecting mode and manipulate

the picking and selecting identifier stack. The identifier stack is used in picking and selecting opera-
tions.

The functions described in this section are:

m PICattach_picking(nbuff nstack) m PICinit_identifier stack()

m PICdetach_picking() m PICpop_identifier()

® PICenter_picking mode(x,y) ® PICpush_identifier(id)

m PICenter selecting mode() ® PICput_identifier(id)

® PICexit_picking mode() @ PICput_picking region(dx,dy)

# PICexit_selecting mode()

PilCattach_picking()

The PICattach picking() function starts the picking and selecting process, allocates space for the
picking buffer and identifier stack, initializes a data structure of type PICbuffer and returns a
pointer to that structure. This function must be called before any other Picking or Selecting function.
The size of the picking/selecting buffer is specified by nbuffer; the size of the identifier stack is
specified by nstack. For a definition of the PICbuffer structure, see Appendix B.

PICattach_picking(nbuffernstack)
int nbuffer,nstack;

nbuffer = the size of the buffer
nstack = the size of the stack
3-152

PICIib User’s Guide, Version 1.2



Picking and Selecting

PICdetach_picking()

The PICdetach_picking() function terminates the picking and selecting process started by the
PICattach_picking() function. PICdetach_picking() also frees the PICbuffer structure allocated
by the PICattach_picking() function, the picking/selecting buffer, and the identifier stack. This
function must be the last Picking or Selecting function called.

PICdetach picking()

PlCenter picking mode()

The PICenter picking mode() function enables picking mode. During picking mode no objects
are rendered on the screen. Once picking mode is entered, if an identifier hits the picking region,
the size of the identifier stack and its contents are written to the buffer. The buffer can be accessed
through the PICbuffer() structure returned from a PICattach_picking() call.

PICenter picking mode() takes as arguments the coordinates of the center of the picking region.
To specify the size of this region, use the PICput_picking region() function described below.

Note that atoms cannot be used as identifiers.
NOTE

PICenter_picking_mode(x,y)
int x,y

xy = the xy location indicating the center of the picking region

Overview of PIClib Functions 3-153



Picking and Selecting

PlCenter_selecting mode()

The PICenter_selecting_mode() function enables selecting mode. During selecting mode no
objects are rendered on the screen. Once selecting mode is entered, if an identifier hits the selecting
region, the size of the identifier stack and its contents are written to the buffer. The buffer can be
accessed through the PICbuffer structure returned from a PICattach picking() call.

The selecting region is the 3D volume specified by the current viewing projection. The viewing
projection must be specified before entering selecting mode.

Note that atoms cannot be used as identifiers.

PICenter selecting mode()

PICexit_picking mode()

The PICexit_picking mode() function exits picking mode. The picking/selecting buffer and the
identifier stack are freed.

PICexit_picking mode()

PlCexit_selecting mode()

The PICexit_selecting_mode() function exits selecting mode. The picking/selecting buffer and
the identifier stack are freed.

PICexit_selecting mode()

3-154 PIClib User’s Guide, Version 1.2



Picking and Selecting

PICinit_identifier stack()

The PICinit_identifier stack() function initializes the identifier stack used in picking and selecting
operations. This function is automatically performed when picking/selecting mode is entered, but
can be used to reinitialize the identifier stack.

PICinit_identifier stack()

PICpop identifier()

The PICpop_identifier() function pops the top identifier from the identifier stack.

PICpop identifier()

PICpush_identifier()

The PICpush_identifier() function pushes the identifier stack and places the identifier defined by
the argument id on the fop of the stack.

PICpush_identifier(id)
int id;

id = identifier

Overview of PIClib Functions 3-155



Picking and Selecting

PICput_identifier()

The PICput_identifier() function replaces the top of the identifier stack with the identifier defined
by the argument id.

PICput identifier(id)
int id;

id = identifier

PICput_picking region()

The PICput_picking region() function sets the size of the picking region to a rectangle specified
by the dx and dy arguments.

PICput picking region(dx,dy)
int dx,dy;

dx,dy = the size of the picking region rectangle in pixels

3-156 PIClib User’s Guide, Version 1.2



A Appendix A

Appendix A — Definition of Constants

Table of Contents

A-1






Appendix A — Definition of Constants

Constant

Value

PIC_FALSE
PIC_TRUE

PIC_OFF
PIC_ON

PIC_ERR_OK
PIC_ERR_ARG
PIC_ERR_OPEN
PIC_ERR_NODE
PIC_ERR_FILE
PIC_ERR_LOAD
PIC_ERR_INVERSE

PIC_BEZIER_BASIS
PIC_HERMITE_BASIS
PIC_FOUR_POINT BASIS
PIC_B_SPLINE_BASIS

PIC_USER_BASIS 0
PIC_USER_BASIS_1
PIC_USER_BASIS 2
PIC_USER_BASIS 3
PIC_USER_BASIS 4
PIC_USER _BASIS 5
PIC_USER_BASIS 6
PIC_USER BASIS 7

PIC_EUCLID POINT
PIC_EUCLID LINE
PIC_EUCLID_POLYGON
PIC_EUCLID _TEXTURE

PIC_SCREEN_PIXELS
PIC_SCREEN LINES

PIC_IMAGE_PIXELS
PIC_IMAGE LINES

Appendix A

0
1

—_— O

~N N AW O WO AN AW - O

PO U NG Rt

1280
1024

2048
2048

A-1



Appendix A - Definition of Constants

PIC_SINGLE_BUFFER
PIC | _DOUBLE _BUFFER

PIC_BUFFER_ZERO
PIC_BUFFER_ _ONE

PIC_BUFFER_OVERFLOW |
PIC_STACK OVERFLOW I
PIC STACK UNDERFLOW I

#ifdef
PIC_TOP_BUFFER

PIC BOTI'OM BUFFER
PIC_SCREEN_BUFFER
#else
PIC_TOP_BUFFER
PIC_BOTTOM_BUFFER
PIC_SCREEN BUFFER
#endif

PIC_LIGHT DIRECT
PIC_ _LIGHT POINT
PIC LIGHT SPOT
PIC | LIGHT CONE

PIC_TYPE_ALL
PIC_LIGHT _ALL
PIC_BLACKOUT
PIC_SUNGLASSES

PIC_SHADE_OFF

PiC SHADE _FLAT

PIC SHADE _GOURAUD
PiC SHADE PHONG
PIC SHADE DEPTH

PIC_MAX_BASIS
PIC_MAX_TRANSFORM
PIC_MAX_VIEWPORT
PIC_MAX DIR_LIGHT
PIC_MAX_PNT LIGHT
PIC_MAX_SPOT LIGHT

A-2

—

1
2
3

_F77_
(2*16*16)
((2*16+8)*16)
(6*16*16)

0x0200
0x0280
0x0600

BN =

1
-1
PIC_OFF
PIC_ON

B W~

32
32
50
50
50

PIClib User’s Guide, Version 1.2



PIC_MAX_POLY_PNTS

PIC_ARC_DEFAULT
PIC_CIRCLE_DEFAULT
PIC_CURVE DEFAULT
PIC_QUADRIC_DEFAULT
PIC_PATCH_DEFAULT

PIC_LOW

PIC_MEDIUM

PIC_HIGH
PIC_TEXTURE_DEFAULT

PIC_ZMIN_DEFAULT
PIC_ZMAX_DEFAULT

PIC_INTENSITY
PIC_INTENSITY

PIC_VIDEO TABLE

PIC_BLACK
PIC_RED
PIC_GREEN
PIC_BLUE
PIC_YELLOW
PIC_MAGENTA
PIC_CYAN
PIC_WHITE

#ifndef PIC_RGB_PIXELS
PIC_RGB_PIXELS

PIC_RGB_PACKED PIXELS

PIC RGBA PIXELS

PIC_RGBA_PACKED PIXELS
PIC_ABGR_PACKED PIXELS
PIC_RGB_ENCODED _PIXELS
PIC_RGB_PACKED ENCODED PIXELS

#endif

PIC_EXTENDED VRAM

Appendix A

Appendix A - Definition of Constants

256

64
64
16
16
16

1
4
7
PIC_LOW

-1.0e+00
0.0e+00

32767.0
(LO/PIC_INTENSITY)

256

0.0,0.0,0.0
1.0,0.0,0.0
0.0,1.0,0.0
0.0,0.0,1.0
1.0,1.0,0.0
1.0,0.0,1.0
0.0,1.0,1.0
1.0,1.0,1.0

11
12
15

14
13

Oxf0

A-3



Appendix A — Definition of Constants

PIC_OVERLAY_OFF
PIC OVERLAY NON_ZERO
PIC OVERLAY HIGH BIT

PIC_NO_COMPOSITE
PIC_A_OVER B
PIC_B_OVER A
PIC_A_IN B
PIC B_ IN_A
PIC_A_OUT
PIC B OUT
PIC_A_ATOP B
PIC_B_ATOP A
PIC_A_XOR B
PIC_PLUS
PIC_A PLUS B

PIC_SPHERE_TEMPLATE
PIC_UD TEMPLATE

PIC | MAX UDTEMPLATE
PIC | MAX _STEMPLATE
PIC MAX _STAMP

PIC_BROADCAST_VRAM
PIC BROADCAST _ZRAM

PIC_READ_ONLY
PIC_WRITE_ONLY

PIC_ANY_EVENT
PIC_LEFTMOUSE
PIC_MIDDLEMOUSE
PIC_RIGHTMOUSE
PIC_XMOUSE
PIC_YMOUSE
PIC_KEYBOARD

PIC_UP
PIC_DOWN

DEVcursor

PIC_PIXEL_PHONG

A-4

(S I

SPouounbhw=o

p—
<

0

1

256
(PIC_MAX_UDTEMPLATE/2)
19

0
1

SN W= O W N

—

PiCcursor

4

PIClib User’s Guide, Version 1.2



B Appendix B

Appendix B — Type Definitions

Table of Contents

B-1






Appendix B — Type Definitions

typedef float ~ PICmatrix[4][4];

typedef struct {

int initx, inity;
int bitmap[32];
} PlCcursor;

typedef struct {

float x, y, z;

float nx, ny, nz;

float r, g, b;

float exp, angle;
float  intensity;
long  samples, vertices;
float  “*vertex;

} PIClight_source;

typedet struct {

float a_red, a_green, a_blue;
float d_red, d_green, d_blue;
float s_red, s_green, s_blue;
float exp;
float transparent;
float dissolve;
float reflectivity;
float refraction_index;
float t_red, t green, t blue;

} PiCsurface_model;

typedef unsigned char PICpixel;

typedef struct {

PiCpixel red,
green,
blue;

} PICrgb_pixel;

typedef struct {
PiCpixel red,

Appendix B

B-1



Appendix B — Type Definitions

green,
blue,
alpha;
} PiCrgba_pixel;

typedef struct {

PiCpixel alpha,
blue,
green,
red;

} PiCabgr_pixel;

typedef struct {

int *buffer;

int *nused;

int *buffer_overflow;

int *stack_overflow;

int *stack_underflow;
} PIChuffer;

#define PIC_RASTER DISPATCH 256

typedef struct {

short magic; /* Magic number VFONT _MAGIC */
unsigned short size;/* Total # bytes of bitmaps */

short maxx; /* Maximum horizontal glyph size */
short maxy; /* Maximum vertical glyph size */
short xtend; /* (unused) */

} raster_header,;

typedef struct {
unsigned short addr[PIC_RASTER_DISPATCH];
short  nbytes[PIC_RASTER_DISPATCH];
char  *data;
} raster_font;

typedef struct {
raster_header header;
short  twobytes;  /* For aligning (char*)data below */

B-2 PiClib User’s Guide, Version 1.2



Appendix B - Type Definitions

raster_font font;
} PiCraster_font;

#define PIC_ VECTOR_FONT SIZE 95

typedef struct {

short mm;
short pt;
short Lw;
short Rw;

} vector_font;

typedet struct {
vector_font ptr[PIC_VECTOR_FONT_SIZE];
char  *hshstr;
} PiCvector_font;

typedef struct

{

short  type; r* sphere or user defined *
int iX; r template position in vibaminx */
int iv; " template position in vraminy */
int size; * size of template in pixeis */
float  radius; r* size of radius (spheres only) %/

} PiCtemplate;

Appendix B B-3






C Appendix C

Appendix C — Function Description

Table of Contents

C-1






Appendix C — Function Description

FUNCTION

DESCRIPTION

PICalpha (3)
PICantialias_lines (3)
PICarc (3)
PICarc_precision (3)
PICatom (3)

PiCatom _light (3)
PICatom_surface (3)
PICattach_mouse (3)
PICattach_picking (3)
PICbackface (3)
PICbroadcast_data (3)
PICcamera_view (3)
PICcircle (3)

PICcircle precision (3)
PICclear alpha (3)
PICclear_rgb (3)
PICclear_rgbz (3)
PICclear z (3)
PICclockwise (3)
PICcolor alpha (3)
PICcolor rgb (3)
PICcomposite_mode (3)
PICcopy_back_to_ext (3)
PICcopy back to front (3)
PICcopy_ext_to_back (3)
PICcopy ext to z (3)
PICcopy_front_to_back (3)
PICcopy z to_ext (3)
PICcurve geometry 3d (3)
PICcurve precision (3)
PICdefine_cursor (3)
PICdepth cue (3)
PICdepth_cue_limits (3)
PiCdetach_mouse (3)
PICdetach_picking (3)
PICdisplay cursor (3)
PICdisplay overlay (3)
PICdouble_buffer (3)
PICdraw (3)

PICdsp float (3)
PICenter picking mode (3)

Appendix C

- enable/disable writing to the alpha channel

- enable/disable the antialiasing of lines

- draw a circular arc

- set precision of arc

- draw a spherical atom

- specify a light source for a spherical atom

- specify a surface model for a spherical atom

- attach a mouse

- start picking/selecting process

- enable/disable backface removal mode

- broadcast a buffer of data to pixel-node memories
- define a viewing transformation in terms of pan, tilt, and swing angles
- draw a circle

- set precision of circle

- clear the alpha channel of current viewport

- clear the rgb channels of current viewport

- clear rgb and z depth of current viewport

- clear z depth of current viewport

- enable/disable normal vector definition in clockwise direction
- define the current alpha color

- define the current rgb color

- set the current image compositing mode

- copy the back buffer to an extended screen buffer
- copy back buffer to front buffer

- copy an extended screen buffer to the back buffer
- copy extended screen z buffer to screen z buffer
- copy front buffer to back buffer

- copy z buffer to the extended z buffer

- draw a 3D curve

- set precision of curve

- define the current cursor

- enable/disable depth cueing

- set z limits and color range of depth cueing

- terminate mouse process

- terminate picking/selecting process

- enable/disable cursor display

- enable/disable display of the alpha channel

- enable/disable double buffer mode

- draw a line

- enable/disable DSP32 floating point format

- enter picking mode

CA1



Appendix C - Function Desctiption

FUNCTION

DESCRIPTION

PICenter_sampling pass (3)
PICenter_selecting_mode (3)

PICeuclid_mode (3)
PICexit (3)
PICexit_picking_mode (3)
PICexit_sampling pass (3)

PICexit_selecting mode (3)

PICtlip (3)
PICflush_queue (3)
PICget_alpha map (3)

PICget_alpha_map_entry (3)

PICget_buffer (3)
PICget_buffer mode (3)
PICget_button (3)
PICget color map (3)

PICget color_map_entry (3)

PICget depth (3)
PICget event (3)

PICget_host_screen_size (3)

PICget image_header (3)
PICget_inverse_project (3)

- start a super-sampling pass

- enter selecting mode

- set drawing mode

- exit the PIClib library

- exit picking mode

- end a super-sampling pass

- exit selecting mode

- enable/disable normal vector reversal

- flush event queue

- get current rgb entries from alpha map

- get a specified rgb alpha map entry

- get the number of the current display buffer
- get buffer mode (single or double)

- query current state of button

- get current rgb color map

- get one rgb color map entry

- get the near and far depth limits

- return an event and its value

- returns the dimensions of the host screen

- read the Pixel Machine image header from a file
- get the inverse of the current projection matrix

PICget inverse_transform (3) - get the inverse of the current transformation matrix

PICget locator (3)

- query the current value of a locator

PICget normal_transform (3) - get normal vector transformation matrix

PICget_overlay_mode (3)
PICget project (3)
PICget scan_line (3)
PICget screen_size (3)
PICget shade mode (3)
PICget_template (3)
PICget transform (3)
PICget_valuator (3)
PICget_viewport (3)
PICimage_header (4)
PICinit (3)
PICinit_identifier stack (3)
PICinit_sampling (3)
PIClight ambient (3)
PIClight switch (3)
PIClookat_view (3)
PIClookup view (3)

C-2

- get the pixel node overlay

- get the current projection matrix

- read a scan line of pixels from the screen

- return the current screen size

- return current shading mode

- get a previously defined template

- get the current transformation matrix

- returns the current value of a valuator

- return the current viewport’s definition

- format of a Pixel Machine image header file

- initialize and reset the PIClib library

- initialize identifier stack

- initialize super-sampling mode

- set the ambient light’s intensity value

- turn all or one light source on or off

- define a viewing transformation in terms of viewpoint, reference point and twist angle
- define a viewing transformation in terms of viewpoint, reference point and twist angle

PIClib User’s Guide, Version 1.2



Appendix C — Function Description

FUNCTION DESCRIPTION

PICmake_sphere_template (3) - create a sphere template

PICmake_template (3) - create a user defined template

PICmove (3) - move to a given point

PICopen_raster_font (3) - select a raster font type

PICopen_vector_font (3) - select a vector font type

PICortho_project (3) - define an orthographic projection

PICoverlay mode (3) - select overlay mode to display the alpha channel

PICpatch geometry 3d (3) - draw a 3D surface patch

PICpatch_precision (3) - set precision of patch

PICpercent_texture (3) - determines the texture map’s intensity value at each pixel
PICpersp project (3) - define a 3D perspective viewing pyramid

PICpixel add (3) - add a constant value to pixels in current viewport

PICpixel multiply (3) - multiply pixels in the current viewport by a constant
PICpoint (3) - draw a point

PICpolar_view (3) - define view point and view direction in Polar Coordinates
PICpoly close (3) - close a polygon '

PICpoly normal (3) - define a polygon normal vector

PICpoly point (3) - draw a polygon

PICpoly point nv (3) - draw a 3D polygon with normal vectors

PICpoly point_nv_uv (3) - draw a 3D polygon with normal vectors and texture indices
PICpoly point rgb (3) - draw a 3D polygon with rgb color

PICpoly point_uv (3) - render a 3D polygon with texture indices

PICpop_identifier (3) - pop top identifier from identifier stack

PICpop_project (3) - replace the current projection matrix with the top of the projection stack
PICpop_transform (3) - replace the current transformation matrix with the top of the transformation stack
PICpop_viewport (3) - replace the current viewport with the top of the viewport stack
PICposition_cursor (3) - position cursor (in Pixel Coordinates)

PiCpostmultiply project (3) - post-multiply the current projection matrix by a specified matrix
PICpostmultiply transform (3)- post-multiply the current transformation matrix by a specified matrix

PICpremultiply project (3) - pre-multiply the current projection matrix by a specified matrix
PICpremultiply transform (3) - pre-multiply the current transformation matrix by a specified matrix
PICpush_identifier (3) - push an identifier on identifier stack

PICpush_project (3) - copy the current projection matrix onto the top of the projection stack
PICpush_transform (3) - push transformation matrix onto the top of the transformtion stack
PICpush_viewport (3) - copy the current viewport onto the top of the viewport stack
PICput_alpha map (3) - load the entire lookup table for the alpha channel
PICput alpha map_entry (3) - load a single entry in the lookup table for the alpha channel
PICput_basis (3) - define a basis matrix

PICput color map (3) - load entire lookup table for each rgb channel

PICput color_map_entry (3) - load a specific entry into the rgb color map

PICput depth (3) - set the near and far depth limits

Appendix C C-3



Appendix C - Function Description

FUNCTION DESCRIPTION

PICput_identifier (3) - replace the top of identifier stack

PICput_identity transform (3) - load the current transformation matrix with the identity matrix
PICput image header (3) - write a Pixel Machine image header to a file

PICput_light source (3) - load a light source

PICput_mouse_playground (3)- initializes mouse playground window

PICput overlay mode (3) - load overlay code into the pixel nodes

PICput_picking region (3) - set the size of picking region

PICput_project (3) - load current projection transformation matrix with a specified matrix
PICput raster font (3) - set the current raster font

PICput scan line (3) - write a scan line of pixels to the screen

PICput surface model (3) - specify a surface shading model

PICput_texture (3) - define an area of offscreen memory to be used as a single texture
PICput_transform (3) - load the current transformation matrix with a specified matrix
PICput vector_font (3) - set the current vector font

PICput_viewport (3) - set the current viewport

PICquadric_precision (3) - set precision of quadrics and superquadrics

PICquery queue (3) - query event queue

PICqueue_events (3) - enable/disable event queueing

PICraster_font text (3) - write a text string using the specified raster font

PICraster text (3) - write a text string using the current raster font

PICrectangle (3) - draw a rectangle

PICreset (3) - reset graphical parameters to default values
PICreset_texture (3) - set the current area to be used for texture mapping with the default values
PICresume (3) - initialize the PIClib library

PICrotate (3) - apply a rotation transformation to all objects

PICscale (3) - apply a scaling transformation to all objects
PICselect_curve basis (3) - select the basis matrix used in drawing curves
PICselect_patch_basis (3) - select the basis matrix to be used in drawing patches
PICset_texture (3) - set the current texture mapping area

PICshade_mode (3) - select a shading mode

PICsphere (3) - draw a unit sphere

PICstamp_template (3) - stamp a buffer of templates on the screen
PICsuperq_ellipsoid (3) - draw a superquadric ellipsoid

PICsuperq hyperl (3) - draw a superquadric hyperboloid of 1 sheet

PICsuperq hyper2 (3) - draw a superquadric hyperboloid of 2 sheets
PICsuperq_toroid (3) - draw a superquadric toroid

PICswap_buffer (3) - swap displayable buffers

PICswap_pipe (3) - swaps Transformation Pipes in dual-pipe configurations
PICtexture precision (3) - set texture map precision of textured perspective polygons
PICtranslate (3) - apply a translation transformation to all objects
PICupdate_map (3) - enable/disable updating of video lookup tables

C-4 PICIlib User’s Guide, Version 1.2



Appendix C - Function Description

FUNCTION DESCRIPTION

PICvector font_text (3) - write a text string using the specified vector font
PICvector_text (3) - write a text string using current vector font
PICwait_event (3) - wait for a specifed event to occur

PICwait_psync (3) - wait for Pixel Node processor sync

PICwait_vsync (3) - wait for a vertical sync

PICwindow_project (3) - define a 3D perspective projection

PICzbuffer (3) - enable/disable zbuffer mode

PICzbuffer lines (3) - enables/disables zbuffering of lines

picalpha (1) - turn the display of the alpha channel on or off

picbars (1) - display color bars on the screen

picboot (1) - load the PIClib modules into the geometry and drawing nodes
picbroadv (1) - broadcasts a buffer of data to the pixel node memory
picbroadz (1) - broadcasts a buffer of data to the pixel node memory
picbtof (1) - copy contents of the back buffer to the front buffer
picdisp (1) - download and/or display an image

picetof (1) - copy the contents of the extended VRAM buffer to the front buffer
picftob (1) - copy the contents of the front buffer to the back buffer
picftoe (1) - copy the contents of the front buffer to extended VRAM
picgamma (1) - create gamma corrected lookup tables

picinit (1) - resets the Pixel Machine to its default values

piclear (1) - clear the screen

piclens (1) - interactive tool that roams around and magnifies the display
picsave (1) - save an image to disk

pictexture (1) - display current texture loaded into VRAM

Appendix C C-5






	20110202155910
	20110202155926

