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Introduction

Generating a realistic image from complex two and
three dimensional data in real time demands a lot
of computational power. Graphics and image pro-
cessing algorithms, particularly rendering algo-
rithms, often perform a set of operations to gen-
erate each pixel, with little or no interaction
betwenrn pixels. These algorithms are candidates
for mapping to a parallel architecture, with perfor-
mance increasing nearly linearly with the number
of processors.

In many display systems, a single custom proces-
sor handles the typical frame buffer operations.
This approach is adequate for rendering simple
two-dimensional images. However, when realisti-
cally shaded images must be displayed in real
time, a single processor cannot provide the neces-
sary computational power. ’

Pipelines or arrays of special purpose processors
provide high performance at the expense of flexibil-
ity. Their performance improvements are limited to
the narrow range of algorithms that they were
designed to implement.

While the use of parallelism and pipelining gives a
system the power needed to render high quality
images in real time, the use of programmable pro-
cessors provides the flexibility to attain high perfor-
mance for a wide range of graphics and image pro-
cessing algorithms. It is much easier to change a
program from Gouraud shading to Phong shading,
for example, than to redesign a customized proces-
sor.

The AT&T Pixel Machine combines the strengths
of both coarse grain pipelining and multiple
instruction/multiple datapath (MIMD) computing
arrays. A pipeline of computing elements
processes the serial tasks that precede pixel-level
processing while a processor array provides high-
bandwidth access to an integrated frame buffer
and computes individual pixel values. The proces-
sors in both the pipeline and the array are pro-
grammable, with hardware floating point opera-
tions.

The programmability of the processors allows all
algorithms to be implemented in software. A set of
mapping functions translates frame buffer algo-
rithms written for conventional serial computers to
algorithms that execute in the pixel nodes and
access the distributed frame buffer. The ability to
use floating point computations in frame buffer

41

operations such as antialiasing, ray tracing, and
cascaded filtering, allows high quality image gen-
eration.

The Pixel Machine provides up to 820 megaflops
of processing power and 48 megabytes of memory
for data visualization applications, including three-
dimensional object rendering and animation, image
processing, and volume rendering. .

Figure 1. The Pixel Machine: A recursive self-portrait.
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Figure 2. Pixel Machine block diagram.

The Pixel Machine combines the strengths of both
coarse grain pipelining and MIMD computing
arrays to provide the performance of a supercom-

puter for image synthesis and image analysis appli-

cations. Synthesis applications include the genera-
tion and display of two and three dimensional
scenes as well as the visualization of scientific and
engineering computations. Analysis applications
include the processing and interpretation of image
data from, say, a nuclear magnetic resonance
machine or a satellite. The design philosophy is:

+ Use floating-point computation and large image
memories, which are useful for image process-

ing.

+ Design simple, modular processors that can be
repeated a number of times to build a system.

+ Implement all algorithms in software.

The modular approach enabled the Pixel Machine
to be designed, built, and programmed in a short
time, thereby reducing the duration of the design to
product cycle. The decision to implement algo-
rithms in software rather than special purpose VLS!
chips gives wide functionality, faster implementa-
tion of new algorithms, and easier modification of
existing ones.

The architecture has the following features:
+ 32-bit programmable processors

+ 9 or 18 pipe nodes, configurable as one or two
pipelines

» 16, 20, 32, 40, or 64 pixel nodes
+ 32-bit pixel and z-buffer data
« floating-point computation for pixel generation

+ a frame buffer with pixel-interleaved parallel
architecture

+ 1280x1024 or 1024x1024 high-resolution 60 Hz
non-interlaced display

~ « NTSC and PAL display modes

« a large image memory that allows single, double,
or quadruple buffering

« uniform, upwardly compatible software that pro-
vides additional functionality as the number of
pixel nodes increases

Both the pipe nodes and the pixel nodes inciude a
WE® DSP32 Digital Signal Processor, a 32-bit,
high speed, programmable device [K85]. Its
features include:

« 20 MHz, 5 MIPS, 10 MFLOPS

» 4K bytes of on-chip memory

+ 32-bit floating point arithmetic

« four 40-bit floating point accumulators

+ twenty-one 16-bit integer and address registers

+ an interface to off-chip expansion memory



- parallel and serial I/O ports with DMA

The DSP32 can be programmed in assembly
language or in C [K78]. The software development
environment includes a compiler, an assembler, a
linking loader, and a simulator. All arithmetic
operations on data are floating point operations.
Only memory address generation and program
control calculations use integer arithmetic.
Software I1s developed on a host computer, typi-
cally a Sun Workstation®. The Pixel Machine is
connected to the host computer via the VMEbus®.

Inside the Pixel Machine, there are 9 or 18 pipe
nodes configured as one or two pipelines, a broad-
cast bus that transfers data from the end of the
pipes to the pixel nodes, an array of 16, 20, 32,
40, or 64 pixel nodes that form a distributed frame
buffer, and a pixel funnel that transfers digital
video data from the frame buffer to the video pro-
cessor, which controls the display monitor.

Each pipe and pixel node can be viewed as a
small independent computer that executes its
instructions and operates on data asynchronously
with all the other nodes. Programs are loaded into
the nodes by the host, using unique, software-
defined node numbers to distinguish between
them.

*1
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Figure 3. Pipeline configurations.

Figure 4 shows a block diagram for a pipe node.
Each pipe node has a DSP32 processor that exe-
cutes five million instructions or ten million floating
point operations per second. The parallel DMA
interface of each processor is connected to the
VMEbus. The pipe nodes have 9Kx32 bits of
memory for instructions and data, a 512x32 bit
input FIFO containing data written by the previous
pipe node, a 512x32 bit output FIFO where all out-
put is written, to be read by the next node in the
pipeline.

The host computer provides input to the first pipe
node via the VMEbus. The output from the last
pipe node is broadcast to all of the pixel nodes. In
addition, the last pipe node has a second output
FIFQ that is read by the host, again via the
VMEbus.

x VMEbus
512x32 | ; . 512x32
— Tpro — DSPR2 —— "o
L ! i
OKx32
SRAM

Figure 4. Pipe node block diagram.

A system can have 9 or 18 pipe nodes. The 18-
node systems are software-configurable as either
two nine-node parallel pipelines or one 18-node
pipeline (see Figure 3). In a two pipeline system,



the node in each pipeline has the ability to request,
acquire, and release the broadcast bus. In the one
pipeline system, the last node has continuous
access to the broadcast bus.

The pipe nodes perform those parts of the algo-
rithms which are serial in nature and can be pipe-
lined. These include 3D transformations, clipping,
projections, shading, and image filtering. The pipe-
line can also be used as a hardware subroutine by
processes running in the host computer, which can
send data to the first node and read results from
the last one.

*3
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The pixel nodes form an nxm array with a distri-
buted frame buffer. They receive their data from
the broadcast bus of the pipe nodes and store their
output into the frame buffer or return it to the host
computer. Mapping registers provide uniform
access to the frame buffer across different confi-
gurations of pixel nodes, and a four-way multi-
plexed I/O switch and channel allows two-way
communication with the four neighboring pixel
nodes.

A DSP32 is the computing element in each pixel
node, and just as in the pipe nodes, there is a
9Kx32 bit static RAM in the node, in addition to the
1024x32 bits of on-chip storage. Figure 5 shows a
block diagram.

Two banks of 64Kx32 bit VRAMs form the pixel
node’s piece of the distributed frame buffer. The
video RAMSs store the red, green, blue, and alpha
settings for the pixels. These memories can be
displayed, or used as off-screen storage for
images.

Pixel nodes also contain a 64Kx32 bit dynamic.
RAM that can be used to hold floating-point z-
buffer values, pixels in floating-point representa-
tion, display list segments, or code segments.

A Pixel Machine can be configured with 16, 20, 32,
40, or 64 pixel nodes. Table 1 summarizes these
five configurations. The two video RAMs and the
dynamic RAM (when used to store pixel data) are
organized as three blocks of 256x256 32-bit pixels.
Each bank can be logically divided further into
smaller blocks, called subscreens.
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Pixel | PRixel Node Array Display Subscreens

Nodes | physical  virtual | Resolution Size  # pixels per node
16 4x4 8x8 1024x1024 | 128x128 16384 4
20 5x4 10x8 12801024 | 128x128 16384 4
32 8x4 8x8 1024x1024 | 128x128 16384 2 -
40 10%4 108 1280x1024 | 128x128 16384 2
64 8x8 8x8 10241024 | 128x128 16384 1
64 8x8 8x8 1280x1024 | 160x128 20480 - 1

Table 1. Pixel array configurations..

In order to allow configuration-independent
software, the concept of virtual pixel nodes that
reside inside physical nodes is introduced. ‘Each
virtual node accesses a single subscreen. All sys-
tems have either 64 or 80 virtual nodes, depending
on the resolution of the display screen. In a 64-
node system, each physical pixel node contains a
single virtual node, while a 16- or 20-node system
has four virtual nodes per physical node.
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Figure 6. Pixel format.

Pixel data is stored in the frame buffer as 16-bit
signed integers. The four components of a pixel,
(red, green, blue, o) form two 32-bit words, as
shown in Figure 6. In the current implementation,
only -eight of the 16 bits in a pixel component are
populated with memory. In future implementations,
additional memories may extend the number of
usable bits per color to 12 or 16 bits without requir-
ing any modification to existing software.



Each pixel node has a serial input/output (SIO)
channel that provides a communication path to its
four nearest neighbors, allowing the Pixel Machine
to function as a computing mesh. Node placement
follows pixel interleaving conventions, as shown in
Figure 7. Thus, in a 4x4 array of pixel nodes,
node 5’s neighbors are nodes 1, 4, 6, and 9. The
edges of the mesh wrap around to form a torus, so
node O's neighbors are 1, 3, 4, and 12, for exam-

ple.

The SIO compatibility at each node consists of one
input and one output serial port that operate at
peak rates of 12.5 MHz. Pixel data can be moved
from node to node at a sustained rate of 5.25
Mbits per second, including the time spent buffer-
ing pixel data to and from the display memory. In
practice, however, processor cycles will be shared
between an application program and SIO, and the
data transfer rate will be proportionately slower.

ht!



Video Display

The frame buffer is distributed throughout the array
of pixel nodes. An example is shown in Figure 7.
The pixel funnel rearranges pixels from the frame
buffer into a properly ordered raster scan
sequence. Both the video processor and the pixel
funnel are software configurable for the five dif-
ferant pixel arrays.
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Figure 7. Pixel mapping in the distributed frame buffer.

The frame buffer stores (red, green, blue, a) values
for each pixel. Based on the value of o and the
display mode setting, the pixel node may substitute
the o value for the red, green, and blue values:

* RGByy = rgbjp.

r30in it =0
. HGBoutz Fg—BI‘n |f OL=255
oco if O<a<255

rgbin it 0<a<128

* RGByy = .
oo if 128<a<255

The video processor uses six 256x10 lookup
tables, or color maps, to translate 8-bit pixel color
values to 10-bit video data. Three of the tables
map red, green, and blue. The other three map
o-type pixels to red, green, and blue values.

There are two sets of color maps. One set con-
tains high-speed video tables that are used.to con-
vert video data. The other set are shadow tables
which can be read and written via the VMEbus.
The contents of the shadow tables are automati-
cally copied to the video tables during a vertical
retrace period, with copying enabled and disabled
in software. The shadow tables prevent two prob-
lems common to many video systems from arising:
snowy and sheared video because color maps are
modified during active video periods, and distract-
ing flashes on the screen because of partially
modified color maps.

In high-resolution mode, the video system displays
1024 lines of either 1024 (in systems with 16, 32 or
64 pixel nodes) or 1280 (in systems with 20, 40, or
64 nodes) pixels, at 60 Hz non-interlaced. In
NTSC mode, the video system uses the RS-170A
timing format to display 485 lines of 720 pixels in
all pixel node configurations. In PAL mode, 575
lines of 702 pixels are displayed.

The video timing generated by the system can be
synchronized to and mixed with external video
sources. The video signal can also be mixed with
the Sun Workstation's color video signal and
displayed on its color monitor.



System Configurations

As described above, the Pixel Machine can be
configured with five different pixel array sizes and
two different pipeline sizes. The ten models are
descriped in Table 2. Models 964 and 964D can
be programmed to display either 1024x1024 or
1280x1024 pixels.

In high-resolution display mode, Models 916 and
920 have two rgbo frame buffers and one z-buffer,
enough memory to render full-screen 24-bit images
in double-buffered mode with a floating point depth
buffer. Models 932 and 940 can be quadruple-
buffered, and Model 964 has enough memory to
store a 32-bit 2048x2048 image in the extended
frame buffer while maintaining double buffers in the
main video RAM.

in NTSC display mode, each pixel node has a sin-
gle subscreen, regardless of configuration. The
subscreen size in Model 916 is 180x122=21960
pixels, while in the 964, it is one fourth as big.
This means that a 916 can render full-screen
NTSC images about as fast as a 964 can in high-
resolution mode.

Physically, the Pixel Machine is a free-standing
cabinet (see Figure 1) with a triple-height 21-slot
VME chassis. There are four types of VME cards
in the chassis:

+ pipeline cards, each containing nine pipe nodes,

+ pixel array cards, each containing four pixel
nodes,

* video processor cards, and
« parallel interface cards.

The broadcast bus and the pixel funnel are part of
the VME backplane.

The host computer accesses the Pixel Machine as
a 64K byte block of memory on the VMEbus. The
memory is mapped into user process space. The
parallel I/O interface for each of the pipe and pixel
nodes, the input and output FIFOs in the pipline,
the shadow colormaps, and the video control regis-
ters are mapped directly into this memory block.
The contents of all DSP memory maps, including
the rgba and z-buffer memories, are accessible to
the host via DMA transfers, even while the proces-
sors are running.

*3

Peak Performance

Model | Nodes Memory | Buffers Bytes
Number| pipe pixel| MIPS  MFLOPS | (Mbytes)|{rgbo 2z | per pixel
916 9 16 | 125 250 12 2 1 12

916D | 18 16 | 170 340 12 2 1 12
920 9 20 | 145 290 15 2 1 12
920D [ 18 20 | 190 380 15 2 1 12
932 9 321205 410 24 4 2 24
932D | 18 32 | 250 500 24 4 2 24
940 9 40 | 245 490 30 4 2 24
940D 18 40 | 290 580 30 4 2 24
964 9 64 | 365 730 48 4/8 2/4| 24/48
964D { 18 64 | 410 820 48 4/8 24 24/48°

Table 2. Pixel Machine configurations.




Pixel Machine Software
The distinct architectural components of the Pixel
Machine are the host computer, the pipe nodes,
and the pixel nodes. The host computer allows an
application program to access the power and func-
tionality of the Pixel Machine, the pipe nodes are
responsible for the serial parts of algorithms, and
the nixel nodes execute parallel algorithms. The
following paragraphs describe the software that
supports each architectural component.

Host Software

A host-resident C-callable library is responsible for
message creation and transmission, invocation of
subprocesses that monitor external events, and
machine initialization. The primary functions pro-
vided by the host are

» translating high-level function calls and macros
into messages

+ transmitting messages through a high-bandwidth
channel to the Pixel Machine

« down-loading code to the pipe and pixel nodes
and initializing them

+ handling interactive functions like the
mouse/cursor interface and feedback from the
pipeline

All messages are sent to the first node in the pipe-
line. It processes any messages addressed to it
and sends the rest to the next pipe node. Mes-
sages proceed serially down the pipe until the last
node broadcasts them simultaneously to all of the
pixel nodes.

Pipe Node Software

The pipe nodes are typically used to implement a
set of algorithms that act serially on a set of data.
For example, a rendering and modeling application
might use the pipeline to generate objects, apply
modeling and viewing transformation, cull and
shade the objects, apply projection transforma-
tions, do x, y, and z clipping, and finally, map the
image to a viewport on the screen.

A useful analogy is to think of the pipe nodes as
UNIX® System filters [P87b]. Each node, like a
filter, reads some input, transforms the input, and
writes some output. The mechanism for controliing
these actions is a command language interpreter
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that resides in every node.

The command language interpreter reads mes-
sages from the input FIFO. Each message con-
sists of an opcode, the number of parameters, and’
the parameter list. When a message arrives at a .-
pipe node, three actions can be triggered. -The
node can :

+ forward the message to the next node in the
pipeline, ‘

+ modify the parameter list and send it down the
pipe, or

+ process the message, possibly generating new
messages.

Each pipe node stores and executes routines that
are invoked by message opcodes. In a typical
polygonal rendering and modeling application, the
pipe nodes perform geometric processing algo-
rithms. For instance, three nodes could be
assigned to clip the polygons in the x, y, and z
planes, and one node to shade the polygon. In
order to optimize the shading, however, the system
could easily be re-configured to have three shading
nodes and only one clipping node. Thus the pipe-
line can be optimized for any application through
experimentation, and new functions can be added
as needed. The customizing is done using
DEVtools™, a collection of software that allows a
user to develop applications for the Pixel Machine.
DEVtools is described in more detail in a later sec-
tion.

A Pixel Machine can contain a single 8-node pipe,
or 18 pipe nodes that can be configured as either
two parallel 9-node pipes or a single 18-node pipe-
line. In parallel mode, shown in Figure 3(b), the
functions performed by a single pipeline are dupli-
cated in both pipes. Distinct geometric primitives
are explicitly assigned to each pipeline and pro-
cessed simultaneously, ideally doubling the pro-
cessing bandwidth of a single pipeline. The user -
can control which geometric primitives are routed
to each pipeline. For example, one pipeline can be
made to process bicubic patches while the other
one does quadric surfaces. The processing of the
two primitives occurs in parallel, with the last node
of each pipeline arbitrating the use of the bus that
broadcasts messages to the pixel nodes.

in serial mode, Figure 3(c), the geometric functions



are distributed over 18 nodes instead of nine,
spreading out the work load so that each node has
less to do. This reduces the number of computa-
tional bottlenecks, and thus can reduce the overall
processing time. Vectorization of the coarse-grain
processes can alleviate bottlenecks. For example,
a pipeline configuration might include ten nodes
dedicated to shading, with the /-th node handling
every tenth polygon.

Pixel Node Software

Pixel nodes provide functions and implement algo-
rithms that can be done in parallel, like the raster-
scan conversion of points, lines, and polygons,
image compositing, and ray tracing. Because the
frame buffer memory is distributed through the
pixel node array [Figure 6], all routines that access
the frame buffer are implemented here as well.

In the pixel node array, identical functions are usu-
“ally replicated in each node. These include

- antialiased and depth-cued vector generation,

- flat, Gouraud-shaded, and texture-mapped
polygon rendering,

» raster operations,

« buffer-to-buffer copy algorithms,

+ antialiasing by supersampling, and
« image display.

Because the machine is completely programmable,
the pixel nodes can contain a rich set of graphics
functions that can be modified to include new algo-
rithms or to improve existing ones.

User Level Software

There are three collections of software available
with the Pixel Machine. All three are host-resident,
but give different kinds of access to the Pixel
Machine,

-« PIClib™ is a complete 3D graphics package,
« RAYIib™ is a very fast ray-tracing package,

- DEVtools™ is a collection of tools for developing
applications that run in the pipe and pixel nodes.

These three software packages are described in
more detail in the sections that follow, including
examples and timing information.

11
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PIClib

PIClib is a library of interactive, high-resolution
graphics routines for the Pixel Machine that are
callable from application programs running on the
host. PIClib uses the pipeline for object and normal
vector generation and transformation, backfacing
surface removal, shading, clipping, projection, and
triangularization. The pixel nodes contain program
modules that rasterize points, lines and polygons,
do z-buffer calculations on polygons and spheres,
draw cursors, perform raster operations, and
display and read back images.

PiClib contains approximately 200 subroutines that
provide the capability to

« draw points, lines, and polygons specified with
either integer or floating point coordinates in two-
and three-dimensional object spaces,

+ draw arcs, circles, quadrics and super quadrics,
cubic curves and bicubic patches,

» manipulate the transformation matrix stack:
push, pop, and load it, pre- and post-multiply it
by a given matrix, specify translation, rotation
and scaling parameters, and read back the
matrix, its inverse or a normal vector maitrix,

* manipulate the projection matrix stack: push,
pop, and load it, pre- and post-multiply it by a
given matrix, specify perspective or orthographic
projection parameters and viewports, and read
back the matrix or its inverse,

+ do lighting, shading and depth-cueing, hidden
surface removal, and antialiasing

+ manipulate color maps,
« control the frame buffer,

+ manipulate the cursor, mouse, and other input
devices,

* initialize the hardware and software, synchronize
with vertical retrace, swap buffers and pipelines,
and other control functions,

+ load fonts and draw character strings,

+ do operations that require feedback, such as
‘picking or selecting objects.

In addition to points, lines, and polygons, the raster
primitives include atoms and voxel templates.

*q
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Atoms are Phong-shaded spheres [F85] and have
a directional light source vector and settable sur-
face characteristics that affect ambient, diffuse,

and specular lighting coefficients. Atoms are gen-
erated much faster than polygonal spheres and
should be used as a building block for three dimen-
sional modeling. ‘

Templates are pre-rendered, z-buffered primitives
that are stored in off-screen memory*. They can
be spheres, cubes, or arbitrary rgba.z bitmaps, and
are rasterized by copying the rgb:bits into:the
frame buffer. They, too, are useful building blocks
for applications such as molecular modeling and
volume rendering, and, because they are pre-
rendered, are much faster than atoms.

PIClib has a rich set of commands for controlling
light sources and shading properties. Directional,
point and spot light arrays, up to fifty of each type,
can be specified, and selected lights turned off and
on as desired. Surface properties that control
reflection coefficients for ambient, diffuse and spec-
ular lighting as well as transparency can be speci-
fied, and the user can choose from among flat,
Gouraud, and Phong shading* for polygons and
surfaces.

*Voxel templates and Phong shaded polygons are not
available in Release 1.0 of PIClib.



PIClib Examples

In addition to the commands mentioned in the pre-

vious section, PIClib includes routines for more
advanced graphics algorithms like object genera-
tion, antialiasing, texture mapping, and image com-
positing. Examples of these capabilities and algo-
rithms are presented below, including a simple
PIClib program.

Object Generation

Object generation is the ability to produce a com-
plex object from a high-level description. The
polygonal rendering algorithm in PIClib supports
the generation of two- and three-dimensional
curves and surfaces: circles, arcs, cubic curves,
quadrics, superquadrics, bicubic patches. These
objects can be created by specifying points, lines,
or polygons.

High-level object generation is performed by the
first node in the pipeline, called Euclid. This node
receives commands from the host that define the
object. These commands are removed from the
message stream and replaced with the correspond-
ing point, move, draw, and polygon commands
that will generate the object. For example, if the
host sends a sphere command, Euclid will output a
set of polygon commands describing a canonical
sphere at the origin. The rest of the pipe nodes
treat the polygons as if they had been sent directly
from the host. However, the computational task of
generating them and the memory required to store
them has been off-loaded from the host to the
Pixel Machine. This approach can significantly
reduce the size of host-resident data bases.

A simple program to draw a set of rings using the
torus routine in PIClib is shown in Exampie 1.
Once the initialization steps are complete, the pro-
gram sends commands to turn on object genera-
tion mode and set up the lighting model. The
remaining commands set up the lighting model and
viewing matrix and interactively draw the rings.

A more complicated PIClib program generated the
image in Figure 9. The airplane consists of 2116
bicubic patches and 321 spheres, and was ren-
dered at 1280x1024 resolution with two directional
light sources in 3.5 seconds. Each patch was
tessellated into eighteen Gouraud-shaded
polygons. The rivets on the plane body were ren-
dered as Phong-shaded spheres.
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#include <stdio.h>
#include "piclib.h"

#define NRINGS T4

#define FROM 300.0, 0.0, 380.0
#define AT 0.0, 0.0, 60.0
#define TWIST 0.0

#define FIELD_OF_VIEW 40.0

#define ASPECT_RATIO 1.25

#define DEPTH 1.0, 2000.0

#define EXP 0.3
#define XYZDimensions 20.0, 20.0, 20.0

extern PICsurface_model surface[NRINGS];

main()

{
PIClight_source light;
register int i; ~
register float rad;

light.nx = 1.0;
light.ny = -1,0;
light.nz = 1.0;

light.r = light.g = light.b = 1.0;

I* initialization */

PICinit();

PICzbuffer(PIC_ON);

PICeuclid_mode (PIC_EUCLID_POLYGON);
PICshade_mode (PIC_SHADE_GOURAUD);
PICput_viewport(192, 1088, 185, 899);

I* set viewpari 10 black */
PICcolor_rgb(PIC_BLACK);
PICclear_rgb();

I* estublish viewing and projection matrices */
PICpersp_project (FIELD_OF_VIEW,ASPECT_RATIO,DEPTH);
PIClookup_ view(FROM, AT, TWIST);

/¥ set up lighting purameters */

PIClight_ambient (PIC_WHITE);
PICput_light_source(PIC_LIGHT_DIRECT, 0, &light);
PIClight_switch(PIC_LIGHT_.DIRECT, 0, PIC_ON);

I* iterate to draw the rings */

for (i=0, rad=150; i<NRINGS; i++, rad-=25;) {
PICput_surface_model (&surface[i]):
PICsuperq_torus(XY¥2ZDimensions, rad, EXP, EXP);
PICtranslate_z(40.0);

}

PICexit();

}

Example 1. Object generation: Rings.

Antialiasing

Antialiasing has been implemented in PIClib by
supersampling. The number of samples per pixel
is specified by the user, as well as coefficients of
an arbitrarily-sized filter kernel. The samples may
be distributed within a pixel or across neighboring
pixels, and the filter can be box, pyramid, gaus-
sian, or whatever the user desires. The entire



Figure 8. Object Generation: Rings generated by Example 1.

Figure 9. Object generation: Alias airplane with procedural clouds over
Dog Mountain, Colorado.

image is rendered n times, where n is the number
of samples per pixel. Each time the scene is ren-
dered, the projection matrix is modified slightly,
moving the center of a pixel to the current sam-
pling point. The intensity values for each pixel are
written into the frame buffer. At the end of each
pass, the rgb contents of the frame buffer are mul-
tiplied by the current coefficient of the filter and
accumulated in the external z-buffer in floating
point format. After the final pass, the results of the
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convolution are converted from floating point to
integer format and displayed in an rgb frame
buffer.

One advantage to this approach is that it is gen-
eral: special antialiasing rasterizers are not
required for each primitive. It also eliminates the
potential memory requirements of an a-buffer
approach [C84]. Although it is brute-force, it
quickly antialiases everything, including image
regions that are not usually antialiased, such as

‘specular highlights.

No Antialiasing

Antigliased with 3x3 Pyramid Filter

Antialiased with 4x4 Box Filter 3x3 Edge- Detection Filter

Figure 10. Antialiasing: Pyramid, box, and edge-detection filters.

Figure 10 demonstrates antialiasing using three dif-
ferent filters. The original image, a brick wall with
a window, is in the upper left corner of the figure.
The scene is antialiased with a 3x3 pyramid filter
(upper right corner), with a 4x4 box filter (lower
left), and with a 3x3 edge-detection filter (lower
right).

Texture Mapping

In real life, surfaces are seldom perfectly smooth,
with constant color. More often, they are patterned
or bumpy with color variations. Texture mapping,
bump mapping, and environmental shading make a
computer-generated scene look more realistic by
adding variations to the surfaces.

PIClib provides a routine that allows the user to



attach a texture map index, or uv value, to each
vertex in a polygon. The texture maps,
256x256x32-bit images, are loaded into the video
RAM of each pixel node via the broadcast bus.
The texture maps can be antialiased using super-
sampling, as described above, and can be used to
render any of the PIClib graphics primitives.

Of course, completely unrealistic but technically
interesting effects can also be achieved with tex-
ture mapping algorithms. Figure 11 shows a
Gouraud-shaded ellipsoid with a 256x256 image of
a mandrill texture-mapped onto it. The ellipsoid,
composed of 800 polygons, was rendered in 0.27
seconds at 600x600 pixel resolution.

Figure 11. Texture mapping: Mandrill on an egg.

Mandrill on an Egg can be generated in the follow-
ing way. First, the mandrill texture is stored in off-
screen rgbo. frame buffer memory Then, the host
sends polygons, normals and uv texture indices at
each vertex to the Pixel Machine. The polygons
are transformed and shaded in the pipeline. The
rasterizer in each pixel node receives messages
containing polygon descriptions from the last node
in the pipeline, including shading information and
uv indices for each vertex. The surface intensity
resulting from the shading calculations is combined -
with the intensity obtained from the texture map at
each pixel and the uv values are bilinearly interpo-
lated over the surface of the polygon.

*3

Image Compositing

The large amount of video and dynamic memory in
the frame buffer and the floating point capability of

. the processor facilitates the implementation of a
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powerful set of compositing tools. Figure 12, A
Dog Mountain Junkyard, is a frame from an
interactive program which allows a user to move a
3D cursor (located front and center in Figure 12)
along the surface of the mountain, placing objects
at various points along the route. The mountain
range, consisting of approximately 350,000
polygons, is rendered only once. All rgbo. and z-
buffer information is saved in off-screen memory
and copied to the current frame buffer at the begin-
ning of each frame. The cursor is rendered on top
of the mountain, while new objects are added to
the stored rgba and z data. Since the amount of
computation per frame is minimal, this technique
allows a user to manipulate the objects in this com-
plex scene in real time.

Figure 12. Image compositing: A Dog ontain Junkyard.



RAYIib

Ray tracing is a technique for rendering realistic,
optically accurate images by tracing the paths of
light rays to compute the illumination of objects. It
accounts for reflection, transparency, refraction,
and shadows in the generated image. Ray tracing
is particularly well suited to the Pixel Machine,
since it is a computationally intensive algorithm that
is highly parallel in nature and requires large
numbers of floating point operations.

The ray tracing algorithm involves three steps:
1. Generate the display list.

2.Form a tree of ray intersections with objects
and generate new transmitted, reflective, and
shadow rays.

3. Recursively apply the illumination model to
nodes in the ray tree.

Rays are traced backwards from the viewpoint
through each pixel in the screen to their origin at a
light source. if there are nxm pixels on the
display, then at least nxm rays will be traced, and
each must be tested for intersection with each
object in the image. Bounding volumes are used
to reduce the complexity of the intersection test. If
a ray intersects an object, the surface properties of
the object determines whether the ray splits into
several rays and what the paths of the rays will be.

Ray tracing is computationally very expensive.
However, each ray can be traced independently of
the others, making the algorithm well-suited for
parallel implementation.

RAYlib is a ray-tracing library for the Pixel
Machine. It contains approximately 100 routines,
and includes the following features:

« area light sources that provide realistic soft sha-
dows,

 multiple light sources of arbitrary color,

+ adaptive stochastic antialiasing to remove jagged
edges,

+ texture mapping with independent surface quali-
ties associated with each pixel, including color,
reflectivity, and transparency,

« control over the degree of reflectivity and tran-
sparency of each object in the scene,
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« the ability to independently turn on and off sha-
dows, transparencies, antialiasing, and reflec-
tions for faster rendering.

Like PIClib, RAYlib is implemented as a C-callable
library which provides an interface between an
application program and the rendering functions in
the Pixel Machine. The pipe nodes apply modeling
transformations to objects and their bounding
boxes, and other similar-operations. Each pixel
node keeps a copy-of‘the display list, but ray-
traces its portion of the image independently.
Display lists that exceed the local memory of a
pixel node are stored on the host and demand- -
paged to the pixel nodes. The z-buffer memory is
used to store the display list and the texture maps
are stored in off-screen rgbo memory. Texture
maps larger than 256x256 are stored in the host
and demand-paged to the pixel nodes. Up to 64
4Kx4K textures are supported.

The image of the fractal Sphereflake, Figure 13,
contains 7381 reflective spheres and three light
sources. Up to 16 child rays were traced from
each pixel to generate -an image with 512x512
resolution. Table 3 lists Pixel Machine execution
times for different numbers of pixel nodes. The
last column in the table shows inverted and nor-
malized timings illustrating the linear improvement
in performance for this particular application.
According to benchmarks by Eric Haines [H87], the
Sphereflake can be rendered on high-performance
workstations in four to five hours. A Pixel Machine
with 64 pixel nodes took less than 16 seconds,
three orders of magnitude faster.

Number of Actual Normalized
Pixel Nodes Time Time
16 60.1 16.00
20 47.8 20.12
32 30.2 31.81
40 24.0 40.07
64 15.5 62.04

Table 3. Sphereflake execution times (seconds) for a 512x512 image.

Figure 1 is also a ray-traced image. It depicts a
three dimensional model of the Pixel Machine, a -
workstation, a table, and two video monitors. The
scene contains about 2000 polygons and is
illuminated by two area light sources. The image
is recursively mapped onto the Pixel Machine’s
monitor with a texture map.



Figure 13. Ray tracing: Sphereflake.

Figure 14. Ray tracing: the image generated by Example 2.

Example 2 shows a simple ray tracing program.
The image it generates is pictured in Figure 14.

A3
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#include "raylib.h"

/* surface model definitions *!
RAYsurface_model chrome = {
0.2, 0.2, 0.2, /* ambiem color */
0.2, 0.2, 0.2, /*diffuse color *
0.7, 0.8, 0.8, /*specular color */
100.0, 1* specular exponent */
0.0, 0.8, 0.8, /*transparency, specularity, reflectivity */
1.0 1* refraction index */
b

RAYsurface_model matte = {
.0, 0.0, 0.0,

0, 0.0, 0.0,
0, 0.0, 0.0,
.0,

0, 0.0, 0.0,
.0

- 0 0 0 0O 0

b

struct { float x, y, z; } lightvertex[4] = {

{ 400.0, 400.0, 1000.0 },
{ 400.0, 600.0, 1000.0 },
{ 600.0, 600.0, 1000.0 },
{ 600.0, 400.0, 1000.0 }
by
main()

{ RAYlight_source light;

1* initialization */
if (RAYinit() != RAY_TRACE) exit{-1);

RAYput _viewport (800, 1199, 50, 849);

RAYpersp_project(10.0, 0.5, 0.0, 100000.0);
RAYbackground_color{0.54, 0.75, 0.878);
RAYlight_ambient(0.405, 0.562, 0.659);
RAYambient_intensity(0.4);

/* define light source *!

light.intensity = 500.0;

light.r = light.g = light.b = 1.0;
light.samples = 3;

light.vertices = 4;

light.vertex = {float x) lightvertex;
RAYput_light_source(RAY_LIGHT_AREA, 0, &light);
RAYlight_switch{RAY_LIGHT_AREA), 0, RAY_ON);

I* specify matte surfuce model and

1% draw textured polygon using defaull resident texture map */
RAYput_surface_model(&matte};
RAYpoly_point_uv(-1000.0, 0.0, -1000.0, 7.0, 7.0);
RAYpoly_point_uv(1000.0, 0.0, -1000.0, 0.0, 7.0);
RAYpoly_point_uv(1000.0, 0.0, 1000.0, 0.0, 0.0};
RAYpoly_point_uv(-1000.0, 0.0, 1000.0, 7.0, 0.0);
RAYpoly_close(};

1* specifv chrome surface model and draw spherical atom */
RAYput_surface_model(&matte);
RAYatom{0.0, 70.0, 0.0, 50.0);

1* define ray tracing parameters and start tracing! *!
RAYshade_mode{RAY_SHADOWS + RAY_ANTIALIAS);
RAYsamples{5, 16, 0.25);
RAYtrace({);
RAYexit();

}

RAYlookat_view(1000.0,1000.0,1000.0,0.0,0.0,0.0,0.0);

Example 2. Ray tracing: A simple example.



DEVtools

DEVtools provides a set of tools and libraries
necessary to develop application-specific code for
the pipe and pixel nodes. They include

+ a host server that allocates resources and pro-
vides services to the pipe and pixel nodes

+ a C compiler, an assembler, and a linking loader
for the DSP32

libraries of I/O, graphics, and mathematics func-
tions

a symbolic debugger and dataflow simulator for
the DSP32

The DEVtools host server handles all resource
requests from the Pixel Machine. It monitors all or
a specified subset of the nodes, waiting for mes-
sages. Whenever a message is received, a host
function is invoked.

Some messages and functions are pre-defined.
Examples are

+ printing an ASCIl message from a node to the
standard output device, and

+ setting the direction of the serial 1/0 links in the
pixel nodes.

The user can add messages and functions to the
server, customizing it to an application or an
environment. By modifying the server, the Pixel
Machine can be used for more than fast, fancy
graphics. For example, intensive numerical com-
putations can be programmed to run in the pipeline
or the pixel node mesh with the results returned to
the host in a user-defined message. This capabil-
ity allows the Pixel Machine to serve as a general-
purpose parallel computing engine.

DEVlib and a simple server program are included
in DEVtools. DEVlib contains the pre-defined func-
tions and the polling/dispatching routine that moni-
tors communications from the nodes. Other func-
tions help the user add messages and functions to
the server. An example server program, DEVprint,
is included and provides a skeleton which the user
can customize to a particular application and
environment.

“3
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The Distributed Frame Buffer

Programming the pixel nodes to access the inter-
leaved frame buffer requires an understanding of
two concepts:

*+ an algebraic domain transformation that maps
from a screen space coordinate system to a pro-
cessor space coordinate system, and

« techniques for rendering images in a subscreen,
‘the small, contiguous frame buffer that is
attached to each pixel node.

The domain transformation maps point-from Carte-
sian (x,y) screen space to (i, j) processor space as
follows:

o .1

i=qx-0) =g
where N, and N, are the number of processors per
row and column, respectively, in the pixel node
array, and are fixed for any given model of the
Pixel Machine. O, and O, select a particular pro-
cessor in the array, with Oy in the range [0, Ny—1]
and O, varying between 0 and N,~1.

(y - Oy)

The transformations from processor to screen
space are:

x=1iN,+ O, y=jiN+0,

The effort required to parallelize an existing algo-
rithm involves the restructuring of the algorithm so
that it operates in the (j, j) processor space rather
than screen space. Any algorithm that processes
each pixel independently, such as fractal genera- -
tion or ray tracing, requires very little modification,
since no coherence is required from one pixel to
the next. The number and complexity of modifica-
tions required increases with the degree of
coherency between one pixel and the next or one
scan line and the next. Writing a program so that
it adheres to the domain transformation guarantees
portability to single processor systems, where
N,=N,=1 and O,=0,=0.

The pixel interleaving scheme presents an obstacle
to applications that require a single pixel node to
process and display a contiguous set of pixels.
The serial I/0 (S!O) capability of the pixel nodes
provides continuous pixel manipulation. The set of
pixels can be created in undisplayed memory and
then routed, using SIO, to the pixel nodes that will



display them. Table 4 shows timing information for
distributing pixels for interleaved display using SIO.
Three different pixel buffer sizes are used, as well
as two different machine configurations.

Model Buffer Size |
Number Nodes 256x256 512x512 1024x1024
916 4x4 0.16 0.62 2.47
964 8x8 0.07 0.29 1.15

Table 4. Pixel interleaving times with SIO (seconds).

The pixel nodes are arranged in an nxm array, and
the processor in the ith row, jth column handles
every nth pixel on every mth scan line (see Figure
7). Each processor addresses a portion of the
frame buffer, which it sees as a contiguous sub-
screen. The coordinate system of the subscreen is
called the processor space. DEViools provides
mapping functions from (x,y) screen space to (i,j)
processor space.

ILO{(x) returns the smaliest i = x,

i
i THI(x) returns the largest i < x.

j = JLoly) returns the smallest | = x.
j = JHI(y) returns the largest j = x.

Since there are more pixels in screen space than
in processor space, the mapping is not one-to-one.
To insure that the processor space pixel (/y,/;) is
actually screen space pixel (x4,yy), the following
condition must hold:

ILO{x1)==IHI(x1) && JLO{y1)==JHI(y1)
Here is a simple example. The code segment in
Example 3 draws a set of vertical and horizontal
lines in a screen space viewport defined by xmin,
xmax, ymin, and ymax.

for {x=xmin; x<xmax; x+=delta)
for (y=ymin, y<ymax; y++)
putpix{x, y, RED};

for {y=zymin, y<ymax; y+=delta)
for {x=xmin; x<xmax; X++)
putpix(x, y, GREEN);

Example 3. Line drawing in screen space.

This code segment can be converted into code for
the pixel nodes by adding a conditional statement
to test for the pixel’s presence in the processor
space of this node, as shown below (Example 4).

*3

19

x<xmax; x+=delta)

for (y=ymin, y<ymax; y++)

if ((i=ILO(x))==IHI(x)&&(j=JLO(y))==JHI(y))
putpix{i. j, RED);

for (x=xmin;

for (y=ymin, y<ymax; y+=delta)>
for (x=xmin; x<xmax; X++)
if ((1isILO{x))==IHI(x)8&(J=JLO(y))==JHI(y))

putpix(i, j, GREEN);

Example 4. Line drawing in processor space.

The pixel node code shown above is straightfor-
ward but inefficient. It iterates across screen space,
and does the processor space mapping and testing
for each pixel. A better method is to iterate over
processor space, as shown in Exampie 5.

imin = ILO{xmin);

imax = IHI{xmax);

jmin = JLO{ymin});

jmax = JHI{ymax);

for (i=imin; i<=imax; i+=delta)
for (j=jmin, j<=jmax; J++)

putpix{i, j, RED);

for (j=jmin, j<=jmax; j+=delta)

for (i=xmin; i<=imax; i++)
putpix{i, j, GREEN);

Example 5. Efficient line drawing in processor space.

In the next sections, two much more complicated
examples of algorithms that might be implemented
in the Pixel Machine nodes are presented.

image Processing

Object generation, antialiasing, texture mapping,
image compaositing, and ray tracing examples
demonstrate the Pixel Machine’s ability to execute
a wide range of image synthesis algorithms, The
machine is equally well-suited for image analysis
tasks, particularly since the pipe and pixel node
processor, the DSP32, was designed for digital sig-
nal processing.

Adaptive histogram equalization [P87a] is a tech-
nique used to enhance the contrast in an image.
At each pixel, a histogram of the intensities of
neighboring pixels, called a contextual region, is
examined. The histogram is equalized over the full
intensity range and a new value is assigned to a
pixel based on where its intensity falls relative to
the neighboring values.

Figure 15 demonstrates adaptive histogram equali-
zation. Figure 15(a) is the original image. Figures
15(b-d) illustrate the algorithm applied at each pixel




with contextual regions of 63x63, 31x31, and
15%15 pixels, respectively.

The host and pipe nodes decode and download
the image to the pixel nodes. Each pixel node has
a copy of the image in its memory, and performs
the adaptive histogram equalization algorithm asyn-
chronously on the pixels in its own portion of the
distributed frame buffer. Table 5 gives execution
times for both 256x256 and 512x512 images.
using various contextual region sizes.

Region Size 256x256 512x512
15x15 0.35 1.10
31x31 1.22 4.20
63%x63 4.20 17.00

Table 5. Adaptive histogram equalization execution times (in seconds).

Image processing: Adaptive histogram equalization with
(a) original image, (b) 63x63 region, (c)31x31 region, and (d) 15x15 re-
gion,

Figure 15.

Visualizing Compiex Functions

Fractal geometry is a branch of mathematics used
to describe self-similar structures of fractal dimen-
sion [M77]. The Julia set is a class of fractals in
the complex plane.

A generating function is evaluated for discrete
points in a rectangular region of the compiex plane
until the function diverges or a specified number of
iterations is reached. The behavior of this function
can be visualized by mapping the complex plane
onto a raster display. The Julia set in Figure 16
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was generated in 3.5 seconds at a resolution of
1280x1024. The color at each pixel is determined
by the number of iterations of diverging points, and
the function value for converging points, with up to
256 iterations per pixel.

This algorithm, shown in Example 6, has been
implemented entirely in the pixel nodes. Each
node computes the Julia set only at the complex
points corresponding to pixels in its portion of the
distributed frame buffer. The implementation is
written in C and uses DEVIib routines that provide
access to the frame buffer and apply the domain
transformation from screen space to-processor
space.

Figure 16. Fractal functions: A Julia set.



#include "pxm.h"

{
1% generate mapping functions */
al = (rehi - relo)/{(xmax - xmin);
b1 = relo - a1l * xmin;
FXTOFI(screen, al, b1);

a2 = (imhi - imlo)/(ymax ~ ymin);
b2 = imlo - a2 * ymin;
FYTOFJ(screen, a2, b2);

/* convert screen coordinates o processor coordinaies */
imin = ILO(screen, xmin);
jmin = JLO(screen, ymin);
imax = IHI(screen, xmax);
jmax = JHI(screen, ymax);

for (j=jmin; j<=jmax; j++) {
for {(i=imin; i<imax; 1++) {
re = a1l # i + b1,
im = a2 * j + b2;

done=FALSE;
for (n=0; n<MAX_ITER && !done; n++) |
if ((z=rewsre + im#im) <= MAX_2Z) {
temp_im = 2#%re+im + Q;
re = resre - im#im + P;
im = temp_im;

}
else
done = TRUE;
}
if (done)
putpix(screen, i, j, color_based_on_n);
else

putpix(screen, i, j, color_based_on_z);

}

julia(screen,xmin,ymin,xmax,ymax,relo,rehi,imlo, imhi,P,Q)

Example 6. Fractal functions: A Julia set renderer.
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