
UNIXTM TIME-SHARING SYSTEM:

UNIX PROGRAMMER’S MANUAL

Seventh Edition, Volume 1

January, 1979

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

PREFACE

Although this Seventh Edition no longer bears their byline, Ken Thompson and Dennis Ritchie remain
the fathers and preceptors of the UNIX† time-sharing system. Many of the improvements here described
bear their mark. Among many, many other people who have contributed to the further flowering of
UNIX, we wish especially to acknowledge the contributions of A. V. Aho, S. R. Bourne, L. L. Cherry, G.
L. Chesson, S. I. Feldman, C. B. Haley, R. C. Haight, S. C. Johnson, M. E. Lesk, T. L. Lyon, L. E.
McMahon, R. Morris, R. Muha, D. A. Nowitz, L. Wehr, and P. J. Weinberger. We appreciate also the
effective advice and criticism of T. A. Dolotta, A. G. Fraser, J. F. Maranzano, and J. R. Mashey; and we
remember the important work of the late Joseph F. Ossanna.

B. W. Kernighan
M. D. McIlroy

†UNIX is a Trademark of Bell Laboratories.

INTRODUCTION TO VOLUME 1

This volume gives descriptions of the publicly available features of the UNIX† system. It does not
attempt to provide perspective or tutorial information upon the UNIX operating system, its facilities, or its
implementation. Various documents on those topics are contained in Volume 2. In particular, for an
overview see ‘The UNIX Time-Sharing System’ by Ritchie and Thompson; for a tutorial see ‘UNIX for
Beginners’ by Kernighan.

Within the area it surveys, this volume attempts to be timely, complete and concise. Where the latter
two objectives conflict, the obvious is often left unsaid in favor of brevity. It is intended that each pro-
gram be described as it is, not as it should be. Inevitably, this means that various sections will soon be
out of date.

The volume is divided into eight sections:

1. Commands
2. System calls
3. Subroutines
4. Special files
5. File formats and conventions
6. Games
7. Macro packages and language conventions
8. Maintenance

Commands are programs intended to be invoked directly by the user, in contradistinction to subroutines,
which are intended to be called by the user’s programs. Commands generally reside in directory /bin
(for bin ary programs). Some programs also reside in / usr/ bin, to save space in /bin. These directories
are searched automatically by the command interpreter.

System calls are entries into the UNIX supervisor. Every system call has one or more C language inter-
faces described in section 2. The underlying assembly language interface, coded with opcode sys, a
synonym for trap, is given as well.

An assortment of subroutines is available; they are described in section 3. The primary libraries in
which they are kept are described in intro(3). The functions are described in terms of C, but most will
work with Fortran as well.

The special files section 4 discusses the characteristics of each system ‘file’ that actually refers to an I/O
device. The names in this section refer to the DEC device names for the hardware, instead of the names
of the special files themselves.

The file formats and conventions section 5 documents the structure of particular kinds of files; for exam-
ple, the form of the output of the loader and assembler is given. Excluded are files used by only one
command, for example the assembler’s intermediate files.

Games have been relegated to section 6 to keep them from contaminating the more staid information of
section 1.

Section 7 is a miscellaneous collection of information necessary to writing in various specialized
languages: character codes, macro packages for typesetting, etc.

The maintenance section 8 discusses procedures not intended for use by the ordinary user. These pro-
cedures often involve use of commands of section 1, where an attempt has been made to single out

†UNIX is a Trademark of Bell Laboratories.

- iii -

peculiarly maintenance-flavored commands by marking them 1M.

Each section consists of a number of independent entries of a page or so each. The name of the entry is
in the upper corners of its pages, together with the section number, and sometimes a letter characteristic
of a subcategory, e.g. graphics is 1G, and the math library is 3M. Entries within each section are alpha-
betized. The page numbers of each entry start at 1; it is infeasible to number consecutively the pages of
a document like this that is republished in many variant forms.

All entries are based on a common format, not all of whose subsections will always appear.

The name subsection lists the exact names of the commands and subroutines covered under the
entry and gives a very short description of their purpose.

The synopsis summarizes the use of the program being described. A few conventions are used,
particularly in the Commands subsection:

Boldface words are considered literals, and are typed just as they appear.

Square brackets [] around an argument indicate that the argument is optional. When an
argument is given as ‘name’, it always refers to a file name.

Ellipses ‘. . .’ are used to show that the previous argument-prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus sign ‘– ’ is often taken to mean some sort of option-specifying argument even if it
appears in a position where a file name could appear. Therefore, it is unwise to have files
whose names begin with ‘– ’.

The description subsection discusses in detail the subject at hand.

The files subsection gives the names of files which are built into the program.

A see also subsection gives pointers to related information.

A diagnostics subsection discusses the diagnostic indications which may be produced. Messages
which are intended to be self-explanatory are not listed.

The bugs subsection gives known bugs and sometimes deficiencies. Occasionally also the sug-
gested fix is described.

In section 2 an assembler subsection carries the assembly language system interface.

At the beginning of the volume is a table of contents, organized by section and alphabetically within
each section. There is also a permuted index derived from the table of contents. Within each index
entry, the title of the writeup to which it refers is followed by the appropriate section number in
parentheses. This fact is important because there is considerable name duplication among the sections,
arising principally from commands which exist only to exercise a particular system call.

HOW TO GET STARTED

This section sketches the basic information you need to get started on .ie 1>0 UNIX : how to log in and
log out, how to communicate through your terminal, and how to run a program. See ‘UNIX for
Beginners’ in Volume 2 for a more complete introduction to the system.

Logging in. You must call UNIX from an appropriate terminal. UNIX terminals are typified by the TTY
43, the GE Terminet 300, the DASI 300S and 450, and most video terminals such as the Datamedia
5120 or HP 2640. You must also have a valid user name, which may be obtained, together with the
telephone number, from the system administrators. The same telephone number serves terminals operat-
ing at all the standard speeds. After a data connection is established, the login procedure depends on
what kind of terminal you are using.

300-baud terminals: Such terminals include the GE Terminet 300 and most display terminals run with
popular modems. These terminals generally have a speed switch which should be set at ‘300’ (or ‘30’
for 30 characters per second) and a half/full duplex switch which should be set at full-duplex. (This
switch will often have to be changed since many other systems require half-duplex). When a connection
is established, the system types ‘login:’; you type your user name, followed by the ‘return’ key. If you
have a password, the system asks for it and turns off the printer on the terminal so the password will not

- iv -

appear. After you have logged in, the ‘return’, ‘new line’, or ‘linefeed’ keys will give exactly the same
results.

1200- and 150-baud terminals: If there is a half/full duplex switch, set it at full-duplex. When you
have established a data connection, the system types out a few garbage characters (the ‘login:’ message
at the wrong speed). Depress the ‘break’ (or ‘interrupt’) key; this is a speed-independent signal to UNIX

that a different speed terminal is in use. The system then will type ‘login:,’ this time at another speed.
Continue depressing the break key until ‘login:’ appears in clear, then respond with your user name.
From the TTY 37 terminal, and any other which has the ‘newline’ function (combined carriage return
and linefeed), terminate each line you type with the ‘new line’ key, otherwise use the ‘return’ key.

Hard-wired terminals. Hard-wired terminals usually begin at the right speed, up to 9600 baud; other-
wise the preceding instructions apply.

For all these terminals, it is important that you type your name in lower-case if possible; if you type
upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters and will
translate all subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that the Shell program will type a ‘$’ to you. (The
Shell is described below under ‘How to run a program.’)

For more information, consult stty(1), which tells how to adjust terminal behavior, getty(8), which
discusses the login sequence in more detail, and tty(4), which discusses terminal I/O.

Logging out. There are three ways to log out:

You can simply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control-d) to the Shell. The
Shell will terminate and the ‘login: ’ message will appear again.

You can also log in directly as another user by giving a login(1) command.

How to communicate through your terminal. When you type characters, a gnome deep in the system
gathers your characters and saves them in a secret place. The characters will not be given to a program
until you type a return (or newline), as described above in Logging in.

UNIX terminal I/O is full-duplex. It has full read-ahead, which means that you can type at any time,
even while a program is typing at you. Of course, if you type during output, the printed output will
have the input characters interspersed. However, whatever you type will be saved up and interpreted in
correct sequence. There is a limit to the amount of read-ahead, but it is generous and not likely to be
exceeded unless the system is in trouble. When the read-ahead limit is exceeded, the system throws
away all the saved characters.

The character ‘@’ in typed input kills all the preceding characters in the line, so typing mistakes can be
repaired on a single line. Also, the character ‘#’ erases the last character typed. Successive uses of ‘#’
erase characters back to, but not beyond, the beginning of the line. ‘@’ and ‘#’ can be transmitted to a
program by preceding them with ‘\’. (So, to erase ‘\’, you need two ‘#’s). These conventions can be
changed by the stty(1) command.

The ‘break’ or ‘interrupt’ key causes an interrupt signal, as does the The ASCII ‘delete’ (or ‘rubout’)
character, which is not passed to programs. This signal generally causes whatever program you are run-
ning to terminate. It is typically used to stop a long printout that you don’t want. However, programs
can arrange either to ignore this signal altogether, or to be notified when it happens (instead of being ter-
minated). The editor, for example, catches interrupts and stops what it is doing, instead of terminating,
so that an interrupt can be used to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. (FS appears many places on different ter-
minals, most commonly as control-\ or control- .) It not only causes a running program to terminate
but also generates a file with the core image of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you have a ter-
minal with the newline function or whether it must be simulated with carriage-return and line-feed. In
the latter case, all input carriage returns are turned to newline characters (the standard line delimiter) and
both a carriage return and a line feed are echoed to the terminal. If you get into the wrong mode, the

- v -

stty(1) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab function,
you can arrange to have them turned into spaces during output, and echoed as spaces during input. The
system assumes that tabs are set every eight columns. Again, the stty(1) command will set or reset this
mode. Also, the command tabs(1) will set the tab stops automatically on many terminals.

How to run a program; the Shell. When you have successfully logged in, a program called the Shell is
listening to your terminal. The Shell reads typed-in lines, splits them up into a command name and
arguments, and executes the command. A command is simply an executable program. The Shell looks
first in your current directory (see below) for a program with the given name, and if none is there, then
in a system directory. There is nothing special about system-provided commands except that they are
kept in a directory where the Shell can find them.

The command name is always the first word on an input line; it and its arguments are separated from
one another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a ‘$’ at you to indicate that
it is ready for another command.

The Shell has many other capabilities, which are described in detail in section sh(1).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the system
administrator gave you a user name, he also created a directory for you (ordinarily with the same name
as your user name). When you log in, any file name you type is by default in this directory. Since you
are the owner of this directory, you have full permission to read, write, alter, or destroy its contents.
Permissions to have your will with other directories and files will have been granted or denied to you by
their owners. As a matter of observed fact, few UNIX users protect their files from destruction, let alone
perusal, by other users.

To change the current directory (but not the set of permissions you were endowed with at login) use
cd(1).

Path names. To refer to files not in the current directory, you must use a path name. Full path names
begin with ‘/’, the name of the root directory of the whole file system. After the slash comes the name
of each directory containing the next sub-directory (followed by a ‘/’) until finally the file name is
reached. For example, / usr/ lem/ filex refers to the file filex in the directory lem; lem is itself a subdirec-
tory of usr; usr springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name of the
subdirectory with no prefixed ‘/’.

A path name may be used anywhere a file name is required.

Important commands which modify the contents of files are cp(1), mv(1), and rm(1), which respectively
copy, move (i.e. rename) and remove files. To find out the status of files or directories, use ls(1). See
mkdir(1) for making directories and rmdir (in rm(1)) for destroying them.

For a fuller discussion of the file system, see ‘The UNIX Time-Sharing System,’ by Ken Thompson and
Dennis Ritchie. It may also be useful to glance through section 2 of this manual, which discusses sys-
tem calls, even if you don’t intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use the editor ed(1). The
three principal languages in UNIX are provided by the C compiler cc(1), the Fortran compiler f77(1), and
the assembler as(1). After the program text has been entered through the editor and written on a file,
you can give the file to the appropriate language processor as an argument. The output of the language
processor will be left on a file in the current directory named ‘a.out’. (If the output is precious, use mv
to move it to a less exposed name soon.) If you wrote in assembly language, you will probably need to
load the program with library subroutines; see ld(1). The other two language processors call the loader
automatically.

When you have finally gone through this entire process without provoking any diagnostics, the resulting
program can be run by giving its name to the Shell in response to the ‘$’ prompt.

- vi -

Your programs can receive arguments from the command line just as system programs do, see exec(2).

Text processing. Almost all text is entered through the editor ed(1). The commands most often used to
write text on a terminal are: cat, pr, roff and nroff, all in section 1.

The cat command simply dumps ASCII text on the terminal, with no processing at all. The pr command
paginates the text, supplies headings, and has a facility for multi-column output. Nroff is an elaborate
text formatting program. Used naked, it requires careful forethought, but for ordinary documents it has
been tamed; see ms(7). Roff is a simpler text formatting program, and requires somewhat less
forethought.

Troff prepares documents for a Graphics Systems phototypesetter; it is very similar to nroff, and often
works from exactly the same source text. It was used to produce this manual.

Status inquiries. Various commands exist to provide you with useful information. Who(1) prints a list
of users presently logged in. Date(1) prints the current time and date. Ls(1) will list the files in your
directory or give summary information about particular files.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use them,
it would be well to learn something about them, because someone else may aim them at you.

To communicate with another user currently logged in, write(1) is used; mail(1) will leave a message
whose presence will be announced to another user when he next logs in. The write-ups in the manual
also suggest how to respond to the two commands if you are a target.

When you log in, a message-of-the-day may greet you before the first ‘$’.

CONVERTING FROM THE 6TH EDITION

There follows a catalogue of significant, mostly incompatible, changes that will affect old users convert-
ing to the 7th edition. No attempt is made to list all new facilities, or even all minor, but easily spotted
changes, just the bare essentials without which it will be almost impossible to do anything.

Addressing files. Byte addresses in files are now long (32-bit) integers. Accordingly seek has been
replaced by lseek(2). Every program that contains a seek must be modified. Stat and fstat(2) have
been affected similarly, since file lengths are now 32- rather than 24-bit quantities.

Assembly language. System entry points are no longer built in symbols. Their values must be obtained
from /usr/include/sys.s, see intro(2). All system calls modify r0. This means that sequences like

mov file,r0
sys lseek,0,0,2
sys write,buf,n

will no longer work. (In fact, lseek now modifies r1 as well, so be doubly cautious.)

The sleep(2) entry point is gone; see the more general facility, alarm, plus pause.

Few library functions have assembly language entry points any more. You will have to simulate the C
calling sequence.

Stty and gtty. These system calls have been extensively altered, see ioctl(2) and tty(4).

Archive files. The format of files produced by ar(1) has been altered. To convert to the new style, use
arcv(1).

C language, lint. The official syntax for initialization requires an equal sign = before an initializer, and
brackets { } around compound initial values; arrays and structures are now initialized honestly. Two-
address operators, such as =+ and =-, are now written += and -= to avoid ambiguities, although the old
style is still accepted. You will also certainly want to learn about

long integers
type definitions
casts (for type conversion)
unions (for more honest storage sharing)
#include <filename> (which searches in standard places)

- vii -

The program lint(1) checks for obsolete syntax and does strong type checking of C programs, singly or
in groups that are expected to be loaded together. It is indispensable for conversion work.

Fortran. The old fc is replaced by f77, a true compiler for Fortran 77, compatible with C. There are
substantial changes in the language; see ‘A Portable Fortran 77 Compiler’ in Volume 2.

Stream editor. The program sed(1) is adapted to massive, repetitive editing jobs of the sort encoun-
tered in converting to the new system. It is well worth learning.

Standard I/O. The old fopen, getc, putc complex and the old – lp package are both dead, and even
getchar has changed. All have been replaced by the clean, highly efficient, stdio(3) package. The first
things to know are that getchar(3) returns the integer EOF (– 1), which is not a possible byte value, on
end of file, that 518-byte buffers are out, and that there is a defined FILE data type.

Make. The program make(1) handles the recompilation and loading of software in an orderly way
from a ‘makefile’ recipe given for each piece of software. It remakes only as much as the modification
dates of the input files show is necessary. The makefiles will guide you in building your new system.

Shell, chdir. F. L. Bauer once said Algol 68 is the Everest that must be climbed by every computer
scientist because it is there. So it is with the shell for UNIX users. Everything beyond simple command
invocation from a terminal is different. Even chdir is now spelled cd. You will want to study sh(1)
long and hard.

Debugging. Adb(1) is a far more capable replacement for the debugger db. The first-time user should
be especially careful about distinguishing / and ? in adb commands, and watching to make sure that the
x whose value he asked for is the real x, and not just some absolute location equal to the stack offset of
some automatic x. You can always use the ‘true’ name, _x, to pin down a C external variable.

Dsw. This little-known, but indispensable facility has been taken over by rm – ri.

Boot procedures. Needless to say, these are all different. See section 8 of this volume, and ‘Setting up
UNIX’ in Volume 2.

PERMUTED INDEX

abort – generate IOT fault abort(3)
abs – integer absolute value abs(3)

fabs, floor, ceil – absolute value, floor, ceiling functions floor(3)
ac – login accounting ac(1)
access – determine accessibility of file access(2)

phys – allow a process to access physical addresses phys(2)
access – determine accessibility of file . access(2)

ac – login accounting . ac(1)
sa, accton – system accounting . sa(1)

acct – execution accounting file . acct(5)
acct – turn accounting on or off . acct(2)

sa, accton – system accounting sa(1)
sin, cos, tan, asin, acos, atan, atan2 – trigonometric functions sin(3)

dn – DN-11 ACU interface . dn(4)
adb – debugger . adb(1)

phys – allow a process to access physical addresses . phys(2)
basename – strip filename affixes . basename(1)

plot: openpl et al. – graphics interface plot(3)
alarm – schedule signal after specified time alarm(2)

brk, sbrk, break – change core allocation . brk(2)
malloc, free, realloc, calloc – main memory allocator . malloc(3)

lex – generator of lexical analysis programs . lex(1)
bcd, ppt – convert to antique media . bcd(6)

a.out – assembler and link editor output a.out(5)
ar – archive and library maintainer ar(1)
ar – archive (library) file format ar(5)

bc – arbitrary-precision arithmetic language bc(1)
tp – manipulate tape archive . tp(1)

ar – archive and library maintainer ar(1)
ar – archive (library) file format ar(5)

tar – tape archiver . tar(1)
arcv – convert archives to new format arcv(1)

echo – echo arguments . echo(1)
expr – evaluate arguments as an expression expr(1)

pow, gcd, rpow – multiple precision integer arithmetic /msub, mult, mdiv, min, mout, mp(3)
arithmetic – provide drill in number facts arithmetic(6)

bc – arbitrary-precision arithmetic language . bc(1)
as – assembler . as(1)

asctime, timezone – convert date and time to ASCII ctime, localtime, gmtime, ctime(3)
ascii – map of ASCII character set ascii(7)

atof, atoi, atol – convert ASCII to numbers . atof(3)
ASCII ctime, localtime, gmtime, asctime, timezone – convert date and time to ctime(3)
functions sin, cos, tan, asin, acos, atan, atan2 – trigonometric sin(3)

as – assembler . as(1)
a.out – assembler and link editor output a.out(5)

assert – program verification assert(3)
setbuf – assign buffering to a stream setbuf(3)

at – execute commands at a later time at(1)
sin, cos, tan, asin, acos, atan, atan2 – trigonometric functions sin(3)

atof, atoi, atol – convert ASCII to numbers atof(3)
wait – await completion of process wait(1)

language . awk – pattern scanning and processing awk(1)
backgammon – the game backgammon(6)
banner – make long posters banner(6)
bas – basic . bas(1)

store, delete, firstkey, nextkey – data base subroutines dbminit, fetch, dbm(3)
basename – strip filename affixes basename(1)

bas – basic . bas(1)
bc – arbitrary-precision arithmetic language bc(1)
bcd, ppt – convert to antique media bcd(6)

cb – C program beautifier . cb(1)

- ix -

j0, j1, jn, y0, y1, yn – bessel functions . j0(3)
fread, fwrite – buffered binary input/output . fread(3)

bj – the game of black jack bj(6)
sync – update the super block . sync(1)

sync – update super- block . sync(2)
update – periodically update the super block . update(8)

sum – sum and count blocks in a file . sum(1)
ching, fortune – the book of changes and other cookies ching(6)

boot – startup procedures boot(8)
brk, sbrk, break – change core allocation brk(2)

export, login,/ sh, for, case, if, while, break, continue, cd, eval, exec, exit, sh(1)
brk, sbrk, break – change core allocation brk(2)

fread, fwrite – buffered binary input/output fread(3)
stdio – standard buffered input/output package stdio(3)
setbuf – assign buffering to a stream . setbuf(3)

mknod – build special file . mknod(1)
l3tol, ltol3 – convert between 3- byte integers and long integers l3tol(3)

swab – swap bytes . swab(3)
cc, pcc – C compiler . cc(1)

cb – C program beautifier . cb(1)
lint – a C program verifier . lint(1)

hypot, cabs – euclidean distance hypot(3)
cal – print calendar . cal(1)

dc – desk calculator . dc(1)
cal – print calendar . cal(1)

calendar – reminder service calendar(1)
indir – indirect system call . indir(2)

cu – call UNIX . cu(1)
malloc, free, realloc, calloc – main memory allocator malloc(3)

intro, errno – introduction to system calls and error numbers intro(2)
exec, exit, export, login, newgrp,/ sh, for, case, if, while, break, continue, cd, eval, sh(1)

cat – catenate and print cat(1)
cat – phototypesetter interface cat(4)

signal – catch or ignore signals signal(2)
cat – catenate and print . cat(1)

cb – C program beautifier cb(1)
cc, pcc – C compiler . cc(1)
cd – change working directory cd(1)

sh, for, case, if, while, break, continue, cd, eval, exec, exit, export, login, newgrp,/ sh(1)
functions fabs, floor, ceil – absolute value, floor, ceiling floor(3)

brk, sbrk, break – change core allocation brk(2)
chdir – change default directory chdir(2)

passwd – change login password passwd(1)
chmod – change mode . chmod(1)
chmod – change mode of file . chmod(2)
chown – change owner and group of a file chown(2)

chown, chgrp – change owner or group chown(1)
cd – change working directory cd(1)

ching, fortune – the book of changes and other cookies ching(6)
pipe – create an interprocess channel . pipe(2)

ungetc – push character back into input stream ungetc(3)
ispunct, isprint, iscntrl, isascii – character classification /isalnum, isspace, ctype(3)

eqnchar – special character definitions for eqn eqnchar(7)
getc, getchar, fgetc, getw – get character or word from stream getc(3)

putc, putchar, fputc, putw – put character or word on a stream putc(3)
ascii – map of ASCII character set . ascii(7)

tr – translate characters . tr(1)
chdir – change default directory chdir(2)

dcheck – file system directory consistency check . dcheck(1)
icheck – file system storage consistency check . icheck(1)

eqn, neqn, checkeq – typeset mathematics eqn(1)
checkers – game . checkers(6)

chess – the game of chess . chess(6)
chown, chgrp – change owner or group chown(1)

other cookies . ching, fortune – the book of changes and ching(6)
chmod – change mode chmod(1)
chmod – change mode of file chmod(2)
chown – change owner and group of a file chown(2)
chown, chgrp – change owner or group chown(1)

isprint, iscntrl, isascii – character classification /isalnum, isspace, ispunct, ctype(3)
clri – clear i-node . clri(1)

feof, ferror, clearerr, fileno – stream status inquiries ferror(3)

- x -

cron – clock daemon . cron(8)
close – close a file . close(2)

fclose, fflush – close or flush a stream fclose(3)
clri – clear i-node . clri(1)
cmp – compare two files cmp(1)
col – filter reverse line feeds col(1)

sorted files . comm – select or reject lines common to two comm(1)
system – issue a shell command . system(3)

test – condition command . test(1)
time – time a command . time(1)

nice, nohup – run a command at low priority nice(1)
uux – unix to unix command execution . uux(1)

set, shift, times, trap, umask, wait – command language /newgrp, read, readonly, sh(1)
intro – introduction to commands . intro(1)

at – execute commands at a later time at(1)
comm – select or reject lines common to two sorted files comm(1)

diff – differential file comparator . diff(1)
cmp – compare two files . cmp(1)

diff3 – 3-way differential file comparison . diff3(1)
cc, pcc – C compiler . cc(1)

f77 – Fortran 77 compiler . f77(1)
yacc – yet another compiler- compiler . yacc(1)

wait – await completion of process wait(1)
test – condition command . test(1)

mkconf – generate configuration tables . mkconf(1)
dcheck – file system directory consistency check . dcheck(1)

icheck – file system storage consistency check . icheck(1)
mkfs – construct a file system mkfs(1)

deroff – remove nroff, troff, tbl and eqn constructs . deroff(1)
ls – list contents of directory . ls(1)

login,/ sh, for, case, if, while, break, continue, cd, eval, exec, exit, export, sh(1)
ioctl, stty, gtty – control device . ioctl(2)
init, rc – process control initialization . init(8)

terminals– conventional names . term(7)
ecvt, fcvt, gcvt – output conversion . ecvt(3)

printf, fprintf, sprintf – formatted output conversion . printf(3)
scanf, fscanf, sscanf – formatted input conversion . scanf(3)

units – conversion program . units(1)
dd – convert and copy a file dd(1)

arcv – convert archives to new format arcv(1)
atof, atoi, atol – convert ASCII to numbers atof(3)

integers l3tol, ltol3 – convert between 3-byte integers and long l3tol(3)
localtime, gmtime, asctime, timezone – convert date and time to ASCII ctime, ctime(3)

bcd, ppt – convert to antique media bcd(6)
fortune – the book of changes and other cookies . ching, ching(6)

cp – copy . cp(1)
uucp, uulog – unix to unix copy . uucp(1)

dd – convert and copy a file . dd(1)
core – format of core image file core(5)

brk, sbrk, break – change core allocation . brk(2)
core – format of core image file . core(5)

mem, kmem – core memory . mem(4)
trigonometric functions sin, cos, tan, asin, acos, atan, atan2 – sin(3)

sinh, cosh, tanh – hyperbolic functions sinh(3)
wc – word count . wc(1)

sum – sum and count blocks in a file . sum(1)
cp – copy . cp(1)
crash – what to do when the system crashes crash(8)
creat – create a new file creat(2)

pipe – create an interprocess channel pipe(2)
umask – set file creation mode mask . umask(2)

cron – clock daemon . cron(8)
crypt – encode/decode crypt(1)
crypt, setkey, encrypt – DES encryption crypt(3)

– convert date and time to ASCII ctime, localtime, gmtime, asctime, timezone ctime(3)
cu – call UNIX . cu(1)

ttt, cubic – tic-tac-toe . ttt(6)
spline – interpolate smooth curve . spline(1)

cron – clock daemon . cron(8)
prof – display profile data . prof(1)

ttys – terminal initialization data . ttys(5)
fetch, store, delete, firstkey, nextkey – data base subroutines dbminit, dbm(3)

- xi -

null – data sink . null(4)
types – primitive system data types . types(5)

join – relational database operator . join(1)
du, dp – DU-11 201 data-phone interface . du(4)

date – print and set the date . date(1)
time, ftime – get date and time . time(2)

gmtime, asctime, timezone – convert date and time to ASCII ctime, localtime, ctime(3)
touch – update date last modified of a file touch(1)

nextkey – data base subroutines dbminit, fetch, store, delete, firstkey, dbm(3)
dc – desk calculator . dc(1)

check . dcheck – file system directory consistency dcheck(1)
dd – convert and copy a file dd(1)

dump, ddate – incremental dump format dump(5)
adb – debugger . adb(1)

tp – DEC/mag tape formats tp(5)
crypt – encode/ decode . crypt(1)

tc – TC-11/TU56 DECtape . tc(4)
chdir – change default directory . chdir(2)

eqnchar – special character definitions for eqn . eqnchar(7)
subroutines dbminit, fetch, store, delete, firstkey, nextkey – data base dbm(3)

tail – deliver the last part of a file tail(1)
mesg – permit or deny messages . mesg(1)

constructs . deroff – remove nroff, troff, tbl and eqn deroff(1)
crypt, setkey, encrypt – DES encryption . crypt(3)

dup, dup2 – duplicate an open file descriptor . dup(2)
dc – desk calculator . dc(1)

access – determine accessibility of file access(2)
file – determine file type . file(1)

ioctl, stty, gtty – control device . ioctl(2)
df – disk free . df(1)
diff – differential file comparator diff(1)
diff3 – 3-way differential file comparison diff3(1)

diff – differential file comparator diff(1)
diff3 – 3-way differential file comparison diff3(1)

dir – format of directories dir(5)
mv – move or rename files and directories . mv(1)

cd – change working directory . cd(1)
chdir – change default directory . chdir(2)

ls – list contents of directory . ls(1)
mkdir – make a directory . mkdir(1)

dcheck – file system directory consistency check dcheck(1)
unlink – remove directory entry . unlink(2)
pwd – working directory name . pwd(1)

mknod – make a directory or a special file mknod(2)
hp – RH-11/RP04, RP05, RP06 moving-head disk . hp(4)

rk – RK-11/RK03 or RK05 disk . rk(4)
rp – RP-11/RP03 moving-head disk . rp(4)

hs – RH11/RS03-RS04 fixed-head disk file . hs(4)
rf – RF11/RS11 fixed-head disk file . rf(4)

df – disk free . df(1)
du – summarize disk usage . du(1)

mount, umount – mount and dismount file system . mount(1)
prof – display profile data . prof(1)

hypot, cabs – euclidean distance . hypot(3)
dn – DN-11 ACU interface dn(4)

– find and insert literature references in documents refer, lookbib refer(1)
du, dp – DU-11 201 data-phone interface du(4)

reversi – a game of dramatic reversals . reversi(6)
graph – draw a graph . graph(1)

arithmetic – provide drill in number facts . arithmetic(6)
pk – packet driver . pk(4)

pkclose, pkread, pkwrite, pkfail – packet driver simulator pkopen, pkopen(3)
du – summarize disk usage du(1)
du, dp – DU-11 201 data-phone interface du(4)

dump – incremental file system dump . dump(1)
od – octal dump . od(1)

dump – incremental file system dump dump(1)
dump, ddate – incremental dump format dump(5)

dumpdir – print the names of files on a dump tape . dumpdir(1)
descriptor . dup, dup2 – duplicate an open file dup(2)

echo – echo arguments echo(1)
ecvt, fcvt, gcvt – output conversion ecvt(3)

- xii -

ed – text editor . ed(1)
end, etext, edata – last locations in program end(3)
ed – text editor . ed(1)

sed – stream editor . sed(1)
a.out – assembler and link editor output . a.out(5)

grep, egrep, fgrep – search a file for a pattern grep(1)
crypt – encode/decode . crypt(1)

crypt, setkey, encrypt – DES encryption crypt(3)
makekey – generate encryption key . makekey(8)

program . end, etext, edata – last locations in end(3)
getgrent, getgrgid, getgrnam, setgrent, endgrent – get group file entry getgrent(3)

getpwent, getpwuid, getpwnam, setpwent, endpwent – get password file entry getpwent(3)
xsend, xget, enroll – secret mail . xsend(1)

nlist – get entries from name list nlist(3)
setgrent, endgrent – get group file entry getgrent, getgrgid, getgrnam, getgrent(3)

setpwent, endpwent – get password file entry getpwent, getpwuid, getpwnam, getpwent(3)
unlink – remove directory entry . unlink(2)

execle, execve, execlp, execvp, exec, exece, environ – execute a file execl, execv, exec(2)
environ – user environment environ(5)

getenv – value for environment name . getenv(3)
eqnchar – special character definitions for eqn . eqnchar(7)

deroff – remove nroff, troff, tbl and eqn constructs . deroff(1)
eqn, neqn, checkeq – typeset mathematics eqn(1)

eqn . eqnchar – special character definitions for eqnchar(7)
error numbers . intro, errno – introduction to system calls and intro(2)

perror, sys_errlist, sys_nerr – system error messages . perror(3)
errno – introduction to system calls and error numbers . intro, intro(2)

spell, spellin, spellout – find spelling errors . spell(1)
pkon, pkoff – establish packet protocol pkon(2)

end, etext, edata – last locations in program end(3)
hypot, cabs – euclidean distance . hypot(3)

for, case, if, while, break, continue, cd, eval, exec, exit, export, login, newgrp,/ sh, sh(1)
expr – evaluate arguments as an expression expr(1)

execl, execv, execle, execve, execlp, execvp, exec, exece, environ – execute a file exec(2)
/case, if, while, break, continue, cd, eval, exec, exit, export, login, newgrp, read,/ sh(1)

execv, execle, execve, execlp, execvp, exec, exece, environ – execute a file execl, exec(2)
at – execute commands at a later time at(1)

uux – unix to unix command execution . uux(1)
acct – execution accounting file acct(5)

sleep – suspend execution for an interval sleep(1)
sleep – suspend execution for interval . sleep(3)

monitor – prepare execution profile . monitor(3)
profil – execution time profile profil(2)

exece, environ – execute a file execl, execv, execle, execve, execlp, execvp, exec, exec(2)
exit – terminate process exit(2)

/if, while, break, continue, cd, eval, exec, exit, export, login, newgrp, read, readonly,/ sh(1)
logarithm, power, square root exp, log, log10, pow, sqrt – exponential, exp(3)

frexp, ldexp, modf – split into mantissa and exponent . frexp(3)
exp, log, log10, pow, sqrt – exponential, logarithm, power, square root exp(3)

/while, break, continue, cd, eval, exec, exit, export, login, newgrp, read, readonly, set,/ sh(1)
expr – evaluate arguments as an expression expr(1)
f77 – Fortran 77 compiler f77(1)

ceiling functions . fabs, floor, ceil – absolute value, floor, floor(3)
factor, primes – factor a number, generate large primes factor(1)

true, false – provide truth values true(1)
abort – generate IOT fault . abort(3)

fclose, fflush – close or flush a stream fclose(3)
ecvt, fcvt, gcvt – output conversion ecvt(3)

fopen, freopen, fdopen – open a stream fopen(3)
status inquiries . feof, ferror, clearerr, fileno – stream ferror(3)
data base subroutines dbminit, fetch, store, delete, firstkey, nextkey – dbm(3)

fclose, fflush – close or flush a stream fclose(3)
stream getc, getchar, fgetc, getw – get character or word from getc(3)

gets, fgets – get a string from a stream gets(3)
grep, egrep, fgrep – search a file for a pattern grep(1)

access – determine accessibility of file . access(2)
acct – execution accounting file . acct(5)

chmod – change mode of file . chmod(2)
chown – change owner and group of a file . chown(2)

close – close a file . close(2)
core – format of core image file . core(5)

creat – create a new file . creat(2)

- xiii -

dd – convert and copy a file . dd(1)
execvp, exec, exece, environ – execute a file execl, execv, execle, execve, execlp, exec(2)

group – group file . group(5)
hs – RH11/RS03-RS04 fixed-head disk file . hs(4)

link – link to a file . link(2)
mknod – build special file . mknod(1)

mknod – make a directory or a special file . mknod(2)
passwd – password file . passwd(5)

pr – print file . pr(1)
read – read from file . read(2)

rev – reverse lines of a file . rev(1)
rf – RF11/RS11 fixed-head disk file . rf(4)

size – size of an object file . size(1)
sum – sum and count blocks in a file . sum(1)

tail – deliver the last part of a file . tail(1)
touch – update date last modified of a file . touch(1)

uniq – report repeated lines in a file . uniq(1)
write – write on a file . write(2)

file – determine file type file(1)
diff – differential file comparator . diff(1)

diff3 – 3-way differential file comparison . diff3(1)
umask – set file creation mode mask umask(2)

dup, dup2 – duplicate an open file descriptor . dup(2)
getgrnam, setgrent, endgrent – get group file entry getgrent, getgrgid, getgrent(3)

getpwnam, setpwent, endpwent – get password file entry getpwent, getpwuid, getpwent(3)
grep, egrep, fgrep – search a file for a pattern . grep(1)

ar – archive (library) file format . ar(5)
split – split a file into pieces . split(1)

mktemp – make a unique file name . mktemp(3)
stat, fstat – get file status . stat(2)

mkfs – construct a file system . mkfs(1)
mount, umount – mount and dismount file system . mount(1)

mount, umount – mount or remove file system . mount(2)
dcheck – file system directory consistency check dcheck(1)

dump – incremental file system dump . dump(1)
hier – file system hierarchy . hier(7)

quot – summarize file system ownership quot(1)
restor – incremental file system restore . restor(1)

icheck – file system storage consistency check icheck(1)
mtab – mounted file system table . mtab(5)

filsys, flblk, ino – format of file system volume . filsys(5)
utime – set file times . utime(2)

file – determine file type . file(1)
basename – strip filename affixes . basename(1)

feof, ferror, clearerr, fileno – stream status inquiries ferror(3)
cmp – compare two files . cmp(1)

select or reject lines common to two sorted files . comm – comm(1)
find – find files . find(1)

rm, rmdir – remove (unlink) files . rm(1)
sort – sort or merge files . sort(1)

mv – move or rename files and directories . mv(1)
dumpdir – print the names of files on a dump tape . dumpdir(1)

volume . filsys, flblk, ino – format of file system filsys(5)
col – filter reverse line feeds col(1)

plot – graphics filters . plot(1)
find – find files . find(1)

documents refer, lookbib – find and insert literature references in refer(1)
find – find files . find(1)
look – find lines in a sorted list look(1)

ttyname, isatty, ttyslot – find name of a terminal ttyname(3)
lorder – find ordering relation for an object library lorder(1)

spell, spellin, spellout – find spelling errors . spell(1)
dbminit, fetch, store, delete, firstkey, nextkey – data base subroutines dbm(3)

hs – RH11/RS03-RS04 fixed-head disk file . hs(4)
rf – RF11/RS11 fixed-head disk file . rf(4)

filsys, flblk, ino – format of file system volume filsys(5)
functions . fabs, floor, ceil – absolute value, floor, ceiling floor(3)

fclose, fflush – close or flush a stream . fclose(3)
fopen, freopen, fdopen – open a stream fopen(3)
fork – spawn new process fork(2)

ar – archive (library) file format . ar(5)
arcv – convert archives to new format . arcv(1)

- xiv -

dump, ddate – incremental dump format . dump(5)
core – format of core image file core(5)

dir – format of directories . dir(5)
filsys, flblk, ino – format of file system volume filsys(5)

tbl – format tables for nroff or troff tbl(1)
roff – format text . roff(1)

tp – DEC/mag tape formats . tp(5)
scanf, fscanf, sscanf – formatted input conversion scanf(3)

printf, fprintf, sprintf – formatted output conversion printf(3)
troff, nroff – text formatting and typesetting troff(1)
ms – macros for formatting manuscripts ms(7)

f77 – Fortran 77 compiler . f77(1)
ratfor – rational Fortran dialect . ratfor(1)

struct – structure Fortran programs . struct(1)
cookies . ching, fortune – the book of changes and other ching(6)
conversion . printf, fprintf, sprintf – formatted output printf(3)
stream putc, putchar, fputc, putw – put character or word on a putc(3)

puts, fputs – put a string on a stream puts(3)
fread, fwrite – buffered binary input/output fread(3)

df – disk free . df(1)
allocator . malloc, free, realloc, calloc – main memory malloc(3)

fopen, freopen, fdopen – open a stream fopen(3)
exponent . frexp, ldexp, modf – split into mantissa and frexp(3)

scanf, fscanf, sscanf – formatted input conversion scanf(3)
fseek, ftell, rewind – reposition a stream fseek(3)

stat, fstat – get file status . stat(2)
fseek, ftell, rewind – reposition a stream fseek(3)
time, ftime – get date and time time(2)

floor, ceil – absolute value, floor, ceiling functions . fabs, floor(3)
intro – introduction to library functions . intro(3)
j0, j1, jn, y0, y1, yn – bessel functions . j0(3)

tan, asin, acos, atan, atan2 – trigonometric functions . sin, cos, sin(3)
sinh, cosh, tanh – hyperbolic functions . sinh(3)

fread, fwrite – buffered binary input/output fread(3)
backgammon – the game . backgammon(6)

checkers – game . checkers(6)
moo – guessing game . moo(6)

bj – the game of black jack . bj(6)
chess – the game of chess . chess(6)
reversi – a game of dramatic reversals reversi(6)

wump – the game of hunt-the-wumpus wump(6)
hangman, words – word games . words(6)

itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow – multiple precision integer/ mp(3)
ecvt, fcvt, gcvt – output conversion ecvt(3)

maze – generate a maze problem maze(6)
mkconf – generate configuration tables mkconf(1)

makekey – generate encryption key makekey(8)
abort – generate IOT fault . abort(3)

factor, primes – factor a number, generate large primes . factor(1)
ncheck – generate names from i-numbers ncheck(1)

rand, srand – random number generator . rand(3)
lex – generator of lexical analysis programs lex(1)

or word from stream getc, getchar, fgetc, getw – get character getc(3)
getuid, getgid, geteuid, getegid – get user and group identity getuid(2)

getenv – value for environment name getenv(3)
identity getuid, getgid, geteuid, getegid – get user and group getuid(2)
endgrent – get group file entry getgrent, getgrgid, getgrnam, setgrent, getgrent(3)

getlogin – get login name getlogin(3)
getpass – read a password getpass(3)
getpid – get process identification getpid(2)
getpw – get name from UID getpw(3)

endpwent – get password file entry getpwent, getpwuid, getpwnam, setpwent, getpwent(3)
gets, fgets – get a string from a stream gets(3)
getty – set typewriter mode getty(8)

and group identity . getuid, getgid, geteuid, getegid – get user getuid(2)
getc, getchar, fgetc, getw – get character or word from stream getc(3)

time to ASCII ctime, localtime, gmtime, asctime, timezone – convert date and ctime(3)
setjmp, longjmp – non-local goto . setjmp(3)

graph – draw a graph . graph(1)
plot – graphics filters . plot(1)

plot: openpl et al. – graphics interface . plot(3)
plot – graphics interface . plot(5)

- xv -

pattern . grep, egrep, fgrep – search a file for a grep(1)
chown, chgrp – change owner or group . chown(1)

newgrp – log in to a new group . newgrp(1)
group – group file . group(5)

getgrgid, getgrnam, setgrent, endgrent – get group file entry getgrent, getgrent(3)
setuid, setgid – set user and group ID . setuid(2)

getgid, geteuid, getegid – get user and group identity . getuid, getuid(2)
chown – change owner and group of a file . chown(2)

make – maintain program groups . make(1)
ioctl, stty, gtty – control device . ioctl(2)

moo – guessing game . moo(6)
hangman, words – word games words(6)
hier – file system hierarchy hier(7)
hp – RH-11/RP04, RP05, RP06 moving-head disk hp(4)
hs – RH11/RS03-RS04 fixed-head disk file hs(4)
ht – RH-11/TU-16 magtape interface ht(4)

wump – the game of hunt-the-wumpus . wump(6)
sinh, cosh, tanh – hyperbolic functions . sinh(3)

hypot, cabs – euclidean distance hypot(3)
check . icheck – file system storage consistency icheck(1)

setuid, setgid – set user and group ID . setuid(2)
su – substitute user id temporarily . su(1)

getpid – get process identification . getpid(2)
geteuid, getegid – get user and group identity getuid, getgid, getuid(2)

exit, export, login, newgrp,/ sh, for, case, if, while, break, continue, cd, eval, exec, sh(1)
signal – catch or ignore signals . signal(2)

core – format of core image file . core(5)
dump, ddate – incremental dump format dump(5)

dump – incremental file system dump dump(1)
restor – incremental file system restore restor(1)

ptx – permuted index . ptx(1)
strcmp, strncmp, strcpy, strncpy, strlen, index, rindex – string operations /strncat, string(3)

indir – indirect system call indir(2)
init, rc – process control initialization init(8)

ttys – terminal initialization data . ttys(5)
popen, pclose – initiate I/O to/from a process popen(3)

filsys, flblk, ino – format of file system volume filsys(5)
clri – clear i-node . clri(1)

scanf, fscanf, sscanf – formatted input conversion . scanf(3)
ungetc – push character back into input stream . ungetc(3)

fread, fwrite – buffered binary input/output . fread(3)
stdio – standard buffered input/output package . stdio(3)

ferror, clearerr, fileno – stream status inquiries . feof, ferror(3)
refer, lookbib – find and insert literature references in documents refer(1)

cat – phototypesetter interface . cat(4)
dn – DN-11 ACU interface . dn(4)

du, dp – DU-11 201 data-phone interface . du(4)
ht – RH-11/TU-16 magtape interface . ht(4)

plot: openpl et al. – graphics interface . plot(3)
plot – graphics interface . plot(5)

tm – TM-11/TU-10 magtape interface . tm(4)
tty – general terminal interface . tty(4)

spline – interpolate smooth curve spline(1)
pipe – create an interprocess channel . pipe(2)

intro – introduction to commands intro(1)
intro – introduction to library functions intro(3)

numbers intro, errno – introduction to system calls and error intro(2)
ncheck – generate names from i-numbers . ncheck(1)

iostat – report I/O statistics . iostat(1)
popen, pclose – initiate I/O to/from a process . popen(3)

ioctl, stty, gtty – control device ioctl(2)
iostat – report I/O statistics iostat(1)

abort – generate IOT fault . abort(3)
isascii/ isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, ctype(3)

ttyname, isatty, ttyslot – find name of a terminal ttyname(3)
/isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii – character classification ctype(3)

system – issue a shell command system(3)
ispunct, isprint, iscntrl, isascii/ isalpha, isupper, islower, isdigit, isalnum, isspace, ctype(3)
gcd, rpow – multiple precision integer/ itom, madd, msub, mult, mdiv, min, mout, pow, mp(3)

j0, j1, jn, y0, y1, yn – bessel functions j0(3)
bj – the game of black jack . bj(6)

j0, j1, jn, y0, y1, yn – bessel functions j0(3)

- xvi -

join – relational database operator join(1)
makekey – generate encryption key . makekey(8)

kill – send signal to a process kill(2)
prejudice . kill – terminate a process with extreme kill(1)

mem, kmem – core memory mem(4)
integers and long integers l3tol, ltol3 – convert between 3-byte l3tol(3)

awk – pattern scanning and processing language . awk(1)
bc – arbitrary-precision arithmetic language . bc(1)

shift, times, trap, umask, wait – command language /login, newgrp, read, readonly, set, sh(1)
ld – loader . ld(1)

exponent . frexp, ldexp, modf – split into mantissa and frexp(3)
lex – generator of lexical analysis programs lex(1)

– find ordering relation for an object library . lorder lorder(1)
ar – archive (library) file format . ar(5)

intro – introduction to library functions . intro(3)
ar – archive and library maintainer . ar(1)

col – filter reverse line feeds . col(1)
comm – select or reject lines common to two sorted files comm(1)

uniq – report repeated lines in a file . uniq(1)
look – find lines in a sorted list . look(1)

rev – reverse lines of a file . rev(1)
ln – make a link . ln(1)

link – link to a file . link(2)
a.out – assembler and link editor output . a.out(5)

link – link to a file . link(2)
lint – a C program verifier lint(1)

look – find lines in a sorted list . look(1)
nlist – get entries from name list . nlist(3)

nm – print name list . nm(1)
ls – list contents of directory ls(1)

refer, lookbib – find and insert literature references in documents refer(1)
ln – make a link . ln(1)

ld – loader . ld(1)
convert date and time to ASCII ctime, localtime, gmtime, asctime, timezone – ctime(3)

end, etext, edata – last locations in program . end(3)
lock – lock a process in primary memory lock(2)

newgrp – log in to a new group newgrp(1)
logarithm, power, square root exp, log, log10, pow, sqrt – exponential, exp(3)

login – sign on . login(1)
ac – login accounting . ac(1)

getlogin – get login name . getlogin(3)
/continue, cd, eval, exec, exit, export, login, newgrp, read, readonly, set, shift,/ sh(1)

passwd – change login password . passwd(1)
utmp, wtmp – login records . utmp(5)

setjmp, longjmp – non-local goto setjmp(3)
look – find lines in a sorted list look(1)

references in documents refer, lookbib – find and insert literature refer(1)
object library . lorder – find ordering relation for an lorder(1)

ls – list contents of directory ls(1)
lseek, tell – move read/write pointer lseek(2)

long integers . l3tol, ltol3 – convert between 3-byte integers and l3tol(3)
m4 – macro processor m4(1)

ms – macros for formatting manuscripts ms(7)
man – macros to typeset manual man(7)

rpow – multiple precision integer/ itom, madd, msub, mult, mdiv, min, mout, pow, gcd, mp(3)
tp – DEC/ mag tape formats . tp(5)

ht – RH-11/TU-16 magtape interface . ht(4)
tm – TM-11/TU-10 magtape interface . tm(4)

xsend, xget, enroll – secret mail . xsend(1)
mail – send or receive mail among users mail(1)

malloc, free, realloc, calloc – main memory allocator malloc(3)
make – maintain program groups make(1)

ar – archive and library maintainer . ar(1)
make – maintain program groups make(1)

mkdir – make a directory . mkdir(1)
mknod – make a directory or a special file mknod(2)

ln – make a link . ln(1)
mktemp – make a unique file name mktemp(3)

banner – make long posters . banner(6)
makekey – generate encryption key makekey(8)

allocator . malloc, free, realloc, calloc – main memory malloc(3)
man – macros to typeset manual man(7)

- xvii -

man – print sections of this manual man(1)
tp – manipulate tape archive tp(1)

frexp, ldexp, modf – split into mantissa and exponent frexp(3)
man – print sections of this manual . man(1)

man – macros to typeset manual . man(7)
ms – macros for formatting manuscripts . ms(7)

umask – set file creation mode mask . umask(2)
eqn, neqn, checkeq – typeset mathematics . eqn(1)

maze – generate a maze problem maze(6)
precision integer/ itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow – multiple mp(3)

bcd, ppt – convert to antique media . bcd(6)
mem, kmem – core memory mem(4)

lock – lock a process in primary memory . lock(2)
mem, kmem – core memory . mem(4)

malloc, free, realloc, calloc – main memory allocator . malloc(3)
sort – sort or merge files . sort(1)

mesg – permit or deny messages mesg(1)
perror, sys_errlist, sys_nerr – system error messages . perror(3)

precision/ itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow – multiple mp(3)
mkconf – generate configuration tables mkconf(1)
mkdir – make a directory mkdir(1)
mkfs – construct a file system mkfs(1)
mknod – build special file mknod(1)
mknod – make a directory or a special file mknod(2)
mktemp – make a unique file name mktemp(3)

chmod – change mode . chmod(1)
getty – set typewriter mode . getty(8)

umask – set file creation mode mask . umask(2)
chmod – change mode of file . chmod(2)

frexp, ldexp, modf – split into mantissa and exponent frexp(3)
touch – update date last modified of a file . touch(1)

monitor – prepare execution profile monitor(3)
moo – guessing game moo(6)

mount, umount – mount and dismount file system mount(1)
mount, umount – mount or remove file system mount(2)

system . mount, umount – mount and dismount file mount(1)
mount, umount – mount or remove file system mount(2)

mtab – mounted file system table mtab(5)
integer/ itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow – multiple precision mp(3)

mv – move or rename files and directories mv(1)
lseek, tell – move read/write pointer lseek(2)

hp – RH-11/RP04, RP05, RP06 moving-head disk . hp(4)
rp – RP-11/RP03 moving-head disk . rp(4)

ms – macros for formatting manuscripts ms(7)
– multiple precision integer/ itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow mp(3)

mtab – mounted file system table mtab(5)
multiple precision integer/ itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow – mp(3)

mv – move or rename files and directories mv(1)
getenv – value for environment name . getenv(3)

getlogin – get login name . getlogin(3)
mktemp – make a unique file name . mktemp(3)

pwd – working directory name . pwd(1)
tty – get terminal name . tty(1)

getpw – get name from UID . getpw(3)
nlist – get entries from name list . nlist(3)

nm – print name list . nm(1)
ttyname, isatty, ttyslot – find name of a terminal . ttyname(3)

terminals– conventional names . term(7)
ncheck – generate names from i-numbers ncheck(1)

dumpdir – print the names of files on a dump tape dumpdir(1)
ncheck – generate names from i-numbers ncheck(1)

eqn, neqn, checkeq – typeset mathematics eqn(1)
creat – create a new file . creat(2)

arcv – convert archives to new format . arcv(1)
newgrp – log in to a new group . newgrp(1)

fork – spawn new process . fork(2)
newgrp – log in to a new group newgrp(1)

trap,/ /cd, eval, exec, exit, export, login, newgrp, read, readonly, set, shift, times, sh(1)
dbminit, fetch, store, delete, firstkey, nextkey – data base subroutines dbm(3)

nice – set program priority nice(2)
nice, nohup – run a command at low priority nice(1)
nlist – get entries from name list nlist(3)

- xviii -

nm – print name list . nm(1)
clri – clear i- node . clri(1)

nice, nohup – run a command at low priority nice(1)
setjmp, longjmp – non-local goto . setjmp(3)

troff, nroff – text formatting and typesetting troff(1)
tbl – format tables for nroff or troff . tbl(1)

deroff – remove nroff, troff, tbl and eqn constructs deroff(1)
null – data sink . null(4)

arithmetic – provide drill in number facts . arithmetic(6)
factor, primes – factor a number, generate large primes factor(1)

rand, srand – random number generator . rand(3)
atof, atoi, atol – convert ASCII to numbers . atof(3)

– introduction to system calls and error numbers . intro, errno intro(2)
ncheck – generate names from i- numbers . ncheck(1)

size – size of an object file . size(1)
lorder – find ordering relation for an object library . lorder(1)

od – octal dump . od(1)
open – open for reading or writing open(2)

fopen, freopen, fdopen – open a stream . fopen(3)
dup, dup2 – duplicate an open file descriptor . dup(2)

open – open for reading or writing open(2)
plot: openpl et al. – graphics interface plot(3)

strncpy, strlen, index, rindex – string operations /strncat, strcmp, strncmp, strcpy, string(3)
join – relational database operator . join(1)

stty – set terminal options . stty(1)
lorder – find ordering relation for an object library lorder(1)

a.out – assembler and link editor output . a.out(5)
fread, fwrite – buffered binary input/ output . fread(3)

ecvt, fcvt, gcvt – output conversion . ecvt(3)
printf, fprintf, sprintf – formatted output conversion . printf(3)

stdio – standard buffered input/ output package . stdio(3)
chown – change owner and group of a file chown(2)

chown, chgrp – change owner or group . chown(1)
quot – summarize file system ownership . quot(1)

pk – packet driver . pk(4)
pkopen, pkclose, pkread, pkwrite, pkfail – packet driver simulator pkopen(3)

pkon, pkoff – establish packet protocol . pkon(2)
tk – paginator for the Tektronix 4014 tk(1)

passwd – change login password passwd(1)
passwd – password file passwd(5)

getpass – read a password . getpass(3)
passwd – change login password . passwd(1)

passwd – password file . passwd(5)
getpwuid, getpwnam, setpwent, endpwent – get password file entry getpwent, getpwent(3)

grep, egrep, fgrep – search a file for a pattern . grep(1)
awk – pattern scanning and processing language awk(1)

pause – stop until signal pause(2)
cc, pcc – C compiler . cc(1)

popen, pclose – initiate I/O to/from a process popen(3)
mesg – permit or deny messages mesg(1)

ptx – permuted index . ptx(1)
messages . perror, sys_errlist, sys_nerr – system error perror(3)

du, dp – DU-11 201 data- phone interface . du(4)
cat – phototypesetter interface cat(4)
tc – photypesetter simulator tc(1)

addresses . phys – allow a process to access physical phys(2)
pipe – create an interprocess channel pipe(2)

tee – pipe fitting . tee(1)
pk – packet driver . pk(4)

driver simulator pkopen, pkclose, pkread, pkwrite, pkfail – packet pkopen(3)
pkon, pkoff – establish packet protocol pkon(2)

packet driver simulator pkopen, pkclose, pkread, pkwrite, pkfail – pkopen(3)
plot – graphics filters plot(1)
plot – graphics interface plot(5)
plot: openpl et al. – graphics interface plot(3)

vp – Versatec printer- plotter . vp(4)
lseek, tell – move read/write pointer . lseek(2)

process . popen, pclose – initiate I/O to/from a popen(3)
banner – make long posters . banner(6)

itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow – multiple precision integer/ mp(3)
square root exp, log, log10, pow, sqrt – exponential, logarithm, power, exp(3)

bcd, ppt – convert to antique media bcd(6)

- xix -

pr – print file . pr(1)
bc – arbitrary- precision arithmetic language bc(1)

mdiv, min, mout, pow, gcd, rpow – multiple precision integer arithmetic /msub, mult, mp(3)
monitor – prepare execution profile monitor(3)

lock – lock a process in primary memory . lock(2)
primes – factor a number, generate large primes . factor, factor(1)

types – primitive system data types types(5)
cat – catenate and print . cat(1)

date – print and set the date . date(1)
cal – print calendar . cal(1)
pr – print file . pr(1)

nm – print name list . nm(1)
man – print sections of this manual man(1)
pstat – print system facts . pstat(1)

dumpdir – print the names of files on a dump tape dumpdir(1)
vp – Versatec printer-plotter . vp(4)

conversion . printf, fprintf, sprintf – formatted output printf(3)
nice, nohup – run a command at low priority . nice(1)

nice – set program priority . nice(2)
boot – startup procedures . boot(8)

exit – terminate process . exit(2)
fork – spawn new process . fork(2)

kill – send signal to a process . kill(2)
popen, pclose – initiate I/O to/from a process . popen(3)

wait – await completion of process . wait(1)
init, rc – process control initialization init(8)

getpid – get process identification . getpid(2)
lock – lock a process in primary memory lock(2)

ps – process status . ps(1)
times – get process times . times(2)

phys – allow a process to access physical addresses phys(2)
wait – wait for process to terminate . wait(2)

ptrace – process trace . ptrace(2)
kill – terminate a process with extreme prejudice kill(1)

awk – pattern scanning and processing language . awk(1)
m4 – macro processor . m4(1)

prof – display profile data prof(1)
profil – execution time profile profil(2)

monitor – prepare execution profile . monitor(3)
profil – execution time profile . profil(2)

prof – display profile data . prof(1)
end, etext, edata – last locations in program . end(3)

units – conversion program . units(1)
cb – C program beautifier . cb(1)

make – maintain program groups . make(1)
nice – set program priority . nice(2)

assert – program verification . assert(3)
lint – a C program verifier . lint(1)

lex – generator of lexical analysis programs . lex(1)
struct – structure Fortran programs . struct(1)

pkon, pkoff – establish packet protocol . pkon(2)
arithmetic – provide drill in number facts arithmetic(6)
true, false – provide truth values . true(1)

ps – process status . ps(1)
pstat – print system facts pstat(1)
ptrace – process trace ptrace(2)
ptx – permuted index ptx(1)

ungetc – push character back into input stream ungetc(3)
puts, fputs – put a string on a stream puts(3)

putc, putchar, fputc, putw – put character or word on a stream putc(3)
puts, fputs – put a string on a stream puts(3)

putc, putchar, fputc, putw – put character or word on a stream putc(3)
pwd – working directory name pwd(1)
qsort – quicker sort . qsort(3)
quiz – test your knowledge quiz(6)
quot – summarize file system ownership quot(1)
rand, srand – random number generator rand(3)
ratfor – rational Fortran dialect ratfor(1)

init, rc – process control initialization init(8)
read – read from file . read(2)

getpass – read a password . getpass(3)
read – read from file . read(2)

- xx -

/cd, eval, exec, exit, export, login, newgrp, read, readonly, set, shift, times, trap,/ sh(1)
open – open for reading or writing . open(2)

/exec, exit, export, login, newgrp, read, readonly, set, shift, times, trap, umask,/ sh(1)
lseek, tell – move read/write pointer . lseek(2)

malloc, free, realloc, calloc – main memory allocator malloc(3)
mail – send or receive mail among users mail(1)

utmp, wtmp – login records . utmp(5)
references in documents refer, lookbib – find and insert literature refer(1)

comm – select or reject lines common to two sorted files comm(1)
lorder – find ordering relation for an object library lorder(1)

join – relational database operator join(1)
strip – remove symbols and relocation bits . strip(1)

calendar – reminder service . calendar(1)
unlink – remove directory entry unlink(2)

mount, umount – mount or remove file system . mount(2)
deroff – remove nroff, troff, tbl and eqn constructs deroff(1)

strip – remove symbols and relocation bits strip(1)
rm, rmdir – remove (unlink) files . rm(1)

mv – move or rename files and directories mv(1)
uniq – report repeated lines in a file uniq(1)

iostat – report I/O statistics . iostat(1)
uniq – report repeated lines in a file uniq(1)

fseek, ftell, rewind – reposition a stream . fseek(3)
restor – incremental file system restore restor(1)
rev – reverse lines of a file rev(1)

reversi – a game of dramatic reversals . reversi(6)
col – filter reverse line feeds . col(1)

rev – reverse lines of a file . rev(1)
reversi – a game of dramatic reversals reversi(6)

fseek, ftell, rewind – reposition a stream fseek(3)
rf – RF11/RS11 fixed-head disk file rf(4)

hp – RH-11/RP04, RP05, RP06 moving-head disk hp(4)
hs – RH11/RS03-RS04 fixed-head disk file hs(4)
ht – RH-11/TU-16 magtape interface ht(4)

strncmp, strcpy, strncpy, strlen, index, rindex – string operations /strncat, strcmp, string(3)
rk – RK-11/RK03 or RK05 disk rk(4)
rm, rmdir – remove (unlink) files rm(1)
roff – format text . roff(1)

sqrt – exponential, logarithm, power, square root exp, log, log10, pow, exp(3)
rp – RP-11/RP03 moving-head disk rp(4)

hp – RH-11/ RP04, RP05, RP06 moving-head disk hp(4)
rp – RP-11/RP03 moving-head disk rp(4)

/madd, msub, mult, mdiv, min, mout, pow, gcd, rpow – multiple precision integer arithmetic mp(3)
hs – RH11/ RS03-RS04 fixed-head disk file hs(4)
rf – RF11/ RS11 fixed-head disk file rf(4)

nice, nohup – run a command at low priority nice(1)
sa, accton – system accounting sa(1)

brk, sbrk, break – change core allocation brk(2)
conversion . scanf, fscanf, sscanf – formatted input scanf(3)

awk – pattern scanning and processing language awk(1)
alarm – schedule signal after specified time alarm(2)

grep, egrep, fgrep – search a file for a pattern grep(1)
xsend, xget, enroll – secret mail . xsend(1)

man – print sections of this manual man(1)
sed – stream editor . sed(1)

files . comm – select or reject lines common to two sorted comm(1)
mail – send or receive mail among users mail(1)
kill – send signal to a process kill(2)

ascii – map of ASCII character set . ascii(7)
umask – set file creation mode mask umask(2)
utime – set file times . utime(2)

nice – set program priority . nice(2)
/exit, export, login, newgrp, read, readonly, set, shift, times, trap, umask, wait – / sh(1)

stty – set terminal options . stty(1)
tabs – set terminal tabs . tabs(1)

date – print and set the date . date(1)
stime – set time . stime(2)
getty – set typewriter mode . getty(8)

setuid, setgid – set user and group ID setuid(2)
setbuf – assign buffering to a stream setbuf(3)

setuid, setgid – set user and group ID setuid(2)
getgrent, getgrgid, getgrnam, setgrent, endgrent – get group file entry getgrent(3)

- xxi -

setjmp, longjmp – non-local goto setjmp(3)
crypt, setkey, encrypt – DES encryption crypt(3)

getpwent, getpwuid, getpwnam, setpwent, endpwent – get password file entry getpwent(3)
setuid, setgid – set user and group ID setuid(2)

cd, eval, exec, exit, export, login, newgrp,/ sh, for, case, if, while, break, continue, sh(1)
system – issue a shell command . system(3)

/export, login, newgrp, read, readonly, set, shift, times, trap, umask, wait – command/ sh(1)
login – sign on . login(1)

pause – stop until signal . pause(2)
signal – catch or ignore signals signal(2)

alarm – schedule signal after specified time alarm(2)
kill – send signal to a process . kill(2)

signal – catch or ignore signals . signal(2)
pkread, pkwrite, pkfail – packet driver simulator pkopen, pkclose, pkopen(3)

tc – photypesetter simulator . tc(1)
trigonometric functions sin, cos, tan, asin, acos, atan, atan2 – sin(3)

sinh, cosh, tanh – hyperbolic functions sinh(3)
null – data sink . null(4)

size – size of an object file size(1)
sleep – suspend execution for an interval sleep(1)
sleep – suspend execution for interval sleep(3)

spline – interpolate smooth curve . spline(1)
qsort – quicker sort . qsort(3)

tsort – topological sort . tsort(1)
sort – sort or merge files sort(1)

comm – select or reject lines common to two sorted files . comm(1)
look – find lines in a sorted list . look(1)

fork – spawn new process . fork(2)
alarm – schedule signal after specified time . alarm(2)

errors . spell, spellin, spellout – find spelling spell(1)
spline – interpolate smooth curve spline(1)
split – split a file into pieces split(1)

frexp, ldexp, modf – split into mantissa and exponent frexp(3)
printf, fprintf, sprintf – formatted output conversion printf(3)

root exp, log, log10, pow, sqrt – exponential, logarithm, power, square exp(3)
rand, srand – random number generator rand(3)

scanf, fscanf, sscanf – formatted input conversion scanf(3)
stdio – standard buffered input/output package stdio(3)
boot – startup procedures . boot(8)

stat, fstat – get file status stat(2)
iostat – report I/O statistics . iostat(1)

ps – process status . ps(1)
stat, fstat – get file status . stat(2)

feof, ferror, clearerr, fileno – stream status inquiries . ferror(3)
package . stdio – standard buffered input/output stdio(3)

stime – set time . stime(2)
pause – stop until signal . pause(2)

icheck – file system storage consistency check icheck(1)
subroutines dbminit, fetch, store, delete, firstkey, nextkey – data base dbm(3)
strncpy, strlen, index, rindex – string/ strcat, strncat, strcmp, strncmp, strcpy, string(3)

fclose, fflush – close or flush a stream . fclose(3)
fopen, freopen, fdopen – open a stream . fopen(3)

fseek, ftell, rewind – reposition a stream . fseek(3)
fgetc, getw – get character or word from stream . getc, getchar, getc(3)

gets, fgets – get a string from a stream . gets(3)
fputc, putw – put character or word on a stream . putc, putchar, putc(3)

puts, fputs – put a string on a stream . puts(3)
setbuf – assign buffering to a stream . setbuf(3)

ungetc – push character back into input stream . ungetc(3)
sed – stream editor . sed(1)

feof, ferror, clearerr, fileno – stream status inquiries ferror(3)
gets, fgets – get a string from a stream . gets(3)
puts, fputs – put a string on a stream . puts(3)

strcpy, strncpy, strlen, index, rindex – string operations /strncat, strcmp, strncmp, string(3)
strip – remove symbols and relocation bits strip(1)

basename – strip filename affixes . basename(1)
/strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex – string operations string(3)

struct – structure Fortran programs struct(1)
stty – set terminal options stty(1)

ioctl, stty, gtty – control device ioctl(2)
su – substitute user id temporarily su(1)

store, delete, firstkey, nextkey – data base subroutines dbminit, fetch, dbm(3)

- xxii -

su – substitute user id temporarily su(1)
sum – sum and count blocks in a file sum(1)

du – summarize disk usage du(1)
quot – summarize file system ownership quot(1)

sync – update the super block . sync(1)
update – periodically update the super block . update(8)

sync – update super-block . sync(2)
sleep – suspend execution for an interval sleep(1)
sleep – suspend execution for interval sleep(3)

swab – swap bytes . swab(3)
strip – remove symbols and relocation bits strip(1)

sync – update super-block sync(2)
sync – update the super block sync(1)

messages . perror, sys_errlist, sys_nerr – system error perror(3)
mtab – mounted file system table . mtab(5)

mkconf – generate configuration tables . mkconf(1)
tbl – format tables for nroff or troff tbl(1)

tabs – set terminal tabs . tabs(1)
tail – deliver the last part of a file tail(1)

functions . sin, cos, tan, asin, acos, atan, atan2 – trigonometric sin(3)
sinh, cosh, tanh – hyperbolic functions sinh(3)

dumpdir – print the names of files on a dump tape . dumpdir(1)
tp – manipulate tape archive . tp(1)

tar – tape archiver . tar(1)
tp – DEC/mag tape formats . tp(5)

tar – tape archiver . tar(1)
tbl – format tables for nroff or troff tbl(1)

deroff – remove nroff, troff, tbl and eqn constructs deroff(1)
tc – photypesetter simulator tc(1)
tc – TC-11/TU56 DECtape tc(4)
tee – pipe fitting . tee(1)

tk – paginator for the Tektronix 4014 . tk(1)
lseek, tell – move read/write pointer lseek(2)

su – substitute user id temporarily . su(1)
ttyname, isatty, ttyslot – find name of a terminal . ttyname(3)

ttys – terminal initialization data ttys(5)
tty – general terminal interface . tty(4)

tty – get terminal name . tty(1)
stty – set terminal options . stty(1)
tabs – set terminal tabs . tabs(1)

terminals– conventional names term(7)
wait – wait for process to terminate . wait(2)

kill – terminate a process with extreme prejudice kill(1)
exit – terminate process . exit(2)

test – condition command test(1)
quiz – test your knowledge . quiz(6)

roff – format text . roff(1)
ed – text editor . ed(1)

troff, nroff – text formatting and typesetting troff(1)
ttt, cubic – tic-tac-toe . ttt(6)

alarm – schedule signal after specified time . alarm(2)
at – execute commands at a later time . at(1)

stime – set time . stime(2)
time, ftime – get date and time . time(2)

time – time a command time(1)
time, ftime – get date and time time(2)

profil – execution time profile . profil(2)
gmtime, asctime, timezone – convert date and time to ASCII ctime, localtime, ctime(3)

times – get process times . times(2)
utime – set file times . utime(2)

times – get process times times(2)
/login, newgrp, read, readonly, set, shift, times, trap, umask, wait – command language sh(1)

ctime, localtime, gmtime, asctime, timezone – convert date and time to ASCII ctime(3)
tk – paginator for the Tektronix 4014 tk(1)
tm – TM-11/TU-10 magtape interface tm(4)

tsort – topological sort . tsort(1)
touch – update date last modified of a file touch(1)
tp – DEC/mag tape formats tp(5)
tp – manipulate tape archive tp(1)
tr – translate characters tr(1)

ptrace – process trace . ptrace(2)
tr – translate characters . tr(1)

- xxiii -

newgrp, read, readonly, set, shift, times, trap, umask, wait – command language /login, sh(1)
sin, cos, tan, asin, acos, atan, atan2 – trigonometric functions sin(3)

tbl – format tables for nroff or troff . tbl(1)
typesetting . troff, nroff – text formatting and troff(1)

deroff – remove nroff, troff, tbl and eqn constructs deroff(1)
true, false – provide truth values true(1)
tsort – topological sort tsort(1)
ttt, cubic – tic-tac-toe ttt(6)
tty – general terminal interface tty(4)
tty – get terminal name tty(1)

terminal . ttyname, isatty, ttyslot – find name of a ttyname(3)
ttys – terminal initialization data ttys(5)

ttyname, isatty, ttyslot – find name of a terminal ttyname(3)
tm – TM-11/ TU-10 magtape interface tm(4)
ht – RH-11/ TU-16 magtape interface ht(4)
tc – TC-11/ TU56 DECtape . tc(4)

file – determine file type . file(1)
types – primitive system data types . types(5)

man – macros to typeset manual . man(7)
eqn, neqn, checkeq – typeset mathematics . eqn(1)

troff, nroff – text formatting and typesetting . troff(1)
getty – set typewriter mode . getty(8)

getpw – get name from UID . getpw(3)
umask – set file creation mode mask umask(2)

read, readonly, set, shift, times, trap, umask, wait – command language /newgrp, sh(1)
mount, umount – mount and dismount file system mount(1)
mount, umount – mount or remove file system mount(2)

stream . ungetc – push character back into input ungetc(3)
uniq – report repeated lines in a file uniq(1)

mktemp – make a unique file name . mktemp(3)
units – conversion program units(1)

cu – call UNIX . cu(1)
uux – unix to unix command execution uux(1)

uucp, uulog – unix to unix copy . uucp(1)
uux – unix to unix command execution uux(1)

uucp, uulog – unix to unix copy . uucp(1)
unlink – remove directory entry unlink(2)

rm, rmdir – remove (unlink) files . rm(1)
update – periodically update the super block update(8)

touch – update date last modified of a file touch(1)
sync – update super-block . sync(2)
sync – update the super block sync(1)

update – periodically update the super block update(8)
du – summarize disk usage . du(1)

write – write to another user . write(1)
setuid, setgid – set user and group ID . setuid(2)

getuid, getgid, geteuid, getegid – get user and group identity getuid(2)
environ – user environment . environ(5)

su – substitute user id temporarily . su(1)
mail – send or receive mail among users . mail(1)

wall – write to all users . wall(1)
utime – set file times utime(2)
utmp, wtmp – login records utmp(5)
uucp, uulog – unix to unix copy uucp(1)
uux – unix to unix command execution uux(1)

abs – integer absolute value . abs(3)
fabs, floor, ceil – absolute value, floor, ceiling functions floor(3)

getenv – value for environment name getenv(3)
true, false – provide truth values . true(1)

assert – program verification . assert(3)
lint – a C program verifier . lint(1)

vp – Versatec printer-plotter vp(4)
filsys, flblk, ino – format of file system volume . filsys(5)

vp – Versatec printer-plotter vp(4)
wait – await completion of process wait(1)

readonly, set, shift, times, trap, umask, wait – command language /newgrp, read, sh(1)
wait – wait for process to terminate wait(2)
wall – write to all users wall(1)
wc – word count . wc(1)

crash – what to do when the system crashes crash(8)
export, login, newgrp,/ sh, for, case, if, while, break, continue, cd, eval, exec, exit, sh(1)

who – who is on the system who(1)

- xxiv -

wc – word count . wc(1)
getchar, fgetc, getw – get character or word from stream getc, getc(3)

hangman, words – word games . words(6)
putchar, fputc, putw – put character or word on a stream putc, putc(3)

hangman, words – word games . words(6)
cd – change working directory . cd(1)

pwd – working directory name pwd(1)
write – write on a file write(2)
write – write to another user write(1)

write – write on a file . write(2)
lseek, tell – move read/ write pointer . lseek(2)

wall – write to all users . wall(1)
write – write to another user . write(1)

open – open for reading or writing . open(2)
utmp, wtmp – login records utmp(5)

wump – the game of hunt-the-wumpus wump(6)
xsend, xget, enroll – secret mail xsend(1)

j0, j1, jn, y0, y1, yn – bessel functions j0(3)
yacc – yet another compiler-compiler yacc(1)

INTRO (1) UNIX Programmer’s Manual INTRO (1)

NAME
intro – introduction to commands

DESCRIPTION
This section describes publicly accessible commands in alphabetic order. Certain distinctions of purpose
are made in the headings:

(1) Commands of general utility.

(1C) Commands for communication with other systems.

(1G) Commands used primarily for graphics and computer-aided design.

(1M) Commands used primarily for system maintenance.

The word ‘local’ at the foot of a page means that the command is not intended for general distribution.

SEE ALSO
DIAGNOSTICS

Section (6) for computer games.

How to get started, in the Introduction.

DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied by the system giving the
cause for termination, and (in the case of ‘normal’ termination) one supplied by the program, see wait
and exit(2). The former byte is 0 for normal termination, the latter is customarily 0 for successful exe-
cution, nonzero to indicate troubles such as erroneous parameters, bad or inaccessible data, or other ina-
bility to cope with the task at hand. It is called variously ‘exit code’, ‘exit status’ or ‘return code’, and
is described only where special conventions are involved.

7th Edition 1

AC (1M) UNIX Programmer’s Manual AC (1M)

NAME
ac – login accounting

SYNOPSIS
ac [– w wtmp] [– p] [– d] [people] ...

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of the current
wtmp file. A total is also produced. – w is used to specify an alternate wtmp file. – p prints individual
totals; without this option, only totals are printed. – d causes a printout for each midnight to midnight
period. Any people will limit the printout to only the specified login names. If no wtmp file is given,
/usr/adm/wtmp is used.

The accounting file /usr/adm/wtmp is maintained by init and login. Neither of these programs creates the
file, so if it does not exist no connect-time accounting is done. To start accounting, it should be created
with length 0. On the other hand if the file is left undisturbed it will grow without bound, so periodi-
cally any information desired should be collected and the file truncated.

FILES
/usr/adm/wtmp

SEE ALSO
init(8), login(1), utmp(5).

7th Edition 1

ADB (1) UNIX Programmer’s Manual ADB (1)

NAME
adb – debugger

SYNOPSIS
adb [– w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to provide a con-
trolled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then the sym-
bolic features of adb cannot be used although the file can still be examined. The default for objfil is
a.out. Corfil is assumed to be a core image file produced after executing objfil ; the default for corfil is
core.

Requests to adb are read from the standard input and responses are to the standard output. If the – w
flag is present then both objfil and corfil are created if necessary and opened for reading and writing so
that files can be modified using adb . Adb ignores QUIT; INTERRUPT causes return to the next adb
command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address . Initially dot is set to 0. For most commands count
specifies how many times the command will be executed. The default count is 1. Address and count
are expressions.

The interpretation of an address depends on the context it is used in. If a subprocess is being debugged
then addresses are interpreted in the usual way in the address space of the subprocess. For further
details of address mapping see ADDRESSES.

EXPRESSIONS
. The value of dot .

+ The value of dot incremented by the current increment.

ˆ The value of dot decremented by the current increment.

" The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by #; otherwise
a decimal number.

integer .fraction
A 32 bit floating point number.

´cccc ´ The ASCII value of up to 4 characters. \ may be used to escape a ´.

< name The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a register
name then the value of the register is obtained from the system header in corfil . The register
names are r0 ... r5 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting with a
digit. The value of the symbol is taken from the symbol table in objfil . An initial _ or ˜ will
be prepended to symbol if needed.

_ symbol
In C, the ‘true name’ of an external symbol begins with _. It may be necessary to utter this
name to disinguish it from internal or hidden variables of a program.

routine .name
The address of the variable name in the specified C routine. Both routine and name are

7th Edition 1

ADB (1) UNIX Programmer’s Manual ADB (1)

symbols . If name is omitted the value is the address of the most recently activated C stack
frame corresponding to routine .

(exp) The value of the expression exp.

Monadic operators

*exp The contents of the location addressed by exp in corfil .

@exp The contents of the location addressed by exp in objfil .

– exp Integer negation.

˜exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic operators.

e1+e2 Integer addition.

e1– e2 Integer subtraction.

e1*e2 Integer multiplication.

e1%e2 Integer division.

e1&e2 Bitwise conjunction.

e1e2 Bitwise disjunction.

e1#e2 E1 rounded up to the next multiple of e2 .

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are
available. (The commands ‘?’ and ‘/’ may be followed by ‘*’; see ADDRESSES for further details.)

?f Locations starting at address in objfil are printed according to the format f .

/f Locations starting at address in corfil are printed according to the format f .

=f The value of address itself is printed in the styles indicated by the format f . (For i format ‘?’
is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer that is a repeat count for the format character. While stepping through
a format dot is incremented temporarily by the amount given for each format letter. If no format is
given then the last format is used. The format letters available are as follows.

o 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.
O 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
f 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in octal.
c 1 Print the addressed character.
C 1 Print the addressed character using the following escape convention. Character values

000 to 040 are printed as @ followed by the corresponding character in the range 0100
to 0140. The character @ is printed as @@.

7th Edition 2

ADB (1) UNIX Programmer’s Manual ADB (1)

s n Print the addressed characters until a zero character is reached.
S n Print a string using the @ escape convention. n is the length of the string including its

zero terminator.
Y 4 Print 4 bytes in date format (see ctime(3)).
i n Print as PDP11 instructions. n is the number of bytes occupied by the instruction.

This style of printing causes variables 1 and 2 to be set to the offset parts of the source
and destination respectively.

a 0 Print the value of dot in symbolic form. Symbols are checked to ensure that they have
an appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 2 Print the addressed value in symbolic form using the same rules for symbol lookup as
a.

t 0 When preceded by an integer tabs to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.

r 0 Print a space.
n 0 Print a newline.
"..." 0 Print the enclosed string.
ˆ Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed.
– Dot is decremented by 1. Nothing is printed.

newline If the previous command temporarily incremented dot , make the increment permanent. Repeat
the previous command with a count of 1.

[?/]l value mask
Words starting at dot are masked with mask and compared with value until a match is found.
If L is used then the match is for 4 bytes at a time instead of 2. If no match is found then dot
is unchanged; otherwise dot is set to the matched location. If mask is omitted then – 1 is used.

[?/]w value ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes. Odd
addresses are not allowed when writing to the subprocess address space.

[?/]m b1 e1 f1[?/]
New values for (b1, e1, f1) are recorded. If less than three expressions are given then the
remaining map parameters are left unchanged. If the ‘?’ or ‘/’ is followed by ‘*’ then the
second segment (b2 , e2 , f2) of the mapping is changed. If the list is terminated by ‘?’ or ‘/’
then the file (objfil or corfil respectively) is used for subsequent requests. (So that, for example,
‘/m?’ will cause ‘/’ to refer to objfil .)

>name Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line following ‘!’.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.
>f Send output to the file f, which is created if it does not exist.
r Print the general registers and the instruction addressed by pc. Dot is set to pc.
f Print the floating registers in single or double length. If the floating point status of ps

is set to double (0200 bit) then double length is used anyway.
b Print all breakpoints and their associated counts and commands.
a ALGOL 68 stack backtrace. If address is given then it is taken to be the address of

7th Edition 3

ADB (1) UNIX Programmer’s Manual ADB (1)

the current frame (instead of r4). If count is given then only the first count frames are
printed.

c C stack backtrace. If address is given then it is taken as the address of the current
frame (instead of r5). If C is used then the names and (16 bit) values of all automatic
and static variables are printed for each active function. If count is given then only the
first count frames are printed.

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
d Reset integer input as described in EXPRESSIONS.
q Exit from adb .
v Print all non zero variables in octal.
m Print the address map.

:modifier
Manage a subprocess. Available modifiers are:

bc Set breakpoint at address . The breakpoint is executed count– 1 times before causing a
stop. Each time the breakpoint is encountered the command c is executed. If this
command sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address .

r Run objfil as a subprocess. If address is given explicitly then the program is entered at
this point; otherwise the program is entered at its standard entry point. count specifies
how many breakpoints are to be ignored before stopping. Arguments to the subprocess
may be supplied on the same line as the command. An argument starting with < or >
causes the standard input or output to be established for the command. All signals are
turned on on entry to the subprocess.

cs The subprocess is continued with signal s c s, see signal(2). If address is given then
the subprocess is continued at this address. If no signal is specified then the signal that
caused the subprocess to stop is sent. Breakpoint skipping is the same as for r.

ss As for c except that the subprocess is single stepped count times. If there is no current
subprocess then objfil is run as a subprocess as for r. In this case no signal can be
sent; the remainder of the line is treated as arguments to the subprocess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb but are not used subse-
quently. Numbered variables are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil . If corfil does not appear to be a
core file then these values are set from objfil .

b The base address of the data segment.
d The data segment size.
e The entry point.
m The ‘magic’ number (0405, 0407, 0410 or 0411).
s The stack segment size.
t The text segment size.

7th Edition 4

ADB (1) UNIX Programmer’s Manual ADB (1)

ADDRESSES
The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (b1, e1, f1) and (b2, e2, f2) and the file address
corresponding to a written address is calculated as follows.

b1≤address<e1 => file address=address+f1– b1, otherwise,

b2≤address<e2 => file address=address+f2– b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I and D
space) the two segments for a file may overlap. If a ? or / is followed by an * then only the second tri-
ple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of
the kind expected then, for that file, b1 is set to 0, e1 is set to the maximum file size and f1 is set to 0;
in this way the whole file can be examined with no address translation.

So that adb may be used on large files all appropriate values are kept as signed 32 bit integers.

FILES
/dev/mem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(5), core(5)

DIAGNOSTICS
‘Adb’ when there is no current command or format. Comments about inaccessible files, syntax errors,
abnormal termination of commands, etc. Exit status is 0, unless last command failed or returned
nonzero status.

BUGS
A breakpoint set at the entry point is not effective on initial entry to the program.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul up the accessing of the
external.

7th Edition 5

AR (1) UNIX Programmer’s Manual AR (1)

NAME
ar – archive and library maintainer

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and update
library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of vuaibcl. Afile
is the archive file. The names are constituent files in the archive file. The meanings of the key charac-
ters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used with r, then only
those files with modified dates later than the archive files are replaced. If an optional position-
ing character from the set abi is used, then the posname argument must be present and specifies
that new files are to be placed after (a) or before (b or i) posname. Otherwise new files are
placed at the end.

q Quickly append the named files to the end of the archive file. Optional positioning characters
are invalid. The command does not check whether the added members are already in the
archive. Useful only to avoid quadratic behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present, then the
posname argument must be present and, as in r, specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive are extracted. In neither
case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file description of the making of a new
archive file from the old archive and the constituent files. When used with t, it gives a long
listing of all information about the files. When used with p, it precedes each file with a name.

c Create. Normally ar will create afile when it needs to. The create option suppresses the nor-
mal message that is produced when afile is created.

l Local. Normally ar places its temporary files in the directory /tmp. This option causes them to
be placed in the local directory.

FILES
/tmp/v* temporaries

SEE ALSO
ld(1), ar(5), lorder(1)

BUGS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

7th Edition 1

ARCV (1M) UNIX Programmer’s Manual ARCV (1M)

NAME
arcv – convert archives to new format

SYNOPSIS
arcv file ...

DESCRIPTION
Arcv converts archive files (see ar(1), ar(5)) from 6th edition to 7th edition format. The conversion is
done in place, and the command refuses to alter a file not in old archive format.

Old archives are marked with a magic number of 0177555 at the start; new archives have 0177545.

FILES
/tmp/v*, temporary copy

SEE ALSO
ar(1), ar(5)

7th Edition 1

AS (1) UNIX Programmer’s Manual AS (1)

NAME
as – assembler

SYNOPSIS
as [–] [– o objfile] file ...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument – is used, all
undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is used. It is executable if
no errors occurred during the assembly, and if there were no unresolved external references.

FILES
/lib/as2 pass 2 of the assembler
/tmp/atm[1-3]? temporary
a.out object

SEE ALSO
ld(1), nm(1), adb(1), a.out(5)
UNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly ceases.
When syntactic or semantic errors occur, a single-character diagnostic is typed out together with the line
number and the file name in which it occurred. Errors in pass 1 cause cancellation of pass 2. The pos-
sible errors are:

) Parentheses error
] Parentheses error
< String not terminated properly
* Indirection used illegally
a Error in address
b Branch instruction is odd or too remote
e Error in expression
f Error in local (‘f’ or ‘b’) type symbol
g Garbage (unknown) character
i End of file inside an if
m Multiply defined symbol as label
o Word quantity assembled at odd address
p ‘.’ different in pass 1 and 2
r Relocation error
u Undefined symbol
x Syntax error

BUGS
Syntax errors can cause incorrect line numbers in following diagnostics.

7th Edition PDP11 1

AT (1) UNIX Programmer’s Manual AT (1)

NAME
at – execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be used as input to sh(1) at a
specified later time. A cd(1) command to the current directory is inserted at the beginning, followed by
assignments to all environment variables. When the script is run, it uses the user and group ID of the
creator of the copy file.

The time is 1 to 4 digits, with an optional following ‘A’, ‘P’, ‘N’ or ‘M’ for AM, PM, noon or mid-
night. One and two digit numbers are taken to be hours, three and four digits to be hours and minutes.
If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the week; if the
word ‘week’ follows invocation is moved seven days further off. Names of months and days may be
recognizably truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command /usr/lib/atrun from cron(8). The
granularity of at depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

FILES
/usr/spool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of year day ddd of year yy. uu is a unique number.
/usr/spool/at/lasttimedone contains hhhh for last hour of activity.
/usr/spool/at/past directory of activities now in progress
/usr/lib/atrun program that executes activities that are due
pwd(1)

SEE ALSO
calendar(1), cron(8)

DIAGNOSTICS
Complains about various syntax errors and times out of range.

BUGS
Due to the granularity of the execution of /usr/lib/atrun, there may be bugs in scheduling things almost
exactly 24 hours into the future.

7th Edition 1

AWK (1) UNIX Programmer’s Manual AWK (1)

NAME
awk – pattern scanning and processing language

SYNOPSIS
awk [– Fc] [prog] [file] ...

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in prog . With each pat-
tern in prog there can be an associated action that will be performed when a line of a file matches the
pattern. The set of patterns may appear literally as prog, or in a file specified as – f file .

Files are read in order; if there are no files, the standard input is read. The file name ‘– ’ means the
standard input. Each line is matched against the pattern portion of every pattern-action statement; the
associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by using FS,
vide infra .) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches.

An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list stands for
the whole line. Expressions take on string or numeric values as appropriate, and are built using the
operators +, – , *, /, %, and concatenation (indicated by a blank). The C operators ++, – – , +=, – =, *=,
/=, and %= are also available in expressions. Variables may be scalars, array elements (denoted x[i]) or
fields. Variables are initialized to the null string. Array subscripts may be any string, not necessarily
numeric; this allows for a form of associative memory. String constants are quoted "...".

The print statement prints its arguments on the standard output (or on a file if >file is present), separated
by the current output field separator, and terminated by the output record separator. The printf statement
formats its expression list according to the format (see printf(3)).

The built-in function length returns the length of its argument taken as a string, or of the whole line if
no argument. There are also built-in functions exp, log, sqrt, and int . The last truncates its argument to
an integer. substr(s, m, n) returns the n-character substring of s that begins at position m . The function
sprintf(fmt, expr, expr, ...) formats the expressions according to the printf(3) format given by fmt and
returns the resulting string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of regular expressions and rela-
tional expressions. Regular expressions must be surrounded by slashes and are as in egrep. Isolated
regular expressions in a pattern apply to the entire line. Regular expressions may also occur in rela-
tional expressions.

7th Edition 1

AWK (1) UNIX Programmer’s Manual AWK (1)

A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ˜ (for contains) or !˜
(for does not contain). A conditional is an arithmetic expression, a relational expression, or a Boolean
combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read
and after the last. BEGIN must be the first pattern, END the last.

A single character c may be used to separate the fields by starting the program with

BEGIN { FS = "c" }

or by using the – Fc option.

Other variable names with special meanings include NF, the number of fields in the current record; NR,
the ordinal number of the current record; FILENAME, the name of the current input file; OFS, the out-
put field separator (default blank); ORS, the output record separator (default newline); and OFMT, the
output format for numbers (default "%.6g").

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; – – i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

SEE ALSO
lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk – a pattern scanning and processing language

BUGS
There are no explicit conversions between numbers and strings. To force an expression to be treated as
a number add 0 to it; to force it to be treated as a string concatenate "" to it.

7th Edition 2

BAS (1) UNIX Programmer’s Manual BAS (1)

NAME
bas – basic

SYNOPSIS
bas [file]

DESCRIPTION
Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the terminal is
read. Bas accepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They are
stored in sorted ascending order. Non-numbered statements are immediately executed. The result of an
immediate expression statement (that does not have ‘=’ as its highest operator) is printed. Interrupts
suspend computation.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing as
described above.

comment
This statement is ignored. It is used to interject commentary in a program.

done
Return to system level.

dump
The name and current value of every variable is printed.

edit
The UNIX editor, ed, is invoked with the file argument. After the editor exits, this file is recom-
piled.

for name = expression expression statement
for name = expression expression
next

The for statement repetitively executes a statement (first form) or a group of statements (second
form) under control of a named variable. The variable takes on the value of the first expression,
then is incremented by one on each loop, not to exceed the value of the second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the corresponding
integer numbered statment. If executed from immediate mode, the internal statements are com-
piled first.

if expression statement
if expression
[else
fi

The statement (first form) or group of statements (second form) is executed if the expression
evaluates to non-zero. In the second form, an optional else allows for a group of statements to be
executed when the first group is not.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are given, all internal state-
ments are printed. If one argument is given, only that internal statement is listed. If two argu-
ments are given, all internal statements inclusively between the arguments are printed.

7th Edition 1

BAS (1) UNIX Programmer’s Manual BAS (1)

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by " char-
acters.)

prompt list
Prompt is the same as print except that no newline character is printed.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If no
expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random number
generator is reset. Control is passed to the lowest numbered internal statement.

save [expression [expression]]
Save is like list except that the output is written on the file argument. If no argument is given on
the command, b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters and
digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and con-
tains digits, an optional decimal point, and possibly a scale factor consisting of an e followed by a
possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an opera-
tor denoting the function. A complete list of operators is given below.

expression ([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by the
arguments in parentheses separated by commas. The expression evaluates to the line number of
the entry of the function in the internally stored statements. This causes the internal statements to
be compiled. If the expression evaluates negative, a builtin function is called. The list of builtin
functions appears below.

name [expression [, expression] ...]
Each expression is truncated to an integer and used as a specifier for the name. The result is syn-
tactically identical to a name. a[1,2] is the same as a[1][2]. The truncated expressions are res-
tricted to values between 0 and 32767.

The following is the list of operators:

= = is the assignment operator. The left operand must be a name or an array element. The result
is the right operand. Assignment binds right to left,

&  & (logical and) has result zero if either of its arguments are zero. It has result one if both its
arguments are non-zero.  (logical or) has result zero if both of its arguments are zero. It has
result one if either of its arguments are non-zero.

< <= > >= == <>

7th Edition 2

BAS (1) UNIX Programmer’s Manual BAS (1)

The relational operators (< less than, <= less than or equal, > greater than, >= greater than or
equal, == equal to, <> not equal to) return one if their arguments are in the specified relation.
They return zero otherwise. Relational operators at the same level extend as follows: a>b>c is
the same as a>b&b>c.

+ – Add and subtract.

* / Multiply and divide.

ˆ Exponentiation.

The following is a list of builtin functions:

arg(i) is the value of the i -th actual parameter on the current level of function call.

exp(x) is the exponential function of x .

log(x) is the natural logarithm of x .

sqr(x) is the square root of x .

sin(x) is the sine of x (radians).

cos(x) is the cosine of x (radians).

atn(x) is the arctangent of x . Its value is between – π/2 and π/2.

rnd() is a uniformly distributed random number between zero and one.

expr() is the only form of program input. A line is read from the input and evaluated as an expres-
sion. The resultant value is returned.

abs(x) is the absolute value of x .

int(x) returns x truncated (towards 0) to an integer.

FILES
/tmp/btm? temporary
b.out save file
/bin/ed for edit

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All other
diagnostics are self explanatory.

BUGS
Has been known to give core images.
Catches interrupts even when they are turned off.

7th Edition 3

BASENAME (1) UNIX Programmer’s Manual BASENAME (1)

NAME
basename – strip filename affixes

SYNOPSIS
basename string [suffix]

DESCRIPTION
Basename deletes any prefix ending in ‘/’ and the suffix, if present in string, from string, and prints the
result on the standard output. It is normally used inside substitution marks ` ` in shell procedures.

This shell procedure invoked with the argument /usr/src/cmd/cat.c compiles the named file and moves
the output to cat in the current directory:

cc $1
mv a.out `basename $1 .c`

SEE ALSO
sh(1)

7th Edition 1

BC (1) UNIX Programmer’s Manual BC (1)

NAME
bc – arbitrary-precision arithmetic language

SYNOPSIS
bc [– c] [– l] [file ...]

DESCRIPTION
Bc is an interactive processor for a language which resembles C but provides unlimited precision arith-
metic. It takes input from any files given, then reads the standard input. The – l argument stands for the
name of an arbitrary precision math library. The syntax for bc programs is as follows; L means letter
a-z, E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L (E , ... , E)

Operators
+ – * / % ˆ (% is remainder; ˆ is power)
++ – – (prefix and postfix; apply to names)
== <= >= != < >
= =+ =– =* =/ =% =ˆ

Statements
E
{ S ; ... ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L ,..., L) {

auto L, ... , L
S; ... S
return (E)

}

Functions in – l math library
s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

7th Edition 1

BC (1) UNIX Programmer’s Manual BC (1)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assignment.
Either semicolons or newlines may separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of dc(1). Assignments to ibase or obase set
the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All variables
are global to the program. ‘Auto’ variables are pushed down during function calls. When using arrays
as function arguments or defining them as automatic variables empty square brackets must follow the
array name.

For example

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

}
}

defines a function to compute an approximate value of the exponential function and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the – c (compile only)
option is present. In this case the dc input is sent to the standard output instead.

FILES
/usr/lib/lib.b mathematical library
dc(1) desk calculator proper

SEE ALSO
dc(1)
L. L. Cherry and R. Morris, BC – An arbitrary precision desk-calculator language

BUGS
No &&, | |, or ! operators.
For statement must have all three E’s.
Quit is interpreted when read, not when executed.

7th Edition 2

CAL (1) UNIX Programmer’s Manual CAL (1)

NAME
cal – print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that month
is printed. Year can be between 1 and 9999. The month is a number between 1 and 12. The calendar
produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.
Beware that ‘cal 78’ refers to the early Christian era, not the 20th century.

7th Edition 1

CALENDAR (1) UNIX Programmer’s Manual CALENDAR (1)

NAME
calendar – reminder service

SYNOPSIS
calendar [–]

DESCRIPTION
Calendar consults the file ‘calendar’ in the current directory and prints out lines that contain today’s or
tomorrow’s date anywhere in the line. Most reasonable month-day dates such as ‘Dec. 7,’ ‘december 7,’
‘12/7,’ etc., are recognized, but not ‘7 December’ or ‘7/12’. On weekends ‘tomorrow’ extends through
Monday.

When an argument is present, calendar does its job for every user who has a file ‘calendar’ in his login
directory and sends him any positive results by mail(1). Normally this is done daily in the wee hours
under control of cron(8).

FILES
calendar
/usr/lib/calendar to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cal*
egrep, sed, mail subprocesses

SEE ALSO
at(1), cron(8), mail(1)

BUGS
Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of ‘tomorrow’ doesn’t account for holidays.

7th Edition 1

CAT (1) UNIX Programmer’s Manual CAT (1)

NAME
cat – catenate and print

SYNOPSIS
cat [– u] file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus

cat file

prints the file and

cat file1 file2 >file3

concatenates the first two files and places the result on the third.

If no file is given, or if the argument ‘– ’ is encountered, cat reads from the standard input. Output is
buffered in 512-byte blocks unless the standard output is a terminal or the – u option is present.

SEE ALSO
pr(1), cp(1)

BUGS
Beware of ‘cat a b >a’ and ‘cat a b >b’, which destroy input files before reading them.

7th Edition 1

CB (1) UNIX Programmer’s Manual CB (1)

NAME
cb – C program beautifier

SYNOPSIS
cb

DESCRIPTION
Cb places a copy of the C program from the standard input on the standard output with spacing and
indentation that displays the structure of the program.

BUGS

7th Edition 1

CC (1) UNIX Programmer’s Manual CC (1)

NAME
cc, pcc – C compiler

SYNOPSIS
cc [option] ... file ...

pcc [option] ... file ...

DESCRIPTION
Cc is the UNIX C compiler. It accepts several types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled, and each
object program is left on the file whose name is that of the source with ‘.o’ substituted for ‘.c’. The ‘.o’
file is normally deleted, however, if a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with ‘.s’ are taken to be assembly source programs and
are assembled, producing a ‘.o’ file.

The following options are interpreted by cc. See ld(1) for load-time options.

– c Suppress the loading phase of the compilation, and force an object file to be produced even if
only one program is compiled.

– p Arrange for the compiler to produce code which counts the number of times each routine is
called; also, if loading takes place, replace the standard startup routine by one which automati-
cally calls monitor(3) at the start and arranges to write out a mon.out file at normal termination
of execution of the object program. An execution profile can then be generated by use of
prof(1).

– f In systems without hardware floating-point, use a version of the C compiler which handles
floating-point constants and loads the object program with the floating-point interpreter. Do
not use if the hardware is present.

– O Invoke an object-code optimizer.

– S Compile the named C programs, and leave the assembler-language output on corresponding
files suffixed ‘.s’.

– P Run only the macro preprocessor and place the result for each ‘.c’ file in a corresponding ‘.i’
file and has no ‘#’ lines in it.

– E Run only the macro preprocessor and send the result to the standard output. The output is
intended for compiler debugging; it is unacceptable as input to cc.

– o output
Name the final output file output . If this option is used the file ‘a.out’ will be left undisturbed.

– Dname=def
– Dname Define the name to the preprocessor, as if by ‘#define’. If no definition is given, the name is

defined as 1.

– Uname Remove any initial definition of name.

– Idir ‘#include’ files whose names do not begin with ‘/’ are always sought first in the directory of
the file argument, then in directories named in – I options, then in directories on a standard list.

– Bstring Find substitute compiler passes in the files named string with the suffixes cpp, c0, c1 and c2.
If string is empty, use a standard backup version.

– t[p012]
Find only the designated compiler passes in the files whose names are constructed by a – B
option. In the absence of a – B option, the string is taken to be ‘/usr/c/’.

7th Edition PDP11 1

CC (1) UNIX Programmer’s Manual CC (1)

Other arguments are taken to be either loader option arguments, or C-compatible object programs, typi-
cally produced by an earlier cc run, or perhaps libraries of C-compatible routines. These programs,
together with the results of any compilations specified, are loaded (in the order given) to produce an
executable program with name a.out.

The major purpose of the ‘portable C compiler’, pcc, is to serve as a model on which to base other com-
pilers. Pcc does not support options – f, – E, – B, and – t. It provides, in addition to the language of cc,
unsigned char type data and initialized bit fields.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporaries for cc
/lib/cpp preprocessor
/lib/c[01] compiler for cc
/usr/c/oc[012] backup compiler for cc
/usr/c/ocpp backup preprocessor
/lib/fc[01] floating-point compiler
/lib/c2 optional optimizer
/lib/crt0.o runtime startoff
/lib/mcrt0.o startoff for profiling
/lib/fcrt0.o startoff for floating-point interpretation
/lib/libc.a standard library, see intro(3)
/usr/include standard directory for ‘#include’ files
/tmp/pc* temporaries for pcc
/usr/lib/ccom compiler for pcc

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
D. M. Ritchie, C Reference Manual
monitor(3), prof(1), adb(1), ld(1)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be
produced by the assembler or loader. Of these, the most mystifying are from the assembler, as(1), in
particular ‘m’, which means a multiply-defined external symbol (function or data).

BUGS
Pcc is little tried on the PDP11; specialized code generated for that machine has not been well shaken
down. The – O optimizer was designed to work with cc; its use with pcc is suspect.

7th Edition PDP11 2

CD (1) UNIX Programmer’s Manual CD (1)

NAME
cd – change working directory

SYNOPSIS
cd directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permission in
directory.

Because a new process is created to execute each command, cd would be ineffective if it were written as
a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh(1), pwd(1), chdir(2)

7th Edition 1

CHMOD (1) UNIX Programmer’s Manual CHMOD (1)

NAME
chmod – change mode

SYNOPSIS
chmod mode file ...

DESCRIPTION
The mode of each named file is changed according to mode, which may be absolute or symbolic. An
absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission] ...

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other). The
letter a stands for ugo. If who is omitted, the default is a but the setting of the file creation mask (see
umask(2)) is taken into account.

Op can be + to add permission to the file’s mode, – to take away permission and = to assign permission
absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or group id)
and t (save text – sticky). Letters u, g or o indicate that permission is to be taken from the current
mode. Omitting permission is only useful with = to take away all permissions.

The first example denies write permission to others, the second makes a file executable:

chmod o– w file
chmod +x file

Multiple symbolic modes separated by commas may be given. Operations are performed in the order
specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
ls(1), chmod(2), chown (1), stat(2), umask(2)

7th Edition 1

CHOWN (1) UNIX Programmer’s Manual CHOWN (1)

NAME
chown, chgrp – change owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...

DESCRIPTION
Chown changes the owner of the files to owner . The owner may be either a decimal UID or a login
name found in the password file.

Chgrp changes the group-ID of the files to group . The group may be either a decimal GID or a group
name found in the group-ID file.

Only the super-user can change owner or group, in order to simplify as yet unimplemented accounting
procedures.

FILES
/etc/passwd
/etc/group

SEE ALSO
chown(2), passwd(5), group(5)

7th Edition 1

CLRI (1M) UNIX Programmer’s Manual CLRI (1M)

NAME
clri – clear i-node

SYNOPSIS
clri filesystem i-number ...

DESCRIPTION
Clri writes zeros on the i-nodes with the decimal i-numbers on the filesystem. After clri, any blocks in
the affected file will show up as ‘missing’ in an icheck(1) of the filesystem.

Read and write permission is required on the specified file system device. The i-node becomes allocat-
able.

The primary purpose of this routine is to remove a file which for some reason appears in no directory.
If it is used to zap an i-node which does appear in a directory, care should be taken to track down the
entry and remove it. Otherwise, when the i-node is reallocated to some new file, the old entry will still
point to that file. At that point removing the old entry will destroy the new file. The new entry will
again point to an unallocated i-node, so the whole cycle is likely to be repeated again and again.

SEE ALSO
icheck(1)

BUGS
If the file is open, clri is likely to be ineffective.

7th Edition 1

CMP (1) UNIX Programmer’s Manual CMP (1)

NAME
cmp – compare two files

SYNOPSIS
cmp [– l] [– s] file1 file2

DESCRIPTION
The two files are compared. (If file1 is ‘– ’, the standard input is used.) Under default options, cmp
makes no comment if the files are the same; if they differ, it announces the byte and line number at
which the difference occurred. If one file is an initial subsequence of the other, that fact is noted.

Options:

– l Print the byte number (decimal) and the differing bytes (octal) for each difference.

– s Print nothing for differing files; return codes only.

SEE ALSO
diff(1), comm(1)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or missing argu-
ment.

7th Edition 1

COL (1) UNIX Programmer’s Manual COL (1)

NAME
col – filter reverse line feeds

SYNOPSIS
col [– bfx]

DESCRIPTION
Col reads the standard input and writes the standard output. It performs the line overlays implied by
reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds (ESC-9 and ESC-8).
Col is particularly useful for filtering multicolumn output made with the ‘.rt’ command of nroff and out-
put resulting from use of the tbl(1) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on output. Instead,
text that would appear between lines is moved to the next lower full line boundary. This treatment can
be suppressed by the – f (fine) option; in this case the output from col may contain forward half line
feeds (ESC-9), but will still never contain either kind of reverse line motion.

If the – b option is given, col assumes that the output device in use is not capable of backspacing. In
this case, if several characters are to appear in the same place, only the last one read will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text in an alter-
nate character set. The character set (primary or alternate) associated with each printing character read
is remembered; on output, SO and SI characters are generated where necessary to maintain the correct
treatment of each character.

Col normally converts white space to tabs to shorten printing time. If the – x option is given, this
conversion is suppressed.

All control characters are removed from the input except space, backspace, tab, return, newline, ESC
(033) followed by one of 789, SI, SO, and VT (013). This last character is an alternate form of full
reverse line feed, for compatibility with some other hardware conventions. All other non-printing char-
acters are ignored.

SEE ALSO
troff(1), tbl(1), greek(1)

BUGS
Can’t back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

7th Edition 1

COMM (1) UNIX Programmer’s Manual COMM (1)

NAME
comm – select or reject lines common to two sorted files

SYNOPSIS
comm [– [123]] file1 file2

DESCRIPTION
Comm reads file1 and file2, which should be ordered in ASCII collating sequence, and produces a three
column output: lines only in file1; lines only in file2; and lines in both files. The filename ‘– ’ means
the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm – 12 prints only the lines
common to the two files; comm – 23 prints only lines in the first file but not in the second; comm – 123
is a no-op.

SEE ALSO
cmp(1), diff(1), uniq(1)

7th Edition 1

CP (1) UNIX Programmer’s Manual CP (1)

NAME
cp – copy

SYNOPSIS
cp file1 file2

cp file ... directory

DESCRIPTION
File1 is copied onto file2 . The mode and owner of file2 are preserved if it already existed; the mode of
the source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file-names.

Cp refuses to copy a file onto itself.

SEE ALSO
cat(1), pr(1), mv(1)

7th Edition 1

CRYPT (1) UNIX Programmer’s Manual CRYPT (1)

NAME
crypt – encode/decode

SYNOPSIS
crypt [password]

DESCRIPTION
Crypt reads from the standard input and writes on the standard output. The password is a key that
selects a particular transformation. If no password is given, crypt demands a key from the terminal and
turns off printing while the key is being typed in. Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher  pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard to solve;
direct search of the key space must be infeasible; ‘sneak paths’ by which keys or cleartext can become
visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a 256-
element rotor. Methods of attack on such machines are known, but not widely; moreover the amount of
work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to be
expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are restricted to
(say) three lower-case letters, then encrypted files can be read by expending only a substantial fraction of
five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing ps(1) or a
derivative. To minimize this possibility, crypt takes care to destroy any record of the key immediately
upon entry. No doubt the choice of keys and key security are the most vulnerable aspect of crypt.

FILES
/dev/tty for typed key

SEE ALSO
ed(1), makekey(8)

BUGS
There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor any
other warranty, either express or implied, as to the accuracy of the enclosed materials or as to their sui-
tability for any particular purpose. Accordingly, Bell Telephone Laboratories assumes no responsibility
for their use by the recipient. Further, Bell Laboratories assumes no obligation to furnish any assis-
tance of any kind whatsoever, or to furnish any additional information or documentation.

7th Edition 1

CU (1C) UNIX Programmer’s Manual CU (1C)

NAME
cu – call UNIX

SYNOPSIS
cu telno [– t] [– s speed] [– a acu] [– l line]

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages an interac-
tive conversation with possible transfers of text files. Telno is the telephone number, with minus signs
at appropriate places for delays. The – t flag is used to dial out to a terminal. Speed gives the transmis-
sion speed (110, 134, 150, 300, 1200); 300 is the default value.

The – a and – l values may be used to specify pathnames for the ACU and communications line devices.
They can be used to override the following built-in choices:

– a /dev/cua0 – l /dev/cul0

After making the connection, cu runs as two processes: the send process reads the standard input and
passes most of it to the remote system; the receive process reads from the remote system and passes
most data to the standard output. Lines beginning with ‘˜’ have special meanings.

The send process interprets the following:

˜ . terminate the conversation.
˜EOT terminate the conversation

˜<file send the contents of file to the remote system, as though typed at the terminal.

˜! invoke an interactive shell on the local system.

˜!cmd ... run the command on the local system (via sh – c).

˜$cmd ... run the command locally and send its output to the remote system.

˜%take from [to] copy file ‘from’ (on the remote system) to file ‘to’ on the local system. If ‘to’ is
omitted, the ‘from’ name is used both places.

˜%put from [to] copy file ‘from’ (on local system) to file ‘to’ on remote system. If ‘to’ is omitted,
the ‘from’ name is used both places.

˜˜ . . . send the line ‘˜ . . .’.

The receive process handles output diversions of the following form:

˜>[>][:]file
zero or more lines to be written to file
˜>

In any case, output is diverted (or appended, if ‘>>’ used) to the file. If ‘:’ is used, the diversion is
silent, i.e., it is written only to the file. If ‘:’ is omitted, output is written both to the file and to the
standard output. The trailing ‘˜>’ terminates the diversion.

The use of ˜%put requires stty and cat on the remote side. It also requires that the current erase and
kill characters on the remote system be identical to the current ones on the local system. Backslashes
are inserted at appropriate places.

The use of ˜%take requires the existence of echo and tee on the remote system. Also, stty tabs mode
is required on the remote system if tabs are to be copied without expansion.

FILES
/dev/cua0
/dev/cul0
/dev/null

7th Edition 1

CU (1C) UNIX Programmer’s Manual CU (1C)

SEE ALSO
dn(4), tty(4)

DIAGNOSTICS
Exit code is zero for normal exit, nonzero (various values) otherwise.

BUGS
The syntax is unique.

7th Edition 2

DATE (1) UNIX Programmer’s Manual DATE (1)

NAME
date – print and set the date

SYNOPSIS
date [yymmddhhmm [.ss]]

DESCRIPTION
If no argument is given, the current date and time are printed. If an argument is given, the current date
is set. yy is the last two digits of the year; the first mm is the month number; dd is the day number in
the month; hh is the hour number (24 hour system); the second mm is the minute number; .ss is optional
and is the seconds. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current values being
the defaults. The system operates in GMT. Date takes care of the conversion to and from local stan-
dard and daylight time.

FILES
/usr/adm/wtmp to record time-setting

SEE ALSO
utmp(5)

DIAGNOSTICS
‘No permission’ if you aren’t the super-user and you try to change the date; ‘bad conversion’ if the date
set is syntactically incorrect.

7th Edition 1

DC (1) UNIX Programmer’s Manual DC (1)

NAME
dc – desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one may
specify an input base, output base, and a number of fractional digits to be maintained. The overall
structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input is taken from that
file until its end, then from the standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the digits
0-9. It may be preceded by an underscore _ to input a negative number. Numbers may contain
decimal points.

+ – / * % ˆ
The top two values on the stack are added (+), subtracted (–), multiplied (*), divided (/), remain-
dered (%), or exponentiated (ˆ). The two entries are popped off the stack; the result is pushed on
the stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x may be any character.
If the s is capitalized, x is treated as a stack and the value is pushed on it.

lx The value in register x is pushed on the stack. The register x is not altered. All registers start
with zero value. If the l is capitalized, register x is treated as a stack and its top value is popped
onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged. P interprets the top of
the stack as an ascii string, removes it, and prints it.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is popped by two. If q is capital-
ized, the top value on the stack is popped and the string execution level is popped by that value.

x treats the top element of the stack as a character string and executes it as a string of dc com-
mands.

X replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ascii string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x is executed if they obey
the stated relation.

v replaces the top element on the stack by its square root. Any existing fractional part of the argu-
ment is taken into account, but otherwise the scale factor is ignored.

! interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input. I pushes
the input base on the top of the stack.

o The top value on the stack is popped and used as the number radix for further output.

O pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non-negative scale factor: the

7th Edition 1

DC (1) UNIX Programmer’s Manual DC (1)

appropriate number of places are printed on output, and maintained during multiplication, divi-
sion, and exponentiation. The interaction of scale factor, input base, and output base will be rea-
sonable if all are changed together.

z The stack level is pushed onto the stack.

Z replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and executed.

; : are used by bc for array operations.

An example which prints the first ten values of n! is

[la1+dsa*pla10>y]sy
0sa1
lyx

SEE ALSO
bc(1), which is a preprocessor for dc providing infix notation and a C-like syntax which implements
functions and reasonable control structures for programs.

DIAGNOSTICS
‘x is unimplemented’ where x is an octal number.
‘stack empty’ for not enough elements on the stack to do what was asked.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

7th Edition 2

DCHECK (1M) UNIX Programmer’s Manual DCHECK (1M)

NAME
dcheck – file system directory consistency check

SYNOPSIS
dcheck [– i numbers] [filesystem]

DESCRIPTION
Dcheck reads the directories in a file system and compares the link-count in each i-node with the number
of directory entries by which it is referenced. If the file system is not specified, a set of default file sys-
tems is checked.

The – i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a directory, the
number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in large
chunks.

FILES
Default file systems vary with installation.

SEE ALSO
icheck(1), filsys(5), clri(1), ncheck(1)

DIAGNOSTICS
When a file turns up for which the link-count and the number of directory entries disagree, the relevant
facts are reported. Allocated files which have 0 link-count and no entries are also listed. The only
dangerous situation occurs when there are more entries than links; if entries are removed, so the link-
count drops to 0, the remaining entries point to thin air. They should be removed. When there are
more links than entries, or there is an allocated file with neither links nor entries, some disk space may
be lost but the situation will not degenerate.

BUGS
Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to
active file systems.

7th Edition 1

DD (1) UNIX Programmer’s Manual DD (1)

NAME
dd – convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The standard input
and output are used by default. The input and output block size may be specified to take advantage of
raw physical I/O.

option values
if= input file name; standard input is default
of= output file name; standard output is default
ibs=n input block size n bytes (default 512)
obs=n output block size (default 512)
bs=n set both input and output block size, superseding ibs and obs; also, if no conversion is

specified, it is particularly efficient since no copy need be done
cbs=n conversion buffer size
skip=n skip n input records before starting copy
files=n copy n files from (tape) input
seek=n seek n records from beginning of output file before copying
count=n copy only n input records
conv=ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
... , ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to specify
multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x to indicate a
product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are placed
into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-line added before
sending the line to the output. In the latter case ASCII characters are read into the conversion buffer,
converted to EBCDIC, and blanks added to make up an output record of size cbs .

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into the
ASCII file x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical devices because it
allows reading and writing in arbitrary record sizes.

To skip over a file before copying from magnetic tape do

(dd of=/dev/null; dd of=x) </dev/rmt0

SEE ALSO
cp(1), tr(1)

7th Edition 1

DD (1) UNIX Programmer’s Manual DD (1)

DIAGNOSTICS
f+p records in(out): numbers of full and partial records read(written)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM Nov,
1968. The ‘ibm’ conversion, while less blessed as a standard, corresponds better to certain IBM print
train conventions. There is no universal solution.

Newlines are inserted only on conversion to ASCII; padding is done only on conversion to EBCDIC.
These should be separate options.

7th Edition 2

DEROFF (1) UNIX Programmer’s Manual DEROFF (1)

NAME
deroff – remove nroff, troff, tbl and eqn constructs

SYNOPSIS
deroff [– w] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff command lines, backslash construc-
tions, macro definitions, eqn constructs (between ‘.EQ’ and ‘.EN’ lines or between delimiters), and table
descriptions and writes the remainder on the standard output. Deroff follows chains of included files
(‘.so’ and ‘.nx’ commands); if a file has already been included, a ‘.so’ is ignored and a ‘.nx’ terminates
execution. If no input file is given, deroff reads from the standard input file.

If the – w flag is given, the output is a word list, one ‘word’ (string of letters, digits, and apostrophes,
beginning with a letter; apostrophes are removed) per line, and all other characters ignored. Otherwise,
the output follows the original, with the deletions mentioned above.

SEE ALSO
troff(1), eqn(1), tbl(1)

BUGS
Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most errors result
in too much rather than too little output.

7th Edition 1

DF (1M) UNIX Programmer’s Manual DF (1M)

NAME
df – disk free

SYNOPSIS
df [filesystem] ...

DESCRIPTION
Df prints out the number of free blocks available on the filesystems. If no file system is specified, the
free space on all of the normally mounted file systems is printed.

FILES
Default file systems vary with installation.

SEE ALSO
icheck(1)

7th Edition 1

DIFF (1) UNIX Programmer’s Manual DIFF (1)

NAME
diff – differential file comparator

SYNOPSIS
diff [– efbh] file1 file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agreement. If file1 (file2) is ‘– ’,
the standard input is used. If file1 (file2) is a directory, then a file in that directory whose file-name is
the same as the file-name of file2 (file1) is used. The normal output contains lines of these forms:

n1 a n3,n4
n1,n2 d n3
n1,n2 c n3,n4

These lines resemble ed commands to convert file1 into file2 . The numbers after the letters pertain to
file2 . In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain equally how to convert
file2 into file1 . As in ed, identical pairs where n1 = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<’, then all
the lines that are affected in the second file flagged by ‘>’.

The – b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks to com-
pare equal.

The – e option produces a script of a, c and d commands for the editor ed, which will recreate file2 from
file1 . The – f option produces a similar script, not useful with ed, in the opposite order. In connection
with – e, the following shell program may help maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version ed scripts ($2,$3,...) made by diff need be on hand. A ‘latest
version’ appears on the standard output.

(shift; cat $*; echo ´1,$p´)  ed – $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

Option – h does a fast, half-hearted job. It works only when changed stretches are short and well
separated, but does work on files of unlimited length. Options – e and – f are unavailable with – h.

FILES
/tmp/d?????
/usr/lib/diffh for – h

SEE ALSO
cmp(1), comm(1), ed(1)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS
Editing scripts produced under the – e or – f option are naive about creating lines consisting of a single
‘.’.

7th Edition 1

DIFF3 (1) UNIX Programmer’s Manual DIFF3 (1)

NAME
diff3 – 3-way differential file comparison

SYNOPSIS
diff3 [– ex3] file1 file2 file3

DESCRIPTION
Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with these
codes:

==== all three files differ

====1 file1 is different

====2 file2 is different

====3 file3 is different

The type of change suffered in converting a given range of a given file to some other is indicated in one
of these ways:

f : n1 a Text is to be appended after line number n1 in file f, where f = 1, 2, or 3.

f : n1 , n2 c Text is to be changed in the range line n1 to line n2 . If n1 = n2, the range may be
abbreviated to n1 .

The original contents of the range follows immediately after a c indication. When the contents of two
files are identical, the contents of the lower-numbered file is suppressed.

Under the – e option, diff3 publishes a script for the editor ed that will incorporate into file1 all changes
between file2 and file3, i.e . the changes that normally would be flagged ==== and ====3. Option – x
(– 3) produces a script to incorporate only changes flagged ==== (====3). The following command will
apply the resulting script to ‘file1’.

(cat script; echo ´1,$p´)  ed – file1

FILES
/tmp/d3?????
/usr/lib/diff3

SEE ALSO
diff(1)

BUGS
Text lines that consist of a single ‘.’ will defeat – e.
Files longer than 64K bytes won’t work.

7th Edition 1

DU (1) UNIX Programmer’s Manual DU (1)

NAME
du – summarize disk usage

SYNOPSIS
du [– s] [– a] [name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each specified
directory or file name. If name is missing, ‘.’ is used.

The optional argument – s causes only the grand total to be given. The optional argument – a causes an
entry to be generated for each file. Absence of either causes an entry to be generated for each directory
only.

A file which has two links to it is only counted once.

BUGS
Non-directories given as arguments (not under – a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

7th Edition 1

DUMP (1M) UNIX Programmer’s Manual DUMP (1M)

NAME
dump – incremental file system dump

SYNOPSIS
dump [key [argument ...] filesystem]

DESCRIPTION
Dump copies to magnetic tape all files changed after a certain date in the filesystem. The key specifies
the date and other options about the dump. Key consists of characters from the set 0123456789fusd.

f Place the dump on the next argument file instead of the tape.

u If the dump completes successfully, write the date of the beginning of the dump on file
‘/etc/ddate’. This file records a separate date for each filesystem and each dump level.

0– 9 This number is the ‘dump level’. All files modified since the last date stored in the file
‘/etc/ddate’ for the same filesystem at lesser levels will be dumped. If no date is determined by
the level, the beginning of time is assumed; thus the option 0 causes the entire filesystem to be
dumped.

s The size of the dump tape is specified in feet. The number of feet is taken from the next argu-
ment. When the specified size is reached, the dump will wait for reels to be changed. The default
size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used in calcu-
lating the amount of tape used per write. The default is 1600.

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to the
default tape.

Now a short suggestion on how perform dumps. Start with a full level 0 dump

dump 0u

Next, periodic level 9 dumps should be made on an exponential progression of tapes. (Sometimes called
Tower of Hanoi – 1 2 1 3 1 2 1 4 ... tape 1 used every other time, tape 2 used every fourth, tape 3
used every eighth, etc.)

dump 9u

When the level 9 incremental approaches a full tape (about 78000 blocks at 1600 BPI blocked 20), a
level 1 dump should be made.

dump 1u

After this, the exponential series should progress as uninterrupted. These level 9 dumps are based on
the level 1 dump which is based on the level 0 full dump. This progression of levels of dump can be
carried as far as desired.

FILES
default filesystem and tape vary with installation.
/etc/ddate: record dump dates of filesystem/level.

SEE ALSO
restor(1), dump(5), dumpdir(1)

DIAGNOSTICS
If the dump requires more than one tape, it will ask you to change tapes. Reply with a new-line when
this has been done.

BUGS
Sizes are based on 1600 BPI blocked tape. The raw magtape device has to be used to approach these
densities. Read errors on the filesystem are ignored. Write errors on the magtape are usually fatal.

7th Edition 1

DUMPDIR (1M) UNIX Programmer’s Manual DUMPDIR (1M)

NAME
dumpdir – print the names of files on a dump tape

SYNOPSIS
dumpdir [f filename]

DESCRIPTION
Dumpdir is used to read magtapes dumped with the dump command and list the names and inode
numbers of all the files and directories on the tape.

The f option causes filename as the name of the tape instead of the default.

FILES
default tape unit varies with installation
rst*

SEE ALSO
dump(1), restor(1)

DIAGNOSTICS
If the dump extends over more than one tape, it may ask you to change tapes. Reply with a new-line
when the next tape has been mounted.

BUGS
There is redundant information on the tape that could be used in case of tape reading problems. Unfor-
tunately, dumpdir doesn’t use it.

7th Edition 1

ECHO (1) UNIX Programmer’s Manual ECHO (1)

NAME
echo – echo arguments

SYNOPSIS
echo [– n] [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a newline on the standard output. If
the flag – n is used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on pipes. To
send diagnostics to the standard error file, do ‘echo ... 1>&2’.

7th Edition 1

ED (1) UNIX Programmer’s Manual ED (1)

NAME
ed – text editor

SYNOPSIS
ed [–] [– x] [name]

DESCRIPTION
Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on the named file; that is to say,
the file is read into ed’s buffer so that it can be edited. If – x is present, an x command is simulated first
to handle an encrypted file. The optional – suppresses the printing of character counts by e, r, and w
commands.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the file until
a w (write) command is given. The copy of the text being edited resides in a temporary file called the
buffer .

Commands to ed have a simple and regular structure: zero or more addresses followed by a single char-
acter command, possibly followed by parameters to the command. These addresses specify one or more
lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of text to
the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Input mode is left by typing a period ‘.’ alone at the beginning
of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of
strings of characters. A member of this set of strings is said to be matched by the regular expression.
In the following specification for regular expressions the word ‘character’ means any character but new-
line.

1. Any character except a special character matches itself. Special characters are the regular
expression delimiter plus \ [. and sometimes ˆ * $.

2. A . matches any character.

3. A \ followed by any character except a digit or () matches that character.

4. A nonempty string s bracketed [s] (or [ˆs]) matches any character in (or not in) s. In s, \ has
no special meaning, and] may only appear as the first letter. A substring a– b, with a and b in
ascending ASCII order, stands for the inclusive range of ASCII characters.

5. A regular expression of form 1-4 followed by * matches a sequence of 0 or more matches of
the regular expression.

6. A regular expression, x, of form 1-8, bracketed \(x \) matches what x matches.

7. A \ followed by a digit n matches a copy of the string that the bracketed regular expression
beginning with the nth \(matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y matches a
match for x followed by a match for y, with the x match being as long as possible while still
permitting a y match.

9. A regular expression of form 1-8 preceded by ˆ (or followed by $), is constrained to matches
that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a line.

11. An empty regular expression stands for a copy of the last regular expression encountered.

7th Edition 1

ED (1) UNIX Programmer’s Manual ED (1)

Regular expressions are used in addresses to specify lines and in one command (see s below) to specify
a portion of a line which is to be replaced. If it is desired to use one of the regular expression meta-
characters as an ordinary character, that character may be preceded by ‘\’. This also applies to the char-
acter bounding the regular expression (often ‘/’) and to ‘\’ itself.

To understand addressing in ed it is necessary to know that at any time there is a current line. Generally
speaking, the current line is the last line affected by a command; however, the exact effect on the
current line is discussed under the description of the command. Addresses are constructed as follows.

1. The character ‘.’ addresses the current line.

2. The character ‘$’ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ‘′x’ addresses the line marked with the name x , which must be a lower-case letter. Lines are
marked with the k command described below.

5. A regular expression enclosed in slashes ‘/’ addresses the line found by searching forward from
the current line and stopping at the first line containing a string that matches the regular expres-
sion. If necessary the search wraps around to the beginning of the buffer.

6. A regular expression enclosed in queries ‘?’ addresses the line found by searching backward
from the current line and stopping at the first line containing a string that matches the regular
expression. If necessary the search wraps around to the end of the buffer.

7. An address followed by a plus sign ‘+’ or a minus sign ‘– ’ followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign may be
omitted.

8. If an address begins with ‘+’ or ‘– ’ the addition or subtraction is taken with respect to the
current line; e.g. ‘– 5’ is understood to mean ‘.– 5’.

9. If an address ends with ‘+’ or ‘– ’, then 1 is added (resp. subtracted). As a consequence of this
rule and rule 8, the address ‘– ’ refers to the line before the current line. Moreover, trailing ‘+’
and ‘– ’ characters have cumulative effect, so ‘– – ’ refers to the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character ‘ˆ’ in addresses is
equivalent to ‘– ’.

Commands may require zero, one, or two addresses. Commands which require no addresses regard the
presence of an address as an error. Commands which accept one or two addresses assume default
addresses when insufficient are given. If more addresses are given than such a command requires, the
last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ‘,’. They may also be separated by a
semicolon ‘;’. In this case the current line ‘.’ is set to the previous address before the next address is
interpreted. This feature can be used to determine the starting line for forward and backward searches
(‘/’, ‘?’) . The second address of any two-address sequence must correspond to a line following the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The parentheses
are not part of the address, but are used to show that the given addresses are the default.

As mentioned, it is generally illegal for more than one command to appear on a line. However, most
commands may be suffixed by ‘p’ or by ‘l’, in which case the current line is either printed or listed
respectively in the way discussed below.

(.) a
<text>
.

The append command reads the given text and appends it after the addressed line. ‘.’ is left on

7th Edition 2

ED (1) UNIX Programmer’s Manual ED (1)

the last line input, if there were any, otherwise at the addressed line. Address ‘0’ is legal for this
command; text is placed at the beginning of the buffer.

(. , .) c
<text>
.

The change command deletes the addressed lines, then accepts input text which replaces these
lines. ‘.’ is left at the last line input; if there were none, it is left at the line preceding the deleted
lines.

(. , .) d
The delete command deletes the addressed lines from the buffer. The line originally after the last
line deleted becomes the current line; if the lines deleted were originally at the end, the new last
line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the named file
to be read in. ‘.’ is set to the last line of the buffer. The number of characters read is typed.
‘filename’ is remembered for possible use as a default file name in a subsequent r or w command.
If ‘filename’ is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results when no w has been given since
the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is given, the
currently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given regular
expression. Then for every such line, the given command list is executed with ‘.’ initially set to
that line. A single command or the first of multiple commands appears on the same line with the
global command. All lines of a multi-line list except the last line must be ended with ‘\’. A, i,
and c commands and associated input are permitted; the ‘.’ terminating input mode may be omit-
ted if it would be on the last line of the command list. The commands g and v are not permitted
in the command list.

(.) i

<text>
.

This command inserts the given text before the addressed line. ‘.’ is left at the last line input, or,
if there were none, at the line before the addressed line. This command differs from the a com-
mand only in the placement of the text.

(. , .+1) j
This command joins the addressed lines into a single line; intermediate newlines simply disappear.
‘.’ is left at the resulting line.

(.) kx
The mark command marks the addressed line with name x, which must be a lower-case letter.
The address form ‘′x’ then addresses this line.

(. , .) l
The list command prints the addressed lines in an unambiguous way: non-graphic characters are
printed in two-digit octal, and long lines are folded. The l command may be placed on the same
line after any non-i/o command.

(. , .) ma

7th Edition 3

ED (1) UNIX Programmer’s Manual ED (1)

The move command repositions the addressed lines after the line addressed by a . The last of the
moved lines becomes the current line.

(. , .) p
The print command prints the addressed lines. ‘.’ is left at the last line printed. The p command
may be placed on the same line after any non-i/o command.

(. , .) P
This command is a synonym for p.

q The quit command causes ed to exit. No automatic write of a file is done.

Q This command is the same as q, except that no diagnostic results when no w has been given since
the last buffer alteration.

($) r filename
The read command reads in the given file after the addressed line. If no file name is given, the
remembered file name, if any, is used (see e and f commands) . The file name is remembered if
there was no remembered file name already. Address ‘0’ is legal for r and causes the file to be
read at the beginning of the buffer. If the read is successful, the number of characters read is
typed. ‘.’ is left at the last line read in from the file.

(. , .) s/regular expression/replacement/ or,
(. , .) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the specified regular
expression. On each line in which a match is found, all matched strings are replaced by the
replacement specified, if the global replacement indicator ‘g’ appears after the command. If the
global indicator does not appear, only the first occurrence of the matched string is replaced. It is
an error for the substitution to fail on all addressed lines. Any character other than space or new-
line may be used instead of ‘/’ to delimit the regular expression and the replacement. ‘.’ is left at
the last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the regular
expression. The special meaning of ‘&’ in this context may be suppressed by preceding it by ‘\’.
The characters ‘ \n’ where n is a digit, are replaced by the text matched by the n-th regular subex-
pression enclosed between ‘\(’ and ‘\)’. When nested, parenthesized subexpressions are present, n
is determined by counting occurrences of ‘\(’ starting from the left.

Lines may be split by substituting new-line characters into them. The new-line in the replacement
string must be escaped by preceding it by ‘\’.

(. , .) t a
This command acts just like the m command, except that a copy of the addressed lines is placed
after address a (which may be 0). ‘.’ is left on the last line of the copy.

(. , .) u
The undo command restores the preceding contents of the current line, which must be the last line
in which a substitution was made.

(1, $) v/regular expression/command list
This command is the same as the global command g except that the command list is executed g
with ‘.’ initially set to every line except those matching the regular expression.

(1, $) w filename
The write command writes the addressed lines onto the given file. If the file does not exist, it is
created mode 666 (readable and writable by everyone) . The file name is remembered if there was
no remembered file name already. If no file name is given, the remembered file name, if any, is
used (see e and f commands) . ‘.’ is unchanged. If the command is successful, the number of
characters written is printed.

7th Edition 4

ED (1) UNIX Programmer’s Manual ED (1)

(1,$)W filename
This command is the same as w, except that the addressed lines are appended to the file.

x A key string is demanded from the standard input. Later r, e and w commands will encrypt and
decrypt the text with this key by the algorithm of crypt(1). An explicitly empty key turns off
encryption.

($) = The line number of the addressed line is typed. ‘.’ is unchanged by this command.

!<shell command>
The remainder of the line after the ‘!’ is sent to sh(1) to be interpreted as a command. ‘.’ is
unchanged.

(.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to ‘.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed prints a ‘?’ and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 characters
per file name, and 128K characters in the temporary file. The limit on the number of lines depends on
the amount of core: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the last newline. It
refuses to read files containing non-ASCII characters.

FILES
/tmp/e*
ed.hup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kernighan, A Tutorial Introduction to the ED Text Editor
B. W. Kernighan, Advanced editing on UNIX
sed(1), crypt(1)

DIAGNOSTICS
‘?name’ for inaccessible file; ‘?’ for errors in commands; ‘?TMP’ for temporary file overflow.

To protect against throwing away valuable work, a q or e command is considered to be in error, unless a
w has occurred since the last buffer change. A second q or e will be obeyed regardless.

BUGS
The l command mishandles DEL.
A ! command cannot be subject to a g command.
Because 0 is an illegal address for a w command, it is not possible to create an empty file with ed.

7th Edition 5

EQN (1) UNIX Programmer’s Manual EQN (1)

NAME
eqn, neqn, checkeq – typeset mathematics

SYNOPSIS
eqn [– dxy] [– pn] [– sn] [– fn] [file] ...
checkeq [file] ...

DESCRIPTION
Eqn is a troff(1) preprocessor for typesetting mathematics on a Graphic Systems phototypesetter, neqn
on terminals. Usage is almost always

eqn file ...  troff
neqn file ...  nroff

If no files are specified, these programs reads from the standard input. A line beginning with ‘.EQ’
marks the start of an equation; the end of an equation is marked by a line beginning with ‘.EN’. Neither
of these lines is altered, so they may be defined in macro packages to get centering, numbering, etc. It
is also possible to set two characters as ‘delimiters’; subsequent text between delimiters is also treated as
eqn input. Delimiters may be set to characters x and y with the command-line argument – dxy or (more
commonly) with ‘delim xy’ between .EQ and .EN. The left and right delimiters may be identical. Del-
imiters are turned off by ‘delim off’. All text that is neither between delimiters nor between .EQ and
.EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes, tildes or circumflexes.
Braces {} are used for grouping; generally speaking, anywhere a single character like x could appear, a
complicated construction enclosed in braces may be used instead. Tilde ˜ represents a full space in the
output, circumflex ˆ half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes xi , a sub i
sup 2 produces ai

2, and e sup {x sup 2 + y sup 2} gives ex2+y2

.

Fractions are made with over: a over b yields
b
a_ _.

sqrt makes square roots: 1 over sqrt {ax sup 2 +bx+c} results in
√ax2+bx +c

1_ __________ .

The keywords from and to introduce lower and upper limits on arbitrary things:
n →∞
lim

0
Σ
n

xi is made with

lim from {n– > inf } sum from 0 to n x sub i.

Left and right brackets, braces, etc., of the right height are made with left and right: left [x sup 2 + y

sup 2 over alpha right] ˜=˜1 produces



 x 2+

α
y 2
_ __




= 1. The right clause is optional. Legal characters

after left and right are braces, brackets, bars, c and f for ceiling and floor, and "" for nothing at all (use-
ful for a right-side-only bracket).

Vertical piles of things are made with pile, lpile, cpile, and rpile: pile {a above b above c} produces
c
b
a
.

There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and cpile center, with
different vertical spacing, and rpile right justifies.

Matrices are made with matrix: matrix { lcol { x sub i above y sub 2 } ccol { 1 above 2 } } produces

y 2

xi

2

1
. In addition, there is rcol for a right-justified column.

7th Edition 2/22/74 1

EQN (1) UNIX Programmer’s Manual EQN (1)

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dot = f(t) bar is
x
.
=f (t)  , y dotdot bar ˜=˜ n under is y

.. = n_ , and x vec ˜=˜ y dyad is x→ = y← →.

Sizes and font can be changed with size n or size ±n, roman, italic, bold, and font n. Size and fonts
can be changed globally in a document by gsize n and gfont n , or by the command-line arguments – sn
and – fn.

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this may be
changed by the command-line argument – pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in the first
equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define: define thing % replacement %
defines a new token called thing which will be replaced by replacement whenever it appears thereafter.
The % may be any character that does not occur in replacement.

Keywords like sum (Σ) int (∫) inf (∞) and shorthands like >= (≥) – > (→), and != (≠) are recognized.
Greek letters are spelled out in the desired case, as in alpha or GAMMA. Mathematical words like sin,
cos, log are made Roman automatically. Troff(1) four-character escapes like \(bs () can be used any-
where. Strings enclosed in double quotes "..." are passed through untouched; this permits keywords to
be entered as text, and can be used to communicate with troff when all else fails.

SEE ALSO
troff(1), tbl(1), ms(7), eqnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics—User’s Guide
J. F. Ossanna, NROFF/TROFF User’s Manual

BUGS
To embolden digits, parens, etc., it is necessary to quote them, as in ‘bold "12.3"’.

7th Edition 2/22/74 2

EXPR (1) UNIX Programmer’s Manual EXPR (1)

NAME
expr – evaluate arguments as an expression

SYNOPSIS
expr arg . . .

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the standard output.
Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing precedence, with equal
precedence operators grouped.

expr  expr
yields the first expr if it is neither null nor ‘0’, otherwise yields the second expr.

expr & expr
yields the first expr if neither expr is null or ‘0’, otherwise yields ‘0’.

expr relop expr
where relop is one of < <= = != >= >, yields ‘1’ if the indicated comparison is true, ‘0’ if false.
The comparison is numeric if both expr are integers, otherwise lexicographic.

expr + expr
expr - expr
addition or subtraction of the arguments.

expr * expr
expr / expr
expr % expr
multiplication, division, or remainder of the arguments.

expr : expr
The matching operator compares the string first argument with the regular expression second
argument; regular expression syntax is the same as that of ed(1). The \(. . . \) pattern symbols
can be used to select a portion of the first argument. Otherwise, the matching operator yields
the number of characters matched (‘0’ on failure).

(expr) parentheses for grouping.

Examples:

To add 1 to the Shell variable a:

a=`expr $a + 1`

To find the filename part (least significant part) of the pathname stored in variable a, which may or may
not contain ‘/’:

expr $a : ´.*/\(.*\)´ ´ ´ $a

Note the quoted Shell metacharacters.

SEE ALSO
ed(1), sh(1), test(1)

DIAGNOSTICS
Expr returns the following exit codes:

0 if the expression is neither null nor ‘0’,
1 if the expression is null or ‘0’,
2 for invalid expressions.

7th Edition 1

F77 (1) UNIX Programmer’s Manual F77 (1)

NAME
f77 – Fortran 77 compiler

SYNOPSIS
f77 [option] ... file ...

DESCRIPTION
F77 is the UNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with ‘.f’ are taken to be Fortran 77 source programs; they are compiled,
and each object program is left on the file in the current directory whose name is that of the source with
‘.o’ substituted for ’.f’.

Arguments whose names end with ‘.r’ or ‘.e’ are taken to be Ratfor or EFL source programs, respec-
tively; these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with ‘.c’ or ‘.s’ are taken to be C or assembly source pro-
grams and are compiled or assembled, producing a ‘.o’ file.

The following options have the same meaning as in cc(1). See ld(1) for load-time options.

– c Suppress loading and produce ‘.o’ files for each source file.

– p Prepare object files for profiling, see prof(1).

– O Invoke an object-code optimizer.

– S Compile the named programs, and leave the assembler-language output on corresponding files
suffixed ‘.s’. (No ‘.o’ is created.).

– f Use a floating point interpreter (for PDP11’s that lack 11/70-style floating point).

– o output
Name the final output file output instead of ‘a.out’.

The following options are peculiar to f77 .

– onetrip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops are not
performed at all if the upper limit is smaller than the lower limit.)

– u Make the default type of a variable ‘undefined’ rather than using the default Fortran rules.

– C Compile code to check that subscripts are within declared array bounds.

– w Suppress all warning messages. If the option is ‘– w66’, only Fortran 66 compatibility warn-
ings are suppressed.

– F Apply EFL and Ratfor preprocessor to relevant files, put the result in the file with the suffix
changed to ‘.f’, but do not compile.

– m Apply the M4 preprocessor to each ‘.r’ or ‘.e’ file before transforming it with the Ratfor or EFL
preprocessor.

– Ex Use the string x as an EFL option in processing ‘.e’ files.

– Rx Use the string x as a Ratfor option in processing ‘.r’ files.

Other arguments are taken to be either loader option arguments, or F77-compatible object programs, typ-
ically produced by an earlier run, or perhaps libraries of F77-compatible routines. These programs,
together with the results of any compilations specified, are loaded (in the order given) to produce an
executable program with name ‘a.out’.

FILES
file.[fresc] input file
file.o object file

7th Edition 1

F77 (1) UNIX Programmer’s Manual F77 (1)

a.out loaded output
/usr/lib/f77pass1compiler
/lib/c1 pass 2
/lib/c2 optional optimizer
/usr/lib/libF77.a intrinsic function library
/usr/lib/libI77.a Fortran I/O library
/lib/libc.a C library, see section 3

SEE ALSO
S. I. Feldman, P. J. Weinberger, A Portable Fortran 77 Compiler
prof(1), cc(1), ld(1)

DIAGNOSTICS
The diagnostics produced by f77 itself are intended to be self-explanatory. Occasional messages may be
produced by the loader.

BUGS
The Fortran 66 subset of the language has been exercised extensively; the newer features have not.

7th Edition 2

FACTOR (1) UNIX Programmer’s Manual FACTOR (1)

NAME
factor, primes – factor a number, generate large primes

SYNOPSIS
factor [number]

primes

DESCRIPTION
When factor is invoked without an argument, it waits for a number to be typed in. If you type in a
positive number less than 256 (about 7.2×1016) it will factor the number and print its prime factors; each
one is printed the proper number of times. Then it waits for another number. It exits if it encounters a
zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to √n and occurs when n is prime or the square of a prime. It
takes 1 minute to factor a prime near 1014 on a PDP11.

When primes is invoked, it waits for a number to be typed in. If you type in a positive number less
than 256 it will print all primes greater than or equal to this number.

DIAGNOSTICS
‘Ouch.’ for input out of range or for garbage input.

7th Edition 1

FILE (1) UNIX Programmer’s Manual FILE (1)

NAME
file – determine file type

SYNOPSIS
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument appears to
be ascii, file examines the first 512 bytes and tries to guess its language.

BUGS
It often makes mistakes. In particular it often suggests that command files are C programs.

7th Edition 1

FIND (1) UNIX Programmer’s Manual FIND (1)

NAME
find – find files

SYNOPSIS
find pathname-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each pathname in the pathname-list (i.e., one or
more pathnames) seeking files that match a boolean expression written in the primaries given below. In
the descriptions, the argument n is used as a decimal integer where +n means more than n, – n means
less than n and n means exactly n .

– name filename
True if the filename argument matches the current file name. Normal Shell argument syntax
may be used if escaped (watch out for ‘[’, ‘?’ and ‘*’).

– perm onum
True if the file permission flags exactly match the octal number onum (see chmod(1)). If
onum is prefixed by a minus sign, more flag bits (017777, see stat(2)) become significant
and the flags are compared: (flags&onum)==onum .

– type c True if the type of the file is c, where c is b, c, d or f for block special file, character spe-
cial file, directory or plain file.

– links n True if the file has n links.

– user uname
True if the file belongs to the user uname (login name or numeric user ID).

– group gname
True if the file belongs to group gname (group name or numeric group ID).

– size n True if the file is n blocks long (512 bytes per block).

– inum n True if the file has inode number n.

– atime n True if the file has been accessed in n days.

– mtime n True if the file has been modified in n days.

– exec command
True if the executed command returns a zero value as exit status. The end of the command
must be punctuated by an escaped semicolon. A command argument ‘{}’ is replaced by the
current pathname.

– ok command
Like – exec except that the generated command is written on the standard output, then the
standard input is read and the command executed only upon response y.

– print Always true; causes the current pathname to be printed.

– newer file
True if the current file has been modified more recently than the argument file.

The primaries may be combined using the following operators (in order of decreasing precedence):

1) A parenthesized group of primaries and operators (parentheses are special to the Shell and must be
escaped).

2) The negation of a primary (‘!’ is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).

4) Alternation of primaries (‘– o’ is the or operator).

7th Edition 1

FIND (1) UNIX Programmer’s Manual FIND (1)

EXAMPLE
To remove all files named ‘a.out’ or ‘*.o’ that have not been accessed for a week:

find / \(– name a.out – o – name ’*.o’ \) – atime +7 – exec rm {} \;

FILES
/etc/passwd
/etc/group

SEE ALSO
sh(1), test(1), filsys(5)

BUGS
The syntax is painful.

7th Edition 2

GRAPH (1G) UNIX Programmer’s Manual GRAPH (1G)

NAME
graph – draw a graph

SYNOPSIS
graph [option] ...

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as abscissas and ordinates of a
graph. Successive points are connected by straight lines. The graph is encoded on the standard output
for display by the plot(1) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a label begin-
ning on the point. Labels may be surrounded with quotes "...", in which case they may be empty or
contain blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

– a Supply abscissas automatically (they are missing from the input); spacing is given by the next
argument (default 1). A second optional argument is the starting point for automatic abscissas
(default 0 or lower limit given by – x).

– b Break (disconnect) the graph after each label in the input.

– c Character string given by next argument is default label for each point.

– g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).

– l Next argument is label for graph.

– m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected (default).
Some devices give distinguishable line styles for other small integers.

– s Save screen, don’t erase before plotting.

– x [l] If l is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x limits.
Third argument, if present, is grid spacing on x axis. Normally these quantities are determined
automatically.

– y [l] Similarly for y .

– h Next argument is fraction of space for height.

– w Similarly for width.

– r Next argument is fraction of space to move right before plotting.

– u Similarly to move up before plotting.

– t Transpose horizontal and vertical axes. (Option – x now applies to the vertical axis.)

A legend indicating grid range is produced with a grid unless the – s option is present.

If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
spline(1), plot(1)

BUGS
Graph stores all points internally and drops those for which there isn’t room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

7th Edition 1

GREP (1) UNIX Programmer’s Manual GREP (1)

NAME
grep, egrep, fgrep – search a file for a pattern

SYNOPSIS
grep [option] ... expression [file] ...

egrep [option] ... [expression] [file] ...

fgrep [option] ... [strings] [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching a pattern.
Normally, each line found is copied to the standard output; unless the – h flag is used, the file name is
shown if there is more than one input file.

Grep patterns are limited regular expressions in the style of ed(1); it uses a compact nondeterministic
algorithm. Egrep patterns are full regular expressions; it uses a fast deterministic algorithm that some-
times needs exponential space. Fgrep patterns are fixed strings; it is fast and compact.

The following options are recognized.

– v All lines but those matching are printed.

– c Only a count of matching lines is printed.

– l The names of files with matching lines are listed (once) separated by newlines.

– n Each line is preceded by its line number in the file.

– b Each line is preceded by the block number on which it was found. This is sometimes useful in
locating disk block numbers by context.

– s No output is produced, only status.

– h Do not print filename headers with output lines.

– y Lower case letters in the pattern will also match upper case letters in the input (grep only).

– e expression
Same as a simple expression argument, but useful when the expression begins with a – .

– f file The regular expression (egrep) or string list (fgrep) is taken from the file.

– x (Exact) only lines matched in their entirety are printed (fgrep only).

Care should be taken when using the characters $ * [ˆ  ? ´ " () and \ in the expression as they are also
meaningful to the Shell. It is safest to enclose the entire expression argument in single quotes ´ ´.

Fgrep searches for lines that contain one of the (newline-separated) strings.

Egrep accepts extended regular expressions. In the following description ‘character’ excludes newline:

A \ followed by a single character matches that character.

The character ˆ ($) matches the beginning (end) of a line.

A . matches any character.

A single character not otherwise endowed with special meaning matches that character.

A string enclosed in brackets [] matches any single character from the string. Ranges of ASCII
character codes may be abbreviated as in ‘a– z0– 9’. A] may occur only as the first character
of the string. A literal – must be placed where it can’t be mistaken as a range indicator.

A regular expression followed by * (+, ?) matches a sequence of 0 or more (1 or more, 0 or 1)
matches of the regular expression.

Two regular expressions concatenated match a match of the first followed by a match of the
second.

7th Edition 1

GREP (1) UNIX Programmer’s Manual GREP (1)

Two regular expressions separated by  or newline match either a match for the first or a match
for the second.

A regular expression enclosed in parentheses matches a match for the regular expression.

The order of precedence of operators at the same parenthesis level is [] then *+? then concatenation
then  and newline.

SEE ALSO
ed(1), sed(1), sh(1)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

BUGS
Ideally there should be only one grep, but we don’t know a single algorithm that spans a wide enough
range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.

7th Edition 2

ICHECK (1M) UNIX Programmer’s Manual ICHECK (1M)

NAME
icheck – file system storage consistency check

SYNOPSIS
icheck [– s] [– b numbers] [filesystem]

DESCRIPTION
Icheck examines a file system, builds a bit map of used blocks, and compares this bit map against the
free list maintained on the file system. If the file system is not specified, a set of default file systems is
checked. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and character spe-
cial files.

The total number of blocks in use and the numbers of single-, double-, and triple-indirect
blocks and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free list.

The – s option causes icheck to ignore the actual free list and reconstruct a new one by rewriting the
super-block of the file system. The file system should be dismounted while this is done; if this is not
possible (for example if the root file system has to be salvaged) care should be taken that the system is
quiescent and that it is rebooted immediately afterwards so that the old, bad in-core copy of the super-
block will not continue to be used. Notice also that the words in the super-block which indicate the size
of the free list and of the i-list are believed. If the super-block has been curdled these words will have
to be patched. The – s option causes the normal output reports to be suppressed.

Following the – b option is a list of block numbers; whenever any of the named blocks turns up in a file,
a diagnostic is produced.

Icheck is faster if the raw version of the special file is used, since it reads the i-list many blocks at a
time.

FILES
Default file systems vary with installation.

SEE ALSO
dcheck(1), ncheck(1), filsys(5), clri(1)

DIAGNOSTICS
For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the difficulty,
the i-number, and the kind of block involved. If a read error is encountered, the block number of the
bad block is printed and icheck considers it to contain 0. ‘Bad freeblock’ means that a block number
outside the available space was encountered in the free list. ‘n dups in free’ means that n blocks were
found in the free list which duplicate blocks either in some file or in the earlier part of the free list.

BUGS
Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to
active file systems.
It believes even preposterous super-blocks and consequently can get core images.

7th Edition 1

IOSTAT (1M) UNIX Programmer’s Manual IOSTAT (1M)

NAME
iostat – report I/O statistics

SYNOPSIS
iostat [option] ... [interval [count]]

DESCRIPTION
Iostat delves into the system and reports certain statistics kept about input-output activity. Information
is kept about up to three different disks (RF, RK, RP) and about typewriters. For each disk, IO comple-
tions and number of words transferred are counted; for typewriters collectively, the number of input and
output characters are counted. Also, each sixtieth of a second, the state of each disk is examined and a
tally is made if the disk is active. The tally goes into one of four categories, depending on whether the
system is executing in user mode, in ‘nice’ (background) user mode, in system mode, or idle. From all
these numbers and from the known transfer rates of the devices it is possible to determine information
such as the degree of IO overlap and average seek times for each device.

The optional interval argument causes iostat to report once each interval seconds. The first report is for
all time since a reboot and each subsequent report is for the last interval only.

The optional count argument restricts the number of reports.

With no option argument iostat reports for each disk the number of transfers per minute, the mil-
liseconds per average seek, and the milliseconds per data transfer exclusive of seek time. It also gives
the percentage of time the system has spend in each of the four categories mentioned above.

The following options are available:

– t Report the number of characters of terminal IO per second as well.

– i Report the percentage of time spend in each of the four categories mentioned above, the percen-
tage of time each disk was active (seeking or transferring), the percentage of time any disk was
active, and the percentage of time spent in ‘IO wait:’ idle, but with a disk active.

– s Report the raw timing information: 32 numbers indicating the percentage of time spent in each
of the possible configurations of 4 system states and 8 IO states (3 disks each active or not).

– b Report on the usage of IO buffers.

FILES
/dev/mem, /unix

7th Edition 1

JOIN (1) UNIX Programmer’s Manual JOIN (1)

NAME
join – relational database operator

SYNOPSIS
join [options] file1 file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of file1 and file2 . If
file1 is ‘– ’, the standard input is used.

File1 and file2 must be sorted in increasing ASCII collating sequence on the fields on which they are to
be joined, normally the first in each line.

There is one line in the output for each pair of lines in file1 and file2 that have identical join fields. The
output line normally consists of the common field, then the rest of the line from file1 , then the rest of
the line from file2 .

Fields are normally separated by blank, tab or newline. In this case, multiple separators count as one,
and leading separators are discarded.

These options are recognized:

– an In addition to the normal output, produce a line for each unpairable line in file n , where n is 1
or 2.

– e s Replace empty output fields by string s .

– jn m Join on the mth field of file n . If n is missing, use the mth field in each file.

– o list Each output line comprises the fields specifed in list , each element of which has the form n .m ,
where n is a file number and m is a field number.

– tc Use character c as a separator (tab character). Every appearance of c in a line is significant.

SEE ALSO
sort(1), comm(1), awk(1)

BUGS
With default field separation, the collating sequence is that of sort – b; with – t, the sequence is that of a
plain sort.

The conventions of join, sort, comm, uniq, look and awk(1) are wildly incongruous.

7th Edition 1

KILL (1) UNIX Programmer’s Manual KILL (1)

NAME
kill – terminate a process with extreme prejudice

SYNOPSIS
kill [– signo] processid ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. If a signal number preceded by ‘– ’ is given
as first argument, that signal is sent instead of terminate (see signal(2)). This will kill processes that do
not catch the signal; in particular ‘kill – 9 ...’ is a sure kill.

By convention, if process number 0 is specified, all members in the process group (i.e. processes result-
ing from the current login) are signaled.

The killed processes must belong to the current user unless he is the super-user. To shut the system
down and bring it up single user the super-user may use ‘kill – 1 1’; see init(8).

The process number of an asynchronous process started with ‘&’ is reported by the shell. Process
numbers can also be found by using ps(1).

SEE ALSO
ps(1), kill(2), signal(2)

7th Edition 1

LD (1) UNIX Programmer’s Manual LD (1)

NAME
ld – loader

SYNOPSIS
ld [option] file ...

DESCRIPTION
Ld combines several object programs into one, resolves external references, and searches libraries. In
the simplest case several object files are given, and ld combines them, producing an object module
which can be either executed or become the input for a further ld run. (In the latter case, the – r option
must be given to preserve the relocation bits.) The output of ld is left on a.out. This file is made exe-
cutable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is the
beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argument
list. Only those routines defining an unresolved external reference are loaded. If a routine from a
library references another routine in the library, and the library has not been processed by ranlib(1), the
referenced routine must appear after the referencing routine in the library. Thus the order of programs
within libraries may be important. If the first member of a library is named ‘__.SYMDEF’, then it is
understood to be a dictionary for the library such as produced by ranlib ; the dictionary is searched itera-
tively to satisfy as many references as possible.

The symbols ‘_etext’, ‘_edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’ in C) are reserved, and if referred
to, are set to the first location above the program, the first location above initialized data, and the first
location above all data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for – l, they should appear before the file names.

– s ‘Strip’ the output, that is, remove the symbol table and relocation bits to save space (but impair
the usefulness of the debugger). This information can also be removed by strip(1).

– u Take the following argument as a symbol and enter it as undefined in the symbol table. This is
useful for loading wholly from a library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first routine.

– lx This option is an abbreviation for the library name ‘/lib/libx .a’, where x is a string. If that does
not exist, ld tries ‘/usr/lib/libx .a’. A library is searched when its name is encountered, so the
placement of a – l is significant.

– x Do not preserve local (non-.globl) symbols in the output symbol table; only enter external sym-
bols. This option saves some space in the output file.

– X Save local symbols except for those whose names begin with ‘L’. This option is used by cc(1)
to discard internally generated labels while retaining symbols local to routines.

– r Generate relocation bits in the output file so that it can be the subject of another ld run. This
flag also prevents final definitions from being given to common symbols, and suppresses the
‘undefined symbol’ diagnostics.

– d Force definition of common storage even if the – r flag is present.

– n Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. This involves moving the data areas up to the first possible
4K word boundary following the end of the text.

– i When the output file is executed, the program text and data areas will live in separate address
spaces. The only difference between this option and – n is that here the data starts at location
0.

– o The name argument after – o is used as the name of the ld output file, instead of a.out.

7th Edition 1

LD (1) UNIX Programmer’s Manual LD (1)

– e The following argument is taken to be the name of the entry point of the loaded program; loca-
tion 0 is the default.

– O This is an overlay file, only the text segment will be replaced by exec(2). Shared data must
have the same layout as in the program overlaid.

– D The next argument is a decimal number that sets the size of the data segment.

FILES
/lib/lib*.a libraries
/usr/lib/lib*.a more libraries
a.out output file

SEE ALSO
as(1), ar(1), cc(1), ranlib(1)

BUGS

7th Edition 2

LEX (1) UNIX Programmer’s Manual LEX (1)

NAME
lex – generator of lexical analysis programs

SYNOPSIS
lex [– tvfn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files (standard input
default) contain regular expressions to be searched for, and actions written in C to be executed when
expressions are found.

A C source program, ‘lex.yy.c’ is generated, to be compiled thus:

cc lex.yy.c – ll

This program, when run, copies unrecognized portions of the input to the output, and executes the asso-
ciated C action for each regular expression that is recognized.

The following lex program converts upper case to lower, removes blanks at the end of lines, and
replaces multiple blanks by single blanks.

%%
[A– Z] putchar(yytext[0]+´a´– ´A´);
[]+$
[]+ putchar(´ ´);

The options have the following meanings.

– t Place the result on the standard output instead of in file ‘lex.yy.c’.

– v Print a one-line summary of statistics of the generated analyzer.

– n Opposite of – v; – n is default.

– f ‘Faster’ compilation: don’t bother to pack the resulting tables; limited to small programs.

SEE ALSO
yacc(1)
M. E. Lesk and E. Schmidt, LEX – Lexical Analyzer Generator

7th Edition 1

LINT (1) UNIX Programmer’s Manual LINT (1)

NAME
lint – a C program verifier

SYNOPSIS
lint [– abchnpuvx] file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, or non-portable, or
wasteful. It also checks the type usage of the program more strictly than the compilers. Among the
things which are currently found are unreachable statements, loops not entered at the top, automatic vari-
ables declared and not used, and logical expressions whose value is constant. Moreover, the usage of
functions is checked to find functions which return values in some places and not in others, functions
called with varying numbers of arguments, and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked for mutual compa-
tibility. Function definitions for certain libraries are available to lint ; these libraries are referred to by a
conventional name, such as ‘-lm’, in the style of ld(1).

Any number of the options in the following list may be used. The – D, – U, and – I options of cc(1) are
also recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce waste.

b Report break statements that cannot be reached. (This is not the default because, unfortunately,
most lex and many yacc outputs produce dozens of such comments.)

v Suppress complaints about unused arguments in functions.

x Report variables referred to by extern declarations, but never used.

a Report assignments of long values to int variables.

c Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not defined, or defined and not used
(this is suitable for running lint on a subset of files out of a larger program).

n Do not check compatibility against the standard library.

Exit(2) and other functions which do not return are not understood; this causes various lies.

Certain conventional comments in the C source will change the behavior of lint :

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments in the following function
declaration. The data types of the first n arguments are checked; a missing n is taken to be 0.

/*NOSTRICT*/
shuts off strict type checking in the next expression.

/*ARGSUSED*/
turns on the – v option for the next function.

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about unused functions in this file.

FILES
/usr/lib/lint[12] programs
/usr/lib/llib-lc declarations for standard functions
/usr/lib/llib-port declarations for portable functions

7th Edition 1

LINT (1) UNIX Programmer’s Manual LINT (1)

SEE ALSO
cc(1)
S. C. Johnson, Lint, a C Program Checker

7th Edition 2

LN (1) UNIX Programmer’s Manual LN (1)

NAME
ln – make a link

SYNOPSIS
ln name1 [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protection infor-
mation, etc.) may have several links to it. There is no way to distinguish a link to a file from its origi-
nal directory entry; any changes in the file are effective independently of the name by which the file is
known.

Ln creates a link to an existing file name1. If name2 is given, the link has that name; otherwise it is
placed in the current directory and its name is the last component of name1.

It is forbidden to link to a directory or to link across file systems.

SEE ALSO
rm(1)

7th Edition 1

LOGIN (1) UNIX Programmer’s Manual LOGIN (1)

NAME
login – sign on

SYNOPSIS
login [username]

DESCRIPTION
The login command is used when a user initially signs on, or it may be used at any time to change from
one user to another. The latter case is the one summarized above and described here. See ‘How to Get
Started’ for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a password. Echo-
ing is turned off (if possible) during the typing of the password, so it will not appear on the written
record of the session.

After a successful login, accounting files are updated and the user is informed of the existence of .mail
and message-of-the-day files. Login initializes the user and group IDs and the working directory, then
executes a command interpreter (usually sh(1)) according to specifications found in a password file.
Argument 0 of the command interpreter is ‘– sh.

Login is recognized by sh(1) and executed directly (without forking).

FILES
/etc/utmp accounting
/usr/adm/wtmp accounting
/usr/mail/* mail
/etc/motd message-of-the-day
/etc/passwd password file

SEE ALSO
init(8), newgrp(1), getty(8), mail(1), passwd(1), passwd(5)

DIAGNOSTICS
‘Login incorrect,’ if the name or the password is bad.
‘No Shell’, ‘cannot open password file’, ‘no directory’: consult a programming counselor.

7th Edition 1

LOOK (1) UNIX Programmer’s Manual LOOK (1)

NAME
look – find lines in a sorted list

SYNOPSIS
look [– df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string . It uses binary search.

The options d and f affect comparisons as in sort(1):

d ‘Dictionary’ order: only letters, digits, tabs and blanks participate in comparisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/dict/words is assumed with collating sequence – df.

FILES
/usr/dict/words

SEE ALSO
sort(1), grep(1)

7th Edition 1

LOOKALL (1) UNIX Programmer’s Manual LOOKALL (1)

NAME
lookall – look through all text files on UNIX

SYNOPSIS
lookall [– Cn]

DESCRIPTION
Lookall accepts keywords from the standard input, performs a search similar to that of refer(1), and
writes the result on the standard output. Lookall consults, however, an index to all the text files on the
system rather than just bibliographies. Only the first 50 words of each file (roughly) were used to make
the indexes. Blank lines are taken as delimiters between queries.

The -Cn option specifies a coordination level search: up to n keywords may be missing from the
answers, and the answers are listed with those containing the most keywords first.

The command sequence in /usr/dict/lookall/makindex regenerates the index.

FILES
The directory /usr/dict/lookall contains the index files.

DIAGNOSTICS
‘Warning: index precedes file ...’ means that a file has been changed since the index was made and it
may be retrieved (or not retrieved) erroneously.

BUGS
Coordination level searching doesn’t work as described: only those acceptable items with the smallest
number of missing keywords are retreived.

7th Edition 1

LORDER (1) UNIX Programmer’s Manual LORDER (1)

NAME
lorder – find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive (see ar(1)) files. The standard output is a list of pairs
of object file names, meaning that the first file of the pair refers to external identifiers defined in the
second. The output may be processed by tsort(1) to find an ordering of a library suitable for one-pass
access by ld(1).

This brash one-liner intends to build a new library from existing ‘.o’ files.

ar cr library ` lorder *.o  tsort`

FILES
*symref, *symdef
nm(1), sed(1), sort(1), join(1)

SEE ALSO
tsort(1), ld(1), ar(1)

BUGS
The names of object files, in and out of libraries, must end with ‘.o’; nonsense results otherwise.

7th Edition 1

LS (1) UNIX Programmer’s Manual LS (1)

NAME
ls – list contents of directory

SYNOPSIS
ls [– ltasdrucifg] name ...

DESCRIPTION
For each directory argument, ls lists the contents of the directory; for each file argument, ls repeats its
name and any other information requested. The output is sorted alphabetically by default. When no
argument is given, the current directory is listed. When several arguments are given, the arguments are
first sorted appropriately, but file arguments appear before directories and their contents. There are
several options:

– l List in long format, giving mode, number of links, owner, size in bytes, and time of last
modification for each file. (See below.) If the file is a special file the size field will instead
contain the major and minor device numbers.

– t Sort by time modified (latest first) instead of by name, as is normal.

– a List all entries; usually ‘.’ and ‘..’ are suppressed.

– s Give size in blocks, including indirect blocks, for each entry.

– d If argument is a directory, list only its name, not its contents (mostly used with – l to get status
on directory).

– r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

– u Use time of last access instead of last modification for sorting (– t) or printing (– l).

– c Use time of last modification to inode (mode, etc.) instead of last modification to file for sort-
ing (– t) or printing (– l).

– i Print i-number in first column of the report for each file listed.

– f Force each argument to be interpreted as a directory and list the name found in each slot. This
option turns off – l, – t, – s, and – r, and turns on – a; the order is the order in which entries
appear in the directory.

– g Give group ID instead of owner ID in long listing.

The mode printed under the – l option contains 11 characters which are interpreted as follows: the first
character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
– if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner per-
missions; the next to permissions to others in the same user-group; and the last to all others. Within
each set the three characters indicate permission respectively to read, to write, or to execute the file as a
program. For a directory, ‘execute’ permission is interpreted to mean permission to search the directory
for a specified file. The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;
– if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-ID mode; likewise the
user-execute permission character is given as s if the file has set-user-ID mode.

7th Edition 1

LS (1) UNIX Programmer’s Manual LS (1)

The last character of the mode (normally ‘x’ or ‘– ’) is t if the 1000 bit of the mode is on. See
chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks is
printed.

FILES
/etc/passwd to get user ID’s for ‘ls – l’.
/etc/group to get group ID’s for ‘ls – g’.

7th Edition 2

M4 (1) UNIX Programmer’s Manual M4 (1)

NAME
m4 – macro processor

SYNOPSIS
m4 [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of the argu-
ment files is processed in order; if there are no arguments, or if an argument is ‘– ’, the standard input is
read. The processed text is written on the standard output.

Macro calls have the form

name(arg1,arg2, . . . , argn)

The ‘(’ must immediately follow the name of the macro. If a defined macro name is not followed by a
‘(’, it is deemed to have no arguments. Leading unquoted blanks, tabs, and newlines are ignored while
collecting arguments. Potential macro names consist of alphabetic letters, digits, and underscore ‘_’,
where the first character is not a digit.

Left and right single quotes (` ́) are used to quote strings. The value of a quoted string is the string
stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. Macro evaluation proceeds normally during the collection of the arguments, and any com-
mas or right parentheses which happen to turn up within the value of a nested call are as effective as
those in the original input text. After argument collection, the value of the macro is pushed back onto
the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once this is done the ori-
ginal meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first argu-
ment. Each occurrence of $n in the replacement text, where n is a digit, is replaced by the
n-th argument. Argument 0 is the name of the macro; missing arguments are replaced by
the null string.

undefine removes the definition of the macro named in its argument.

ifdef If the first argument is defined, the value is the second argument, otherwise the third. If
there is no third argument, the value is null. The word unix is predefined on UNIX versions
of m4 .

changequote
Change quote characters to the first and second arguments. Changequote without arguments
restores the original values (i.e., ` ́).

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatenation of the
streams in numerical order; initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argument. Output diverted to a stream
other than 0 through 9 is discarded.

undivert causes immediate output of text from diversions named as arguments, or all diversions if no
argument. Text may be undiverted into another diversion. Undiverting discards the diverted
text.

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next newline.

ifelse has three or more arguments. If the first argument is the same string as the second, then the
value is the third argument. If not, and if there are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise, the value is either the fourth string, or, if

7th Edition 1

M4 (1) UNIX Programmer’s Manual M4 (1)

it is not present, null.

incr returns the value of its argument incremented by 1. The value of the argument is calculated
by interpreting an initial digit-string as a decimal number.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators
include +, – , ∗, /, %, ˆ (exponentiation); relationals; parentheses.

len returns the number of characters in its argument.

index returns the position in its first argument where the second argument begins (zero origin), or
– 1 if the second argument does not occur.

substr returns a substring of its first argument. The second argument is a zero origin number
selecting the first character; the third argument indicates the length of the substring. A
missing third argument is taken to be large enough to extend to the end of the first string.

translit transliterates the characters in its first argument from the set given by the second argument
to the set given by the third. No abbreviations are permitted.

include returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file is inaccessible.

syscmd executes the UNIX command given in the first argument. No value is returned.

maketemp fills in a string of XXXXX in its argument with the current process id.

errprint prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for all if no arguments are
given.

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor

7th Edition 2

MAIL (1) UNIX Programmer’s Manual MAIL (1)

NAME
mail – send or receive mail among users

SYNOPSIS
mail person ...
mail [– r] [– q] [– p] [– f file]

DESCRIPTION
Mail with no argument prints a user’s mail, message-by-message, in last-in, first-out order; the optional
argument – r causes first-in, first-out order. If the – p flag is given, the mail is printed with no questions
asked; otherwise, for each message, mail reads a line from the standard input to direct disposition of the
message.

newline Go on to next message.

d Delete message and go on to the next.

p Print message again.

– Go back to previous message.

s [file] ...
Save the message in the named files (‘mbox’ default).

w [file] ...
Save the message, without a header, in the named files (‘mbox’ default).

m [person] ...
Mail the message to the named persons (yourself is default).

EOT (control-D)
Put unexamined mail back in the mailbox and stop.

q Same as EOT.

x Exit, without changing the mailbox file.

!command
Escape to the Shell to do command.

? Print a command summary.

An interrupt stops the printing of the current letter. The optional argument −q causes mail to exit after
interrupts without changing the mailbox.

When persons are named, mail takes the standard input up to an end-of-file (or a line with just ‘.’) and
adds it to each person’s ‘mail’ file. The message is preceded by the sender’s name and a postmark.
Lines that look like postmarks are prepended with ‘>’. A person is usually a user name recognized by
login(1). To denote a recipient on a remote system, prefix person by the system name and exclamation
mark (see uucp(1)).

The – f option causes the named file, e.g. ‘mbox’, to be printed as if it were the mail file.

Each user owns his own mailbox, which is by default generally readable but not writable. The com-
mand does not delete an empty mailbox nor change its mode, so a user may make it unreadable if
desired.

When a user logs in he is informed of the presence of mail.

FILES
/usr/spool/mail/* mailboxes
/etc/passwd to identify sender and locate persons
mbox saved mail
/tmp/ma* temp file

7th Edition 1

MAIL (1) UNIX Programmer’s Manual MAIL (1)

dead.letter unmailable text
uux(1)

SEE ALSO
xsend(1), write(1), uucp(1)

BUGS
There is a locking mechanism intended to prevent two senders from accessing the same mailbox, but it
is not perfect and races are possible.

7th Edition 2

MAKE (1) UNIX Programmer’s Manual MAKE (1)

NAME
make – maintain program groups

SYNOPSIS
make [– f makefile] [option] ... file ...

DESCRIPTION
Make executes commands in makefile to update one or more target names. Name is typically a program.
If no – f option is present, ‘makefile’ and ‘Makefile’ are tried in order. If makefile is ‘– ’, the standard
input is taken. More than one – f option may appear

Make updates a target if it depends on prerequisite files that have been modified since the target was last
modified, or if the target does not exist.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a blank-
separated list of targets, then a colon, then a list of prerequisite files. Text following a semicolon, and
all following lines that begin with a tab, are shell commands to be executed to update the target.

Sharp and newline surround comments.

The following makefile says that ‘pgm’ depends on two files ‘a.o’ and ‘b.o’, and that they in turn
depend on ‘.c’ files and a common file ‘incl’.

pgm: a.o b.o
cc a.o b.o – lm – o pgm

a.o: incl a.c
cc – c a.c

b.o: incl b.c
cc – c b.c

Makefile entries of the form

string1 = string2

are macro definitions. Subsequent appearances of $(string1) are replaced by string2 . If string1 is a sin-
gle character, the parentheses are optional.

Make infers prerequisites for files for which makefile gives no construction commands. For example, a
‘.c’ file may be inferred as prerequisite for a ‘.o’ file and be compiled to produce the ‘.o’ file. Thus the
preceding example can be done more briefly:

pgm: a.o b.o
cc a.o b.o – lm – o pgm

a.o b.o: incl

Prerequisites are inferred according to selected suffixes listed as the ‘prerequisites’ for the special name
‘.SUFFIXES’; multiple lists accumulate; an empty list clears what came before. Order is significant; the
first possible name for which both a file and a rule as described in the next paragraph exist is inferred.
The default list is

.SUFFIXES: .out .o .c .e .r .f .y .l .s

The rule to create a file with suffix s2 that depends on a similarly named file with suffix s1 is specified
as an entry for the ‘target’ s1s2 . In such an entry, the special macro $* stands for the target name with
suffix deleted, $@ for the full target name, $< for the complete list of prerequisites, and $? for the list
of prerequisites that are out of date. For example, a rule for making optimized ‘.o’ files from ‘.c’ files is

.c.o: ; cc – c – O – o $@ $*.c

Certain macros are used by the default inference rules to communicate optional arguments to any result-
ing compilations. In particular, ‘CFLAGS’ is used for cc and f77(1) options, ‘LFLAGS’ and ‘YFLAGS’
for lex and yacc(1) options.

7th Edition 1

MAKE (1) UNIX Programmer’s Manual MAKE (1)

Command lines are executed one at a time, each by its own shell. A line is printed when it is executed
unless the special target ‘.SILENT’ is in makefile, or the first character of the command is ‘@’.

Commands returning nonzero status (see intro(1)) cause make to terminate unless the special target
‘.IGNORE’ is in makefile or the command begins with <tab><hyphen>.

Interrupt and quit cause the target to be deleted unless the target depends on the special name ‘.PRE-
CIOUS’.

Other options:

– i Equivalent to the special entry ‘.IGNORE:’.

– k When a command returns nonzero status, abandon work on the current entry, but continue on
branches that do not depend on the current entry.

– n Trace and print, but do not execute the commands needed to update the targets.

– t Touch, i.e. update the modified date of targets, without executing any commands.

– r Equivalent to an initial special entry ‘.SUFFIXES:’ with no list.

– s Equivalent to the special entry ‘.SILENT:’.

FILES
makefile, Makefile

SEE ALSO
sh(1), touch(1)
S. I. Feldman Make – A Program for Maintaining Computer Programs

BUGS
Some commands return nonzero status inappropriately. Use – i to overcome the difficulty.
Commands that are directly executed by the shell, notably cd(1), are ineffectual across newlines in
make.

7th Edition 2

MAN (1) UNIX Programmer’s Manual MAN (1)

NAME
man – print sections of this manual

SYNOPSIS
man [option ...] [chapter] title ...

DESCRIPTION
Man locates and prints the section of this manual named title in the specified chapter. (In this context,
the word ‘page’ is often used as a synonym for ‘section’.) The title is entered in lower case. The
chapter number does not need a letter suffix. If no chapter is specified, the whole manual is searched
for title and all occurrences of it are printed.

Options and their meanings are:

– t Phototypeset the section using troff(1).

– n Print the section on the standard output using nroff(1).

– k Display the output on a Tektronix 4014 terminal using troff(1) and tc(1).

– e Appended or prefixed to any of the above causes the manual section to be preprocessed by neqn
or eqn(1); – e alone means – te.

– w Print the path names of the manual sections, but do not print the sections themselves.

(default)
Copy an already formatted manual section to the terminal, or, if none is available, act as – n. It
may be necessary to use a filter to adapt the output to the particular terminal’s characteristics.

Further options, e.g. to specify the kind of terminal you have, are passed on to troff(1) or nroff . Options
and chapter may be changed before each title .

For example:

man man

would reproduce this section, as well as any other sections named man that may exist in other chapters
of the manual, e.g. man(7).

FILES
/usr/man/man?/∗
/usr/man/cat?/∗

SEE ALSO
nroff(1), eqn(1), tc(1), man(7)

BUGS
The manual is supposed to be reproducible either on a phototypesetter or on a terminal. However, on a
terminal some information is necessarily lost.

7th Edition 1

MESG (1) UNIX Programmer’s Manual MESG (1)

NAME
mesg – permit or deny messages

SYNOPSIS
mesg [n] [y]

DESCRIPTION
Mesg with argument n forbids messages via write(1) by revoking non-user write permission on the
user’s terminal. Mesg with argument y reinstates permission. All by itself, mesg reports the current
state without changing it.

FILES
/dev/tty*
/dev

SEE ALSO
write(1)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

7th Edition 1

MKCONF (1M) UNIX Programmer’s Manual MKCONF (1M)

NAME
mkconf – generate configuration tables

SYNOPSIS
mkconf

DESCRIPTION
Mkconf examines a machine configuration table on its standard input. Its output is a pair of files l.s and
c.c. The first is an assembler program that represents the interrupt vectors located in low memory
addresses; the second contains initialized block and character device switch tables.

Input to mkconf is a sequence of lines. The following describe devices on the machine:

pc (PC11)
lp (LP11)
rf (RS11)
hs (RS03/RS04)
tc (TU56)
rk (RK03/RK05)
tm (TU10)
rp (RP03)
hp (RP04/5/6)
ht (TU16)
dc* (DC11)
kl* (KL11/DL11-ABC)
dl* (DL11-E)
dp* (DP11)
dn* (DN11)
dh* (DH11)
dhdm* (DM11-BB)
du* (DU11)

The devices marked with * may be preceded by a number telling how many are to be included. The
console typewrite is automatically included; don’t count it as part of the KL or DL specification. Count
DN’s in units of 4 (1 system unit).

The following lines are also accepted.

root dev minor
The specified block device (e.g. hp) is used for the root. minor is a decimal number giving the
minor device. This line must appear exactly once.

swap dev minor
The specified block device is used for swapping. If not given the root is used.

pipe dev minor
The specified block device is used to store pipes. If not given the root is used.

swplo number

nswap number
Sets the origin (block number) and size of the area used for swapping. By default, the not very
useful numbers 4000 and 872.

pack Include the packet driver. By default it is left out.

mpx Include the multiplexor driver. By default it is left out.

FILES
l.s, c.c output files

7th Edition 1

MKCONF (1M) UNIX Programmer’s Manual MKCONF (1M)

SEE ALSO
‘Setting up Unix’, in Volume 2.

BUGS
The set of devices it knows about, the set of drivers included, and the set of devices on the machine are
mutually incomparable. Some handwork is certain to be necessary. Because of floating vectors that
may have been missed, It is mandatory to check the l.s file to make sure it corresponds with reality.

7th Edition 2

MKDIR (1) UNIX Programmer’s Manual MKDIR (1)

NAME
mkdir – make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777. Standard entries, ‘.’, for the directory itself, and ‘..’
for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rm(1)

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made. Otherwise it prints a diagnostic and
returns nonzero.

7th Edition 1

MKFS (1M) UNIX Programmer’s Manual MKFS (1M)

NAME
mkfs – construct a file system

SYNOPSIS
/etc/mkfs special proto

DESCRIPTION
Mkfs constructs a file system by writing on the special file special according to the directions found in
the prototype file proto. The prototype file contains tokens separated by spaces or new lines. The first
token is the name of a file to be copied onto block zero as the bootstrap program, see bproc(8). The
second token is a number specifying the size of the created file system. Typically it will be the number
of blocks on the device, perhaps diminished by space for swapping. The next token is the number of i-
nodes in the i-list. The next set of tokens comprise the specification for the root file. File specifications
consist of tokens giving the mode, the user-id, the group id, and the initial contents of the file. The syn-
tax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file. (The
characters – bcd specify regular, block special, character special and directory files respectively.) The
second character of the type is either u or – to specify set-user-id mode or not. The third is g or – for
the set-group-id mode. The rest of the mode is a three digit octal number giving the owner, group, and
other read, write, execute permissions, see chmod(1).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the owner of
the file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the major
and minor device numbers.

If the file is a directory, mkfs makes the entries . and .. and then reads a list of names and (recursively)
file specifications for the entries in the directory. The scan is terminated with the token $.

If the prototype file cannot be opened and its name consists of a string of digits, mkfs builds a file sys-
tem with a single empty directory on it. The size of the file system is the value of proto interpreted as a
decimal number. The number of i-nodes is calculated as a function of the filsystem size. The boot pro-
gram is left uninitialized.

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d– – 777 3 1
usr d– – 777 3 1

sh – – – 755 3 1 /bin/sh
ken d– – 755 6 1

$
b0 b– – 644 3 1 0 0
c0 c– – 644 3 1 0 0
$

$

SEE ALSO
filsys(5), dir(5), bproc(8)

BUGS
There should be some way to specify links.

7th Edition 1

MKNOD (1M) UNIX Programmer’s Manual MKNOD (1M)

NAME
mknod – build special file

SYNOPSIS
/etc/mknod name [c] [b] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name of the entry. The second is b if the special
file is block-type (disks, tape) or c if it is character-type (other devices). The last two arguments are
numbers specifying the major device type and the minor device (e.g. unit, drive, or line number).

The assignment of major device numbers is specific to each system. They have to be dug out of the
system source file conf.c.

SEE ALSO
mknod(2)

7th Edition 1

MOUNT (1M) UNIX Programmer’s Manual MOUNT (1M)

NAME
mount, umount – mount and dismount file system

SYNOPSIS
/etc/mount [special name [– r]]

/etc/umount special

DESCRIPTION
Mount announces to the system that a removable file system is present on the device special. The file
name must exist already; it must be a directory (unless the root of the mounted file system is not a
directory). It becomes the name of the newly mounted root. The optional last argument indicates that
the file system is to be mounted read-only.

Umount announces to the system that the removable file system previously mounted on device special is
to be removed.

These commands maintain a table of mounted devices. If invoked without an argument, mount prints
the table.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors will
occur when access times are updated, whether or not any explicit write is attempted.

FILES
/etc/mtab: mount table

SEE ALSO
mount(2), mtab(5)

BUGS
Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes some apparently good pathnames invalid.

7th Edition 1

MV (1) UNIX Programmer’s Manual MV (1)

NAME
mv – move or rename files and directories

SYNOPSIS
mv file1 file2

mv file ... directory

DESCRIPTION
Mv moves (changes the name of) file1 to file2 .

If file2 already exists, it is removed before file1 is moved. If file2 has a mode which forbids writing, mv
prints the mode (see chmod(2)) and reads the standard input to obtain a line; if the line begins with y,
the move takes place; if not, mv exits.

In the second form, one or more files are moved to the directory with their original file-names.

Mv refuses to move a file onto itself.

SEE ALSO
cp(1), chmod(2)

BUGS
If file1 and file2 lie on different file systems, mv must copy the file and delete the original. In this case
the owner name becomes that of the copying process and any linking relationship with other files is lost.

Mv should take – f flag, like rm, to suppress the question if the target exists and is not writable.

7th Edition 1

NCHECK (1M) UNIX Programmer’s Manual NCHECK (1M)

NAME
ncheck – generate names from i-numbers

SYNOPSIS
ncheck [– i numbers] [– a] [– s] [filesystem]

DESCRIPTION
Ncheck with no argument generates a pathname vs. i-number list of all files on a set of default file sys-
tems. Names of directory files are followed by ‘/.’. The – i option reduces the report to only those files
whose i-numbers follow. The – a option allows printing of the names ‘.’ and ‘..’, which are ordinarily
suppressed. suppressed. The – s option reduces the report to special files and files with set-user-ID
mode; it is intended to discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
dcheck(1), icheck(1), sort(1)

DIAGNOSTICS
When the filesystem structure is improper, ‘??’ denotes the ‘parent’ of a parentless file and a pathname
beginning with ‘...’ denotes a loop.

7th Edition 1

NEWGRP (1) UNIX Programmer’s Manual NEWGRP (1)

NAME
newgrp – log in to a new group

SYNOPSIS
newgrp group

DESCRIPTION
Newgrp changes the group identification of its caller, analogously to login(1). The same person remains
logged in, and the current directory is unchanged, but calculations of access permissions to files are per-
formed with respect to the new group ID.

A password is demanded if the group has a password and the user himself does not.

When most users log in, they are members of the group named ‘other.’ Newgrp is known to the shell,
which executes it directly without a fork.

FILES
/etc/group, /etc/passwd

SEE ALSO
login(1), group(5)

7th Edition 1

NICE (1) UNIX Programmer’s Manual NICE (1)

NAME
nice, nohup – run a command at low priority

SYNOPSIS
nice [– number] command [arguments]

nohup command [arguments]

DESCRIPTION
Nice executes command with low scheduling priority. If the number argument is present, the priority is
incremented (higher numbers mean lower priorities) by that amount up to a limit of 20. The default
number is 10.

The super-user may run commands with priority higher than normal by using a negative priority, e.g.
‘– – 10’.

Nohup executes command immune to hangup and terminate signals from the controlling terminal. The
priority is incremented by 5. Nohup should be invoked from the shell with ‘&’ in order to prevent it
from responding to interrupts by or stealing the input from the next person who logs in on the same ter-
minal.

FILES
nohup.out standard output and standard error file under nohup

SEE ALSO
nice(2)

DIAGNOSTICS
Nice returns the exit status of the subject command.

7th Edition 1

NM (1) UNIX Programmer’s Manual NM (1)

NAME
nm – print name list

SYNOPSIS
nm [– gnopru] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argument is an
archive, a listing for each object file in the archive will be produced. If no file is given, the symbols in
‘a.out’ are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U (undefined), A
(absolute), T (text segment symbol), D (data segment symbol), B (bss segment symbol), or C (common
symbol). If the symbol is local (non-external) the type letter is in lower case. The output is sorted
alphabetically.

Options are:

– g Print only global (external) symbols.

– n Sort numerically rather than alphabetically.

– o Prepend file or archive element name to each output line rather than only once.

– p Don’t sort; print in symbol-table order.

– r Sort in reverse order.

– u Print only undefined symbols.

SEE ALSO
ar(1), ar(5), a.out(5)

7th Edition 1

OD (1) UNIX Programmer’s Manual OD (1)

NAME
od – octal dump

SYNOPSIS
od [– bcdox] [file] [[+]offset[.][b]]

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If the first argument is missing,
– o is default. The meanings of the format argument characters are:

b Interpret bytes in octal.

c Interpret bytes in ASCII. Certain non-graphic characters appear as C escapes: null=\0,
backspace=\b, formfeed=\f, newline=\n, return=\r, tab=\t; others appear as 3-digit octal numbers.

d Interpret words in decimal.

o Interpret words in octal.

x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument is specified, the standard
input is used.

The offset argument specifies the offset in the file where dumping is to commence. This argument is
normally interpreted as octal bytes. If ‘.’ is appended, the offset is interpreted in decimal. If ‘b’ is
appended, the offset is interpreted in blocks of 512 bytes. If the file argument is omitted, the offset
argument must be preceded ‘+’.

Dumping continues until end-of-file.

SEE ALSO
adb(1)

7th Edition 1

PASSWD (1) UNIX Programmer’s Manual PASSWD (1)

NAME
passwd – change login password

SYNOPSIS
passwd [name]

DESCRIPTION
This command changes (or installs) a password associated with the user name (your own name by
default).

The program prompts for the old password and then for the new one. The caller must supply both. The
new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and at least
six characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove he knows
the old password.

FILES
/etc/passwd

SEE ALSO
login(1), passwd(5), crypt(3)
Robert Morris and Ken Thompson, Password Security: A Case History

7th Edition 1

PLOT (1G) UNIX Programmer’s Manual PLOT (1G)

NAME
plot – graphics filters

SYNOPSIS
plot [– Tterminal [raster]]

DESCRIPTION
These commands read plotting instructions (see plot(5)) from the standard input, and in general produce
plotting instructions suitable for a particular terminal on the standard output.

If no terminal type is specified, the environment parameter $TERM (see environ(5)) is used. Known
terminals are:

4014 Tektronix 4014 storage scope.

450 DASI Hyterm 450 terminal (Diablo mechanism).

300 DASI 300 or GSI terminal (Diablo mechanism).

300S DASI 300S terminal (Diablo mechanism).

ver Versatec D1200A printer-plotter. This version of plot places a scan-converted image in
‘/usr/tmp/raster’ and sends the result directly to the plotter device rather than to the standard
output. The optional argument causes a previously scan-converted file raster to be sent to the
plotter.

FILES
/usr/bin/tek
/usr/bin/t450
/usr/bin/t300
/usr/bin/t300s
/usr/bin/vplot
/usr/tmp/raster

SEE ALSO
plot(3), plot(5)

BUGS
There is no lockout protection for /usr/tmp/raster.

7th Edition 1

PR (1) UNIX Programmer’s Manual PR (1)

NAME
pr – print file

SYNOPSIS
pr [option] ... [file] ...

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by a date,
the name of the file or a specified header, and the page number. If there are no file arguments, pr prints
its standard input.

Options apply to all following files but may be reset between files:

– n Produce n-column output.

+n Begin printing with page n.

– h Take the next argument as a page header.

– wn For purposes of multi-column output, take the width of the page to be n characters instead of
the default 72.

– ln Take the length of the page to be n lines instead of the default 66.

– t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

– sc Separate columns by the single character c instead of by the appropriate amount of white space.
A missing c is taken to be a tab.

– m Print all files simultaneously, each in one column,

Inter-terminal messages via write(1) are forbidden during a pr .

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat(1)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

7th Edition 1

PREP (1) UNIX Programmer’s Manual PREP (1)

NAME
prep – prepare text for statistical processing

SYNOPSIS
prep [– dio] file ...

DESCRIPTION
Prep reads each file in sequence and writes it on the standard output, one ‘word’ to a line. A word is a
string of alphabetic characters and imbedded apostrophes, delimited by space or punctuation. Hyphented
words are broken apart; hyphens at the end of lines are removed and the hyphenated parts are joined.
Strings of digits are discarded.

The following option letters may appear in any order:

– d Print the word number (in the input stream) with each word.

– i Take the next file as an ‘ignore’ file. These words will not appear in the output. (They will be
counted, for purposes of the – d count.)

– o Take the next file as an ‘only’ file. Only these words will appear in the output. (All other
words will also be counted for the – d count.)

– p Include punctuation marks (single nonalphanumeric characters) as separate output lines. The
punctuation marks are not counted for the – d count.

Ignore and only files contain words, one per line.

SEE ALSO
deroff(1)

7th Edition 1

PROF (1) UNIX Programmer’s Manual PROF (1)

NAME
prof – display profile data

SYNOPSIS
prof [– v] [– a] [– l] [– low [– high]] [file]

DESCRIPTION
Prof interprets the file mon.out produced by the monitor subroutine. Under default modes, the symbol
table in the named object file (a.out default) is read and correlated with the mon.out profile file. For
each external symbol, the percentage of time spent executing between that symbol and the next is
printed (in decreasing order), together with the number of times that routine was called and the number
of milliseconds per call.

If the – a option is used, all symbols are reported rather than just external symbols. If the – l option is
used, the output is listed by symbol value rather than decreasing percentage.

If the – v option is used, all printing is suppressed and a graphic version of the profile is produced on
the standard output for display by the plot(1) filters. The numbers low and high, by default 0 and 100,
cause a selected percentage of the profile to be plotted with accordingly higher resolution.

In order for the number of calls to a routine to be tallied, the – p option of cc must have been given
when the file containing the routine was compiled. This option also arranges for the mon.out file to be
produced automatically.

FILES
mon.out for profile
a.out for namelist

SEE ALSO
monitor(3), profil(2), cc(1), plot(1)

BUGS
Beware of quantization errors.

7th Edition 1

PS (1) UNIX Programmer’s Manual PS (1)

NAME
ps – process status

SYNOPSIS
ps [aklx] [namelist]

DESCRIPTION
Ps prints certain indicia about active processes. The a option asks for information about all processes
with terminals (ordinarily only one’s own processes are displayed); x asks even about processes with no
terminal; l asks for a long listing. The short listing contains the process ID, tty letter, the cumulative
execution time of the process and an approximation to the command line.

The long listing is columnar and contains

F Flags associated with the process. 01: in core; 02: system process; 04: locked in core (e.g. for
physical I/O); 10: being swapped; 20: being traced by another process.

S The state of the process. 0: nonexistent; S: sleeping; W: waiting; R: running; I: intermediate;
Z: terminated; T: stopped.

UID The user ID of the process owner.

PID The process ID of the process; as in certain cults it is possible to kill a process if you know its
true name.

PPID The process ID of the parent process.

CPU Processor utilization for scheduling.

PRI The priority of the process; high numbers mean low priority.

NICE Used in priority computation.

ADDR The core address of the process if resident, otherwise the disk address.

SZ The size in blocks of the core image of the process.

WCHAN
The event for which the process is waiting or sleeping; if blank, the process is running.

TTY The controlling tty for the process.

TIME The cumulative execution time for the process.

The command and its arguments.

A process that has exited and has a parent, but has not yet been waited for by the parent is marked
<defunct>. Ps makes an educated guess as to the file name and arguments given when the process was
created by examining core memory or the swap area. The method is inherently somewhat unreliable and
in any event a process is entitled to destroy this information, so the names cannot be counted on too
much.

If the k option is specified, the file /usr/sys/core is used in place of /dev/mem. This is used for postmor-
tem system debugging. If a second argument is given, it is taken to be the file containing the system’s
namelist.

FILES
/unix system namelist
/dev/mem core memory
/usr/sys/core alternate core file
/dev searched to find swap device and tty names

SEE ALSO
kill(1)

7th Edition PDP11 1

PS (1) UNIX Programmer’s Manual PS (1)

BUGS
Things can change while ps is running; the picture it gives is only a close approximation to reality.
Some data printed for defunct processes is irrelevant

7th Edition PDP11 2

PSTAT (1M) UNIX Programmer’s Manual PSTAT (1M)

NAME
pstat – print system facts

SYNOPSIS
pstat [– aixptuf] [suboptions] [file]

DESCRIPTION
Pstat interprets the contents of certain system tables. If file is given, the tables are sought there, other-
wise in /dev/mem. The required namelist is taken from /unix. Options are

– a Under – p, describe all process slots rather than just active ones.

– i Print the inode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L locked
U update time filsys(5)) must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected

CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in which this inode resides.
INO I-number within the device.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

Number of bytes in an ordinary file, or major and minor device of special file.

– x Print the text table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

T ptrace(2) in effect
W text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)

DADDR Disk address in swap, measured in multiples of 512 bytes.

CADDR Core address, measured in multiples of 64 bytes.

SIZE Size of text segment, measured in multiples of 64 bytes.

IPTR Core location of corresponding inode.

CNT Number of processes using this text segment.

CCNT Number of processes in core using this text segment.

– p Print process table for active processes with these headings:

LOC The core location of this table entry.
S Run state encoded thus:

0 no process
1 waiting for some event
3 runnable

7th Edition 1

PSTAT (1M) UNIX Programmer’s Manual PSTAT (1M)

4 being created
5 being terminated
6 stopped under trace

F Miscellaneous state variables, or-ed together:
01 loaded
02 the scheduler process
04 locked
010 swapped out
020 traced
040 used in tracing
0100 locked in by lock(2).

PRI Scheduling priority, see nice(2).
SIGNAL Signals received (signals 1-16 coded in bits 0-15),
UID Real user ID.
TIM Time resident in seconds; times over 127 coded as 127.
CPU Weighted integral of CPU time, for scheduler.
NI Nice level, see nice(2).
PGRP Process number of root of process group (the opener of the controlling terminal).
PID The process ID number.
PPID The process ID of parent process.
ADDR If in core, the physical address of the ‘u-area’ of the process measured in multiples of 64

bytes. If swapped out, the position in the swap area measured in multiples of 512 bytes.
SIZE Size of process image in multiples of 64 bytes.
WCHAN Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table entry.
CLKT Countdown for alarm(2) measured in seconds.

– t Print table for terminals (only DH11 and DL11 handled) with these headings:

RAW Number of characters in raw input queue.
CAN Number of characters in canonicalized input queue.
OUT Number of characters in putput queue.
MODE See tty(4).
ADDR Physical device address.
DEL Number of delimiters (newlines) in canonicalized input queue.
COL Calculated column position of terminal.
STATE Miscellaneous state variables encoded thus:

W waiting for open to complete
O open
S has special (output) start routine
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
H hangup on close

PGRP Process group for which this is controlling terminal.

– u print information about a user process; the next argument is its address as given by ps(1).
The process must be in main memory, or the file used can be a core image and the address 0.

– f Print the open file table with these headings:

LOC The core location of this table entry.
FLG Miscellaneous state variables encoded thus:

7th Edition 2

PSTAT (1M) UNIX Programmer’s Manual PSTAT (1M)

R open for reading
W open for writing
P pipe

CNT Number of processes that know this open file.
INO The location of the inode table entry for this file.
OFFS The file offset, see lseek(2).

FILES
/unix namelist
/dev/mem default source of tables

SEE ALSO
ps(1), stat(2), filsys(5)
K. Thompson, UNIX Implementation

7th Edition 3

PTX (1) UNIX Programmer’s Manual PTX (1)

NAME
ptx – permuted index

SYNOPSIS
ptx [option] ... [input [output]]

DESCRIPTION
Ptx generates a permuted index to file input on file output (standard input and output default). It has
three phases: the first does the permutation, generating one line for each keyword in an input line. The
keyword is rotated to the front. The permuted file is then sorted. Finally, the sorted lines are rotated so
the keyword comes at the middle of the page. Ptx produces output in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx may be an nroff or troff(1) macro for user-defined formatting. The before keyword and key-
word and after fields incorporate as much of the line as will fit around the keyword when it is printed at
the middle of the page. Tail and head, at least one of which is an empty string "", are wrapped-around
pieces small enough to fit in the unused space at the opposite end of the line. When original text must
be discarded, ‘/’ marks the spot.

The following options can be applied:

– f Fold upper and lower case letters for sorting.

– t Prepare the output for the phototypesetter; the default line length is 100 characters.

– w n Use the next argument, n, as the width of the output line. The default line length is 72 charac-
ters.

– g n Use the next argument, n, as the number of characters to allow for each gap among the four
parts of the line as finally printed. The default gap is 3 characters.

– o only Use as keywords only the words given in the only file.

– i ignore
Do not use as keywords any words given in the ignore file. If the -i and -o options are miss-
ing, use /usr/lib/eign as the ignore file.

– b break
Use the characters in the break file to separate words. In any case, tab, newline, and space
characters are always used as break characters.

– r Take any leading nonblank characters of each input line to be a reference identifier (as to a
page or chapter) separate from the text of the line. Attach that identifier as a 5th field on each
output line.

The index for this manual was generated using ptx.

FILES
/bin/sort
/usr/lib/eign

BUGS
Line length counts do not account for overstriking or proportional spacing.

7th Edition 1

PUBINDEX (1) UNIX Programmer’s Manual PUBINDEX (1)

NAME
pubindex – make inverted bibliographic index

SYNOPSIS
pubindex [file] ...

DESCRIPTION
Pubindex makes a hashed inverted index to the named files for use by refer(1). The files contain biblio-
graphic references separated by blank lines. A bibliographic reference is a set of lines that contain
bibliographic information fields. Each field starts on a line beginning with a ‘%’, followed by a key-
letter, followed by a blank, and followed by the contents of the field, which continues until the next line
starting with ‘%’. The most common key-letters and the corresponding fields are:

A Author name
B Title of book containing article referenced
C City
D Date
d Alternate date
E Editor of book containing article referenced
G Government (CFSTI) order number
I Issuer (publisher)
J Journal
K Other keywords to use in locating reference
M Technical memorandum number
N Issue number within volume
O Other commentary to be printed at end of reference
P Page numbers
R Report number
r Alternate report number
T Title of article, book, etc.
V Volume number
X Commentary unused by pubindex

Except for ‘A’, each field should only be given once. Only relevant fields should be supplied. An
example is:

%T 5-by-5 Palindromic Word Squares
%A M. D. McIlroy
%J Word Ways
%V 9
%P 199-202
%D 1976

FILES
x.ia, x.ib, x.ic where x is the first argument.

SEE ALSO
refer(1)

7th Edition local 1

PWD (1) UNIX Programmer’s Manual PWD (1)

NAME
pwd – working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the pathname of the working (current) directory.

SEE ALSO
cd(1)

7th Edition 1

QUOT (1M) UNIX Programmer’s Manual QUOT (1M)

NAME
quot – summarize file system ownership

SYNOPSIS
quot [option] ... [filesystem]

DESCRIPTION
Quot prints the number of blocks in the named filesystem currently owned by each user. If no filesystem
is named, a default name is assumed. The following options are available:

– n Cause the pipeline ncheck filesystem  sort +0n  quot – n filesystem to produce a list of all
files and their owners.

– c Print three columns giving file size in blocks, number of files of that size, and cumulative total
of blocks in that size or smaller file.

– f Print count of number of files as well as space owned by each user.

FILES
Default file system varies with system.
/etc/passwd to get user names

SEE ALSO
ls(1), du(1)

BUGS
Holes in files are counted as if they actually occupied space.

7th Edition 1

RANLIB (1) UNIX Programmer’s Manual RANLIB (1)

NAME
ranlib – convert archives to random libraries

SYNOPSIS
ranlib archive ...

DESCRIPTION
Ranlib converts each archive to a form which can be loaded more rapidly by the loader, by adding a
table of contents named __.SYMDEF to the beginning of the archive. It uses ar(1) to reconstruct the
archive, so that sufficient temporary file space must be available in the file system containing the current
directory.

SEE ALSO
ld(1), ar(1)

BUGS
Because generation of a library by ar and randomization by ranlib are separate, phase errors are possi-
ble. The loader ld warns when the modification date of a library is more recent than the creation of its
dictionary; but this means you get the warning even if you only copy the library.

7th Edition 1

RATFOR (1) UNIX Programmer’s Manual RATFOR (1)

NAME
ratfor – rational Fortran dialect

SYNOPSIS
ratfor [option ...] [filename ...]

DESCRIPTION
Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. Ratfor provides control
flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement }

decision-making:
if (condition) statement [else statement]
switch (integer value) {

case integer: statement
...
[default:] statement

}

loops: while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break [n]
next [n]

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define: define name replacement

include: include filename

The option – h causes quoted strings to be turned into 27H constructs. – C copies comments to the out-
put, and attempts to format it neatly. Normally, continuation lines are marked with a & in column 1;
the option – 6x makes the continuation character x and places it in column 6.

Ratfor is best used with f77(1).

SEE ALSO
f77(1)
B. W. Kernighan and P. J. Plauger, Software Tools , Addison-Wesley, 1976.

7th Edition 1

REFER (1) UNIX Programmer’s Manual REFER (1)

NAME
refer, lookbib – find and insert literature references in documents

SYNOPSIS
refer [option] ...

lookbib [file] ...

DESCRIPTION
Lookbib accepts keywords from the standard input and searches a bibliographic data base for references
that contain those keywords anywhere in title, author, journal name, etc. Matching references are
printed on the standard output. Blank lines are taken as delimiters between queries.

Refer is a preprocessor for nroff or troff(1) that finds and formats references. The input files (standard
input default) are copied to the standard output, except for lines between .[and .] command lines,
which are assumed to contain keywords as for lookbib, and are replaced by information from the biblio-
graphic data base. The user may avoid the search, override fields from it, or add new fields. The refer-
ence data, from whatever source, are assigned to a set of troff strings. Macro packages such as ms(7)
print the finished reference text from these strings. A flag is placed in the text at the point of reference;
by default the references are indicated by numbers.

The following options are available:

– ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omitted all author
names are reversed.

– b Bare mode: do not put any flags in text (neither numbers nor labels).

– cstring
Capitalize (with CAPS SMALL CAPS) the fields whose key-letters are in string .

– e Instead of leaving the references where encountered, accumulate them until a sequence of the
form

.[
$LIST$
.]

is encountered, and then write out all references collected so far. Collapse references to the same
source.

– kx Instead of numbering references, use labels as specified in a reference data line beginning %x; by
default x is L.

– lm ,n Instead of numbering references, use labels made from the senior author’s last name and the year
of publication. Only the first m letters of the last name and the last n digits of the date are used.
If either m or ,n is omitted the entire name or date respectively is used.

– p Take the next argument as a file of references to be searched. The default file is searched last.

– n Do not search the default file.

– skeys
Sort references by fields whose key-letters are in the keys string; permute reference numbers in
text accordingly. Implies – e. The key-letters in keys may be followed by a number to indicate
how many such fields are used, with + taken as a very large number. The default is AD which
sorts on the senior author and then date; to sort, for example, on all authors and then title use -
sA+T.

To use your own references, put them in the format described in pubindex(1) They can be searched
more rapidly by running pubindex(1) on them before using refer; failure to index results in a linear
search.

7th Edition 1

REFER (1) UNIX Programmer’s Manual REFER (1)

When refer is used with eqn, neqn or tbl, refer should be first, to minimize the volume of data passed
through pipes.

FILES
/usr/dict/papers directory of default publication lists and indexes
/usr/lib/refer directory of programs

SEE ALSO

7th Edition 2

RESTOR (1M) UNIX Programmer’s Manual RESTOR (1M)

NAME
restor – incremental file system restore

SYNOPSIS
restor key [argument ...]

DESCRIPTION
Restor is used to read magtapes dumped with the dump command. The key specifies what is to be done.
Key is one of the characters rRxt optionally combined with f.

f Use the first argument as the name of the tape instead of the default.

r or R The tape is read and loaded into the file system specified in argument. This should not be done
lightly (see below). If the key is R restor asks which tape of a multi volume set to start on.
This allows restor to be interrupted and then restarted (an icheck – s must be done before

x Each file on the tape named by an argument is extracted. The file name has all ‘mount’
prefixes removed; for example, /usr/bin/lpr is named /bin/lpr on the tape. The file extracted is
placed in a file with a numeric name supplied by restor (actually the inode number). In order
to keep the amount of tape read to a minimum, the following procedure is recommended:

Mount volume 1 of the set of dump tapes.

Type the restor command.

Restor will announce whether or not it found the files, give the number it will name the file,
and rewind the tape.

It then asks you to ‘mount the desired tape volume’. Type the number of the volume you
choose. On a multivolume dump the recommended procedure is to mount the last through the
first volume in that order. Restor checks to see if any of the files requested are on the mounted
tape (or a later tape, thus the reverse order) and doesn’t read through the tape if no files are. If
you are working with a single volume dump or the number of files being restored is large,
respond to the query with ‘1’ and restor will read the tapes in sequential order.

If you have a hierarchy to restore you can use dumpdir(1) to produce the list of names and a
shell script to move the resulting files to their homes.

t Print the date the tape was written and the date the filesystem was dumped from.

The r option should only be used to restore a complete dump tape onto a clear file system or to restore
an incremental dump tape onto this. Thus

/etc/mkfs /dev/rp0 40600
restor r /dev/rp0

is a typical sequence to restore a complete dump. Another restor can be done to get an incremental
dump in on top of this.

A dump followed by a mkfs and a restor is used to change the size of a file system.

FILES
default tape unit varies with installation
rst*

SEE ALSO
dump(1), mkfs(1), dumpdir(1)

7th Edition 1

RESTOR (1M) UNIX Programmer’s Manual RESTOR (1M)

DIAGNOSTICS
There are various diagnostics involved with reading the tape and writing the disk. There are also diag-
nostics if the i-list or the free list of the file system is not large enough to hold the dump.

If the dump extends over more than one tape, it may ask you to change tapes. Reply with a new-line
when the next tape has been mounted.

BUGS
There is redundant information on the tape that could be used in case of tape reading problems. Unfor-
tunately, restor doesn’t use it.

7th Edition 2

REV (1) UNIX Programmer’s Manual REV (1)

NAME
rev – reverse lines of a file

SYNOPSIS
rev [file] ...

DESCRIPTION
Rev copies the named files to the standard output, reversing the order of characters in every line. If no
file is specified, the standard input is copied.

7th Edition 1

RM (1) UNIX Programmer’s Manual RM (1)

NAME
rm, rmdir – remove (unlink) files

SYNOPSIS
rm [– fri] file ...

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was the last link to the file,
the file is destroyed. Removal of a file requires write permission in its directory, but neither read nor
write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed and a
line is read from the standard input. If that line begins with ‘y’ the file is deleted, otherwise the file
remains. No questions are asked when the – f (force) option is given.

If a designated file is a directory, an error comment is printed unless the optional argument – r has been
used. In that case, rm recursively deletes the entire contents of the specified directory, and the directory
itself.

If the – i (interactive) option is in effect, rm asks whether to delete each file, and, under – r, whether to
examine each directory.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
unlink(2)

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file ‘..’ merely to avoid the antisocial conse-
quences of inadvertently doing something like ‘rm – r .*’.

7th Edition 1

ROFF (1) UNIX Programmer’s Manual ROFF (1)

NAME
roff – format text

SYNOPSIS
roff [+n] [– n] [– s] [– h] file ...

nroff – mr [option] ... file ...
troff – mr [option] ... file ...

DESCRIPTION
Roff formats text according to control lines embedded in the text in the given files. Encountering a
nonexistent file terminates printing. Incoming inter-terminal messages are turned off during printing.
The optional flag arguments mean:
+n Start printing at the first page with number n .
– n Stop printing at the first page numbered higher than n .
– s Stop before each page (including the first) to allow paper manipulation; resume on receipt of an

interrupt signal.
– h Insert tabs in the output stream to replace spaces whenever appropriate.

Input consists of intermixed text lines, which contain information to be formatted, and request lines,
which contain instructions about how to format it. Request lines begin with a distinguished control
character, normally a period.

Output lines may be filled as nearly as possible with words without regard to input lineation. Line
breaks may be caused at specified places by certain commands, or by the appearance of an empty input
line or an input line beginning with a space.

The capabilities of roff are specified in the attached Request Summary. Numerical values are denoted
there by n or +n, titles by t, and single characters by c. Numbers denoted +n may be signed + or – , in
which case they signify relative changes to a quantity, otherwise they signify an absolute resetting.
Missing n fields are ordinarily taken to be 1, missing t fields to be empty, and c fields to shut off the
appropriate special interpretation.

Running titles usually appear at top and bottom of every page. They are set by requests like

.he ′part1′part2′part3′

Part1 is left justified, part2 is centered, and part3 is right justified on the page. Any % sign in a title is
replaced by the current page number. Any nonblank may serve as a quote.

ASCII tab characters are replaced in the input by a replacement character, normally a space, according
to the column settings given by a .ta command. (See .tr for how to convert this character on output.)

Automatic hyphenation of filled output is done under control of .hy. When a word contains a designated
hyphenation character, that character disappears from the output and hyphens can be introduced into the
word at the marked places only.

The – mr option of nroff or troff(1) simulates roff to the greatest extent possible.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary

BUGS
Roff is the simplest of the text formatting programs, and is utterly frozen.

7th Edition 1

ROFF (1) UNIX Programmer’s Manual ROFF (1)

REQUEST SUMMARY

Request Break Initial Meaning
.ad yes yes Begin adjusting right margins.
.ar no arabic Arabic page numbers.
.br yes – Causes a line break the filling of the current line is stopped.
.bl n yes – Insert of n blank lines, on new page if necessary.
.bp +n yes n=1 Begin new page and number it n; no n means ‘+1’.
.cc c no c=. Control character becomes ‘c’.
.ce n yes – Center the next n input lines, without filling.
.de xx no – Define parameterless macro to be invoked by request ‘.xx’ (definition ends on line begin-

ning ‘..’).
.ds yes no Double space; same as ‘.ls 2’.
.ef t no t= Even foot title becomes t.
.eh t no t= Even head title becomes t.
.fi yes yes Begin filling output lines.
.fo no t= All foot titles are t.
.hc c no none Hyphenation character becomes ‘c’.
.he t no t= All head titles are t.
.hx no – Title lines are suppressed.
.hy n no n=1 Hyphenation is done, if n=1; and is not done, if n=0.
.ig no – Ignore input lines through a line beginning with ‘..’.
.in +n yes – Indent n spaces from left margin.
.ix +n no – Same as ‘.in’ but without break.
.li n no – Literal, treat next n lines as text.
.ll +n no n=65 Line length including indent is n characters.
.ls +n yes n=1 Line spacing set to n lines per output line.
.m1 n no n=2 Put n blank lines between the top of page and head title.
.m2 n no n=2 n blank lines put between head title and beginning of text on page.
.m3 n no n=1 n blank lines put between end of text and foot title.
.m4 n no n=3 n blank lines put between the foot title and the bottom of page.
.na yes no Stop adjusting the right margin.
.ne n no – Begin new page, if n output lines cannot fit on present page.
.nn +n no – The next n output lines are not numbered.
.n1 no no Add 5 to page offset; number lines in margin from 1 on each page.
.n2 n no no Add 5 to page offset; number lines from n; stop if n=0.
.ni +n no n=0 Line numbers are indented n.
.nf yes no Stop filling output lines.
.nx file – Switch input to ‘file’.
.of t no t= Odd foot title becomes t.
.oh t no t= Odd head title becomes t.
.pa +n yes n=1 Same as ‘.bp’.
.pl +n no n=66 Total paper length taken to be n lines.
.po +n no n=0 Page offset. All lines are preceded by n spaces.
.ro no arabic Roman page numbers.
.sk n no – Produce n blank pages starting next page.
.sp n yes – Insert block of n blank lines, except at top of page.
.ss yes yes Single space output lines, equivalent to ‘.ls 1’.
.ta n n.. – Pseudotab settings. Initial tab settings are columns 9 17 25 ...
.tc c no space Tab replacement character becomes ‘c’.
.ti +n yes – Temporarily indent next output line n spaces.
.tr cdef.. no – Translate c into d, e into f, etc.
.ul n no – Underline the letters and numbers in the next n input lines.

7th Edition 2

SA (1M) UNIX Programmer’s Manual SA (1M)

NAME
sa, accton – system accounting

SYNOPSIS
sa [– abcjlnrstuv] [file]

/etc/accton [file]

DESCRIPTION
With an argument naming an existing file, accton causes system accounting information for every pro-
cess executed to be placed at the end of the file. If no arguemnt is given, accounting is turned off.

Sa reports on, cleans up, and generally maintains accounting files.

Sa is able to condense the information in /usr/adm/acct into a summary file /usr/adm/savacct which con-
tains a count of the number of times each command was called and the time resources consumed. This
condensation is desirable because on a large system acct can grow by 100 blocks per day. The sum-
mary file is read before the accounting file, so the reports include all available information.

If a file name is given as the last argument, that file will be treated as the accounting file; sha is the
default. There are zillions of options:

a Place all command names containing unprintable characters and those used only once under the
name ‘***other.’

b Sort output by sum of user and system time divided by number of calls. Default sort is by sum
of user and system times.

c Besides total user, system, and real time for each command print percentage of total time over
all commands.

j Instead of total minutes time for each category, give seconds per call.

l Separate system and user time; normally they are combined.

m Print number of processes and number of CPU minutes for each user.

n Sort by number of calls.

r Reverse order of sort.

s Merge accounting file into summary file /usr/adm/savacct when done.

t For each command report ratio of real time to the sum of user and system times.

u Superseding all other flags, print for each command in the accounting file the user ID and com-
mand name.

v If the next character is a digit n, then type the name of each command used n times or fewer.
Await a reply from the typewriter; if it begins with ‘y’, add the command to the category
‘**junk**.’ This is used to strip out garbage.

FILES
/usr/adm/acct raw accounting
/usr/adm/savacct summary
/usr/adm/usracct per-user summary

SEE ALSO
ac(1), acct(2)

7th Edition 1

SED (1) UNIX Programmer’s Manual SED (1)

NAME
sed – stream editor

SYNOPSIS
sed [– n] [– e script] [– f sfile] [file] ...

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, edited according to a script of
commands. The – f option causes the script to be taken from file sfile; these options accumulate. If
there is just one – e option and no – f’s, the flag – e may be omitted. The – n option suppresses the
default output.

A script consists of editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation sed cyclically copies a line of input into a pattern space (unless there is something
left after a ‘D’ command), applies in sequence all commands whose addresses select that pattern space,
and at the end of the script copies the pattern space to the standard output (except under – n) and deletes
the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a ‘$’ that
addresses the last line of input, or a context address, ‘/regular expression/’, in the style of ed(1) modified
thus:

The escape sequence ‘\n’ matches a newline embedded in the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space that matches
the first address through the next pattern space that matches the second. (If the second address is a
number less than or equal to the line number first selected, only one line is selected.) Thereafter the
process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation function ‘!’
(below).

In the following list of functions the maximum number of permissible addresses for each function is
indicated in parentheses.

An argument denoted text consists of one or more lines, all but the last of which end with ‘\’ to hide the
newline. Backslashes in text are treated like backslashes in the replacement string of an ‘s’ command,
and may be used to protect initial blanks and tabs against the stripping that is done on every script line.

An argument denoted rfile or wfile must terminate the command line and must be preceded by exactly
one blank. Each wfile is created before processing begins. There can be at most 10 distinct wfile argu-
ments.

(1) a\
text

Append. Place text on the output before reading the next input line.

(2) b label
Branch to the ‘:’ command bearing the label . If label is empty, branch to the end of the script.

(2) c\
text

Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address range,
place text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

7th Edition 1

SED (1) UNIX Programmer’s Manual SED (1)

(2) D Delete the initial segment of the pattern space through the first newline. Start the next cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append the contents of the pattern space to the hold space.

(1) i\
text Insert. Place text on the standard output.

(2) l List the pattern space on the standard output in an unambiguous form. Non-printing characters
are spelled in two digit ascii, and long lines are folded.

(2) n Copy the pattern space to the standard output. Replace the pattern space with the next line of
input.

(2) N Append the next line of input to the pattern space with an embedded newline. (The current line
number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile
Read the contents of rfile . Place them on the output before reading the next input line.

(2) s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in the pattern space.
Any character may be used instead of ‘/’. For a fuller description see ed(1). Flags is zero or
more of

g Global. Substitute for all nonoverlapping instances of the regular expression rather
than just the first one.

p Print the pattern space if a replacement was made.

w wfile Write. Append the pattern space to wfile if a replacement was made.

(2) t label
Test. Branch to the ‘:’ command bearing the label if any substitutions have been made since
the most recent reading of an input line or execution of a ‘t’. If label is empty, branch to the
end of the script.

(2) w wfile
Write. Append the pattern space to wfile .

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/string1/string2/
Transform. Replace all occurrences of characters in string1 with the corresponding character in
string2. The lengths of string1 and string2 must be equal.

(2)! function
Don’t. Apply the function (or group, if function is ‘{’) only to lines not selected by the
address(es).

(0) : label
This command does nothing; it bears a label for ‘b’ and ‘t’ commands to branch to.

(1) = Place the current line number on the standard output as a line.

(2) { Execute the following commands through a matching ‘}’ only when the pattern space is

7th Edition 2

SED (1) UNIX Programmer’s Manual SED (1)

selected.

(0) An empty command is ignored.

SEE ALSO
ed(1), grep(1), awk(1)

7th Edition 3

SH (1) UNIX Programmer’s Manual SH (1)

NAME
sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit, export, login, newgrp, read, readonly,
set, shift, times, trap, umask, wait – command language

SYNOPSIS
sh [– ceiknrstuvx] [arg] ...

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a file. See
invocation for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a space).
The first word specifies the name of the command to be executed. Except as specified below the
remaining words are passed as arguments to the invoked command. The command name is passed as
argument 0 (see exec(2)). The value of a simple-command is its exit status if it terminates normally or
200+status if it terminates abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by |. The standard output of each com-
mand but the last is connected by a pipe(2) to the standard input of the next command. Each command
is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, && or | | and optionally terminated by ;
or &. ; and & have equal precedence which is lower than that of && and | |, && and | | also have
equal precedence. A semicolon causes sequential execution; an ampersand causes the preceding pipeline
to be executed without waiting for it to finish. The symbol && (| |) causes the list following to be exe-
cuted only if the preceding pipeline returns a zero (non zero) value. Newlines may appear in a list,
instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. The value returned by a command is
that of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed name is set to the next word in the for word list If
in word ... is omitted then in "$@" is assumed. Execution ends when there are no more words
in the list.

case word in [pattern [| pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that matches word. The form
of the patterns is the same as that used for file name generation.

if list then list [elif list then list] ... [else list] fi
The list following if is executed and if it returns zero the list following then is executed. Oth-
erwise, the list following elif is executed and if its value is zero the list following then is exe-
cuted. Failing that the else list is executed.

while list [do list] done
A while command repeatedly executes the while list and if its value is zero executes the do
list; otherwise the loop terminates. The value returned by a while command is that of the last
executed command in the do list. until may be used in place of while to negate the loop termi-
nation test.

(list) Execute list in a subshell.

{ list } list is simply executed.

The following words are only recognized as the first word of a command and when not quoted.

if then else elif fi case in esac for while until do done { }

7th Edition 1

SH (1) UNIX Programmer’s Manual SH (1)

Command substitution.
The standard output from a command enclosed in a pair of grave accents (` ̀) may be used as part or all
of a word; trailing newlines are removed.

Parameter substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be assigned
values by set. Variables may be set by writing

name=value [name=value] ...

$ {parameter }
A parameter is a sequence of letters, digits or underscores (a name), a digit, or any of the char-
acters * @ # ? – $! . The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or underscore that is not to be
interpreted as part of its name. If parameter is a digit then it is a positional parameter. If
parameter is * or @ then all the positional parameters, starting with $1, are substituted
separated by spaces. $0 is set from argument zero when the shell is invoked.

$ {parameter – word }
If parameter is set then substitute its value; otherwise substitute word.

$ {parameter = word }
If parameter is not set then set it to word; the value of the parameter is then substituted. Posi-
tional parameters may not be assigned to in this way.

$ {parameter ? word }
If parameter is set then substitute its value; otherwise, print word and exit from the shell. If
word is omitted then a standard message is printed.

$ {parameter +word }
If parameter is set then substitute word; otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string. (So that, for exam-
ple, echo ${d– `pwd`} will only execute pwd if d is unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.
– Options supplied to the shell on invocation or by set.
? The value returned by the last executed command in decimal.
$ The process number of this shell.
! The process number of the last background command invoked.

The following parameters are used but not set by the shell.

HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see execution).
MAIL If this variable is set to the name of a mail file then the shell informs the user of the

arrival of mail in the specified file.
PS1 Primary prompt string, by default ‘$ ’.
PS2 Secondary prompt string, by default ‘> ’.
IFS Internal field separators, normally space, tab, and newline.

Blank interpretation.
After parameter and command substitution, any results of substitution are scanned for internal field
separator characters (those found in $IFS) and split into distinct arguments where such characters are
found. Explicit null arguments ("" or ´´) are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

7th Edition 2

SH (1) UNIX Programmer’s Manual SH (1)

File name generation.
Following substitution, each command word is scanned for the characters *, ? and [. If one of these
characters appears then the word is regarded as a pattern. The word is replaced with alphabetically
sorted file names that match the pattern. If no file name is found that matches the pattern then the word
is left unchanged. The character . at the start of a file name or immediately following a /, and the char-
acter /, must be matched explicitly.

* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the characters enclosed. A pair of characters separated by – matches any

character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause termination of a word unless
quoted.

; & () | < > newline space tab

A character may be quoted by preceding it with a \ . \newline is ignored. All characters enclosed
between a pair of quote marks (´ ́), except a single quote, are quoted. Inside double quotes (" ") param-
eter and command substitution occurs and \ quotes the characters \ ` " and $.

"$*" is equivalent to "$1 $2 ..." whereas
"$@" is equivalent to "$1" "$2"

Prompting.
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any
time a newline is typed and further input is needed to complete a command then the secondary prompt
($PS2) is issued.

Input output.
Before a command is executed its input and output may be redirected using a special notation inter-
preted by the shell. The following may appear anywhere in a simple-command or may precede or fol-
low a command and are not passed on to the invoked command. Substitution occurs before word or
digit is used.

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does not exist then it is created;
otherwise it is truncated to zero length.

>> word Use file word as standard output. If the file exists then output is appended (by seeking to the
end); otherwise the file is created.

<< word The shell input is read up to a line the same as word , or end of file. The resulting document
becomes the standard input. If any character of word is quoted then no interpretation is placed
upon the characters of the document; otherwise, parameter and command substitution occurs,
\newline is ignored, and \ is used to quote the characters \ $ ` and the first character of word.

< & digit
The standard input is duplicated from file descriptor digit; see dup(2). Similarly for the stan-
dard output using > .

< & – The standard input is closed. Similarly for the standard output using > .

If one of the above is preceded by a digit then the file descriptor created is that specified by the digit
(instead of the default 0 or 1). For example,

... 2>&1

7th Edition 3

SH (1) UNIX Programmer’s Manual SH (1)

creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is the empty file
(/dev/null). Otherwise, the environment for the execution of a command contains the file descriptors of
the invoking shell as modified by input output specifications.

Environment.
The environment is a list of name-value pairs that is passed to an executed program in the same way as
a normal argument list; see exec(2) and environ(5). The shell interacts with the environment in several
ways. On invocation, the shell scans the environment and creates a parameter for each name found,
giving it the corresponding value. Executed commands inherit the same environment. If the user
modifies the values of these parameters or creates new ones, none of these affects the environment
unless the export command is used to bind the shell’s parameter to the environment. The environment
seen by any executed command is thus composed of any unmodified name-value pairs originally inher-
ited by the shell, plus any modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more assign-
ments to parameters. Thus these two lines are equivalent

TERM=450 cmd args
(export TERM; TERM=450; cmd args)

If the – k flag is set, all keyword arguments are placed in the environment, even if the occur after the
command name. The following prints ‘a=b c’ and ‘c’:
echo a=b c
set – k
echo a=b c

Signals.
The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed
by &; otherwise signals have the values inherited by the shell from its parent. (But see also trap.)

Execution.
Each time a command is executed the above substitutions are carried out. Except for the ‘special com-
mands’ listed below a new process is created and an attempt is made to execute the command via an
exec(2).

The shell parameter $PATH defines the search path for the directory containing the command. Each
alternative directory name is separated by a colon (:). The default path is :/bin:/usr/bin. If the com-
mand name contains a / then the search path is not used. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but is not an a.out file, it is assumed
to be a file containing shell commands. A subshell (i.e., a separate process) is spawned to read it. A
parenthesized command is also executed in a subshell.

Special commands.
The following commands are executed in the shell process and except where specified no input output
redirection is permitted for such commands.

: No effect; the command does nothing.
. file Read and execute commands from file and return. The search path $PATH is used to find the

directory containing file .
break [n]

Exit from the enclosing for or while loop, if any. If n is specified then break n levels.
continue [n]

Resume the next iteration of the enclosing for or while loop. If n is specified then resume at
the n-th enclosing loop.

cd [arg]
Change the current directory to arg. The shell parameter $HOME is the default arg .

7th Edition 4

SH (1) UNIX Programmer’s Manual SH (1)

eval [arg ...]
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell without creating a
new process. Input output arguments may appear and if no other arguments are given cause the
shell input output to be modified.

exit [n]
Causes a non interactive shell to exit with the exit status specified by n. If n is omitted then the
exit status is that of the last command executed. (An end of file will also exit from the shell.)

export [name ...]
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given then a list of exportable names is printed.

login [arg ...]
Equivalent to ‘exec login arg ...’.

newgrp [arg ...]
Equivalent to ‘exec newgrp arg ...’.

read name ...
One line is read from the standard input; successive words of the input are assigned to the vari-
ables name in order, with leftover words to the last variable. The return code is 0 unless the
end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these names may not be changed
by subsequent assignment. If no arguments are given then a list of all readonly names is
printed.

set [– eknptuvx [arg ...]]
– e If non interactive then exit immediately if a command fails.
– k All keyword arguments are placed in the environment for a command, not just those that

precede the command name.
– n Read commands but do not execute them.
– t Exit after reading and executing one command.
– u Treat unset variables as an error when substituting.
– v Print shell input lines as they are read.
– x Print commands and their arguments as they are executed.
– Turn off the – x and – v options.

These flags can also be used upon invocation of the shell. The current set of flags may be
found in $– .

Remaining arguments are positional parameters and are assigned, in order, to $1, $2, etc. If no
arguments are given then the values of all names are printed.

shift The positional parameters from $2... are renamed $1...

times Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] ...
Arg is a command to be read and executed when the shell receives signal(s) n. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Trap commands are exe-
cuted in order of signal number. If arg is absent then all trap(s) n are reset to their original
values. If arg is the null string then this signal is ignored by the shell and by invoked com-
mands. If n is 0 then the command arg is executed on exit from the shell, otherwise upon
receipt of signal n as numbered in signal(2). Trap with no arguments prints a list of commands
associated with each signal number.

umask [nnn]
The user file creation mask is set to the octal value nnn (see umask(2)). If nnn is omitted, the

7th Edition 5

SH (1) UNIX Programmer’s Manual SH (1)

current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If n is not given then all
currently active child processes are waited for. The return code from this command is that of
the process waited for.

Invocation.
If the first character of argument zero is – , commands are read from $HOME/. profile, if such a file
exists. Commands are then read as described below. The following flags are interpreted by the shell
when it is invoked.
– c string If the – c flag is present then commands are read from string .
– s If the – s flag is present or if no arguments remain then commands are read from the stan-

dard input. Shell output is written to file descriptor 2.
– i If the – i flag is present or if the shell input and output are attached to a terminal (as told

by gtty) then this shell is interactive. In this case the terminate signal SIGTERM (see sig-
nal(2)) is ignored (so that ‘kill 0’ does not kill an interactive shell) and the interrupt signal
SIGINT is caught and ignored (so that wait is interruptable). In all cases SIGQUIT is
ignored by the shell.

The remaining flags and arguments are described under the set command.

FILES
$HOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
test(1), exec(2),

DIAGNOSTICS
Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit status. If the
shell is being used non interactively then execution of the shell file is abandoned. Otherwise, the shell
returns the exit status of the last command executed (see also exit).

BUGS
If << is used to provide standard input to an asynchronous process invoked by &, the shell gets mixed up
about naming the input document. A garbage file /tmp/sh* is created, and the shell complains about not
being able to find the file by another name.

7th Edition 6

SIZE (1) UNIX Programmer’s Manual SIZE (1)

NAME
size – size of an object file

SYNOPSIS
size [object ...]

DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their sum in
octal and decimal, of each object-file argument. If no file is specified, a.out is used.

SEE ALSO
a.out(5)

7th Edition 1

SLEEP (1) UNIX Programmer’s Manual SLEEP (1)

NAME
sleep – suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to execute a command after a certain amount of
time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

command
sleep 37

done

SEE ALSO
alarm(2), sleep(3)

BUGS
Time must be less than 65536 seconds.

7th Edition 1

SORT (1) UNIX Programmer’s Manual SORT (1)

NAME
sort – sort or merge files

SYNOPSIS
sort [– mubdfinrtx] [+pos1 [– pos2]] ... [– o name] [– T directory] [name] ...

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the standard output. The name
‘– ’ means the standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine collating
sequence. The ordering is affected globally by the following options, one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d ‘Dictionary’ order: only letters, digits and blanks are significant in comparisons.

f Fold upper case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or more
digits with optional decimal point, is sorted by arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

tx ‘Tab character’ separating fields is x .

The notation +pos1 – pos2 restricts a sort key to a field beginning at pos1 and ending just before pos2 .
Pos1 and pos2 each have the form m .n, optionally followed by one or more of the flags bdfinr, where
m tells a number of fields to skip from the beginning of the line and n tells a number of characters to
skip further. If any flags are present they override all the global ordering options for this key. If the b
option is in effect n is counted from the first nonblank in the field; b is attached independently to pos2 .
A missing .n means .0; a missing – pos2 means the end of the line. Under the – tx option, fields are
strings separated by x; otherwise fields are nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare equal.
Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output unless the file is
out of sort.

m Merge only, the input files are already sorted.

o The next argument is the name of an output file to use instead of the standard output. This file
may be the same as one of the inputs.

T The next argument is the name of a directory in which temporary files should be made.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do not parti-
cipate in this comparison.

Examples. Print in alphabetical order all the unique spellings in a list of words. Capitalized words
differ from uncapitalized.

sort – u +0f +0 list

Print the password file (passwd(5)) sorted by user id number (the 3rd colon-separated field).

sort – t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month day) entries. The options – um
with just one input file make the choice of a unique representative from a set of equal lines predictable.

7th Edition 1

SORT (1) UNIX Programmer’s Manual SORT (1)

sort – um +0 – 1 dates

FILES
/usr/tmp/stm*, /tmp/*: first and second tries for temporary files

SEE ALSO
uniq(1), comm(1), rev(1), join(1)

DIAGNOSTICS
Comments and exits with nonzero status for various trouble conditions and for disorder discovered under
option – c.

BUGS
Very long lines are silently truncated.

7th Edition 2

SPELL (1) UNIX Programmer’s Manual SPELL (1)

NAME
spell, spellin, spellout – find spelling errors

SYNOPSIS
spell [option] ... [file] ...

/usr/src/cmd/spell/spellin [list]

/usr/src/cmd/spell/spellout [– d] list

DESCRIPTION
Spell collects words from the named documents, and looks them up in a spelling list. Words that nei-
ther occur among nor are derivable (by applying certain inflections, prefixes or suffixes) from words in
the spelling list are printed on the standard output. If no files are named, words are collected from the
standard input.

Spell ignores most troff, tbl and eqn(1) constructions.

Under the – v option, all words not literally in the spelling list are printed, and plausible derivations
from spelling list words are indicated.

Under the – b option, British spelling is checked. Besides preferring centre, colour, speciality, travelled,
etc., this option insists upon -ise in words like standardise, Fowler and the OED to the contrary notwith-
standing.

Under the – x option, every plausible stem is printed with ‘=’ for each word.

The spelling list is based on many sources, and while more haphazard than an ordinary dictionary, is
also more effective in respect to proper names and popular technical words. Coverage of the specialized
vocabularies of biology, medicine and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with their default settings.
Copies of all output are accumulated in the history file. The stop list filters out misspellings (e.g.
thier=thy– y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell. Both expect a list of words, one per line, from
the standard input. Spellin adds the words on the standard input to the preexisting list and places a new
list on the standard output. If no list is specified, the new list is created from scratch. Spellout looks up
each word in the standard input and prints on the standard output those that are missing from (or present
on, with option – d) the hash list.

FILES
D=/usr/dict/hlist[ab]: hashed spelling lists, American & British
S=/usr/dict/hstop: hashed stop list
H=/usr/dict/spellhist: history file
/usr/lib/spell
deroff(1), sort(1), tee(1), sed(1)

BUGS
The spelling list’s coverage is uneven; new installations will probably wish to monitor the output for
several months to gather local additions.
British spelling was done by an American.

7th Edition 1

SPLINE (1G) UNIX Programmer’s Manual SPLINE (1G)

NAME
spline – interpolate smooth curve

SYNOPSIS
spline [option] ...

DESCRIPTION
Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It pro-
duces a similar set, which is approximately equally spaced and includes the input set, on the standard
output. The cubic spline output (R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd
ed., 349ff) has two continuous derivatives, and sufficiently many points to look smooth when plotted, for
example by graph(1).

The following options are recognized, each as a separate argument.

– a Supply abscissas automatically (they are missing from the input); spacing is given by the next
argument, or is assumed to be 1 if next argument is not a number.

– k The constant k used in the boundary value computation

y′′0 = ky′′1 , y′′n = ky′′n − 1

is set by the next argument. By default k = 0.

– n Space output points so that approximately n intervals occur between the lower and upper x limits.
(Default n = 100.)

– p Make output periodic, i.e. match derivatives at ends. First and last input values should normally
agree.

– x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are calculated from
the data. Automatic abcissas start at lower limit (default 0).

SEE ALSO
graph(1)

DIAGNOSTICS
When data is not strictly monotone in x, spline reproduces the input without interpolating extra points.

BUGS
A limit of 1000 input points is enforced silently.

7th Edition 1

SPLIT (1) UNIX Programmer’s Manual SPLIT (1)

NAME
split – split a file into pieces

SYNOPSIS
split [– n] [file [name]]

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of output
files. The name of the first output file is name with aa appended, and so on lexicographically. If no
output name is given, x is default.

If no input file is given, or if – is given in its stead, then the standard input file is used.

7th Edition 1

STRIP (1) UNIX Programmer’s Manual STRIP (1)

NAME
strip – remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assembler and
loader. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the – s option of ld .

FILES
/tmp/stm? temporary file

SEE ALSO
ld(1)

7th Edition 1

STRUCT (1) UNIX Programmer’s Manual STRUCT (1)

NAME
struct – structure Fortran programs

SYNOPSIS
struct [option] ... file

DESCRIPTION
Struct translates the Fortran program specified by file (standard input default) into a Ratfor program.
Wherever possible, Ratfor control constructs replace the original Fortran. Statement numbers appear
only where still necessary. Cosmetic changes are made, including changing Hollerith strings into quoted
strings and relational operators into symbols (.e.g. ‘.GT.’ into ‘>’). The output is appropriately indented.

The following options may occur in any order.

– s Input is accepted in standard format, i.e. comments are specified by a c, C, or * in column 1,
and continuation lines are specified by a nonzero, nonblank character in column 6. Normally, a
statement whose first nonblank character is not alphanumeric is treated as a continuation.

– i Do not turn computed goto statements into switches. (Ratfor does not turn switches back into
computed goto statements.)

– a Turn sequences of else ifs into a non-Ratfor switch of the form

switch {
case pred1: code
case pred2: code
case pred3: code
default: code

}

The case predicates are tested in order; the code appropriate to only one case is executed. This
generalized form of switch statement does not occur in Ratfor.

– b Generate goto’s instead of multilevel break statements.

– n Generate goto’s instead of multilevel next statements.

– en If n is 0 (default), place code within a loop only if it can lead to an iteration of the loop. If n
is nonzero, admit code segments with fewer than n statements to a loop if otherwise the loop
would have exits to several places including the segment, and the segment can be reached only
from the loop.

FILES
/tmp/struct*
/usr/lib/struct/*

SEE ALSO
f77(1)

BUGS
Struct knows Fortran 66 syntax, but not full Fortran 77 (alternate returns, IF...THEN...ELSE, etc.)
If an input Fortran program contains identifiers which are reserved words in Ratfor, the structured ver-
sion of the program will not be a valid Ratfor program.
Extended range DO’s generate cryptic errors.
Columns 73-80 are not special even when – s is in effect.
Will not generate Ratfor FOR statements.

7th Edition 1

STTY (1) UNIX Programmer’s Manual STTY (1)

NAME
stty – set terminal options

SYNOPSIS
stty [option ...]

DESCRIPTION
Stty sets certain I/O options on the current output terminal. With no argument, it reports the current set-
tings of the options. The option strings are selected from the following set:

even allow even parity
– even disallow even parity
odd allow odd parity
– odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
– raw negate raw mode
cooked same as ‘– raw’
cbreak make each character available to read(2) as received; no erase and kill
– cbreak make characters available to read only when newline is received
– nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
– echo do not echo characters
lcase map upper case to lower case
– lcase do not map case
– tabs replace tabs by spaces when printing
tabs preserve tabs
ek reset erase and kill characters back to normal # and @
erase c set erase character to c . C can be of the form ‘ˆX’ which is interpreted as a ‘control X’.
kill c set kill character to c . ‘ˆX’ works here also.
cr0 cr1 cr2 cr3

select style of delay for carriage return (see ioctl(2))
nl0 nl1 nl2 nl3

select style of delay for linefeed
tab0 tab1 tab2 tab3

select style of delay for tab
ff0 ff1 select style of delay for form feed
bs0 bs1 select style of delay for backspace
tty33 set all modes suitable for the Teletype Corporation Model 33 terminal.
tty37 set all modes suitable for the Teletype Corporation Model 37 terminal.
vt05 set all modes suitable for Digital Equipment Corp. VT05 terminal
tn300 set all modes suitable for a General Electric TermiNet 300
ti700 set all modes suitable for Texas Instruments 700 series terminal
tek set all modes suitable for Tektronix 4014 terminal
hup hang up dataphone on last close.
– hup do not hang up dataphone on last close.
0 hang up phone line immediately
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

Set terminal baud rate to the number given, if possible. (These are the speeds supported by
the DH-11 interface).

SEE ALSO
ioctl(2), tabs(1)

7th Edition 1

SU (1) UNIX Programmer’s Manual SU (1)

NAME
su – substitute user id temporarily

SYNOPSIS
su [userid]

DESCRIPTION
Su demands the password of the specified userid, and if it is given, changes to that userid and invokes
the Shell sh(1) without changing the current directory or the user environment (see environ(5)). The
new user ID stays in force until the Shell exits.

If no userid is specified, ‘root’ is assumed. To remind the super-user of his responsibilities, the Shell
substitutes ‘#’ for its usual prompt.

SEE ALSO
sh(1)

7th Edition 1

SUM (1) UNIX Programmer’s Manual SUM (1)

NAME
sum – sum and count blocks in a file

SYNOPSIS
sum file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of blocks in
the file. It is typically used to look for bad spots, or to validate a file communicated over some
transmission line.

SEE ALSO
wc(1)

DIAGNOSTICS
‘Read error’ is indistinuishable from end of file on most devices; check the block count.

7th Edition 1

SYNC (1M) UNIX Programmer’s Manual SYNC (1M)

NAME
sync – update the super block

SYNOPSIS
sync

DESCRIPTION
Sync executes the sync system primitive. If the system is to be stopped, sync must be called to insure
file system integrity. See sync(2) for details.

SEE ALSO
sync(2), update(8)

7th Edition 1

TABS (1) UNIX Programmer’s Manual TABS (1)

NAME
tabs – set terminal tabs

SYNOPSIS
tabs [– n] [terminal]

DESCRIPTION
Tabs sets the tabs on a variety of terminals. Various of the terminal names given in term(7) are recog-
nized; the default is, however, suitable for most 300 baud terminals. If the – n flag is present then the
left margin is not indented as is normal.

SEE ALSO
stty(1), term(7)

7th Edition 1

TAIL (1) UNIX Programmer’s Manual TAIL (1)

NAME
tail – deliver the last part of a file

SYNOPSIS
tail [±number[lbc]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is named,
the standard input is used.

Copying begins at distance +number from the beginning, or – number from the end of the input.
Number is counted in units of lines, blocks or characters, according to the appended option l, b or c.
When no units are specified, counting is by lines.

SEE ALSO
dd(1)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length. Various
kinds of anomalous behavior may happen with character special files.

7th Edition 1

TAR (1) UNIX Programmer’s Manual TAR (1)

NAME
tar – tape archiver

SYNOPSIS
tar [key] [name ...]

DESCRIPTION
Tar saves and restores files on magtape. Its actions are controlled by the key argument. The key is a
string of characters containing at most one function letter and possibly one or more function modifiers.
Other arguments to the command are file or directory names specifying which files are to be dumped or
restored. In all cases, appearance of a directory name refers to the files and (recursively) subdirectories
of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function implies this.

x The named files are extracted from the tape. If the named file matches a directory whose con-
tents had been written onto the tape, this directory is (recursively) extracted. The owner,
modification time, and mode are restored (if possible). If no file argument is given, the entire
content of the tape is extracted. Note that if multiple entries specifying the same file are on
the tape, the last one overwrites all earlier.

t The names of the specified files are listed each time they occur on the tape. If no file argu-
ment is given, all of the names on the tape are listed.

u The named files are added to the tape if either they are not already there or have been
modified since last put on the tape.

c Create a new tape; writing begins on the beginning of the tape instead of after the last file.
This command implies r.

The following characters may be used in addition to the letter which selects the function desired.

0,...,7 This modifier selects the drive on which the tape is mounted. The default is 1.

v Normally tar does its work silently. The v (verbose) option causes it to type the name of
each file it treats preceded by the function letter. With the t function, v gives more informa-
tion about the tape entries than just the name.

w causes tar to print the action to be taken followed by file name, then wait for user
confirmation. If a word beginning with ‘y’ is given, the action is performed. Any other input
means don’t do it.

f causes tar to use the next argument as the name of the archive instead of /dev/mt?. If the
name of the file is ‘– ’, tar writes to standard output or reads from standard input, whichever
is appropriate. Thus, tar can be used as the head or tail of a filter chain Tar can also be used
to move hierarchies with the command

cd fromdir; tar cf - .  (cd todir; tar xf -)

b causes tar to use the next argument as the blocking factor for tape records. The default is 1,
the maximum is 20. This option should only be used with raw magnetic tape archives (See f
above). The block size is determined automatically when reading tapes (key letters ‘x’ and
‘t’).

l tells tar to complain if it cannot resolve all of the links to the files dumped. If this is not
specified, no error messages are printed.

m tells tar to not restore the modification times. The mod time will be the time of extraction.

FILES
/dev/mt?
/tmp/tar*

7th Edition 1

TAR (1) UNIX Programmer’s Manual TAR (1)

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

BUGS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated. The current magtape driver
cannot backspace raw magtape. If the archive is on a disk file the b option should not be used at all, as
updating an archive stored in this manner can destroy it.
The current limit on file name length is 100 characters.

7th Edition 2

TBL (1) UNIX Programmer’s Manual TBL (1)

NAME
tbl – format tables for nroff or troff

SYNOPSIS
tbl [files] ...

DESCRIPTION
Tbl is a preprocessor for formatting tables for nroff or troff(1). The input files are copied to the stan-
dard output, except for lines between .TS and .TE command lines, which are assumed to describe tables
and reformatted. Details are given in the reference manual.

As an example, letting \t represent a tab (which should be typed as a genuine tab) the input

.TS
c s s
c c s
c c c
l n n.
Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3.74
Bernardsville\t2018\t3.30
Bound Brook\t3425\t3.04
Branchburg\t1644\t3.49
Bridgewater\t7897\t3.81
Far Hills\t240\t3.19
.TE

yields

Household Population
Town Households

Number Size
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Branchburg 1644 3.49
Bridgewater 7897 3.81
Far Hills 240 3.19

If no arguments are given, tbl reads the standard input, so it may be used as a filter. When it is used
with eqn or neqn the tbl command should be first, to minimize the volume of data passed through pipes.

SEE ALSO
troff(1), eqn(1)
M. E. Lesk, TBL.

7th Edition 1

TC (1) UNIX Programmer’s Manual TC (1)

NAME
tc – photypesetter simulator

SYNOPSIS
tc [– t] [– sN] [– pL] [file]

DESCRIPTION
Tc interprets its input (standard input default) as device codes for a Graphic Systems phototypesetter
(cat). The standard output of tc is intended for a Tektronix 4015 (a 4014 teminal with ASCII and APL
character sets). The sixteen typesetter sizes are mapped into the 4014’s four sizes; the entire TROFF
character set is drawn using the 4014’s character generator, using overstruck combinations where neces-
sary. Typical usage:

troff – t file  tc

At the end of each page tc waits for a newline (empty line) from the keyboard before continuing on to
the next page. In this wait state, the command e will suppress the screen erase before the next page; sN
will cause the next N pages to be skipped; and !line will send line to the shell.

The command line options are:

– t Don’t wait between pages; for directing output into a file.

– sN Skip the first N pages.

– pL Set page length to L. L may include the scale factors p (points), i (inches), c (centimeters), and
P (picas); default is picas.

′– l w ′ Multiply the default aspect ratio, 1.5, of a displayed page by l/w.

SEE ALSO
troff(1), plot(1)

BUGS
Font distinctions are lost.
The aspect ratio option is unbelievable.

7th Edition 1

TEE (1) UNIX Programmer’s Manual TEE (1)

NAME
tee – pipe fitting

SYNOPSIS
tee [– i] [– a] [file] ...

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the files. Option – i ignores
interrupts; option – a causes the output to be appended to the files rather than overwriting them.

7th Edition 1

TEST (1) UNIX Programmer’s Manual TEST (1)

NAME
test – condition command

SYNOPSIS
test expr

DESCRIPTION
test evaluates the expression expr, and if its value is true then returns zero exit status; otherwise, a non
zero exit status is returned. test returns a non zero exit if there are no arguments.

The following primitives are used to construct expr.

– r file true if the file exists and is readable.

– w file true if the file exists and is writable.

– f file true if the file exists and is not a directory.

– d file true if the file exists and is a directory.

– s file true if the file exists and has a size greater than zero.

– t [fildes]
true if the open file whose file descriptor number is fildes (1 by default) is associated with a
terminal device.

– z s1 true if the length of string s1 is zero.

– n s1 true if the length of the string s1 is nonzero.

s1 = s2 true if the strings s1 and s2 are equal.

s1 != s2 true if the strings s1 and s2 are not equal.

s1 true if s1 is not the null string.

n1 – eq n2
true if the integers n1 and n2 are algebraically equal. Any of the comparisons – ne, – gt, – ge,
– lt, or – le may be used in place of – eq.

These primaries may be combined with the following operators:

! unary negation operator

– a binary and operator

– o binary or operator

(expr) parentheses for grouping.

– a has higher precedence than – o. Notice that all the operators and flags are separate arguments to test .
Notice also that parentheses are meaningful to the Shell and must be escaped.

SEE ALSO
sh(1), find(1)

7th Edition 1

TIME (1) UNIX Programmer’s Manual TIME (1)

NAME
time – time a command

SYNOPSIS
time command

DESCRIPTION
The given command is executed; after it is complete, time prints the elapsed time during the command,
the time spent in the system, and the time spent in execution of the command. Times are reported in
seconds.

The execution time can depend on what kind of memory the program happens to land in; the user time
in MOS is often half what it is in core.

The times are printed on the diagnostic output stream.

BUGS
Elapsed time is accurate to the second, while the CPU times are measured to the 60th second. Thus the
sum of the CPU times can be up to a second larger than the elapsed time.

7th Edition 1

TK (1) UNIX Programmer’s Manual TK (1)

NAME
tk – paginator for the Tektronix 4014

SYNOPSIS
tk [– t] [– N] [– pL] [file]

DESCRIPTION
The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit on the screen,
divides the screen into N columns, and contributes an eight space page offset in the (default) single-
column case. Tabs, spaces, and backspaces are collected and plotted when necessary. Teletype Model
37 half- and reverse-line sequences are interpreted and plotted. At the end of each page tk waits for a
newline (empty line) from the keyboard before continuing on to the next page. In this wait state, the
command !command will send the command to the shell.

The command line options are:

– t Don’t wait between pages; for directing output into a file.

– N Divide the screen into N columns and wait after the last column.

– pL Set page length to L lines.

SEE ALSO
pr(1)

7th Edition 1

TOUCH (1) UNIX Programmer’s Manual TOUCH (1)

NAME
touch – update date last modified of a file

SYNOPSIS
touch [– c] file ...

DESCRIPTION
Touch attempts to set the modified date of each file. This is done by reading a character from the file
and writing it back.

If a file does not exist, an attempt will be made to create it unless the – c option is specified.

7th Edition 1

TP (1) UNIX Programmer’s Manual TP (1)

NAME
tp – manipulate tape archive

SYNOPSIS
tp [key] [name ...]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argument. The
key is a string of characters containing at most one function letter and possibly one or more function
modifiers. Other arguments to the command are file or directory names specifying which files are to be
dumped, restored, or listed. In all cases, appearance of a directory name refers to the files and (recur-
sively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the tape. If files with the same names already exist, they are
replaced. ‘Same’ is determined by string comparison, so ‘./abc’ can never be the same as
‘/usr/dmr/abc’ even if ‘/usr/dmr’ is the current directory. If no file argument is given, ‘.’ is the
default.

u updates the tape. u is like r, but a file is replaced only if its modification date is later than the
date stored on the tape; that is to say, if it has changed since it was dumped. u is the default
command if none is given.

d deletes the named files from the tape. At least one name argument must be given. This func-
tion is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner and mode are restored. If
no file argument is given, the entire contents of the tape are extracted.

t lists the names of the specified files. If no file argument is given, the entire contents of the
tape is listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, x is default; for
magtape ‘0’ is the default.

v Normally tp does its work silently. The v (verbose) option causes it to type the name of
each file it treats preceded by the function letter. With the t function, v gives more informa-
tion about the tape entries than just the name.

c means a fresh dump is being created; the tape directory is cleared before beginning. Usable
only with r and u. This option is assumed with magtape since it is impossible to selectively
overwrite magtape.

i Errors reading and writing the tape are noted, but no action is taken. Normally, errors cause
a return to the command level.

f Use the first named file, rather than a tape, as the archive. This option is known to work
only with x.

w causes tp to pause before treating each file, type the indicative letter and the file name (as
with v) and await the user’s response. Response y means ‘yes’, so the file is treated. Null
response means ‘no’, and the file does not take part in whatever is being done. Response x
means ‘exit’; the tp command terminates immediately. In the x function, files previously
asked about have been extracted already. With r, u, and d no change has been made to the
tape.

7th Edition deprecated 1

TP (1) UNIX Programmer’s Manual TP (1)

FILES
/dev/tap?
/dev/mt?

SEE ALSO
ar(1), tar(1)

DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was selected for
dumping but before it was dumped.

BUGS
A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by tp difficult to carry to other
machines; tar(1) avoids the problem.

7th Edition deprecated 2

TR (1) UNIX Programmer’s Manual TR (1)

NAME
tr – translate characters

SYNOPSIS
tr [– cds] [string1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected characters.
Input characters found in string1 are mapped into the corresponding characters of string2 . When string2
is short it is padded to the length of string1 by duplicating its last character. Any combination of the
options – cds may be used: – c complements the set of characters in string1 with respect to the universe
of characters whose ASCII codes are 01 through 0377 octal; – d deletes all input characters in string1;
– s squeezes all strings of repeated output characters that are in string2 to single characters.

In either string the notation a– b means a range of characters from a to b in increasing ASCII order.
The character ‘\’ followed by 1, 2 or 3 octal digits stands for the character whose ASCII code is given
by those digits. A ‘\’ followed by any other character stands for that character.

The following example creates a list of all the words in ‘file1’ one per line in ‘file2’, where a word is
taken to be a maximal string of alphabetics. The second string is quoted to protect ‘\’ from the Shell.
012 is the ASCII code for newline.

tr – cs A– Za– z ´\012´ <file1 >file2

SEE ALSO
ed(1), ascii(7)

BUGS
Won’t handle ASCII NUL in string1 or string2; always deletes NUL from input.

7th Edition 1

TROFF (1) UNIX Programmer’s Manual TROFF (1)

NAME
troff, nroff – text formatting and typesetting

SYNOPSIS
troff [option] ... [file] ...

nroff [option] ... [file] ...

DESCRIPTION
Troff formats text in the named files for printing on a Graphic Systems C/A/T phototypesetter; nroff for
typewriter-like devices. Their capabilities are described in the Nroff/Troff user’s manual.

If no file argument is present, the standard input is read. An argument consisting of a single minus (–)
is taken to be a file name corresponding to the standard input. The options, which may appear in any
order so long as they appear before the files, are:

– olist Print only pages whose page numbers appear in the comma-separated list of numbers and
ranges. A range N– M means pages N through M; an initial – N means from the beginning to
page N; and a final N– means from N to the end.

– nN Number first generated page N .

– sN Stop every N pages. Nroff will halt prior to every N pages (default N=1) to allow paper load-
ing or changing, and will resume upon receipt of a newline. Troff will stop the phototypesetter
every N pages, produce a trailer to allow changing cassettes, and resume when the typesetter’s
start button is pressed.

– mname Prepend the macro file /usr/lib/tmac/tmac.name to the input files .

– raN Set register a (one-character) to N .

– i Read standard input after the input files are exhausted.

– q Invoke the simultaneous input-output mode of the rd request.

N Nr ro of ff f o on nl ly y

– Tname Prepare output for specified terminal. Known names are 37 for the (default) Teletype Corpora-
tion Model 37 terminal, tn300 for the GE TermiNet 300 (or any terminal without half-line
capability), 300S for the DASI-300S, 300 for the DASI-300, and 450 for the DASI-450 (Diablo
Hyterm).

– e Produce equally-spaced words in adjusted lines, using full terminal resolution.

– h Use output tabs during horizontal spacing to speed output and reduce output character count.
Tab settings are assumed to be every 8 nominal character widths.

T Tr ro of ff f o on nl ly y

– t Direct output to the standard output instead of the phototypesetter.

– f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

– w Wait until phototypesetter is available, if currently busy.

– b Report whether the phototypesetter is busy or available. No text processing is done.

– a Send a printable ASCII approximation of the results to the standard output.

– pN Print all characters in point size N while retaining all prescribed spacings and motions, to
reduce phototypesetter elasped time.

– g Prepare output for a GCOS phototypesetter and direct it to the standard output (see gcat(1)).

If the file /usr/adm/tracct is writable, troff keeps phototypesetter accounting records there. The integrity
of that file may be secured by making troff a ‘set user-id’ program.

7th Edition 1

TROFF (1) UNIX Programmer’s Manual TROFF (1)

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/ta* temporary file
/usr/lib/tmac/tmac.* standard macro files
/usr/lib/term/* terminal driving tables for nroff
/usr/lib/font/* font width tables for troff
/dev/cat phototypesetter
/usr/adm/tracct accounting statistics for /dev/cat

SEE ALSO
J. F. Ossanna, Nroff/Troff user’s manual
B. W. Kernighan, A TROFF Tutorial
eqn(1), tbl(1)
col(1), tk(1) (nroff only)
tc(1), gcat(1) (troff only)

7th Edition 2

TRUE (1) UNIX Programmer’s Manual TRUE (1)

NAME
true, false – provide truth values

SYNOPSIS
true

false

DESCRIPTION
True does nothing, successfully. False does nothing, unsuccessfully. They are typically used in input to
sh(1) such as:

while true
do

command
done

SEE ALSO
sh(1)

DIAGNOSTICS
True has exit status zero, false nonzero.

7th Edition 1

TSORT (1) UNIX Programmer’s Manual TSORT (1)

NAME
tsort – topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent with a partial ordering of
items mentioned in the input file . If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different items
indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(1)

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

7th Edition 1

TTY (1) UNIX Programmer’s Manual TTY (1)

NAME
tty – get terminal name

SYNOPSIS
tty

DESCRIPTION
Tty prints the pathname of the user’s terminal.

DIAGNOSTICS
‘not a tty’ if the standard input file is not a terminal.

7th Edition 1

UNIQ (1) UNIX Programmer’s Manual UNIQ (1)

NAME
uniq – report repeated lines in a file

SYNOPSIS
uniq [– udc [+n] [– n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeeding
copies of repeated lines are removed; the remainder is written on the output file. Note that repeated
lines must be adjacent in order to be found; see sort(1). If the – u flag is used, just the lines that are not
repeated in the original file are output. The – d option specifies that one copy of just the repeated lines
is to be written. The normal mode output is the union of the – u and – d mode outputs.

The – c option supersedes – u and – d and generates an output report in default style but with each line
preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

– n The first n fields together with any blanks before each are ignored. A field is defined as a
string of non-space, non-tab characters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(1), comm(1)

7th Edition 1

UNITS (1) UNIX Programmer’s Manual UNITS (1)

NAME
units – conversion program

SYNOPSIS
units

DESCRIPTION
Units converts quantities expressed in various standard scales to their equivalents in other scales. It
works interactively in this fashion:

You have: inch
You want: cm

* 2.54000e+00
/ 3.93701e– 01

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric multi-
plier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 15 pounds force/in2
You want: atm

* 1.02069e+00
/ 9.79730e– 01

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not Centigrade
to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recognized, together with a
generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
g acceleration of gravity
force same as g
mole Avogadro’s number
water pressure head per unit height of water
au astronomical unit

‘Pound’ is a unit of mass. Compound names are run together, e.g. ‘lightyear’. British units that differ
from their US counterparts are prefixed thus: ‘brgallon’. Currency is denoted ‘belgiumfranc’, ‘britain-
pound’, ...

For a complete list of units, ‘cat /usr/lib/units’.

FILES
/usr/lib/units

BUGS
Don’t base your financial plans on the currency conversions.

7th Edition 1

UUCP (1C) UNIX Programmer’s Manual UUCP (1C)

NAME
uucp, uulog – unix to unix copy

SYNOPSIS
uucp [option] ... source-file ... destination-file

uulog [option] ...

DESCRIPTION
Uucp copies files named by the source-file arguments to the destination-file argument. A file name may
be a path name on your machine, or may have the form

system-name!pathname

where ‘system-name’ is taken from a list of system names which uucp knows about. Shell metacharac-
ters ?*[] appearing in the pathname part will be expanded on the appropriate system.

Pathnames may be one of

(1) a full pathname;

(2) a pathname preceded by ˜user; where user is a userid on the specified system and is replaced
by that user’s login directory;

(3) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system the copy will fail. If the destination-file is
a directory, the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission and gives 0666 read and write permissions
(see chmod(2)).

The following options are interpreted by uucp .

– d Make all necessary directories for the file copy.

– c Use the source file when copying out rather than copying the file to the spool directory.

– m Send mail to the requester when the copy is complete.

Uulog maintains a summary log of uucp and uux(1) transactions in the file ‘/usr/spool/uucp/LOGFILE’
by gathering information from partial log files named ‘/usr/spool/uucp/LOG.*.?’. It removes the partial
log files.

The options cause uulog to print logging information:

– ssys Print information about work involving system sys.

– uuser Print information about work done for the specified user.

FILES
/usr/spool/uucp - spool directory
/usr/lib/uucp/* - other data and program files

SEE ALSO
uux(1), mail(1)
D. A. Nowitz, Uucp Implementation Description

WARNING
The domain of remotely accessible files can (and for obvious security reasons, usually should) be
severely restricted. You will very likely not be able to fetch files by pathname; ask a responsible person
on the remote system to send them to you. For the same reasons you will probably not be able to send
files to arbitrary pathnames.

7th Edition 1

UUCP (1C) UNIX Programmer’s Manual UUCP (1C)

BUGS
All files received by uucp will be owned by uucp.
The – m option will only work sending files or receiving a single file. (Receiving multiple files specified
by special shell characters ?*[] will not activate the – m option.)

7th Edition 2

UUX (1C) UNIX Programmer’s Manual UUX (1C)

NAME
uux – unix to unix command execution

SYNOPSIS
uux [–] command-string

DESCRIPTION
Uux will gather 0 or more files from various systems, execute a command on a specified system and
send standard output to a file on a specified system.

The command-string is made up of one or more arguments that look like a shell command line, except
that the command and file names may be prefixed by system-name!. A null system-name is interpreted
as the local system.

File names may be one of

(1) a full pathname;

(2) a pathname preceded by ˜xxx; where xxx is a userid on the specified system and is replaced
by that user’s login directory;

(3) anything else is prefixed by the current directory.

The ‘– ’ option will cause the standard input to the uux command to be the standard input to the
command-string.

For example, the command

uux "!diff usg!/usr/dan/f1 pwba!/a4/dan/f1 > !fi.diff"

will get the f1 files from the usg and pwba machines, execute a diff command and put the results in
f1.diff in the local directory.

Any special shell characters such as <>; should be quoted either by quoting the entire command-string,
or quoting the special characters as individual arguments.

FILES
/usr/uucp/spool - spool directory
/usr/uucp/* - other data and programs

SEE ALSO
uucp(1)
D. A. Nowitz, Uucp implementation description

WARNING
An installation may, and for security reasons generally will, limit the list of commands executable on
behalf of an incoming request from uux. Typically, a restricted site will permit little other than the
receipt of mail via uux.

BUGS
Only the first command of a shell pipeline may have a system-name!. All other commands are executed
on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do.
The shell tokens << and >> are not implemented.
There is no notification of denial of execution on the remote machine.

7th Edition 1

WAIT (1) UNIX Programmer’s Manual WAIT (1)

NAME
wait – await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with & have completed, and report on abnormal terminations.

Because the wait(2) system call must be executed in the parent process, the Shell itself executes wait,
without creating a new process.

SEE ALSO
sh(1)

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the Shell, and thus can’t be waited
for.

7th Edition 1

WALL (1M) UNIX Programmer’s Manual WALL (1M)

NAME
wall – write to all users

SYNOPSIS
/etc/wall

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this message, preceded by ‘Broadcast
Message ...’, to all logged in users.

The sender should be super-user to override any protections the users may have invoked.

FILES
/dev/tty?
/etc/utmp

SEE ALSO
mesg(1), write(1)

DIAGNOSTICS
‘Cannot send to ...’ when the open on a user’s tty file fails.

7th Edition 1

WC (1) UNIX Programmer’s Manual WC (1)

NAME
wc – word count

SYNOPSIS
wc [– lwc] [name ...]

DESCRIPTION
Wc counts lines, words and characters in the named files, or in the standard input if no name appears. A
word is a maximal string of characters delimited by spaces, tabs or newlines.

If the optional argument is present, just the specified counts (lines, words or characters) are selected by
the letters l, w, or c.

7th Edition 1

WHO (1) UNIX Programmer’s Manual WHO (1)

NAME
who – who is on the system

SYNOPSIS
who [who-file] [am I]

DESCRIPTION
Who, without an argument, lists the login name, terminal name, and login time for each current UNIX
user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is given, that
file is examined. Typically the given file will be /usr/adm/wtmp, which contains a record of all the
logins since it was created. Then who lists logins, logouts, and crashes since the creation of the wtmp
file. Each login is listed with user name, terminal name (with ‘/dev/’ suppressed), and date and time.
When an argument is given, logouts produce a similar line without a user name. Reboots produce a line
with ‘x’ in the place of the device name, and a fossil time indicative of when the system went down.

With two arguments, as in ‘who am I’ (and also ‘who are you’), who tells who you are logged in as.

FILES
/etc/utmp

SEE ALSO
getuid(2), utmp(5)

7th Edition 1

WRITE (1) UNIX Programmer’s Manual WRITE (1)

NAME
write – write to another user

SYNOPSIS
write user [ttyname]

DESCRIPTION
Write copies lines from your terminal to that of another user. When first called, it sends the message

Message from yourname yourttyname...

The recipient of the message should write back at this point. Communication continues until an end of
file is read from the terminal or an interrupt is sent. At that point write writes ‘EOT’ on the other termi-
nal and exits.

If you want to write to a user who is logged in more than once, the ttyname argument may be used to
indicate the appropriate terminal name.

Permission to write may be denied or granted by use of the mesg command. At the outset writing is
allowed. Certain commands, in particular nroff and pr(1) disallow messages in order to prevent messy
output.

If the character ‘!’ is found at the beginning of a line, write calls the shell to execute the rest of the line
as a command.

The following protocol is suggested for using write : when you first write to another user, wait for him
to write back before starting to send. Each party should end each message with a distinctive signal—(o)
for ‘over’ is conventional—that the other may reply. (oo) for ‘over and out’ is suggested when conver-
sation is about to be terminated.

FILES
/etc/utmp to find user
/bin/sh to execute ‘!’

SEE ALSO
mesg(1), who(1), mail(1)

7th Edition 1

XSEND, XGET, ENROLL (1) UNIX Programmer’s Manual XSEND, XGET, ENROLL (1)

NAME
xsend, xget, enroll – secret mail

SYNOPSIS
xsend person
xget
enroll

DESCRIPTION
These commands implement a secure communication channel; it is like mail(1), but no one can read the
messages except the intended recipient. The method embodies a public-key cryptosystem using knap-
sacks.

To receive messages, use enroll; it asks you for a password that you must subsequently quote in order
to receive secret mail.

To receive secret mail, use xget. It asks for your password, then gives you the messages.

To send secret mail, use xsend in the same manner as the ordinary mail command. (However, it will
accept only one target). A message announcing the receipt of secret mail is also sent by ordinary mail.

FILES
/usr/spool/secretmail/*.key: keys /usr/spool/secretmail/*.[0-9]: messages

SEE ALSO
mail (1)

BUGS
It should be integrated with ordinary mail. The announcement of secret mail makes traffic analysis pos-
sible.

7th Edition 1

YACC (1) UNIX Programmer’s Manual YACC (1)

NAME
yacc – yet another compiler-compiler

SYNOPSIS
yacc [– vd] grammar

DESCRIPTION
Yacc converts a context-free grammar into a set of tables for a simple automaton which executes an
LR(1) parsing algorithm. The grammar may be ambiguous; specified precedence rules are used to break
ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse. This pro-
gram must be loaded with the lexical analyzer program, yylex, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user; Lex(1) is useful for creating lexical
analyzers usable by yacc.

If the – v flag is given, the file y.output is prepared, which contains a description of the parsing tables
and a report on conflicts generated by ambiguities in the grammar.

If the – d flag is used, the file y.tab.h is generated with the define statements that associate the yacc-
assigned ‘token codes’ with the user-declared ‘token names’. This allows source files other than y.tab.c
to access the token codes.

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.acts temporary files
/usr/lib/yaccpar parser prototype for C programs
/lib/liby.a library with default ‘main’ and ‘yyerror’

SEE ALSO
lex(1)
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.
YACC – Yet Another Compiler Compiler by S. C. Johnson.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a more
detailed report is found in the y.output file. Similarly, if some rules are not reachable from the start
symbol, this is also reported.

BUGS
Because file names are fixed, at most one yacc process can be active in a given directory at a time.

7th Edition 1

INTRO (2) UNIX Programmer’s Manual INTRO (2)

NAME
intro, errno – introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
Section 2 of this manual lists all the entries into the system. Most of these calls have an error return.
An error condition is indicated by an otherwise impossible returned value. Almost always this is −1; the
individual sections specify the details. An error number is also made available in the external variable
errno . Errno is not cleared on successful calls, so it should be tested only after an error has occurred.

There is a table of messages associated with each error, and a routine for printing the message; See per-
ror(3). The possible error numbers are not recited with each writeup in section 2, since many errors are
possible for most of the calls. Here is a list of the error numbers, their names as defined in <errno.h>,
and the messages available using perror .

0 Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner or super-user. It is also returned for attempts by ordinary users to do things allowed
only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when
one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to signal and ptrace does not exist, or is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred
during a system call. If execution is resumed after processing the signal, it will appear as if the
interrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error occurred during a read or write . This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice that does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not dialled in or no disk pack is loaded on
a drive.

7 E2BIG Arg list too long
An argument list longer than 5120 bytes is presented to exec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with a valid magic number, see a.out(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file that
is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

7th Edition 1

INTRO (2) UNIX Programmer’s Manual INTRO (2)

11 EAGAIN No more processes
In a fork, the system’s process table is full or the user is not allowed to create any more
processes.

12 ENOMEM Not enough core
During an exec or break, a program asks for more core than the system is able to supply. This
is not a temporary condition; the maximum core size is a system parameter. The error may
also occur if the arrangement of text, data, and stack segments requires too many segmentation
registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a system
call.

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount .

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to dismount a
device on which there is an active file (open file, current directory, mounted-on file, active text
segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link .

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only
device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as
an argument to chdir .

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown signal in
signal, reading or writing a file for which seek has generated a negative pointer. Also set by
math functions, see intro(3).

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

25 ENOTTY Not a typewriter
The file mentioned in stty or gtty is not a terminal or one of the other devices to which these
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program that is currently open for writing (or reading!).
Also an attempt to open for writing a pure-procedure program that is being executed.

7th Edition 2

INTRO (2) UNIX Programmer’s Manual INTRO (2)

27 EFBIG File too large
The size of a file exceeded the maximum (about 109 bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An lseek was issued to a pipe. This error should also be issued for other non-seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 links to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition normally gen-
erates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within machine precision.

SEE ALSO
intro(3)

ASSEMBLER
as /usr/include/sys.s file ...

The PDP11 assembly language interface is given for each system call. The assembler symbols are
defined in ‘/usr/include/sys.s’.

Return values appear in registers r0 and r1; it is unwise to count on these registers being preserved when
no value is expected. An erroneous call is always indicated by turning on the c-bit of the condition
codes. The error number is returned in r0. The presence of an error is most easily tested by the instruc-
tions bes and bec (‘branch on error set (or clear)’). These are synonyms for the bcs and bcc instruc-
tions.

On the Interdata 8/32, the system call arguments correspond well to the arguments of the C routines.
The sequence is:

la %2,errno
l %0,&callno
svc 0,args

Thus register 2 points to a word into which the error number will be stored as needed; it is cleared if no
error occurs. Register 0 contains the system call number; the nomenclature is identical to that on the
PDP11. The argument of the svc is the address of the arguments, laid out in storage as in the C calling
sequence. The return value is in register 2 (possibly 3 also, as in pipe) and is – 1 in case of error. The
overflow bit in the program status word is also set when errors occur.

7th Edition 3

ACCESS (2) UNIX Programmer’s Manual ACCESS (2)

NAME
access – determine accessibility of file

SYNOPSIS
access(name, mode)
char *name;

DESCRIPTION
Access checks the given file name for accessibility according to mode, which is 4 (read), 2 (write) or 1
(execute) or a combination thereof. Specifying mode 0 tests whether the directories leading to the file
can be searched and the file exists.

An appropriate error indication is returned if name cannot be found or if any of the desired access
modes would not be granted. On disallowed accesses – 1 is returned and the error code is in errno . 0 is
returned from successful tests.

The user and group IDs with respect to which permission is checked are the real UID and GID of the
process, so this call is useful to set-UID programs.

Notice that it is only access bits that are checked. A directory may be announced as writable by access,
but an attempt to open it for writing will fail (although files may be created there); a file may look exe-
cutable, but exec will fail unless it is in proper format.

SEE ALSO
stat(2)

ASSEMBLER
(access = 33.)
sys access; name; mode

7th Edition 1

ACCT (2) UNIX Programmer’s Manual ACCT (2)

NAME
acct – turn accounting on or off

SYNOPSIS
acct(file)
char *file;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it terminates. This
call, with a null-terminated string naming an existing file as argument, turns on accounting; records for
each terminating process are appended to file . An argument of 0 causes accounting to be turned off.

The accounting file format is given in acct(5).

SEE ALSO
acct(5), sa(1)

DIAGNOSTICS
On error – 1 is returned. The file must exist and the call may be exercised only by the super-user. It is
erroneous to try to turn on accounting when it is already on.

BUGS
No accounting is produced for programs running when a crash occurs. In particular nonterminating pro-
grams are never accounted for.

ASSEMBLER
(acct = 51.)
sys acct; file

7th Edition 1

ALARM (2) UNIX Programmer’s Manual ALARM (2)

NAME
alarm – schedule signal after specified time

SYNOPSIS
alarm(seconds)
unsigned seconds;

DESCRIPTION
Alarm causes signal SIGALRM, see signal(2), to be sent to the invoking process in a number of seconds
given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any alarm
request is cancelled. Because the clock has a 1-second resolution, the signal may occur up to one
second early; because of scheduling delays, resumption of execution of when the signal is caught may
be delayed an arbitrary amount. The longest specifiable delay time is 65535 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
pause(2), signal(2), sleep(3)

ASSEMBLER
(alarm = 27.)
(seconds in r0)
sys alarm
(previous amount in r0)

7th Edition 1

BRK (2) UNIX Programmer’s Manual BRK (2)

NAME
brk, sbrk, break – change core allocation

SYNOPSIS
char *brk(addr)

char *sbrk(incr)

DESCRIPTION
Brk sets the system’s idea of the lowest location not used by the program (called the break) to addr
(rounded up to the next multiple of 64 bytes on the PDP11, 256 bytes on the Interdata 8/32, 512 bytes
on the VAX-11/780). Locations not less than addr and below the stack pointer are not in the address
space and will thus cause a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a pointer to the
start of the new area is returned.

When a program begins execution via exec the break is set at the highest location defined by the pro-
gram and data storage areas. Ordinarily, therefore, only programs with growing data areas need to use
break.

SEE ALSO
exec(2), malloc(3), end(3)

DIAGNOSTICS
Zero is returned if the break could be set; – 1 if the program requests more memory than the system
limit or if too many segmentation registers would be required to implement the break.

BUGS
Setting the break in the range 0177701 to 0177777 (on the PDP11) is the same as setting it to zero.

ASSEMBLER
(break = 17.)
sys break; addr

Break performs the function of brk . The name of the routine differs from that in C for historical rea-
sons.

7th Edition 1

CHDIR (2) UNIX Programmer’s Manual CHDIR (2)

NAME
chdir, chroot – change default directory

SYNOPSIS
chdir(dirname)
char *dirname;

chroot(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte. Chdir causes this
directory to become the current working directory, the starting point for path names not beginning with
‘/’.

Chroot sets the root directory, the starting point for path names beginning with ‘/’. The call is restricted
to the super-user.

SEE ALSO
cd(1)

DIAGNOSTICS
Zero is returned if the directory is changed; – 1 is returned if the given name is not that of a directory or
is not searchable.

ASSEMBLER
(chdir = 12.)
sys chdir; dirname

(chroot = 61.)
sys chroot; dirname

7th Edition 1

CHMOD (2) UNIX Programmer’s Manual CHMOD (2)

NAME
chmod – change mode of file

SYNOPSIS
chmod(name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed to by name has its mode changed to
mode. Modes are constructed by ORing together some combination of the following:

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (– n or – i option of ld(1)) then mode 1000 prevents the system
from abandoning the swap-space image of the program-text portion of the file when its last user ter-
minates. Thus when the next user of the file executes it, the text need not be read from the file system
but can simply be swapped in, saving time. Ability to set this bit is restricted to the super-user since
swap space is consumed by the images; it is only worth while for heavily used commands.

Only the owner of a file (or the super-user) may change the mode. Only the super-user can set the 1000
mode.

SEE ALSO
chmod(1)

DIAGNOSTIC
Zero is returned if the mode is changed; – 1 is returned if name cannot be found or if current user is nei-
ther the owner of the file nor the super-user.

ASSEMBLER
(chmod = 15.)
sys chmod; name; mode

7th Edition 1

CHOWN (2) UNIX Programmer’s Manual CHOWN (2)

NAME
chown – change owner and group of a file

SYNOPSIS
chown(name, owner, group)
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to by name has its owner and group
changed as specified. Only the super-user may execute this call, because if users were able to give files
away, they could defeat the (nonexistent) file-space accounting procedures.

SEE ALSO
chown(1), passwd(5)

DIAGNOSTICS
Zero is returned if the owner is changed; – 1 is returned on illegal owner changes.

ASSEMBLER
(chown = 16.)
sys chown; name; owner; group

7th Edition 1

CLOSE (2) UNIX Programmer’s Manual CLOSE (2)

NAME
close – close a file

SYNOPSIS
close(fildes)

DESCRIPTION
Given a file descriptor such as returned from an open, creat, dup or pipe(2) call, close closes the associ-
ated file. A close of all files is automatic on exit, but since there is a limit on the number of open files
per process, close is necessary for programs which deal with many files.

Files are closed upon termination of a process, and certain file descriptors may be closed by exec(2) (see
ioctl(2)).

SEE ALSO
creat(2), open(2), pipe(2), exec(2), ioctl(2)

DIAGNOSTICS
Zero is returned if a file is closed; – 1 is returned for an unknown file descriptor.

ASSEMBLER
(close = 6.)
(file descriptor in r0)
sys close

7th Edition 1

CREAT (2) UNIX Programmer’s Manual CREAT (2)

NAME
creat – create a new file

SYNOPSIS
creat(name, mode)
char *name;

DESCRIPTION
Creat creates a new file or prepares to rewrite an existing file called name, given as the address of a
null-terminated string. If the file did not exist, it is given mode mode, as modified by the process’s
mode mask (see umask(2)). Also see chmod(2) for the construction of the mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature is used by programs which deal
with temporary files of fixed names. The creation is done with a mode that forbids writing. Then if a
second instance of the program attempts a creat, an error is returned and the program knows that the
name is unusable for the moment.

SEE ALSO
write(2), close(2), chmod(2), umask (2)

DIAGNOSTICS
The value – 1 is returned if: a needed directory is not searchable; the file does not exist and the direc-
tory in which it is to be created is not writable; the file does exist and is unwritable; the file is a direc-
tory; there are already too many files open.

ASSEMBLER
(creat = 8.)
sys creat; name; mode
(file descriptor in r0)

7th Edition 1

DUP (2) UNIX Programmer’s Manual DUP (2)

NAME
dup, dup2 – duplicate an open file descriptor

SYNOPSIS
dup(fildes)
int fildes;

dup2(fildes, fildes2)
int fildes, fildes2;

DESCRIPTION
Given a file descriptor returned from an open, pipe, or creat call, dup allocates another file descriptor
synonymous with the original. The new file descriptor is returned.

In the second form of the call, fildes is a file descriptor referring to an open file, and fildes2 is a non-
negative integer less than the maximum value allowed for file descriptors (approximately 19). Dup2
causes fildes2 to refer to the same file as fildes. If fildes2 already referred to an open file, it is closed
first.

SEE ALSO
creat(2), open(2), close(2), pipe(2)

DIAGNOSTICS
The value – 1 is returned if: the given file descriptor is invalid; there are already too many open files.

ASSEMBLER
(dup = 41.)
(file descriptor in r0)
(new file descriptor in r1)
sys dup
(file descriptor in r0)

The dup2 entry is implemented by adding 0100 to fildes.

7th Edition 1

EXEC (2) UNIX Programmer’s Manual EXEC (2)

NAME
execl, execv, execle, execve, execlp, execvp, exec, exece, environ – execute a file

SYNOPSIS
execl(name, arg0, arg1, ..., argn, 0)
char *name, *arg0, *arg1, ..., *argn;

execv(name, argv)
char *name, *argv[];

execle(name, arg0, arg1, ..., argn, 0, envp)
char *name, *arg0, *arg1, ..., *argn, *envp[];

execve(name, argv, envp);
char *name, *argv[], *envp[];

extern char **environ;

DESCRIPTION
Exec in all its forms overlays the calling process with the named file, then transfers to the entry point of
the core image of the file. There can be no return from a successful exec; the calling core image is lost.

Files remain open across exec unless explicit arrangement has been made; see ioctl(2). Ignored signals
remain ignored across these calls, but signals that are caught (see signal(2)) are reset to their default
values.

Each user has a real user ID and group ID and an effective user ID and group ID. The real ID identifies
the person using the system; the effective ID determines his access privileges. Exec changes the effec-
tive user and group ID to the owner of the executed file if the file has the ‘set-user-ID’ or ‘set-group-ID’
modes. The real user ID is not affected.

The name argument is a pointer to the name of the file to be executed. The pointers arg[0], arg[1] ...
address null-terminated strings. Conventionally arg[0] is the name of the file.

From C, two interfaces are available. Execl is useful when a known file with known arguments is being
called; the arguments to execl are the character strings constituting the file and the arguments; the first
argument is conventionally the same as the file name (or its last component). A 0 argument must end
the argument list.

The execv version is useful when the number of arguments is unknown in advance; the arguments to
execv are the name of the file to be executed and a vector of strings containing the arguments. The last
argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments them-
selves. As indicated, argc is conventionally at least one and the first member of the array points to a
string containing the name of the file.

Argv is directly usable in another execv because argv[argc] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each string con-
sists of a name, an ‘‘=’’, and a null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(1) passes an environment entry for each global shell variable defined when the
program is called. See environ(5) for some conventionally used names. The C run-time start-off rou-
tine places a copy of envp in the global cell environ, which is used by execv and execl to pass the
environment to any subprograms executed by the current program. The exec routines use lower-level
routines as follows to pass an environment explicitly:

7th Edition 1

EXEC (2) UNIX Programmer’s Manual EXEC (2)

execle(file, arg0, arg1, . . . , argn, 0, environ);
execve(file, argv, environ);

Execlp and execvp are called with the same arguments as execl and execv, but duplicate the shell’s
actions in searching for an executable file in a list of directories. The directory list is obtained from the
environment.

FILES
/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
fork(2), environ(5)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not start with a valid magic number (see
a.out(5)), if maximum memory is exceeded, or if the arguments require too much space, a return consti-
tutes the diagnostic; the return value is – 1. Even for the super-user, at least one of the execute-
permission bits must be set for a file to be executed.

BUGS
If execvp is called to execute a file that turns out to be a shell command file, and if it is impossible to
execute the shell, the values of argv[0] and argv[– 1] will be modified before return.

ASSEMBLER
(exec = 11.)
sys exec; name; argv

(exece = 59.)
sys exece; name; argv; envp

Plain exec is obsoleted by exece, but remains for historical reasons.

When the called file starts execution on the PDP11, the stack pointer points to a word containing the
number of arguments. Just above this number is a list of pointers to the argument strings, followed by a
null pointer, followed by the pointers to the environment strings and then another null pointer. The
strings themselves follow; a 0 word is left at the very top of memory.

sp→ nargs
arg0
...
argn
0
env0
...
envm
0

arg0: <arg0\0>
...

env0: <env0\0>
0

On the Interdata 8/32, the stack begins at a conventional place (currently 0xD0000) and grows upwards.
After exec, the layout of data on the stack is as follows.

int 0
arg0: byte ...

...
argp0: int arg0

...

7th Edition 2

EXEC (2) UNIX Programmer’s Manual EXEC (2)

int 0
envp0: int env0

...
int 0

%2→ space 40
int nargs
int argp0
int envp0

%3→

This arrangement happens to conform well to C calling conventions.

7th Edition 3

EXIT (2) UNIX Programmer’s Manual EXIT (2)

NAME
exit – terminate process

SYNOPSIS
exit(status)
int status;

_exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a process. Exit closes all the process’s files and notifies the
parent process if it is executing a wait . The low-order 8 bits of status are available to the parent pro-
cess.

This call can never return.

The C function exit may cause cleanup actions before the final ‘sys exit’. The function _exit circum-
vents all cleanup.

SEE ALSO
wait(2)

ASSEMBLER
(exit = 1.)
(status in r0)
sys exit

7th Edition 1

FORK (2) UNIX Programmer’s Manual FORK (2)

NAME
fork – spawn new process

SYNOPSIS
fork()

DESCRIPTION
Fork is the only way new processes are created. The new process’s core image is a copy of that of the
caller of fork . The only distinction is the fact that the value returned in the old (parent) process contains
the process ID of the new (child) process, while the value returned in the child is 0. Process ID’s range
from 1 to 30,000. This process ID is used by wait(2).

Files open before the fork are shared, and have a common read-write pointer. In particular, this is the
way that standard input and output files are passed and also how pipes are set up.

SEE ALSO
wait(2), exec(2)

DIAGNOSTICS
Returns – 1 and fails to create a process if: there is inadequate swap space, the user is not super-user
and has too many processes, or the system’s process table is full. Only the super-user can take the last
process-table slot.

ASSEMBLER
(fork = 2.)
sys fork
(new process return)
(old process return, new process ID in r0)

The return locations in the old and new process differ by one word. The C-bit is set in the old process
if a new process could not be created.

7th Edition 1

GETPID (2) UNIX Programmer’s Manual GETPID (2)

NAME
getpid – get process identification

SYNOPSIS
getpid()

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is used to generate uniquely-named
temporary files.

SEE ALSO
mktemp(3)

ASSEMBLER
(getpid = 20.)
sys getpid
(pid in r0)

7th Edition 1

GETUID (2) UNIX Programmer’s Manual GETUID (2)

NAME
getuid, getgid, geteuid, getegid – get user and group identity

SYNOPSIS
getuid()

geteuid()

getgid()

getegid()

DESCRIPTION
Getuid returns the real user ID of the current process, geteuid the effective user ID. The real user ID
identifies the person who is logged in, in contradistinction to the effective user ID, which determines his
access permission at the moment. It is thus useful to programs which operate using the ‘set user ID’
mode, to find out who invoked them.

Getgid returns the real group ID, getegid the effective group ID.

SEE ALSO
setuid(2)

ASSEMBLER
(getuid = 24.)
sys getuid
(real user ID in r0, effective user ID in r1)

(getgid = 47.)
sys getgid
(real group ID in r0, effective group ID in r1)

7th Edition 1

INDIR (2) UNIX Programmer’s Manual INDIR (2)

NAME
indir – indirect system call

ASSEMBLER
(indir = 0.)
sys indir; call

The system call at the location call is executed. Execution resumes after the indir call.

The main purpose of indir is to allow a program to store arguments in system calls and execute them
out of line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location is not a system
call, indir returns error code EINVAL; see intro(2).

7th Edition 1

IOCTL (2) UNIX Programmer’s Manual IOCTL (2)

NAME
ioctl, stty, gtty – control device

SYNOPSIS
#include <sgtty.h>

ioctl(fildes, request, argp)
struct sgttyb *argp;

stty(fildes, argp)
struct sgttyb *argp;

gtty(fildes, argp)
struct sgttyb *argp;

DESCRIPTION
Ioctl performs a variety of functions on character special files (devices). The writeups of various devices
in section 4 discuss how ioctl applies to them.

For certain status setting and status inquiries about terminal devices, the functions stty and gtty are
equivalent to

ioctl(fildes, TIOCSETP, argp)
ioctl(fildes, TIOCGETP, argp)

respectively; see tty(4).

The following two calls, however, apply to any open file:

ioctl(fildes, FIOCLEX, NULL);
ioctl(fildes, FIONCLEX, NULL);

The first causes the file to be closed automatically during a successful exec operation; the second rev-
erses the effect of the first.

SEE ALSO
stty(1), tty(4), exec(2)

DIAGNOSTICS
Zero is returned if the call was successful; – 1 if the file descriptor does not refer to the kind of file for
which it was intended.

BUGS
Strictly speaking, since ioctl may be extended in different ways to devices with different properties, argp
should have an open-ended declaration like

union { struct sgttyb ...; ... } *argp;

The important thing is that the size is fixed by ‘struct sgttyb’.

ASSEMBLER
(ioctl = 54.)
sys ioctl; fildes; request; argp

(stty = 31.)
(file descriptor in r0)
stty; argp

(gtty = 32.)
(file descriptor in r0)
sys gtty; argp

7th Edition 1

KILL (2) UNIX Programmer’s Manual KILL (2)

NAME
kill – send signal to a process

SYNOPSIS
kill(pid, sig);

DESCRIPTION
Kill sends the signal sig to the process specified by the process number in r0. See signal(2) for a list of
signals.

The sending and receiving processes must have the same effective user ID, otherwise this call is res-
tricted to the super-user.

If the process number is 0, the signal is sent to all other processes in the sender’s process group; see
tty(4).

If the process number is – 1, and the user is the super-user, the signal is broadcast universally except to
processes 0 and 1, the scheduler and initialization processes, see init(8).

Processes may send signals to themselves.

SEE ALSO
signal(2), kill(1)

DIAGNOSTICS
Zero is returned if the process is killed; – 1 is returned if the process does not have the same effective
user ID and the user is not super-user, or if the process does not exist.

ASSEMBLER
(kill = 37.)
(process number in r0)
sys kill; sig

7th Edition 1

LINK (2) UNIX Programmer’s Manual LINK (2)

NAME
link – link to a file

SYNOPSIS
link(name1, name2)
char *name1, *name2;

DESCRIPTION
A link to name1 is created; the link has the name name2. Either name may be an arbitrary path name.

SEE ALSO
ln(1), unlink(2)

DIAGNOSTICS
Zero is returned when a link is made; – 1 is returned when name1 cannot be found; when name2 already
exists; when the directory of name2 cannot be written; when an attempt is made to link to a directory by
a user other than the super-user; when an attempt is made to link to a file on another file system; when a
file has too many links.

ASSEMBLER
(link = 9.)
sys link; name1; name2

7th Edition 1

LOCK (2) UNIX Programmer’s Manual LOCK (2)

NAME
lock – lock a process in primary memory

SYNOPSIS
lock(flag)

DESCRIPTION
If the flag argument is non-zero, the process executing this call will not be swapped except if it is
required to grow. If the argument is zero, the process is unlocked. This call may only be executed by
the super-user.

BUGS
Locked processes interfere with the compaction of primary memory and can cause deadlock. This sys-
tem call is not considered a permanent part of the system.

ASSEMBLER
(lock = 53.)
sys lock; flag

7th Edition local 1

LSEEK (2) UNIX Programmer’s Manual LSEEK (2)

NAME
lseek, tell – move read/write pointer

SYNOPSIS
long lseek(fildes, offset, whence)
long offset;

long tell(fildes)

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for the file
is set as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset .

If whence is 2, the pointer is set to the size of the file plus offset .

The returned value is the resulting pointer location.

The obsolete function tell(fildes) is identical to lseek(fildes, 0L, 1).

Seeking far beyond the end of a file, then writing, creates a gap or ‘hole’, which occupies no physical
space and reads as zeros.

SEE ALSO
open(2), creat(2), fseek(3)

DIAGNOSTICS
– 1 is returned for an undefined file descriptor, seek on a pipe, or seek to a position before the beginning
of file.

BUGS
Lseek is a no-op on character special files.

ASSEMBLER
(lseek = 19.)
(file descriptor in r0)
sys lseek; offset1; offset2; whence

Offset1 and offset2 are the high and low words of offset; r0 and r1 contain the pointer upon return.

7th Edition 1

MKNOD (2) UNIX Programmer’s Manual MKNOD (2)

NAME
mknod – make a directory or a special file

SYNOPSIS
mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to by name. The mode of
the new file (including directory and special file bits) is initialized from mode. (The protection part of
the mode is modified by the process’s mode mask; see umask(2)). The first block pointer of the i-node
is initialized from addr . For ordinary files and directories addr is normally zero. In the case of a spe-
cial file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO
mkdir(1), mknod(1), filsys(5)

DIAGNOSTICS
Zero is returned if the file has been made; – 1 if the file already exists or if the user is not the super-
user.

ASSEMBLER
(mknod = 14.)
sys mknod; name; mode; addr

7th Edition 1

MOUNT (2) UNIX Programmer’s Manual MOUNT (2)

NAME
mount, umount – mount or remove file system

SYNOPSIS
mount(special, name, rwflag)
char *special, *name;

umount(special)
char *special;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-structured
special file special; from now on, references to file name will refer to the root file on the newly mounted
file system. Special and name are pointers to null-terminated strings containing the appropriate path
names.

Name must exist already. Name must be a directory (unless the root of the mounted file system is not a
directory). Its old contents are inaccessible while the file system is mounted.

The rwflag argument determines whether the file system can be written on; if it is 0 writing is allowed,
if non-zero no writing is done. Physically write-protected and magnetic tape file systems must be
mounted read-only or errors will occur when access times are updated, whether or not any explicit write
is attempted.

Umount announces to the system that the special file is no longer to contain a removable file system.
The associated file reverts to its ordinary interpretation.

SEE ALSO
mount(1)

DIAGNOSTICS
Mount returns 0 if the action occurred; – 1 if special is inaccessible or not an appropriate file; if name
does not exist; if special is already mounted; if name is in use; or if there are already too many file sys-
tems mounted.

Umount returns 0 if the action occurred; – 1 if if the special file is inaccessible or does not have a
mounted file system, or if there are active files in the mounted file system.

ASSEMBLER
(mount = 21.)
sys mount; special; name; rwflag

(umount = 22.)
sys umount; special

7th Edition 1

MPX (2) UNIX Programmer’s Manual MPX (2)

NAME
mpx – create and manipulate multiplexed files

SYNOPSIS
mpx(name, access) char *name;

join(fd, xd)

chan(xd)

extract(i, xd)

attach(i, xd)

detach(i, xd)

connect(fd, cd, end)

npgrp(i, xd, pgrp)

ckill(i, xd, signal)

#include <sys/mx.h>
mpxcall(cmd, vec)
int *vec;

DESCRIPTION
mpxcall(cmd, vec) is the system call shared by the library routines described below. Cmd selects a
command using values defined in <sys/mx.h>. Vec is the address of a structure containing the argu-
ments for the command.

mpx(name, access)

Mpx creates and opens the file name with access permission access (see creat(2)) and returns a file
descriptor available for reading and writing. A – 1 is returned if the file cannot be created, if name
already exists, or if the file table or other operating system data structures are full. The file descriptor is
required for use with other routines.

If name designates a null string, a file descriptor is returned as described but no entry is created in the
file system.

Once created an mpx file may be opened (see open(2)) by any process. This provides a form of inter-
process communication whereby a process B can ‘call’ process A by opening an mpx file created by A.
To B, the file is ordinary with one exception: the connect primitive could be applied to it. Otherwise
the functions described below are used only in process A and descendants that inherit the open mpx file.

When a process opens an mpx file, the owner of the file receives a control message when the file is next
read. The method for ‘answering’ this kind of call involves using attach and detach as described in
more detail below.

Once B has opened A’s mpx file it is said to have a channel to A. A channel is a pair of data streams:
in this case, one from B to A and the other from A to B. Several processes may open the same mpx file
yielding multiple channels within the one mpx file. By accessing the appropriate channel, A can com-
municate with B and any others. When A reads (see read(2)) from the mpx file data written to A by
the other processes appears in A’s buffer using a record format described in mpxio(5). When A writes
(see write(2)) on its mpx file the data must be formatted in a similar way.

The following commands are used to manipulate mpx files and channels.

join– adds a new channel on an mpx file to an open file F. I/O on the new channel is I/O on
F.
chan– creates a new channel.
extract– file descriptor maintenance.
connect– similar to join except that the open file F is connected to an existing channel.

7th Edition 1

MPX (2) UNIX Programmer’s Manual MPX (2)

attach and detach– used with call protocol.
npgrp– manipulates process group numbers so that a channel can act as a control terminal (see
tty(4)).
ckill– send signal (see signal(2)) to process group through channel.

A maximum of 15 channels may be connected to an mpx file. They are numbered 0 through 14. Join
may be used to make one mpx file appear as a channel on another mpx file. A hierarchy or tree of mpx
files may be set up in this way. In this case one of the mpx files must be the root of a tree where the
other mpx files are interior nodes. The maximum depth of such a tree is 4.

An index is a 16-bit value that denotes a location in an mpx tree other than the root: the path through
mpx ‘nodes’ from the root to the location is expressed as a sequence of 4-bit nibbles. The branch taken
at the root is represented by the low-order 4-bits of an index. Each succeeding branch is specified by
the next higher-order nibble. If the length of a path to be expressed is less than 4, then the illegal chan-
nel number, 15, must be used to terminate the sequence. This is not strictly necessary for the simple
case of a tree consisting of only a root node: its channels can be expressed by the numbers 0 through
14. An index i and file descriptor xd for the root of an mpx tree are required as arguments to most of
the commands described below. Indices also serve as channel identifiers in the record formats given in
mpxio(5). Since -1 is not a valid index, it can be returned as a error indication by subroutines that nor-
mally return indices.

The operating system informs the process managing an mpx file of changes in the status of channels
attached to the file by generating messages that are read along with data from the channels. The form
and content of these messages is described in mpxio(5).

join(fd, xd) establishes a connection (channel) between an mpx file and another object. Fd is an open
file descriptor for a character device or an mpx file and xd is the file descriptor of an mpx file. Join
returns the index for the new channel if the operation succeeds and – 1 if it does not.

Following join, fd may still be used in any system call that would have been meaningful before the join
operation. Thus a process can read and write directly to fd as well as access it via xd. If the number of
channels required for a tree of mpx files exceeds the number of open files permitted a process by the
operating system, some of the file descriptors can be released using the standard close(2) call. Follow-
ing a close on an active file descriptor for a channel or internal mpx node, that object may still be
accessed through the root of the tree.

chan(xd) allocates a channel and connects one end of it to the mpx file represented by file descriptor xd.
Chan returns the index of the new channel or a – 1 indicating failure. The extract primitive can be used
to get a non-multiplexed file descriptor for the free end of a channel created by chan.

Both chan and join operate on the mpx file specified by xd . File descriptors for interior nodes of an
mpx tree must be preserved or reconstructed with extract for use with join or chan . For the remaining
commands described here, xd denotes the file descriptor for the root of an mpx tree.

Extract(i, xd) returns a file descriptor for the object with index i on the mpx tree with root file descrip-
tor xd. A – 1 is returned by extract if a file descriptor is not available or if the arguments do not refer to
an existing channel and mpx file.

attach(i, xd)
detach(i, xd). If a process A has created an mpx file represented by file descriptor xd, then a process B
can open (see open(2)) the mpx file. The purpose is to establish a channel between A and B through
the mpx file. Attach and Detach are used by A to respond to such opens.

An open request by B fails immediately if a new channel cannot be allocated on the mpx file, if the mpx
file does not exist, or if it does exist but there is no process (A) with a multiplexed file descriptor for the
mpx file (i.e. xd as returned by mpx(2)). Otherwise a channel with index number i is allocated. The
next time A reads on file descriptor xd , the WATCH control message (see mpxio(5)) will be delivered
on channel i. A responds to this message with attach or detach. The former causes the open to

7th Edition 2

MPX (2) UNIX Programmer’s Manual MPX (2)

complete and return a file descriptor to B. The latter deallocates channel i and causes the open to fail.

One mpx file may be placed in ‘listener’ mode. This is done by writing ioctl(xd, MXLSTN, 0) where xd
is an mpx file descriptor and MXLSTN is defined in /usr/include/sgtty.h . The semantics of listener
mode are that all file names discovered by open(2) to have the syntax system!pathname (see uucp(1))
are treated as opens on the mpx file. The operating system sends the listener process an OPEN message
(see mpxio(5)) which includes the file name being opened. Attach and detach then apply as described
above.

Detach has two other uses: it closes and releases the resources of any active channel it is applied to,
and should be used to respond to a CLOSE message (see mpxio(5)) on a channel so the channel may be
reused.

connect(fd, cd, end). Fd is a character file descriptor and cd is a file descriptor for a channel, such as
might be obtained via extract(chan(xd), xd) or by open(2) followed by attach. Connect splices the two
streams together. If end is negative, only the output of fd is spliced to the input of cd. If end is positive,
the output of cd is spliced to the input of fd. If end is zero, then both splices are made.

npgrp(i, xd, pgrp). If xd is negative npgrp applies to the process executing it, otherwise i and xd are
interpreted as a channel index and mpx file descriptor and npgrp is applied to the process on the non-
multiplexed end of the channel. If pgrp is zero, the process group number of the indicated process is set
to the process number of that process, otherwise the value of pgrp is used as the process group number.

Npgrp normally returns the new process group number. If i and xd specify a nonexistant channel,
npgrp returns – 1.

ckill(i, xd, signal) sends the specified signal (see signal(2)) through the channel specified by i and xd. If
the channel is connected to anything other than a process, ckill is a null operation. If there is a process
at the other end of the channel, the process group will be interrupted (see signal(2), kill(2)). Ckill nor-
mally returns signal. If ch and xd specify a nonexistent channel, ckill returns – 1.

FILES
/usr/include/sys/mx.h
/usr/include/sgtty.h

SEE ALSO
mpxio(5)

BUGS
Mpx files are an experimental part of the operating system more subject to change and prone to bugs
than other parts. Maintenance programs, e.g. icheck(1), diagnose mpx files as an illegal mode. Chan-
nels may only be connected to objects in the operating system that are accessible through the line discip-
line mechanism. Higher performace line disciplines are needed. The maximum tree depth restriction is
not really checked. A non-destructive disconnect primitive (inverse of connect) is not provided. A
non-blocking flow control strategy based on messages defined in mpxio(5) should not be attempted by
novices; the enabling ioctl command should be protected. The join operation could be subsumed by
connect. A mechanism is needed for moving a channel from one location in an mpx tree to another.

7th Edition 3

MPXCALL (2) UNIX Programmer’s Manual MPXCALL (2)

NAME
mpxcall – multiplexor and channel interface

SYNOPSIS
mpxcall(arg1, arg2, arg3, cmd)

DESCRIPTION
Mpxcall supplies a primitive interface to the kernel used by the routines listed below. Each routine that
uses mpxcall passes an integer cmd as the fourth argument. These are defined in /usr/include/mx.h.
Mpxcall always returns an integer which is to be interpreted in accordance with the definition of cmd.

SEE ALSO
group(2), join(2), extract(2), connect(2), chan(2), attach(2), detach(2)

DIAGNOSTICS
The value – 1 is returned on error.

7th Edition 1

NICE (2) UNIX Programmer’s Manual NICE (2)

NAME
nice – set program priority

SYNOPSIS
nice(incr)

DESCRIPTION
The scheduling priority of the process is augmented by incr . Positive priorities get less service than
normal. Priority 10 is recommended to users who wish to execute long-running programs without flak
from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited to the range
– 20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork(2). For a privileged process to return to
normal priority from an unknown state, nice should be called successively with arguments – 40 (goes to
priority – 20 because of truncation), 20 (to get to 0), then 0 (to maintain compatibility with previous ver-
sions of this call).

SEE ALSO
nice(1)

ASSEMBLER
(nice = 34.)
(priority in r0)
sys nice

7th Edition 1

OPEN (2) UNIX Programmer’s Manual OPEN (2)

NAME
open – open for reading or writing

SYNOPSIS
open(name, mode)
char *name;

DESCRIPTION
Open opens the file name for reading (if mode is 0), writing (if mode is 1) or for both reading and writ-
ing (if mode is 2). Name is the address of a string of ASCII characters representing a path name, ter-
minated by a null character.

The file is positioned at the beginning (byte 0). The returned file descriptor must be used for subsequent
calls for other input-output functions on the file.

SEE ALSO
creat(2), read(2), write(2), dup(2), close(2)

DIAGNOSTICS
The value – 1 is returned if the file does not exist, if one of the necessary directories does not exist or is
unreadable, if the file is not readable (resp. writable), or if too many files are open.

ASSEMBLER
(open = 5.)
sys open; name; mode
(file descriptor in r0)

7th Edition 1

PAUSE (2) UNIX Programmer’s Manual PAUSE (2)

NAME
pause – stop until signal

SYNOPSIS
pause()

DESCRIPTION
Pause never returns normally. It is used to give up control while waiting for a signal from kill(2) or
alarm(2).

SEE ALSO
kill(1), kill(2), alarm(2), signal(2), setjmp(3)

ASSEMBLER
(pause = 29.)
sys pause

7th Edition 1

PHYS (2) UNIX Programmer’s Manual PHYS (2)

NAME
phys – allow a process to access physical addresses

SYNOPSIS
phys(segreg, size, physadr)

DESCRIPTION
The argument segreg specifies a process virtual (data-space) address range of 8K bytes starting at virtual
address segreg×8K bytes. This address range is mapped into physical address physadr×64 bytes. Only
the first size×64 bytes of this mapping is addressable. If size is zero, any previous mapping of this vir-
tual address range is nullified. For example, the call

phys(6, 1, 0177775);

will map virtual addresses 0160000-0160077 into physical addresses 017777500-017777577. In particu-
lar, virtual address 0160060 is the PDP-11 console located at physical address 017777560.

This call may only be executed by the super-user.

SEE ALSO
PDP-11 segmentation hardware

DIAGNOSTICS
The function value zero is returned if the physical mapping is in effect. The value – 1 is returned if not
super-user, if segreg is not in the range 0-7, if size is not in the range 0-127, or if the specified segreg is
already used for other than a previous call to phys .

BUGS
This system call is obviously very machine dependent and very dangerous. This system call is not con-
sidered a permanent part of the system.

ASSEMBLER
(phys = 52.)
sys phys; segreg; size; physadr

7th Edition PDP11 1

PIPE (2) UNIX Programmer’s Manual PIPE (2)

NAME
pipe – create an interprocess channel

SYNOPSIS
pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can be used
in read and write operations. When the pipe is written using the descriptor fildes[1] up to 4096 bytes of
data are buffered before the writing process is suspended. A read using the descriptor fildes[0] will pick
up the data. Writes with a count of 4096 bytes or less are atomic; no other process can intersperse data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by subse-
quent fork calls) will pass data through the pipe with read and write calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed)
returns an end-of-file.

SEE ALSO
sh(1), read(2), write(2), fork(2)

DIAGNOSTICS
The function value zero is returned if the pipe was created; – 1 if too many files are already open. A
signal is generated if a write on a pipe with only one end is attempted.

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will occur.

ASSEMBLER
(pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in r1)

7th Edition 1

PKON (2) UNIX Programmer’s Manual PKON (2)

NAME
pkon, pkoff – establish packet protocol

SYNOPSIS
pkon(fd, size)

pkoff(fd)

DESCRIPTION
Pkon establishes packet protocol (see pk(4)) on the open character special file whose file descriptor is fd.
Size is a desired packet size, a power of 2 in the range 32≤size≤4096. The size is negotiated with a
remote packet driver, and a possibly smaller actual packet size is returned.

An asynchronous line used for packet communication should be in raw mode; see tty(4).

Pkoff turns off the packet driver on the channel whose file descriptor is fd.

SEE ALSO
pk(4), pkopen(3), tty(4), signal(2)

DIAGNOSTICS
Pkon returns – 1 if fd does not describe an open file, or if packet communication cannot be established.

Pkoff returns – 1 for an unknown file descriptor.

Writing on a packet driver link that has been shut down by close or pkoff at the other end raises signal
SIGPIPE in the writing process.

7th Edition 1

PROFIL (2) UNIX Programmer’s Manual PROFIL (2)

NAME
profil – execution time profile

SYNOPSIS
profil(buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz . After this call, the user’s pro-
gram counter (pc) is examined each clock tick (60th second); offset is subtracted from it, and the result
multiplied by scale. If the resulting number corresponds to a word inside buff, that word is incre-
mented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: 0177777(8)
gives a 1-1 mapping of pc’s to words in buff; 077777(8) maps each pair of instruction words together.
02(8) maps all instructions onto the beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of 0.
Profiling is turned off when an exec is executed, but remains on in child and parent both after a fork .
Profiling may be turned off if an update in buff would cause a memory fault.

SEE ALSO
monitor(3), prof(1)

ASSEMBLER
(profil = 44.)
sys profil; buff; bufsiz; offset; scale

7th Edition 1

PTRACE (2) UNIX Programmer’s Manual PTRACE (2)

NAME
ptrace – process trace

SYNOPSIS
#include <signal.h>

ptrace(request, pid, addr, data)
int *addr;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process, and
examine and change its core image. Its primary use is for the implementation of breakpoint debugging.
There are four arguments whose interpretation depends on a request argument. Generally, pid is the
process ID of the traced process, which must be a child (no more distant descendant) of the tracing pro-
cess. A process being traced behaves normally until it encounters some signal whether internally gen-
erated like ‘illegal instruction’ or externally generated like ‘interrupt.’ See signal(2) for the list. Then
the traced process enters a stopped state and its parent is notified via wait(2). When the child is in the
stopped state, its core image can be examined and modified using ptrace. If desired, another ptrace
request can then cause the child either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be traced by
its parent. All the other arguments are ignored. Peculiar results will ensue if the parent does not
expect to trace the child.

1,2 The word in the child process’s address space at addr is returned. If I and D space are separated,
request 1 indicates I space, 2 D space. Addr must be even. The child must be stopped. The input
data is ignored.

3 The word of the system’s per-process data area corresponding to addr is returned. Addr must be
even and less than 512. This space contains the registers and other information about the process;
its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process’s address space corresponding to addr, which
must be even. No useful value is returned. If I and D space are separated, request 4 indicates I
space, 5 D space. Attempts to write in pure procedure fail if another process is executing the same
file.

6 The process’s system data is written, as it is read with request 3. Only a few locations can be writ-
ten in this way: the general registers, the floating point status and registers, and certain bits of the
processor status word.

7 The data argument is taken as a signal number and the child’s execution continues at location addr
as if it had incurred that signal. Normally the signal number will be either 0 to indicate that the
signal that caused the stop should be ignored, or that value fetched out of the process’s image indi-
cating which signal caused the stop. If addr is (int *)1 then execution continues from where it
stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution of at least one
instruction, execution stops again. The signal number from the stop is SIGTRAP. (On the PDP-11
the T-bit is used and just one instruction is executed; on the Interdata the stop does not take place
until a store instruction is executed.) This is part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has stopped.
The wait call is used to determine when a process stops; in such a case the ‘termination’ status returned
by wait has the value 0177 to indicate stoppage rather than genuine termination.

7th Edition 1

PTRACE (2) UNIX Programmer’s Manual PTRACE (2)

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent exec(2) calls. If a traced
process calls exec, it will stop before executing the first instruction of the new image showing signal
SIGTRAP.

On the Interdata 8/32, ‘word’ means a 32-bit word and ‘even’ means 0 mod 4.

SEE ALSO
wait(2), signal(2), adb(1)

DIAGNOSTICS
The value – 1 is returned if request is invalid, pid is not a traceable process, addr is out of bounds, or
data specifies an illegal signal number.

BUGS
On the Interdata 8/32, ‘as soon as possible’ (request 7) means ‘as soon as a store instruction has been
executed.’

The request 0 call should be able to specify signals which are to be treated normally and not cause a
stop. In this way, for example, programs with simulated floating point (which use ‘illegal instruction’
signals at a very high rate) could be efficiently debugged.
The error indication, – 1, is a legitimate function value; errno, see intro(2), can be used to disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely con-
trolled environment could be provided.

ASSEMBLER
(ptrace = 26.)
(data in r0)
sys ptrace; pid; addr; request
(value in r0)

7th Edition 2

READ (2) UNIX Programmer’s Manual READ (2)

NAME
read – read from file

SYNOPSIS
read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, dup, or pipe call. Buffer is the loca-
tion of nbytes contiguous bytes into which the input will be placed. It is not guaranteed that all nbytes
bytes will be read; for example if the file refers to a typewriter at most one line will be returned. In any
event the number of characters read is returned.

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open(2), creat(2), dup(2), pipe(2)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise unsuc-
cessful the return value is – 1. Many conditions can generate an error: physical I/O errors, bad buffer
address, preposterous nbytes, file descriptor not that of an input file.

ASSEMBLER
(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes
(byte count in r0)

7th Edition 1

SETUID (2) UNIX Programmer’s Manual SETUID (2)

NAME
setuid, setgid – set user and group ID

SYNOPSIS
setuid(uid)

setgid(gid)

DESCRIPTION
The user ID (group ID) of the current process is set to the argument. Both the effective and the real ID
are set. These calls are only permitted to the super-user or if the argument is the real ID.

SEE ALSO
getuid(2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; – 1 is returned otherwise.

ASSEMBLER
(setuid = 23.)
(user ID in r0)
sys setuid

(setgid = 46.)
(group ID in r0)
sys setgid

7th Edition 1

SIGNAL (2) UNIX Programmer’s Manual SIGNAL (2)

NAME
signal – catch or ignore signals

SYNOPSIS
#include <signal.h>

(*signal(sig, func))()
(*func)();

DESCRIPTION
A signal is generated by some abnormal event, initiated either by user at a typewriter (quit, interrupt), by
a program error (bus error, etc.), or by request of another program (kill). Normally all signals cause ter-
mination of the receiving process, but a signal call allows them either to be ignored or to cause an inter-
rupt to a specified location. Here is the list of signals with names as in the include file.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction (not reset when caught)
SIGTRAP 5* trace trap (not reset when caught)
SIGIOT 6* IOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe or link with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal

16 unassigned

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is termination, sometimes
with a core image. If func is SIG_IGN the signal is ignored. Otherwise when the signal occurs func
will be called with the signal number as argument. A return from the function will continue the process
at the point it was interrupted. Except as indicated, a signal is reset to SIG_DFL after being caught.
Thus if it is desired to catch every such signal, the catching routine must issue another signal call.

When a caught signal occurs during certain system calls, the call terminates prematurely. In particular
this can occur during a read or write(2) on a slow device (like a typewriter; but not a file); and during
pause or wait(2). When such a signal occurs, the saved user status is arranged in such a way that when
return from the signal-catching takes place, it will appear that the system call returned an error status.
The user’s program may then, if it wishes, re-execute the call.

The value of signal is the previous (or initial) value of func for the particular signal.

After a fork(2) the child inherits all signals. Exec(2) resets all caught signals to default action.

SEE ALSO
kill(1), kill(2), ptrace(2), setjmp(3)

DIAGNOSTICS
The value (int)– 1 is returned if the given signal is out of range.

BUGS
If a repeated signal arrives before the last one can be reset, there is no chance to catch it.

7th Edition 1

SIGNAL (2) UNIX Programmer’s Manual SIGNAL (2)

The type specification of the routine and its func argument are problematical.

ASSEMBLER
(signal = 48.)
sys signal; sig; label
(old label in r0)

If label is 0, default action is reinstated. If label is odd, the signal is ignored. Any other even label
specifies an address in the process where an interrupt is simulated. An RTI or RTT instruction will
return from the interrupt.

7th Edition 2

STAT (2) UNIX Programmer’s Manual STAT (2)

NAME
stat, fstat – get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

stat(name, buf)
char *name;
struct stat *buf;

fstat(fildes, buf)
struct stat *buf;

DESCRIPTION
Stat obtains detailed information about a named file. Fstat obtains the same information about an open
file known by the file descriptor from a successful open, creat, dup or pipe(2) call.

Name points to a null-terminated string naming a file; buf is the address of a buffer into which informa-
tion is placed concerning the file. It is unnecessary to have any permissions at all with respect to the
file, but all directories leading to the file must be searchable. The layout of the structure pointed to by
buf as defined in <stat.h> is given below. St_mode is encoded according to the ‘#define’ statements.

struct stat
{

dev_t st_dev;
ino_t st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid;
short st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

};

#define S_IFMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFIFO 0010000 /* fifo */
#define S_ISUID 04000 /* set user id on execution */
#define S_ISGID 02000 /* set group id on execution */
#define S_ISVTX 01000 /* save swapped text even after use */
#define S_IREAD 00400 /* read permission, owner */
#define S_IWRITE 00200 /* write permission, owner */
#define S_IEXEC 00100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)). The defined
types, ino_t, off_t, time_t, name various width integer values; dev_t encodes major and minor device
numbers; their exact definitions are in the include file <sys/types.h> (see types(5).

7th Edition 1

STAT (2) UNIX Programmer’s Manual STAT (2)

When fildes is associated with a pipe, fstat reports an ordinary file with restricted permissions. The size
is the number of bytes queued in the pipe.

st_atime is the file was last read. For reasons of efficiency, it is not set when a directory is searched,
although this would be more logical. st_mtime is the time the file was last written or created. It is not
set by changes of owner, group, link count, or mode. st_ctime is set both both by writing and changing
the i-node.

SEE ALSO
ls(1), filsys(5)

DIAGNOSTICS
Zero is returned if a status is available; – 1 if the file cannot be found.

ASSEMBLER
(stat = 18.)
sys stat; name; buf

(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

7th Edition 2

STIME (2) UNIX Programmer’s Manual STIME (2)

NAME
stime – set time

SYNOPSIS
stime(tp)
long *tp;

DESCRIPTION
Stime sets the system’s idea of the time and date. Time, pointed to by tp, is measured in seconds from
0000 GMT Jan 1, 1970. Only the super-user may use this call.

SEE ALSO
date(1), time(2), ctime(3)

DIAGNOSTICS
Zero is returned if the time was set; – 1 if user is not the super-user.

ASSEMBLER
(stime = 25.)
(time in r0-r1)
sys stime

7th Edition 1

SYNC (2) UNIX Programmer’s Manual SYNC (2)

NAME
sync – update super-block

SYNOPSIS
sync()

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out. This includes
modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example icheck, df, etc. It is mandatory
before a boot.

SEE ALSO
sync(1), update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

ASSEMBLER
(sync = 36.)
sys sync

7th Edition 1

TIME (2) UNIX Programmer’s Manual TIME (2)

NAME
time, ftime – get date and time

SYNOPSIS
long time(0)

long time(tloc)
long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)
struct timeb *tp;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

The ftime entry fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:

/*
* Structure returned by ftime system call
*/

struct timeb
{

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

};

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-precise
interval, the local timezone (measured in minutes of time westward from Greenwich), and a flag that, if
nonzero, indicates that Daylight Saving time applies locally during the appropriate part of the year.

SEE ALSO
date(1), stime(2), ctime(3)

ASSEMBLER
(ftime = 35.)
sys ftime; bufptr

(time = 13.; obsolete call)
sys time
(time since 1970 in r0-r1)

7th Edition 1

TIMES (2) UNIX Programmer’s Manual TIMES (2)

NAME
times – get process times

SYNOPSIS
times(buffer)
struct tbuffer *buffer;

DESCRIPTION
Times returns time-accounting information for the current process and for the terminated child processes
of the current process. All times are in 1/HZ seconds, where HZ=60 in North America.

After the call, the buffer will appear as follows:

struct tbuffer {
long proc_user_time;
long proc_system_time;
long child_user_time;
long child_system_time;

};

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time(1), time(2)

ASSEMBLER
(times = 43.)
sys times; buffer

7th Edition 1

UMASK (2) UNIX Programmer’s Manual UMASK (2)

NAME
umask – set file creation mode mask

SYNOPSIS
umask(complmode)

DESCRIPTION
Umask sets a mask used whenever a file is created by creat(2) or mknod(2): the actual mode (see
chmod(2)) of the newly-created file is the logical and of the given mode and the complement of the
argument. Only the low-order 9 bits of the mask (the protection bits) participate. In other words, the
mask shows the bits to be turned off when files are created.

The previous value of the mask is returned by the call. The value is initially 0 (no restrictions). The
mask is inherited by child processes.

SEE ALSO
creat(2), mknod(2), chmod(2)

ASSEMBLER
(umask = 60.)
sys umask; complmode

7th Edition 1

UNLINK (2) UNIX Programmer’s Manual UNLINK (2)

NAME
unlink – remove directory entry

SYNOPSIS
unlink(name)
char *name;

DESCRIPTION
Name points to a null-terminated string. Unlink removes the entry for the file pointed to by name from
its directory. If this entry was the last link to the file, the contents of the file are freed and the file is
destroyed. If, however, the file was open in any process, the actual destruction is delayed until it is
closed, even though the directory entry has disappeared.

SEE ALSO
rm(1), link(2)

DIAGNOSTICS
Zero is normally returned; – 1 indicates that the file does not exist, that its directory cannot be written,
or that the file contains pure procedure text that is currently in use. Write permission is not required on
the file itself. It is also illegal to unlink a directory (except for the super-user).

ASSEMBLER
(unlink = 10.)
sys unlink; name

7th Edition 1

UTIME (2) UNIX Programmer’s Manual UTIME (2)

NAME
utime – set file times

SYNOPSIS
#include <sys/types.h>
utime(file, timep)
char *file;
time_t timep[2];

DESCRIPTION
The utime call uses the ‘accessed’ and ‘updated’ times in that order from the timep vector to set the
corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The ‘inode-changed’ time of the file is set to
the current time.

SEE ALSO
stat (2)

ASSEMBLER
(utime = 30.)
sys utime; file; timep

7th Edition 1

WAIT (2) UNIX Programmer’s Manual WAIT (2)

NAME
wait – wait for process to terminate

SYNOPSIS
wait(status)
int *status;

wait(0)

DESCRIPTION
Wait causes its caller to delay until a signal is received or one of its child processes terminates. If any
child has died since the last wait, return is immediate; if there are no children, return is immediate with
the error bit set (resp. with a value of – 1 returned). The normal return yields the process ID of the ter-
minated child. In the case of several children several wait calls are needed to learn of all the deaths.

If (int)status is nonzero, the high byte of the word pointed to receives the low byte of the argument of
exit when the child terminated. The low byte receives the termination status of the process. See sig-
nal(2) for a list of termination statuses (signals); 0 status indicates normal termination. A special status
(0177) is returned for a stopped process which has not terminated and can be restarted. See ptrace(2).
If the 0200 bit of the termination status is set, a core image of the process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (process ID =
1) inherits the children.

SEE ALSO
exit(2), fork(2), signal(2)

DIAGNOSTICS
Returns – 1 if there are no children not previously waited for.

ASSEMBLER
(wait = 7.)
sys wait
(process ID in r0)
(status in r1)

The high byte of the status is the low byte of r0 in the child at termination.

7th Edition 1

WRITE (2) UNIX Programmer’s Manual WRITE (2)

NAME
write – write on a file

SYNOPSIS
write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, dup, or pipe(2) call.

Buffer is the address of nbytes contiguous bytes which are written on the output file. The number of
characters actually written is returned. It should be regarded as an error if this is not the same as
requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary in the file are more
efficient than any others.

SEE ALSO
creat(2), open(2), pipe(2)

DIAGNOSTICS
Returns – 1 on error: bad descriptor, buffer address, or count; physical I/O errors.

ASSEMBLER
(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes
(byte count in r0)

7th Edition 1

INTRO (3) UNIX Programmer’s Manual INTRO (3)

NAME
intro – introduction to library functions

SYNOPSIS
#include <stdio.h>

#include <math.h>

DESCRIPTION
This section describes functions that may be found in various libraries, other than those functions that
directly invoke UNIX system primitives, which are described in section 2. Functions are divided into
various libraries distinguished by the section number at the top of the page:

(3) These functions, together with those of section 2 and those marked (3S), constitute library libc,
which is automatically loaded by the C compiler cc(1) and the Fortran compiler f77(1). The link
editor ld(1) searches this library under the ‘– lc’ option. Declarations for some of these functions
may be obtained from include files indicated on the appropriate pages.

(3M) These functions constitute the math library, libm. They are automatically loaded as needed by the
Fortran compiler f77(1). The link editor searches this library under the ‘– lm’ option. Declara-
tions for these functions may be obtained from the include file <math.h>.

(3S) These functions constitute the ‘standard I/O package’, see stdio(3). These functions are in the
library libc already mentioned. Declarations for these functions may be obtained from the
include file <stdio.h>.

(3X) Various specialized libraries have not been given distinctive captions. The files in which these
libraries are found are named on the appropriate pages.

FILES
/lib/libc.a
/lib/libm.a, /usr/lib/libm.a (one or the other)

SEE ALSO
stdio(3), nm(1), ld(1), cc(1), f77(1), intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is undefined for
the given arguments or when the value is not representable. In these cases the external variable errno
(see intro(2)) is set to the value EDOM or ERANGE. The values of EDOM and ERANGE are defined
in the include file <math.h>.

ASSEMBLER
In assembly language these functions may be accessed by simulating the C calling sequence. For exam-
ple, ecvt(3) might be called this way:

setd
mov $sign,– (sp)
mov $decpt,– (sp)
mov ndigit,– (sp)
movf value,– (sp)
jsr pc,_ecvt
add $14.,sp

7th Edition 1

ABORT (3) UNIX Programmer’s Manual ABORT (3)

NAME
abort – generate IOT fault

DESCRIPTION
Abort executes the PDP11 IOT instruction. This causes a signal that normally terminates the process
with a core dump, which may be used for debugging.

SEE ALSO
adb(1), signal(2), exit(2)

DIAGNOSTICS
Usually ‘IOT trap – core dumped’ from the shell.

7th Edition 1

ABS (3) UNIX Programmer’s Manual ABS (3)

NAME
abs – integer absolute value

SYNOPSIS
abs(i)

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3) for fabs

BUGS
You get what the hardware gives on the largest negative integer.

7th Edition 1

ASSERT (3X) UNIX Programmer’s Manual ASSERT (3X)

NAME
assert – program verification

SYNOPSIS
#include <assert.h>

assert (expression)

DESCRIPTION
Assert is a macro that indicates expression is expected to be true at this point in the program. It causes
an exit(2) with a diagnostic comment on the standard output when expression is false (0). Compiling
with the cc(1) option – DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
‘Assertion failed: file f line n.’ F is the source file and n the source line number of the assert statement.

7th Edition 1

ATOF (3) UNIX Programmer’s Manual ATOF (3)

NAME
atof, atoi, atol – convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer representation
respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional ‘e’ or ‘E’ followed by an optionally signed
integer.

Atoi and atol recognize an optional string of tabs and spaces, then an optional sign, then a string of
digits.

SEE ALSO
scanf(3)

BUGS
There are no provisions for overflow.

7th Edition 1

CRYPT (3) UNIX Programmer’s Manual CRYPT (3)

NAME
crypt, setkey, encrypt – DES encryption

SYNOPSIS
char *crypt(key, salt)
char *key, *salt;

setkey(key)
char *key;

encrypt(block, edflag)
char *block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard, with varia-
tions intended (among other things) to frustrate use of hardware implementations of the DES for key
search.

The first argument to crypt is a user’s typed password. The second is a 2-character string chosen from
the set [a-zA-Z0-9./]. The salt string is used to perturb the DES algorithm in one of 4096 different
ways, after which the password is used as the key to encrypt repeatedly a constant string. The returned
value points to the encrypted password, in the same alphabet as the salt. The first two characters are the
salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument of setkey
is a character array of length 64 containing only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored, leading to a 56-bit key
which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing 0’s and 1’s. The
argument array is modified in place to a similar array representing the bits of the argument after having
been subjected to the DES algorithm using the key set by setkey. If edflag is 0, the argument is
encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(1), passwd(5), login(1), getpass(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 1

CTIME (3) UNIX Programmer’s Manual CTIME (3)

NAME
ctime, localtime, gmtime, asctime, timezone – convert date and time to ASCII

SYNOPSIS
char *ctime(clock)
long *clock;

#include <time.h>

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

char *timezone(zone, dst)

DESCRIPTION
Ctime converts a time pointed to by clock such as returned by time(2) into ASCII and returns a pointer
to a 26-character string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime corrects
for the time zone and possible daylight savings time; gmtime converts directly to GMT, which is the
time UNIX uses. Asctime converts a broken-down time to ASCII and returns a pointer to a 26-character
string.

The structure declaration from the include file is:

struct tm { /* see ctime(3) */
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-11), day of
week (Sunday = 0), year – 1900, day of year (0-365), and a flag that is nonzero if daylight saving time
is in effect.

When local time is called for, the program consults the system to determine the time zone and whether
the standard U.S.A. daylight saving time adjustment is appropriate. The program knows about the pecu-
liarities of this conversion in 1974 and 1975; if necessary, a table for these years can be extended.

Timezone returns the name of the time zone associated with its first argument, which is measured in
minutes westward from Greenwich. If the second argument is 0, the standard name is used, otherwise
the Daylight Saving version. If the required name does not appear in a table built into the routine, the
difference from GMT is produced; e.g. in Afghanistan timezone(– (60*4+30), 0) is appropriate because
it is 4:30 ahead of GMT and the string GMT+4:30 is produced.

SEE ALSO
time(2)

7th Edition 1

CTIME (3) UNIX Programmer’s Manual CTIME (3)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 2

CTYPE (3) UNIX Programmer’s Manual CTYPE (3)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii – character
classification

SYNOPSIS
#include <ctype.h>

isalpha(c)

. . .

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning
nonzero for true, zero for false. Isascii is defined on all integer values; the rest are defined only where
isascii is true and on the single non-ASCII value EOF (see stdio(3)).

isalpha c is a letter

isupper c is an upper case letter

islower c is a lower case letter

isdigit c is a digit

isalnum c is an alphanumeric character

isspace c is a space, tab, carriage return, newline, or formfeed

ispunct c is a punctuation character (neither control nor alphanumeric)

isprint c is a printing character, code 040(8) (space) through 0176 (tilde)

iscntrl c is a delete character (0177) or ordinary control character (less than 040).

isascii c is an ASCII character, code less than 0200

SEE ALSO
ascii(7)

7th Edition 1

DBM (3X) UNIX Programmer’s Manual DBM (3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey – data base subroutines

SYNOPSIS
typedef struct { char *dptr; int dsize; } datum;

dbminit(file)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey();

datum nextkey(key);
datum key;

DESCRIPTION
These functions maintain key/content pairs in a data base. The functions will handle very large (a bil-
lion blocks) databases and will access a keyed item in one or two filesystem accesses. The functions are
obtained with the loader option – ldbm.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed
to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored
in two files. One file is a directory containing a bit map and has ‘.dir’ as its suffix. The second file
contains all data and has ‘.pag’ as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the files
file .dir and file .pag must exist. (An empty database is created by creating zero-length ‘.dir’ and ‘.pag’
files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a key by store . A
key (and its associated contents) is deleted by delete. A linear pass through all keys in a database may
be made, in an (apparently) random order, by use of firstkey and nextkey. Firstkey will return the first
key in the database. With any key nextkey will return the next key in the database. This code will
traverse the data base:

for(key=firstkey(); key.dptr!=NULL; key=nextkey(key))

DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero return indicates ok. Rou-
tines that return a datum indicate errors with a null (0) dptr.

BUGS
The ‘.pag’ file will contain holes so that its apparent size is about four times its actual content. Older
UNIX systems may create real file blocks for these holes when touched. These files cannot be copied
by normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 512 bytes).
Moreover all key/content pairs that hash together must fit on a single block. Store will return an error in
the event that a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it available for reuse.

7th Edition 1

DBM (3X) UNIX Programmer’s Manual DBM (3X)

The order of keys presented by firstkey and nextkey depends on a hashing function, not on anything
interesting.

7th Edition 2

ECVT (3) UNIX Programmer’s Manual ECVT (3)

NAME
ecvt, fcvt, gcvt – output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer thereto.
The position of the decimal point relative to the beginning of the string is stored indirectly through decpt
(negative means to the left of the returned digits). If the sign of the result is negative, the word pointed
to by sign is non-zero, otherwise it is zero. The low-order digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded for Fortran F-format output of the
number of digits specified by ndigits .

Gcvt converts the value to a null-terminated ASCII string in buf and returns a pointer to buf. It attempts
to produce ndigit significant digits in Fortran F format if possible, otherwise E format, ready for print-
ing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 1

END (3) UNIX Programmer’s Manual END (3)

NAME
end, etext, edata – last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of etext is
the first address above the program text, edata above the initialized data region, and end above the unin-
itialized data region.

When execution begins, the program break coincides with end, but many functions reset the program
break, among them the routines of brk(2), malloc(3), standard input/output (stdio(3)), the profile (– p)
option of cc(1), etc. The current value of the program break is reliably returned by ‘sbrk(0)’, see brk(2).

SEE ALSO
brk(2), malloc(3)

7th Edition 1

EXP (3M) UNIX Programmer’s Manual EXP (3M)

NAME
exp, log, log10, pow, sqrt – exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double pow(x, y)
double x, y;

double sqrt(x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; log10 returns the base 10 logarithm.

Pow returns xy.

Sqrt returns the square root of x.

SEE ALSO
hypot(3), sinh(3), intro(2)

DIAGNOSTICS
Exp and pow return a huge value when the correct value would overflow; errno is set to ERANGE.
Pow returns 0 and sets errno to EDOM when the second argument is negative and non-integral and
when both arguments are 0.

Log returns 0 when x is zero or negative; errno is set to EDOM.

Sqrt returns 0 when x is negative; errno is set to EDOM.

7th Edition 1

FCLOSE (3S) UNIX Programmer’s Manual FCLOSE (3S)

NAME
fclose, fflush – close or flush a stream

SYNOPSIS
#include <stdio.h>

fclose(stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers allo-
cated by the standard input/output system are freed.

Fclose is performed automatically upon calling exit(2).

Fflush causes any buffered data for the named output stream to be written to that file. The stream
remains open.

SEE ALSO
close(2), fopen(3), setbuf(3)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data cannot be
transferred to that file.

7th Edition 1

FERROR (3S) UNIX Programmer’s Manual FERROR (3S)

NAME
feof, ferror, clearerr, fileno – stream status inquiries

SYNOPSIS
#include <stdio.h>

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr(stream)
FILE *stream

fileno(stream)
FILE *stream;

DESCRIPTION
Feof returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream, otherwise
zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open(2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3), open(2)

7th Edition 1

FLOOR (3M) UNIX Programmer’s Manual FLOOR (3M)

NAME
fabs, floor, ceil – absolute value, floor, ceiling functions

SYNOPSIS
#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double(x);

DESCRIPTION
Fabs returns the absolute value  x  .

Floor returns the largest integer not greater than x .

Ceil returns the smallest integer not less than x .

SEE ALSO
abs(3)

7th Edition 1

FOPEN (3S) UNIX Programmer’s Manual FOPEN (3S)

NAME
fopen, freopen, fdopen – open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer to be
used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append: open for writing at end of file, or create for writing

Freopen substitutes the named file in place of the open stream . It returns the original value of stream .
The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdin, stdout, stderr, to specified
files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2). The type
of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS
Fopen and freopen return the pointer NULL if filename cannot be accessed.

BUGS
Fdopen is not portable to systems other than UNIX.

7th Edition 1

FREAD (3S) UNIX Programmer’s Manual FREAD (3S)

NAME
fread, fwrite – buffered binary input/output

SYNOPSIS
#include <stdio.h>

fread(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

fwrite(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from the named input
stream . It returns the number of items actually read.

Fwrite appends at most nitems of data of the type of *ptr beginning at ptr to the named output stream .
It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3), getc(3), putc(3), gets(3), puts(3), printf(3), scanf(3)

DIAGNOSTICS
Fread and fwrite return 0 upon end of file or error.

7th Edition 1

FREXP (3) UNIX Programmer’s Manual FREXP (3)

NAME
frexp, ldexp, modf – split into mantissa and exponent

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1 and stores
an integer n such that value = x*2**n indirectly through eptr.

Ldexp returns the quantity value*2**exp.

Modf returns the positive fractional part of value and stores the integer part indirectly through iptr.

7th Edition 1

FSEEK (3S) UNIX Programmer’s Manual FSEEK (3S)

NAME
fseek, ftell, rewind – reposition a stream

SYNOPSIS
#include <stdio.h>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE *stream;

rewind(stream)

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream . The new position is at the
signed distance offset bytes from the beginning, the current position, or the end of the file, according as
ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(3).

Ftell returns the current value of the offset relative to the beginning of the file associated with the named
stream . It is measured in bytes on UNIX; on some other systems it is a magic cookie, and the only
foolproof way to obtain an offset for fseek.

Rewind(stream) is equivalent to fseek(stream, 0L, 0).

SEE ALSO
lseek(2), fopen(3)

DIAGNOSTICS
Fseek returns – 1 for improper seeks.

7th Edition 1

GETC (3S) UNIX Programmer’s Manual GETC (3S)

NAME
getc, getchar, fgetc, getw – get character or word from stream

SYNOPSIS
#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the named input stream .

Getchar() is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to save object text.

Getw returns the next word from the named input stream . It returns the constant EOF upon end of file
or error, but since that is a good integer value, feof and ferror(3) should be used to check the success of
getw . Getw assumes no special alignment in the file.

SEE ALSO
fopen(3), putc(3), gets(3), scanf(3), fread(3), ungetc(3)

DIAGNOSTICS
These functions return the integer constant EOF at end of file or upon read error.

A stop with message, ‘Reading bad file’, means an attempt has been made to read from a stream that
has not been opened for reading by fopen .

BUGS
The end-of-file return from getchar is incompatible with that in UNIX editions 1-6.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly. In
particular, ‘getc(*f++);’ doesn’t work sensibly.

7th Edition 1

GETENV (3) UNIX Programmer’s Manual GETENV (3)

NAME
getenv – value for environment name

SYNOPSIS
char *getenv(name)
char *name;

DESCRIPTION
Getenv searches the environment list (see environ(5)) for a string of the form name=value and returns
value if such a string is present, otherwise 0 (NULL).

SEE ALSO
environ(5), exec(2)

7th Edition 1

GETGRENT (3) UNIX Programmer’s Manual GETGRENT (3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent – get group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrent();

struct group *getgrgid(gid) int gid;

struct group *getgrnam(name) char *name;

int setgrent();

int endgrent();

DESCRIPTION
Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure contain-
ing the broken-out fields of a line in the group file.

struct group { /* see getgrent(3) */
char *gr_name;
char *gr_passwd;
int gr_gid;
char **gr_mem;

};

The members of this structure are:

gr_name
The name of the group.

gr_passwd
The encrypted password of the group.

gr_gid The numerical group-ID.
gr_mem

Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid or name is
found (or until EOF is encountered). Each routine picks up where the others leave off so successive
calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent may
be called to close the group file when processing is complete.

FILES
/etc/group

SEE ALSO
getlogin(3), getpwent(3), group(5)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 1

GETLOGIN (3) UNIX Programmer’s Manual GETLOGIN (3)

NAME
getlogin – get login name

SYNOPSIS
char *getlogin();

DESCRIPTION
Getlogin returns a pointer to the login name as found in /etc/utmp . It may be used in conjunction with
getpwnam to locate the correct password file entry when the same userid is shared by several login
names.

If getlogin is called within a process that is not attached to a typewriter, it returns NULL. The correct
procedure for determining the login name is to first call getlogin and if it fails, to call getpwuid .

FILES
/etc/utmp

SEE ALSO
getpwent(3), getgrent(3), utmp(5)

DIAGNOSTICS
Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 1

GETPASS (3) UNIX Programmer’s Manual GETPASS (3)

NAME
getpass – read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION
Getpass reads a password from the file /dev/tty , or if that cannot be opened, from the standard input,
after prompting with the null-terminated string prompt and disabling echoing. A pointer is returned to a
null-terminated string of at most 8 characters.

FILES
/dev/tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 1

GETPW (3) UNIX Programmer’s Manual GETPW (3)

NAME
getpw – get name from UID

SYNOPSIS
getpw(uid, buf)
char *buf;

DESCRIPTION
Getpw searches the password file for the (numerical) uid , and fills in buf with the corresponding line; it
returns non-zero if uid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
getpwent(3), passwd(5)

DIAGNOSTICS
Non-zero return on error.

7th Edition deprecated 1

GETPWENT (3) UNIX Programmer’s Manual GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent – get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent();

struct passwd *getpwuid(uid) int uid;

struct passwd *getpwnam(name) char *name;

int setpwent();

int endpwent();

DESCRIPTION
Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure con-
taining the broken-out fields of a line in the password file.

struct passwd { /* see getpwent(3) */
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
int pw_quota;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

};

The fields pw_quota and pw_comment are unused; the others have meanings described in passwd(5).

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file; endpwent closes
it.

Getpwuid and getpwnam search from the beginning until a matching uid or name is found (or until EOF
is encountered).

FILES
/etc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 1

GETS (3S) UNIX Programmer’s Manual GETS (3S)

NAME
gets, fgets – get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION
Gets reads a string into s from the standard input stream stdin. The string is terminated by a newline
character, which is replaced in s by a null character. Gets returns its argument.

Fgets reads n– 1 characters, or up to a newline character, whichever comes first, from the stream into
the string s . The last character read into s is followed by a null character. Fgets returns its first argu-
ment.

SEE ALSO
puts(3), getc(3), scanf(3), fread(3), ferror(3)

DIAGNOSTICS
Gets and fgets return the constant pointer NULL upon end of file or error.

BUGS
Gets deletes a newline, fgets keeps it, all in the name of backward compatibility.

7th Edition 1

HYPOT (3M) UNIX Programmer’s Manual HYPOT (3M)

NAME
hypot, cabs – euclidean distance

SYNOPSIS
#include <math.h>

double hypot(x, y)
double x, y;

double cabs(z)
struct { double x, y;} z;

DESCRIPTION
Hypot and cabs return

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

SEE ALSO
exp(3) for sqrt

7th Edition 1

J0 (3M) UNIX Programmer’s Manual J0 (3M)

NAME
j0, j1, jn, y0, y1, yn – bessel functions

SYNOPSIS
#include <math.h>

double j0(x)
double x;

double j1(x)
double x;

double jn(n, x);
double x;

double y0(x)
double x;

double y1(x)
double x;

double yn(n, x)
double x;

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real arguments and integer
orders.

DIAGNOSTICS
Negative arguments cause y0, y1, and yn to return a huge negative value and set errno to EDOM.

7th Edition 1

L3TOL (3) UNIX Programmer’s Manual L3TOL (3)

NAME
l3tol, ltol3 – convert between 3-byte integers and long integers

SYNOPSIS
l3tol(lp, cp, n)
long *lp;
char *cp;

ltol3(cp, lp, n)
char *cp;
long *lp;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string pointed to by cp into a list of
long integers pointed to by lp .

Ltol3 performs the reverse conversion from long integers (lp) to three-byte integers (cp).

These functions are useful for file-system maintenance; disk addresses are three bytes long.

SEE ALSO
filsys(5)

7th Edition 1

MALLOC (3) UNIX Programmer’s Manual MALLOC (3)

NAME
malloc, free, realloc, calloc – main memory allocator

SYNOPSIS
char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation package. Malloc returns a pointer
to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space is made available
for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some random
number is handed to free.

Malloc allocates the first big enough contiguous reach of free space found in a circular search from the
last block allocated or freed, coalescing adjacent free blocks as it searches. It calls sbrk (see break(2))
to get more memory from the system when there is no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the (possi-
bly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call of malloc, realloc or calloc; thus
sequences of free, malloc and realloc can exploit the search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer coer-
cion) for storage of any type of object.

DIAGNOSTICS
Malloc, realloc and calloc return a null pointer (0) if there is no available memory or if the arena has
been detectably corrupted by storing outside the bounds of a block. Malloc may be recompiled to check
the arena very stringently on every transaction; see the source code.

BUGS
When realloc returns 0, the block pointed to by ptr may be destroyed.

7th Edition 1

MKTEMP (3) UNIX Programmer’s Manual MKTEMP (3)

NAME
mktemp – make a unique file name

SYNOPSIS
char *mktemp(template)
char *template;

DESCRIPTION
Mktemp replaces template by a unique file name, and returns the address of the template. The template
should look like a file name with six trailing X’s, which will be replaced with the current process id and
a unique letter.

SEE ALSO
getpid(2)

7th Edition 1

MONITOR (3) UNIX Programmer’s Manual MONITOR (3)

NAME
monitor – prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
short buffer[];

DESCRIPTION
An executable program created by ‘cc – p’ automatically includes calls for monitor with default parame-
ters; monitor needn’t be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two functions; buffer is the
address of a (user supplied) array of bufsize short integers. Monitor arranges to record a histogram of
periodically sampled values of the program counter, and of counts of calls of certain functions, in the
buffer. The lowest address sampled is that of lowpc and the highest is just below highpc . At most
nfunc call counts can be kept; only calls of functions compiled with the profiling option – p of cc(1) are
recorded. For the results to be significant, especially where there are small, heavily used routines, it is
suggested that the buffer be no more than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext();
...
monitor((int)2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use

monitor(0);

then prof(1) can be used to examine the results.

FILES
mon.out

SEE ALSO
prof(1), profil(2), cc(1)

7th Edition 1

MP (3X) UNIX Programmer’s Manual MP (3X)

NAME
itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow – multiple precision integer arithmetic

SYNOPSIS
typedef struct { int len; short *val; } mint;

madd(a, b, c)
msub(a, b, c)
mult(a, b, c)
mdiv(a, b, q, r)
min(a)
mout(a)
pow(a, b, m, c)
gcd(a, b, c)
rpow(a, b, c)
msqrt(a, b, r)
mint *a, *b, *c, *m, *q, *r;

sdiv(a, n, q, r)
mint *a, *q;
short *r;

mint *itom(n)

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are stored using the
defined type mint. Pointers to a mint should be initialized using the function itom , which sets the initial
value to n . After that space is managed automatically by the routines.

madd , msub , mult , assign to their third arguments the sum, difference, and product, respectively, of their
first two arguments. mdiv assigns the quotient and remainder, respectively, to its third and fourth argu-
ments. sdiv is like mdiv except that the divisor is an ordinary integer. msqrt produces the square root
and remainder of its first argument. rpow calculates a raised to the power b , while pow calculates this
reduced modulo m . min andmout do decimal input and output.

The functions are obtained with the loader option -lmp .

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core images.

7th Edition 1

NLIST (3) UNIX Programmer’s Manual NLIST (3)

NAME
nlist – get entries from name list

SYNOPSIS
#include <a.out.h>
nlist(filename, nl)
char *filename;
struct nlist nl[];

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of values.
The name list consists of an array of structures containing names, types and values. The list is ter-
minated with a null name. Each name is looked up in the name list of the file. If the name is found,
the type and value of the name are inserted in the next two fields. If the name is not found, both entries
are set to 0. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /unix. In this way pro-
grams can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

7th Edition 1

PERROR (3) UNIX Programmer’s Manual PERROR (3)

NAME
perror, sys_errlist, sys_nerr – system error messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error encountered
during a call to the system from a C program. First the argument string s is printed, then a colon, then
the message and a new-line. Most usefully, the argument string is the name of the program which
incurred the error. The error number is taken from the external variable errno (see intro(2)), which is
set when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided; errno
can be used as an index in this table to get the message string without the newline. Sys_nerr is the
number of messages provided for in the table; it should be checked because new error codes may be
added to the system before they are added to the table.

SEE ALSO
intro(2)

7th Edition 1

PKOPEN (3) UNIX Programmer’s Manual PKOPEN (3)

NAME
pkopen, pkclose, pkread, pkwrite, pkfail – packet driver simulator

SYNOPSIS
char *pkopen(fd)

pkclose(ptr)
char *ptr;

pkread(ptr, buffer, count)
char *ptr, *buffer;

pkwrite(ptr, buffer, count)
char *ptr, *buffer;

pkfail()

DESCRIPTION
These routines are a user-level implementation of the full-duplex end-to-end communication protocol
described in pk(4). If fd is a file descriptor open for reading and writing, pkopen carries out the initial
synchronization and returns an identifying pointer. The pointer is used as the first parameter to pkread,
pkwrite, and pkclose.

Pkread, pkwrite and pkclose behave analogously to read, write and close(2). However, a write of zero
bytes is meaningful and will produce a corresponding read of zero bytes.

SEE ALSO
pk(4), pkon(2)

DIAGNOSTICS
Pkfail is called upon persistent breakdown of communication. Pkfail must be supplied by the user.

Pkopen returns a null (0) pointer if packet protocol can not be established.

Pkread returns – 1 on end of file, 0 in correspondence with a 0-length write.

BUGS
This simulation of pk(4) leaves something to be desired in needing special read and write routines, and
in not being inheritable across calls of exec(2). Its prime use is on systems that lack pk.
These functions use alarm(2); simultaneous use of alarm for other puposes may cause trouble.

7th Edition deprecated 1

PLOT (3X) UNIX Programmer’s Manual PLOT (3X)

NAME
plot: openpl et al. – graphics interface

SYNOPSIS
openpl()

erase()

label(s) char s[];

line(x1, y1, x2, y2)

circle(x, y, r)

arc(x, y, x0, y0, x1, y1)

move(x, y)

cont(x, y)

point(x, y)

linemod(s) char s[];

space(x0, y0, x1, y1)

closepl()

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See plot(5) for a
description of their effect. Openpl must be used before any of the others to open the device for writing.
Closepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the following
ld(1) options:

– lplot device-independent graphics stream on standard output for plot(1) filters
– l300 GSI 300 terminal
– l300s GSI 300S terminal
– l450 DASI 450 terminal
– l4014 Tektronix 4014 terminal

SEE ALSO
plot(5), plot(1), graph(1)

7th Edition 1

POPEN (3S) UNIX Programmer’s Manual POPEN (3S)

NAME
popen, pclose – initiate I/O to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing respectively a shell command
line and an I/O mode, either "r" for reading or "w" for writing. It creates a pipe between the calling
process and the command to be executed. The value returned is a stream pointer that can be used (as
appropriate) to write to the standard input of the command or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated process to ter-
minate and returns the exit status of the command.

Because open files are shared, a type "r" command may be used as an input filter, and a type "w" as an
output filter.

SEE ALSO
pipe(2), fopen(3), fclose(3), system(3), wait(2)

DIAGNOSTICS
Popen returns a null pointer if files or processes cannot be created, or the Shell cannot be accessed.

Pclose returns – 1 if stream is not associated with a ‘popened’ command.

BUGS
Buffered reading before opening an input filter may leave the standard input of that filter mispositioned.
Similar problems with an output filter may be forestalled by careful buffer flushing, e.g. with fflush, see
fclose(3).

7th Edition 1

PRINTF (3S) UNIX Programmer’s Manual PRINTF (3S)

NAME
printf, fprintf, sprintf – formatted output conversion

SYNOPSIS
#include <stdio.h>

printf(format [, arg] ...)
char *format;

fprintf(stream, format [, arg] ...)
FILE *stream;
char *format;

sprintf(s, format [, arg] ...)
char *s, format;

DESCRIPTION
Printf places output on the standard output stream stdout . Fprintf places output on the named output
stream . Sprintf places ‘output’ in the string s, followed by the character ‘\0’.

Each of these functions converts, formats, and prints its arguments after the first under control of the
first argument. The first argument is a character string which contains two types of objects: plain char-
acters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive arg printf .

Each conversion specification is introduced by the character %. Following the %, there may be

– an optional minus sign ‘– ’ which specifies left adjustment of the converted value in the indi-
cated field;

– an optional digit string specifying a field width; if the converted value has fewer characters than
the field width it will be blank-padded on the left (or right, if the left-adjustment indicator has
been given) to make up the field width; if the field width begins with a zero, zero-padding will
be done instead of blank-padding;

– an optional period ‘.’ which serves to separate the field width from the next digit string;

– an optional digit string specifying a precision which specifies the number of digits to appear
after the decimal point, for e- and f-conversion, or the maximum number of characters to be
printed from a string;

– the character l specifying that a following d, o, x, or u corresponds to a long integer arg. (A
capitalized conversion code accomplishes the same thing.)

– a character which indicates the type of conversion to be applied.

A field width or precision may be ‘*’ instead of a digit string. In this case an integer arg supplies the
field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f The float or double arg is converted to decimal notation in the style ‘[–]ddd.ddd’ where the
number of d’s after the decimal point is equal to the precision specification for the argument. If
the precision is missing, 6 digits are given; if the precision is explicitly 0, no digits and no
decimal point are printed.

e The float or double arg is converted in the style ‘[–]d.ddde±dd’ where there is one digit before
the decimal point and the number after is equal to the precision specification for the argument;
when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, whichever gives full preci-
sion in minimum space.

7th Edition 1

PRINTF (3S) UNIX Programmer’s Manual PRINTF (3S)

c The character arg is printed. Null characters are ignored.

s Arg is taken to be a string (character pointer) and characters from the string are printed until a
null character or until the number of characters indicated by the precision specification is
reached; however if the precision is 0 or missing all characters up to a null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be in the range 0
to 65535).

% Print a ‘%’; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes place only
if the specified field width exceeds the actual width. Characters generated by printf are printed by
putc(3).

Examples
To print a date and time in the form ‘Sunday, July 3, 10:02’, where weekday and month are pointers to
null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print π to 5 decimals:

printf("pi = %.5f", 4*atan(1.0));

SEE ALSO
putc(3), scanf(3), ecvt(3)

BUGS
Very wide fields (>128 characters) fail.

7th Edition 2

PUTC (3S) UNIX Programmer’s Manual PUTC (3S)

NAME
putc, putchar, fputc, putw – put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc(c, stream)
char c;
FILE *stream;

putchar(c)

fputc(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION
Putc appends the character c to the named output stream . It returns the character written.

Putchar(c) is defined as putc(c, stdout).

Fputc behaves like putc, but is a genuine function rather than a macro. It may be used to save on object
text.

Putw appends word (i.e. int) w to the output stream . It returns the word written. Putw neither assumes
nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the output does not refer to a terminal;
this default may be changed by setbuf(3). The standard stream stderr is by default unbuffered uncondi-
tionally, but use of freopen (see fopen(3)) will cause it to become buffered; setbuf , again, will set the
state to whatever is desired. When an output stream is unbuffered information appears on the destina-
tion file or terminal as soon as written; when it is buffered many characters are saved up and written as
a block. Fflush (see fclose(3)) may be used to force the block out early.

SEE ALSO
fopen(3), fclose(3), getc(3), puts(3), printf(3), fread(3)

DIAGNOSTICS
These functions return the constant EOF upon error. Since this is a good integer, ferror(3) should be
used to detect putw errors.

BUGS
Because it is implemented as a macro, putc treats a stream argument with side effects improperly. In
particular ‘putc(c, *f++);’ doesn’t work sensibly.

7th Edition 1

PUTS (3S) UNIX Programmer’s Manual PUTS (3S)

NAME
puts, fputs – put a string on a stream

SYNOPSIS
#include <stdio.h>

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION
Puts copies the null-terminated string s to the standard output stream stdout and appends a newline char-
acter.

Fputs copies the null-terminated string s to the named output stream .

Neither routine copies the terminal null character.

SEE ALSO
fopen(3), gets(3), putc(3), printf(3), ferror(3)
fread(3) for fwrite

BUGS
Puts appends a newline, fputs does not, all in the name of backward compatibility.

7th Edition 1

QSORT (3) UNIX Programmer’s Manual QSORT (3)

NAME
qsort – quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the base of
the data; the second is the number of elements; the third is the width of an element in bytes; the last is
the name of the comparison routine to be called with two arguments which are pointers to the elements
being compared. The routine must return an integer less than, equal to, or greater than 0 according as
the first argument is to be considered less than, equal to, or greater than the second.

SEE ALSO
sort(1)

7th Edition 1

RAND (3) UNIX Programmer’s Manual RAND (3)

NAME
rand, srand – random number generator

SYNOPSIS
srand(seed)
int seed;

rand()

DESCRIPTION
Rand uses a multiplicative congruential random number generator with period 232 to return successive
pseudo-random numbers in the range from 0 to 215– 1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random starting
point by calling srand with whatever you like as argument.

7th Edition 1

SCANF (3S) UNIX Programmer’s Manual SCANF (3S)

NAME
scanf, fscanf, sscanf – formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . . .)
char *format;

fscanf(stream, format [, pointer] . . .)
FILE *stream;
char *format;

sscanf(s, format [, pointer] . . .)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin . Fscanf reads from the named input stream . Sscanf
reads from the character string s . Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects as arguments a control string format, described
below, and a set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppressing char-
acter *, an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in the vari-
able pointed to by the corresponding argument, unless assignment suppression was indicated by *. An
input field is defined as a string of non-space characters; it extends to the next inappropriate character or
until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding pointer argu-
ment must usually be of a restricted type. The following conversion characters are legal:

% a single ‘%’ is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer pointer.

s a character string is expected; the corresponding argument should be a character pointer pointing to
an array of characters large enough to accept the string and a terminating ‘\0’, which will be added.
The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a character pointer. The normal skip
over space characters is suppressed in this case; to read the next non-space character, try ‘%1s’. If
a field width is given, the corresponding argument should refer to a character array, and the indi-
cated number of characters is read.

e
f

a floating point number is expected; the next field is converted accordingly and stored through the
corresponding argument, which should be a pointer to a float . The input format for floating point
numbers is an optionally signed string of digits possibly containing a decimal point, followed by an
optional exponent field consisting of an E or e followed by an optionally signed integer.

[indicates a string not to be delimited by space characters. The left bracket is followed by a set of
characters and a right bracket; the characters between the brackets define a set of characters making

7th Edition 1

SCANF (3S) UNIX Programmer’s Manual SCANF (3S)

up the string. If the first character is not circumflex (ˆ), the input field is all characters until the
first character not in the set between the brackets; if the first character after the left bracket is ˆ, the
input field is all characters until the first character which is in the remaining set of characters
between the brackets. The corresponding argument must point to a character array.

The conversion characters d, o and x may be capitalized or preceeded by l to indicate that a pointer to
long rather than to int is in the argument list. Similarly, the conversion characters e or f may be capi-
talized or preceded by l to indicate a pointer to double rather than to float. The conversion characters
d, o and x may be preceeded by h to indicate a pointer to short rather than to int.

The scanf functions return the number of successfully matched and assigned input items. This can be
used to decide how many input items were found. The constant EOF is returned upon end of input; note
that this is different from 0, which means that no conversion was done; if conversion was intended, it
was frustrated by an inappropriate character in the input.

For example, the call

int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

with the input line

25 54.32E−1 thompson

will assign to i the value 25, x the value 5.432, and name will contain ‘thompson\0’ . Or,

int i; float x; char name[50];
scanf("%2d%f%*d%[1234567890]", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip ‘0123’, and place the string ‘56\0’ in name. The next call to
getchar will return ‘a’.

SEE ALSO
atof(3), getc(3), printf(3)

DIAGNOSTICS
The scanf functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

7th Edition 2

SETBUF (3S) UNIX Programmer’s Manual SETBUF (3S)

NAME
setbuf – assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read or written. It causes the character
array buf to be used instead of an automatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloc(3) upon the first getc or putc(3) on the file, except that out-
put streams directed to terminals, and the standard error stream stderr are normally not buffered.

SEE ALSO
fopen(3), getc(3), putc(3), malloc(3)

7th Edition 1

SETJMP (3) UNIX Programmer’s Manual SETJMP (3)

NAME
setjmp, longjmp – non-local goto

SYNOPSIS
#include <setjmp.h>

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level subroutine of
a program.

Setjmp saves its stack environment in env for later use by longjmp. It returns value 0.

Longjmp restores the environment saved by the last call of setjmp . It then returns in such a way that
execution continues as if the call of setjmp had just returned the value val to the function that invoked
setjmp, which must not itself have returned in the interim. All accessible data have values as of the
time longjmp was called.

SEE ALSO
signal(2)

7th Edition 1

SIN (3M) UNIX Programmer’s Manual SIN (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 – trigonometric functions

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the argument
should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range – π/2 to π/2.

Acos returns the arc cosine in the range 0 to π.

Atan returns the arc tangent of x in the range – π/2 to π/2.

Atan2 returns the arc tangent of x/y in the range – π to π.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return value 0; errno is set to EDOM.
The value of tan at its singular points is a huge number, and errno is set to ERANGE.

BUGS
The value of tan for arguments greater than about 2**31 is garbage.

7th Edition 1

SINH (3M) UNIX Programmer’s Manual SINH (3M)

NAME
sinh, cosh, tanh – hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS
Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

7th Edition 1

SLEEP (3) UNIX Programmer’s Manual SLEEP (3)

NAME
sleep – suspend execution for interval

SYNOPSIS
sleep(seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the argument.
The actual suspension time may be up to 1 second less than that requested, because scheduled wakeups
occur at fixed 1-second intervals, and an arbitrary amount longer because of other activity in the system.

The routine is implemented by setting an alarm clock signal and pausing until it occurs. The previous
state of this signal is saved and restored. If the sleep time exceeds the time to the alarm signal, the pro-
cess sleeps only until the signal would have occurred, and the signal is sent 1 second later.

SEE ALSO
alarm(2), pause(2)

7th Edition 1

STDIO (3S) UNIX Programmer’s Manual STDIO (3S)

NAME
stdio – standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The functions described in Sections 3S constitute an efficient user-level buffering scheme. The in-line
macros getc and putc(3) handle characters quickly. The higher level routines gets, fgets, scanf, fscanf,
fread, puts, fputs, printf, fprintf, fwrite all use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type
FILE. Fopen(3) creates certain descriptive data for a stream and returns a pointer to designate the stream
in all further transactions. There are three normally open streams with constant pointers declared in the
include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant ‘pointer’ NULL (0) designates no stream at all.

An integer constant EOF (– 1) is returned upon end of file or error by integer functions that deal with
streams.

Any routine that uses the standard input/output package must include the header file <stdio.h> of per-
tinent macro definitions. The functions and constants mentioned in sections labeled 3S are declared in
the include file and need no further declaration. The constants, and the following ‘functions’ are imple-
mented as macros; redeclaration of these names is perilous: getc, getchar, putc, putchar, feof, ferror,
fileno .

SEE ALSO
open(2), close(2), read(2), write(2)

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with fopen,
input (output) has been attempted on an output (input) stream, or a FILE pointer designates corrupt or
otherwise unintelligible FILE data.

7th Edition 1

STRING (3) UNIX Programmer’s Manual STRING (3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex – string operations

SYNOPSIS
char *strcat(s1, s2)
char *s1, *s2;

char *strncat(s1, s2, n)
char *s1, *s2;

strcmp(s1, s2)
char *s1, *s2;

strncmp(s1, s2, n)
char *s1, *s2;

char *strcpy(s1, s2)
char *s1, *s2;

char *strncpy(s1, s2, n)
char *s1, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any receiving
string.

Strcat appends a copy of string s2 to the end of string s1 . Strncat copies at most n characters. Both
return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0, according as
s1 is lexicographically greater than, equal to, or less than s2 . Strncmp makes the same comparison but
looks at at most n characters.

Strcpy copies string s2 to s1, stopping after the null character has been moved. Strncpy copies exactly n
characters, truncating or null-padding s2; the target may not be null-terminated if the length of s2 is n or
more. Both return s1 .

Strlen returns the number of non-null characters in s .

Index (rindex) returns a pointer to the first (last) occurrence of character c in string s, or zero if c does
not occur in the string.

BUGS
Strcmp uses native character comparison, which is signed on PDP11’s, unsigned on other machines.

7th Edition 1

SWAB (3) UNIX Programmer’s Manual SWAB (3)

NAME
swab – swap bytes

SYNOPSIS
swab(from, to, nbytes)
char *from, *to;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adjacent even
and odd bytes. It is useful for carrying binary data between PDP11’s and other machines. Nbytes
should be even.

7th Edition 1

SYSTEM (3) UNIX Programmer’s Manual SYSTEM (3)

NAME
system – issue a shell command

SYNOPSIS
system(string)
char *string;

DESCRIPTION
System causes the string to be given to sh(1) as input as if the string had been typed as a command at a
terminal. The current process waits until the shell has completed, then returns the exit status of the
shell.

SEE ALSO
popen(3), exec(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn’t be executed.

7th Edition 1

TTYNAME (3) UNIX Programmer’s Manual TTYNAME (3)

NAME
ttyname, isatty, ttyslot – find name of a terminal

SYNOPSIS
char *ttyname(fildes)

isatty(fildes)

ttyslot()

DESCRIPTION
Ttyname returns a pointer to the null-terminated path name of the terminal device associated with file
descriptor fildes .

Isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

Ttyslot returns the number of the entry in the ttys(5) file for the control terminal of the current process.

FILES
/dev/*
/etc/ttys

SEE ALSO
ioctl(2), ttys(5)

DIAGNOSTICS
Ttyname returns a null pointer (0) if fildes does not describe a terminal device in directory ‘/dev’.

Ttyslot returns 0 if ‘/etc/ttys’ is inaccessible or if it cannot determine the control terminal.

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 1

UNGETC (3S) UNIX Programmer’s Manual UNGETC (3S)

NAME
ungetc – push character back into input stream

SYNOPSIS
#include <stdio.h>

ungetc(c, stream)
FILE *stream;

DESCRIPTION
Ungetc pushes the character c back on an input stream. That character will be returned by the next getc
call on that stream. Ungetc returns c .

One character of pushback is guaranteed provided something has been read from the stream and the
stream is actually buffered. Attempts to push EOF are rejected.

Fseek(3) erases all memory of pushed back characters.

SEE ALSO
getc(3), setbuf(3), fseek(3)

DIAGNOSTICS
Ungetc returns EOF if it can’t push a character back.

7th Edition 1

CAT (4) UNIX Programmer’s Manual CAT (4)

NAME
cat – phototypesetter interface

DESCRIPTION
Cat provides the interface to a Graphic Systems C/A/T phototypesetter. Bytes written on the file specify
font, size, and other control information as well as the characters to be flashed. The coding will not be
described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff(1)
Phototypesetter interface specification

7th Edition 1

DN (4) UNIX Programmer’s Manual DN (4)

NAME
dn – DN-11 ACU interface

DESCRIPTION
The dn? files are write-only. The permissible codes are:

0-9 dial 0-9
: dial *
; dial #
– 4 second delay for second dial tone
< end-of-number

The entire telephone number must be presented in a single write system call.

It is recommended that an end-of-number code be given even though not all ACU’s actually require it.

FILES
/dev/dn0 connected to 801 with dp0
/dev/dn1 not currently connected
/dev/dn2 not currently connected

SEE ALSO
dp(4)

7th Edition 1

DU (4) UNIX Programmer’s Manual DU (4)

NAME
du, dp – DU-11 201 data-phone interface

DESCRIPTION
The dp0 file is a 201 data-phone interface. Read and write calls to dp0 are limited to a maximum of
512 bytes. Each write call is sent as a single record. Seven bits from each byte are written along with
an eighth odd parity bit. The sync must be user supplied. Each read call returns characters received
from a single record. Seven bits are returned unaltered; the eighth bit is set if the byte was not received
in odd parity. A 10 second time out is set and a zero-byte record is returned if nothing is received in
that time.

FILES
/dev/dp0

SEE ALSO
dn(4)

BUGS
The name dp0 is a historical dreg.

7th Edition 1

HP (4) UNIX Programmer’s Manual HP (4)

NAME
hp – RH-11/RP04, RP05, RP06 moving-head disk

DESCRIPTION
The octal representation of the minor device number is encoded idp , where i is an interleave flag, d is a
physical drive number, and p is a pseudodrive (subsection) within a physical unit. If i is 0, the origins
and sizes of the pseudodisks on each drive, counted in cylinders of 418 512-byte blocks, are:

disk start length
0 0 23
1 23 21
2 0 0
3 0 0
4 44 386
5 430 385
6 44 367
7 44 771

If i is 1, the minor device consists of the specified pseudodisk on drives numbered 0 through the desig-
nated drive number. Successively numbered blocks are distributed across the drives in rotation.

Systems distributed for these devices use disk 0 for the root, disk 1 for swapping, and disk 4 (RP04/5)
or disk 7 (RP06) for a mounted user file system.

The block files access the disk via the system’s normal buffering mechanism and may be read and writ-
ten without regard to physical disk records.

A ‘raw’ interface provides for direct transmission between the disk and the user’s read or write buffer.
A single read or write call results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw files conventionally begin with
an extra ‘r.’ In raw I/O the buffer must begin on a word boundary, and raw I/O to an interleaved device
is likely to have disappointing results.

FILES
/dev/rp?, /dev/rrp?

SEE ALSO
rp(4)

BUGS
In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on
the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and
lseek(2) should always deal in 512-byte multiples.

Raw device drivers don’t work on interleaved devices.

7th Edition 1

HS (4) UNIX Programmer’s Manual HS (4)

NAME
hs – RH11/RS03-RS04 fixed-head disk file

DESCRIPTION
The files hs0 ... hs7 refer to RJS03 disk drives 0 through 7. The files hs8 ... hs15 refer to RJS04 disk
drives 0 through 7. The RJS03 drives are each 1024 blocks long and the RJS04 drives are 2048 blocks
long.

The hs files access the disk via the system’s normal buffering mechanism and may be read and written
without regard to physical disk records. There is also a ‘raw’ inteface which provides for direct
transmission between the disk and the user’s read or write buffer. A single read or write call results in
exactly one I/O operation and therefore raw I/O is considerably more efficient when many words are
transmitted. The names of the raw HS files begin with rhs . The same minor device considerations hold
for the raw interface as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512 bytes (a
disk block). Likewise lseek calls should specify a multiple of 512 bytes.

FILES
/dev/hs?, /dev/rhs?

7th Edition 1

HT (4) UNIX Programmer’s Manual HT (4)

NAME
ht – RH-11/TU-16 magtape interface

DESCRIPTION
The files mt0, mt1, ... refer to the DEC RH/TM/TU16 magtape. When opened for reading or writing,
the tape is not rewound. When closed, it is rewound (unless the 0200 bit is on, see below). If the tape
was open for writing, a double end-of-file is written. If the tape is not to be rewound the tape is back-
spaced to just between the two tapemarks.

A standard tape consists of a series of 512 byte records terminated by a double end-of-file. To the
extent possible, the system makes it possible, if inefficient, to treat the tape like any other file. Seeks
have their usual meaning and it is possible to read or write a byte at a time. Writing in very small units
is inadvisable, however, because it tends to create monstrous record gaps.

The last octal digit of the minor device number selects the drive. The middle digit selects a controller.
The initial digit is even to select 800 BPI, odd to select 1600 BPI. If the 0200 bit is on (initial digit 2
or 3), the tape is not rewound on close. Note that the minor device number has no necessary connection
with the file name, and in fact tp(1) turns the short name x into ‘/dev/mtx’.

The mt files discussed above are useful when it is desired to access the tape in a way compatible with
ordinary files. When foreign tapes are to be dealt with, and especially when long records are to be read
or written, the ‘raw’ interface is appropriate. The associated files may be named rmt0, ..., rmt7, but the
same minor-device considerations as for the regular files still apply.

Each read or write call reads or writes the next record on the tape. In the write case the record has the
same length as the buffer given. During a read, the record size is passed back as the number of bytes
read, provided it is no greater than the buffer size; if the record is long, an error is indicated. In raw
tape I/O, the buffer must begin on a word boundary and the count must be even. Seeks are ignored. A
zero count is returned when a tape mark is read; another read will fetch the first record of the next tape
file.

FILES
/dev/mt?, /dev/rmt?

SEE ALSO
tp(1)

BUGS
The magtape system is supposed to be able to take 64 drives. Such addressing has never been tried.

Taking a drive off line, or running off the end of tape, while writing have been known to hang the sys-
tem.

If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O, there
should be a way to perform forward and backward record and file spacing and to write an EOF mark
explicitly.

7th Edition 1

MEM (4) UNIX Programmer’s Manual MEM (4)

NAME
mem, kmem – core memory

DESCRIPTION
Mem is a special file that is an image of the core memory of the computer. It may be used, for exam-
ple, to examine, and even to patch the system. Kmem is the same as mem except that kernel virtual
memory rather than physical memory is accessed.

Byte addresses are interpreted as memory addresses. References to non-existent locations return errors.

Examining and patching device registers is likely to lead to unexpected results when read-only or write-
only bits are present.

On PDP11’s, the I/O page begins at location 0160000 of kmem and per-process data for the current pro-
cess begins at 0140000.

FILES
/dev/mem, /dev/kmem

BUGS
On PDP11’s, memory files are accessed one byte at a time, an inapproriate method for some device
registers.

7th Edition 1

NULL (4) UNIX Programmer’s Manual NULL (4)

NAME
null – data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

7th Edition 1

PK (4) UNIX Programmer’s Manual PK (4)

NAME
pk – packet driver

DESCRIPTION
The packet driver implements a full-duplex end-to-end flow control strategy for machine-to-machine
communication. Packet driver protocol is established by calling pkon(2) with a character device file
descriptor and a desired packet size in bytes. The packet size must be a power of 2, 32≤size≤4096.
The file descriptor must represent an 8-bit data path. This is normally obtained by setting the device in
raw mode (see ioctl(2)).

The actual packet size, which may be smaller than the desired packet size, is arrived at by negotiation
with the packet driver at the remote end of the data link.

The packet driver maintains two data areas for incoming and outgoing packets. The output area is
needed to implement retransmission on errors, and arriving packets are queued in the input area. Data
arriving for a file not open for reading is discarded. Initially the size of both areas is set to two packets.

It is not necessary that reads and writes be multiples of the packet size although there is less system
overhead if they are. Read operations return the maximum amount of data available from the input area
up to the number of bytes specified in the system call. The buffer sizes in write operations are not nor-
mally transmitted across the link. However, writes of zero length are treated specially and are reflected
at the remote end as a zero-length read. This facilitates marking the serial byte stream, usually for del-
imiting files.

When one side of a packet driver link is shut down by close(2)or pkoff (see pkon(2)), read(2) on the
other side will return 0, and write on the other side will raise a SIGPIPE signal.

SEE ALSO
pkon(2), pkopen(3)

7th Edition local 1

RF (4) UNIX Programmer’s Manual RF (4)

NAME
rf – RF11/RS11 fixed-head disk file

DESCRIPTION
This file refers to the concatenation of all RS-11 disks.

Each disk contains 1024 256-word blocks. The length of the combined RF file is 1024×(minor+1)
blocks. That is minor device zero is taken to be 1024 blocks long; minor device one is 2048, etc.

The rf0 file accesses the disk via the system’s normal buffering mechanism and may be read and written
without regard to physical disk records. There is also a ‘raw’ interface which provides for direct
transmission between the disk and the user’s read or write buffer. A single read or write call results in
exactly one I/O operation and therefore raw I/O is considerably more efficient when many words are
transmitted. The name of the raw RF file is rrf0 . The same minor device considerations hold for the
raw interface as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512 bytes (a
disk block). Likewise seek calls should specify a multiple of 512 bytes.

FILES
/dev/rf0, /dev/rrf0

BUGS
The 512-byte restrictions on the raw device are not physically necessary, but are still imposed.

7th Edition 1

RK (4) UNIX Programmer’s Manual RK (4)

NAME
rk – RK-11/RK03 or RK05 disk

DESCRIPTION
Rk? refers to an entire disk as a single sequentially-addressed file. Its 256-word blocks are numbered 0
to 4871. Minor device numbers are drive numbers on one controller.

The rk files discussed above access the disk via the system’s normal buffering mechanism and may be
read and written without regard to physical disk records. There is also a ‘raw’ interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably more efficient when many
words are transmitted. The names of the raw RK files begin with rrk and end with a number which
selects the same disk as the corresponding rk file.

In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512 bytes (a
disk block). Likewise seek calls should specify a multiple of 512 bytes.

FILES
/dev/rk?, /dev/rrk?

BUGS
In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on
the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and
lseek(2) should always deal in 512-byte multiples.

7th Edition 1

RP (4) UNIX Programmer’s Manual RP (4)

NAME
rp – RP-11/RP03 moving-head disk

DESCRIPTION
The files rp0 ... rp7 refer to sections of RP disk drive 0. The files rp8 ... rp15 refer to drive 1 etc. This
allows a large disk to be broken up into more manageable pieces.

The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 81000
1 0 5000
2 5000 2000
3 7000 74000
4-7 unassigned

Thus rp0 covers the whole drive, while rp1, rp2, rp3 can serve usefully as a root, swap, and mounted
user file system respectively.

The rp files access the disk via the system’s normal buffering mechanism and may be read and written
without regard to physical disk records. There is also a ‘raw’ interface which provides for direct
transmission between the disk and the user’s read or write buffer. A single read or write call results in
exactly one I/O operation and therefore raw I/O is considerably more efficient when many words are
transmitted. The names of the raw RP files begin with rrp and end with a number which selects the
same disk section as the corresponding rp file.

In raw I/O the buffer must begin on a word boundary.

FILES
/dev/rp?, /dev/rrp?

SEE ALSO
hp(4)

BUGS
In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on
the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and
lseek(2) should always deal in 512-byte multiples.

7th Edition 1

TC (4) UNIX Programmer’s Manual TC (4)

NAME
tc – TC-11/TU56 DECtape

DESCRIPTION
The files tap0 ... tap7 refer to the TC-11/TU56 DECtape drives 0 to 7.

The 256-word blocks on a standard DECtape are numbered 0 to 577.

FILES
/dev/tap?

SEE ALSO
tp(1)

7th Edition 1

TM (4) UNIX Programmer’s Manual TM (4)

NAME
tm – TM-11/TU-10 magtape interface

DESCRIPTION
The files mt0, ..., mt7 refer to the DEC TU10/TM11 magtape. When closed it can be rewound or not,
see below. If it was open for writing, two end-of-files are written. If the tape is not to be rewound it is
positioned with the head between the two tapemarks.

If the 0200 bit is on in the minor device number the tape is not rewound when closed.

A standard tape consists of a series of 512 byte records terminated by an end-of-file. To the extent pos-
sible, the system makes it possible, if inefficient, to treat the tape like any other file. Seeks have their
usual meaning and it is possible to read or write a byte at a time. Writing in very small units is inadvis-
able, however, because it tends to create monstrous record gaps.

The mt files discussed above are useful when it is desired to access the tape in a way compatible with
ordinary files. When foreign tapes are to be dealt with, and especially when long records are to be read
or written, the ‘raw’ interface is appropriate. The associated files are named rmt0, ..., rmt7. Each read
or write call reads or writes the next record on the tape. In the write case the record has the same
length as the buffer given. During a read, the record size is passed back as the number of bytes read,
provided it is no greater than the buffer size; if the record is long, an error is indicated. In raw tape I/O,
the buffer must begin on a word boundary and the count must be even. Seeks are ignored. A zero byte
count is returned when a tape mark is read, but another read will fetch the first record of the new tape
file.

FILES
/dev/mt?, /dev/rmt?

SEE ALSO
tp(1)

BUGS
If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O, there
should be a way to perform forward and backward record and file spacing and to write an EOF mark.

7th Edition 1

TTY (4) UNIX Programmer’s Manual TTY (4)

NAME
tty – general terminal interface

DESCRIPTION
This section describes both a particular special file, and the general nature of the terminal interface.

The file /dev/tty is, in each process, a synonym for the control terminal associated with that process. It
is useful for programs that wish to be sure of writing messages on the terminal no matter how output
has been redirected. It can also be used for programs that demand a file name for output, when typed
output is desired and it is tiresome to find out which terminal is currently in use.

As for terminals in general: all of the low-speed asynchronous communications ports use the same gen-
eral interface, no matter what hardware is involved. The remainder of this section discusses the com-
mon features of the interface.

When a terminal file is opened, it causes the process to wait until a connection is established. In prac-
tice user’s programs seldom open these files; they are opened by init and become a user’s input and out-
put file. The very first terminal file open in a process becomes the control terminal for that process.
The control terminal plays a special role in handling quit or interrupt signals, as discussed below. The
control terminal is inherited by a child process during a fork , even if the control terminal is closed. The
set of processes that thus share a control terminal is called a process group; all members of a process
group receive certain signals together, see DEL below and kill(2).

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters may be
typed at any time, even while output is occurring, and are only lost when the system’s character input
buffers become completely choked, which is rare, or when the user has accumulated the maximum
allowed number of input characters that have not yet been read by some program. Currently this limit is
256 characters. When the input limit is reached all the saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. This means that a program attempting to read
will be suspended until an entire line has been typed. Also, no matter how many characters are
requested in the read call, at most one line will be returned. It is not however necessary to read a whole
line at once; any number of characters may be requested in a read, even one, without losing information.
There are special modes, discussed below, that permit the program to read each character as typed
without waiting for a full line.

During input, erase and kill processing is normally done. By default, the character ‘#’ erases the last
character typed, except that it will not erase beyond the beginning of a line or an EOT. By default, the
character ‘@’ kills the entire line up to the point where it was typed, but not beyond an EOT. Both
these characters operate on a keystroke basis independently of any backspacing or tabbing that may have
been done. Either ‘@’ or ‘#’ may be entered literally by preceding it by ‘\’; the erase or kill character
remains, but the ‘\’ disappears. These two characters may be changed to others.

When desired, all upper-case letters are mapped into the corresponding lower-case letter. The upper-
case letter may be generated by preceding it by ‘\’. In addition, the following escape sequences can be
generated on output and accepted on input:

for use
` \´
 \!
˜ \ˆ
{ \(
} \)

Certain ASCII control characters have special meaning. These characters are not passed to a reading
program except in raw mode where they lose their special character. Also, it is possible to change these
characters from the default; see below.

EOT (Control-D) may be used to generate an end of file from a terminal. When an EOT is received,

7th Edition 1

TTY (4) UNIX Programmer’s Manual TTY (4)

all the characters waiting to be read are immediately passed to the program, without waiting for
a new-line, and the EOT is discarded. Thus if there are no characters waiting, which is to say
the EOT occurred at the beginning of a line, zero characters will be passed back, and this is the
standard end-of-file indication.

DEL (Rubout) is not passed to a program but generates an interrupt signal which is sent to all
processes with the associated control terminal. Normally each such process is forced to ter-
minate, but arrangements may be made either to ignore the signal or to receive a trap to an
agreed-upon location. See signal(2).

FS (Control-\ or control-shift-L) generates the quit signal. Its treatment is identical to the interrupt
signal except that unless a receiving process has made other arrangements it will not only be
terminated but a core image file will be generated.

DC3 (Control-S) delays all printing on the terminal until something is typed in.

DC1 (Control-Q) restarts printing after DC3 without generating any input to a program.

When the carrier signal from the dataset drops (usually because the user has hung up his terminal) a
hangup signal is sent to all processes with the terminal as control terminal. Unless other arrangements
have been made, this signal causes the processes to terminate. If the hangup signal is ignored, any read
returns with an end-of-file indication. Thus programs that read a terminal and test for end-of-file on
their input can terminate appropriately when hung up on.

When one or more characters are written, they are actually transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them in the
output queue as they arrive. When a process produces characters more rapidly than they can be typed, it
will be suspended when its output queue exceeds some limit. When the queue has drained down to
some threshold the program is resumed. Even parity is always generated on output. The EOT character
is not transmitted (except in raw mode) to prevent terminals that respond to it from hanging up.

Several ioctl(2) calls apply to terminals. Most of them use the following structure, defined in <sgtty.h>:

struct sgttyb {
char sg_ispeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
int sg_flags;

};

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according to the
following table, which corresponds to the DEC DH-11 interface. If other hardware is used, impossible
speed changes are ignored. Symbolic values in the table are as defined in <sgtty.h>.

B0 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
B110 3 110 baud
B134 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud

7th Edition 2

TTY (4) UNIX Programmer’s Manual TTY (4)

B9600 13 9600 baud
EXTA 14 External A
EXTB 15 External B

In the current configuration, only 110, 150, 300 and 1200 baud are really supported on dial-up lines.
Code conversion and line control required for IBM 2741’s (134.5 baud) must be implemented by the
user’s program. The half-duplex line discipline required for the 202 dataset (1200 baud) is not supplied;
full-duplex 212 datasets work fine.

The sg_erase and sg_kill fields of the argument structure specify the erase and kill characters respec-
tively. (Defaults are # and @.)

The sg_flags field of the argument structure contains several bits that determine the system’s treatment
of the terminal:

ALLDELAY 0177400 Delay algorithm selection
BSDELAY 0100000 Select backspace delays (not implemented):
BS0 0
BS1 0100000
VTDELAY 0040000 Select form-feed and vertical-tab delays:
FF0 0
FF1 0100000
CRDELAY 0030000 Select carriage-return delays:
CR0 0
CR1 0010000
CR2 0020000
CR3 0030000
TBDELAY 0006000 Select tab delays:
TAB0 0
TAB1 0001000
TAB2 0004000
XTABS 0006000
NLDELAY 0001400 Select new-line delays:
NL0 0
NL1 0000400
NL2 0001000
NL3 0001400
EVENP 0000200 Even parity allowed on input (most terminals)
ODDP 0000100 Odd parity allowed on input
RAW 0000040 Raw mode: wake up on all characters, 8-bit interface
CRMOD 0000020 Map CR into LF; echo LF or CR as CR-LF
ECHO 0000010 Echo (full duplex)
LCASE 0000004 Map upper case to lower on input
CBREAK 0000002 Return each character as soon as typed
TANDEM 0000001 Automatic flow control

The delay bits specify how long transmission stops to allow for mechanical or other movement when
certain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but might be used for Terminet 300’s.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay type 2
lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is unimplemented
and is 0.

7th Edition 3

TTY (4) UNIX Programmer’s Manual TTY (4)

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 37’s. Type 2
is useful for the VT05 and is about .10 seconds. Type 3 is unimplemented and is 0.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model 37. Type
3, called XTABS, is not a delay at all but causes tabs to be replaced by the appropriate number of
spaces on output.

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

In raw mode, every character is passed immediately to the program without waiting until a full line has
been typed. No erase or kill processing is done; the end-of-file indicator (EOT), the interrupt character
(DEL) and the quit character (FS) are not treated specially. There are no delays and no echoing, and no
replacement of one character for another; characters are a full 8 bits for both input and output (parity is
up to the program).

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF causes
LF-CR both to be echoed (for terminals with a new-line function).

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as typed,
instead of waiting for a full line, but quit and interrupt work, and output delays, case-translation,
CRMOD, XTABS, ECHO, and parity work normally. On the other hand there is no erase or kill, and
no special treatment of \ or EOT.

TANDEM mode causes the system to produce a stop character (default DC3) whenever the input queue
is in danger of overflowing, and a start character (default DC1) when the input queue has drained
sufficiently. It is useful for flow control when the ‘terminal’ is actually another machine that obeys the
conventions.

Several ioctl calls have the form:

#include <sgtty.h>

ioctl(fildes, code, arg)
struct sgttyb *arg;

The applicable codes are:

TIOCGETP
Fetch the parameters associated with the terminal, and store in the pointed-to structure.

TIOCSETP
Set the parameters according to the pointed-to structure. The interface delays until output is
quiescent, then throws away any unread characters, before changing the modes.

TIOCSETN
Set the parameters but do not delay or flush input. Switching out of RAW or CBREAK mode
may cause some garbage input.

With the following codes the arg is ignored.

TIOCEXCL
Set ‘‘exclusive-use’’ mode: no further opens are permitted until the file has been closed.

TIOCNXCL
Turn off ‘‘exclusive-use’’ mode.

TIOCHPCL
When the file is closed for the last time, hang up the terminal. This is useful when the line is
associated with an ACU used to place outgoing calls.

TIOCFLUSH
All characters waiting in input or output queues are flushed.

7th Edition 4

TTY (4) UNIX Programmer’s Manual TTY (4)

The following codes affect characters that are special to the terminal interface. The argument is a
pointer to the following structure, defined in <sgtty.h>:

struct tchars {
char t_intrc; /* interrupt */
char t_quitc; /* quit */
char t_startc;/* start output */
char t_stopc; /* stop output */
char t_eofc; /* end-of-file */
char t_brkc; /* input delimiter (like nl) */

};

The default values for these characters are DEL, FS, DC1, DC3, EOT, and – 1. A character value of – 1
eliminates the effect of that character. The t_brkc character, by default – 1, acts like a new-line in that it
terminates a ‘line,’ is echoed, and is passed to the program. The ‘stop’ and ‘start’ characters may be the
same, to produce a toggle effect. It is probably counterproductive to make other special characters
(including erase an kill) identical.

The calls are:

TIOCSETC
Change the various special characters to those given in the structure.

TIOCSETP
Set the special characters to those given in the structure.

FILES
/dev/tty
/dev/tty*
/dev/console

SEE ALSO
getty(8), stty (1), signal(2), ioctl(2)

BUGS
Half-duplex terminals are not supported.

The terminal handler has clearly entered the race for ever-greater complexity and generality. It’s still
not complex and general enough for TENEX fans.

7th Edition 5

VP (4) UNIX Programmer’s Manual VP (4)

NAME
vp – Versatec printer-plotter

DESCRIPTION
Vp0 is the interface to a Versatec D1200A printer-plotter with a Versatec C-PDP11(DMA) controller.
Ordinarily bytes written on it are interpreted as ASCII characters and printed. As a printer, it writes 64
lines of 132 characters each on 11 by 8.5 inch paper. Only some of the ASCII control characters are
interpreted.

NL performs the usual new-line function, i.e. spaces up the paper and resets to the left margin. It
is ignored however following a CR which ends a non-empty line.

CR is ignored if the current line is empty but is otherwise like NL.

FF resets to the left margin and then to the top of the next page.

EOT resets to the left margin, advances 8 inches, and then performs a FF.

The ioctl(2) system call may be used to change the mode of the device. Only the first word of the 3-
word argument structure is used. The bits mean:

0400 Enter simultaneous print/plot mode.
0200 Enter plot mode.
0100 Enter print mode (default on open).
040 Send remote terminate.
020 Send remote form-feed.
010 Send remote EOT.
04 Send remote clear.
02 Send remote reset.

On open a reset, clear, and form-feed are performed automatically. Notice that the mode bits are not
encoded, so that it is required that exactly one be set.

In plot mode each byte is interpreted as 8 bits of which the high-order is plotted to the left; a ‘1’ leaves
a visible dot. A full line of dots is produced by 264 bytes; lines are terminated only by count or by a
remote terminate function. There are 200 dots per inch both vertically and horizontally.

When simultaneous print-plot mode is entered exactly one line of characters, terminated by NL, CR, or
the remote terminate function, should be written. Then the device enters plot mode and at least 20 lines
of plotting bytes should be sent. As the line of characters (which is 20 dots high) is printed, the plotting
bytes overlay the characters. Notice that it is impossible to print characters on baselines that differ by
fewer than 20 dot-lines.

In print mode lines may be terminated either with an appropriate ASCII character or by using the remote
terminate function.

FILES
/dev/vp0

SEE ALSO
opr(1)

7th Edition 1

A.OUT (5) UNIX Programmer’s Manual A.OUT (5)

NAME
a.out – assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
A.out is the output file of the assembler as(1) and the link editor ld(1). Both programs make a.out exe-
cutable if there were no errors and no unresolved external references. Layout information as given in
the include file for the PDP11 is:

struct exec { /* a.out header */
short a_magic;/* magic number */
unsigned a_text; /* size of text segment */
unsigned a_data; /* size of initialized data */
unsigned a_bss; /* size of uninitialized data */
unsigned a_syms; /* size of symbol table */
unsigned a_entry; /* entry point */
unsigned a_unused; /* not used */
unsigned a_flag; /* relocation info stripped */

};

#define A_MAGIC1 0407/* normal */
#define A_MAGIC2 0410/* read-only text */
#define A_MAGIC3 0411/* separated I&D */
#define A_MAGIC4 0405/* overlay */

struct nlist { /* symbol table entry */
char n_name[8]; /* symbol name */
int n_type; /* type flag */
unsigned n_value; /* value */

};

/* values for type flag */
#define N_UNDF 0 /* undefined */
#define N_ABS 01 /* absolute */
#define N_TEXT 02 /* text symbol */
#define N_DATA 03 /* data symbol */
#define N_BSS 04 /* bss symbol */
#define N_TYPE 037
#define N_REG 024 /* register name */
#define N_FN 037 /* file name symbol */
#define N_EXT 040 /* external bit, or’ed in */
#define FORMAT "%.6o" /* to print a value */

The file has four sections: a header, the program and data text, relocation information, and a symbol
table (in that order). The last two may be empty if the program was loaded with the ‘– s’ option of ld
or if the symbols and relocation have been removed by strip(1).

In the header the sizes of each section are given in bytes, but are even. The size of the header is not
included in any of the other sizes.

When an a.out file is loaded into core for execution, three logical segments are set up: the text segment,
the data segment (with uninitialized data, which starts off as all 0, following initialized), and a stack.
The text segment begins at 0 in the core image; the header is not loaded. If the magic number in the
header is 0407(8), it indicates that the text segment is not to be write-protected and shared, so the data

7th Edition 1

A.OUT (5) UNIX Programmer’s Manual A.OUT (5)

segment is immediately contiguous with the text segment. If the magic number is 0410, the data seg-
ment begins at the first 0 mod 8K byte boundary following the text segment, and the text segment is not
writable by the program; if other processes are executing the same file, they will share the text segment.
If the magic number is 411, the text segment is again pure, write-protected, and shared, and moreover
instruction and data space are separated; the text and data segment both begin at location 0. If the
magic number is 0405, the text segment is overlaid on an existing (0411 or 0405) text segment and the
existing data segment is preserved.

The stack will occupy the highest possible locations in the core image: from 0177776(8) and growing
downwards. The stack is automatically extended as required. The data segment is only extended as
requested by brk(2).

The start of the text segment in the file is 020(8); the start of the data segment is 020+St (the size of the
text) the start of the relocation information is 020+St+Sd; the start of the symbol table is 020+2(St+Sd) if
the relocation information is present, 020+St+Sd if not.

The layout of a symbol table entry and the principal flag values that distinguish symbol types are given
in the include file. Other flag values may occur if an assembly language program defines machine
instructions.

If a symbol’s type is undefined external, and the value field is non-zero, the symbol is interpreted by the
loader ld as the name of a common region whose size is indicated by the value of the symbol.

The value of a word in the text or data portions which is not a reference to an undefined external sym-
bol is exactly that value which will appear in core when the file is executed. If a word in the text or
data portion involves a reference to an undefined external symbol, as indicated by the relocation infor-
mation for that word, then the value of the word as stored in the file is an offset from the associated
external symbol. When the file is processed by the link editor and the external symbol becomes defined,
the value of the symbol will be added into the word in the file.

If relocation information is present, it amounts to one word per word of program text or initialized data.
There is no relocation information if the ‘relocation info stripped’ flag in the header is on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated with
the relocation word:

000 absolute number
002 reference to text segment
004 reference to initialized data
006 reference to uninitialized data (bss)
010 reference to undefined external symbol

Bit 0 of the relocation word indicates, if 1, that the reference is relative to the pc (e.g. ‘clr x’); if 0, that
the reference is to the actual symbol (e.g., ‘clr *$x’).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of external refer-
ences, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as(1), ld(1), nm(1)

7th Edition 2

ACCT (5) UNIX Programmer’s Manual ACCT (5)

NAME
acct – execution accounting file

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Acct(2) causes entries to be made into an accounting file for each process that terminates. The account-
ing file is a sequence of entries whose layout, as defined by the include file is:

typedef unsigned short comp_t;
/* "floating point": 3 bits base 8 exp, 13-bits fraction */

struct acct
{

char ac_comm[10]; /* command name */
comp_t ac_utime; /* user time */
comp_t ac_stime; /* system time */
comp_t ac_etime; /* elapsed time */
time_t ac_btime; /* beginning time */
short ac_uid; /* user ID */
short ac_gid; /* group ID */
short ac_mem; /* average memory usage */
comp_t ac_io; /* number of disk IO blocks */
dev_t ac_tty; /* control typewriter */
comp_t ac_rw; /* blocks read or written */
char ac_flag; /* accounting flag */

};
/* flag bits */

#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges */

If the process does an exec(2), the first 10 characters of the filename appear in ac_comm. The account-
ing flag contains bits indicating whether exec(2) was ever accomplished, and whether the process ever
had super-user privileges.

SEE ALSO
acct(2), sa(1)

7th Edition 1

AR (5) UNIX Programmer’s Manual AR (5)

NAME
ar – archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link-editor ld.

A file produced by ar has a magic number at the start, followed by the constituent files, each preceded
by a file header. The magic number and header layout as described in the include file are:

#define ARMAG 0177545
struct ar_hdr {

char ar_name[14];
long ar_date;
char ar_uid;
char ar_gid;
int ar_mode;
long ar_size;

};

The name is a null-terminated string; the date is in the form of time(2); the user ID and group ID are
numbers; the mode is a bit pattern per chmod(2); the size is counted in bytes.

Each file begins on a word boundary; a null byte is inserted between files if necessary. Nevertheless the
size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar(1), ld(1), nm(1)

BUGS
Coding user and group IDs as characters is a botch.

7th Edition 1

CORE (5) UNIX Programmer’s Manual CORE (5)

NAME
core – format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See signal(2)
for the list of reasons; the most common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called ‘core’ and is written in the process’s working
directory (provided it can be; normal access controls apply).

The first 1024 bytes of the core image are a copy of the system’s per-user data for the process, including
the registers as they were at the time of the fault; see the system listings for the format of this area. The
remainder represents the actual contents of the user’s core area when the core image was written. If the
text segment is write-protected and shared, it is not dumped; otherwise the entire address space is
dumped.

In general the debugger adb(1) is sufficient to deal with core images.

SEE ALSO
adb(1), signal(2)

7th Edition 1

DIR (5) UNIX Programmer’s Manual DIR (5)

NAME
dir – format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory. The fact
that a file is a directory is indicated by a bit in the flag word of its i-node entry see, filsys(5). The struc-
ture of a directory entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ14
#endif
struct direct
{

ino_t d_ino;
char d_name[DIRSIZ];

};

By convention, the first two entries in each directory are for ‘.’ and ‘..’. The first is an entry for the
directory itself. The second is for the parent directory. The meaning of ‘..’ is modified for the root
directory of the master file system and for the root directories of removable file systems. In the first
case, there is no parent, and in the second, the system does not permit off-device references. Therefore
in both cases ‘..’ has the same meaning as ‘.’.

SEE ALSO
filsys(5)

7th Edition 1

DUMP (5) UNIX Programmer’s Manual DUMP (5)

NAME
dump, ddate – incremental dump format

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>
include <dumprestor.h>

DESCRIPTION
Tapes used by dump and restor(1) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

The format of the header record and of the first record of each description as given in the include file
<dumprestor.h> is:

#define NTREC 20
#define MLEN 16
#define MSIZ 4096

#define TS_TAPE 1
#define TS_INODE 2
#define TS_BITS 3
#define TS_ADDR 4
#define TS_END 5
#define TS_CLRI 6
#define MAGIC (int)60011
#define CHECKSUM(int)84446
struct spcl
{

int c_type;
time_t c_date;
time_t c_ddate;
int c_volume;
daddr_t c_tapea;
ino_t c_inumber;
int c_magic;
int c_checksum;
struct dinodec_dinode;
int c_count;
char c_addr[BSIZE];

} spcl;

struct idates
{

char id_name[16];
char id_incno;
time_t id_ddate;

};

NTREC is the number of 512 byte records in a physical tape block. MLEN is the number of bits in a bit
map word. MSIZ is the number of bit map words.

7th Edition 1

DUMP (5) UNIX Programmer’s Manual DUMP (5)

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types and their
meanings are as follows:

TS_TAPE Tape volume label
TS_INODE A file or directory follows. The c_dinode field is a copy of the disk inode and contains

bits telling what sort of file this is.
TS_BITS A bit map follows. This bit map has a one bit for each inode that was dumped.
TS_ADDR A subrecord of a file description. See c_addr below.
TS_END End of tape record.
TS_CLRI A bit map follows. This bit map contains a zero bit for all inodes that were empty on the

file system when dumped.
MAGIC All header records have this number in c_magic.
CHECKSUM

Header records checksum to this value.

The fields of the header structure are as follows:

c_type The type of the header.
c_date The date the dump was taken.
c_ddate The date the file system was dumped from.
c_volume The current volume number of the dump.
c_tapea The current number of this (512-byte) record.
c_inumber The number of the inode being dumped if this is of type TS_INODE.
c_magic This contains the value MAGIC above, truncated as needed.
c_checksum

This contains whatever value is needed to make the record sum to CHECKSUM.
c_dinode This is a copy of the inode as it appears on the file system; see filsys(5).
c_count The count of characters in c_addr.
c_addr An array of characters describing the blocks of the dumped file. A character is zero if the

block associated with that character was not present on the file system, otherwise the char-
acter is non-zero. If the block was not present on the file system, no block was dumped;
the block will be restored as a hole in the file. If there is not sufficient space in this record
to describe all of the blocks in a file, TS_ADDR records will be scattered through the file,
each one picking up where the last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends with a
TS_END record and then the tapemark.

The structure idates describes an entry of the file /etc/ddate where dump history is kept. The fields of
the structure are:

id_name The dumped filesystem is ‘/dev/id_nam’.
id_incno The level number of the dump tape; see dump(1).
id_ddate The date of the incremental dump in system format see types(5).

FILES
/etc/ddate

SEE ALSO
dump(1), dumpdir(1), restor(1), filsys(5), types(5)

7th Edition 2

ENVIRON (5) UNIX Programmer’s Manual ENVIRON (5)

NAME
environ – user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the ‘environment’ is made available by exec(2) when a process begins. By
convention these strings have the form ‘name=value’. The following names are used by various com-
mands:

PATH The sequence of directory prefixes that sh, time, nice(1), etc., apply in searching for a file
known by an incomplete path name. The prefixes are separated by ‘:’. Login(1) sets
PATH=:/bin:/usr/bin.

HOME A user’s login directory, set by login(1) from the password file passwd(5).

TERM The kind of terminal for which output is to be prepared. This information is used by com-
mands, such as nroff or plot(1), which may exploit special terminal capabilities. See term(7)
for a list of terminal types.

Further names may be placed in the environment by the export command and ‘name=value’ arguments
in sh(1), or by exec(2). It is unwise to conflict with certain Shell variables that are frequently exported
by ‘.profile’ files: MAIL, PS1, PS2, IFS.

SEE ALSO
exec(2), sh(1), term(7), login(1)

7th Edition 1

FILSYS (5) UNIX Programmer’s Manual FILSYS (5)

NAME
filsys, flblk, ino – format of file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/flbk.h>
#include <sys/filsys.h>
#include <sys/ino.h>

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common format
for certain vital information. Every such volume is divided into a certain number of 512-byte blocks.
Block 0 is unused and is available to contain a bootstrap program, pack label, or other information.

Block 1 is the super block. The layout of the super block as defined by the include file <sys/filsys.h> is:

/* Structure of the super-block */
struct filsys
{

unsigned short s_isize;/* size in blocks of i-list */
daddr_t s_fsize; /* size in blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr_t s_free[NICFREE]; /* free block list */
short s_ninode; /* number of i-nodes in s_inode */
ino_t s_inode[NICINOD]; /* free i-node list */
char s_flock; /* lock during free list manipulation */
char s_ilock; /* lock during i-list manipulation */
char s_fmod; /* super block modified flag */
char s_ronly; /* mounted read-only flag */
time_t s_time; /* last super block update */
/* remainder not maintained by this version of the system */
daddr_t s_tfree; /* total free blocks*/
ino_t s_tinode; /* total free inodes */
short s_m; /* interleave factor */
short s_n; /* " " */
char s_fname[6]; /* file system name */
char s_fpack[6]; /* file system pack name */

};

S_isize is the address of the first block after the i-list, which starts just after the super-block, in block 2.
Thus is i-list is s_isize– 2 blocks long. S_fsize is the address of the first block not potentially available
for allocation to a file. These numbers are used by the system to check for bad block addresses; if an
‘impossible’ block address is allocated from the free list or is freed, a diagnostic is written on the on-
line console. Moreover, the free array is cleared, so as to prevent further allocation from a presumably
corrupted free list.

The free list for each volume is maintained as follows. The s_free array contains, in s_free[1], ... ,
s_free[s_nfree– 1], up to NICFREE free block numbers. NICFREE is a configuration constant.
S_free[0] is the block address of the head of a chain of blocks constituting the free list. The layout of
each block of the free chain as defined in the include file <sys/fblk.h> is:

struct fblk
{

int df_nfree;
daddr_t df_free[NICFREE];

};

7th Edition 1

FILSYS (5) UNIX Programmer’s Manual FILSYS (5)

The fields df_nfree and df_free in a free block are used exactly like s_nfree and s_free in the super
block. To allocate a block: decrement s_nfree, and the new block number is s_free[s_nfree]. If the new
block address is 0, there are no blocks left, so give an error. If s_nfree became 0, read the new block
into s_nfree and s_free. To free a block, check if s_nfree is NICFREE; if so, copy s_nfree and the s_free
array into it, write it out, and set s_nfree to 0. In any event set s_free[s_nfree] to the freed block’s
address and increment s_nfree.

S_ninode is the number of free i-numbers in the s_inode array. To allocate an i-node: if s_ninode is
greater than 0, decrement it and return s_inode[s_ninode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to NICINOD) into the s_inode array, then try again. To free an i-node,
provided s_ninode is less than NICINODE, place its number into s_inode[s_ninode] and increment
s_ninode. If s_ninode is already NICINODE, don’t bother to enter the freed i-node into any table. This
list of i-nodes is only to speed up the allocation process; the information as to whether the inode is
really free or not is maintained in the inode itself.

S_flock and s_ilock are flags maintained in the core copy of the file system while it is mounted and their
values on disk are immaterial. The value of s_fmod on disk is likewise immaterial; it is used as a flag
to indicate that the super-block has changed and should be copied to the disk during the next periodic
update of file system information. S_ronly is a write-protection indicator; its disk value is also imma-
terial.

S_time is the last time the super-block of the file system was changed. During a reboot, s_time of the
super-block for the root file system is used to set the system’s idea of the time.

The fields s_tfree, s_tinode, s_fname and s_fpack are not currently maintained.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. I-nodes are 64 bytes long, so 8 of
them fit into a block. I-node 2 is reserved for the root directory of the file system, but no other i-
number has a built-in meaning. Each i-node represents one file. The format of an i-node as given in the
include file <sys/ino.h> is:

/* Inode structure as it appears on a disk block. */
struct dinode
{

unsigned short di_mode;/* mode and type of file */
short di_nlink; /* number of links to file */
short di_uid; /* owner’s user id */
short di_gid; /* owner’s group id */
off_t di_size; /* number of bytes in file */
char di_addr[40]; /* disk block addresses */
time_t di_atime; /* time last accessed */
time_t di_mtime; /* time last modified */
time_t di_ctime; /* time created */

};
#define INOPB 8 /* 8 inodes per block */
/*
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*/

Di_mode tells the kind of file; it is encoded identically to the st_mode field of stat(2). Di_nlink is the
number of directory entries (links) that refer to this i-node. Di_uid and di_gid are the owner’s user and
group IDs. Size is the number of bytes in the file. Di_atime and di_mtime are the times of last access
and modification of the file contents (read, write or create) (see times(2)); Di_ctime records the time of
last modification to the inode or to the file, and is used to determine whether it should be dumped.

7th Edition 2

FILSYS (5) UNIX Programmer’s Manual FILSYS (5)

Special files are recognized by their modes and not by i-number. A block-type special file is one which
can potentially be mounted as a file system; a character-type special file cannot, though it is not neces-
sarily character-oriented. For special files, the di_addr field is occupied by the device code (see
types(5)). The device codes of block and character special files overlap.

Disk addresses of plain files and directories are kept in the array di_addr packed into 3 bytes each. The
first 10 addresses specify device blocks directly. The last 3 addresses are singly, doubly, and triply
indirect and point to blocks of 128 block pointers. Pointers in indirect blocks have the type daddr_t
(see types(5)).

For block b in a file to exist, it is not necessary that all blocks less than b exist. A zero block number
either in the address words of the i-node or in an indirect block indicates that the corresponding block
has never been allocated. Such a missing block reads as if it contained all zero words.

SEE ALSO
icheck(1), dcheck(1), dir(5), mount(1), stat(2), types(5)

7th Edition 3

GROUP (5) UNIX Programmer’s Manual GROUP (5)

NAME
group – group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is separated from the next by a
new-line. If the password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have general
read permission and can be used, for example, to map numerical group ID’s to names.

FILES
/etc/group

SEE ALSO
newgrp(1), crypt(3), passwd(1), passwd(5)

7th Edition 1

MPXIO (5) UNIX Programmer’s Manual MPXIO (5)

NAME
mpxio – multiplexed i/o

SYNOPSIS
#include <sys/mx.h>

#include <sgtty.h>

DESCRIPTION
Data transfers on mpx files (see mpx(2)) are multiplexed by imposing a record structure on the io
stream. Each record represents data from/to a particular channel or a control or status message associ-
ated with a particular channel.

The prototypical data record read from an mpx file is as follows

struct input_record {
short index;
short count;
short ccount;
char data[];

};

where index identifies the channel, and count specifies the number of characters in data. If count is zero,
ccount gives the size of data, and the record is a control or status message. Although count or ccount
might be odd, the operating system aligns records on short (i.e. 16– bit) boundaries by skipping bytes
when necessary.

Data written to an mpx file must be formatted as an array of record structures defined as follows

struct output_record {
short index;
short count;
short ccount;
char *data;

};

where the data portion of the record is referred to indirectly and the other cells have the same interpreta-
tion as in input_record.

The control messages listed below may be read from a multiplexed file descriptor. They are presented
as two 16-bit integers: the first number is the message code (defined in <sys/mx.h>), the second is an
optional parameter meaningful only with M_WATCH and M_BLK.

M_WATCH – a process ‘wants to attach’ on this channel. The second parameter is the 16-bit
user-id of the process that executed the open.

M_CLOSE – the channel is closed. This message is generated when the last file descriptor
referencing a channel is closed. The detach command (see mpx(2) should be used in
response to this message.

M_EOT – indicates logical end of file on a channel. If the channel is joined to a typewriter,
EOT (control-d) will cause the M_EOT message under the conditions specified in
tty(4) for end of file. If the channel is attached to a process, M_EOT will be gen-
erated whenever the process writes zero bytes on the channel.

M_BLK – if non-blocking mode has been enabled on an mpx file descriptor xd by executing
ioctl(xd, MXNBLK, 0) , write operations on the file are truncated in the kernel when
internal queues become full. This is done on a per-channel basis: the parameter is a
count of the number of characters not transferred to the channel on which M_BLK is
received.

M_UBLK – is generated for a channel after M_BLK when the internal queues have drained
below a threshold.

7th Edition 1

MPXIO (5) UNIX Programmer’s Manual MPXIO (5)

Two other messages may be generated by the kernel. As with other messages, the first 16-bit quantity is
the message code.

M_OPEN – is generated in conjunction with ‘listener’ mode (see mpx(2)). The uid of the cal-
ling process follows the message code as with M_WATCH. This is followed by a
null-terminated string which is the name of the file being opened.

M_IOCTL – is generated for a channel connected to a process when that process executes the
ioctl(fd, cmd, &vec) call on the channel file descriptor. The M_IOCTL code is fol-
lowed by the cmd argument given to ioctl followed by the contents of the structure
vec. It is assumed, not needing a better compromise at this time, that the length of vec
is determined by sizeof (struct sgttyb) as declared in <sgtty.h>.

Two control messages are understood by the operating system. M_EOT may be sent through an mpx
file to a channel. It is equivalent to propagating a zero-length record through the channel; i.e. the chan-
nel is allowed to drain and the process or device at the other end receives a zero-length transfer before
data starts flowing through the channel again. M_IOCTL can also be sent through a channel. The for-
mat is identical to that described above.

7th Edition 2

MTAB (5) UNIX Programmer’s Manual MTAB (5)

NAME
mtab – mounted file system table

DESCRIPTION
Mtab resides in directory /etc and contains a table of devices mounted by the mount command. Umount
removes entries.

Each entry is 64 bytes long; the first 32 are the null-padded name of the place where the special file is
mounted; the second 32 are the null-padded name of the special file. The special file has all its direc-
tories stripped away; that is, everything through the last ‘/’ is thrown away.

This table is present only so people can look at it. It does not matter to mount if there are duplicated
entries nor to umount if a name cannot be found.

FILES
/etc/mtab

SEE ALSO
mount(1)

7th Edition 1

PASSWD (5) UNIX Programmer’s Manual PASSWD (5)

NAME
passwd – password file

DESCRIPTION
Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID
GCOS job number, box number, optional GCOS user-id
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon. The
GCOS field is used only when communicating with that system, and in other installations can contain
any desired information. Each user is separated from the next by a new-line. If the password field is
null, no password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have general
read permission and can be used, for example, to map numerical user ID’s to names.

FILES
/etc/passwd

SEE ALSO
getpwent(3), login(1), crypt(3), passwd(1), group(5)

7th Edition 1

PLOT (5) UNIX Programmer’s Manual PLOT (5)

NAME
plot – graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3), and are interpreted for various devices
by commands described in plot(1). A graphics file is a stream of plotting instructions. Each instruction
consists of an ASCII letter usually followed by bytes of binary information. The instructions are exe-
cuted in order. A point is designated by four bytes representing the x and y values; each value is a
signed integer. The last designated point in an l, m, n, or p instruction becomes the ‘current point’ for
the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in plot(3).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four bytes. See plot(1).

p point: Plot the point given by the next four bytes.

l line: Draw a line from the point given by the next four bytes to the point given by the following
four bytes.

t label: Place the following ASCII string so that its first character falls on the current point. The
string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point, and the last four give
the end point of a circular arc. The least significant coordinate of the end point is used only to
determine the quadrant. The arc is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the style for drawing further lines. The
styles are ‘dotted,’ ‘solid,’ ‘longdashed,’ ‘shortdashed,’ and ‘dotdashed.’ Effective only in plot 4014
and plot ver.

s space: The next four bytes give the lower left corner of the plotting area; the following four give the
upper right corner. The plot will be magnified or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for devices sup-
ported by the filters of plot(1). The upper limit is just outside the plotting area. In every case the
plotting area is taken to be square; points outside may be displayable on devices whose face isn’t
square.

4014 space(0, 0, 3120, 3120);
ver space(0, 0, 2048, 2048);
300, 300s space(0, 0, 4096, 4096);
450 space(0, 0, 4096, 4096);

SEE ALSO
plot(1), plot(3), graph(1)

7th Edition 1

TP (5) UNIX Programmer’s Manual TP (5)

NAME
tp – DEC/mag tape formats

DESCRIPTION
The command tp dumps files to and extracts files from DECtape and magtape. The formats of these
tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See bproc(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape. There are
192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each entry has the fol-
lowing format:

struct {
char pathname[32];
int mode;
char uid;
char gid;
char unused1;
char size[3];
long modtime;
int tapeaddr;
char unused2[16];
int checksum;

};

The path name entry is the path name of the file when put on the tape. If the pathname starts with a
zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode, uid, gid, size
and time modified are the same as described under i-nodes (see file system filsys(5)). The tape address
is the tape block number of the start of the contents of the file. Every file starts on a block boundary.
The file occupies (size+511)/512 blocks of continuous tape. The checksum entry has a value such that
the sum of the 32 words of the directory entry is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
filsys(5), tp(1)

BUGS
The pathname, uid, gid, and size fields are too small.

7th Edition 1

TTYS (5) UNIX Programmer’s Manual TTYS (5)

NAME
ttys – terminal initialization data

DESCRIPTION
The ttys file is read by the init program and specifies which terminal special files are to have a process
created for them which will allow people to log in. It contains one line per special file.

The first character of a line is either ‘0’ or ‘1’; the former causes the line to be ignored, the latter causes
it to be effective. The second character is used as an argument to getty(8), which performs such tasks as
baud-rate recognition, reading the login name, and calling login. For normal lines, the character is ‘0’;
other characters can be used, for example, with hard-wired terminals where speed recognition is
unnecessary or which have special characteristics. (Getty will have to be fixed in such cases.) The
remainder of the line is the terminal’s entry in the device directory, /dev.

FILES
/etc/ttys

SEE ALSO
init(8), getty(8), login(1)

7th Edition 1

TYPES (5) UNIX Programmer’s Manual TYPES (5)

NAME
types – primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of these types are
accessible to user code:

typedef struct { int r[1]; } * physadr;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned short ino_t;
typedef char cnt_t;
typedef long time_t;
typedef int label_t[6];
typedef short dev_t;
typedef long off_t;
typedef long paddr_t;

The form daddr_t is used for disk addresses except in an i-node on disk, see filsys(5). Times are
encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a device code
specify kind and unit number of a device and are installation-dependent. Offsets are measured in bytes
from the beginning of a file. The label_t variables are used to save the processor state while another
process is running.

SEE ALSO
filsys(5), time(2), lseek(2), adb(1)

7th Edition 1

UTMP (5) UNIX Programmer’s Manual UTMP (5)

NAME
utmp, wtmp – login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION
The utmp file allows one to discover information about who is currently using UNIX. The file is a
sequence of entries with the following structure declared in the include file:

struct utmp {
char ut_line[8]; /* tty name */
char ut_name[8]; /* user id */
long ut_time; /* time on */

};

This structure gives the name of the special file associated with the user’s terminal, the user’s login
name, and the time of the login in the form of time(2).

The wtmp file records all logins and logouts. Its format is exactly like utmp except that a null user
name indicates a logout on the associated terminal. Furthermore, the terminal name ‘˜’ indicates that the
system was rebooted at the indicated time; the adjacent pair of entries with terminal names ‘ ’ and ‘}’
indicate the system-maintained time just before and just after a date command has changed the system’s
idea of the time.

Wtmp is maintained by login(1) and init(8). Neither of these programs creates the file, so if it is
removed record-keeping is turned off. It is summarized by ac(1).

FILES
/etc/utmp
/usr/adm/wtmp

SEE ALSO
login(1), init(8), who(1), ac(1)

7th Edition 1

ARITHMETIC (6) UNIX Programmer’s Manual ARITHMETIC (6)

NAME
arithmetic – provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+– x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the answer
is correct, it types back "Right!", and a new problem. If the answer is wrong, it replies "What?", and
waits for another answer. Every twenty problems, it publishes statistics on correctness and the time
required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; +– x/ respectively cause
addition, subtraction, multiplication, and division problems to be generated. One or more characters can
be given; if more than one is given, the different types of problems will be mixed in random order;
default is +–

Range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and quotients
will be less than or equal to the value of range . Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the respondent
makes a mistake, the numbers in the problem which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct answers, since the learner
should, in principle, be able to calculate them. Thus the program is intended to provide drill for some-
one just past the first learning stage, not to teach number facts de novo . For almost all users, the
relevant statistic should be time per problem, not percent correct.

7th Edition 1

BACKGAMMON (6) UNIX Programmer’s Manual BACKGAMMON (6)

NAME
backgammon – the game

SYNOPSIS
/usr/games/backgammon

DESCRIPTION
This program does what you expect. It will ask whether you need instructions.

7th Edition 1

BANNER (6) UNIX Programmer’s Manual BANNER (6)

NAME
banner – make long posters

SYNOPSIS
/usr/games/banner

DESCRIPTION
Banner reads the standard input and prints it sideways in huge built-up letters on the standard output.

7th Edition 1

BCD (6) UNIX Programmer’s Manual BCD (6)

NAME
bcd, ppt – convert to antique media

SYNOPSIS
/usr/games/bcd text

/usr/games/ppt

DESCRIPTION
Bcd converts the literal text into a form familiar to old-timers.

Ppt converts the standard input into yet another form.

SEE ALSO
dd(1)

7th Edition 1

BJ (6) UNIX Programmer’s Manual BJ (6)

NAME
bj – the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as might be
found in Reno. The following rules apply:

The bet is $2 every hand.

A player ‘natural’ (black jack) pays $3. A dealer natural loses $2. Both dealer and player natur-
als is a ‘push’ (no money exchange).

If the dealer has an ace up, the player is allowed to make an ‘insurance’ bet against the chance of
a dealer natural. If this bet is not taken, play resumes as normal. If the bet is taken, it is a side
bet where the player wins $2 if the dealer has a natural and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is allowed to ‘double’. He is allowed to play
two hands, each with one of these cards. (The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may ‘double down’. He may double the bet
($2 to $4) and receive exactly one more card on that hand.

Under normal play, the player may ‘hit’ (draw a card) as long as his total is not over twenty-one.
If the player ‘busts’ (goes over twenty-one), the dealer wins the bet.

When the player ‘stands’ (decides not to hit), the dealer hits until he attains a total of seventeen or
more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times. Each
question is answered by y followed by a new line for ‘yes’, or just new line for ‘no’.

? (means, ‘do you want a hit?’)
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the ‘action’ (total bet) and ‘standing’ (total won
or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing will be printed.

7th Edition 1

CHECKERS (6) UNIX Programmer’s Manual CHECKERS (6)

NAME
checkers – game

SYNOPSIS
/usr/games/checkers

DESCRIPTION
Checkers uses standard notation for the board:

BLACK_ __
//// 1 //// 2 //// 3 //// 4
//// //// //// ////_ __

5 //// 6 //// 7 //// 8 ////
//// //// //// ////_ __

//// 9 //// 10 //// 11 //// 12
//// //// //// ////_ __
13 //// 14 //// 15 //// 16 ////

//// //// //// ////_ __
//// 17 //// 18 //// 19 //// 20
//// //// //// ////_ __
21 //// 22 //// 23 //// 24 ////

//// //// //// ////_ __
//// 25 //// 26 //// 27 //// 28
//// //// //// ////_ __
29 //// 30 //// 31 //// 32 ////

//// //// //// ////_ __ 





































































































































































































WHITE

Black plays first. The program normally plays white. To specify a move, name the square moved from
and the square moved to. For multiple jumps name all the squares touched.

Certain commands may be given instead of moves:

reverse Reverse roles; the program takes over your pieces.

backup Undo the last move for each player.

list Print the record of the game.

move Let the program select a move for you.

print Print a map of the present position.

7th Edition 1

CHESS (6) UNIX Programmer’s Manual CHESS (6)

NAME
chess – the game of chess

SYNOPSIS
/usr/games/chess

DESCRIPTION
Chess is a computer program that plays class D chess. Moves may be given either in standard (descrip-
tive) notation or in algebraic notation. The symbol ‘+’ is used to specify check; ‘o-o’ and ‘o-o-o’
specify castling. To play black, type ‘first’; to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply.

FILES
/usr/lib/book opening ‘book’

DIAGNOSTICS
The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.

WARNING
Over-use of this program will cause it to go away.

BUGS
Pawns may be promoted only to queens.

7th Edition 1

CHING (6) UNIX Programmer’s Manual CHING (6)

NAME
ching, fortune – the book of changes and other cookies

SYNOPSIS
/usr/games/ching [hexagram]

/usr/games/fortune

DESCRIPTION
The I Ching or Book of Changes is an ancient Chinese oracle that has been in use for centuries as a
source of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each symbolized by
a particular arrangement of six straight (– – –) and broken (– –) lines. These lines have values ranging
from six through nine, with the even values indicating the broken lines.

Each hexagram consists of two major sections. The Judgement relates specifically to the matter at hand
(E.g., "It furthers one to have somewhere to go.") while the Image describes the general attributes of
the hexagram and how they apply to one’s own life ("Thus the superior man makes himself strong and
untiring.").

When any of the lines have the values six or nine, they are moving lines; for each there is an appended
judgement which becomes significant. Furthermore, the moving lines are inherently unstable and change
into their opposites; a second hexagram (and thus an additional judgement) is formed.

Normally, one consults the oracle by fixing the desired question firmly in mind and then casting a set of
changes (lines) using yarrow– stalks or tossed coins. The resulting hexagram will be the answer to the
question.

Using an algorithm suggested by S. C. Johnson, the Unix oracle simply reads a question from the stan-
dard input (up to an EOF) and hashes the individual characters in combination with the time of day, pro-
cess id and any other magic numbers which happen to be lying around the system. The resulting value
is used as the seed of a random number generator which drives a simulated coin– toss divination. The
answer is then piped through nroff for formatting and will appear on the standard output.

For those who wish to remain steadfast in the old traditions, the oracle will also accept the results of a
personal divination using, for example, coins. To do this, cast the change and then type the resulting
line values as an argument.

The impatient modern may prefer to settle for Chinese cookies; try fortune.

SEE ALSO
It furthers one to see the great man.

DIAGNOSTICS
The great prince issues commands,
Founds states, vests families with fiefs.
Inferior people should not be employed.

BUGS
Waiting in the mud
Brings about the arrival of the enemy.

If one is not extremely careful,
Somebody may come up from behind and strike him.
Misfortune.

7th Edition 1

MAZE (6) UNIX Programmer’s Manual MAZE (6)

NAME
maze – generate a maze problem

SYNOPSIS
/usr/games/maze/

DESCRIPTION
Maze asks a few questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

7th Edition 1

MOO (6) UNIX Programmer’s Manual MOO (6)

NAME
moo – guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a number consisting of four dis-
tinct decimal digits. The player guesses four distinct digits being scored on each guess. A ‘cow’ is a
correct digit in an incorrect position. A ‘bull’ is a correct digit in a correct position. The game contin-
ues until the player guesses the number (a score of four bulls).

7th Edition 1

QUIZ (6) UNIX Programmer’s Manual QUIZ (6)

NAME
quiz – test your knowledge

SYNOPSIS
/usr/games/quiz [– i file] [– t] [category1 category2]

DESCRIPTION
Quiz gives associative knowledge tests on various subjects. It asks items chosen from category1 and
expects answers from category2. If no categories are specified, quiz gives instructions and lists the
available categories.

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon interrupt, or
when questions run out, quiz reports a score and terminates.

The – t flag specifies ‘tutorial’ mode, where missed questions are repeated later, and material is gradually
introduced as you learn.

The – i flag causes the named file to be substituted for the default index file. The lines of these files
have the syntax:

line = category newline  category ‘:’ line
category = alternate  category ‘ ’ alternate
alternate = empty  alternate primary
primary = character  ‘[’ category ‘]’  option
option = ‘{’ category ‘}’

The first category on each line of an index file names an information file. The remaining categories
specify the order and contents of the data in each line of the information file. Information files have the
same syntax. Backslash ‘\’ is used as with sh(1) to quote syntactically significant characters or to insert
transparent newlines into a line. When either a question or its answer is empty, quiz will refrain from
asking it.

FILES
/usr/games/quiz.k/*

BUGS
The construct ‘aab’ doesn’t work in an information file. Use ‘a{b}’.

7th Edition 1

REVERSI (6) UNIX Programmer’s Manual REVERSI (6)

NAME
reversi – a game of dramatic reversals

SYNOPSIS
/usr/games/reversi [[– r] file]

DESCRIPTION
Reversi (also known as ‘friends’, ‘Chinese friends’ and ‘Othello’) is played on an 8×8 board using two-
sided tokens. Each player takes his turn by placing a token with his side up in an empty square. Dur-
ing the first four turns, players may only place tokens in the four central squares of the board. Subse-
quently, with each turn, a player must capture one or more of his opponent’s tokens. He does this by
placing one of his tokens such that it and another of his tokens embrace a solid line of his opponent’s
horizontally, vertically or diagonally. Captured tokens are flipped over and thus can be re-captured. If a
player cannot outflank his opponent he forfeits his turn. The play continues until the board is filled or
until no more outflanking is possible.

In this game, your tokens are asterisks and the machine’s are at-signs. You move by typing in the row
and column at which you want to place your token as two digits (1-8), optionally separated by blanks or
tabs. You can also type

c to continue the game after hitting break (this is only necessary if you interrupt the machine
while it is deliberating).

g n to start reversi playing against itself for the next n moves (or until the break key is hit).

n to stop printing the board after each move.

o to start it up again.

p to print the board regardless.

q to quit (without dishonor).

s to print the score.

Reversi also recognizes several commands which are valid only at the start of the game, before any
moves have been made. They are

f to let the machine go first.

h n to ask for a handicap of from one to four corner squares. If you’re good, you can give the
machine a handicap by typing a negative number.

l n to set the amount of lookahead used by the machine in searching for moves. Zero means none
at all. Four is the default. Greater than six means you may fall asleep waiting for the machine
to move.

t n to tell reversi that you will only need n seconds to consider each move. If you fail to respond
in the alloted time, you forfeit your turn.

If reversi is given a file name as an argument, it will checkpoint the game, move by move, by dumping
the board onto file . The – r option will cause reversi to restart the game from file and continue logging.

7th Edition 1

TTT (6) UNIX Programmer’s Manual TTT (6)

NAME
ttt, cubic – tic-tac-toe

SYNOPSIS
/usr/games/ttt

/usr/games/cubic

DESCRIPTION
Ttt is the X and O game popular in the first grade. This is a learning program that never makes the
same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

Cubic plays three-dimensional tic-tac-toe on a 4×4×4 board. Moves are specified as a sequence of three
coordinate numbers in the range 1-4.

FILES
/usr/games/ttt.k learning file

7th Edition 1

WORDS (6) UNIX Programmer’s Manual WORDS (6)

NAME
hangman, words – word games

SYNOPSIS
/usr/games/hangman [dict]

/usr/games/words

DESCRIPTION
Hangman chooses a word at least seven letters long from a word list. The user is to guess letters one at
a time.

The optional argument names an alternate word list. The special name ‘– a’ gets a particular very large
word list.

Words prints all the uncapitalized words in the word list that can be made from letters in string.

FILES
/usr/dict/words the regular word list
/crp/dict/web2 the the – a word list

DIAGNOSTICS
After each round, hangman reports the average number of guesses per round and the number of rounds.

BUGS
Hyphenated compounds are run together.

UNIX software is distributed without the – a word list.

7th Edition 1

WUMP (6) UNIX Programmer’s Manual WUMP (6)

NAME
wump – the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wump plays the game of ‘Hunt the Wumpus.’ A Wumpus is a creature that lives in a cave with several
rooms connected by tunnels. You wander among the rooms, trying to shoot the Wumpus with an arrow,
meanwhile avoiding being eaten by the Wumpus and falling into Bottomless Pits. There are also Super
Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give a more detailed descrip-
tion if you want.

This program is based on one described in People’s Computer Company, 2, 2 (November 1973).

BUGS
It will never replace Space War.

7th Edition 1

ASCII (7) UNIX Programmer’s Manual ASCII (7)

NAME
ascii – map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:

 0 0 0 n u l  0 0 1 s o h 0 0 2 s t x 0 0 3 e t x 0 0 4 e o t  0 0 5 e n q 0 0 6 a c k 0 0 7 b e l 
 0 1 0 b s  0 1 1 h t  0 1 2 n l  0 1 3 v t  0 1 4 n p  0 1 5 c r  0 1 6 s o  0 1 7 s i 
 0 2 0 d l e 0 2 1 d c 1 0 2 2 d c 2 0 2 3 d c 3 0 2 4 d c 4 0 2 5 n a k 0 2 6 s y n 0 2 7 e t b
 0 3 0 c a n 0 3 1 e m  0 3 2 s u b 0 3 3 e s c 0 3 4 f s  0 3 5 g s  0 3 6 r s  0 3 7 u s 
 0 4 0 s p  0 4 1 !  0 4 2 "  0 4 3 #  0 4 4 $  0 4 5 %  0 4 6 &  0 4 7 ´ 
 0 5 0 ( 0 5 1)  0 5 2 *  0 5 3 +  0 5 4 ,  0 5 5 –  0 5 6 .  0 5 7 / 
 0 6 0 0  0 6 1 1  0 6 2 2  0 6 3 3  0 6 4 4  0 6 5 5  0 6 6 6  0 6 7 7 
 0 7 0 8  0 7 1 9  0 7 2 :  0 7 3 ;  0 7 4 <  0 7 5 =  0 7 6 >  0 7 7 ? 
 1 0 0 @  1 0 1 A  1 0 2 B  1 0 3 C  1 0 4 D  1 0 5 E  1 0 6 F  1 0 7 G 
 1 1 0 H  1 1 1 I  1 1 2 J  1 1 3 K  1 1 4 L  1 1 5 M  1 1 6 N  1 1 7 O 
 1 2 0 P  1 2 1 Q  1 2 2 R  1 2 3 S  1 2 4 T  1 2 5 U  1 2 6 V  1 2 7 W 
 1 3 0 X  1 3 1 Y  1 3 2 Z  1 3 3 [ 1 3 4 \  1 3 5]  1 3 6 ˆ  1 3 7 _ 
 1 4 0 `  1 4 1 a  1 4 2 b  1 4 3 c  1 4 4 d  1 4 5 e  1 4 6 f  1 4 7 g 
 1 5 0 h  1 5 1 i  1 5 2 j  1 5 3 k  1 5 4 l  1 5 5 m  1 5 6 n  1 5 7 o 
 1 6 0 p  1 6 1 q  1 6 2 r  1 6 3 s  1 6 4 t  1 6 5 u  1 6 6 v  1 6 7 w 
 1 7 0 x  1 7 1 y  1 7 2 z  1 7 3 {  1 7 4   1 7 5 }  1 7 6 ˜  1 7 7 d e l 

FILES
/usr/pub/ascii

7th Edition 1

EQNCHAR (7) UNIX Programmer’s Manual EQNCHAR (7)

NAME
eqnchar – special character definitions for eqn

SYNOPSIS
eqn /usr/pub/eqnchar [files]  troff [options]

neqn /usr/pub/eqnchar [files]  nroff [options]

DESCRIPTION
Eqnchar contains troff and nroff character definitions for constructing characters that are not available on
the Graphic Systems typesetter. These definitions are primarily intended for use with eqn and neqn . It
contains definitions for the following characters

ciplus +   || square
citimes × langle ⁄

\ circle
wig ∼ rangle \

⁄ blot
-wig ∼− hbar h

_
bullet •

>wig >∼ ppd _| prop ∝
<wig <∼ <-> ← → empty ∅
=wig =∼ ∼ <=> <= => member ∈
star * < < | nomem ∈ ⁄
bigstar + ×  > > | cup ∪
=dot =. ang ⁄_ cap ∩
orsign \ \⁄ ⁄ rang | _ incl |———
andsign ⁄ ⁄\ \ 3dot

... subset ⊂
=del =

∆ thf ... supset ⊃
oppA \ \⁄ ⁄- - - - quarter 1⁄4 !subset ⊆
oppE ——

— 3quarter 3⁄4 !supset ⊇
angstrom Å degree ˚

FILES
/usr/pub/eqnchar

SEE ALSO
troff(1), eqn(1)

7th Edition 1

HIER (7) UNIX Programmer’s Manual HIER (7)

NAME
hier – file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a representative directory hierarchy.

/ root
/dev/ devices (4)

console main console, tty(4)
tty* terminals, tty(4)
cat phototypesetter cat(4)
rp* disks, rp, hp(4)
rrp* raw disks, rp, hp(4)
...

/bin/ utility programs, cf /usr/bin/ (1)
as assembler first pass, cf /usr/lib/as2
cc C compiler executive, cf /usr/lib/c[012]
...

/lib/ object libraries and other stuff, cf /usr/lib/
libc.a system calls, standard I/O, etc. (2,3,3S)
libm.a math routines (3M)
libplot.a

plotting routines, plot(3)
libF77.a

Fortran runtime support
libI77.a Fortran I/O
...
as2 second pass of as(1)
c[012] passes of cc(1)
...

/etc/ essential data and dangerous maintenance utilities
passwd password file, passwd(5)
group group file, group(5)
motd message of the day, login(1)
mtab mounted file table, mtab(5)
ddate dump history, dump(1)
ttys properties of terminals, ttys(5)
getty part of login , getty(8)
init the father of all processes, init(8)
rc shell program to bring the system up
cron the clock daemon, cron(8)
mount mount(1)
wall wall(1)
...

/tmp/ temporary files, usually on a fast device, cf /usr/tmp/
e* used by ed(1)
ctm* used by cc(1)
...

/usr/ general-pupose directory, usually a mounted file system
adm/ administrative information

wtmp login history, utmp(5)
messages

hardware error messages
tracct phototypesetter accounting, troff(1)

7th Edition 1

HIER (7) UNIX Programmer’s Manual HIER (7)

vpacct line printer accounting lpr(1)
/usr /bin

utility programs, to keep /bin/ small
tmp/ temporaries, to keep /tmp/ small

stm* used by sort(1)
raster used by plot(1)

dict/ word lists, etc.
words principal word list, used by look(1)
spellhist

history file for spell(1)
games/

bj blackjack
hangman
quiz.k/ what quiz(6) knows

index category index
africa countries and capitals
...

...
include/ standard #include files

a.out.h object file layout, a.out(5)
stdio.h standard I/O, stdio(3)
math.h (3M)
...
sys/ system-defined layouts, cf /usr/sys/h

acct.h process accounts, acct(5)
buf.h internal system buffers
...

lib/ object libraries and stuff, to keep /lib/ small
lint[12] subprocesses for lint(1)
llib-lc dummy declarations for /lib/libc.a, used by lint(1)
llib-lm dummy declarations for /lib/libc.m
atrun scheduler for at(1)
struct/ passes of struct(1)
...
tmac/ macros for troff(1)

tmac.an macros for man(7)
tmac.s macros for ms(7)
...

font/ fonts for troff(1)
R Times Roman
B Times Bold
...

uucp/ programs and data for uucp(1)
L.sys remote system names and numbers
uucico the real copy program
...

suftab table of suffixes for hyphenation, used by troff(1)
units conversion tables for units(1)
eign list of English words to be ignored by ptx(1)

/usr/ man/
volume 1 of this manual, man(1)

man0/ general

7th Edition 2

HIER (7) UNIX Programmer’s Manual HIER (7)

intro introduction to volume 1, ms(7) format
xx template for manual page

man1/ chapter 1
as.1
mount.1m
...

cat1/ preprinted pages for man1/
as.1
mount.1m

...
spool/ delayed execution files

at/ used by at(1)
lpd/ used by lpr(1)

lock present when line printer is active
cf* copy of file to be printed, if necessary
df* daemon control file, lpd(8)
tf* transient control file, while lpr is working

uucp/ work files and staging area for uucp(1)
LOGFILE

summary log
LOG.* log file for one transaction

mail/ mailboxes for mail(1)
uid mail file for user uid
uid .lock

lock file while uid is receiving mail
wd initial working directory of a user, typically wd is the user’s login name

.profile set environment for sh(1), environ(5)
calendar

user’s datebook for calendar(1)
doc/ papers, mostly in volume 2 of this manual, typically in ms(7) format

as/ assembler manual
c C manual
...

sys/ system source
dev/ device drivers

bio.c common code
cat.c cat(4)
dh.c DH11, tty(4)
tty tty(4)
...

conf/ hardware-dependent code
mch.s assembly language portion
conf configuration generator
...

h/ header (include) files
acct.h acct(5)
stat.h stat(2)
...

sys/ source for system proper
main.c
pipe.c
sysent.c system entry points

7th Edition 3

HIER (7) UNIX Programmer’s Manual HIER (7)

...
/usr/ src/

source programs for utilities, etc.
cmd/ source of commands

as/ assembler
makefile

recipe for rebuilding the assembler
as1?.s source of pass1

ar.c source for ar(1)
...
troff/ source for nroff and troff(1)

nmake makefile for nroff
tmake makefile for troff
font/ source for font tables, /usr/lib/font/

ftR.c Roman
...

term/ terminal characteristics tables, /usr/lib/term/
tab300.c

DASI 300
...

...
libc/ source for functions in /lib/libc.a

crt/ C runtime support
ldiv.s division into a long
lmul.s multiplication to produce long
...

csu/ startup and wrapup routines needed with every C program
crt0.s regular startup
mcrt0.s modified startup for cc – p

sys/ system calls (2)
access.s
alarm.s
...

stdio/ standard I/O functions (3S)
fgets.c
fopen.c
...

gen/ other functions in (3)
abs.c
atof.c
...

compall shell procedure to compile libc
mklib shell procedure to make /lib/libc.a

libI77/ source for /lib/libI77
libF77/
...
games/ source for /usr/games

SEE ALSO
ls(1), ncheck(1), find(1), grep(1)

BUGS
The position of files is subject to change without notice.

7th Edition 4

MAN (7) UNIX Programmer’s Manual MAN (7)

NAME
man – macros to typeset manual

SYNOPSIS
nroff – man file ...

troff – man file ...

DESCRIPTION
These macros are used to lay out pages of this manual. A skeleton page may be found in the file
/usr/man/man0/xx.

Any text argument t may be zero to six words. Quotes may be used to include blanks in a ‘word’. If
text is empty, the special treatment is applied to the next input line with text to be printed. In this way
.I may be used to italicize a whole line, or .SM followed by .B to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is reset to
default value upon reaching a non-indented paragraph. Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing font and size
setting macros.

These strings are predefined by – man:

*R ‘’, ‘(Reg)’ in nroff.

*S Change to default type size.

FILES
/usr/lib/tmac/tmac.an
/usr/man/man0/xx

SEE ALSO
troff(1), man(1)

BUGS
Relative indents don’t nest.

REQUESTS
Request Cause If no Explanation

Break Argument
.B t no t=n.t.l.* Text t is bold.
.BI t no t=n.t.l. Join words of t alternating bold and italic.
.BR t no t=n.t.l. Join words of t alternating bold and Roman.
.DT no .5i 1i... Restore default tabs.
.HP i yes i=p.i.* Set prevailing indent to i. Begin paragraph with hanging indent.
.I t no t=n.t.l. Text t is italic.
.IB t no t=n.t.l. Join words of t alternating italic and bold.
.IP x i yes x="" Same as .TP with tag x.
.IR t no t=n.t.l. Join words of t alternating italic and Roman.
.LP yes - Same as .PP.
.PD d no d=.4v Interparagraph distance is d.
.PP yes - Begin paragraph. Set prevailing indent to .5i.
.RE yes - End of relative indent. Set prevailing indent to amount of starting .RS.
.RB t no t=n.t.l. Join words of t alternating Roman and bold.
.RI t no t=n.t.l. Join words of t alternating Roman and italic.
.RS i yes i=p.i. Start relative indent, move left margin in distance i. Set prevailing indent to .5i for

nested indents.
.SH t yes t=n.t.l. Subhead.
.SM t no t=n.t.l. Text t is small.

7th Edition 1

MAN (7) UNIX Programmer’s Manual MAN (7)

.TH n c x yes - Begin page named n of chapter c; x is extra commentary, e.g. ‘local’, for page foot.
Set prevailing indent and tabs to .5i.

.TP i yes i=p.i. Set prevailing indent to i. Begin indented paragraph with hanging tag given by next
text line. If tag doesn’t fit, place it on separate line.

* n.t.l. = next text line; p.i. = prevailing indent

7th Edition 2

MS (7) UNIX Programmer’s Manual MS (7)

NAME
ms – macros for formatting manuscripts

SYNOPSIS
nroff – ms [options] file ...
troff – ms [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a canned formatting facility for technical
papers in various formats. When producing 2-column output on a terminal, filter the output through
col(1).

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction with this
package, however these requests may be used with impunity after the first .PP:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

Output of the eqn, neqn, refer, and tbl(1) preprocessors for equations and tables is acceptable as input.

FILES
/usr/lib/tmac/tmac.s

SEE ALSO
eqn(1), troff(1), refer(1), tbl(1)

REQUESTS
Request Initial Cause Explanation

Value Break
.1C yes yes One column format on a new page.
.2C no yes Two column format.
.AB no yes Begin abstract.
.AE - yes End abstract.
.AI no yes Author’s institution follows. Suppressed in TM.
.AT no yes Print ‘Attached’ and turn off line filling.
.AU x y no yes Author’s name follows. x is location and y is extension, ignored except in TM.
.B x no no Print x in boldface; if no argument switch to boldface.
.B1 no yes Begin text to be enclosed in a box.
.B2 no yes End text to be boxed & print it.
.BT date no Bottom title, automatically invoked at foot of page. May be redefined.
.BX x no no Print x in a box.
.CS x... - yes Cover sheet info if TM format, suppressed otherwise. Arguments are number of text

pages, other pages, total pages, figures, tables, references.
.CT no yes Print ‘Copies to’ and enter no-fill mode.
.DA x nroff no ‘Date line’ at bottom of page is x . Default is today.
.DE - yes End displayed text. Implies .KE.
.DS x no yes Start of displayed text, to appear verbatim line-by-line. x=I for indented display

(default), x=L for left-justified on the page, x=C for centered, x=B for make left-justified
block, then center whole block. Implies .KS.

.EG no - Print document in BTL format for ‘Engineer’s Notes.’ Must be first.

.EN - yes Space after equation produced by eqn or neqn .

.EQ x y - yes Precede equation; break out and add space. Equation number is y . The optional argu-
ment x may be I to indent equation (default), L to left-adjust the equation, or C to center
the equation.

7th Edition 1

MS (7) UNIX Programmer’s Manual MS (7)

.FE - yes End footnote.

.FS no no Start footnote. The note will be moved to the bottom of the page.

.HO - no ‘Bell Laboratories, Holmdel, New Jersey 07733’.

.I x no no Italicize x; if x missing, italic text follows.

.IH no no ‘Bell Laboratories, Naperville, Illinois 60540’

.IM no no Print document in BTL format for an internal memorandum. Must be first.

.IP x y no yes Start indented paragraph, with hanging tag x . Indentation is y ens (default 5).

.KE - yes End keep. Put kept text on next page if not enough room.

.KF no yes Start floating keep. If the kept text must be moved to the next page, float later text back
to this page.

.KS no yes Start keeping following text.

.LG no no Make letters larger.

.LP yes yes Start left-blocked paragraph.

.MF - - Print document in BTL format for ‘Memorandum for File.’ Must be first.

.MH - no ‘Bell Laboratories, Murray Hill, New Jersey 07974’.

.MR - - Print document in BTL format for ‘Memorandum for Record.’ Must be first.

.ND date troff no Use date supplied (if any) only in special BTL format positions; omit from page footer.

.NH n - yes Same as .SH, with section number supplied automatically. Numbers are multilevel, like
1.2.3, where n tells what level is wanted (default is 1).

.NL yes no Make letters normal size.

.OK - yes ‘Other keywords’ for TM cover sheet follow.

.PP no yes Begin paragraph. First line indented.

.PT pg # - Page title, automatically invoked at top of page. May be redefined.

.PY - no ‘Bell Laboratories, Piscataway, New Jersey 08854’

.QE - yes End quoted (indented and shorter) material.

.QP - yes Begin single paragraph which is indented and shorter.

.QS - yes Begin quoted (indented and shorter) material.

.R yes no Roman text follows.

.RE - yes End relative indent level.

.RP no - Cover sheet and first page for released paper. Must precede other requests.

.RS - yes Start level of relative indentation. Following .IP’s are measured from current indentation.

.SG x no yes Insert signature(s) of author(s), ignored except in TM. x is the reference line (initials of
author and typist).

.SH - yes Section head follows, font automatically bold.

.SM no no Make letters smaller.

.TA x... 5... no Set tabs in ens. Default is 5 10 15 ...

.TE - yes End table.

.TH - yes End heading section of table.

.TL no yes Title follows.

.TM x... no - Print document in BTL technical memorandum format. Arguments are TM number,
(quoted list of) case number(s), and file number. Must precede other requests.

.TR x - - Print in BTL technical report format; report number is x. Must be first.

.TS x - yes Begin table; if x is H table has repeated heading.

.UL x - no Underline argument (even in troff).

.UX - no ‘UNIX’; first time used, add footnote ‘UNIX is a trademark of Bell Laboratories.’

.WH - no ‘Bell Laboratories, Whippany, New Jersey 07981’.

7th Edition 2

TERM (7) UNIX Programmer’s Manual TERM (7)

NAME
terminals– conventional names

DESCRIPTION
These names are used by certain commands and are maintained as part of the shell environment (see
sh(1),environ(5)).

1620 DIABLO 1620 (and others using HyType II)
1620– 12 same, in 12-pitch mode
300 DASI/DTC/GSI 300 (and others using HyType I)
300– 12 same, in 12-pitch mode
300s DASI/DTC 300/S
300s– 12 same, in 12-pitch mode
33 TELETYPE Model 33
37 TELETYPE Model 37
40– 2 TELETYPE Model 40/2
43 TELETYPE Model 43
450 DASI 450 (same as Diablo 1620)
450– 12 same, in 12-pitch mode
450– 12– 8 same, in 12-pitch, 8 lines/inch mode
735 Texas Instruments TI735 (and TI725)
745 Texas Instruments TI745
dumb terminals with no special features
hp Hewlett-Packard HP264? series terminals
4014 Tektronix 4014
tn1200 General Electric TermiNet 1200
tn300 General Electric TermiNet 300
vt05 Digital Equipment Corp. VT05

Commands whose behavior may depend on the terminal accept arguments of the form – Tterm, where
term is one of the names given above. If no such argument is present, a command may consult the shell
environment for the terminal type.

SEE ALSO
stty(1), tabs(1), plot(1), sh(1), environ(5)
troff(1) for nroff

BUGS
The programs that ought to adhere to this nomenclature do so only fitfully.

7th Edition 1

BOOT (8) UNIX Programmer’s Manual BOOT (8)

NAME
boot – startup procedures

DESCRIPTION
A PDP11/45 and PDP11/70 UNIX system is started by a two-stage process. The first is a primary
bootstrap which is able to read in relatively small stand-alone programs; the second (called boot) is used
to read in the system itself.

The primary bootstrap must reside in the otherwise unused block zero of the boot device. It can be read
in and started by the standard ROM programs, or if necessary by keying in a small startup routine. This
program is capable of loading type 407 executable files (not shared, not separate I&D). The user types
on the system console the name of the program wished, in this case boot , followed by a carriage return;
the named program is retrieved from the file system that starts at block 0 of drive 0 of the boot device.
No prompt is given, no diagnostic results if the file cannot be found, and no provision is made for
correcting typographical errors.

The second step, called boot, actually brings in the system. When read into location 0 and executed,
boot sets up memory management, relocates itself into high memory, and types a ‘:’ on the console.
Then it reads from the console a device specification (see below) followed immediately by a pathname.
Boot finds the corresponding file on the given device, loads that file into memory location zero, sets up
memory management as required, and calls the program by executing a ‘trap’ instruction. Normal line
editing characters can be used.

Conventionally, the name of the secondary boot program is ‘/boot’ and the name of the current version
of the system is ‘/unix’. Then, the recipe is:

1) Load block 0 of the boot device by fiddling with the console keys as appropriate for your
hardware. If you have no appropriate ROM, some programs suitable for manual use are given
below.

2) Type boot .

3) When the prompt is given, type
hp(0,0)unix

or
rp(0,0)unix

depending on whether you are loading from an RP04/5/6 or an RP03 respectively. The first 0
indicates the physical unit number; the second indicates the block number of the beginning of
the logical file system to be searched. (See below).

When the system is running, it types a ‘#’ prompt. After doing any file system checks and setting the
date (date(8)) a multi-user system is brought up by typing an EOT (control-d) in response to the ‘#’
prompt.

Device specifications. A device specification has the following form:

device(unit,offset)

where device is the type of the device to be searched, unit is the unit number of the device, and offset is
the block offset of the file system on the device. Device is one of the following

rp RP03
hp RP04/5/6
rk RK05

For example, the specification

hp(1,7000)

indicates an RP03 disk, unit 1, and the file system found starting at block 7000 (cylinder 35).

7th Edition 1

BOOT (8) UNIX Programmer’s Manual BOOT (8)

ROM programs. The following programs to call the primary bootstrap may be installed in read-only
memories or manually keyed into main memory. Each program is position-independent but should be
placed well above location 0 so it will not be overwritten. Each reads a block from the beginning of a
device into core location zero. The octal words constituting the program are listed on the left.

RK (drive 0):
012700 mov $rkda,r0
177412
005040 clr – (r0) / rkda cleared by start
010040 mov r0,– (r0)
012740 mov $5,– (r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

RP (drive 0)
012700 mov $rpmr,r0
176726
005040 clr – (r0)
005040 clr – (r0)
005040 clr – (r0)
010040 mov r0,– (r0)
012740 mov $5,– (r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

FILES
/unix – system code
/usr/mdec/rpuboot, /usr/mdec/hpuboot – copies of primary bootstrap
/boot – second stage bootstrap

SEE ALSO
init(8)

7th Edition 2

CRASH (8) UNIX Programmer’s Manual CRASH (8)

NAME
crash – what to do when the system crashes

DESCRIPTION
This section gives at least a few clues about how to proceed if the system crashes. It can’t pretend to be
complete.

Bringing it back up. If the reason for the crash is not evident (see below for guidance on ‘evident’) you
may want to try to dump the system if you feel up to debugging. At the moment a dump can be taken
only on magtape. With a tape mounted and ready, stop the machine, load address 44, and start. This
should write a copy of all of core on the tape with an EOF mark. Caution: Any error is taken to mean
the end of core has been reached. This means that you must be sure the ring is in, the tape is ready, and
the tape is clean and new. If the dump fails, you can try again, but some of the registers will be lost.
See below for what to do with the tape.

In restarting after a crash, always bring up the system single-user. This is accomplished by following
the directions in boot(8) as modified for your particular installation; a single-user system is indicated by
having a particular value in the switches (173030 unless you’ve changed init) as the system starts exe-
cuting. When it is running, perform a dcheck and icheck(1) on all file systems which could have been
in use at the time of the crash. If any serious file system problems are found, they should be repaired.
When you are satisfied with the health of your disks, check and set the date if necessary, then come up
multi-user. This is most easily accomplished by changing the single-user value in the switches to some-
thing else, then logging out by typing an EOT.

To even boot UNIX at all, three files (and the directories leading to them) must be intact. First, the ini-
tialization program /etc/init must be present and executable. If it is not, the CPU will loop in user mode
at location 6. For init to work correctly, /dev/tty8 and /bin/sh must be present. If either does not exist,
the symptom is best described as thrashing. Init will go into a fork/exec loop trying to create a Shell
with proper standard input and output.

If you cannot get the system to boot, a runnable system must be obtained from a backup medium. The
root file system may then be doctored as a mounted file system as described below. If there are any
problems with the root file system, it is probably prudent to go to a backup system to avoid working on
a mounted file system.

Repairing disks. The first rule to keep in mind is that an addled disk should be treated gently; it
shouldn’t be mounted unless necessary, and if it is very valuable yet in quite bad shape, perhaps it
should be dumped before trying surgery on it. This is an area where experience and informed courage
count for much.

The problems reported by icheck typically fall into two kinds. There can be problems with the free list:
duplicates in the free list, or free blocks also in files. These can be cured easily with an icheck – s. If
the same block appears in more than one file or if a file contains bad blocks, the files should be deleted,
and the free list reconstructed. The best way to delete such a file is to use clri(1), then remove its direc-
tory entries. If any of the affected files is really precious, you can try to copy it to another device first.

Dcheck may report files which have more directory entries than links. Such situations are potentially
dangerous; clri discusses a special case of the problem. All the directory entries for the file should be
removed. If on the other hand there are more links than directory entries, there is no danger of spread-
ing infection, but merely some disk space that is lost for use. It is sufficient to copy the file (if it has
any entries and is useful) then use clri on its inode and remove any directory entries that do exist.

Finally, there may be inodes reported by dcheck that have 0 links and 0 entries. These occur on the root
device when the system is stopped with pipes open, and on other file systems when the system stops
with files that have been deleted while still open. A clri will free the inode, and an icheck -s will
recover any missing blocks.

7th Edition 1

CRASH (8) UNIX Programmer’s Manual CRASH (8)

Why did it crash? UNIX types a message on the console typewriter when it voluntarily crashes. Here is
the current list of such messages, with enough information to provide a hope at least of the remedy.
The message has the form ‘panic: ...’, possibly accompanied by other information. Left unstated in all
cases is the possibility that hardware or software error produced the message in some unexpected way.

blkdev
The getblk routine was called with a nonexistent major device as argument. Definitely hardware
or software error.

devtab
Null device table entry for the major device used as argument to getblk. Definitely hardware or
software error.

iinit
An I/O error reading the super-block for the root file system during initialization.

out of inodes
A mounted file system has no more i-nodes when creating a file. Sorry, the device isn’t available;
the icheck should tell you.

no fs
A device has disappeared from the mounted-device table. Definitely hardware or software error.

no imt
Like ‘no fs’, but produced elsewhere.

no inodes
The in-core inode table is full. Try increasing NINODE in param.h. Shouldn’t be a panic, just a
user error.

no clock
During initialization, neither the line nor programmable clock was found to exist.

swap error
An unrecoverable I/O error during a swap. Really shouldn’t be a panic, but it is hard to fix.

unlink – iget
The directory containing a file being deleted can’t be found. Hardware or software.

out of swap space
A program needs to be swapped out, and there is no more swap space. It has to be increased.
This really shouldn’t be a panic, but there is no easy fix.

out of text
A pure procedure program is being executed, and the table for such things is full. This shouldn’t
be a panic.

trap
An unexpected trap has occurred within the system. This is accompanied by three numbers: a
‘ka6’, which is the contents of the segmentation register for the area in which the system’s stack is
kept; ‘aps’, which is the location where the hardware stored the program status word during the
trap; and a ‘trap type’ which encodes which trap occurred. The trap types are:

0 bus error
1 illegal instruction
2 BPT/trace
3 IOT
4 power fail
5 EMT
6 recursive system call (TRAP instruction)
7 11/70 cache parity, or programmed interrupt

7th Edition 2

CRASH (8) UNIX Programmer’s Manual CRASH (8)

10 floating point trap
11 segmentation violation

In some of these cases it is possible for octal 20 to be added into the trap type; this indicates that the
processor was in user mode when the trap occurred. If you wish to examine the stack after such a trap,
either dump the system, or use the console switches to examine core; the required address mapping is
described below.

Interpreting dumps. All file system problems should be taken care of before attempting to look at
dumps. The dump should be read into the file /usr/sys/core; cp(1) will do. At this point, you should
execute ps – alxk and who to print the process table and the users who were on at the time of the crash.
You should dump (od(1)) the first 30 bytes of /usr/sys/core. Starting at location 4, the registers R0, R1,
R2, R3, R4, R5, SP and KDSA6 (KISA6 for 11/40s) are stored. If the dump had to be restarted, R0
will not be correct. Next, take the value of KA6 (location 022(8) in the dump) multiplied by 0100(8)
and dump 01000(8) bytes starting from there. This is the per-process data associated with the process
running at the time of the crash. Relabel the addresses 140000 to 141776. R5 is C’s frame or display
pointer. Stored at (R5) is the old R5 pointing to the previous stack frame. At (R5)+2 is the saved PC
of the calling procedure. Trace this calling chain until you obtain an R5 value of 141756, which is
where the user’s R5 is stored. If the chain is broken, you have to look for a plausible R5, PC pair and
continue from there. Each PC should be looked up in the system’s name list using adb(1) and its ‘:’
command, to get a reverse calling order. In most cases this procedure will give an idea of what is
wrong. A more complete discussion of system debugging is impossible here.

SEE ALSO
clri(1), icheck(1), dcheck(1), boot(8)

7th Edition 3

CRON (8) UNIX Programmer’s Manual CRON (8)

NAME
cron – clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION
Cron executes commands at specified dates and times according to the instructions in the file
/usr/lib/crontab. Since cron never exits, it should only be executed once. This is best done by running
cron from the initialization process through the file /etc/rc; see init(8).

Crontab consists of lines of six fields each. The fields are separated by spaces or tabs. The first five are
integer patterns to specify the minute (0-59), hour (0-23), day of the month (1-31), month of the year
(1-12), and day of the week (1-7 with 1=monday). Each of these patterns may contain a number in the
range above; two numbers separated by a minus meaning a range inclusive; a list of numbers separated
by commas meaning any of the numbers; or an asterisk meaning all legal values. The sixth field is a
string that is executed by the Shell at the specified times. A percent character in this field is translated
to a new-line character. Only the first line (up to a % or end of line) of the command field is executed
by the Shell. The other lines are made available to the command as standard input.

Crontab is examined by cron every minute.

FILES
/usr/lib/crontab

7th Edition 1

GETTY (8) UNIX Programmer’s Manual GETTY (8)

NAME
getty – set typewriter mode

SYNOPSIS
/etc/getty [char]

DESCRIPTION
Getty is invoked by init(8) immediately after a typewriter is opened following a dial-up. It reads the
user’s login name and calls login(1) with the name as argument. While reading the name getty attempts
to adapt the system to the speed and type of terminal being used.

Init calls getty with a single character argument taken from the ttys(5) file entry for the terminal line.
This argument determines a sequence of line speeds through which getty cycles, and also the ‘login:’
greeting message, which can contain character sequences to put various kinds of terminals in useful
states.

The user’s name is terminated by a new-line or carriage-return character. In the second case CRMOD
mode is set (see ioctl(2)).

The name is scanned to see if it contains any lower-case alphabetic characters; if not, and if the name is
nonempty, the system is told to map any future upper-case characters into the corresponding lower-case
characters.

If the terminal’s ‘break’ key is depressed, getty cycles to the next speed appropriate to the type of line
and prints the greeting message again.

Finally, login is called with the user’s name as argument.

The following arguments from the ttys file are understood.

0 Cycles through 300-1200-150-110 baud. Useful as a default for dialup lines accessed by a
variety of terminals.

– Intended for an on-line Teletype model 33, for example an operator’s console.

1 Optimized for a 150-baud Teletype model 37.

2 Intended for an on-line 9600-baud terminal, for example the Textronix 4104.

3 Starts at 1200 baud, cycles to 300 and back. Useful with 212 datasets where most terminals
run at 1200 speed.

5 Same as ‘3’ but starts at 300.

4 Useful for on-line console DECwriter (LA36).

SEE ALSO
init(8), login(1), ioctl(2), ttys(5)

7th Edition 1

INIT (8) UNIX Programmer’s Manual INIT (8)

NAME
init, rc – process control initialization

SYNOPSIS
/etc/init
/etc/rc

DESCRIPTION
Init is invoked as the last step of the boot procedure (see boot(8)). Generally its role is to create a pro-
cess for each typewriter on which a user may log in.

When init first is executed the console typewriter /dev/console. is opened for reading and writing and the
shell is invoked immediately. This feature is used to bring up a single-user system. If the shell ter-
minates, init comes up multi-user and the process described below is started.

When init comes up multiuser, it invokes a shell, with input taken from the file /etc/rc. This command
file performs housekeeping like removing temporary files, mounting file systems, and starting daemons.

Then init reads the file /etc/ttys and forks several times to create a process for each typewriter specified
in the file. Each of these processes opens the appropriate typewriter for reading and writing. These
channels thus receive file descriptors 0, 1 and 2, the standard input, output and error files. Opening the
typewriter will usually involve a delay, since the open is not completed until someone is dialed up and
carrier established on the channel. Then /etc/getty is called with argument as specified by the last char-
acter of the ttys file line. Getty reads the user’s name and invokes login(1) to log in the user and exe-
cute the shell.

Ultimately the shell will terminate because of an end-of-file either typed explicitly or generated as a
result of hanging up. The main path of init , which has been waiting for such an event, wakes up and
removes the appropriate entry from the file utmp , which records current users, and makes an entry in
/usr/adm/wtmp , which maintains a history of logins and logouts. Then the appropriate typewriter is reo-
pened and getty is reinvoked.

Init catches the hangup signal SIGHUP and interprets it to mean that the system should be brought from
multi user to single user. Use ‘kill -1 1’ to send the hangup signal.

FILES
/dev/tty?, /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/rc

SEE ALSO
login(1), kill(1), sh(1), ttys(5), getty(8)

7th Edition 1

MAKEKEY (8) UNIX Programmer’s Manual MAKEKEY (8)

NAME
makekey – generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the amount
of time required to search the key space. It reads 10 bytes from its standard input, and writes 13 bytes
on its standard output. The output depends on the input in a way intended to be difficult to compute
(i.e. to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are
best chosen from the set of digits, upper- and lower-case letters, and ‘.’ and ‘/’. The salt characters are
repeated as the first two characters of the output. The remaining 11 output characters are chosen from
the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4096 crypto-
graphic machines all based on the National Bureau of Standards DES algorithm, but modified in 4096
different ways. Using the input key as key, a constant string is fed into the machine and recirculated a
number of times. The 64 bits that come out are distributed into the 66 useful key bits in the result.

Makekey is intended for programs that perform encryption (e.g. ed and crypt(1)). Usually its input and
output will be pipes.

SEE ALSO
crypt(1), ed(1)

7th Edition 1

UPDATE (8) UNIX Programmer’s Manual UPDATE (8)

NAME
update – periodically update the super block

SYNOPSIS
/etc/update

DESCRIPTION
Update is a program that executes the sync(2) primitive every 30 seconds. This insures that the file sys-
tem is fairly up to date in case of a crash. This command should not be executed directly, but should be
executed out of the initialization shell command file.

SEE ALSO
sync(2), sync(1), init(8)

BUGS
With update running, if the CPU is halted just as the sync is executed, a file system can be damaged.
This is partially due to DEC hardware that writes zeros when NPR requests fail. A fix would be to have
sync(1) temporarily increment the system time by at least 30 seconds to trigger the execution of update.
This would give 30 seconds grace to halt the CPU.

7th Edition 1

	Cover
	Introduction
	Permuted Index
	Section 1
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6
	Section 7
	Section 8

