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ABSTRACT

Computer program input generally has some structure; in fact, every computer
program that does input can be thought of as defining an ‘‘input language’’ which it
accepts. An input language may be as complex as a programming language, or as sim-
ple as a sequence of numbers. Unfortunately, usual input facilities are limited, difficult
to use, and often are lax about checking their inputs for validity.

Yacc provides a general tool for describing the input to a computer program.
The Yacc user specifies the structures of his input, together with code to be invoked as
each such structure is recognized. Yacc turns such a specification into a subroutine
that handles the input process; frequently, it is convenient and appropriate to have most
of the flow of control in the user’s application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the
next basic input item. Thus, the user can specify his input in terms of individual input
characters, or in terms of higher level constructs such as names and numbers. The
user-supplied routine may also handle idiomatic features such as comment and con-
tinuation conventions, which typically defy easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a very gen-
eral one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been
used for less conventional languages, including a phototypesetter language, several
desk calculator languages, a document retrieval system, and a Fortran debugging sys-
tem.
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0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program. The
Yacc user prepares a specification of the input process; this includes rules describing the input structure,
code to be invoked when these rules are recognized, and a low-level routine to do the basic input. Yacc
then generates a function to control the input process. This function, called a parser , calls the user-
supplied low-level input routine (the lexical analyzer ) to pick up the basic items (called tokens ) from
the input stream. These tokens are organized according to the input structure rules, called grammar
rules ; when one of these rules has been recognized, then user code supplied for this rule, an action , is
invoked; actions have the ability to return values and make use of the values of other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C as well.
Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ´,´ year ;

Here, date , month_name , day , and year represent structures of interest in the input process; presum-
ably, month_name , day , and year are defined elsewhere. The comma ‘‘,’’ is enclosed in single quotes;
this implies that the comma is to appear literally in the input. The colon and semicolon merely serve as
punctuation in the rule, and have no significance in controlling the input. Thus, with proper definitions,
the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user routine
reads the input stream, recognizing the lower level structures, and communicates these tokens to the
parser. For historical reasons, a structure recognized by the lexical analyzer is called a terminal symbol ,
while the structure recognized by the parser is called a nonterminal symbol . To avoid confusion, termi-
nal symbols will usually be referred to as tokens .

There is considerable leeway in deciding whether to recognize structures using the lexical analyzer
or grammar rules. For example, the rules

month_name : ´J´ ´a´ ´n´ ;
month_name : ´F´ ´e´ ´b´ ;

. . .

month_name : ´D´ ´e´ ´c´ ;

might be used in the above example. The lexical analyzer would only need to recognize individual
letters, and month_name would be a nonterminal symbol. Such low-level rules tend to waste time and
space, and may complicate the specification beyond Yacc’s ability to deal with it. Usually, the lexical
analyzer would recognize the month names, and return an indication that a month_name was seen; in
this case, month_name would be a token.
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Literal characters such as ‘‘,’’ must also be passed through the lexical analyzer, and are also con-
sidered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule

date : month ´/´ day ´/´ year ;

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be ‘‘slipped in’’ to a working system with minimal effort, and little
danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as
early as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the bad data can usually be quickly found.
Error handling, provided as part of the input specifications, permits the reentry of bad data, or the con-
tinuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For example, the
specifications may be self contradictory, or they may require a more powerful recognition mechanism
than that available to Yacc. The former cases represent design errors; the latter cases can often be
corrected by making the lexical analyzer more powerful, or by rewriting some of the grammar rules.
While Yacc cannot handle all possible specifications, its power compares favorably with similar systems;
moreover, the constructions which are difficult for Yacc to handle are also frequently difficult for human
beings to handle. Some users have reported that the discipline of formulating valid Yacc specifications
for their input revealed errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.234 Yacc has been extensively used in
numerous practical applications, including lint ,5 the Portable C Compiler,6 and a system for typesetting
mathematics.7

The next several sections describe the basic process of preparing a Yacc specification; Section 1
describes the preparation of grammar rules, Section 2 the preparation of the user supplied actions associ-
ated with these rules, and Section 3 the preparation of lexical analyzers. Section 4 describes the opera-
tion of the parser. Section 5 discusses various reasons why Yacc may be unable to produce a parser
from a specification, and what to do about it. Section 6 describes a simple mechanism for handling
operator precedences in arithmetic expressions. Section 7 discusses error detection and recovery. Sec-
tion 8 discusses the operating environment and special features of the parsers Yacc produces. Section 9
gives some suggestions which should improve the style and efficiency of the specifications. Section 10
discusses some advanced topics, and Section 11 gives acknowledgements. Appendix A has a brief
example, and Appendix B gives a summary of the Yacc input syntax. Appendix C gives an example
using some of the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and
syntax no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared
as such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexical
analyzer as part of the specification file; it may be useful to include other programs as well. Thus, every
specification file consists of three sections: the declarations , (grammar) rules , and programs . The sec-
tions are separated by double percent ‘‘%%’’ marks. (The percent ‘‘%’’ is generally used in Yacc
specifications as an escape character.)

In other words, a full specification file looks like
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declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the second
%% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi-
character reserved symbols. Comments may appear wherever a name is legal; they are enclosed in /∗ . .
. ∗/, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and literals.
The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ‘‘.’’, underscore ‘‘_’’, and
non-initial digits. Upper and lower case letters are distinct. The names used in the body of a grammar
rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes ‘‘´’’. As in C, the backslash ‘‘\’’ is an
escape character within literals, and all the C escapes are recognized. Thus

´\n´ newline
´\r´ return
´\´´ single quote ‘‘´’’
´\\´ backslash ‘‘\’’
´\t´ tab
´\b´ backspace
´\f´ form feed
´\xxx´ ‘‘xxx’’ in octal

For a number of technical reasons, the NUL character (´\0´ or 0) should never be used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar ‘‘|’’ can be used to
avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be dropped before
a vertical bar. Thus the grammar rules

A : B C D ;
A : E F ;
A : G ;

can be given to Yacc as

A : B C D
| E F
| G
;

It is not necessary that all grammar rules with the same left side appear together in the grammar rules
section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

empty : ;



- 4 -

Names representing tokens must be declared; this is most simply done by writing

%token name1 name2 . . .

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name not
defined in the declarations section is assumed to represent a nonterminal symbol. Every nonterminal
symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol , has particular importance. The
parser is designed to recognize the start symbol; thus, this symbol represents the largest, most general
structure described by the grammar rules. By default, the start symbol is taken to be the left hand side
of the first grammar rule in the rules section. It is possible, and in fact desirable, to declare the start
symbol explicitly in the declarations section using the %start keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker . If the
tokens up to, but not including, the endmarker form a structure which matches the start symbol, the
parser function returns to its caller after the endmarker is seen; it accepts the input. If the endmarker is
seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see
section 3, below. Usually the endmarker represents some reasonably obvious I/O status, such as ‘‘end-
of-file’’ or ‘‘end-of-record’’.

2: Actions

With each grammar rule, the user may associate actions to be performed each time the rule is
recognized in the input process. These actions may return values, and may obtain the values returned by
previous actions. Moreover, the lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms, and
alter external vectors and variables. An action is specified by one or more statements, enclosed in curly
braces ‘‘{’’ and ‘‘}’’. For example,

A : ´(´ B ´)´
{ hello( 1, "abc" ); }

and

XXX : YYY ZZZ
{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are
altered slightly. The symbol ‘‘dollar sign’’ ‘‘$’’ is used as a signal to Yacc in this context.

To return a value, the action normally sets the pseudo-variable ‘‘$$’’ to some value. For example,
an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may use the
pseudo-variables $1, $2, . . ., which refer to the values returned by the components of the right side of a
rule, reading from left to right. Thus, if the rule is

A : B C D ;

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule
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expr : ´(´ expr ´)´ ;

The value returned by this rule is usually the value of the expr in parentheses. This can be indicated by

expr : ´(´ expr ´)´ { $$ = $2 ; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules of
the form

A : B ;

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable to
get control before a rule is fully parsed. Yacc permits an action to be written in the middle of a rule as
well as at the end. This rule is assumed to return a value, accessible through the usual mechanism by
the actions to the right of it. In turn, it may access the values returned by the symbols to its left. Thus,
in the rule

A : B
{ $$ = 1; }

C
{ x = $2; y = $3; }

;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new nonter-
minal symbol name, and a new rule matching this name to the empty string. The interior action is the
action triggered off by recognizing this added rule. Yacc actually treats the above example as if it had
been written:

$ACT : /∗ empty ∗/
{ $$ = 1; }

;

A : B $ACT C
{ x = $2; y = $3; }

;

In many applications, output is not done directly by the actions; rather, a data structure, such as a
parse tree, is constructed in memory, and transformations are applied to it before output is generated.
Parse trees are particularly easy to construct, given routines to build and maintain the tree structure
desired. For example, suppose there is a C function node , written so that the call

node( L, n1, n2 )

creates a node with label L, and descendants n1 and n2, and returns the index of the newly created node.
Then parse tree can be built by supplying actions such as:

expr : expr ´+´ expr
{ $$ = node( ´+´, $1, $3 ); }

in the specification.

The user may define other variables to be used by the actions. Declarations and definitions can
appear in the declarations section, enclosed in the marks ‘‘%{’’ and ‘‘%}’’. These declarations and
definitions have global scope, so they are known to the action statements and the lexical analyzer. For
example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The Yacc
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parser uses only names beginning in ‘‘yy’’; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be found
in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens (with
values, if desired) to the parser. The lexical analyzer is an integer-valued function called yylex . The
function returns an integer, the token number , representing the kind of token read. If there is a value
associated with that token, it should be assigned to the external variable yylval .

The parser and the lexical analyzer must agree on these token numbers in order for communication
between them to take place. The numbers may be chosen by Yacc, or chosen by the user. In either
case, the ‘‘# define’’ mechanism of C is used to allow the lexical analyzer to return these numbers sym-
bolically. For example, suppose that the token name DIGIT has been defined in the declarations section
of the Yacc specification file. The relevant portion of the lexical analyzer might look like:

yylex(){
extern int yylval;
int c;
. . .
c = getchar();
. . .
switch( c ) {

. . .
case ´0´:
case ´1´:

. . .
case ´9´:

yylval = c– ´0´;
return( DIGIT );
. . .
}

. . .

The intent is to return a token number of DIGIT, and a value equal to the numerical value of the
digit. Provided that the lexical analyzer code is placed in the programs section of the specification file,
the identifier DIGIT will be defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to
avoid using any token names in the grammar that are reserved or significant in C or the parser; for
example, the use of token names if or while will almost certainly cause severe difficulties when the lex-
ical analyzer is compiled. The token name error is reserved for error handling, and should not be used
naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the default
situation, the numbers are chosen by Yacc. The default token number for a literal character is the
numerical value of the character in the local character set. Other names are assigned token numbers
starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name or
literal in the declarations section can be immediately followed by a nonnegative integer. This integer is
taken to be the token number of the name or literal. Names and literals not defined by this mechanism
retain their default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token number
cannot be redefined by the user; thus, all lexical analyzers should be prepared to return 0 or negative as
a token number upon reaching the end of their input.
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A very useful tool for constructing lexical analyzers is the Lex program developed by Mike Lesk.8

These lexical analyzers are designed to work in close harmony with Yacc parsers. The specifications for
these lexical analyzers use regular expressions instead of grammar rules. Lex can be easily used to pro-
duce quite complicated lexical analyzers, but there remain some languages (such as FORTRAN) which
do not fit any theoretical framework, and whose lexical analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex, and will
not be discussed here (see the references for more information). The parser itself, however, is relatively
simple, and understanding how it works, while not strictly necessary, will nevertheless make treatment
of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is also
capable of reading and remembering the next input token (called the lookahead token). The current
state is always the one on the top of the stack. The states of the finite state machine are given small
integer labels; initially, the machine is in state 0, the stack contains only state 0, and no lookahead token
has been read.

The machine has only four actions available to it, called shift , reduce , accept , and error . A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide what
action should be done; if it needs one, and does not have one, it calls yylex to obtain the next
token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next action,
and carries it out. This may result in states being pushed onto the stack, or popped off of the
stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is taken,
there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on the stack,
and state 34 becomes the current state (on the top of the stack). The lookahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropriate
when the parser has seen the right hand side of a grammar rule, and is prepared to announce that it has
seen an instance of the rule, replacing the right hand side by the left hand side. It may be necessary to
consult the lookahead token to decide whether to reduce, but usually it is not; in fact, the default action
(represented by a ‘‘.’’) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also given small
integer numbers, leading to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A : x y z ;

The reduce action depends on the left hand symbol (A in this case), and the number of symbols on the
right hand side (three in this case). To reduce, first pop off the top three states from the stack (In gen-
eral, the number of states popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing x , y , and z , and no longer serve any use-
ful purpose. After popping these states, a state is uncovered which was the state the parser was in
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before beginning to process the rule. Using this uncovered state, and the symbol on the left side of the
rule, perform what is in effect a shift of A. A new state is obtained, pushed onto the stack, and parsing
continues. There are significant differences between the processing of the left hand symbol and an ordi-
nary shift of a token, however, so this action is called a goto action. In particular, the lookahead token
is cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an entry
such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action ‘‘turns back the clock’’ in the parse, popping the states off the stack to
go back to the state where the right hand side of the rule was first seen. The parser then behaves as if it
had seen the left side at that time. If the right hand side of the rule is empty, no states are popped off
of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When a
rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In addition to
the stack holding the states, another stack, running in parallel with it, holds the values returned from the
lexical analyzer and the actions. When a shift takes place, the external variable yylval is copied onto
the value stack. After the return from the user code, the reduction is carried out. When the goto action
is done, the external variable yyval is copied onto the value stack. The pseudo-variables $1, $2, etc.,
refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates that the
entire input has been seen and that it matches the specification. This action appears only when the loo-
kahead token is the endmarker, and indicates that the parser has successfully done its job. The error
action, on the other hand, represents a place where the parser can no longer continue parsing according
to the specification. The input tokens it has seen, together with the lookahead token, cannot be followed
by anything that would result in a legal input. The parser reports an error, and attempts to recover the
situation and resume parsing: the error recovery (as opposed to the detection of error) will be covered in
Section 7.

It is time for an example! Consider the specification

%token DING DONG DELL
%%
rhyme : sound place

;
sound : DING DONG

;
place : DELL

;

When Yacc is invoked with the – v option, a file called y.output is produced, with a human-
readable description of the parser. The y.output file corresponding to the above grammar (with some
statistics stripped off the end) is:
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state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (1)

. reduce 1

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules being pro-
cessed in each state. The _ character is used to indicate what has been seen, and what is yet to come, in
each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to decide
between the actions available in state 0, so the first token, DING , is read, becoming the lookahead
token. The action in state 0 on DING is is ‘‘shift 3’’, so state 3 is pushed onto the stack, and the looka-
head token is cleared. State 3 becomes the current state. The next token, DONG , is read, becoming the
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lookahead token. The action in state 3 on the token DONG is ‘‘shift 6’’, so state 6 is pushed onto the
stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state 6, without even con-
sulting the lookahead, the parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the stack,
uncovering state 0. Consulting the description of state 0, looking for a goto on sound ,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL , must be read. The action is ‘‘shift 5’’, so state 5 is pushed onto
the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5, the only
action is to reduce by rule 3. This has one symbol on the right hand side, so one state, 5, is popped off,
and state 2 is uncovered. The goto in state 2 on place , the left side of rule 3, is state 4. Now, the stack
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are two symbols on the
right, so the top two states are popped off, uncovering state 0 again. In state 0, there is a goto on
rhyme causing the parser to enter state 1. In state 1, the input is read; the endmarker is obtained, indi-
cated by ‘‘$end’’ in the y.output file. The action in state 1 when the endmarker is seen is to accept,
successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect strings
as DING DONG DONG , DING DONG , DING DONG DELL DELL , etc. A few minutes spend with
this and other simple examples will probably be repaid when problems arise in more complicated con-
texts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in two or
more different ways. For example, the grammar rule

expr : expr ´– ´ expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put two
other expressions together with a minus sign between them. Unfortunately, this grammar rule does not
completely specify the way that all complex inputs should be structured. For example, if the input is

expr – expr – expr

the rule allows this input to be structured as either

( expr – expr ) – expr

or as

expr – ( expr – expr )

(The first is called left association , the second right association ).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to con-
sider the problem that confronts the parser when it is given an input such as

expr – expr – expr

When the parser has read the second expr, the input that it has seen:

expr – expr

matches the right side of the grammar rule above. The parser could reduce the input by applying this
rule; after applying the rule; the input is reduced to expr (the left side of the rule). The parser would
then read the final part of the input:

– expr
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and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr – expr

it could defer the immediate application of the rule, and continue reading the input until it had seen

expr – expr – expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr – expr

Now the rule can be reduced once more; the effect is to take the right associative interpretation. Thus,
having read

expr – expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between them.
This is called a shift / reduce conflict . It may also happen that the parser has a choice of two legal
reductions; this is called a reduce / reduce conflict . Note that there are never any ‘‘Shift/shift’’
conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does this
by selecting one of the valid steps wherever it has a choice. A rule describing which choice to make in
a given situation is called a disambiguating rule .

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the input
sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2
gives the user rather crude control over the behavior of the parser in this situation, but reduce/reduce
conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while
consistent, require a more complex parser than Yacc can construct. The use of actions within rules can
also cause conflicts, if the action must be done before the parser can be sure which rule is being recog-
nized. In these cases, the application of disambiguating rules is inappropriate, and leads to an incorrect
parser. For this reason, Yacc always reports the number of shift/reduce and reduce/reduce conflicts
resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it is
also possible to rewrite the grammar rules so that the same inputs are read but there are no conflicts.
For this reason, most previous parser generators have considered conflicts to be fatal errors. Our experi-
ence has suggested that this rewriting is somewhat unnatural, and produces slower parsers; thus, Yacc
will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a programming
language involving an ‘‘if-then-else’’ construction:

stat : IF ´(´ cond ´)´ stat
| IF ´(´ cond ´)´ stat ELSE stat
;

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional (logical)
expressions, and stat is a nonterminal symbol describing statements. The first rule will be called the
simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

IF ( C1 ) IF ( C2 ) S1 ELSE S2
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can be structured according to these rules in two ways:

IF ( C1 ) {
IF ( C2 ) S1
}

ELSE S2

or

IF ( C1 ) {
IF ( C2 ) S1
ELSE S2
}

The second interpretation is the one given in most programming languages having this construct. Each
ELSE is associated with the last preceding ‘‘un-ELSE’d’’ IF . In this example, consider the situation
where the parser has seen

IF ( C1 ) IF ( C2 ) S1

and is looking at the ELSE . It can immediately reduce by the simple-if rule to get

IF ( C1 ) stat

and then read the remaining input,

ELSE S2

and reduce

IF ( C1 ) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF ( C1 ) IF ( C2 ) S1 ELSE S2

can be reduced by the if-else rule to get

IF ( C1 ) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of the
input, which is usually desired.

Once again the parser can do two valid things – there is a shift/reduce conflict. The application
of disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol, ELSE , and
particular inputs already seen, such as

IF ( C1 ) IF ( C2 ) S1

In general, there may be many conflicts, and each one will be associated with an input symbol and a set
of previously read inputs. The previously read inputs are characterized by the state of the parser.

The conflict messages of Yacc are best understood by examining the verbose (– v) option output
file. For example, the output corresponding to the above conflict state might be:
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23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat : IF ( cond ) stat_ (18)
stat : IF ( cond ) stat_ELSE stat

ELSE shift 45
. reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state description
follows, giving the grammar rules active in the state, and the parser actions. Recall that the underline
marks the portion of the grammar rules which has been seen. Thus in the example, in state 23 the
parser has seen input corresponding to

IF ( cond ) stat

and the two grammar rules shown are active at this time. The parser can do two possible things. If the
input symbol is ELSE , it is possible to shift into state 45. State 45 will have, as part of its description,
the line

stat : IF ( cond ) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action, described by
‘‘.’’, is to be done if the input symbol is not mentioned explicitly in the above actions; thus, in this case,
if the input symbol is not ELSE , the parser reduces by grammar rule 18:

stat : IF ´(´ cond ´)´ stat

Once again, notice that the numbers following ‘‘shift’’ commands refer to other states, while the
numbers following ‘‘reduce’’ commands refer to grammar rule numbers. In the y.output file, the rule
numbers are printed after those rules which can be reduced. In most one states, there will be at most
reduce action possible in the state, and this will be the default command. The user who encounters
unexpected shift/reduce conflicts will probably want to look at the verbose output to decide whether the
default actions are appropriate. In really tough cases, the user might need to know more about the
behavior and construction of the parser than can be covered here. In this case, one of the theoretical
references234 might be consulted; the services of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used constructions for
arithmetic expressions can be naturally described by the notion of precedence levels for operators,
together with information about left or right associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create parsers that are faster and easier to write than
parsers constructed from unambiguous grammars. The basic notion is to write grammar rules of the
form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many parsing
conflicts. As disambiguating rules, the user specifies the precedence, or binding strength, of all the
operators, and the associativity of the binary operators. This information is sufficient to allow Yacc to
resolve the parsing conflicts in accordance with these rules, and construct a parser that realizes the
desired precedences and associativities.
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The precedences and associativities are attached to tokens in the declarations section. This is done
by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc, followed by a list of
tokens. All of the tokens on the same line are assumed to have the same precedence level and associa-
tivity; the lines are listed in order of increasing precedence or binding strength. Thus,

%left ´+´ ´– ´
%left ´∗´ ´/´

describes the precedence and associativity of the four arithmetic operators. Plus and minus are left asso-
ciative, and have lower precedence than star and slash, which are also left associative. The keyword
%right is used to describe right associative operators, and the keyword %nonassoc is used to describe
operators, like the operator .LT. in Fortran, that may not associate with themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in Yacc. As
an example of the behavior of these declarations, the description

%right ´=´
%left ´+´ ´– ´
%left ´∗´ ´/´

%%

expr : expr ´=´ expr
| expr ´+´ expr
| expr ´– ´ expr
| expr ´∗´ expr
| expr ´/´ expr
| NAME
;

might be used to structure the input

a = b = c∗d – e – f∗g

as follows:

a = ( b = ( ((c∗d)– e) – (f∗g) ) )

When this mechanism is used, unary operators must, in general, be given a precedence. Sometimes a
unary operator and a binary operator have the same symbolic representation, but different precedences.
An example is unary and binary ´– ´; unary minus may be given the same strength as multiplication, or
even higher, while binary minus has a lower strength than multiplication. The keyword, %prec, changes
the precedence level associated with a particular grammar rule. %prec appears immediately after the
body of the grammar rule, before the action or closing semicolon, and is followed by a token name or
literal. It causes the precedence of the grammar rule to become that of the following token name or
literal. For example, to make unary minus have the same precedence as multiplication the rules might
resemble:
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%left ´+´ ´– ´
%left ´∗´ ´/´

%%

expr : expr ´+´ expr
| expr ´– ´ expr
| expr ´∗´ expr
| expr ´/´ expr
| ´– ´ expr %prec ´∗´
| NAME
;

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by %token
as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise to
disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence and
associativity of the last token or literal in the body of the rule. If the %prec construction is used,
it overrides this default. Some grammar rules may have no precedence and associativity associ-
ated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input sym-
bol or the grammar rule has no precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have pre-
cedence and associativity associated with them, then the conflict is resolved in favor of the action
(shift or reduce) associated with the higher precedence. If the precedences are the same, then the
associativity is used; left associative implies reduce, right associative implies shift, and nonassoci-
ating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and reduce/reduce
conflicts reported by Yacc. This means that mistakes in the specification of precedences may disguise
errors in the input grammar; it is a good idea to be sparing with precedences, and use them in an essen-
tially ‘‘cookbook’’ fashion, until some experience has been gained. The y.output file is very useful in
deciding whether the parser is actually doing what was intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones. When
an error is found, for example, it may be necessary to reclaim parse tree storage, delete or alter symbol
table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to continue
scanning the input to find further syntax errors. This leads to the problem of getting the parser ‘‘res-
tarted’’ after an error. A general class of algorithms to do this involves discarding a number of tokens
from the input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably general,
feature. The token name ‘‘error’’ is reserved for error handling. This name can be used in grammar
rules; in effect, it suggests places where errors are expected, and recovery might take place. The parser
pops its stack until it enters a state where the token ‘‘error’’ is legal. It then behaves as if the token
‘‘error’’ were the current lookahead token, and performs the action encountered. The lookahead token is
then reset to the token that caused the error. If no special error rules have been specified, the processing
halts when an error is detected.
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In order to prevent a cascade of error messages, the parser, after detecting an error, remains in
error state until three tokens have been successfully read and shifted. If an error is detected when the
parser is already in error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement in
which the error was seen. More precisely, the parser will scan ahead, looking for three tokens that
might legally follow a statement, and start processing at the first of these; if the beginnings of statements
are not sufficiently distinctive, it may make a false start in the middle of a statement, and end up report-
ing a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize
tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier are rules
such as

stat : error ´;´

Here, when there is an error, the parser attempts to skip over the statement, but will do so by skipping
to the next ´;´. All tokens after the error and before the next ´;´ cannot be shifted, and are discarded.
When the ´;´ is seen, this rule will be reduced, and any ‘‘cleanup’’ action associated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to permit a
line to be reentered after an error. A possible error rule might be

input : error ´\n´ { printf( "Reenter last line: " ); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three input tokens
before it admits that it has correctly resynchronized after the error. If the reentered line contains an
error in the first two tokens, the parser deletes the offending tokens, and gives no message; this is
clearly unacceptable. For this reason, there is a mechanism that can be used to force the parser to
believe that an error has been fully recovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better written

input : error ´\n´
{ yyerrok;

printf( "Reenter last line: " ); }
input

{ $$ = $4; }
;

As mentioned above, the token seen immediately after the ‘‘error’’ symbol is the input token at
which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery action
might take upon itself the job of finding the correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some sophisti-
cated resynchronization routine, supplied by the user, that attempted to advance the input to the begin-
ning of the next valid statement. After this routine was called, the next token returned by yylex would
presumably be the first token in a legal statement; the old, illegal token must be discarded, and the error
state reset. This could be done by a rule like
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stat : error
{ resynch();

yyerrok ;
yyclearin ; }

;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of the
parser from many errors; moreover, the user can get control to deal with the error actions required by
other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called y.tab.c on
most systems (due to local file system conventions, the names may differ from installation to installa-
tion). The function produced by Yacc is called yyparse ; it is an integer valued function. When it is
called, it in turn repeatedly calls yylex , the lexical analyzer supplied by the user (see Section 3) to obtain
input tokens. Eventually, either an error is detected, in which case (if no error recovery is possible)
yyparse returns the value 1, or the lexical analyzer returns the endmarker token and the parser accepts.
In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain a work-
ing program. For example, as with every C program, a program called main must be defined, that even-
tually calls yyparse . In addition, a routine called yyerror prints a message when a syntax error is
detected.

These two routines must be supplied in one form or another by the user. To ease the initial effort
of using Yacc, a library has been provided with default versions of main and yyerror . The name of this
library is system dependent; on many systems the library is accessed by a – ly argument to the loader.
To show the triviality of these default programs, the source is given below:

main(){
return( yyparse() );
}

and

# include <stdio.h>

yyerror(s) char ∗s; {
fprintf( stderr, "%s\n", s );
}

The argument to yyerror is a string containing an error message, usually the string ‘‘syntax error’’. The
average application will want to do better than this. Ordinarily, the program should keep track of the
input line number, and print it along with the message when a syntax error is detected. The external
integer variable yychar contains the lookahead token number at the time the error was detected; this
may be of some interest in giving better diagnostics. Since the main program is probably supplied by
the user (to read arguments, etc.) the Yacc library is useful only in small projects, or in the earliest
stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value, the
parser will output a verbose description of its actions, including a discussion of which input symbols
have been read, and what the parser actions are. Depending on the operating environment, it may be
possible to set this variable by using a debugging system.
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9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification file.
The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This rule
comes under the heading of ‘‘knowing who to blame when things go wrong.’’

b. Put grammar rules and actions on separate lines. This allows either to be changed without an
automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once, and let all
following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on a
separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text of this
paper (where space permits). The user must make up his own mind about these stylistic questions; the
central problem, however, is to make the rules visible through the morass of action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called ‘‘left recursive’’ grammar rules: rules
of the form

name : name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list : item
| list ´,´ item
;

and

seq : item
| seq item
;

In each of these cases, the first rule will be reduced for the first item only, and the second rule will be
reduced for the second and all succeeding items.

With right recursive rules, such as

seq : item
| item seq
;

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left. More
seriously, an internal stack in the parser would be in danger of overflowing if a very long sequence were
read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so, con-
sider writing the sequence specification with an empty rule:

seq : /∗ empty ∗/
| seq item
;
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Once again, the first rule would always be reduced exactly once, before the first item was read, and then
the second rule would be reduced once for each item read. Permitting empty sequences often leads to
increased generality. However, conflicts might arise if Yacc is asked to decide which empty sequence it
has seen, when it hasn’t seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want to delete
blanks normally, but not within quoted strings. Or names might be entered into a symbol table in
declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declarations, fol-
lowed by 0 or more statements. Consider:

%{
int dflag;

%}
... other declarations ...

%%

prog : decls stats
;

decls : /∗ empty ∗/
{ dflag = 1; }

| decls declaration
;

stats : /∗ empty ∗/
{ dflag = 0; }

| stats statement
;

... other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the first
token in the first statement. This token must be seen by the parser before it can tell that the declaration
section has ended and the statements have begun. In many cases, this single token exception does not
affect the lexical scan.

This kind of ‘‘backdoor’’ approach can be elaborated to a noxious degree. Nevertheless, it
represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like ‘‘if’’, which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use of these
names in the programming language. This is extremely hard to do in the framework of Yacc; it is
difficult to pass information to the lexical analyzer telling it ‘‘this instance of ‘if’ is a keyword, and that
instance is a variable’’. The user can make a stab at it, using the mechanism described in the last sub-
section, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the
keywords be reserved ; that is, be forbidden for use as variable names. There are powerful stylistic rea-
sons for preferring this, anyway.
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10: Advanced Topics

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros YYAC-
CEPT and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR causes the
parser to behave as if the current input symbol had been a syntax error; yyerror is called, and error
recovery takes place. These mechanisms can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The mechanism
is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this case the digit
may be 0 or negative. Consider

sent : adj noun verb adj noun
{ look at the sentence . . . }

;

adj : THE { $$ = THE; }
| YOUNG { $$ = YOUNG; }
. . .
;

noun : DOG
{ $$ = DOG; }

| CRONE
{ if( $0 == YOUNG ){

printf( "what?\n" );
}

$$ = CRONE;
}

;
. . .

In the action following the word CRONE, a check is made that the preceding token shifted was not
YOUNG. Obviously, this is only possible when a great deal is known about what might precede the
symbol noun in the input. There is also a distinctly unstructured flavor about this. Nevertheless, at
times this mechanism will save a great deal of trouble, especially when a few combinations are to be
excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can also
support values of other types, including structures. In addition, Yacc keeps track of the types, and
inserts appropriate union member names so that the resulting parser will be strictly type checked. The
Yacc value stack (see Section 4) is declared to be a union of the various types of values desired. The
user declares the union, and associates union member names to each token and nonterminal symbol hav-
ing a value. When the value is referenced through a $$ or $n construction, Yacc will automatically
insert the appropriate union name, so that no unwanted conversions will take place. In addition, type
checking commands such as Lint 5 will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining the
union; this must be done by the user since other programs, notably the lexical analyzer, must know
about the union member names. Second, there is a way of associating a union member name with
tokens and nonterminals. Finally, there is a mechanism for describing the type of those few values
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where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the Yacc value stack, and the external variables yylval and yyval , to have type equal to
this union. If Yacc was invoked with the – d option, the union declaration is copied onto the y.tab.h
file. Alternatively, the union may be declared in a header file, and a typedef used to define the variable
YYSTYPE to represent this union. Thus, the header file might also have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be associated with the various terminal
and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords %token, %left, %right,
and %nonassoc, the union member name is associated with the tokens listed. Thus, saying

%left <optype> ´+´ ´– ´

will cause any reference to values returned by these two tokens to be tagged with the union member
name optype . Another keyword, %type, is used similarly to associate union member names with nonter-
minals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action
within a rule, the value returned by this action has no a priori type. Similarly, reference to left context
values (such as $0 – see the previous subsection ) leaves Yacc with no easy way of knowing the type.
In this case, a type can be imposed on the reference by inserting a union member name, between < and
>, immediately after the first $. An example of this usage is

rule : aaa { $<intval>$ = 3; } bbb
{ fun( $<intval>2, $<other>0 ); }

;

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not triggered
until they are used: in particular, the use of %type will turn on these mechanisms. When they are used,
there is a fairly strict level of checking. For example, use of $n or $$ to refer to something with no
defined type is diagnosed. If these facilities are not triggered, the Yacc value stack is used to hold int’ s,
as was true historically.
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Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk calculator
has 26 registers, labeled ‘‘a’’ through ‘‘z’’, and accepts arithmetic expressions made up of the operators
+, – , ∗, /, % (mod operator), & (bitwise and), | (bitwise or), and assignment. If an expression at the top
level is an assignment, the value is not printed; otherwise it is. As in C, an integer that begins with 0
(zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing how
precedences and ambiguities are used, and demonstrating simple error recovery. The major
oversimplifications are that the lexical analysis phase is much simpler than for most applications, and the
output is produced immediately, line by line. Note the way that decimal and octal integers are read in
by the grammar rules; This job is probably better done by the lexical analyzer.

%{
# include <stdio.h>
# include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left ´|´
%left ´&´
%left ´+´ ´– ´
%left ´∗´ ´/´ ´%´
%left UMINUS /∗ supplies precedence for unary minus ∗/

%% /∗ beginning of rules section ∗/

list : /∗ empty ∗/
| list stat ´\n´
| list error ´\n´

{ yyerrok; }
;

stat : expr
{ printf( "%d\n", $1 ); }

| LETTER ´=´ expr
{ regs[$1] = $3; }

;

expr : ´(´ expr ´)´
{ $$ = $2; }

| expr ´+´ expr
{ $$ = $1 + $3; }

| expr ´– ´ expr
{ $$ = $1 – $3; }

| expr ´∗´ expr
{ $$ = $1 ∗ $3; }
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| expr ´/´ expr
{ $$ = $1 / $3; }

| expr ´%´ expr
{ $$ = $1 % $3; }

| expr ´&´ expr
{ $$ = $1 & $3; }

| expr ´|´ expr
{ $$ = $1 | $3; }

| ´– ´ expr %prec UMINUS
{ $$ = – $2; }

| LETTER
{ $$ = regs[$1]; }

| number
;

number : DIGIT
{ $$ = $1; base = ($1==0) ? 8 : 10; }

| number DIGIT
{ $$ = base ∗ $1 + $2; }

;

%% /∗ start of programs ∗/

yylex() { /∗ lexical analysis routine ∗/
/∗ returns LETTER for a lower case letter, yylval = 0 through 25 ∗/
/∗ return DIGIT for a digit, yylval = 0 through 9 ∗/
/∗ all other characters are returned immediately ∗/

int c;

while( (c=getchar()) == ´ ´ ) { /∗ skip blanks ∗/ }

/∗ c is now nonblank ∗/

if( islower( c ) ) {
yylval = c –  ´a´;
return ( LETTER );
}

if( isdigit( c ) ) {
yylval = c –  ´0´;
return( DIGIT );
}

return( c );
}
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Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context
dependencies, etc., are not considered. Ironically, the Yacc input specification language is most natur-
ally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a rule, immedi-
ately following an action. If this identifier is followed by a colon, it is the start of the next rule; other-
wise it is a continuation of the current rule, which just happens to have an action embedded in it. As
implemented, the lexical analyzer looks ahead after seeing an identifier, and decide whether the next
token (skipping blanks, newlines, comments, etc.) is a colon. If so, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS, but never as part of C_IDENTIFIERs.

/∗ grammar for the input to Yacc ∗/

/∗ basic entities ∗/
%token IDENTIFIER /∗ includes identifiers and literals ∗/
%token C_IDENTIFIER /∗ identifier (but not literal) followed by colon ∗/
%token NUMBER /∗ [0-9]+ ∗/

/∗ reserved words: %type => TYPE, %left => LEFT, etc. ∗/

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /∗ the %% mark ∗/
%token LCURL /∗ the %{ mark ∗/
%token RCURL /∗ the %} mark ∗/

/∗ ascii character literals stand for themselves ∗/

%start spec

%%

spec : defs MARK rules tail
;

tail : MARK { In this action, eat up the rest of the file }
| /∗ empty: the second MARK is optional ∗/
;

defs : /∗ empty ∗/
| defs def
;

def : START IDENTIFIER
| UNION { Copy union definition to output }
| LCURL { Copy C code to output file } RCURL
| ndefs rword tag nlist
;

rword : TOKEN
| LEFT
| RIGHT
| NONASSOC
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| TYPE
;

tag : /∗ empty: union tag is optional ∗/
| ´<´ IDENTIFIER ´>´
;

nlist : nmno
| nlist nmno
| nlist ´,´ nmno
;

nmno : IDENTIFIER /∗ NOTE: literal illegal with %type ∗/
| IDENTIFIER NUMBER /∗ NOTE: illegal with %type ∗/
;

/∗ rules section ∗/

rules : C_IDENTIFIER rbody prec
| rules rule
;

rule : C_IDENTIFIER rbody prec
| ’|’ rbody prec
;

rbody : /∗ empty ∗/
| rbody IDENTIFIER
| rbody act
;

act : ´{´ { Copy action, translate $$, etc. } ´}´
;

prec : /∗ empty ∗/
| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec ´;´
;
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Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features discussed in
Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator that
does floating point interval arithmetic. The calculator understands floating point constants, the arithmetic
operations +, – , ∗, /, unary – , and = (assignment), and has 26 floating point variables, ‘‘a’’ through
‘‘z’’. Moreover, it also understands intervals , written

( x , y )

where x is less than or equal to y . There are 26 interval valued variables ‘‘A’’ through ‘‘Z’’ that may
also be used. The usage is similar to that in Appendix A; assignments return no value, and print noth-
ing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are represented
by a structure, consisting of the left and right endpoint values, stored as double ’s. This structure is
given a type name, INTERVAL, by using typedef . The Yacc value stack can also contain floating point
scalars, and integers (used to index into the arrays holding the variable values). Notice that this entire
strategy depends strongly on being able to assign structures and unions in C. In fact, many of the
actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an interval
containing 0, and an interval presented in the wrong order. In effect, the error recovery mechanism of
Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an interest-
ing use of syntax to keep track of the type (e.g. scalar or interval) of intermediate expressions. Note
that a scalar can be automatically promoted to an interval if the context demands an interval value. This
causes a large number of conflicts when the grammar is run through Yacc: 18 Shift/Reduce and 26
Reduce/Reduce. The problem can be seen by looking at the two input lines:

2.5 + ( 3.5 – 4. )

and

2.5 + ( 3.5 , 4. )

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this fact is
not known until the ‘‘,’’ is read; by this time, 2.5 is finished, and the parser cannot go back and change
its mind. More generally, it might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is evaded by having two rules for each binary
interval valued operator: one when the left operand is a scalar, and one when the left operand is an inter-
val. In the second case, the right operand must be an interval, so the conversion will be applied
automatically. Despite this evasion, there are still many cases where the conversion may be applied or
not, leading to the above conflicts. They are resolved by listing the rules that yield scalars first in the
specification file; in this way, the conflicts will be resolved in the direction of keeping scalar valued
expressions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there were many
kinds of expression types, instead of just two, the number of rules needed would increase dramatically,
and the conflicts even more dramatically. Thus, while this example is instructive, it is better practice in
a more normal programming language environment to keep the type information as part of the value,
and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating
point constants. The C library routine atof is used to do the actual conversion from a character string to
a double precision value. If the lexical analyzer detects an error, it responds by returning a token that is
illegal in the grammar, provoking a syntax error in the parser, and thence error recovery.
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%{

# include <stdio.h>
# include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[ 26 ];
INTERVAL vreg[ 26 ];

%}

%start lines

%union {
int ival;
double dval;
INTERVAL vval;
}

%token <ival> DREG VREG /∗ indices into dreg, vreg arrays ∗/

%token <dval> CONST /∗ floating point constant ∗/

%type <dval> dexp /∗ expression ∗/

%type <vval> vexp /∗ interval expression ∗/

/∗ precedence information about the operators ∗/

%left ´+´ ´– ´
%left ´∗´ ´/´
%left UMINUS /∗ precedence for unary minus ∗/

%%

lines : /∗ empty ∗/
| lines line
;

line : dexp ´\n´
{ printf( "%15.8f\n", $1 ); }

| vexp ´\n´
{ printf( "(%15.8f , %15.8f )\n", $1.lo, $1.hi ); }

| DREG ´=´ dexp ´\n´
{ dreg[$1] = $3; }

| VREG ´=´ vexp ´\n´
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{ vreg[$1] = $3; }
| error ´\n´

{ yyerrok; }
;

dexp : CONST
| DREG

{ $$ = dreg[$1]; }
| dexp ´+´ dexp

{ $$ = $1 + $3; }
| dexp ´– ´ dexp

{ $$ = $1 – $3; }
| dexp ´∗´ dexp

{ $$ = $1 ∗ $3; }
| dexp ´/´ dexp

{ $$ = $1 / $3; }
| ´– ´ dexp %prec UMINUS

{ $$ = – $2; }
| ´(´ dexp ´)´

{ $$ = $2; }
;

vexp : dexp
{ $$.hi = $$.lo = $1; }

| ´(´ dexp ´,´ dexp ´)´
{
$$.lo = $2;
$$.hi = $4;
if( $$.lo > $$.hi ){

printf( "interval out of order\n" );
YYERROR;
}

}
| VREG

{ $$ = vreg[$1]; }
| vexp ´+´ vexp

{ $$.hi = $1.hi + $3.hi;
$$.lo = $1.lo + $3.lo; }

| dexp ´+´ vexp
{ $$.hi = $1 + $3.hi;

$$.lo = $1 + $3.lo; }
| vexp ´– ´ vexp

{ $$.hi = $1.hi – $3.lo;
$$.lo = $1.lo – $3.hi; }

| dexp ´– ´ vexp
{ $$.hi = $1 – $3.lo;

$$.lo = $1 – $3.hi; }
| vexp ´∗´ vexp

{ $$ = vmul( $1.lo, $1.hi, $3 ); }
| dexp ´∗´ vexp

{ $$ = vmul( $1, $1, $3 ); }
| vexp ´/´ vexp

{ if( dcheck( $3 ) ) YYERROR;
$$ = vdiv( $1.lo, $1.hi, $3 ); }
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| dexp ´/´ vexp
{ if( dcheck( $3 ) ) YYERROR;

$$ = vdiv( $1, $1, $3 ); }
| ´– ´ vexp %prec UMINUS

{ $$.hi = – $2.lo; $$.lo = – $2.hi; }
| ´(´ vexp ´)´

{ $$ = $2; }
;

%%

# define BSZ 50 /∗ buffer size for floating point numbers ∗/

/∗ lexical analysis ∗/

yylex(){
register c;

while( (c=getchar()) == ´ ´ ){ /∗ skip over blanks ∗/ }

if( isupper( c ) ){
yylval.ival = c –  ´A´;
return( VREG );
}

if( islower( c ) ){
yylval.ival = c –  ´a´;
return( DREG );
}

if( isdigit( c ) || c==´.´ ){
/∗ gobble up digits, points, exponents ∗/

char buf[BSZ+1], ∗cp = buf;
int dot = 0, exp = 0;

for( ; (cp– buf)<BSZ ; ++cp,c=getchar() ){

∗cp = c;
if( isdigit( c ) ) continue;
if( c == ´.´ ){

if( dot++ || exp ) return( ´.´ ); /∗ will cause syntax error ∗/
continue;
}

if( c == ´e´ ){
if( exp++ ) return( ´e´ ); /∗ will cause syntax error ∗/
continue;
}

/∗ end of number ∗/
break;
}

∗cp = ´\0´;
if( (cp– buf) >= BSZ ) printf( "constant too long: truncated\n" );
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else ungetc( c, stdin ); /∗ push back last char read ∗/
yylval.dval = atof( buf );
return( CONST );
}

return( c );
}

INTERVAL hilo( a, b, c, d ) double a, b, c, d; {
/∗ returns the smallest interval containing a, b, c, and d ∗/
/∗ used by ∗, / routines ∗/
INTERVAL v;

if( a>b ) { v.hi = a; v.lo = b; }
else { v.hi = b; v.lo = a; }

if( c>d ) {
if( c>v.hi ) v.hi = c;
if( d<v.lo ) v.lo = d;
}

else {
if( d>v.hi ) v.hi = d;
if( c<v.lo ) v.lo = c;
}

return( v );
}

INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; {
return( hilo( a∗v.hi, a∗v.lo, b∗v.hi, b∗v.lo ) );
}

dcheck( v ) INTERVAL v; {
if( v.hi >= 0. && v.lo <= 0. ){

printf( "divisor interval contains 0.\n" );
return( 1 );
}

return( 0 );
}

INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v; {
return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo ) );
}
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Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical continuity, but,
for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes ‘‘"’’.

2. Literals may be more than one character long. If all the characters are alphabetic, numeric, or _,
the type number of the literal is defined, just as if the literal did not have the quotes around it.
Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it suggests
that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash ‘‘\’’ may be used. In particular, \\ is the same as %%,
\left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

={ . . . }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules section, as well as in the
declaration section.
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Lex helps write programs whose control flow is directed by instances of regular
expressions in the input stream. It is well suited for editor-script type transformations
and for segmenting input in preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program frag-
ments. The table is translated to a program which reads an input stream, copying it to
an output stream and partitioning the input into strings which match the given expres-
sions. As each such string is recognized the corresponding program fragment is exe-
cuted. The recognition of the expressions is performed by a deterministic finite auto-
maton generated by Lex. The program fragments written by the user are executed in
the order in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications
and choose the longest match possible at each input point. If necessary, substantial
lookahead is performed on the input, but the input stream will be backed up to the end
of the current partition, so that the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language which can be
translated automatically to portable Fortran. It is available on the PDP-11 UNIX,
Honeywell GCOS, and IBM OS systems. This manual, however, will only discuss
generating analyzers in C on the UNIX system, which is the only supported form of
Lex under UNIX Version 7. Lex is designed to simplify interfacing with Yacc, for
those with access to this compiler-compiler system.

July 21, 1975



Lex – A Lexical Analyzer Generator

M M. . E E. . L Le es sk k a an nd d E E. . S Sc ch hm mi id dt t

Bell Laboratories
Murray Hill, New Jersey 07974

Table of Contents

1. Introduction. 1
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10

10. Left Context Sensitivity. 11
11. Character Set. 12
12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13
15. References. 13

1. Introduction.

Lex is a program generator designed for
lexical processing of character input streams. It
accepts a high-level, problem oriented
specification for character string matching, and
produces a program in a general purpose
language which recognizes regular expressions.
The regular expressions are specified by the user
in the source specifications given to Lex. The
Lex written code recognizes these expressions in
an input stream and partitions the input stream
into strings matching the expressions. At the
boundaries between strings program sections
provided by the user are executed. The Lex
source file associates the regular expressions and
the program fragments. As each expression
appears in the input to the program written by
Lex, the corresponding fragment is executed.

The user supplies the additional code
beyond expression matching needed to complete
his tasks, possibly including code written by
other generators. The program that recognizes
the expressions is generated in the general pur-
pose programming language employed for the
user’s program fragments. Thus, a high level
expression language is provided to write the
string expressions to be matched while the

user’s freedom to write actions is unimpaired.
This avoids forcing the user who wishes to use a
string manipulation language for input analysis
to write processing programs in the same and
often inappropriate string handling language.

Lex is not a complete language, but rather
a generator representing a new language feature
which can be added to different programming
languages, called ‘‘host languages.’’ Just as gen-
eral purpose languages can produce code to run
on different computer hardware, Lex can write
code in different host languages. The host
language is used for the output code generated
by Lex and also for the program fragments
added by the user. Compatible run-time
libraries for the different host languages are also
provided. This makes Lex adaptable to different
environments and different users. Each applica-
tion may be directed to the combination of
hardware and host language appropriate to the
task, the user’s background, and the properties
of local implementations. At present, the only
supported host language is C, although Fortran
(in the form of Ratfor [2] has been available in
the past. Lex itself exists on UNIX, GCOS, and
OS/370; but the code generated by Lex may be
taken anywhere the appropriate compilers exist.
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Lex turns the user’s expressions and
actions (called s so ou ur rc ce e in this memo) into the
host general-purpose language; the generated
program is named y yy yl le ex x. . The y yy yl le ex x program
will recognize expressions in a stream (called
i in np pu ut t in this memo) and perform the specified
actions for each expression as it is detected. See
Figure 1. _ _______

Source →  Lex  → yylex_ _______

_ _______
Input →  yylex  → Output_ _______

An overview of Lex

Figure 1

For a trivial example, consider a program
to delete from the input all blanks or tabs at the
ends of lines.

%%
[ \t]+$ ;

is all that is required. The program contains a
%% delimiter to mark the beginning of the
rules, and one rule. This rule contains a regular
expression which matches one or more instances
of the characters blank or tab (written \t for visi-
bility, in accordance with the C language con-
vention) just prior to the end of a line. The
brackets indicate the character class made of
blank and tab; the + indicates ‘‘one or more ...’’;
and the $ indicates ‘‘end of line,’’ as in QED.
No action is specified, so the program generated
by Lex (yylex) will ignore these characters.
Everything else will be copied. To change any
remaining string of blanks or tabs to a single
blank, add another rule:

%%
[ \t]+$ ;
[ \t]+ printf(" ");

The finite automaton generated for this source
will scan for both rules at once, observing at the
termination of the string of blanks or tabs
whether or not there is a newline character, and
executing the desired rule action. The first rule
matches all strings of blanks or tabs at the end
of lines, and the second rule all remaining
strings of blanks or tabs.

Lex can be used alone for simple transfor-
mations, or for analysis and statistics gathering
on a lexical level. Lex can also be used with a
parser generator to perform the lexical analysis
phase; it is particularly easy to interface Lex and
Yacc [3]. Lex programs recognize only regular

expressions; Yacc writes parsers that accept a
large class of context free grammars, but require
a lower level analyzer to recognize input tokens.
Thus, a combination of Lex and Yacc is often
appropriate. When used as a preprocessor for a
later parser generator, Lex is used to partition
the input stream, and the parser generator
assigns structure to the resulting pieces. The
flow of control in such a case (which might be
the first half of a compiler, for example) is
shown in Figure 2. Additional programs, writ-
ten by other generators or by hand, can be added
easily to programs written by Lex.

lexical grammar
rules rules

↓ ↓_ ________ _ __________
 Lex   Yacc _ ________ _ __________

↓ ↓_ ________ _ __________
Input →  yylex  →  yyparse  → Parsed input_ ________ _ __________

Lex with Yacc

Figure 2
Yacc users will realize that the name y yy yl le ex x is
what Yacc expects its lexical analyzer to be
named, so that the use of this name by Lex
simplifies interfacing.

Lex generates a deterministic finite auto-
maton from the regular expressions in the source
[4]. The automaton is interpreted, rather than
compiled, in order to save space. The result is
still a fast analyzer. In particular, the time taken
by a Lex program to recognize and partition an
input stream is proportional to the length of the
input. The number of Lex rules or the complex-
ity of the rules is not important in determining
speed, unless rules which include forward con-
text require a significant amount of rescanning.
What does increase with the number and com-
plexity of rules is the size of the finite automa-
ton, and therefore the size of the program gen-
erated by Lex.

In the program written by Lex, the user’s
fragments (representing the a ac ct ti io on ns s to be per-
formed as each regular expression is found) are
gathered as cases of a switch. The automaton
interpreter directs the control flow. Opportunity
is provided for the user to insert either declara-
tions or additional statements in the routine con-
taining the actions, or to add subroutines outside
this action routine.

Lex is not limited to source which can be
interpreted on the basis of one character look-
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ahead. For example, if there are two rules, one
looking for a ab b and another for a ab bc cd de ef fg g , and the
input stream is a ab bc cd de ef fh h , Lex will recognize a ab b
and leave the input pointer just before c cd d. . . . . .
Such backup is more costly than the processing
of simpler languages.

2. Lex Source.

The general format of Lex source is:
{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines
are often omitted. The second % %% % is optional,
but the first is required to mark the beginning of
the rules. The absolute minimum Lex program
is thus

%%
(no definitions, no rules) which translates into a
program which copies the input to the output
unchanged.

In the outline of Lex programs shown
above, the r ru ul le es s represent the user’s control
decisions; they are a table, in which the left
column contains r re eg gu ul la ar r e ex xp pr re es ss si io on ns s (see sec-
tion 3) and the right column contains a ac ct ti io on ns s, ,
program fragments to be executed when the
expressions are recognized. Thus an individual
rule might appear

integer printf("found keyword INT");
to look for the string i in nt te eg ge er r in the input stream
and print the message ‘‘found keyword INT’’
whenever it appears. In this example the host
procedural language is C and the C library func-
tion p pr ri in nt tf f is used to print the string. The end
of the expression is indicated by the first blank
or tab character. If the action is merely a single
C expression, it can just be given on the right
side of the line; if it is compound, or takes more
than a line, it should be enclosed in braces. As
a slightly more useful example, suppose it is
desired to change a number of words from Brit-
ish to American spelling. Lex rules such as

colour printf("color");
mechanise printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite
enough, since the word p pe et tr ro ol le eu um m would
become g ga as se eu um m ; a way of dealing with this will
be described later.

3. Lex Regular Expressions.

The definitions of regular expressions are
very similar to those in QED [5]. A regular
expression specifies a set of strings to be
matched. It contains text characters (which
match the corresponding characters in the strings
being compared) and operator characters (which
specify repetitions, choices, and other features).
The letters of the alphabet and the digits are
always text characters; thus the regular expres-
sion

integer
matches the string i in nt te eg ge er r wherever it appears
and the expression

a57D
looks for the string a a5 57 7D D. .

O Op pe er ra at to or rs s. . The operator characters are
" \ [ ] ˆ – ? . ∗ +  ( ) $ / { } % < >

and if they are to be used as text characters, an
escape should be used. The quotation mark
operator (") indicates that whatever is contained
between a pair of quotes is to be taken as text
characters. Thus

xyz"++"
matches the string x xy yz z+ ++ + when it appears.
Note that a part of a string may be quoted. It is
harmless but unnecessary to quote an ordinary
text character; the expression

"xyz++"
is the same as the one above. Thus by quoting
every non-alphanumeric character being used as
a text character, the user can avoid remembering
the list above of current operator characters, and
is safe should further extensions to Lex lengthen
the list.

An operator character may also be turned
into a text character by preceding it with \ as in

xyz\+\+
which is another, less readable, equivalent of the
above expressions. Another use of the quoting
mechanism is to get a blank into an expression;
normally, as explained above, blanks or tabs end
a rule. Any blank character not contained
within [ ] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is
newline, \t is tab, and \b is backspace. To enter
\ itself, use \\. Since newline is illegal in an
expression, \n must be used; it is not required to
escape tab and backspace. Every character but
blank, tab, newline and the list above is always
a text character.

C Ch ha ar ra ac ct te er r c cl la as ss se es s. . Classes of characters
can be specified using the operator pair [ ]. The
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construction [ [a ab bc c] ] matches a single character,
which may be a a , b b , or c c . Within square brack-
ets, most operator meanings are ignored. Only
three characters are special: these are \ − and ˆ.
The − character indicates ranges. For example,

[a−z0−9<>_]
indicates the character class containing all the
lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either
order. Using − between any pair of characters
which are not both upper case letters, both lower
case letters, or both digits is implementation
dependent and will get a warning message.
(E.g., [0– z] in ASCII is many more characters
than it is in EBCDIC). If it is desired to include
the character − in a character class, it should be
first or last; thus

[−+0−9]
matches all the digits and the two signs.

In character classes, the ˆ operator must
appear as the first character after the left bracket;
it indicates that the resulting string is to be com-
plemented with respect to the computer character
set. Thus

[ˆabc]
matches all characters except a, b, or c, includ-
ing all special or control characters; or

[ˆa– zA– Z]
is any character which is not a letter. The \
character provides the usual escapes within char-
acter class brackets.

A Ar rb bi it tr ra ar ry y c ch ha ar ra ac ct te er r. . To match almost
any character, the operator character

.
is the class of all characters except newline.
Escaping into octal is possible although non-
portable:

[\40– \176]
matches all printable characters in the ASCII
character set, from octal 40 (blank) to octal 176
(tilde).

O Op pt ti io on na al l e ex xp pr re es ss si io on ns s. . The operator ? ?
indicates an optional element of an expression.
Thus

ab?c
matches either a ac c or a ab bc c .

R Re ep pe ea at te ed d e ex xp pr re es ss si io on ns s. . Repetitions of
classes are indicated by the operators ∗ ∗ and + + .

a a∗ ∗
is any number of consecutive a a characters,
including zero; while

a+
is one or more instances of a a. . For example,

[a– z]+
is all strings of lower case letters. And

[A−Za−z][A−Za−z0−9]∗
indicates all alphanumeric strings with a leading
alphabetic character. This is a typical expres-
sion for recognizing identifiers in computer
languages.

A Al lt te er rn na at ti io on n a an nd d G Gr ro ou up pi in ng g. . The operator
 indicates alternation:

(ab  cd)
matches either a ab b or c cd d. . Note that parentheses
are used for grouping, although they are not
necessary on the outside level;

ab  cd
would have sufficed. Parentheses can be used
for more complex expressions:

(ab  cd+)?(ef)∗
matches such strings as a ab be ef fe ef f , e ef fe ef fe ef f , c cd de ef f , or
c cd dd dd d ; but not a ab bc c , a ab bc cd d , or a ab bc cd de ef f .

C Co on nt te ex xt t s se en ns si it ti iv vi it ty y. . Lex will recognize a
small amount of surrounding context. The two
simplest operators for this are ˆ ˆ and $ $ . If the
first character of an expression is ˆ ˆ , the expres-
sion will only be matched at the beginning of a
line (after a newline character, or at the begin-
ning of the input stream). This can never
conflict with the other meaning of ˆ ˆ , comple-
mentation of character classes, since that only
applies within the [ ] operators. If the very last
character is $ $ , the expression will only be
matched at the end of a line (when immediately
followed by newline). The latter operator is a
special case of the / / operator character, which
indicates trailing context. The expression

ab/cd
matches the string a ab b , but only if followed by
c cd d. . Thus

ab$
is the same as

ab/\n
Left context is handled in Lex by s st ta ar rt t c co on nd di i- -
t ti io on ns s as explained in section 10. If a rule is
only to be executed when the Lex automaton
interpreter is in start condition x x, , the rule should
be prefixed by

<x>
using the angle bracket operator characters. If
we considered ‘‘being at the beginning of a
line’’ to be start condition O ON NE E , then the ˆ
operator would be equivalent to

<ONE>
Start conditions are explained more fully later.

R Re ep pe et ti it ti io on ns s a an nd d D De efi fin ni it ti io on ns s. . The opera-
tors {} specify either repetitions (if they enclose
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numbers) or definition expansion (if they enclose
a name). For example

{digit}
looks for a predefined string named d di ig gi it t and
inserts it at that point in the expression. The
definitions are given in the first part of the Lex
input, before the rules. In contrast,

a{1,5}
looks for 1 to 5 occurrences of a a .

Finally, initial % % is special, being the
separator for Lex source segments.

4. Lex Actions.

When an expression written as above is
matched, Lex executes the corresponding action.
This section describes some features of Lex
which aid in writing actions. Note that there is
a default action, which consists of copying the
input to the output. This is performed on all
strings not otherwise matched. Thus the Lex
user who wishes to absorb the entire input,
without producing any output, must provide
rules to match everything. When Lex is being
used with Yacc, this is the normal situation.
One may consider that actions are what is done
instead of copying the input to the output; thus,
in general, a rule which merely copies can be
omitted. Also, a character combination which is
omitted from the rules and which appears as
input is likely to be printed on the output, thus
calling attention to the gap in the rules.

One of the simplest things that can be
done is to ignore the input. Specifying a C null
statement, ; ; as an action causes this result. A
frequent rule is

[ \t\n] ;
which causes the three spacing characters (blank,
tab, and newline) to be ignored.

Another easy way to avoid writing actions
is the action character , which indicates that the
action for this rule is the action for the next rule.
The previous example could also have been
written

" "
"\t"
"\n"

with the same result, although in different style.
The quotes around \n and \t are not required.

In more complex actions, the user will
often want to know the actual text that matched
some expression like [ [a a− −z z] ]+ + . Lex leaves this
text in an external character array named y yy yt te ex xt t. .
Thus, to print the name found, a rule like

[a– z]+ printf("%s", yytext);
will print the string in y yy yt te ex xt t. . The C function
p pr ri in nt tf f accepts a format argument and data to be
printed; in this case, the format is ‘‘print string’’
(% indicating data conversion, and s s indicating
string type), and the data are the characters in
y yy yt te ex xt t. . So this just places the matched string on
the output. This action is so common that it
may be written as ECHO:

[a– z]+ ECHO;
is the same as the above. Since the default
action is just to print the characters found, one
might ask why give a rule, like this one, which
merely specifies the default action? Such rules
are often required to avoid matching some other
rule which is not desired. For example, if there
is a rule which matches r re ea ad d it will normally
match the instances of r re ea ad d contained in b br re ea ad d
or r re ea ad dj ju us st t ; to avoid this, a rule of the form
[ [a a− −z z] ]+ + is needed. This is explained further
below.

Sometimes it is more convenient to know
the end of what has been found; hence Lex also
provides a count y yy yl le en ng g of the number of char-
acters matched. To count both the number of
words and the number of characters in words in
the input, the user might write

[a– zA– Z]+ {words++; chars += yyleng;}
which accumulates in c ch ha ar rs s the number of char-
acters in the words recognized. The last charac-
ter in the string matched can be accessed by

yytext[yyleng– 1]

Occasionally, a Lex action may decide
that a rule has not recognized the correct span of
characters. Two routines are provided to aid
with this situation. First, y yy ym mo or re e( () ) can be called
to indicate that the next input expression recog-
nized is to be tacked on to the end of this input.
Normally, the next input string would overwrite
the current entry in y yy yt te ex xt t. . Second, y yy yl le es ss s ( (n n) )
may be called to indicate that not all the charac-
ters matched by the currently successful expres-
sion are wanted right now. The argument n n
indicates the number of characters in y yy yt te ex xt t to
be retained. Further characters previously
matched are returned to the input. This provides
the same sort of lookahead offered by the /
operator, but in a different form.

E Ex xa am mp pl le e: : Consider a language which
defines a string as a set of characters between
quotation (") marks, and provides that to include
a " in a string it must be preceded by a \. The
regular expression which matches that is some-
what confusing, so that it might be preferable to
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write
\"[ˆ"]∗ {

if (yytext[yyleng– 1] == ′\\′)
yymore();

else
... normal user processing

}
which will, when faced with a string such as
" "a ab bc c\ \" "d de ef f " " first match the five characters " "a ab bc c\ \ ;
then the call to y yy ym mo or re e( () ) will cause the next
part of the string, " "d de ef f , to be tacked on the end.
Note that the final quote terminating the string
should be picked up in the code labeled ‘‘normal
processing’’.

The function y yy yl le es ss s( () ) might be used to
reprocess text in various circumstances. Con-
sider the C problem of distinguishing the ambi-
guity of ‘‘=−a’’. Suppose it is desired to treat
this as ‘‘=− a’’ but print a message. A rule
might be
=−[a– zA– Z] {

printf("Operator (=−) ambiguous\n");
yyless(yyleng– 1);
... action for =− ...
}

which prints a message, returns the letter after
the operator to the input stream, and treats the
operator as ‘‘=−’’. Alternatively it might be
desired to treat this as ‘‘= −a’’. To do this, just
return the minus sign as well as the letter to the
input:
=−[a– zA– Z] {

printf("Operator (=−) ambiguous\n");
yyless(yyleng– 2);
... action for = ...
}

will perform the other interpretation. Note that
the expressions for the two cases might more
easily be written

=−/[A– Za– z]
in the first case and

=/– [A– Za– z]
in the second; no backup would be required in
the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity.
The possibility of ‘‘=−3’’, however, makes

=−/[ˆ \t\n]
a still better rule.

In addition to these routines, Lex also per-
mits access to the I/O routines it uses. They
are:

1) i in np pu ut t( () ) which returns the next input char-
acter;

2) o ou ut tp pu ut t( (c c) ) which writes the character c c on
the output; and

3) u un np pu ut t( (c c) ) pushes the character c c back onto
the input stream to be read later by
i in np pu ut t( () ). .

By default these routines are provided as macro
definitions, but the user can override them and
supply private versions. These routines define
the relationship between external files and inter-
nal characters, and must all be retained or
modified consistently. They may be redefined,
to cause input or output to be transmitted to or
from strange places, including other programs or
internal memory; but the character set used must
be consistent in all routines; a value of zero
returned by i in np pu ut t must mean end of file; and the
relationship between u un np pu ut t and i in np pu ut t must be
retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not
have to, but every rule ending in + + ∗ ∗ ? ? or $ $ or
containing / / implies lookahead. Lookahead is
also necessary to match an expression that is a
prefix of another expression. See below for a
discussion of the character set used by Lex. The
standard Lex library imposes a 100 character
limit on backup.

Another Lex library routine that the user
will sometimes want to redefine is y yy yw wr ra ap p( () )
which is called whenever Lex reaches an end-
of-file. If y yy yw wr ra ap p returns a 1, Lex continues
with the normal wrapup on end of input. Some-
times, however, it is convenient to arrange for
more input to arrive from a new source. In this
case, the user should provide a y yy yw wr ra ap p which
arranges for new input and returns 0. This
instructs Lex to continue processing. The
default y yy yw wr ra ap p always returns 1.

This routine is also a convenient place to
print tables, summaries, etc. at the end of a pro-
gram. Note that it is not possible to write a nor-
mal rule which recognizes end-of-file; the only
access to this condition is through y yy yw wr ra ap p. . In
fact, unless a private version of i in np pu ut t( () ) is sup-
plied a file containing nulls cannot be handled,
since a value of 0 returned by i in np pu ut t is taken to
be end-of-file.

5. Ambiguous Source Rules.

Lex can handle ambiguous specifications.
When more than one expression can match the
current input, Lex chooses as follows:
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1) The longest match is preferred.

2) Among rules which matched the same
number of characters, the rule given first
is preferred.

Thus, suppose the rules
integer keyword action ...;
[a– z]+ identifier action ...;

to be given in that order. If the input is
i in nt te eg ge er rs s , it is taken as an identifier, because
[ [a a– – z z] ]+ + matches 8 characters while i in nt te eg ge er r
matches only 7. If the input is i in nt te eg ge er r , both
rules match 7 characters, and the keyword rule
is selected because it was given first. Anything
shorter (e.g. i in nt t ) will not match the expression
i in nt te eg ge er r and so the identifier interpretation is
used.

The principle of preferring the longest
match makes rules containing expressions like
. .∗ ∗ dangerous. For example,

′.∗′
might seem a good way of recognizing a string
in single quotes. But it is an invitation for the
program to read far ahead, looking for a distant
single quote. Presented with the input

′first′ quoted string here, ′second′ here
the above expression will match

′first′ quoted string here, ′second′
which is probably not what was wanted. A
better rule is of the form

′[ˆ′\n]∗′
which, on the above input, will stop after ′ ′fi fir rs st t′ ′ .
The consequences of errors like this are miti-
gated by the fact that the . . operator will not
match newline. Thus expressions like . .∗ ∗ stop
on the current line. Don’t try to defeat this with
expressions like [ [. .\ \n n] ]+ + or equivalents; the Lex
generated program will try to read the entire
input file, causing internal buffer overflows.

Note that Lex is normally partitioning the
input stream, not searching for all possible
matches of each expression. This means that
each character is accounted for once and only
once. For example, suppose it is desired to
count occurrences of both s sh he e and h he e in an input
text. Some Lex rules to do this might be

she s++;
he h++;
\n 
. ;

where the last two rules ignore everything
besides h he e and s sh he e. Remember that . does not
include newline. Since s sh he e includes h he e, Lex
will normally n no ot t recognize the instances of h he e

included in s sh he e, since once it has passed a s sh he e
those characters are gone.

Sometimes the user would like to override
this choice. The action REJECT means ‘‘go do
the next alternative.’’ It causes whatever rule
was second choice after the current rule to be
executed. The position of the input pointer is
adjusted accordingly. Suppose the user really
wants to count the included instances of h he e:

she {s++; REJECT;}
he {h++; REJECT;}
\n 
. ;

these rules are one way of changing the previous
example to do just that. After counting each
expression, it is rejected; whenever appropriate,
the other expression will then be counted. In
this example, of course, the user could note that
s sh he e includes h he e but not vice versa, and omit the
REJECT action on h he e; in other cases, however,
it would not be possible a priori to tell which
input characters were in both classes.

Consider the two rules
a[bc]+ { ... ; REJECT;}
a[cd]+ { ... ; REJECT;}

If the input is a ab b , only the first rule matches,
and on a ad d only the second matches. The input
string a ac cc cb b matches the first rule for four char-
acters and then the second rule for three charac-
ters. In contrast, the input a ac cc cd d agrees with the
second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever
the purpose of Lex is not to partition the input
stream but to detect all examples of some items
in the input, and the instances of these items
may overlap or include each other. Suppose a
digram table of the input is desired; normally
the digrams overlap, that is the word t th he e is con-
sidered to contain both t th h and h he e . Assuming a
two-dimensional array named d di ig gr ra am m to be
incremented, the appropriate source is
%%
[a– z][a– z] {digram[yytext[0]][yytext[1]]++; REJECT;}
\n ;
where the REJECT is necessary to pick up a
letter pair beginning at every character, rather
than at every other character.

6. Lex Source Definitions.

Remember the format of the Lex source:
{definitions}
%%
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{rules}
%%
{user routines}

So far only the rules have been described. The
user needs additional options, though, to define
variables for use in his program and for use by
Lex. These can go either in the definitions sec-
tion or in the rules section.

Remember that Lex is turning the rules
into a program. Any source not intercepted by
Lex is copied into the generated program. There
are three classes of such things.

1) Any line which is not part of a Lex rule or
action which begins with a blank or tab is
copied into the Lex generated program.
Such source input prior to the first %%
delimiter will be external to any function
in the code; if it appears immediately after
the first %%, it appears in an appropriate
place for declarations in the function writ-
ten by Lex which contains the actions.
This material must look like program frag-
ments, and should precede the first Lex
rule.

As a side effect of the above, lines which
begin with a blank or tab, and which con-
tain a comment, are passed through to the
generated program. This can be used to
include comments in either the Lex source
or the generated code. The comments
should follow the host language conven-
tion.

2) Anything included between lines contain-
ing only % %{ { and % %} } is copied out as
above. The delimiters are discarded. This
format permits entering text like prepro-
cessor statements that must begin in
column 1, or copying lines that do not
look like programs.

3) Anything after the third %% delimiter,
regardless of formats, etc., is copied out
after the Lex output.

Definitions intended for Lex are given
before the first %% delimiter. Any line in this
section not contained between %{ and %}, and
begining in column 1, is assumed to define Lex
substitution strings. The format of such lines is

name translation
and it causes the string given as a translation to
be associated with the name. The name and
translation must be separated by at least one
blank or tab, and the name must begin with a
letter. The translation can then be called out by

the {name} syntax in a rule. Using {D} for the
digits and {E} for an exponent field, for exam-
ple, might abbreviate rules to recognize
numbers:

D [0– 9]
E [DEde][– +]?{D}+
%%
{D}+ printf("integer");
{D}+"."{D}∗({E})? 
{D}∗"."{D}+({E})? 
{D}+{E}

Note the first two rules for real numbers; both
require a decimal point and contain an optional
exponent field, but the first requires at least one
digit before the decimal point and the second
requires at least one digit after the decimal
point. To correctly handle the problem posed by
a Fortran expression such as 3 35 5. .E EQ Q. .I I , which
does not contain a real number, a context-
sensitive rule such as

[0– 9]+/"."EQ printf("integer");
could be used in addition to the normal rule for
integers.

The definitions section may also contain
other commands, including the selection of a
host language, a character set table, a list of start
conditions, or adjustments to the default size of
arrays within Lex itself for larger source pro-
grams. These possibilities are discussed below
under ‘‘Summary of Source Format,’’ section
12.

7. Usage.

There are two steps in compiling a Lex
source program. First, the Lex source must be
turned into a generated program in the host gen-
eral purpose language. Then this program must
be compiled and loaded, usually with a library
of Lex subroutines. The generated program is
on a file named l le ex x. .y yy y. .c c . The I/O library is
defined in terms of the C standard library [6].

The C programs generated by Lex are
slightly different on OS/370, because the OS
compiler is less powerful than the UNIX or
GCOS compilers, and does less at compile time.
C programs generated on GCOS and UNIX are
the same.

U UN NI IX X. . The library is accessed by the
loader flag – – l ll l . So an appropriate set of com-
mands is

lex source cc lex.yy.c – ll
The resulting program is placed on the usual file
a a. .o ou ut t for later execution. To use Lex with Yacc
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see below. Although the default Lex I/O rou-
tines use the C standard library, the Lex auto-
mata themselves do not do so; if private ver-
sions of i in np pu ut t, , o ou ut tp pu ut t and u un np pu ut t are given, the
library can be avoided.

8. Lex and Yacc.

If you want to use Lex with Yacc, note
that what Lex writes is a program named
y yy yl le ex x( () ), , the name required by Yacc for its
analyzer. Normally, the default main program
on the Lex library calls this routine, but if Yacc
is loaded, and its main program is used, Yacc
will call y yy yl le ex x( () ). . In this case each Lex rule
should end with

return(token);
where the appropriate token value is returned.
An easy way to get access to Yacc’s names for
tokens is to compile the Lex output file as part
of the Yacc output file by placing the line

# include "lex.yy.c"
in the last section of Yacc input. Supposing the
grammar to be named ‘‘good’’ and the lexical
rules to be named ‘‘better’’ the UNIX command
sequence can just be:

yacc good
lex better
cc y.tab.c – ly – ll

The Yacc library (– ly) should be loaded before
the Lex library, to obtain a main program which
invokes the Yacc parser. The generations of
Lex and Yacc programs can be done in either
order.

9. Examples.

As a trivial problem, consider copying an
input file while adding 3 to every positive
number divisible by 7. Here is a suitable Lex
source program

%%
int k;

[0– 9]+ {
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k);
}

to do just that. The rule [0– 9]+ recognizes
strings of digits; a at to oi i converts the digits to
binary and stores the result in k k. . The operator
% (remainder) is used to check whether k k is
divisible by 7; if it is, it is incremented by 3 as
it is written out. It may be objected that this
program will alter such input items as 4 49 9. .6 63 3 or

X X7 7 . Furthermore, it increments the absolute
value of all negative numbers divisible by 7. To
avoid this, just add a few more rules after the
active one, as here:
%%

int k;
– ?[0– 9]+ {

k = atoi(yytext);
printf("%d", k%7 == 0 ? k+3 : k);
}

– ?[0– 9.]+ ECHO;
[A-Za-z][A-Za-z0-9]+ ECHO;
Numerical strings containing a ‘‘.’’ or preceded
by a letter will be picked up by one of the last
two rules, and not changed. The i if f– – e el ls se e has
been replaced by a C conditional expression to
save space; the form a a? ?b b: :c c means ‘‘if a a then b b
else c c ’’.

For an example of statistics gathering,
here is a program which histograms the lengths
of words, where a word is defined as a string of
letters.

int lengs[100];
%%
[a– z]+ lengs[yyleng]++;
. 
\n ;
%%
yywrap()
{
int i;
printf("Length No. words\n");
for(i=0; i<100; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",i,lengs[i]);

return(1);
}

This program accumulates the histogram, while
producing no output. At the end of the input it
prints the table. The final statement r re et tu ur rn n( (1 1) ); ;
indicates that Lex is to perform wrapup. If
y yy yw wr ra ap p returns zero (false) it implies that further
input is available and the program is to continue
reading and processing. To provide a y yy yw wr ra ap p
that never returns true causes an infinite loop.

As a larger example, here are some parts
of a program written by N. L. Schryer to convert
double precision Fortran to single precision For-
tran. Because Fortran does not distinguish upper
and lower case letters, this routine begins by
defining a set of classes including both cases of
each letter:

a [aA]
b [bB]
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c [cC]
...
z [zZ]

An additional class recognizes white space:
W [ \t]∗

The first rule changes ‘‘double precision’’ to
‘‘real’’, or ‘‘DOUBLE PRECISION’’ to
‘‘REAL’’.
{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o}{n} {

printf(yytext[0]==′d′? "real" : "REAL");
}

Care is taken throughout this program to
preserve the case (upper or lower) of the original
program. The conditional operator is used to
select the proper form of the keyword. The next
rule copies continuation card indications to
avoid confusing them with constants:

ˆ" "[ˆ 0] ECHO;
In the regular expression, the quotes surround
the blanks. It is interpreted as ‘‘beginning of
line, then five blanks, then anything but blank or
zero.’’ Note the two different meanings of ˆ ˆ .
There follow some rules to change double preci-
sion constants to ordinary floating constants.
[0– 9]+{W}{d}{W}[+– ]?{W}[0– 9]+ 
[0– 9]+{W}"."{W}{d}{W}[+– ]?{W}[0– 9]+ 
"."{W}[0– 9]+{W}{d}{W}[+– ]?{W}[0– 9]+ {

/∗ convert constants ∗/
for(p=yytext; ∗p != 0; p++)

{
if (∗p == ′d′  ∗p == ′D′)

∗p=+ ′e′– ′d′;
ECHO;
}

After the floating point constant is recognized, it
is scanned by the f fo or r loop to find the letter d d or
D D . The program than adds ′ ′e e′ ′– – ′ ′d d′ ′ , which con-
verts it to the next letter of the alphabet. The
modified constant, now single-precision, is writ-
ten out again. There follow a series of names
which must be respelled to remove their initial
d d. By using the array y yy yt te ex xt t the same action
suffices for all the names (only a sample of a
rather long list is given here).

{d}{s}{i}{n} 
{d}{c}{o}{s} 
{d}{s}{q}{r}{t} 
{d}{a}{t}{a}{n} 
...
{d}{f}{l}{o}{a}{t} printf("%s",yytext+1);

Another list of names must have initial d d
changed to initial a a:

{d}{l}{o}{g} 
{d}{l}{o}{g}10 

{d}{m}{i}{n}1 
{d}{m}{a}{x}1 {

yytext[0] =+ ′a′ – ′d′;
ECHO;
}

And one routine must have initial d d changed to
initial r r:

{d}1{m}{a}{c}{h} {yytext[0] =+ ′r′ – ′d′;

To avoid such names as d ds si in nx x being detected as
instances of d ds si in n, some final rules pick up
longer words as identifiers and copy some sur-
viving characters:

[A– Za– z][A– Za– z0– 9]∗ 
[0– 9]+ 
\n 
. ECHO;

Note that this program is not complete; it does
not deal with the spacing problems in Fortran or
with the use of keywords as identifiers.
10. Left Context Sensitivity.

Sometimes it is desirable to have several
sets of lexical rules to be applied at different
times in the input. For example, a compiler
preprocessor might distinguish preprocessor
statements and analyze them differently from
ordinary statements. This requires sensitivity to
prior context, and there are several ways of han-
dling such problems. The ˆ ˆ operator, for exam-
ple, is a prior context operator, recognizing
immediately preceding left context just as $ $
recognizes immediately following right context.
Adjacent left context could be extended, to pro-
duce a facility similar to that for adjacent right
context, but it is unlikely to be as useful, since
often the relevant left context appeared some
time earlier, such as at the beginning of a line.

This section describes three means of deal-
ing with different environments: a simple use of
flags, when only a few rules change from one
environment to another, the use of s st ta ar rt t c co on nd di i- -
t ti io on ns s on rules, and the possibility of making
multiple lexical analyzers all run together. In
each case, there are rules which recognize the
need to change the environment in which the
following input text is analyzed, and set some
parameter to reflect the change. This may be a
flag explicitly tested by the user’s action code;
such a flag is the simplest way of dealing with
the problem, since Lex is not involved at all. It
may be more convenient, however, to have Lex
remember the flags as initial conditions on the
rules. Any rule may be associated with a start
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condition. It will only be recognized when Lex
is in that start condition. The current start con-
dition may be changed at any time. Finally, if
the sets of rules for the different environments
are very dissimilar, clarity may be best achieved
by writing several distinct lexical analyzers, and
switching from one to another as desired.

Consider the following problem: copy the
input to the output, changing the word m ma ag gi ic c to
fi fir rs st t on every line which began with the letter a a,
changing m ma ag gi ic c to s se ec co on nd d on every line which
began with the letter b b, and changing m ma ag gi ic c to
t th hi ir rd d on every line which began with the letter
c c. All other words and all other lines are left
unchanged.

These rules are so simple that the easiest
way to do this job is with a flag:

int flag;
%%
ˆa {flag = ′a′; ECHO;}
ˆb {flag = ′b′; ECHO;}
ˆc {flag = ′c′; ECHO;}
\n {flag = 0 ; ECHO;}
magic {

switch (flag)
{
case ′a′: printf("first"); break;
case ′b′: printf("second"); break;
case ′c′: printf("third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start
conditions, each start condition must be intro-
duced to Lex in the definitions section with a
line reading

%Start name1 name2 ...
where the conditions may be named in any
order. The word S St ta ar rt t may be abbreviated to s s
or S S. The conditions may be referenced at the
head of a rule with the <> brackets:

<name1>expression
is a rule which is only recognized when Lex is
in the start condition n na am me e1 1. To enter a start
condition, execute the action statement

BEGIN name1;
which changes the start condition to n na am me e1 1. To
resume the normal state,

BEGIN 0;
resets the initial condition of the Lex automaton
interpreter. A rule may be active in several start
conditions:

<name1,name2,name3>

is a legal prefix. Any rule not beginning with
the <> prefix operator is always active.

The same example as before can be writ-
ten:
%START AA BB CC
%%
ˆa {ECHO; BEGIN AA;}
ˆb {ECHO; BEGIN BB;}
ˆc {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic printf("first");
<BB>magic printf("second");
<CC>magic printf("third");
where the logic is exactly the same as in the
previous method of handling the problem, but
Lex does the work rather than the user’s code.

11. Character Set.

The programs generated by Lex handle
character I/O only through the routines i in np pu ut t, ,
o ou ut tp pu ut t, , and u un np pu ut t. . Thus the character represen-
tation provided in these routines is accepted by
Lex and employed to return values in y yy yt te ex xt t. .
For internal use a character is represented as a
small integer which, if the standard library is
used, has a value equal to the integer value of
the bit pattern representing the character on the
host computer. Normally, the letter a a is
represented as the same form as the character
constant ′ ′a a′ ′ . If this interpretation is changed, by
providing I/O routines which translate the char-
acters, Lex must be told about it, by giving a
translation table. This table must be in the
definitions section, and must be bracketed by
lines containing only ‘‘%T’’. The table con-
tains lines of the form

{integer} {character string}
which indicate the value associated with each
character. Thus the next example

%T
1 Aa
2 Bb

...
26 Zz
27 \n
28 +
29 –
30 0
31 1
...
39 9
%T

Sample character table.
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maps the lower and upper case letters together
into the integers 1 through 26, newline into 27,
+ and – into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a
table is supplied, every character that is to
appear either in the rules or in any valid input
must be included in the table. No character may
be assigned the number 0, and no character may
be assigned a bigger number than the size of the
hardware character set.

12. Summary of Source Format.

The general form of a Lex source file is:
{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination
of

1) Definitions, in the form ‘‘name space
translation’’.

2) Included code, in the form ‘‘space code’’.

3) Included code, in the form
%{
code
%}

4) Start conditions, given in the form
%S name1 name2 ...

5) Character set tables, in the form
%T
number space character-string
...
%T

6) Changes to internal array sizes, in the
form

%x x n nn nn n
where n nn nn n is a decimal integer represent-
ing an array size and x x selects the parame-
ter as follows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form
‘‘expression action’’ where the action may be
continued on succeeding lines by using braces to
delimit it.

Regular expressions in Lex use the follow-
ing operators:

x the character "x"
"x" an "x", even if x is an operator.
\x an "x", even if x is an operator.
[xy] the character x or y.
[x– z] the characters x, y or z.
[ˆx] any character but x.
. any character but newline.
ˆx an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
x∗ 0,1,2, ... instances of x.
x+ 1,2,3, ... instances of x.
xy an x or a y.
(x) an x.
x/y an x but only if followed by y.
{xx} the translation of xx from the definitions section.
x{m,n} m m through n n occurrences of x

13. Caveats and Bugs.

There are pathological expressions which
produce exponential growth of the tables when
converted to deterministic machines; fortunately,
they are rare.

REJECT does not rescan the input; instead
it remembers the results of the previous scan.
This means that if a rule with trailing context is
found, and REJECT executed, the user must not
have used u un np pu ut t to change the characters forth-
coming from the input stream. This is the only
restriction on the user’s ability to manipulate the
not-yet-processed input.
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ABSTRACT

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard on April 3, 1978. We report here on a
compiler and run-time system for the new extended language. This is believed to be
the first complete Fortran 77 system to be implemented. This compiler is designed to
be portable, to be correct and complete, and to generate code compatible with calling
sequences produced by C compilers. In particular, this Fortran is quite usable on
UNIX† systems. In this paper, we describe the language compiled, interfaces between
procedures, and file formats assumed by the I/O system. An appendix describes the
Fortran 77 language.
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A Portable Fortran 77 Compiler

S. I. Feldman
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1. INTRODUCTION

The Fortran language has just been revised. The new language, known as Fortran 77, became an
official American National Standard [1] on April 3, 1978. for the language, known as Fortran 77, is
about to be published. Fortran 77 supplants 1966 Standard Fortran [2]. We report here on a compiler
and run-time system for the new extended language. The compiler and computation library were written
by SIF, the I/O system by PJW. We believe ours to be the first complete Fortran 77 system to be
implemented. This compiler is designed to be portable to a number of different machines, to be correct
and complete, and to generate code compatible with calling sequences produced by compilers for the C
language [3]. In particular, it is in use on UNIX† systems. Two families of C compilers are in use at
Bell Laboratories, those based on D. M. Ritchie’s PDP-11 compiler[4] and those based on S. C.
Johnson’s portable C compiler [5]. This Fortran compiler can drive the second passes of either family.
In this paper, we describe the language compiled, interfaces between procedures, and file formats
assumed by the I/O system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11, the VAX-11/780, and the
Interdata 8/32 UNIX systems. The command to run the compiler is

f 77 flags file . . .

f 77 is a general-purpose command for compiling and loading Fortran and Fortran-related files. EFL [6]
and Ratfor [7] source files will be preprocessed before being presented to the Fortran compiler. C and
assembler source files will be compiled by the appropriate programs. Object files will be loaded. (The
f 77 and cc commands cause slightly different loading sequences to be generated, since Fortran programs
need a few extra libraries and a different startup routine than do C programs.) The following file name
suffixes are understood:

.f Fortran source file

.e EFL source file

.r Ratfor source file

.c C source file

.s Assembler source file

.o Object file

The following flags are understood:

−S Generate assembler output for each source file, but do not assemble it. Assembler out-
put for a source file x.f, x.e, x.r, or x.c is put on file x.s.

__________________
†UNIX is a Trademark of Bell Laboratories.
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−c Compile but do not load. Output for x.f, x.e, x.r, x.c, or x.s is put on file x.o.

−m Apply the M4 macro preprocessor to each EFL or Ratfor source file before using the
appropriate compiler.

−f Apply the EFL or Ratfor processor to all relevant files, and leave the output from x.e
or x.r on x.f. Do not compile the resulting Fortran program.

−p Generate code to produce usage profiles.

−o f Put executable module on file f. (Default is a.out).

−w Suppress all warning messages.

−w66 Suppress warnings about Fortran 66 features used.

−O Invoke the C object code optimizer.

−C Compile code the checks that subscripts are within array bounds.

−onetrip Compile code that performs every do loop at least once. (see Section 2.10).

−U Do not convert upper case letters to lower case. The default is to convert Fortran pro-
grams to lower case.

−u Make the default type of a variable undefined. (see Section 2.3).

−I2 On machines which support short integers, make the default integer constants and vari-
ables short. (−I4 is the standard value of this option). (see Section 2.14). All logical
quantities will be short.

−E The remaining characters in the argument are used as an EFL flag argument.

−R The remaining characters in the argument are used as a Ratfor flag argument.

−F Ratfor and and EFL source programs are pre-processed into Fortran files, but those
files are not compiled or removed.

Other flags, all library names (arguments beginning −l), and any names not ending with one of the
understood suffixes are passed to the loader.

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case. Exam-
ples will be presented in lightface lower case. Names representing a class of values will be printed in
italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler intermedi-
ate code. Since there are C compilers running on a variety of machines, relatively small changes will
make this Fortran compiler generate code for any of them. Furthermore, this approach guarantees that
the resulting programs are compatible with C usage. The runtime computational library is complete.
The mathematical functions are computed to at least 63 bit precision. The runtime I/O library makes
use of D. M. Ritchie’s Standard C I/O package [8] for transferring data. With the few exceptions
described below, only documented calls are used, so it should be relatively easy to modify to run on
other operating systems.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences briefly in the
Appendix. The most important additions are a character string data type, file-oriented input/output state-
ments, and random access I/O. Also, the language has been cleaned up considerably.

In addition to implementing the language specified in the new Standard, our compiler implements
a few extensions described in this section. Most are useful additions to the language. The remainder
are extensions to make it easier to communicate with C procedures or to permit compilation of old
(1966 Standard) programs.
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2.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double preci-
sion real variables. A double complex version of every complex built-in function is provided.
The specific function names begin with z instead of c.

2.2. Internal Files

The Fortran 77 standard introduces ‘‘internal files’’ (memory arrays), but restricts their use to for-
matted sequential I/O statements. Our I/O system also permits internal files to be used in direct
and unformatted reads and writes.

2.3. Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type statement is
integer if its first letter is i, j, k, l, m or n, and real otherwise. Fortran 77 has an implicit state-
ment for overriding this rule. As an aid to good programming practice, we permit an additional
type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each
variable that is used but does not appear in a type statement. Specifying the −u compiler flag is
equivalent to beginning each procedure with this statement.

2.4. Recursion

Procedures may call themselves, directly or through a chain of other procedures.

2.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
‘‘types’’ in type statements and in implicit statements. Local variables are static by default; there
is exactly one copy of the datum, and its value is retained between calls. There is one copy of
each variable declared automatic for each invocation of the procedure. Automatic variables may
not appear in equivalence, data, or save statements.

2.6. Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in comment lines,
the first five characters are the statement number, the next is the continuation character, and the
next sixty-six are the body of the line. (If there are fewer than seventy-two characters on a line,
the compiler pads it with blanks; characters after the seventy-second are ignored).

In order to make it easier to type Fortran programs, our compiler also accepts input in variable
length lines. An ampersand (‘‘&’’) in the first position of a line indicates a continuation line; the
remaining characters form the body of the line. A tab character in one of the first six positions of
a line signals the end of the statement number and continuation part of the line; the remaining
characters form the body of the line. A tab elsewhere on the line is treated as another kind of
blank by the compiler.

In the Standard, there are only 26 letters — Fortran is a one-case language. Consistent with ordi-
nary UNIX system usage, our compiler expects lower case input. By default, the compiler converts
all upper case characters to lower case except those inside character constants. However, if the
−U compiler flag is specified, upper case letters are not transformed. In this mode, it is possible
to specify external names with upper case letters in them, and to have distinct variables differing
only in case. Regardless of the setting of the flag, keywords will only be recognized in lower
case.
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2.7. Include Statement

The statement

include ′stuff ′

is replaced by the contents of the file stuff. includes may be nested to a reasonable depth,
currently ten.

2.8. Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary constant,
denoted by a letter followed by a quoted string. If the letter is b, the string is binary, and only
zeroes and ones are permitted. If the letter is o, the string is octal, with digits 0−7. If the letter is
z or x, the string is hexadecimal, with digits 0−9, a−f. Thus, the statements

integer a(3)
data a / b′1010′, o′12′, z′a′ /

initialize all three elements of a to ten.

2.9. Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

\n newline
\t tab
\b backspace
\f form feed
\0 null
\′ apostrophe (does not terminate a string)
\" quotation mark (does not terminate a string)
\\ \
\x x, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system recog-
nize both the apostrophe ( ′ ) and the double-quote ( " ). If a string begins with one variety of
quote mark, the other may be embedded within it without using the repeated quote or backslash
escapes.

Every unequivalenced scalar local character variable and every character string constant is aligned
on an integer word boundary. Each character string constant appearing outside a data statement
is followed by a null character to ease communication with C routines.

2.10. Hollerith

Fortran 77 does not have the old Hollerith (n h) notation, though the new Standard recommends
implementing the old Hollerith feature in order to improve compatibility with old programs. In
our compiler, Hollerith data may be used in place of character string constants, and may also be
used to initialize non-character variables in data statements.

2.11. Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply-dimensioned
array to be represented by a singly-subscripted reference in equivalence statements. Fortran 77
does not permit this usage, since subscript lower bounds may now be different from 1. Our com-
piler permits single subscripts in equivalence statements, under the interpretation that all missing
subscripts are equal to 1. A warning message is printed for each such incomplete subscript.
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2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the initial value
is already past the limit value, as in

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement was undefined, but it was common
practice that the range of a do loop would be performed at least once. In order to accommodate
old programs, though they were in violation of the 1966 Standard, the −onetrip compiler flag
causes non-standard loops to be generated.

2.13. Commas in Formatted Input

The I/O system attempts to be more lenient than the Standard when it seems worthwhile. When
doing a formatted read of non-character variables, commas may be used as value separators in the
input record, overriding the field lengths given in the format statement. Thus, the format

(i10, f20.10, i4)

will read the record

−345,.05e−3,12

correctly.

2.14. Short Integers

On machines that support halfword integers, the compiler accepts declarations of type integer∗2.
(Ordinary integers follow the Fortran rules about occupying the same space as a REAL variable;
they are assumed to be of C type long int; halfword integers are of C type short int.) An expres-
sion involving only objects of type integer∗2 is of that type. Generic functions return short or
long integers depending on the actual types of their arguments. If a procedure is compiled using
the −I2 flag, all small integer constants will be of type integer∗2. If the precision of an integer-
valued intrinsic function is not determined by the generic function rules, one will be chosen that
returns the prevailing length (integer∗2 when the −I2 command flag is in effect). When the −I2
option is in effect, all quantities of type logical will be short. Note that these short integer and
logical quantities do not obey the standard rules for storage association.

2.15. Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In addi-
tion, there are functions for performing bitwise Boolean operations ( or, and, xor, and not) and
for accessing the UNIX command arguments ( getarg and iargc ).

3. VIOLATIONS OF THE STANDARD

We know only thre ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment

The Fortran standards (both 1966 and 1977) permit common or equivalence statements to force a
double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4),c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on
double word boundaries; other machines (e.g., IBM 370), run inefficiently if this alignment rule is
not observed. It is possible to tell which equivalenced and common variables suffer from a forced
odd alignment, but every double precision argument would have to be assumed on a bad
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boundary. To load such a quantity on some machines, it would be necessary to use separate
operations to move the upper and lower halves into the halves of an aligned temporary, then to
load that double precision temporary; the reverse would be needed to store a result. We have
chosen to require that all double precision real and complex quantities fall on even word boun-
daries on machines with corresponding hardware requirements, and to issue a diagnostic if the
source code demands a violation of the rule.

3.2. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of that pro-
cedure must be declared in an external statement. This requirement arises as a subtle corollary of
the way we represent character string arguments and of the one-pass nature of the compiler. A
warning is printed if a dummy procedure is not declared external. Code is correct if there are no
character arguments.

3.3. T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective. These
codes allow rereading or rewriting part of the record which has already been processed. (Section
6.3.2 in the Appendix.) The implementation uses seeks, so if the unit is not one which allows
seeks, such as a terminal, the program is in error. (People who can make a case for using tl
should let us know.) A benefit of the implementation chosen is that there is no upper limit on the
length of a record, nor is it necessary to predeclare any record lengths except where specifically
required by Fortran or the operating system.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is necessary to
know the conventions for procedure names, data representation, return values, and argument lists that the
compiled code obeys.

4.1. Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an underscore
appended to it by the compiler to distinguish it from a C procedure or external variable with the same
user-assigned name. Fortran library procedure names have embedded underscores to avoid clashes with
user-assigned subroutine names.

4.2. Data Representations

The following is a table of corresponding Fortran and C declarations:

Fortran C

integer∗2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct { float r, i; } x;
double complex x struct { double dr, di; } x;
character∗6 x char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory).

4.3. Return Values

A function of type integer, logical, real, or double precision declared as a C function that returns
the corresponding type. A complex or double complex function is equivalent to a C routine with an
additional initial argument that points to the place where the return value is to be stored. Thus,
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complex function f( . . . )

is equivalent to

f_(temp, . . .)
struct { float r, i; } ∗temp;
. . .

A character-valued function is equivalent to a C routine with two extra initial arguments: a data address
and a length. Thus,

character∗15 function g( . . . )

is equivalent to

g_(result, length, . . .)
char result[ ];
long int length;
. . .

and could be invoked in C by

char chars[15];
. . .

g_(chars, 15L, . . . );

Subroutines are invoked as if they were integer-valued functions whose value specifies which alternate
return to use. Alternate return arguments (statement labels) are not passed to the function, but are used
to do an indexed branch in the calling procedure. (If the subroutine has no entry points with alternate
return arguments, the returned value is undefined.) The statement

call nret(∗1, ∗2, ∗3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret( )

4.4. Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of type char-
acter or that is a dummy procedure, an argument giving the length of the value is passed. (The string
lengths are long int quantities passed by value). The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
character∗7 s
integer b(3)
. . .

call sam(f, b(2), s)

is equivalent to that in
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int f();
char s[7];
long int b[3];
. . .

sam_(f, &b[1], s, 0L, 7L);

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1 by
default. Fortran arrays are stored in column-major order, C arrays are stored in row-major order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and direct for-
matted and unformatted. On UNIX systems, these are all implemented as ordinary files which are
assumed to have the proper internal structure.

Fortran I/O is based on ‘‘records’’. When a direct file is opened in a Fortran program, the record
length of the records must be given, and this is used by the Fortran I/O system to make the file look as
if it is made up of records of the given length. In the special case that the record length is given as 1,
the files are not considered to be divided into records, but are treated as byte-addressable byte strings;
that is, as ordinary UNIX file system files. (A read or write request on such a file keeps consuming bytes
until satisfied, rather than being restricted to a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be
read or written by any means except Fortran I/O statements. Each record is preceded and followed by
an integer containing the record’s length in bytes.

The Fortran I/O system breaks sequential formatted files into records while reading by using each
newline as a record separator. The result of reading off the end of a record is undefined according to
the Standard. The I/O system is permissive and treats the record as being extended by blanks. On out-
put, the I/O system will write a newline at the end of each record. It is also possible for programs to
write newlines for themselves. This is an error, but the only effect will be that the single record the user
thought he wrote will be treated as more than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran I/O system uses only the facilities of the standard C I/O library, a widely available
and fairly portable package, with the following two nonstandard features: The I/O system needs to
know whether a file can be used for direct I/O, and whether or not it is possible to backspace. Both of
these facilities are implemented using the fseek routine, so there is a routine canseek which determines
if fseek will have the desired effect. Also, the inquire statement provides the user with the ability to
find out if two files are the same, and to get the name of an already opened file in a form which would
enable the program to reopen it. (The UNIX operating system implementation attempts to determine the
full pathname.) Therefore there are two routines which depend on facilities of the operating system to
provide these two services. In any case, the I/O system runs on the PDP-11, VAX-11/780, and Interdata
8/32 UNIX systems.

5.3. Pre-Connected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the standard
input, unit 6 is connected to the standard output, and unit 0 is connected to the standard error unit. All
are connected for sequential formatted I/O.

All the other units are also preconnected when execution begins. Unit n is connected to a file
named fort.n. These files need not exist, nor will they be created unless their units are used without
first executing an open. The default connection is for sequential formatted I/O.

The Standard does not specify where a file which has been explicitly opened for sequential I/O is
initially positioned. In fact, the I/O system attempts to position the file at the end, so a write will
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append to the file and a read will result in an end-of-file indication. To position a file to its beginning,
use a rewind statement. The preconnected units 0, 5, and 6 are positioned as they come from the
program’s parent process.
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APPENDIX. Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1966 [2] and the 1977 [1]
Standard languages. We assume that the reader is familiar with Fortran 66. We do not pretend to be
complete, precise, or unbiased, but plan to describe what we feel are the most important aspects of the
new language. At present the only current information on the 1977 Standard is in publications of the
X3J3 Subcommittee of the American National Standards Institute. The following information is from
the ‘‘/92’’ document. This draft Standard is written in English rather than a meta-language, but it is for-
bidding and legalistic. No tutorials or textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of ‘‘Hollerith’’ (n h) as data have been officially removed, although our compiler, like
almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is permissible to
jump out of the range of a do loop, then jump back into it. Extended range has been removed in
the Fortran 77 language. The restrictions are so special, and the implementation of extended range
is so unreliable in many compilers, that this change really counts as no loss.

2. Program Form

2.1. Blank Lines

Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external name:

program work

Block data procedures may also have names.

block data stuff

There is now a rule that only one unnamed block data procedure may appear in a program. (This
rule is not enforced by our system.) The Standard does not specify the effect of the program and
block data names, but they are clearly intended to aid conventional loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have additional
entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations must
precede all executable statements in the procedure. If the procedure begins with a subroutine
statement, all entry points are subroutine names. If it begins with a function statement, each entry
is a function entry point, with type determined by the type declared for the entry name. If any
entry is a character-valued function, then all entries must be. In a function, an entry name of the
same type as that where control entered must be assigned a value. Arguments do not retain their
values between calls. (The ancient trick of calling one entry point with a large number of argu-
ments to cause the procedure to ‘‘remember’’ the locations of those arguments, then invoking an
entry with just a few arguments for later calculation, is still illegal. Furthermore, the trick doesn’t
work in our implementation, since arguments are not kept in static storage.)
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2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types. (The
use of floating point do variables is very dangerous because of the possibility of unexpected
roundoff, and we strongly recommend against their use). The action of the do statement is now
defined for all values of the do parameters. The statement

do 10 i = l, u, d

performs max(0 ,  (u −l )⁄d ) iterations. The do variable has a predictable value when exiting a
loop: the value at the time a goto or return terminates the loop; otherwise the value that failed
the limit test.

2.5. Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by an aster-
isk, as in

subroutine s(a, ∗, b, ∗)

The meaning of the ‘‘alternate returns’’ is described in section 5.2 of the Appendix.

3. Declarations

3.1. CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data type.
Local and common character variables must have a length denoted by a constant expression:

character∗17 a, b(3,4)
character∗(6+3) c

If the length is omitted entirely, it is assumed equal to 1. A character string argument may have a
constant length, or the length may be declared to be the same as that of the corresponding actual
argument at run time by a statement like

character∗(∗) a

(There is an intrinsic function len that returns the actual length of a character string). Character
arrays and common blocks containing character variables must be packed: in an array of character
variables, the first character of one element must follow the last character of the preceding ele-
ment, without holes.

3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j, k, l,
m, or n is of type integer, other variables are of type real, unless otherwise declared. This gen-
eral rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character∗(17) (s)

declares that variables whose name begins with an a ,b, c, or g are real, those beginning with w,
x, y, or z are assumed complex, and so on. It is still poor practice to depend on implicit typing,
but this statement is an industry standard.

3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in

parameter (x=17, y=x/3, pi=3.14159d0, s=′hello′)

The type of each parameter name is governed by the same implicit and explicit rules as for a vari-
able. The right side of each equal sign must be a constant expression (an expression made up of
constants, operators, and already defined parameters).
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3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in 1966). The
lower bound of each dimension may be declared to be other than 1 by using a colon. Further-
more, an adjustable array bound may be an integer expression involving constants, arguments, and
variables in common.

real a(−5:3, 7, m:n), b(n+1:2∗n)

The upper bound on the last dimension of an array argument may be denoted by an asterisk to
indicate that the upper bound is not specified:

integer a(5, ∗), b(∗), c(0:1, −2:∗)

3.5. SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily retain
their values between invocations of that procedure. At any instant in the execution of a program,
if a common block is declared neither in the currently executing procedure nor in any of the pro-
cedures in the chain of callers, all of the variables in that common block also become undefined.
(The only exceptions are variables that have been defined in a data statement and never changed).
These rules permit overlay and stack implementations for the affected variables. Fortran 77 per-
mits one to specify that certain variables and common blocks are to retain their values between
invocations. The declaration

save a, /b/, c

leaves the values of the variables a and c and all of the contents of common block b unaffected by
a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block must be
saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, ‘‘intrinsic functions’’, rather
than being divided into ‘‘intrinsic’’ and ‘‘basic external’’ functions. If an intrinsic function is to
be passed to another procedure, it must be declared intrinsic. Declaring it external (as in Fortran
66) causes a function other than the built-in one to be passed.

4. Expressions

4.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apostrophe is to
be included in a constant, it is repeated:

′abc′
′ain′′t′

There are no null (zero-length) character strings in Fortran 77. Our compiler has two different
quotation marks, ‘‘ ′ ’’’ and ‘‘ " ’’. (See Section 2.9 in the main text.)

4.2. Concatenation

One new operator has been added, character string concatenation, marked by a double slash
(‘‘//’’). The result of a concatenation is the string containing the characters of the left operand fol-
lowed by the characters of the right operand. The strings
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′ab′ // ′cd′
′abcd′

are equal. The strings being concatenated must be of constant length in all concatenations that are
not the right sides of assignments. (The only concatenation expressions in which a character
string declared adjustable with a ‘‘∗(∗)’’ modifier or a substring denotation with nonconstant posi-
tion values may appear are the right sides of assignments).

4.3. Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed imple-
mentation of character assignment is to copy characters from the right to the left side.) If the left
side is longer than the right, it is padded with blanks. If the left side is shorter than the right,
trailing characters are discarded.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using the
colon notation:

a(i, j) (m:n)

is the string of (n −m +1) characters beginning at the m th character of the character array element
ai j . Results are undefined unless m ≤n . Substrings may be used on the left sides of assignments
and as procedure actual arguments.

4.5. Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to real or
complex powers. (The principal part of the logarithm is used). Also, multiple exponentiation is
now defined:

a∗∗b∗∗c = a ∗∗ (b∗∗c)

4.6. Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine integer
and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data statements. (A
constant expression is made up of explicit constants and parameters and the Fortran operators,
except for exponentiation to a floating-point power). An adjustable dimension may now be an
integer expression involving constants, arguments, and variables in B common..

Subscripts may now be general integer expressions; the old cv ±c′ rules have been removed. do
loop bounds may be general integer, real, or double precision expressions. Computed goto expres-
sions and I/O unit numbers may be general integer expressions.

5. Executable Statements

5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a ‘‘Block If’’.
A Block If begins with a statement of the form

if ( . . . ) then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There may be several
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else if(. . .) then

statements, followed by at most one

else

statement. If the logical expression in the Block If statement is true, the statements following it
up to the next elseif, else, or endif are executed. Otherwise, the next elseif statement in the group
is executed. If none of the elseif conditions are true, control passes to the statements following
the else statement, if any. (The else must follow all elseifs in a Block If. Of course, there may be
Block Ifs embedded inside of other Block If structures). A case construct may be rendered

if (s .eq. ′ab′) then
. . .

else if (s .eq. ′cd′) then
. . .

else
. . .

end if

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, as in

call joe(j, ∗10, m, ∗2)

A return statement may have an integer expression, such as

return k

If the entry point has n alternate return (asterisk) arguments and if 1≤k ≤n , the return is followed
by a branch to the corresponding statement label; otherwise the usual return to the statement fol-
lowing the call is executed.

6. Input/Output

6.1. Format Variables

A format may be the value of a character expression (constant or otherwise), or be stored in a
character array, as in

write(6, ′(i5)′) x

6.2. END=, ERR=, and IOSTAT= Clauses

A read or write statement may contain end=, err=, and iostat= clauses, as in

write(6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the I/O is done, 101 is the statement number of the associ-
ated format, 20 and 30 are statement numbers, and a and x are integers. If an error occurs during
I/O, control returns to the program at statement 20. If the end of the file is reached, control
returns to the program at statement 30. In any case, the variable referred to in the iostat= clause
is given a value when the I/O statement finishes. (Yes, the value is assigned to the name on the
right side of the equal sign.) This value is zero if all went well, negative for end of file, and some
positive value for errors.
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6.3. Formatted I/O

6.3.1. Character Constants

Character constants in formats are copied literally to the output. Character constants cannot be
read into.

write(6,′(i2,′′ isn′′′′t ′′,i1)′) 7, 4

produces

7 isn′t 4

Here the format is the character constant

(i2,′ isn′′t ′,i1)

and the character constant

isn′t

is copied into the output.

6.3.2. Positional Editing Codes

t, tl, tr, and x codes control where the next character is in the record. trn or nx specifies that the
next character is n to the right of the current position. tln specifies that the next character is n to
the left of the current position, allowing parts of the record to be reconsidered. tn says that the
next character is to be character number n in the record. (See section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the I/O operation if there are no more data items in the I/O list,
otherwise it has no effect. In the fragment

x=′("hello", :, " there", i4)′
write(6, x) 12
write(6, x)

the first write statement prints hello there 12, while the second only prints hello.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in front of
non-negative numeric output. The sp format code may be used to make the optional plus signs
actually appear for all subsequent items while the format is active. The ss format code guarantees
that the I/O system will not insert the optional plus signs, and the s format code restores the
default behavior of the I/O system. (Since we never put out optional plus signs, ss and s codes
have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored following a bn code in a
format statement, and will be treated as zeros following a bz code in a format statement. The
default for a unit may be changed by using the open statement. (Blanks are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required by a for-
mat code, the output field must be filled with asterisks. (We think this should have been an
option.)
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6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at least m
digits in the output field, including, if necessary, leading zeros. The case iw. 0 is special, in that if
the value being printed is 0, the output field is entirely blank. iw.1 is the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. On out-
put we always use e. The e and d format codes also have identical meanings. A leading zero
before the decimal point in e output without a scale factor is optional with the implementation.
(We do not print it.) There is a gw.d format code which is the same as ew.d and fw.d on input,
but which chooses f or e formats for output depending. on the size of the number and of d .

6.3.9. ‘‘A’’ Format Code

A codes are used for character values. aw use a field width of w , while a plain a uses the length
of the character item.

6.4. Standard Units

There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be explicitly
specified by an asterisk, as in

read(∗, 10) a,b

Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write(∗, 10)

6.5. List-Directed Formatting

List-directed I/O is a kind of free form input for sequential I/O. It is invoked by using an asterisk
as the format identifier, as in

read(6, ∗) a,b,c

On input, values are separated by strings of blanks and possibly a comma. Values, except for
character strings, cannot contain blanks. End of record counts as a blank, except in character
strings, where it is ignored. Complex constants are given as two real constants separated by a
comma and enclosed in parentheses. A null input field, such as between two consecutive commas,
means the corresponding variable in the I/O list is not changed. Values may be preceded by
repetition counts, as in

4∗(3.,2.) 2∗, 4∗′hello′

which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are printed;
they are not enclosed in quotes, so they cannot be read back using list-directed input.

6.6. Direct I/O

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order, using
direct access I/O statements.
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Direct access read and write statements have an extra argument, rec=, which gives the record
number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below). Direct access files may
be connected for either formatted or unformatted I/O.

6.7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type charac-
ter. In the former cases there is only a single record in the file, in the latter case each array ele-
ment is a record. The Standard includes only sequential formatted I/O on internal files. (I/O is
not a very precise term to use here, but internal files are dealt with using read and write). There
is no list-directed I/O on internal files. Internal files are used by giving the name of the character
object in place of the unit number, as in

character∗80 x
read(5,"(a)") x
read(x,"(i3,i4)") n1,n2

which reads a card image into x and then reads two integers from the front of it. A sequential
read or write always starts at the beginning of an internal file.

(We also support a compatible extension, direct I/O on internal files. This is like direct I/O on
external files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather information
about units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the connec-
tion. The following is a minimal example.

open(1, file=′fort.junk′)

open takes a variety of arguments with meanings described below.

unit= a small non-negative integer which is the unit to which the file is to be connected. We
allow, at the time of this writing, 0 through 9. If this parameter is the first one in the open
statement, the unit= can be omitted.

iostat= is the same as in read or write.

err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the file to be
connected to the unit. The filename should not be given if the status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown is
assumed. If scratch is given, a temporary file will be created. Temporary files are des-
troyed at the end of execution. If new is given, the file will be created if it doesn’t exist, or
truncated if it does. The meaning of unknown is processor dependent; our system treats it
as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequential or
direct I/O.
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form= formatted or unformatted.

recl= a positive integer specifying the record length of the direct access file being opened. We
measure all record lengths in bytes. On UNIX systems a record length of 1 has the special
meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted I/O. The default value is
null. zero means that blanks, other than leading blanks, in numeric input fields are to be
treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given. The
optional parameters are iostat= and err= with their usual meanings, and status= either keep or
delete. Scratch files cannot be kept, otherwise keep is the default. delete means the file will be
removed. A simple example is

close(3, err=17)

6.8.3. INQUIRE

The inquire statement gives information about a unit (‘‘inquire by unit’’) or a file (‘‘inquire by
file’’). Simple examples are:

inquire(unit=3, namexx)
inquire(file=′junk′, number=n, exist=l)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file name
are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or unit=
must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and is set to
.false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to a unit
or if the unit is connected to a file, and it is set to .false. otherwise.

number= an integer variable to which is assigned the number of the unit connected to the file, if
any.

named= a logical variable to which is assigned .true. if the file has a name, or .false. otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or the name
of the file connected to the unit (inquire by unit). The name will be the full name of the
file.

access= a character variable to which will be assigned the value ′sequential′ if the connection is
for sequential I/O, ′direct′ if the connection is for direct I/O. The value becomes undefined
if there is no connection.

sequential= a character variable to which is assigned the value ′yes′ if the file could be connected
for sequential I/O, ′no′ if the file could not be connected for sequential I/O, and ′unknown′
if we can’t tell.

direct= a character variable to which is assigned the value ′yes′ if the file could be connected for
direct I/O, ′no′ if the file could not be connected for direct I/O, and ′unknown′ if we can’t
tell.
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form= a character variable to which is assigned the value ′formatted′ if the file is connected for
formatted I/O, or ′unformatted′ if the file is connected for unformatted I/O.

formatted= a character variable to which is assigned the value ′yes′ if the file could be connected
for formatted I/O, ′no′ if the file could not be connected for formatted I/O, and ′unknown′
if we can’t tell.

unformatted= a character variable to which is assigned the value ′yes′ if the file could be con-
nected for unformatted I/O, ′no′ if the file could not be connected for unformatted I/O, and
′unknown′ if we can’t tell.

recl= an integer variable to which is assigned the record length of the records in the file if the file
is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the last record
read from a file connected for direct access.

blank= a character variable to which is assigned the value ′null′ if null blank control is in effect
for the file connected for formatted I/O, ′zero′ if blanks are being converted to zeros and the
file is connected for formatted I/O.

The gentle reader will remember that the people who wrote the standard probably weren’t think-
ing of his needs. Here is an example. The declarations are omitted.

open(1, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential I/O. An inquire statement
for either unit 1 or file "/dev/console" would reveal that the file exists, is connected to unit 1, has a
name, namely "/dev/console", is opened for sequential I/O, could be connected for sequential I/O, could
not be connected for direct I/O (can’t seek), is connected for formatted I/O, could be connected for for-
matted I/O, could not be connected for unformatted I/O (can’t seek), has neither a record length nor a
next record number, and is ignoring blanks in numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for a file is
to open it and try to read and write it. The err= parameter will return system error numbers. The
inquire statement does not give a way of determining permissions.
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ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and (usually)
relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran while retaining its
desirable qualities, by providing decent control flow statements:

• statement grouping

• if-else and switch for decision-making

• while, for, do, and repeat-until for looping

• break and next for controlling loop exits

and some ‘‘syntactic sugar’’:

• free form input (multiple statements/line, automatic continuation)

• unobtrusive comment convention

• translation of >, >=, etc., into .GT., .GE., etc.

• return(expression) statement for functions

• define statement for symbolic parameters

• include statement for including source files

Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is remarkably
pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to debug, maintain and
modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other env ironments. Ratfor is written in
itself in this way, so it is also portable; versions of Ratfor are now running on at least two dozen different types of
computers at over five hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its implementation,
and user experience.
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1. INTRODUCTION

Most programmers will agree that Fortran is an
unpleasant language to program in, yet there are
many occasions when they are forced to use it. For
example, Fortran is often the only language
thoroughly supported on the local computer. Indeed,
it is the closest thing to a universal programming
language currently available: with care it is possible
to write large, truly portable Fortran programs[1].
Finally, Fortran is often the most ‘‘efficient’’
language available, particularly for programs requiring
much computation.

But Fortran is unpleasant. Perhaps the worst
deficiency is in the control flow statements — condi-
tional branches and loops — which express the logic
of the program. The conditional statements in Fortran
are primitive. The Arithmetic IF forces the user into
at least two statement numbers and two (implied)
GOTO’s; it leads to unintelligible code, and is
eschewed by good programmers. The Logical IF is
better, in that the test part can be stated clearly, but
hopelessly restrictive because the statement that fol-
lows the IF can only be one Fortran statement (with
some further restrictions!). And of course there can
be no ELSE part to a Fortran IF: there is no way to
specify an alternative action if the IF is not satisfied.

The Fortran DO restricts the user to going for-
ward in an arithmetic progression. It is fine for ‘‘1 to
N in steps of 1 (or 2 or ...)’’, but there is no direct
way to go backwards, or even (in ANSI Fortran[2]) to
go from 1 to N−1. And of course the DO is useless if
one’s problem doesn’t map into an arithmetic progres-
sion.

The result of these failings is that Fortran pro-
grams must be written with numerous labels and
branches. The resulting code is particularly difficult
to read and understand, and thus hard to debug and
modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
_ ____________________
This paper is a revised and expanded version of one published in Software—Practice and Experience, October 1975.
The Ratfor described here is the one in use on UNIX and GCOS at Bell Laboratories, Murray Hill, N. J.

translate it into the unpleasant one with a preproces-
sor. This is the approach taken with Ratfor. (The
preprocessor idea is of course not new, and prepro-
cessors for Fortran are especially popular today. A
recent listing [3] of preprocessors shows more than
50, of which at least half a dozen are widely avail-
able.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of Fortran
(universality, portability, efficiency) while hiding the
worst Fortran inadequacies. The language is Fortran
except for two aspects. First, since control flow is
central to any program, regardless of the specific
application, the primary task of Ratfor is to conceal
this part of Fortran from the user, by providing decent
control flow structures. These structures are sufficient
and comfortable for structured programming in the
narrow sense of programming without GOTO’s.
Second, since the preprocessor must examine an
entire program to translate the control structure, it is
possible at the same time to clean up many of the
‘‘cosmetic’’ deficiencies of Fortran, and thus provide
a language which is easier and more pleasant to read
and write.

Beyond these two aspects — control flow and
cosmetics — Ratfor does nothing about the host of
other weaknesses of Fortran. Although it would be
straightforward to extend it to provide character
strings, for example, they are not needed by everyone,
and of course the preprocessor would be harder to
implement. Throughout, the design principle which
has determined what should be in Ratfor and what
should not has been Ratfor doesn’t know any Fortran.
Any language feature which would require that Ratfor
really understand Fortran has been omitted. We will
return to this point in the section on implementation.

Even within the confines of control flow and
cosmetics, we have attempted to be selective in what
features to provide. The intent has been to provide a
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small set of the most useful constructs, rather than to
throw in everything that has ever been thought useful
by someone.

The rest of this section contains an informal
description of the Ratfor language. The control flow
aspects will be quite familiar to readers used to
languages like Algol, PL/I, Pascal, etc., and the
cosmetic changes are equally straightforward. We
shall concentrate on showing what the language looks
like.

Statement Grouping

Fortran provides no way to group statements
together, short of making them into a subroutine. The
standard construction ‘‘if a condition is true, do this
group of things,’’ for example,

if (x > 100)
{ call error("x>100"); err = 1; return }

cannot be written directly in Fortran. Instead a pro-
grammer is forced to translate this relatively clear
thought into murky Fortran, by stating the negative
condition and branching around the group of state-
ments:

if (x .le. 100) goto 10
call error(5hx>100)
err = 1
return

10 ...

When the program doesn’t work, or when it must be
modified, this must be translated back into a clearer
form before one can be sure what it does.

Ratfor eliminates this error-prone and confus-
ing back-and-forth translation; the first form is the
way the computation is written in Ratfor. A group of
statements can be treated as a unit by enclosing them
in the braces { and }. This is true throughout the
language: wherever a single Ratfor statement can be
used, there can be several enclosed in braces. (Braces
seem clearer and less obtrusive than begin and end or
do and end, and of course do and end already have
Fortran meanings.)

Cosmetics contribute to the readability of code,
and thus to its understandability. The character ‘‘>’’
is clearer than ‘‘.GT.’’, so Ratfor translates it appropri-
ately, along with several other similar shorthands.
Although many Fortran compilers permit character
strings in quotes (like "x>100"), quotes are not
allowed in ANSI Fortran, so Ratfor converts it into the
right number of H’s: computers count better than peo-
ple do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi-
colons. The example above could also be written as

if (x > 100) {
call error("x>100")
err = 1
return

}

In this case, no semicolon is needed at the end of
each line because Ratfor assumes there is one state-
ment per line unless told otherwise.

Of course, if the statement that follows the if is
a single statement (Ratfor or otherwise), no braces are
needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the state-
ment is clearly not finished on the first line. In gen-
eral Ratfor continues lines when it seems obvious that
they are not yet done. (The continuation convention
is discussed in detail later.)

Although a free-form language permits wide
latitude in formatting styles, it is wise to pick one that
is readable, then stick to it. In particular, proper
indentation is vital, to make the logical structure of
the program obvious to the reader.

The ‘‘else’’ Clause

Ratfor provides an else statement to handle the
construction ‘‘if a condition is true, do this thing, oth-
erwise do that thing.’’

if (a <= b)
{ sw = 0; write(6, 1) a, b }

else
{ sw = 1; write(6, 1) b, a }

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is circui-
tous indeed:

if (a .gt. b) goto 10
sw = 0
write(6, 1) a, b
goto 20

10 sw = 1
write(6, 1) b, a

20 ...

This is a mechanical translation; shorter forms exist,
as they do for many similar situations. But all trans-
lations suffer from the same problem: since they are
translations, they are less clear and understandable
than code that is not a translation. To understand the
Fortran version, one must scan the entire program to
make sure that no other statement branches to state-
ments 10 or 20 before one knows that indeed this is
an if-else construction. With the Ratfor version, there
is no question about how one gets to the parts of the
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statement. The if-else is a single unit, which can be
read, understood, and ignored if not relevant. The
program says what it means.

As before, if the statement following an if or
an else is a single statement, no braces are needed:

if (a <= b)
sw = 0

else
sw = 1

The syntax of the if statement is

if (legal Fortran condition)
Ratfor statement

else
Ratfor statement

where the else part is optional. The legal Fortran
condition is anything that can legally go into a For-
tran Logical IF. Ratfor does not check this clause,
since it does not know enough Fortran to know what
is permitted. The Ratfor statement is any Ratfor or
Fortran statement, or any collection of them in braces.

Nested if’s

Since the statement that follows an if or an
else can be any Ratfor statement, this leads immedi-
ately to the possibility of another if or else. As a use-
ful example, consider this problem: the variable f is
to be set to – 1 if x is less than zero, to +1 if x is
greater than 100, and to 0 otherwise. Then in Ratfor,
we write

if (x < 0)
f = −1

else if (x > 100)
f = +1

else
f = 0

Here the statement after the first else is another if-
else. Logically it is just a single statement, although it
is rather complicated.

This code says what it means. Any version
written in straight Fortran will necessarily be indirect
because Fortran does not let you say what you mean.
And as always, clever shortcuts may turn out to be
too clever to understand a year from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general the
structure

if (...)
− − −

else if (...)
− − −

else if (...)
− − −

...
else

− − −

provides a way to specify the choice of exactly one of
several alternatives. (Ratfor also provides a switch
statement which does the same job in certain special
cases; in more general situations, we have to make do
with spare parts.) The tests are laid out in sequence,
and each one is followed by the code associated with
it. Read down the list of decisions until one is found
that is satisfied. The code associated with this condi-
tion is executed, and then the entire structure is
finished. The trailing else part handles the ‘‘default’’
case, where none of the other conditions apply. If
there is no default action, this final else part is omit-
ted:

if (x < 0)
x = 0

else if (x > 100)
x = 100

if-else ambiguity

There is one thing to notice about complicated
structures involving nested if’s and else’s. Consider

if (x > 0)
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

There are two if’s and only one else. Which if does
the else go with?

This is a genuine ambiguity in Ratfor, as it is
in many other programming languages. The ambi-
guity is resolved in Ratfor (as elsewhere) by saying
that in such cases the else goes with the closest previ-
ous un-else’ed if. Thus in this case, the else goes with
the inner if, as we have indicated by the indentation.

It is a wise practice to resolve such cases by
explicit braces, just to make your intent clear. In the
case above, we would write

if (x > 0) {
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y
}

which does not change the meaning, but leaves no
doubt in the reader’s mind. If we want the other
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association, we must write

if (x > 0) {
if (y > 0)

write(6, 1) x, y
}
else

write(6, 2) y

The ‘‘switch’’ Statement

The switch statement provides a clean way to
express multi-way branches which branch on the
value of some integer-valued expression. The syntax
is

switch (expression ) {

case expr1 :
statements

case expr2, expr3 :
statements

...
default:

statements
}

Each case is followed by a list of comma-
separated integer expressions. The expression inside
switch is compared against the case expressions
expr1, expr2, and so on in turn until one matches, at
which time the statements following that case are
executed. If no cases match expression, and there is
a default section, the statements with it are done; if
there is no default, nothing is done. In all situations,
as soon as some block of statements is executed, the
entire switch is exited immediately. (Readers fami-
liar with C[4] should beware that this behavior is not
the same as the C switch.)

The ‘‘do’’ Statement

The do statement in Ratfor is quite similar to
the DO statement in Fortran, except that it uses no
statement number. The statement number, after all,
serves only to mark the end of the DO, and this can
be done just as easily with braces. Thus

do i = 1, n {
x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

}

is the same as

do 10 i = 1, n
x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

10 continue

The syntax is:

do legal-Fortran-DO-text
Ratfor statement

The part that follows the keyword do has to be some-
thing that can legally go into a Fortran DO statement.
Thus if a local version of Fortran allows DO limits to
be expressions (which is not currently permitted in
ANSI Fortran), they can be used in a Ratfor do.

The Ratfor statement part will often be
enclosed in braces, but as with the if, a single state-
ment need not have braces around it. This code sets
an array to zero:

do i = 1, n
x(i) = 0.0

Slightly more complicated,

do i = 1, n
do j = 1, n

m(i, j) = 0

sets the entire array m to zero, and

do i = 1, n
do j = 1, n

if (i < j)
m(i, j) = −1

else if (i == j)
m(i, j) = 0

else
m(i, j) = +1

sets the upper triangle of m to – 1, the diagonal to
zero, and the lower triangle to +1. (The operator ==
is ‘‘equals’’, that is, ‘‘.EQ.’’.) In each case, the state-
ment that follows the do is logically a single state-
ment, even though complicated, and thus needs no
braces.

‘‘break’’ and ‘‘next’’

Ratfor provides a statement for leaving a loop
early, and one for beginning the next iteration. break
causes an immediate exit from the do; in effect it is a
branch to the statement after the do. next is a branch
to the bottom of the loop, so it causes the next itera-
tion to be done. For example, this code skips over
negative values in an array:

do i = 1, n {
if (x(i) < 0.0)

next
process positive element

}

break and next also work in the other Ratfor looping
constructions that we will talk about in the next few
sections.

break and next can be followed by an integer
to indicate breaking or iterating that level of enclosing
loop; thus
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break 2

exits from two levels of enclosing loops, and break 1
is equivalent to break. next 2 iterates the second
enclosing loop. (Realistically, multi-level break’s
and next’s are not likely to be much used because
they lead to code that is hard to understand and some-
what risky to change.)

The ‘‘while’’ Statement

One of the problems with the Fortran DO state-
ment is that it generally insists upon being done once,
regardless of its limits. If a loop begins

DO I = 2, 1

this will typically be done once with I set to 2, even
though common sense would suggest that perhaps it
shouldn’t be. Of course a Ratfor do can easily be
preceded by a test

if (j <= k)
do i = j, k {

_ _ _
}

but this has to be a conscious act, and is often over-
looked by programmers.

A more serious problem with the DO statement
is that it encourages that a program be written in
terms of an arithmetic progression with small positive
steps, even though that may not be the best way to
write it. If code has to be contorted to fit the require-
ments imposed by the Fortran DO, it is that much
harder to write and understand.

To overcome these difficulties, Ratfor provides
a while statement, which is simply a loop: ‘‘while
some condition is true, repeat this group of state-
ments’’. It has no preconceptions about why one is
looping. For example, this routine to compute sin(x)
by the Maclaurin series combines two termination cri-
teria.

real function sin(x, e)
# returns sin(x) to accuracy e, by
# sin(x) = x − x∗∗3/3! + x∗∗5/5! − ...

sin = x
term = x

i = 3
while (abs(term)>e & i<100) {

term = −term ∗ x∗∗2 / float(i∗(i−1))
sin = sin + term
i = i + 2

}

return
end

Notice that if the routine is entered with term
already smaller than e, the loop will be done zero
times, that is, no attempt will be made to compute
x∗∗3 and thus a potential underflow is avoided.
Since the test is made at the top of a while loop
instead of the bottom, a special case disappears — the
code works at one of its boundaries. (The test i<100
is the other boundary — making sure the routine
stops after some maximum number of iterations.)

As an aside, a sharp character ‘‘#’’ in a line
marks the beginning of a comment; the rest of the
line is comment. Comments and code can co-exist on
the same line — one can make marginal remarks,
which is not possible with Fortran’s ‘‘C in column 1’’
convention. Blank lines are also permitted anywhere
(they are not in Fortran); they should be used to
emphasize the natural divisions of a program.

The syntax of the while statement is

while (legal Fortran condition)
Ratfor statement

As with the if, legal Fortran condition is something
that can go into a Fortran Logical IF, and Ratfor state-
ment is a single statement, which may be multiple
statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose nextch is a function which returns
the next input character both as a function value and
in its argument. Then a loop to find the first non-
blank character is just

while (nextch(ich) == iblank)
;

A semicolon by itself is a null statement, which is
necessary here to mark the end of the while; if it
were not present, the while would control the next
statement. When the loop is broken, ich contains the
first non-blank. Of course the same code can be writ-
ten in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few compilers)
believe this line is illegal. The language at one’s
disposal strongly influences how one thinks about a
problem.

The ‘‘for’’ Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-body
from reason-for-looping a step further than the while.
A for statement allows explicit initialization and
increment steps as part of the statement. For exam-
ple, a DO loop is just

for (i = 1; i <= n; i = i + 1) ...

This is equivalent to
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i = 1
while (i <= n) {

...
i = i + 1

}

The initialization and increment of i have been moved
into the for statement, making it easier to see at a
glance what controls the loop.

The for and while versions have the advantage
that they will be done zero times if n is less than 1;
this is not true of the do.

The loop of the sine routine in the previous
section can be re-written with a for as

for (i=3; abs(term) > e & i < 100; i=i+2) {
term = −term ∗ x∗∗2 / float(i∗(i−1))
sin = sin + term

}

The syntax of the for statement is

for ( init ; condition ; increment )
Ratfor statement

init is any single Fortran statement, which gets done
once before the loop begins. increment is any single
Fortran statement, which gets done at the end of each
pass through the loop, before the test. condition is
again anything that is legal in a logical IF. Any of
init, condition, and increment may be omitted,
although the semicolons must always be present. A
non-existent condition is treated as always true, so
for(;;) is an indefinite repeat. (But see the repeat-
until in the next section.)

The for statement is particularly useful for
backward loops, chaining along lists, loops that might
be done zero times, and similar things which are hard
to express with a DO statement, and obscure to write
out with IF’s and GOTO’s. For example, here is a
backwards DO loop to find the last non-blank charac-
ter on a card:

for (i = 80; i > 0; i = i − 1)
if (card(i) != blank)

break

(‘‘!=’’ is the same as ‘‘.NE.’’). The code scans the
columns from 80 through to 1. If a non-blank is
found, the loop is immediately broken. (break and
next work in for’s and while’s just as in do’s). If i
reaches zero, the card is all blank.

This code is rather nasty to write with a regu-
lar Fortran DO, since the loop must go forward, and
we must explicitly set up proper conditions when we
fall out of the loop. (Forgetting this is a common
error.) Thus:

DO 10 J = 1, 80
I = 81 − J
IF (CARD(I) .NE. BLANK) GO TO 11

10 CONTINUE
I = 0

11 ...

The version that uses the for handles the termination
condition properly for free; i is zero when we fall out
of the for loop.

The increment in a for need not be an arith-
metic progression; the following program walks along
a list (stored in an integer array ptr) until a zero
pointer is found, adding up elements from a parallel
array of values:

sum = 0.0
for (i = first; i > 0; i = ptr(i))

sum = sum + value(i)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a loop
instead of the bottom eliminates a potential boundary
error.

The ‘‘repeat-until’’ statement

In spite of the dire warnings, there are times
when one really needs a loop that tests at the bottom
after one pass through. This service is provided by
the repeat-until:

repeat
Ratfor statement

until (legal Fortran condition)

The Ratfor statement part is done once, then the con-
dition is evaluated. If it is true, the loop is exited; if
it is false, another pass is made.

The until part is optional, so a bare repeat is
the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact[8], the repeat-
until statement is much less used than the other loop-
ing constructions; in particular, it is typically outnum-
bered ten to one by for and while. Be cautious about
using it, for loops that test only at the bottom often
don’t handle null cases well.

More on break and next

break exits immediately from do, while, for,
and repeat-until. next goes to the test part of do,
while and repeat-until, and to the increment step of a
for.
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‘‘return’’ Statement

The standard Fortran mechanism for returning
a value from a function uses the name of the function
as a variable which can be assigned to; the last value
stored in it is the function value upon return. For
example, here is a routine equal which returns 1 if
two arrays are identical, and zero if they differ. The
array ends are marked by the special value – 1.

# equal _ compare str1 to str2;
# return 1 if equal, 0 if not

integer function equal(str1, str2)
integer str1(100), str2(100)
integer i

for (i = 1; str1(i) == str2(i); i = i + 1)
if (str1(i) == −1) {

equal = 1
return

}
equal = 0
return
end

In many languages (e.g., PL/I) one instead says

return (expression)

to return a value from a function. Since this is often
clearer, Ratfor provides such a return statement — in
a function F, return(expression) is equivalent to

{ F = expression; return }

For example, here is equal again:

# equal _ compare str1 to str2;
# return 1 if equal, 0 if not

integer function equal(str1, str2)
integer str1(100), str2(100)
integer i

for (i = 1; str1(i) == str2(i); i = i + 1)
if (str1(i) == −1)

return(1)
return(0)
end

If there is no parenthesized expression after return, a
normal RETURN is made. (Another version of equal
is presented shortly.)

Cosmetics

As we said above, the visual appearance of a
language has a substantial effect on how easy it is to
read and understand programs. Accordingly, Ratfor
provides a number of cosmetic facilities which may
be used to make programs more readable.

Free-form Input

Statements can be placed anywhere on a line;
long statements are continued automatically, as are
long conditions in if, while, for, and until. Blank
lines are ignored. Multiple statements may appear on
one line, if they are separated by semicolons. No
semicolon is needed at the end of a line, if Ratfor can
make some reasonable guess about whether the state-
ment ends there. Lines ending with any of the char-
acters

= + − ∗ ,  & ( _

are assumed to be continued on the next line. Under-
scores are discarded wherever they occur; all others
remain as part of the statement.

Any statement that begins with an all-numeric
field is assumed to be a Fortran label, and placed in
columns 1-5 upon output. Thus

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format(5hhello)

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise unaltered
(except for formatting — it may get split across card
boundaries during the reformatting process). Within
quoted strings, the backslash ‘\’ serves as an escape
character: the next character is taken literally. This
provides a way to get quotes (and of course the
backslash itself) into quoted strings:

"\\\′"

is a string containing a backslash and an apostrophe.
(This is not the standard convention of doubled
quotes, but it is easier to use and more general.)

Any line that begins with the character ‘%’ is
left absolutely unaltered except for stripping off the
‘%’ and moving the line one position to the left.
This is useful for inserting control cards, and other
things that should not be transmogrified (like an exist-
ing Fortran program). Use ‘%’ only for ordinary
statements, not for the condition parts of if, while,
etc., or the output may come out in an unexpected
place.

The following character translations are made,
except within single or double quotes or on a line
beginning with a ‘%’.

== .eq. != .ne.
> .gt. >= .ge.
< .lt. <= .le.
& .and.  .or.
! .not. ¬ .not.

In addition, the following translations are provided for



- 8 -

input devices with restricted character sets.

[ { ] }
$( { $) }

‘‘define’’ Statement

Any string of alphanumeric characters can be
defined as a name; thereafter, whenever that name
occurs in the input (delimited by non-alphanumerics)
it is replaced by the rest of the definition line. (Com-
ments and trailing white spaces are stripped off). A
defined name can be arbitrarily long, and must begin
with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS | j > COLS) ...

Alternately, definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after the
comma up to the balancing right parenthesis; this
allows multi-line definitions.

It is generally a wise practice to use symbolic
parameters for most constants, to help make clear the
function of what would otherwise be mysterious
numbers. As an example, here is the routine equal
again, this time with symbolic constants.

define YES 1
define NO 0
define EOS −1
define ARB 100

# equal _ compare str1 to str2;
# return YES if equal, NO if not

integer function equal(str1, str2)
integer str1(ARB), str2(ARB)
integer i

for (i = 1; str1(i) == str2(i); i = i + 1)
if (str1(i) == EOS)

return(YES)
return(NO)
end

‘‘include’’ Statement

The statement

include file

inserts the file found on input stream file into the Rat-
for input in place of the include statement. The stan-
dard usage is to place COMMON blocks on a file, and
include that file whenever a copy is needed:

subroutine x
include commonblocks
...
end

suroutine y
include commonblocks
...
end

This ensures that all copies of the COMMON blocks are
identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such as
missing braces, else clauses without an if, and most
errors involving missing parentheses in statements.
Beyond that, since Ratfor knows no Fortran, any
errors you make will be reported by the Fortran com-
piler, so you will from time to time have to relate a
Fortran diagnostic back to the Ratfor source.

Keywords are reserved — using if, else, etc.,
as variable names will typically wreak havoc. Don’t
leave spaces in keywords. Don’t use the Arithmetic
IF.

The Fortran nH convention is not recognized
anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on the
UNIX operating system[5]. The language is specified
by a context free grammar and the compiler con-
structed using the YACC compiler-compiler[6].

The Ratfor grammar is simple and straightfor-
ward, being essentially

prog : stat
 prog stat

stat : if (...) stat
 if (...) stat else stat
 while (...) stat
 for (...; ...; ...) stat
 do ... stat
 repeat stat
 repeat stat until (...)
 switch (...) { case ...: prog ...

default: prog }
 return
 break
 next
 digits stat
 { prog }
 anything unrecognizable

The observation that Ratfor knows no Fortran follows
directly from the rule that says a statement is ‘‘any-
thing unrecognizable’’. In fact most of Fortran falls
into this category, since any statement that does not
begin with one of the keywords is by definition
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‘‘unrecognizable.’’

Code generation is also simple. If the first
thing on a source line is not a keyword (like if, else,
etc.) the entire statement is simply copied to the out-
put with appropriate character translation and format-
ting. (Leading digits are treated as a label.) Key-
words cause only slightly more complicated actions.
For example, when if is recognized, two consecutive
labels L and L+1 are generated and the value of L is
stacked. The condition is then isolated, and the code

if (.not. (condition)) goto L

is output. The statement part of the if is then
translated. When the end of the statement is encoun-
tered (which may be some distance away and include
nested if’s, of course), the code

L continue

is generated, unless there is an else clause, in which
case the code is

goto L+1
L continue

In this latter case, the code

L+1 continue

is produced after the statement part of the else. Code
generation for the various loops is equally simple.

One might argue that more care should be
taken in code generation. For example, if there is no
trailing else,

if (i > 0) x = a

should be left alone, not converted into

if (.not. (i .gt. 0)) goto 100
x = a

100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where this
kind of ‘‘inefficiency’’ will make even a measurable
difference. In the few cases where it is important, the
offending lines can be protected by ‘%’.

The use of a compiler-compiler is definitely the
preferred method of software development. The
language is well-defined, with few syntactic irregular-
ities. Implementation is quite simple; the original
construction took under a week. The language is
sufficiently simple, however, that an ad hoc recog-
nizer can be readily constructed to do the same job if
no compiler-compiler is available.

The C version of Ratfor is used on UNIX and
on the Honeywell GCOS systems. C compilers are not
as widely available as Fortran, however, so there is
also a Ratfor written in itself and originally
bootstrapped with the C version. The Ratfor version
was written so as to translate into the portable subset
of Fortran described in [1], so it is portable, having

been run essentially without change on at least twelve
distinct machines. (The main restrictions of the port-
able subset are: only one character per machine
word; subscripts in the form c∗v±c; avoiding expres-
sions in places like DO loops; consistency in subrou-
tine argument usage, and in COMMON declarations.
Ratfor itself will not gratuitously generate non-
standard Fortran.)

The Ratfor version is about 1500 lines of Rat-
for (compared to about 1000 lines of C); this com-
piles into 2500 lines of Fortran. This expansion ratio
is somewhat higher than average, since the compiled
code contains unnecessary occurrences of COMMON

declarations. The execution time of the Ratfor ver-
sion is dominated by two routines that read and write
cards. Clearly these routines could be replaced by
machine coded local versions; unless this is done, the
efficiency of other parts of the translation process is
largely irrelevant.

4. EXPERIENCE

Good Things

‘‘It’s so much better than Fortran’’ is the most
common response of users when asked how well Rat-
for meets their needs. Although cynics might con-
sider this to be vacuous, it does seem to be true that
decent control flow and cosmetics converts Fortran
from a bad language into quite a reasonable one,
assuming that Fortran data structures are adequate for
the task at hand.

Although there are no quantitative results,
users feel that coding in Ratfor is at least twice as
fast as in Fortran. More important, debugging and
subsequent revision are much faster than in Fortran.
Partly this is simply because the code can be read.
The looping statements which test at the top instead
of the bottom seem to eliminate or at least reduce the
occurrence of a wide class of boundary errors. And
of course it is easy to do structured programming in
Ratfor; this self-discipline also contributes markedly
to reliability.

One interesting and encouraging fact is that
programs written in Ratfor tend to be as readable as
programs written in more modern languages like Pas-
cal. Once one is freed from the shackles of Fortran’s
clerical detail and rigid input format, it is easy to
write code that is readable, even esthetically pleasing.
For example, here is a Ratfor implementation of the
linear table search discussed by Knuth [7]:
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A(m+1) = x
for (i = 1; A(i) != x; i = i + 1)

;
if (i > m) {

m = i
B(i) = 1

}
else

B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including a
subset of the Ratfor preprocessor itself, can be found
in [8].

Bad Things

The biggest single problem is that many For-
tran syntax errors are not detected by Ratfor but by
the local Fortran compiler. The compiler then prints
a message in terms of the generated Fortran, and in a
few cases this may be difficult to relate back to the
offending Ratfor line, especially if the implementation
conceals the generated Fortran. This problem could
be dealt with by tagging each generated line with
some indication of the source line that created it, but
this is inherently implementation-dependent, so no
action has yet been taken. Error message interpreta-
tion is actually not so arduous as might be thought.
Since Ratfor generates no variables, only a simple
pattern of IF’s and GOTO’s, data-related errors like
missing DIMENSION statements are easy to find in the
Fortran. Furthermore, there has been a steady
improvement in Ratfor’s ability to catch trivial syn-
tactic errors like unbalanced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance, especially to new
users. For example, keywords are reserved. This
rarely makes any difference, except for those hardy
souls who want to use an Arithmetic IF. A few stan-
dard Fortran constructions are not accepted by Ratfor,
and this is perceived as a problem by users with a
large corpus of existing Fortran programs. Protecting
every line with a ‘%’ is not really a complete solu-
tion, although it serves as a stop-gap. The best long-
term solution is provided by the program Struct [9],
which converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain that
the generated Fortran is ‘‘unreadable’’ because it is
not tastefully formatted and contains extraneous CON-

TINUE statements. To some extent this can be
ameliorated (Ratfor now has an option to copy Ratfor
comments into the generated Fortran), but it has
always seemed that effort is better spent on the input
language than on the output esthetics.

One final problem is partly attributable to suc-
cess — since Ratfor is relatively easy to modify,
there are now several dialects of Ratfor. Fortunately,
so far most of the differences are in character set, or
in invisible aspects like code generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest effort it
is possible to convert Fortran from a bad language
into quite a good one. A preprocessor is clearly a
useful way to extend or ameliorate the facilities of a
base language.

When designing a language, it is important to
concentrate on the essential requirement of providing
the user with the best language possible for a given
effort. One must avoid throwing in ‘‘features’’ —
things which the user may trivially construct within
the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for Rat-
for to prepare a neatly formatted listing of either its
input or its output. The user is presumably capable
of the self-discipline required to prepare neat input
that reflects his thoughts. It is much more important
that the language provide free-form input so he can
format it neatly. No one should read the output any-
way except in the most dire circumstances.
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Appendix: Usage on UNIX and GCOS.

Beware — local customs vary. Check with a native before going into the jungle.

UNIX

The program ratfor is the basic translator; it takes either a list of file names or the standard input and writes
Fortran on the standard output. Options include – 6x, which uses x as a continuation character in column 6 (UNIX

uses & in column 1), and – C, which causes Ratfor comments to be copied into the generated Fortran.

The program rc provides an interface to the ratfor command which is much the same as cc. Thus

rc [options] files

compiles the files specified by files. Files with names ending in .r are Ratfor source; other files are assumed to be
for the loader. The flags – C and – 6x described above are recognized, as are

−c compile only; don′t load
−f save intermediate Fortran .f files
−r Ratfor only; implies −c and −f
−2 use big Fortran compiler (for large programs)
−U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

GCOS

The program ./ratfor is the bare translator, and is identical to the UNIX version, except that the continuation
convention is & in column 6. Thus

./ratfor files >output

translates the Ratfor source on files and collects the generated Fortran on file ‘output’ for subsequent processing.

./rc provides much the same services as rc (within the limitations of GCOS), regrettably with a somewhat dif-
ferent syntax. Options recognized by ./rc include

name Ratfor source or library, depending on type
h=/name make TSS H∗ file (runnable version); run as /name
r=/name update and use random library
a= compile as ascii (default is bcd)
C= copy comments into Fortran
f=name Fortran source file
g=name gmap source file

Other options are as specified for the ./cc command described in [4].

TSO, TSS, and other systems

Ratfor exists on various other systems; check with the author for specifics.
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ABSTRACT

M4 is a macro processor available on UNIX† and GCOS. Its primary use has
been as a front end for Ratfor for those cases where parameterless macros are not ade-
quately powerful. It has also been used for languages as disparate as C and Cobol.
M4 is particularly suited for functional languages like Fortran, PL/I and C since mac-
ros are specified in a functional notation.

M4 provides features seldom found even in much larger macro processors,
including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions
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Introduction

A macro processor is a useful way to
enhance a programming language, to make it
more palatable or more readable, or to tailor it
to a particular application. The #define state-
ment in C and the analogous define in Ratfor
are examples of the basic facility provided by
any macro processor — replacement of text by
other text.

The M4 macro processor is an extension
of a macro processor called M3 which was writ-
ten by D. M. Ritchie for the AP-3 minicom-
puter; M3 was in turn based on a macro proces-
sor implemented for [1]. Readers unfamiliar
with the basic ideas of macro processing may
wish to read some of the discussion there.

M4 is a suitable front end for Ratfor and
C, and has also been used successfully with
Cobol. Besides the straightforward replacement
of one string of text by another, it provides mac-
ros with arguments, conditional macro expan-
sion, arithmetic, file manipulation, and some
specialized string processing functions.

The basic operation of M4 is to copy its
input to its output. As the input is read, how-
ever, each alphanumeric ‘‘token’’ (that is, string
of letters and digits) is checked. If it is the
name of a macro, then the name of the macro is
replaced by its defining text, and the resulting
string is pushed back onto the input to be res-
canned. Macros may be called with arguments,
in which case the arguments are collected and
substituted into the right places in the defining
text before it is rescanned.

M4 provides a collection of about twenty
built-in macros which perform various useful
operations; in addition, the user can define new
macros. Built-ins and user-defined macros work
exactly the same way, except that some of the
built-in macros have side effects on the state of

the process.

Usage

On UNIX, use

m4 [files]

Each argument file is processed in order; if there
are no arguments, or if an argument is `– ’, the
standard input is read at that point. The pro-
cessed text is written on the standard output,
which may be captured for subsequent process-
ing with

m4 [files] >outputfile

On GCOS, usage is identical, but the program is
called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as stuff.
All subsequent occurrences of name will be
replaced by stuff. name must be alphanumeric
and must begin with a letter (the underscore _
counts as a letter). stuff is any text that con-
tains balanced parentheses; it may stretch over
multiple lines.

Thus, as a typical example,

define(N, 100)
...

if (i > N)

defines N to be 100, and uses this ``symbolic
constant’’ in a later if statement.

The left parenthesis must immediately fol-
low the word define, to signal that define has
arguments. If a macro or built-in name is not
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followed immediately by `(’, it is assumed to
have no arguments. This is the situation for N
above; it is actually a macro with no arguments,
and thus when it is used there need be no (...)
following it.

You should also notice that a macro name
is only recognized as such if it appears sur-
rounded by non-alphanumerics. For example, in

define(N, 100)
...

if (NNN > 100)

the variable NNN is absolutely unrelated to the
defined macro N, even though it contains a lot
of N’s.

Things may be defined in terms of other
things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to
say it another way, is M defined as N or as 100?
In M4, the latter is true — M is 100, so even if
N subsequently changes, M does not.

This behavior arises because M4 expands
macro names into their defining text as soon as
it possibly can. Here, that means that when the
string N is seen as the arguments of define are
being collected, it is immediately replaced by
100; it’s just as if you had said

define(M, 100)

in the first place.

If this isn’t what you really want, there are
two ways out of it. The first, which is specific
to this situation, is to interchange the order of
the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when
you ask for M later, you’ll always get the value
of N at that time (because the M will be
replaced by N which will be replaced by 100).

Quoting

The more general solution is to delay the
expansion of the arguments of define by quoting
them. Any text surrounded by the single quotes
` and ´ is not expanded immediately, but has the
quotes stripped off. If you say

define(N, 100)
define(M, `N´)

the quotes around the N are stripped off as the
argument is being collected, but they have
served their purpose, and M is defined as the
string N, not 100. The general rule is that M4
always strips off one level of single quotes
whenever it evaluates something. This is true
even outside of macros. If you want the word
define to appear in the output, you have to quote
it in the input, as in

`define´ = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)
...

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it’s seen; that
is, it is replaced by 100, so it’s as if you had
written

define(100, 200)

This statement is ignored by M4, since you can
only define things that look like names, but it
obviously doesn’t have the effect you wanted.
To really redefine N, you must delay the evalua-
tion by quoting:

define(N, 100)
...

define(`N´, 200)

In M4, it is often wise to quote the first argu-
ment of a macro.

If ` and ´ are not convenient for some rea-
son, the quote characters can be changed with
the built-in changequote:

changequote([, ])

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

changequote

There are two additional built-ins related
to define. undefine removes the definition of
some macro or built-in:

undefine(`N´)

removes the definition of N. (Why are the
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quotes absolutely necessary?) Built-ins can be
removed with undefine, as in

undefine(`define´)

but once you remove one, you can never get it
back.

The built-in ifdef provides a way to deter-
mine if a macro is currently defined. In particu-
lar, M4 has pre-defined the names unix and gcos
on the corresponding systems, so you can tell
which one you’re using:

ifdef(`unix´, `define(wordsize,16)´ )
ifdef(`gcos´, `define(wordsize,36)´ )

makes a definition appropriate for the particular
machine. Don’t forget the quotes!

ifdef actually permits three arguments; if
the name is undefined, the value of ifdef is then
the third argument, as in

ifdef(`unix´, on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing — replacing one
string by another (fixed) string. User-defined
macros may also have arguments, so different
invocations can have different results. Within
the replacement text for a macro (the second
argument of its define) any occurrence of $n
will be replaced by the nth argument when the
macro is actually used. Thus, the macro bump,
defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump(x)

is

x = x + 1

A macro can have as many arguments as
you want, but only the first nine are accessible,
through $1 to $9. (The macro name itself is $0,
although that is less commonly used.) Argu-
ments that are not supplied are replaced by null
strings, so we can define a macro cat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding
arguments were provided.

Leading unquoted blanks, tabs, or new-
lines that occur during argument collection are
discarded. All other white space is retained.
Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but
parentheses are counted properly, so a comma
``protected’’ by parentheses does not terminate
an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma or
parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The sim-
plest is incr, which increments its numeric argu-
ment by 1. Thus to handle the common pro-
gramming situation where you want a variable
to be defined as ``one more than N’’, write

define(N, 100)
define(N1, `incr(N)´)

Then N1 is defined as one more than the current
value of N.

The more general mechanism for arith-
metic is a built-in called eval, which is capable
of arbitrary arithmetic on integers. It provides
the operators (in decreasing order of precedence)

unary + and −
∗∗ or ˆ(exponentiation)
∗ / % (modulus)
+ −
== != < <= > >=
! (not)
& or && (logical and)
| or || (logical or)

Parentheses may be used to group operations
where needed. All the operands of an expres-
sion given to eval must ultimately be numeric.
The numeric value of a true relation (like 1>0)
is 1, and false is 0. The precision in eval is 32
bits on UNIX and 36 bits on GCOS.
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As a simple example, suppose we want M
to be 2∗∗N+1. Then

define(N, 3)
define(M, `eval(2∗∗N+1)´)

As a matter of principle, it is advisable to quote
the defining text for a macro unless it is very
simple indeed (say just a number); it usually
gives the result you want, and is a good habit to
get into.

File Manipulation

You can include a new file in the input at
any time by the built-in function include:

include(filename)

inserts the contents of filename in place of the
include command. The contents of the file is
often a set of definitions. The value of include
(that is, its replacement text) is the contents of
the file; this can be captured in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some con-
trol over this situation, the alternate form sin-
clude can be used; sinclude (``silent include’’)
says nothing and continues if it can’t access the
file.

It is also possible to divert the output of
M4 to temporary files during processing, and
output the collected material upon command.
M4 maintains nine of these diversions, num-
bered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of a
temporary file referred to as n. Diverting to this
file is stopped by another divert command; in
particular, divert or divert(0) resumes the nor-
mal output process.

Diverted text is normally output all at
once at the end of processing, with the diver-
sions output in numeric order. It is possible,
however, to bring back diversions at any time,
that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and
undivert with arguments brings back the
selected diversions in the order given. The act
of undiverting discards the diverted stuff, as
does diverting into a diversion whose number is
not between 0 and 9 inclusive.

The value of undivert is not the diverted
stuff. Furthermore, the diverted material is not
rescanned for macros.

The built-in divnum returns the number of
the currently active diversion. This is zero dur-
ing normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in. For
example,

syscmd(date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a sub-
sequent include.

To facilitate making unique file names, the
built-in maketemp is provided, with
specifications identical to the system function
mktemp: a string of XXXXX in the argument is
replaced by the process id of the current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional test-
ing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these are
identical, ifelse returns the string c; otherwise it
returns d. Thus we might define a macro called
compare which compares two strings and
returns ``yes’’ or ``no’’ if they are the same or
different.

define(compare, `ifelse($1, $2, yes, no)´)

Note the quotes, which prevent too-early evalua-
tion of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form of
multi-way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is
c. Otherwise, if d is the same as e, the result is
f. Otherwise the result is g. If the final argu-
ment is omitted, the result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.



- 5 -

String Manipulation

The built-in len returns the length of the
string that makes up its argument. Thus

len(abcdef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to produce
substrings of strings. substr(s, i, n) returns the
substring of s that starts at the ith position (ori-
gin zero), and is n characters long. If n is omit-
ted, the rest of the string is returned, so

substr(`now is the time´, 1)

is

ow is the time

If i or n are out of range, various sensible things
happen.

index(s1, s2) returns the index (position)
in s1 where the string s2 occurs, or – 1 if it
doesn’t occur. As with substr, the origin for
strings is 0.

The built-in translit performs character
transliteration.

translit(s, f, t)

modifies s by replacing any character found in f
by the corresponding character of t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits.
If t is shorter than f, characters which don’t have
an entry in t are deleted; as a limiting case, if t
is not present at all, characters from f are deleted
from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which
deletes all characters that follow it up to and
including the next newline; it is useful mainly
for throwing away empty lines that otherwise
tend to clutter up M4 output. For example, if
you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of
the definition, so it is copied into the output,
where it may not be wanted. If you add dnl to
each of these lines, the newlines will disappear.

Another way to achieve this, due to J. E.
Weythman, is

divert(−1)
define(...)
...

divert

Printing

The built-in errprint writes its arguments
out on the standard error file. Thus you can say

errprint(`fatal error´)

dumpdef is a debugging aid which dumps
the current definitions of defined terms. If there
are no arguments, you get everything; otherwise
you get the ones you name as arguments. Don’t
forget to quote the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef(`name´, `name´, ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdef(`name´, this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(s1, s2)
5 len(string)
4 maketemp(...XXXXX...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine(`name´)
4 undivert(number,number,...)
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ABSTRACT

Sed is a non-interactive context editor that runs on the UNIX† operating system.
Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too compli-

cated to be comfortably typed in interactive mode.
3) To perform multiple ‘global’ editing functions efficiently in one pass

through the input.
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Introduction

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to be com-

fortably typed in interactive mode;
3) To perform multiple ‘global’ editing functions efficiently in one pass through the input.

Since only a few lines of the input reside in core at one time, and no temporary files are used, the effec-
tive size of file that can be edited is limited only by the requirement that the input and output fit simul-
taneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For complex
edits, this saves considerable typing, and its attendant errors. Sed running from a command file is much
more efficient than any interactive editor known to the author, even if that editor can be driven by a
pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing (because
of the line-at-a-time operation), and lack of immediate verification that a command has done what was
intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interactive and
non-interactive operation, considerable changes have been made between ed and sed; even confirmed
users of ed will frequently be surprised (and probably chagrined), if they rashly use sed without reading
Sections 2 and 3 of this document. The most striking family resemblance between the two editors is in
the class of patterns (‘regular expressions’) they recognize; the code for matching patterns is copied
almost verbatim from the code for ed, and the description of regular expressions in Section 2 is copied
almost verbatim from the UNIX Programmer’s Manual[1]. (Both code and description were written by
Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or more editing
commands on each line before writing it to the output. This behavior may be modified by flags on the
command line; see Section 1.1 below.

The general format of an editing command is:

[address1,address2][function][arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any number of
blanks or tabs may separate the addresses from the function. The function must be present; the available
commands are discussed in Section 3. The arguments may be required or optional, according to which
function is given; again, they are discussed in Section 3 under each individual function.

Tab characters and spaces at the beginning of lines are ignored.
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1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after s

functions (see Section 3.3);
-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing commands,

one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing commands are
compiled into a form which will be moderately efficient during the execution phase (when the com-
mands are actually applied to lines of the input file). The commands are compiled in the order in which
they are encountered; this is generally the order in which they will be attempted at execution time. The
commands are applied one at a time; the input to each command is the output of all preceding com-
mands.

The default linear order of application of editing commands can be changed by the flow-of-control com-
mands, t and b (see Section 3). Even when the order of application is changed by these commands, it is
still true that the input line to any command is the output of any previously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one line of the
input text, but more than one line can be read into the pattern space by using the N command (Section
3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all assume the
following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by addresses.
Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by grouping
the commands with curly braces (‘{ }’)(Sec. 3.6.).
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2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter is incre-
mented; a line-number address matches (selects) the input line which causes the internal counter to equal
the address line-number. The counter runs cumulatively through multiple input files; it is not reset when
a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (‘regular expression’) enclosed in slashes (‘/’). The regular expressions
recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression, and
matches that character.

2) A circumflex ‘ˆ’ at the beginning of a regular expression matches the null character at the
beginning of a line.

3) A dollar-sign ‘$’ at the end of a regular expression matches the null character at the end of a
line.

4) The characters ‘\n’ match an imbedded newline character, but not the newline at the end of
the pattern space.

5) A period ‘.’ matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk ‘*’ matches any number (including 0) of adja-

cent occurrences of the regular expression it follows.
7) A string of characters in square brackets ‘[ ]’ matches any character in the string, and no oth-

ers. If, however, the first character of the string is circumflex ‘ˆ’, the regular expres-
sion matches any character except the characters in the string and the terminal newline
of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the concatena-
tion of strings matched by the components of the regular expression.

9) A regular expression between the sequences ‘\(’ and ‘\)’ is identical in effect to the una-
dorned regular expression, but has side-effects which are described under the s com-
mand below and specification 10) immediately below.

10) The expression ‘ \d’ means the same string of characters matched by an expression enclosed
in ‘\(’ and ‘\)’ earlier in the same pattern. Here d is a single digit; the string specified
is that beginning with the d th occurrence of ‘\(’ counting from the left. For example,
the expression ‘ˆ\(.*\)\1’ matches a line beginning with two repeated occurrences of the
same string.

11) The null regular expression standing alone (e.g., ‘//’) is equivalent to the last regular
expression compiled.

To use one of the special characters (ˆ $ . * [ ] \ /) as a literal (to match an occurrence of itself in the
input), precede the special character by a backslash ‘\’.

For a context address to ‘match’ the input requires that the whole pattern within the address match some
portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the maximum
number of allowed addresses is given. For a command to have more addresses than the maximum
allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address, and to all
subsequent lines until (and including) the first subsequent line which matches the second address. Then
an attempt is made on subsequent lines to again match the first address, and the process is repeated.
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Two addresses are separated by a comma.

Examples:

/an/ matches lines 1, 3, 4 in our sample text
/an.*an/ matches line 1
/ˆan/ matches no lines
/./ matches all lines
/\./ matches line 5
/r*an/ matches lines 1,3, 4 (number = zero!)
/\(an\).*\1/ matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum number of
allowable addresses is given enclosed in parentheses, then the single character function name, possible
arguments enclosed in angles (< >), an expanded English translation of the single-character name, and
finally a description of what each function does. The angles around the arguments are not part of the
argument, and should not be typed in actual editing commands.

3.1. Whole-line Oriented Functions

(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those lines
matched by its address(es).

It also has the side effect that no further commands are attempted on the corpse of a
deleted line; as soon as the d function is executed, a new line is read from the input,
and the list of editing commands is re-started from the beginning on the new line.

(2)n -- next line

The n function reads the next line from the input, replacing the current line. The
current line is written to the output if it should be. The list of editing commands is
continued following the n command.

(1)a\
<text> -- append lines

The a function causes the argument <text> to be written to the output after the line
matched by its address. The a command is inherently multi-line; a must appear at the
end of a line, and <text> may contain any number of lines. To preserve the one-
command-to-a-line fiction, the interior newlines must be hidden by a backslash charac-
ter (‘\’) immediately preceding the newline. The <text> argument is terminated by the
first unhidden newline (the first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the output
regardless of what later commands do to the line which triggered it. The triggering
line may be deleted entirely; <text> will still be written to the output.

The <text> is not scanned for address matches, and no editing commands are attempted
on it. It does not cause any change in the line-number counter.

(1)i\
<text> -- insert lines

The i function behaves identically to the a function, except that <text> is written to
the output before the matched line. All other comments about the a function apply to
the i function as well.

(2)c\
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<text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them with the
lines in <text>. Like a and i, c must be followed by a newline hidden by a backslash;
and interior new lines in <text> must be hidden by backslashes.

The c command may have two addresses, and therefore select a range of lines. If it
does, all the lines in the range are deleted, but only one copy of <text> is written to
the output, not one copy per line deleted. As with a and i, <text> is not scanned for
address matches, and no editing commands are attempted on it. It does not change the
line-number counter.

After a line has been deleted by a c function, no further commands are attempted on
the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the a or r
functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disappear, as
always in sed commands. To get leading blanks and tabs into the output, precede the first desired blank
or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following command lists:

n n
i\ c\
XXXX XXXX
d

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern><replacement><flags> -- substitute

The s function replaces part of a line (selected by <pattern>) with <replacement>. It
can best be read:

Substitute for <pattern>, <replacement>

The <pattern> argument contains a pattern, exactly like the patterns in addresses (see
2.2 above). The only difference between <pattern> and a context address is that the
context address must be delimited by slash (‘/’) characters; <pattern> may be delimited
by any character other than space or newline.

By default, only the first string matched by <pattern> is replaced, but see the g flag
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below.

The <replacement> argument begins immediately after the second delimiting character
of <pattern>, and must be followed immediately by another instance of the delimiting
character. (Thus there are exactly three instances of the delimiting character.)

The <replacement> is not a pattern, and the characters which are special in patterns do
not have special meaning in <replacement>. Instead, other characters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the dth substring matched by parts
of <pattern> enclosed in ‘\(’ and ‘\)’. If nested substrings occur in
<pattern>, the dth is determined by counting opening delimiters (‘\(’).

As in patterns, special characters may be made literal by preceding
them with backslash (‘\’).

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of <pattern>
in the line. After a successful substitution, the scan for the next
instance of <pattern> begins just after the end of the inserted charac-
ters; characters put into the line from <replacement> are not res-
canned.

p -- print the line if a successful replacement was done. The p flag causes the
line to be written to the output if and only if a substitution was actu-
ally made by the s function. Notice that if several s functions, each
followed by a p flag, successfully substitute in the same input line,
multiple copies of the line will be written to the output: one for each
successful substitution.

w <filename> -- write the line to a file if a successful replacement was done.
The w flag causes lines which are actually substituted by the s func-
tion to be written to a file named by <filename>. If <filename>
exists before sed is run, it is overwritten; if not, it is created.

A single space must separate w and <filename>.

The possibilities of multiple, somewhat different copies of one input
line being written are the same as for p.

A maximum of 10 different file names may be mentioned after w
flags and w functions (see below), combined.

Examples:

The following command, applied to our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file ‘changes’:

Through caverns measureless by man
Down by a sunless sea.
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If the nocopy option is in effect, the command:

s/[.,;?:]/*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

/X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2)p -- print

The print function writes the addressed lines to the standard output file. They are writ-
ten at the time the p function is encountered, regardless of what succeeding editing
commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>. If the
file previously existed, it is overwritten; if not, it is created. The lines are written
exactly as they exist when the write function is encountered for each line, regardless of
what subsequent editing commands may do to them.

Exactly one space must separate the w and <filename>.

A maximum of ten different files may be mentioned in write functions and w flags
after s functions, combined.

(1)r <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after the line
matched by the address. The file is read and appended regardless of what subsequent
editing commands do to the line which matched its address. If r and a functions are
executed on the same line, the text from the a functions and the r functions is written
to the output in the order that the functions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by a r func-
tion cannot be opened, it is considered a null file, not an error, and no diagnostic is
given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care should be
taken that no more than ten files be mentioned in w functions or flags; that number is reduced by one if
any r functions are present. (Only one read file is open at one time.)

Examples

Assume that the file ‘note1’ has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson and
most eminent successor of Genghiz (Chingiz) Khan, and founder of the Mongol
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dynasty in China.

Then the following command:

/Kubla/r note1

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson and
most eminent successor of Genghiz (Chingiz) Khan, and founder of the Mongol
dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing imbedded
newlines; they are intended principally to provide pattern matches across lines in the input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the two input
lines are separated by an imbedded newline. Pattern matches may extend across the
imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern space. If
the pattern space becomes empty (the only newline was the terminal newline), read
another line from the input. In any case, begin the list of editing commands again
from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded newlines
in the pattern space.

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (destroying
the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the hold
area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (destroying
the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the pattern
space; the former and new contents are separated by a newline.
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(2)x -- exchange

The exchange command interchanges the contents of the pattern space and the hold
area.

Example

The commands

1h
1s/ did.*//
1x
G
s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the lines
selected by the address part.

(2)! -- Don’t

The Don’t command causes the next command (written on the same line), to be
applied to all and only those input lines not selected by the adress part.

(2){ -- Grouping

The grouping command ‘{’ causes the next set of commands to be applied (or not
applied) as a block to the input lines selected by the addresses of the grouping com-
mand. The first of the commands under control of the grouping may appear on the
same line as the ‘{’ or on the next line.

The group of commands is terminated by a matching ‘}’ standing on a line by itself.

Groups can be nested.

(0):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and t functions. The <label> may be any sequence of eight or fewer
characters; if two different colon functions have identical labels, a compile time diag-
nostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to the
current input line to be restarted immediately after the place where a colon function
with the same <label> was encountered. If no colon function with the same label can
be found after all the editing commands have been compiled, a compile time diagnostic
is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of editing
commands; whatever should be done with the current input line is done, and another
input line is read; the list of editing commands is restarted from the beginning on the
new line.
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(2)t<label> -- test substitutions

The t function tests whether any successful substitutions have been made on the
current input line; if so, it branches to <label>; if not, it does nothing. The flag which
indicates that a successful substitution has been executed is reset by:

1) reading a new input line, or
2) executing a t function.

3.7. Miscellaneous Functions

(1)= -- equals

The = function writes to the standard output the line number of the line matched by its
address.

(1)q -- quit

The q function causes the current line to be written to the output (if it should be), any
appended or read text to be written, and execution to be terminated.

Reference

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer’s Manual. Bell Laboratories,
1978.
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ABSTRACT

Awk is a programming language whose basic operation is to search a set of files
for patterns, and to perform specified actions upon lines or fields of lines which contain
instances of those patterns. Awk makes certain data selection and transformation
operations easy to express; for example, the awk program

length > 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 == 0

prints all lines with an even number of fields; and the program

{ $1 = log($1); print }

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular expressions
and of relational operators on strings, numbers, fields, variables, and array elements.
Actions may include the same pattern-matching constructions as in patterns, as well as
arithmetic and string expressions and assignments, if-else, while, for statements, and
multiple output streams.

This report contains a user’s guide, a discussion of the design and implementa-
tion of awk , and some timing statistics.
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1. Introduction
Awk is a programming language designed to

make many common information retrieval and text
manipulation tasks easy to state and to perform.

The basic operation of awk is to scan a set of
input lines in order, searching for lines which match
any of a set of patterns which the user has specified.
For each pattern, an action can be specified; this
action will be performed on each line that matches
the pattern.

Readers familiar with the UNIX† program
grep 1 will recognize the approach, although in awk
the patterns may be more general than in grep , and
the actions allowed are more involved than merely
printing the matching line. For example, the awk
program

{print $3, $2}

prints the third and second columns of a table in that
order. The program

$2 ∼ /A |B |C/

prints all input lines with an A, B, or C in the second
field. The program

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from
the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string program
on the set of named files, or on the standard input if
there are no files. The statements can also be placed
in a file pfile, and executed by the command

awk – f pfile [files]

_ ____________________
†UNIX is a Trademark of Bell Laboratories.

1.2. Program Structure

An awk program is a sequence of statements
of the form:

pattern { action }
pattern { action }
...

Each line of input is matched against each of the pat-
terns in turn. For each pattern that matches, the asso-
ciated action is executed. When all the patterns have
been tested, the next line is fetched and the matching
starts over.

Either the pattern or the action may be left out,
but not both. If there is no action for a pattern, the
matching line is simply copied to the output. (Thus a
line which matches several patterns can be printed
several times.) If there is no pattern for an action,
then the action is performed for every input line. A
line which matches no pattern is ignored.

Since patterns and actions are both optional,
actions must be enclosed in braces to distinguish them
from patterns.

1.3. Records and Fields

Awk input is divided into ‘‘records’’ ter-
minated by a record separator. The default record
separator is a newline, so by default awk processes
its input a line at a time. The number of the current
record is available in a variable named NR.

Each input record is considered to be divided
into ‘‘fields.’’ Fields are normally separated by white
space — blanks or tabs — but the input field separa-
tor may be changed, as described below. Fields are
referred to as $1, $2, and so forth, where $1 is the
first field, and $0 is the whole input record itself.
Fields may be assigned to. The number of fields in
the current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed at
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any time to any single character. The optional
command-line argument – Fc may also be used to set
FS to the character c .

If the record separator is empty, an empty
input line is taken as the record separator, and blanks,
tabs and newlines are treated as field separators.

The variable FILENAME contains the name of
the current input file.

1.4. Printing

An action may have no pattern, in which case
the action is executed for all lines. The simplest
action is to print some or all of a record; this is
accomplished by the awk command print. The awk
program

{ print }

prints each record, thus copying the input to the out-
put intact. More useful is to print a field or fields
from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will be
separated by the current output field separator when
output. Items not separated by commas will be con-
catenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can be
used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number and
the number of fields.

Output may be diverted to multiple files; the
program

{ print $1 >"foo1"; print $2 >"foo2" }

writes the first field, $1, on the file foo1, and the
second field on file foo2. The >> notation can also
be used:

print $1 >>"foo"

appends the output to the file foo. (In each case, the
output files are created if necessary.) The file name
can be a variable or a field as well as a constant; for
example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of out-
put files; currently it is 10.

Similarly, output can be piped into another
process (on UNIX only); for instance,

print | "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used to
change the current output field separator and output
record separator. The output record separator is
appended to the output of the print statement.

Awk also provides the printf statement for out-
put formatting:

printf format expr, expr, ...

formats the expressions in the list according to the
specification in format and prints them. For example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits wide,
with two after the decimal point, and $2 as a 10-digit
long decimal number, followed by a newline. No
output separators are produced automatically; you
must add them yourself, as in this example. The ver-
sion of printf is identical to that used with C.2

2. Patterns

A pattern in front of an action acts as a selec-
tor that determines whether the action is to be exe-
cuted. A variety of expressions may be used as pat-
terns: regular expressions, arithmetic relational
expressions, string-valued expressions, and arbitrary
boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the begin-
ning of the input, before the first record is read. The
pattern END matches the end of the input, after the
last record has been processed. BEGIN and END
thus provide a way to gain control before and after
processing, for initialization and wrapup.

As an example, the field separator can be set to
a colon by

BEGIN { FS = ":" }
... rest of program ...

Or the input lines may be counted by

END { print NR }

If BEGIN is present, it must be the first pattern; END
must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which will
print all lines which contain any occurrence of the
name ‘‘smith’’. If a line contains ‘‘smith’’ as part of
a larger word, it will also be printed, as in
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blacksmithing

Awk regular expressions include the regular
expression forms found in the UNIX text editor ed 1

and grep (without back-referencing). In addition,
awk allows parentheses for grouping, | for alterna-
tives, + for ‘‘one or more’’, and ? for ‘‘zero or one’’,
all as in lex . Character classes may be abbreviated:
[a– zA– Z0– 9] is the set of all letters and digits. As
an example, the awk program

/[Aa]ho |[Ww]einberger |[Kk]ernighan/

will print all lines which contain any of the names
‘‘Aho,’’ ‘‘Weinberger’’ or ‘‘Kernighan,’’ whether
capitalized or not.

Regular expressions (with the extensions listed
above) must be enclosed in slashes, just as in ed and
sed . Within a regular expression, blanks and the reg-
ular expression metacharacters are significant. To
turn of the magic meaning of one of the regular
expression characters, precede it with a backslash.
An example is the pattern

/ \/ .∗\//

which matches any string of characters enclosed in
slashes.

One can also specify that any field or variable
matches a regular expression (or does not match it)
with the operators ∼ and !∼. The program

$1 ∼ /[jJ]ohn/

prints all lines where the first field matches ‘‘john’’ or
‘‘John.’’ Notice that this will also match ‘‘Johnson’’,
‘‘St. Johnsbury’’, and so on. To restrict it to exactly
[jJ]ohn, use

$1 ∼ /ˆ[jJ]ohn$/

The caret ˆ refers to the beginning of a line or field;
the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expression
involving the usual relational operators <, <=, ==, !=,
>=, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at least
100 greater than the first field. Similarly,

NF % 2 == 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise it is
numeric. Thus,

$1 >= "s"

selects lines that begin with an s, t, u, etc. In the
absence of any other information, fields are treated as

strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination of
patterns, using the operators | | (or), && (and), and !
(not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selects lines where the first field begins with ‘‘s’’, but
is not ‘‘smith’’. && and | | guarantee that their
operands will be evaluated from left to right; evalua-
tion stops as soon as the truth or falsehood is deter-
mined.

2.5. Pattern Ranges

The ‘‘pattern’’ that selects an action may also
consist of two patterns separated by a comma, as in

pat1, pat2 { ... }

In this case, the action is performed for each line
between an occurrence of pat1 and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

3. Actions

An awk action is a sequence of action state-
ments terminated by newlines or semicolons. These
action statements can be used to do a variety of book-
keeping and string manipulating tasks.

3.1. Built-in Functions

Awk provides a ‘‘length’’ function to compute
the length of a string of characters. This program
prints each record, preceded by its length:

{print length, $0}

length by itself is a ‘‘pseudo-variable’’ which yields
the length of the current record; length(argument) is
a function which yields the length of its argument, as
in the equivalent

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e loga-
rithm, exponential, and integer part of their respective
arguments.

The name of one of these built-in functions,
without argument or parentheses, stands for the value
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of the function on the whole record. The program

length < 10 || length > 20

prints lines whose length is less than 10 or greater
than 20.

The function substr(s, m, n) produces the sub-
string of s that begins at position m (origin 1) and is
at most n characters long. If n is omitted, the sub-
string goes to the end of s. The function
index(s1, s2) returns the position where the string s2
occurs in s1, or zero if it does not.

The function sprintf(f, e1, e2, ...) produces the
value of the expressions e1, e2, etc., in the printf for-
mat specified by f. Thus, for example,

x = sprintf("%8.2f %10ld", $1, $2)

sets x to the string produced by formatting the values
of $1 and $2.

3.2. Variables, Expressions, and Assignments

Awk variables take on numeric (floating point)
or string values according to context. For example, in

x = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context demands it.
For instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be interpreted as
numbers in a numerical context will generally have
numeric value zero, but it is unwise to count on this
behavior.

By default, variables (other than built-ins) are
initialized to the null string, which has numerical
value zero; this eliminates the need for most BEGIN
sections. For example, the sums of the first two fields
can be computed by

{ s1 += $1; s2 += $2 }
END { print s1, s2 }

Arithmetic is done internally in floating point.
The arithmetic operators are +, – , ∗, /, and % (mod).
The C increment ++ and decrement – – operators are
also available, and so are the assignment operators
+=, – =, ∗=, /=, and %=. These operators may all be
used in expressions.

3.3. Field Variables

Fields in awk share essentially all of the pro-
perties of variables — they may be used in arithmetic
or string operations, and may be assigned to. Thus
one can replace the first field with a sequence number
like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
$3 = "too big"

print
}

which replaces the third field by ‘‘too big’’ when it
is, and in any case prints the record.

Field references may be numerical expressions,
as in

{ print $i, $(i+1), $(i+n) }

Whether a field is deemed numeric or string depends
on context; in ambiguous cases like

if ($1 == $2) ...

fields are treated as strings.

Each input line is split into fields automatically
as necessary. It is also possible to split any variable
or string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ..., array[n]. The
number of elements found is returned. If the sep
argument is provided, it is used as the field separator;
otherwise FS is used as the separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a
print statement,

print $1 " is " $2

prints the two fields separated by ‘‘ is ’’. Variables
and numeric expressions may also appear in concate-
nations.

3.5. Arrays

Array elements are not declared; they spring
into existence by being mentioned. Subscripts may
have any non-null value, including non-numeric
strings. As an example of a conventional numeric
subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th element
of the array x. In fact, it is possible in principle
(though perhaps slow) to process the entire input in a
random order with the awk program
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{ x[NR] = $0 }
END { ... program ... }

The first action merely records each input line in the
array x.

Array elements may be named by non-numeric
values, which gives awk a capability rather like the
associative memory of Snobol tables. Suppose the
input contains fields with values like apple, orange,
etc. Then the program

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }

increments counts for the named array elements, and
prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control state-
ments if-else, while, for, and statement grouping with
braces, as in C. We showed the if statement in sec-
tion 3.3 without describing it. The condition in
parentheses is evaluated; if it is true, the statement
following the if is done. The else part is optional.

The while statement is exactly like that of C.
For example, to print all input fields one per line,

i = 1
while (i <= NF) {

print $i
++i

}

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for statement
which is suited for accessing the elements of an asso-
ciative array:

for (i in array)
statement

does statement with i set in turn to each element of
array. The elements are accessed in an apparently
random order. Chaos will ensue if i is altered, or if
any new elements are accessed during the loop.

The expression in the condition part of an if,
while or for can include relational operators like <,
<=, >, >=, == (‘‘is equal to’’), and != (‘‘not equal
to’’); regular expression matches with the match
operators ∼ and !∼; the logical operators | |, &&, and
!; and of course parentheses for grouping.

The break statement causes an immediate exit
from an enclosing while or for; the continue state-
ment causes the next iteration to begin.

The statement next causes awk to skip
immediately to the next record and begin scanning the
patterns from the top. The statement exit causes the
program to behave as if the end of the input had
occurred.

Comments may be placed in awk programs:
they begin with the character # and end with the end
of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several pro-
grams that operate by passing input through a selec-
tion mechanism. Grep , the first and simplest, merely
prints all lines which match a single specified pattern.
Egrep provides more general patterns, i.e., regular
expressions in full generality; fgrep searches for a set
of keywords with a particularly fast algorithm. Sed 1

provides most of the editing facilities of the editor
ed , applied to a stream of input. None of these pro-
grams provides numeric capabilities, logical relations,
or variables.

Lex 3 provides general regular expression
recognition capabilities, and, by serving as a C pro-
gram generator, is essentially open-ended in its capa-
bilities. The use of lex , however, requires a
knowledge of C programming, and a lex program
must be compiled and loaded before use, which
discourages its use for one-shot applications.

Awk is an attempt to fill in another part of the
matrix of possibilities. It provides general regular
expression capabilities and an implicit input/output
loop. But it also provides convenient numeric pro-
cessing, variables, more general selection, and control
flow in the actions. It does not require compilation or
a knowledge of C. Finally, awk provides a con-
venient way to access fields within lines; it is unique
in this respect.

Awk also tries to integrate strings and numbers
completely, by treating all quantities as both string
and numeric, deciding which representation is
appropriate as late as possible. In most cases the user
can simply ignore the differences.

Most of the effort in developing awk went into
deciding what awk should or should not do (for
instance, it doesn’t do string substitution) and what
the syntax should be (no explicit operator for concate-
nation) rather than on writing or debugging the code.
We have tried to make the syntax powerful but easy
to use and well adapted to scanning files. For exam-
ple, the absence of declarations and implicit initializa-
tions, while probably a bad idea for a general-purpose
programming language, is desirable in a language that
is meant to be used for tiny programs that may even
be composed on the command line.
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In practice, awk usage seems to fall into two
broad categories. One is what might be called
‘‘report generation’’ — processing an input to extract
counts, sums, sub-totals, etc. This also includes the
writing of trivial data validation programs, such as
verifying that a field contains only numeric informa-
tion or that certain delimiters are properly balanced.
The combination of textual and numeric processing is
invaluable here.

A second area of use is as a data transformer,
converting data from the form produced by one pro-
gram into that expected by another. The simplest
examples merely select fields, perhaps with rearrange-
ments.

5. Implementation

The actual implementation of awk uses the
language development tools available on the UNIX
operating system. The grammar is specified with
yacc ;4 the lexical analysis is done by lex ; the regular
expression recognizers are deterministic finite auto-
mata constructed directly from the expressions. An
awk program is translated into a parse tree which is
then directly executed by a simple interpreter.

Awk was designed for ease of use rather than
processing speed; the delayed evaluation of variable
types and the necessity to break input into fields
makes high speed difficult to achieve in any case.
Nonetheless, the program has not proven to be
unworkably slow.

Table I below shows the execution (user + sys-
tem) time on a PDP-11/70 of the UNIX programs wc ,
grep , egrep , fgrep , sed , lex , and awk on the follow-
ing simple tasks:

1. count the number of lines.

2. print all lines containing ‘‘doug’’.

3. print all lines containing ‘‘doug’’, ‘‘ken’’ or
‘‘dmr’’.

4. print the third field of each line.

5. print the third and second fields of each line, in
that order.

6. append all lines containing ‘‘doug’’, ‘‘ken’’,
and ‘‘dmr’’ to files ‘‘jdoug’’, ‘‘jken’’, and
‘‘jdmr’’, respectively.

7. print each line prefixed by ‘‘line-number : ’’.

8. sum the fourth column of a table.

The program wc merely counts words, lines and char-
acters in its input; we have already mentioned the
others. In all cases the input was a file containing
10,000 lines as created by the command ls – l ; each
line has the form

– rw– rw– rw– 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 characters.
Times for lex do not include compile or load.

As might be expected, awk is not as fast as the
specialized tools wc , sed , or the programs in the
grep family, but is faster than the more general tool
lex . In all cases, the tasks were about as easy to
express as awk programs as programs in these other
languages; tasks involving fields were considerably
easier to express as awk programs. Some of the test
programs are shown in awk , sed and lex .
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Task
Program 1 2 3 4 5 6 7 8_ _______________________________________________________________

wc 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
fgrep 7.7 13.8 16.1
sed 10.2 11.6 15.8 29.0 30.5 16.1
lex 65.1 150.1 144.2 67.7 70.3 104.0 81.7 92.8
awk 15.0 25.6 29.9 33.3 38.9 46.4 71.4 31.1_ _______________________________________________________________ 
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Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are
shown below. The lex programs are generally too
long to show.

AWK:

1. END {print NR}

2. /doug/

3. /ken|doug|dmr/

4. {print $3}

5. {print $3, $2}

6. /ken/ {print >"jken"}
/doug/ {print >"jdoug"}
/dmr/{print >"jdmr"}

7. {print NR ": " $0}

8. {sum = sum + $4}
END {print sum}

SED:

1. $=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

4. /[ˆ ]∗ [ ]∗[ˆ ]∗ [ ]∗\([ˆ ]∗\) .∗/s//\1/p

5. /[ˆ ]∗ [ ]∗\([ˆ ]∗\) [ ]∗\([ˆ ]∗\) .∗/s//\2 \1/p

6. /ken/w jken
/doug/w jdoug
/dmr/w jdmr

LEX:

1. %{
int i;
%}
%%
\n i++;
. ;
%%
yywrap() {

printf("%d\n", i);
}

2. %%
ˆ.∗doug.∗$ printf("%s\n", yytext);
. ;
\n ;
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DC is an arbitrary precision arithmetic package implemented on the UNIX† time-sharing system in
the form of an interactive desk calculator. It works like a stacking calculator using reverse Polish nota-
tion. Ordinarily DC operates on decimal integers, but one may specify an input base, output base, and a
number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the familiar style
of higher-level programming languages and compiles output which is interpreted by DC. Some of the
commands described below were designed for the compiler interface and are not easy for a human user
to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by taking the
top number or two off the stack, performing the desired operation, and pushing the result on the stack.
If an argument is given, input is taken from that file until its end, then from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional com-
mands that are intended to be invoked by compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and new-line characters are ignored
except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string of the
digits 0-9 and the capital letters A– F which are treated as digits with values 10– 15 respectively.
The number may be preceded by an underscore to input a negative number. Numbers may con-
tain decimal points.

+ – * % ˆ

The top two values on the stack are added (+), subtracted (– ), multiplied (*), divided (/), remain-
dered (%), or exponentiated (ˆ). The two entries are popped off the stack; the result is pushed on
the stack in their place. The result of a division is an integer truncated toward zero. See the
detailed description below for the treatment of numbers with decimal points. An exponent must
not have any digits after the decimal point.

sx

The top of the main stack is popped and stored into a register named x, where x may be any char-
acter. If the s is capitalized, x is treated as a stack and the value is pushed onto it. Any character,
even blank or new-line, is a valid register name.

__________________
†UNIX is a Trademark of Bell Laboratories.
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lx

The value in register x is pushed onto the stack. The register x is not altered. If the l is capital-
ized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command l and is treated as an
error by the command L.

d

The top value on the stack is duplicated.

p

The top value on the stack is printed. The top value remains unchanged.

f

All values on the stack and in registers are printed.

x

treats the top element of the stack as a character string, removes it from the stack, and executes it
as a string of DC commands.

[ ... ]

puts the bracketed character string onto the top of the stack.

q

exits the program. If executing a string, the recursion level is popped by two. If q is capitalized,
the top value on the stack is popped and the string execution level is popped by that value.

<x >x =x !<x !>x !=x

The top two elements of the stack are popped and compared. Register x is executed if they obey
the stated relation. Exclamation point is negation.

v

replaces the top element on the stack by its square root. The square root of an integer is truncated
to an integer. For the treatment of numbers with decimal points, see the detailed description
below.

!

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX command
terminates.

c

All values on the stack are popped; the stack becomes empty.

i

The top value on the stack is popped and used as the number radix for further input. If i is capi-
talized, the value of the input base is pushed onto the stack. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 or greater than 16.
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o

The top value on the stack is popped and used as the number radix for further output. If o is cap-
italized, the value of the output base is pushed onto the stack.

k

The top of the stack is popped, and that value is used as a scale factor that influences the number
of decimal places that are maintained during multiplication, division, and exponentiation. The
scale factor must be greater than or equal to zero and less than 100. If k is capitalized, the value
of the scale factor is pushed onto the stack.

z

The value of the stack level is pushed onto the stack.

?

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form of
a string of digits to the base 100 stored one digit per byte (centennial digits). The string is stored with
the low-order digit at the beginning of the string. For example, the representation of 157 is 57,1. After
any arithmetic operation on a number, care is taken that all digits are in the range 0– 99 and that the
number has no leading zeros. The number zero is represented by the empty string.

Negative numbers are represented in the 100’s complement notation, which is analogous to two’s
complement notation for binary numbers. The high order digit of a negative number is always – 1 and
all other digits are in the range 0– 99. The digit preceding the high order – 1 digit is never a 99. The
representation of – 157 is 43,98,– 1. We shall call this the canonical form of a number. The advantage
of this kind of representation of negative numbers is ease of addition. When addition is performed digit
by digit, the result is formally correct. The result need only be modified, if necessary, to put it into
canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition can
be carried out and the handling of carries done later when that is convenient, as it sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the number
of assumed decimal digits after the decimal point. The representation of .001 is 1,3 where the scale has
been italicized to emphasize the fact that it is not the high order digit. The value of this extra byte is
called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and writing
of numbers internally is done through the allocator. Associated with each string in the allocator is a
four-word header containing pointers to the beginning of the string, the end of the string, the next place
to write, and the next place to read. Communication between the allocator and DC is done via pointers
to these headers.

The allocator initially has one large string on a list of free strings. All headers except the one
pointing to this string are on a list of free headers. Requests for strings are made by size. The size of
the string actually supplied is the next higher power of 2. When a request for a string is made, the allo-
cator first checks the free list to see if there is a string of the desired size. If none is found, the allocator
finds the next larger free string and splits it repeatedly until it has a string of the right size. Left-over
strings are put on the free list. If there are no larger strings, the allocator tries to coalesce smaller free
strings into larger ones. Since all strings are the result of splitting large strings, each string has a
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neighbor that is next to it in core and, if free, can be combined with it to make a string twice as long.
This is an implementation of the ‘buddy system’ of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system for more
space. The amount of space on the system is the only limitation on the size and number of strings in
DC. If at any time in the process of trying to allocate a string, the allocator runs out of headers, it also
asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-spacing, and
backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the characters
of a string are read or written in succession by a series of read or write calls. The write pointer is inter-
preted as the end of the information-containing portion of a string and a call to read beyond that point
returns an end-of-string indication. An attempt to write beyond the end of a string causes the allocator
to allocate a larger space and then copy the old string into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the opera-
tion are popped from the main stack and their scale factors stripped off. Zeros are added or digits
removed as necessary to get a properly scaled result from the internal arithmetic routine. For example,
if the scale of the operands is different and decimal alignment is required, as it is for addition, zeros are
appended to the operand with the smaller scale. After performing the required arithmetic operation, the
proper scale factor is appended to the end of the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is the bound
on the number of decimal places retained in arithmetic computations. scale may be set to the number
on the top of the stack truncated to an integer with the k command. K may be used to push the value
of scale on the stack. scale must be greater than or equal to 0 and less than 100. The descriptions of
the individual arithmetic operations will include the exact effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number with
the lower scale to give both numbers the same scale. The number with the smaller scale is multiplied
by 10 if the difference of the scales is odd. The scale of the result is then set to the larger of the scales
of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in addition.

Finally, the addition is performed digit by digit from the low order end of the number. The car-
ries are propagated in the usual way. The resulting number is brought into canonical form, which may
require stripping of leading zeros, or for negative numbers replacing the high-order configuration 99,– 1
by the digit – 1. In any case, digits which are not in the range 0– 99 must be brought into that range,
propagating any carries or borrows that result.

Multiplication

The scales are removed from the two operands and saved. The operands are both made positive.
Then multiplication is performed in a digit by digit manner that exactly mimics the hand method of mul-
tiplying. The first number is multiplied by each digit of the second number, beginning with its low
order digit. The intermediate products are accumulated into a partial sum which becomes the final pro-
duct. The product is put into the canonical form and its sign is computed from the signs of the original
operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is
larger than the internal register scale and also larger than both of the scales of the two operands, then
the scale of the result is set equal to the largest of these three last quantities.
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Division

The scales are removed from the two operands. Zeros are appended or digits removed from the
dividend to make the scale of the result of the integer division equal to the internal quantity scale. The
signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths of the
two numbers is computed. If the divisor is longer than the dividend, zero is returned. Otherwise the top
digit of the divisor is divided into the top two digits of the dividend. The result is used as the first
(high-order) digit of the quotient. It may turn out be one unit too low, but if it is, the next trial quotient
will be larger than 99 and this will be adjusted at the end of the process. The trial digit is multiplied by
the divisor and the result subtracted from the dividend and the process is repeated to get additional quo-
tient digits until the remaining dividend is smaller than the divisor. At the end, the digits of the quotient
are put into the canonical form, with propagation of carry as needed. The sign is set from the sign of
the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division truncates toward
zero, remainders have the same sign as the dividend. The scale of the remainder is set to the maximum
of the scale of the dividend and the scale of the quotient plus the scale of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer result
have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton’s method with successive approximations by the
rule

xn +1 = 1⁄2(xn +
xn

y_ __)

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1. If
the exponent is negative, then it is made positive and the base is divided into one. The scale of the base
is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and the result
is obtained as a product of those powers of the base that correspond to the positions of the one-bits in
the binary representation of the exponent. Enough digits of the result are removed to make the scale of
the result the same as if the indicated multiplication had been performed.

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale stored with a
number is simply the number of fractional digits input. Negative numbers are indicated by preceding
the number with a _. The hexadecimal digits A– F correspond to the numbers 10– 15 regardless of input
base. The i command can be used to change the base of the input numbers. This command pops the
stack, truncates the resulting number to an integer, and uses it as the input base for all further input.
The input base is initialized to 10 but may, for example be changed to 8 or 16 to do octal or hexade-
cimal to decimal conversions. The command I will push the value of the input base on the stack.
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Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of the stack.
All of the stack and internal registers can be output by typing the command f. The o command can be
used to change the output base. This command uses the top of the stack, truncated to an integer as the
base for all further output. The output base in initialized to 10. It will work correctly for any base.
The command O pushes the value of the output base on the stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output; they
have no effect on arithmetic computations. Large numbers are output with 70 characters per line; a \
indicates a continued line. All choices of input and output bases work correctly, although not all are
useful. A particularly useful output base is 100000, which has the effect of grouping digits in fives.
Bases of 8 and 16 can be used for decimal-octal or decimal-hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from registers with
the commands s and l. The command sx pops the top of the stack and stores the result in register x. x
can be any character. lx puts the contents of register x on the top of the stack. The l command has no
effect on the contents of register x. The s command, however, is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on the top of
the stack on the stack. The command z pushes the stack size on the stack. The command X replaces
the number on the top of the stack with its scale factor. The command Z replaces the top of the stack
with its length.

Subroutine Definitions and Calls

Enclosing a string in [] pushes the ascii string on the stack. The q command quits or in executing
a string, pops the recursion levels by two.

Internal Registers – Programming DC

The load and store commands together with [] to store strings, x to execute and the testing com-
mands ‘<’, ‘>’, ‘=’, ‘!<’, ‘!>’, ‘!=’ can be used to program DC. The x command assumes the top of the
stack is an string of DC commands and executes it. The testing commands compare the top two ele-
ments on the stack and if the relation holds, execute the register that follows the relation. For example,
to print the numbers 0-9,

[lip1+ si li10>a]sa
0si lax

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve push-down
registers and arrays. In addition to the stack that commands work on, DC can be thought of as having
individual stacks for each register. These registers are operated on by the commands S and L. Sx
pushes the top value of the main stack onto the stack for the register x. Lx pops the stack for register x
and puts the result on the main stack. The commands s and l also work on registers but not as push-
down stacks. l doesn’t effect the top of the register stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an index
into the array x. The next element on the stack is stored at this index in x. An index must be greater
than or equal to 0 and less than 2048. ;x is the command to load the main stack from the array x. The
value on the top of the stack is the index into the array x of the value to be loaded.



- 7 -

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX

command and passes it to UNIX to execute. One other compiler command is Q. This command uses
the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose program
could be (and in fact has been) used for a variety of other tasks. The allocator has some value for input
and for compiling (i.e. the bracket [...] commands) where it cannot be known in advance how long a
string will be. The result was that at a modest cost in execution time, all considerations of string alloca-
tion and sizes of strings were removed from the remainder of the program and debugging was made
easier. The allocation method used wastes approximately 25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet
the base cannot exceed 127 because of hardware limitations and at the cost of 5% in space, debugging
was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addition to
subroutine execution to be implemented in essentially the same way. The result was a considerable
degree of logical separation of the final program into modules with very little communication between
modules.

The rationale for the lack of interaction between the scale and the bases was to provide an under-
standable means of proceeding after a change of base or scale when numbers had already been entered.
An earlier implementation which had global notions of scale and base did not work out well. If the
value of scale were to be interpreted in the current input or output base, then a change of base or scale
in the midst of a computation would cause great confusion in the interpretation of the results. The
current scheme has the advantage that the value of the input and output bases are only used for input
and output, respectively, and they are ignored in all other operations. The value of scale is not used for
any essential purpose by any part of the program and it is used only to prevent the number of decimal
places resulting from the arithmetic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no case
should any significant digits be thrown away if, on appearances, the user actually wanted them. Thus, if
the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give him the result 5.017
without requiring him to unnecessarily specify his rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more digits than
their operands and it seemed reasonable to give as a minimum the number of decimal places in the
operands but not to give more than that number of digits unless the user asked for them by specifying a
value for scale. Square root can be handled in just the same way as multiplication. The operation of
division gives arbitrarily many decimal places and there is simply no way to guess how many places the
user wants. In this case only, the user must specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the quotient
and remainder. This is easy to implement; no digits are thrown away.
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ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on the
PDP-11 under the UNIX† time-sharing system. The output of the compiler is inter-
preted and executed by a collection of routines which can input, output, and do arith-
metic on indefinitely large integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage allocator. Overflow
does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode opera-
tion. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit result
in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are

– to do computation with large integers,

– to do computation accurate to many decimal places,

– conversion of numbers from one base to another base.

November 12, 1978
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Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX† time-
sharing system [1]. The compiler was written to make conveniently available a collection of routines
(called DC [5]) which are capable of doing arithmetic on integers of arbitrary size. The compiler is by
no means intended to provide a complete programming language. It is a minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is made for
input and output in bases other than decimal. Numbers can be converted from decimal to octal by sim-
ply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of storage
available on the machine. Manipulation of numbers with many hundreds of digits is possible even on
the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language [2].
Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if you
type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators – , *, /, %, and ˆ can also be used; they indicate subtraction, multiplication, division,
remaindering, and exponentiation, respectively. Division of integers produces an integer result truncated
toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated (the
‘unary’ minus sign). The expression

7+– 3

is interpreted to mean that – 3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just as in
Fortran, with ˆ having the greatest binding power, then * and % and /, and finally + and – . Contents of
parentheses are evaluated before material outside the parentheses. Exponentiations are performed from
right to left and the other operators from left to right. The two expressions

aˆbˆc and aˆ(bˆc)

are equivalent, as are the two expressions
__________________
†UNIX is a Trademark of Bell Laboratories.
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a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value of an
expression can be assigned to a register in the usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the register named x. When, as in this
case, the outermost operator is an =, the assignment is performed but the result is not printed. Only 26
of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see scaling
below). The lines

x = sqrt(191)
x

produce the printed result

13

Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’, initially
set to 10, determines the base used for interpreting numbers read in. For example, the lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the
input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those who deal in
hexadecimal notation, the characters A– F are permitted in numbers (no matter what base is in effect)
and are interpreted as digits having values 10– 15 respectively. The statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative and large
positive input bases are permitted but useless. No mechanism has been provided for the input of arbi-
trary numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The lines

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permitted, and
they are sometimes useful. For example, large numbers can be output in groups of five digits by setting
‘obase’ to 100000. Strange (i.e. 1, 0, or negative) output bases are handled appropriately.
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Very large numbers are split across lines with 70 characters per line. Lines which are continued
end with \. Decimal output conversion is practically instantaneous, but output of very large numbers
(i.e., more than 100 digits) with other bases is rather slow. Non-decimal output conversion of a one
hundred digit number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of internal
computation or on the evaluation of expressions, but only affect input and output conversion, respec-
tively.

Scaling

A third special internal quantity called ‘scale’ is used to determine the scale of calculated quanti-
ties. Numbers may have up to 99 decimal digits after the decimal point. This fractional part is retained
in further computations. We refer to the number of digits after the decimal point of a number as its
scale.

When two scaled numbers are combined by means of one of the arithmetic operations, the result
has a scale determined by the following rules. For addition and subtraction, the scale of the result is the
larger of the scales of the two operands. In this case, there is never any truncation of the result. For
multiplications, the scale of the result is never less than the maximum of the two scales of the operands,
never more than the sum of the scales of the operands and, subject to those two restrictions, the scale of
the result is set equal to the contents of the internal quantity ‘scale’. The scale of a quotient is the con-
tents of the internal quantity ‘scale’. The scale of a remainder is the sum of the scales of the quotient
and the divisor. The result of an exponentiation is scaled as if the implied multiplications were per-
formed. An exponent must be an integer. The scale of a square root is set to the maximum of the scale
of the argument and the contents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits being dis-
carded when necessary. In every case where digits are discarded, truncation and not rounding is per-
formed.

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to 0. In
case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like other vari-
ables. The line

scale = scale + 1

increases the value of ‘scale’ by one, and the line

scale

causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in internal
computation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computations (which are
still conducted in decimal, regardless of the bases) are performed to the specified number of decimal
digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to collide with
simple variable names. Twenty-six different defined functions are permitted in addition to the twenty-
six variable names. The line

define a(x){

begins the definition of a function with one argument. This line must be followed by one or more state-
ments, which make up the body of the function, ending with a right brace }. Return of control from a
function occurs when a return statement is executed or when the end of the function is reached. The
return statement can take either of the two forms
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return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression in
parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the definition.
These automatic variables are allocated space and initialized to zero on entry to the function and thrown
away on return. The values of any variables with the same names outside the function are not disturbed.
Functions may be called recursively and the automatic variables at each level of call are protected. The
parameters named in a function definition are treated in the same way as the automatic variables of that
function with the single exception that they are given a value on entry to the function. An example of a
function definition is

define a(x,y){
auto z
z = x*y
return(z)

}

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of arguments is
used.

Functions with no arguments are defined and called using parentheses with nothing between them:
b().

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a sub-
scripted variable (an array element). The variable name is called the array name and the expression in
brackets is called the subscript. Only one-dimensional arrays are permitted. The names of arrays are
permitted to collide with the names of simple variables and function names. Any fractional part of a
subscript is discarded before use. Subscripts must be greater than or equal to zero and less than or equal
to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return statements.

An array name may be used as an argument to a function, or may be declared as automatic in a
function definition by the use of empty brackets:

f(a[ ])
define f(a[ ])
auto a[ ]

When an array name is so used, the whole contents of the array are copied for the use of the function,
and thrown away on exit from the function. Array names which refer to whole arrays cannot be used in
any other contexts.
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Control Statements

The ‘if’, the ‘while’, and the ‘for’ statements may be used to alter the flow within programs or to
cause iteration. The range of each of them is a statement or a compound statement consisting of a col-
lection of statements enclosed in braces. They are written in the following way

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

or

if(relation) {statements}
while(relation) {statements}
for(expression1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, <=, >=, ==, or !=. The
relation == stands for ‘equal to’ and != stands for ‘not equal to’. The meaning of the remaining rela-
tional operators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of them are legal, so you
will not get a diagnostic message, but = really will not do a comparison.

The ‘if’ statement causes execution of its range if and only if the relation is true. Then control
passes to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the relation is true. The
relation is tested before each execution of its range and if the relation is false, control passes to the next
statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expression1’. Then the relation is tested and, if true, the
statements in the range of the ‘for’ are executed. Then ‘expression2’ is executed. The relation is tested,
and so on. The typical use of the ‘for’ statement is for a controlled iteration, as in the statement

for(i=1; i<=10; i=i+1) i

which will print the integers from 1 to 10. Here are some examples of the use of the control statements.

define f(n){
auto i, x
x=1
for(i=1; i<=n; i=i+1) x=x*i
return(x)
}

The line

f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will compute
values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){
auto x, j
x=1
for(j=1; j<=m; j=j+1) x=x*(n– j+1)/j
return(x)
}

The following function computes values of the exponential function by summing the appropriate series
without regard for possible truncation errors:
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scale = 20
define e(x){

auto a, b, c, d, n
a = 1
b = 1
c = 1
d = 0
n = 1
while(1==1){

a = a*x
b = b*n
c = c + a/b
n = n + 1
if(c==d) return(c)
d = c

}
}

Some Details

There are some language features that every user should know about even if he will not use them.

Normally statements are typed one to a line. It is also permissible to type several statements on a
line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used anywhere that
an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+1]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C language.
Consult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as x=(y=z)
x =+ y x = x+y
x =– y x = x– y
x =* y x = x*y
x =/ y x = x/y
x =% y x = x%y
x =ˆ y x = xˆy
x++ (x=x+1)– 1
x– – (x=x– 1)+1
++x x = x+1
– – x x = x– 1

Even if you don’t intend to use the constructs, if you type one inadvertently, something correct but
unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real difference
between x=– y and x= – y. The first replaces x by x– y and the second by – y.
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Three Important Things

1. To exit a BC program, type ‘quit’.

2. There is a comment convention identical to that of C and of PL/I. Comments begin with ‘/*’
and end with ‘*/’.

3. There is a library of math functions which may be obtained by typing at command level

bc – l

This command will load a set of library functions which, at the time of writing, consists of sine (named
‘s’), cosine (‘c’), arctangent (‘a’), natural logarithm (‘l’), exponential (‘e’) and Bessel functions of
integer order (‘j(n,x)’). Doubtless more functions will be added in time. The library sets the scale to
20. You can reset it to something else if you like. The design of these mathematical library routines is
discussed elsewhere [3].

If you type

bc file ...

BC will read and execute the named file or files before accepting commands from the keyboard. In this
way, you may load your favorite programs and function definitions.
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Appendix

1. Notation

In the following pages syntactic categories are in italics; literals are in bold; material in brackets
[ ] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators
may be blanks, tabs or comments. Newline characters or semicolons separate statements.

2.1. Comments

Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers

There are three kinds of identifiers – ordinary identifiers, array identifiers and function identifiers.
All three types consist of single lower-case letters. Array identifiers are followed by square brackets,
possibly enclosing an expression describing a subscript. Arrays are singly dimensioned and may contain
up to 2048 elements. Indexing begins at zero so an array may be indexed from 0 to 2047. Subscripts
are truncated to integers. Function identifiers are followed by parentheses, possibly enclosing arguments.
The three types of identifiers do not conflict; a program can have a variable named x, an array named x
and a function named x, all of which are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal
digits A– F are also recognized as digits with values 10– 15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Precedence is the
same as the order of presentation here, with highest appearing first. Left or right associativity, where
applicable, is discussed with each operator.
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3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions are legal
on the left side of an assignment. The value of a named expression is the value stored in the place
named.

3.1.1.1. identifiers

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [ expression ]

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the number of
digits after the decimal point to be retained in arithmetic operations. scale has an initial value of zero.
ibase and obase are the input and output number radix respectively. Both ibase and obase have initial
values of 10.

3.1.2. Function calls

3.1.2.1. function-name ([expression [, expression . . . ] ])

A function call consists of a function name followed by parentheses containing a comma-separated
list of expressions, which are the function arguments. A whole array passed as an argument is specified
by the array name followed by empty square brackets. All function arguments are passed by value. As
a result, changes made to the formal parameters have no effect on the actual arguments. If the function
terminates by executing a return statement, the value of the function is the value of the expression in the
parentheses of the return statement or is zero if no expression is provided or if there is no return state-
ment.

3.1.2.2. sqrt ( expression )

The result is the square root of the expression. The result is truncated in the least significant
decimal place. The scale of the result is the scale of the expression or the value of scale, whichever is
larger.

3.1.2.3. length ( expression )

The result is the total number of significant decimal digits in the expression. The scale of the
result is zero.

3.1.2.4. scale ( expression )

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to
alter the normal precedence.
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3.2. Unary operators

The unary operators bind right to left.

3.2.1. – expression

The result is the negative of the expression.

3.2.2. ++ named-expression

The named expression is incremented by one. The result is the value of the named expression
after incrementing.

3.2.3. – – named-expression

The named expression is decremented by one. The result is the value of the named expression
after decrementing.

3.2.4. named-expression ++

The named expression is incremented by one. The result is the value of the named expression
before incrementing.

3.2.5. named-expression – –

The named expression is decremented by one. The result is the value of the named expression
before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression ˆ expression

The result is the first expression raised to the power of the second expression. The second expres-
sion must be an integer. If a is the scale of the left expression and b is the absolute value of the right
expression, then the scale of the result is:

min ( a×b, max ( scale, a ) )

3.4. Multiplicative operators

The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two expressions,
then the scale of the result is:

min ( a+b, max ( scale, a, b ) )

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More precisely,
a%b is a– a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale
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3.5. Additive operators

The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of the scales
of the expressions.

3.5.2. expression – expression

The result is the difference of the two expressions. The scale of the result is the maximum of the
scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named expres-
sion on the left.

3.6.2. named-expression =+ expression

3.6.3. named-expression =– expression

3.6.4. named-expression =* expression

3.6.5. named-expression =/ expression

3.6.6. named-expression =% expression

3.6.7. named-expression =ˆ expression

The result of the above expressions is equivalent to ‘‘named expression = named expression OP
expression’’, where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if, while, or
inside a for statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression <= expression

4.4. expression >= expression

4.5. expression == expression

4.6. expression != expression
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5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers that are to
be local to a function need be declared with the auto command. The arguments to a function are local
to the function. All other identifiers are assumed to be global and available to all functions. All
identifiers, global and local, have initial values of zero. Identifiers declared as auto are allocated on
entry to the function and released on returning from the function. They therefore do not retain values
between function calls. auto arrays are specified by the array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I. On entry
to a function, the old values of the names that appear as parameters and as automatic variables are
pushed onto a stack. Until return is made from the function, reference to these names refers only to the
new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control state-
ments, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value of the
expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by surrounding
them with { }.

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if ( relation ) statement

The substatement is executed if the relation is true.

6.5. While statements

while ( relation ) statement

The statement is executed while the relation is true. The test occurs before each execution of the
statement.

6.6. For statements

for ( expression; relation; expression ) statement

The for statement is the same as
first-expression
while (relation ) {

statement
last-expression

}
All three expressions must be present.
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6.7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto identifier [ ,identifier ]

The auto statement causes the values of the identifiers to be pushed down. The identifiers can be
ordinary identifiers or array identifiers. Array identifiers are specified by following the array name by
empty square brackets. The auto statement must be the first statement in a function definition.

6.9. Define statements

define( [parameter [ , parameter . . . ] ] ) {
statements }
The define statement defines a function. The parameters may be ordinary identifiers or array

names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return( expression )

The return statement causes termination of a function, popping of its auto variables, and specifies
the result of the function. The first form is equivalent to return(0). The result of the function is the
result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it is first
encountered. Because it is not treated as an executable statement, it cannot be used in a function
definition or in an if, for, or while statement.
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0. Introduction

This document describes the usage and input syntax of the UNIX PDP-11 assembler as. The details
of the PDP-11 are not described.

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler PAL-11R,
although its internal workings and output format are unrelated. It may be useful to read the publication
DEC-11-ASDB-D, which describes PAL-11R, although naturally one must use care in assuming that its
rules apply to as.

As is a rather ordinary assembler without macro capabilities. It produces an output file that con-
tains relocation information and a complete symbol table; thus the output is acceptable to the UNIX link-
editor ld, which may be used to combine the outputs of several assembler runs and to obtain object pro-
grams from libraries. The output format has been designed so that if a program contains no unresolved
references to external symbols, it is executable without further processing.

1. Usage

as is used as follows:

as [ – u ] [ – o output ] file1 . . .

If the optional ‘‘– u’’ argument is given, all undefined symbols in the current assembly will be made
undefined-external. See the .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs may be
written in several pieces and assembled together.

The output of the assembler is by default placed on the file a.out in the current directory; the
‘‘– o’’ flag causes the output to be placed on the named file. If there were no unresolved external refer-
ences, and no errors detected, the output file is marked executable; otherwise, if it is produced at all, it is
made non-executable.

2. Lexical conventions

Assembler tokens include identifiers (alternatively, ‘‘symbols’’ or ‘‘names’’), temporary symbols,
constants, and operators.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period ‘‘ . ’’, underscore
‘‘_’’, and tilde ‘‘˜’’ as alphanumeric) of which the first may not be numeric. Only the first eight charac-
ters are significant. When a name begins with a tilde, the tilde is discarded and that occurrence of the
identifier generates a unique entry in the symbol table which can match no other occurrence of the
identifier. This feature is used by the C compiler to place names of local variables in the output symbol
table without having to worry about making them unique.
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2.2 Temporary symbols

A temporary symbol consists of a digit followed by ‘‘f ’’ or ‘‘b’’. Temporary symbols are dis-
cussed fully in §5.1.

2.3 Constants

An octal constant consists of a sequence of digits; ‘‘8’’ and ‘‘9’’ are taken to have octal value 10
and 11. The constant is truncated to 16 bits and interpreted in two’s complement notation.

A decimal constant consists of a sequence of digits terminated by a decimal point ‘‘.’’. The mag-
nitude of the constant should be representable in 15 bits; i.e., be less than 32,768.

A single-character constant consists of a single quote ‘‘ ′ ’’ followed by an ASCII character not a
new-line. Certain dual-character escape sequences are acceptable in place of the ASCII character to
represent new-line and other non-graphics (see String statements, §5.5). The constant’s value has the
code for the given character in the least significant byte of the word and is null-padded on the left.

A double-character constant consists of a double quote ‘‘ " ’’ followed by a pair of ASCII characters
not including new-line. Certain dual-character escape sequences are acceptable in place of either of the
ASCII characters to represent new-line and other non-graphics (see String statements, §5.5). The
constant’s value has the code for the first given character in the least significant byte and that for the
second character in the most significant byte.

2.4 Operators

There are several single- and double-character operators; see §6.

2.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be used within
tokens (except character constants). A blank or tab is required to separate adjacent identifiers or con-
stants not otherwise separated.

2.6 Comments

The character ‘‘ / ’’ introduces a comment, which extends through the end of the line on which it
appears. Comments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the text segment, the data segment, and the bss
segment. The text segment is the one in which the assembler begins, and it is the one into which
instructions are typically placed. The UNIX system will, if desired, enforce the purity of the text segment
of programs by trapping write operations into it. Object programs produced by the assembler must be
processed by the link-editor ld (using its ‘‘– n’’ flag) if the text segment is to be write-protected. A sin-
gle copy of the text segment is shared among all processes executing such a program.

The data segment is available for placing data or instructions which will be modified during exe-
cution. Anything which may go in the text segment may be put into the data segment. In programs
with write-protected, sharable text segments, data segment contains the initialized but variable parts of a
program. If the text segment is not pure, the data segment begins immediately after the text segment; if
the text segment is pure, the data segment begins at the lowest 8K byte boundary after the text segment.

The bss segment may not contain any explicitly initialized code or data. The length of the bss
segment (like that of text or data) is determined by the high-water mark of the location counter within it.
The bss segment is actually an extension of the data segment and begins immediately after it. At the
start of execution of a program, the bss segment is set to 0. Typically the bss segment is set up by
statements exemplified by

lab: . = .+10

The advantage in using the bss segment for storage that starts off empty is that the initialization
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information need not be stored in the output file. See also Location counter and Assignment statements
below.

4. The location counter

One special symbol, ‘‘ . ’’, is the location counter. Its value at any time is the offset within the
appropriate segment of the start of the statement in which it appears. The location counter may be
assigned to, with the restriction that the current segment may not change; furthermore, the value of ‘‘ . ’’
may not decrease. If the effect of the assignment is to increase the value of ‘‘ . ’’, the required number
of null bytes are generated (but see Segments above).

5. Statements

A source program is composed of a sequence of statements. Statements are separated either by
new-lines or by semicolons. There are five kinds of statements: null statements, expression statements,
assignment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a name
followed by a colon ( : ). The effect of a name label is to assign the current value and type of the loca-
tion counter ‘‘ . ’’ to the name. An error is indicated in pass 1 if the name is already defined; an error is
indicated in pass 2 if the ‘‘ . ’’ value assigned changes the definition of the label.

A numeric label consists of a digit 0 to 9 followed by a colon ( : ). Such a label serves to define
temporary symbols of the form ‘‘n b’’ and ‘‘n f ’’, where n is the digit of the label. As in the case of
name labels, a numeric label assigns the current value and type of ‘‘ . ’’ to the temporary symbol. How-
ever, several numeric labels with the same digit may be used within the same assembly. References of
the form ‘‘n f ’’ refer to the first numeric label ‘‘n :’’ f orward from the reference; ‘‘n b’’ symbols refer to
the first ‘‘n :’’ label b ackward from the reference. This sort of temporary label was introduced by
Knuth [The Art of Computer Programming, Vol I: Fundamental Algorithms ]. Such labels tend to con-
serve both the symbol table space of the assembler and the inventive powers of the programmer.

5.2 Null statements

A null statement is an empty statement (which may, however, have labels). A null statement is
ignored by the assembler. Common examples of null statements are empty lines or lines containing
only a label.

5.3 Expression statements

An expression statement consists of an arithmetic expression not beginning with a keyword. The
assembler computes its (16-bit) value and places it in the output stream, together with the appropriate
relocation bits.

5.4 Assignment statements

An assignment statement consists of an identifier, an equals sign ( = ), and an expression. The
value and type of the expression are assigned to the identifier. It is not required that the type or value
be the same in pass 2 as in pass 1, nor is it an error to redefine any symbol by assignment.

Any external attribute of the expression is lost across an assignment. This means that it is not
possible to declare a global symbol by assigning to it, and that it is impossible to define a symbol to be
offset from a non-locally defined global symbol.

As mentioned, it is permissible to assign to the location counter ‘‘ . ’’. It is required, however, that
the type of the expression assigned be of the same type as ‘‘ . ’’, and it is forbidden to decrease the value
of ‘‘ . ’’. In practice, the most common assignment to ‘‘ . ’’ has the form ‘‘. = . + n’’ for some number n;
this has the effect of generating n null bytes.
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5.5 String statements

A string statement generates a sequence of bytes containing ASCII characters. A string statement
consists of a left string quote ‘‘<’’ followed by a sequence of ASCII characters not including newline, fol-
lowed by a right string quote ‘‘>’’. Any of the ASCII characters may be replaced by a two-character
escape sequence to represent certain non-graphic characters, as follows:

\n NL (012)
\s SP (040)
\t HT (011)
\e EOT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
\\ \
\> >

The last two are included so that the escape character and the right string quote may be represented.
The same escape sequences may also be used within single- and double-character constants (see §2.3
above).

5.6 Keyword statements

Keyword statements are numerically the most common type, since most machine instructions are
of this sort. A keyword statement begins with one of the many predefined keywords of the assembler;
the syntax of the remainder depends on the keyword. All the keywords are listed below with the syntax
they require.

6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are identifiers, con-
stants, temporary symbols, operators, and brackets. Each expression has a type.

All operators in expressions are fundamentally binary in nature; if an operand is missing on the
left, a 0 of absolute type is assumed. Arithmetic is two’s complement and has 16 bits of precision. All
operators have equal precedence, and expressions are evaluated strictly left to right except for the effect
of brackets.

6.1 Expression operators

The operators are:

(blank) when there is no operand between operands, the effect is exactly the same as if a ‘‘+’’ had
appeared.

+ addition

– subtraction

* multiplication

\/ division (note that plain ‘‘ / ’’ starts a comment)

& bitwise and

 bitwise or

\> logical right shift

\< logical left shift
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% modulo

! a ! b is a or ( not b ); i.e., the or of the first operand and the one’s complement of the second;
most common use is as a unary.

ˆ result has the value of first operand and the type of the second; most often used to define new
machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets ‘‘ [ ] ’’. (Round parentheses are reserved
for address modes.)

6.2 Types

The assembler deals with a number of types of expressions. Most types are attached to keywords
and used to select the routine which treats that keyword. The types likely to be met explicitly are:

undefined
Upon first encounter, each symbol is undefined. It may become undefined if it is assigned an
undefined expression. It is an error to attempt to assemble an undefined expression in pass 2;
in pass 1, it is not (except that certain keywords require operands which are not undefined).

undefined external
A symbol which is declared .globl but not defined in the current assembly is an undefined
external. If such a symbol is declared, the link editor ld must be used to load the assembler’s
output with another routine that defines the undefined reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by any pos-
sible future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text segment of
the program. If the assembler output is link-edited, its text symbols may change in value since
the program need not be the first in the link editor’s output. Most text symbols are defined by
appearing as labels. At the start of an assembly, the value of ‘‘ . ’’ is text 0.

data The value of a data symbol is measured with respect to the origin of the data segment of a
program. Like text symbols, the value of a data symbol may change during a subsequent
link-editor run since previously loaded programs may have data segments. After the first .data
statement, the value of ‘‘ . ’’ is data 0.

bss The value of a bss symbol is measured from the beginning of the bss segment of a program.
Like text and data symbols, the value of a bss symbol may change during a subsequent link-
editor run, since previously loaded programs may have bss segments. After the first .bss state-
ment, the value of ‘‘ . ’’ is bss 0.

external absolute, text, data, or bss
symbols declared .globl but defined within an assembly as absolute, text, data, or bss symbols
may be used exactly as if they were not declared .globl; however, their value and type are
available to the link editor so that the program may be loaded with others that reference these
symbols.

register
The symbols

r0 . . . r5
fr0 . . . fr5
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be used to
refer to the six general-purpose, six floating-point, and the 2 special-purpose machine registers.
The behavior of the floating register names is identical to that of the corresponding general
register names; the former are provided as a mnemonic aid.
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other types
Each keyword known to the assembler has a type which is used to select the routine which
processes the associated keyword statement. The behavior of such symbols when not used as
keywords is the same as if they were absolute.

6.3 Type propagation in expressions

When operands are combined by expression operators, the result has a type which depends on the
types of the operands and on the operator. The rules involved are complex to state but were intended to
be sensible and predictable. For purposes of expression evaluation the important types are

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undefined. If both
operands are absolute, the result is absolute. If an absolute is combined with one of the ‘‘other types’’
mentioned above, or with a register expression, the result has the register or other type. As a conse-
quence, one can refer to r3 as ‘‘r0+3’’. If two operands of ‘‘other type’’ are combined, the result has
the numerically larger type An ‘‘other type’’ combined with an explicitly discussed type other than
absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external, the result has
the postulated type and the other operand must be absolute.

– If the first operand is a relocatable text-, data-, or bss-segment symbol, the second operand may be
absolute (in which case the result has the type of the first operand); or the second operand may
have the same type as the first (in which case the result is absolute). If the first operand is exter-
nal undefined, the second must be absolute. All other combinations are illegal.

ˆ This operator follows no other rule than that the result has the value of the first operand and the
type of the second.

others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations

The keywords listed below introduce statements that generate data in unusual forms or influence
the later operations of the assembler. The metanotation

[ stuff ] . . .

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are literals, italic
words are substitutable.

7.1 .byte expression [ , expression ] . . .

The expressions in the comma-separated list are truncated to 8 bits and assembled in successive
bytes. The expressions must be absolute. This statement and the string statement above are the only
ones that assemble data one byte at at time.
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7.2 .even

If the location counter ‘‘ . ’’ is odd, it is advanced by one so the next statement will be assembled
at a word boundary.

7.3 .if expression

The expression must be absolute and defined in pass 1. If its value is nonzero, the .if is ignored;
if zero, the statements between the .if and the matching .endif (below) are ignored. .if may be nested.
The effect of .if cannot extend beyond the end of the input file in which it appears. (The statements are
not totally ignored, in the following sense: .ifs and .endifs are scanned for, and moreover all names are
entered in the symbol table. Thus names occurring only inside an .if will show up as undefined if the
symbol table is listed.)

7.4 .endif

This statement marks the end of a conditionally-assembled section of code. See .if above.

7.5 .globl name [ , name ] . . .

This statement makes the names external. If they are otherwise defined (by assignment or appear-
ance as a label) they act within the assembly exactly as if the .globl statement were not given; however,
the link editor ld may be used to combine this routine with other routines that refer these symbols.

Conversely, if the given symbols are not defined within the current assembly, the link editor can
combine the output of this assembly with that of others which define the symbols. As discussed in §1,
it is possible to force the assembler to make all otherwise undefined symbols external.

7.6 .text

7.7 .data

7.8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text, data, or bss
segment respectively. Assembly starts in the text segment. It is forbidden to assemble any code or data
into the bss segment, but symbols may be defined and ‘‘ . ’’ moved about by assignment.

7.9 .comm name , expression

Provided the name is not defined elsewhere, this statement is equivalent to

.globl name
name = expression ˆ name

That is, the type of name is ‘‘undefined external’’, and its value is expression. In fact the name behaves
in the current assembly just like an undefined external. However, the link-editor ld has been special-
cased so that all external symbols which are not otherwise defined, and which have a non-zero value, are
defined to lie in the bss segment, and enough space is left after the symbol to hold expression bytes.
All symbols which become defined in this way are located before all the explicitly defined bss-segment
locations.

8. Machine instructions

Because of the rather complicated instruction and addressing structure of the PDP-11, the syntax of
machine instruction statements is varied. Although the following sections give the syntax in detail, the
machine handbooks should be consulted on the semantics.
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8.1 Sources and Destinations

The syntax of general source and destination addresses is the same. Each must have one of the
following forms, where reg is a register symbol, and expr is any sort of expression:

syntax words mode_ __________________________
reg 0 00+reg
( reg ) + 0 20+reg
– ( reg ) 0 40+reg
expr ( reg ) 1 60+reg
( reg ) 0 10+reg
* reg 0 10+reg
* ( reg ) + 0 30+reg
* – ( reg ) 0 50+reg
* ( reg ) 1 70+reg
* expr ( reg ) 1 70+reg
expr 1 67
$ expr 1 27
* expr 1 77
* $ expr 1 37

The words column gives the number of address words generated; the mode column gives the octal
address-mode number. The syntax of the address forms is identical to that in DEC assemblers, except
that ‘‘*’’ has been substituted for ‘‘@’’ and ‘‘$’’ for ‘‘#’’; the UNIX typing conventions make ‘‘@’’ and
‘‘#’’ rather inconvenient.

Notice that mode ‘‘*reg’’ is identical to ‘‘(reg)’’; that ‘‘*(reg)’’ generates an index word (namely,
0); and that addresses consisting of an unadorned expression are assembled as pc-relative references
independent of the type of the expression. To force a non-relative reference, the form ‘‘*$expr’’ can be
used, but notice that further indirection is impossible.

8.3 Simple machine instructions

The following instructions are defined as absolute symbols:

clc
clv
clz
cln
sec
sev
sez
sen

They therefore require no special syntax. The PDP-11 hardware allows more than one of the ‘‘clear’’
class, or alternatively more than one of the ‘‘set’’ class to be or-ed together; this may be expressed as
follows:

clc  clv

8.4 Branch

The following instructions take an expression as operand. The expression must lie in the same
segment as the reference, cannot be undefined-external, and its value cannot differ from the current loca-
tion of ‘‘ . ’’ by more than 254 bytes:
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br blos
bne bvc
beq bvs
bge bhis
blt bec (= bcc)
bgt bcc
ble blo
bpl bcs
bmi bes (= bcs)
bhi

bes (‘‘branch on error set’’) and bec (‘‘branch on error clear’’) are intended to test the error bit returned
by system calls (which is the c-bit).

8.5 Extended branch instructions

The following symbols are followed by an expression representing an address in the same segment
as ‘‘ . ’’. If the target address is close enough, a branch-type instruction is generated; if the address is
too far away, a jmp will be used.

jbr jlos
jne jvc
jeq jvs
jge jhis
jlt jec
jgt jcc
jle jlo
jpl jcs
jmi jes
jhi

jbr turns into a plain jmp if its target is too remote; the others (whose names are contructed by replac-
ing the ‘‘b’’ in the branch instruction’s name by ‘‘j’’ ) turn into the converse branch over a jmp to the
target address.

8.6 Single operand instructions

The following symbols are names of single-operand machine instructions. The form of address
expected is discussed in §8.1 above.

clr sbcb
clrb ror
com rorb
comb rol
inc rolb
incb asr
dec asrb
decb asl
neg aslb
negb jmp
adc swab
adcb tst
sbc tstb
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8.7 Double operand instructions

The following instructions take a general source and destination (§8.1), separated by a comma, as
operands.

mov
movb
cmp
cmpb
bit
bitb
bic
bicb
bis
bisb
add
sub

8.8 Miscellaneous instructions

The following instructions have more specialized syntax. Here reg is a register name, src and dst
a general source or destination (§8.1), and expr is an expression:

jsr reg,dst
rts reg
sys expr
ash src , reg (or, als)
ashc src , reg (or, alsc)
mul src , reg (or, mpy)
div src , reg (or, dvd)
xor reg , dst
sxt dst
mark expr
sob reg , expr

sys is another name for the trap instruction. It is used to code system calls. Its operand is required to
be expressible in 6 bits. The expression in mark must be expressible in six bits, and the expression in
sob must be in the same segment as ‘‘ . ’’, must not be external-undefined, must be less than ‘‘ . ’’, and
must be within 510 bytes of ‘‘ . ’’.

8.9 Floating-point unit instructions

The following floating-point operations are defined, with syntax as indicated:
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cfcc
setf
setd
seti
setl
clrf fdst
negf fdst
absf fdst
tstf fsrc
movf fsrc, freg (= ldf )
movf freg, fdst (= stf )
movif src, freg (= ldcif )
movfi freg, dst (= stcfi )
movof fsrc, freg (= ldcdf )
movfo freg, fdst (= stcfd )
movie src, freg (= ldexp)
movei freg, dst (= stexp)
addf fsrc, freg
subf fsrc, freg
mulf fsrc, freg
divf fsrc, freg
cmpf fsrc, freg
modf fsrc, freg
ldfps src
stfps dst
stst dst

fsrc, fdst, and freg mean floating-point source, destination, and register respectively. Their syntax is
identical to that for their non-floating counterparts, but note that only floating registers 0-3 can be a freg.

The names of several of the operations have been changed to bring out an analogy with certain
fixed-point instructions. The only strange case is movf, which turns into either stf or ldf depending
respectively on whether its first operand is or is not a register. Warning: ldf sets the floating condition
codes, stf does not.

9. Other symbols

9.1 . .

The symbol ‘‘ . . ’’ is the relocation counter. Just before each assembled word is placed in the
output stream, the current value of this symbol is added to the word if the word refers to a text, data or
bss segment location. If the output word is a pc-relative address word that refers to an absolute location,
the value of ‘‘ . . ’’ is subtracted.

Thus the value of ‘‘ . . ’’ can be taken to mean the starting memory location of the program. The
initial value of ‘‘ . . ’’ is 0.

The value of ‘‘ . . ’’ may be changed by assignment. Such a course of action is sometimes neces-
sary, but the consequences should be carefully thought out. It is particularly ticklish to change ‘‘ . . ’’
midway in an assembly or to do so in a program which will be treated by the loader, which has its own
notions of ‘‘ . . ’’.

9.2 System calls

System call names are not predefined. They may be found in the file /usr/include/sys.s
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10. Diagnostics

When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out together with
the line number and the file name in which it occurred. Errors in pass 1 cause cancellation of pass 2.
The possible errors are:

) parentheses error
] parentheses error
> string not terminated properly
* indirection ( * ) used illegally
. illegal assignment to ‘‘ . ’’
A error in address
B branch address is odd or too remote
E error in expression
F error in local (‘‘f ’’ or ‘‘b’’) type symbol
G garbage (unknown) character
I end of file inside an .if
M multiply defined symbol as label
O word quantity assembled at odd address
P phase error— ‘‘ . ’’ different in pass 1 and 2
R relocation error
U undefined symbol
X syntax error
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The distribution tape can be used only on a DEC PDP11/45 or PDP11/70 with RP03, RP04,
RP05, RP06 disks and with a TU10, TU16, or TE16 tape drive. It consists of some preliminary
bootstrapping programs followed by two file system images; if needed, after the initial construction of
the file systems individual files can be extracted. (See restor(1))

If you are set up to do it, it might be a good idea immediately to make a copy of the tape to guard
against disaster. The tape is 9-track 800 BPI and contains some 512-byte records followed by many
10240-byte records. There are interspersed tapemarks.

The system as distributed contains binary images of the system and all the user level programs,
along with source and manual sections for them—about 2100 files altogether. The binary images, along
with other things needed to flesh out the file system enough so UNIX will run, are to be put on one file
system called the ‘root file system’. The file system size required is about 5000 blocks. The file second
system has all of the source and documentation. Altogether it amounts to more than 18,000 512-byte
blocks.

Making a Disk From Tape

Perform the following bootstrap procedure to obtain a disk with a root file system on it.

1. Mount the magtape on drive 0 at load point.

2. Mount a formatted disk pack on drive 0.

3. Key in and execute at 100000

TU10 TU16/TE16
012700 Use the DEC ROM or other
172526 means to load block 1
010040 (i.e. second block) at 800 BPI
012740 into location 0 and transfer
060003 to 0.
000777

The tape should move and the CPU loop. (The TU10 code is not the DEC bulk ROM for tape; it
reads block 0, not block 1.)

4. If you used the above TU10 code, halt and restart the CPU at 0, otherwise continue to the next
step.

5. The console should type

Boot
:

Copy the magtape to disk by the following procedure. The machine’s printouts are shown in
italic, explanatory comments are within ( ). Terminate each line you type by carriage return or
line-feed. There are two classes of tape drives: the name ‘tm’ is used for the TU10, and ‘ht’ is
used for the TU16 or TE16. There are also two classes of disks: ‘rp’ is used for the RP03, and
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‘hp’ is used for the RP04/5/6.

If you should make a mistake while typing, the character ’#’ erases the last character typed up to
the beginning of the line, and the character ’@’ erases the entire line typed. Some consoles cannot print
lower case letters, adjust the instructions accordingly.

(bring in the program mkfs)
: tm(0,3) (use ‘ht(0,3)’ for the TU16/TE16)
file system size: 5000
file system: rp(0,0) (use ‘hp(0,0)’ for RP04/5/6)
isize = XX
m/n = XX
(after a while)
exit called
Boot
:

This step makes an empty file system.

6. The next thing to do is to restore the data onto the new empty file system. To do this you respond
to the ‘:’ printed in the last step with

(bring in the program restor)
: tm(0,4) (‘ht(0,4)’ for TU16/TE16)
tape? tm(0,5) (use ‘ht(0,5)’ for TU16/TE16)
disk? rp(0,0) (use ‘hp(0,0)’ for RP04/5/6)
Last chance before scribbling on disk. (you type return)
(the tape moves, perhaps 5-10 minutes pass)
end of tape
Boot
:

You now have a UNIX root file system.

Booting UNIX

You probably have the bootstrap running, left over from the last step above; if not, repeat the boot
process (step 3) again. Then use one of the following:

: rp(0,0)rptmunix (for RP03 and TU10)
: rp(0,0)rphtunix (for RP03 and TU16/TE16)
: hp(0,0)hptmunix (for RP04/5/6 and TU10)
: hp(0,0)hphtunix (for RP04/5/6 and TU16/TE16)

The machine should type the following:

mem = xxx
#

The mem message gives the memory available to user programs in bytes.

UNIX is now running, and the ‘UNIX Programmer’s manual’ applies; references below of the
form X(Y) mean the subsection named X in section Y of the manual. The ‘#’ is the prompt from the
Shell, and indicates you are the super-user. The user name of the super-user is ‘root’ if you should find
yourself in multi-user mode and need to log in; the password is also ‘root’.

To simplify your life later, rename the appropriate version of the system as specified above plain
‘unix.’ For example, use mv (1) as follows if you have an RP04/5/6 and a TU16 tape:

mv hphtunix unix

In the future, when you reboot, you can type just
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hp(0,0)unix

to the ‘:’ prompt. (Choose appropriately among ‘hp’, ‘rp’, ‘ht’, ‘tm’ according to your configuration).

You now need to make some special file entries in the dev directory. These specify what sort of
disk you are running on, what sort of tape drive you have, and where the file systems are. For simpli-
city, this recipe creates fixed device names. These names will be used below, and some of them are
built into various programs, so they are most convenient. However, the names do not always represent
the actual major and minor device in the manner suggested in section 4 of the Programmer’s Manual.
For example, ‘rp3’ will be used for the name of the file system on which the user file system is put,
even though it might be on an RP06 and is not logical device 3. Also, this sequence will put the user
file system on the same disk drive as the root, which is not the best place if you have more than one
drive. Thus the prescription below should be taken only as one example of where to put things. See
also the section on ‘Disk layout’ below.

In any event, change to the dev directory (cd(1)) and, if you like, examine and perhaps change the
makefile there (make (1)).

cd /dev
cat makefile

Then, use one of

make rp03
make rp04
make rp05
make rp06

depending on which disk you have. Then, use one of

make tm
make ht

depending on which tape you have. The file ‘rp0’ refers to the root file system; ‘swap’ to the swap-
space file system; ‘rp3’ to the user file system. The devices ‘rrp0’ and ‘rrp3’ are the ‘raw’ versions of
the disks. Also, ‘mt0’ is tape drive 0, at 800 BPI; ‘rmt0’ is the raw tape, on which large records can be
read and written; ‘nrmt0’ is raw tape with the quirk that it does not rewind on close, which is a subter-
fuge that permits multifile tapes to be handled.

The next thing to do is to extract the rest of the data from the tape. Comments are enclosed in (
); don’t type these. The number in the first command is the size of the file system; it differs between
RP03, RP04/5, and RP06.

/etc/mkfs /dev/rp3 74000 (153406 if on RP04/5, 322278 on RP06)
(The above command takes about 2-3 minutes on an RP03)
dd if=/dev/nrmt0 of=/dev/null bs=20b files=6 (skip 6 files on the tape)
restor rf /dev/rmt0 /dev/rp3 (restore the file system)
(Reply with a ‘return’ (CR) to the ‘Last chance’ message)
(The restor takes about 20-30 minutes)

All of the data on the tape has been extracted.

You may at this point mount the source file system (mount(1)). To do this type the following:

/etc/mount /dev/rp3 /usr

The source and manual pages are now available in subdirectories of /usr.

The above mount command is only needed if you intend to play around with source on a single
user system, which you are going to do next. The file system is mounted automatically when multi-user
mode is entered, by a command in the file /etc/rc. (See ‘Disk Layout’ below).

Before anything further is done the bootstrap block on the disk (block 0) should be filled in. This
is done using the command
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dd if=/usr/mdec/rpuboot of=/dev/rp0 count=1

if you have the RP03, or

dd if=/usr/mdec/hpuboot of=/dev/rp0 count=1

if you have an RP04/5/6. Now the DEC disk bootstraps are usable. See Boot Procedures(8) for further
information.

Before UNIX is turned up completely, a few configuration dependent exercises must be performed.
At this point, it would be wise to read all of the manuals (especially ‘Regenerating System Software’)
and to augment this reading with hand to hand combat.

Reconfiguration

The UNIX system running is configured to run with the given disk and tape, a console, and no
other device. This is certainly not the correct configuration. You will have to correct the configuration
table to reflect the true state of your machine.

It is wise at this point to know how to recompile the system. Print (cat(1)) the file
/usr/sys/conf/makefile. This file is input to the program ‘make(1)’ which if invoked with ‘make all’ will
recompile all of the system source and install it in the correct libraries.

The program mkconf(1) prepares files that describe a given configuration (See mkconf(1)). In the
/usr/sys/conf directory, the four files xyconf were input to mkconf to produce the four versions of the
system xyunix. Pick the appropriate one, and edit it to add lines describing your own configuration.
(Remember the console typewriter is automatically included; don’t count it in the kl specification.)
Then run mkconf; it will generate the files l.s (trap vectors) c.c (configuration table), and mch0.s. Take
a careful look at l.s to make sure that all the devices that you have are assembled in the correct interrupt
vectors. If your configuration is non-standard, you will have to modify l.s to fit your configuration.

There are certain magic numbers and configuration parameters imbedded in various device drivers
that you may want to change. The device addresses of each device are defined in each driver. In case
you have any non-standard device addresses, just change the address and recompile. (The device drivers
are in the directory /usr/sys/dev.)

The DC11 driver is set to run 4 lines. This can be changed in dc.c.

The DH11 driver is set to handle 3 DH11’s with a full complement of 48 lines. If you have less,
or more, you may want to edit dh.c.

The DN11 driver will handle 4 DN’s. Edit dn.c.

The DU11 driver can only handle a single DU. This cannot be easily changed.

The KL/DL driver is set up to run a single DL11-A, -B, or -C (the console) and no DL11-E’s. To
change this, edit kl.c to have NKL11 reflect the total number of DL11-ABC’s and NDL11 to reflect the
number of DL11-E’s. So far as the driver is concerned, the difference between the devices is their
address.

All of the disk and tape drivers (rf.c, rk.c, rp.c, tm.c, tc.c, hp.c, ht.c) are set up to run 8 drives and
should not need to be changed. The big disk drivers (rp.c and hp.c) have partition tables in them which
you may want to experiment with.

After all the corrections have been made, use ‘make(1)’ to recompile the system (or recompile
individually if you wish: use the makefile as a guide). If you compiled individually, say ‘make unix’ in
the directory /usr/sys/conf. The final object file (unix) should be moved to the root, and then booted to
try it out. It is best to name it /nunix so as not to destroy the working system until you’re sure it does
work. See Boot Procedures(8) for a discussion of booting. Note: before taking the system down,
always (!!) perform a sync(1) to force delayed output to the disk.
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Special Files

Next you must put in special files for the new devices in the directory /dev using mknod(1). Print
the configuration file c.c created above. This is the major device switch of each device class (block and
character). There is one line for each device configured in your system and a null line for place holding
for those devices not configured. The essential block special files were installed above; for any new
devices, the major device number is selected by counting the line number (from zero) of the device’s
entry in the block configuration table. Thus the first entry in the table bdevsw would be major device
zero. This number is also printed in the table along the right margin.

The minor device is the drive number, unit number or partition as described under each device in
section 4 of the manual. For tapes where the unit is dial selectable, a special file may be made for each
possible selection. You can also add entries for other disk drives.

In reality, device names are arbitrary. It is usually convenient to have a system for deriving names,
but it doesn’t have to be the one presented above.

Some further notes on minor device numbers. The hp driver uses the 0100 bit of the minor device
number to indicate whether or not to interleave a file system across more than one physical device. See
hp(4) for more detail. The tm and ht drivers use the 0200 bit to indicate whether or not to rewind the
tape when it is closed. The 0100 bit indicates the density of the tape on TU16 drives. By convention,
tape special files with the 0200 bit on have an ‘n’ prepended to their name, as in /dev/nmt0 or
/dev/nrmt1. Again, see tm(4) or ht(4).

The naming of character devices is similar to block devices. Here the names are even more arbi-
trary except that devices meant to be used for teletype access should (to avoid confusion, no other rea-
son) be named /dev/ttyX, where X is some string (as in ‘00’ or ‘library’). The files console, mem,
kmem, and null are already correctly configured.

The disk and magtape drivers provide a ‘raw’ interface to the device which provides direct
transmission between the user’s core and the device and allows reading or writing large records. The
raw device counts as a character device, and should have the name of the corresponding standard block
special file with ‘r’ prepended. (The ‘n’ for no rewind tapes violates this rule.) Thus the raw magtape
files would be called /dev/rmtX. These special files should be made.

When all the special files have been created, care should be taken to change the access modes
(chmod(1)) on these files to appropriate values (probably 600 or 644).

Floating Point

UNIX only supports (and really expects to have) the FP11-B/C floating point unit. For machines
without this hardware, there is a user subroutine available that will catch illegal instruction traps and
interpret floating point operations. (See fptrap(3).) To install this subroutine in the library, change to
/usr/src/libfpsim and execute the shell files

compall
mklib

The system as delivered does not have this code included in any command, although the operating sys-
tem adapts automatically to the presence or absence of the FP11.

Next, a floating-point version of the C compiler in /usr/src/cmd/c should be compiled using the
commands:

cd /usr/src/cmd/c
make fc1
mv fc1 /lib/fc1

This allows programs with floating point constants to be compiled. To compile floating point programs
use the ‘– f’ flag to cc(1). This flag ensures that the floating point interpreter is loaded with the program
and that the floating point version of ‘cc’ is used.
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Time Conversion

If your machine is not in the Eastern time zone, you must edit (ed(1)) the file /usr/sys/h/param.h to
reflect your local time. The manifest ‘TIMEZONE’ should be changed to reflect the time difference
between local time and GMT in minutes. For EST, this is 5*60; for PST it would be 8*60. Finally,
there is a ‘DSTFLAG’ manifest; when it is 1 it causes the time to shift to Daylight Savings automati-
cally between the last Sundays in April and October (or other algorithms in 1974 and 1975). Normally
this will not have to be reset. When the needed changes are done, recompile and load the system using
make(1) and install it. (As a general rule, when a system header file is changed, the entire system
should be recompiled. As it happens, the only uses of these flags are in /usr/sys/sys/sys4.c, so if this is
all that was changed it alone needs to be recompiled.)

You may also want to look at timezone(3) (/usr/src/libc/gen/timezone.c) to see if the name of your
timezone is in its internal table. If needed, edit the changes in. After timezone.c has been edited it
should be compiled and installed in its library. (See /usr/src/libc/(mklib and compall)) Then you should
(at your leisure) recompile and reinstall all programs that use it (such as date(1)).

Disk Layout

If there are to be more file systems mounted than just the root and /usr, use mkfs(1) to create any
new file system and put its mounting in the file /etc/rc (see init(8) and mount(1)). (You might look at
/etc/rc anyway to see what has been provided for you.)

There are two considerations in deciding how to adjust the arrangement of things on your disks:
the most important is making sure there is adequate space for what is required; secondarily, throughput
should be maximized. Swap space is a critical parameter. The system as distributed has 8778 (hpunix)
or 2000 (rpunix) blocks for swap space. This should be large enough so running out of swap space
never occurs. You may want to change these if local wisdom indicates otherwise.

The system as distributed has all of the binaries in /bin. Most of them should be moved to
/usr/bin, leaving only the ones required for system maintenance (such as icheck, dcheck, cc, ed, restor,
etc.) and the most heavily used in /bin. This will speed things up a bit if you have only one disk, and
also free up space on the root file system for temporary files. (See below).

Many common system programs (C, the editor, the assembler etc.) create intermediate files in the
/tmp directory, so the file system where this is stored also should be made large enough to accommodate
most high-water marks. If you leave the root file system as distributed (except as discussed above) there
should be no problem. All the programs that create files in /tmp take care to delete them, but most are
not immune to events like being hung up upon, and can leave dregs. The directory should be examined
every so often and the old files deleted.

Exhaustion of user-file space is certain to occur now and then; the only mechanisms for control-
ling this phenomenon are occasional use of du(1), df(1), quot(1), threatening messages of the day, and
personal letters.

The efficiency with which UNIX is able to use the CPU is largely dictated by the configuration of
disk controllers. For general time-sharing applications, the best strategy is to try to split user files, the
root directory (including the /tmp directory) and the swap area among three controllers.

Once you have decided how to make best use of your hardware, the question is how to initialize
it. If you have the equipment, the best way to move a file system is to dump it (dump(1)) to magtape,
use mkfs(1) to create the new file system, and restore (restor(1)) the tape. If for some reason you don’t
want to use magtape, dump accepts an argument telling where to put the dump; you might use another
disk. Sometimes a file system has to be increased in logical size without copying. The super-block of
the device has a word giving the highest address which can be allocated. For relatively small increases,
this word can be patched using the debugger (adb(1)) and the free list reconstructed using icheck(1).
The size should not be increased very greatly by this technique, however, since although the allocatable
space will increase the maximum number of files will not (that is, the i-list size can’t be changed).
Read and understand the description given in file system(5) before playing around in this way. You
may want to see section rp(4) for some suggestions on how to lay out the information on RP disks.
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If you have to merge a file system into another, existing one, the best bet is to use tar(1). If you
must shrink a file system, the best bet is to dump the original and restor it onto the new filesystem.
However, this might not work if the i-list on the smaller filesystem is smaller than the maximum allo-
cated inode on the larger. If this is the case, reconstruct the filesystem from scratch on another filesys-
tem (perhaps using tar(1)) and then dump it. If you are playing with the root file system and only have
one drive the procedure is more complicated. What you do is the following:

1. GET A SECOND PACK!!!!

2. Dump the current root filesystem (or the reconstructed one) using dump(1).

3. Bring the system down and mount the new pack.

4. Retrieve the WECo distribution tape and perform steps 1 through 5 at the beginning of this docu-
ment, substituting the desired file system size instead of 5000 when asked for ‘file system size’.

5. Perform step 6 above up to the point where the ‘tape’ question is asked. At this point mount the
tape you made just a few minutes ago. Continue with step 6 above substituting a 0 (zero) for the
5.

New Users

Install new users by editing the password file /etc/passwd (passwd(5)). This procedure should be
done once multi-user mode is entered (see init(8)). You’ll have to make a current directory for each
new user and change its owner to the newly installed name. Login as each user to make sure the pass-
word file is correctly edited. For example:

ed /etc/passwd
$a
joe::10:1::/usr/joe:
w
q
mkdir /usr/joe
chown joe /usr/joe
login joe
ls – la
login root

This will make a new login entry for joe, who should be encouraged to use passwd(1) to give himself a
password. His default current directory is /usr/joe which has been created. The delivered password file
has the user bin in it to be used as a prototype.

Multiple Users

If UNIX is to support simultaneous access from more than just the console terminal, the file
/etc/ttys (ttys(5)) has to be edited. To add a new terminal be sure the device is configured and the spe-
cial file exists, then set the first character of the appropriate line of /etc/ttys to 1 (or add a new line).
Note that init.c will have to be recompiled if there are to be more than 100 terminals. Also note that if
the special file is inaccessible when init tries to create a process for it, the system will thrash trying and
retrying to open it.

File System Health

Periodically (say every day or so) and always after a crash, you should check all the file systems
for consistency (icheck, dcheck(1)). It is quite important to execute sync (8) before rebooting or taking
the machine down. This is done automatically every 30 seconds by the update program (8) when a
multiple-user system is running, but you should do it anyway to make sure.

Dumping of the file system should be done regularly, since once the system is going it is very
easy to become complacent. Complete and incremental dumps are easily done with dump(1). Dumping
of files by name is best done by tar(1) but the number of files is somewhat limited. Finally if there are
enough drives entire disks can be copied using cp(1), or preferably with dd(1) using the raw special files
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and an appropriate block size.

Converting Sixth Edition Filesystems

The best way to convert file systems from 6th edition (V6) to 7th edition (V7) format is to use
tar(1). However, a special version of tar must be prepared to run on V6. The following steps will do
this:

1. change directories to /usr/src/cmd/tar

2. At the shell prompt respond

make v6tar

This will leave an executable binary named ‘v6tar’.

3. Mount a scratch tape.

4. Use tp(1) to put ‘v6tar’ on the scratch tape.

5. Bring down V7 and bring up V6.

6. Use tp (on V6) to read in ‘v6tar’. Put it in /bin or /usr/bin (or perhaps some other preferred loca-
tion).

7. Use v6tar to make tapes of all that you wish to convert. You may want to read the manual sec-
tion on tar(1) to see whether you want to use blocking or not. Try to avoid using full pathnames
when making the tapes. This will simplify moving the hierarchy to some other place on V7 if
desired. For example

chdir /usr/ken
v6tar c .

is preferable to

v6tar c /usr/ken

8. After all of the desired tapes are made, bring down V6 and reboot V7. Use tar(1) to read in the
tapes just made.

Odds and Ends

The programs dump, icheck, quot, dcheck, ncheck, and df (source in /usr/source/cmd) should be
changed to reflect your default mounted file system devices. Print the first few lines of these programs
and the changes will be obvious. Tar should be changed to reflect your desired default tape drive.

Good Luck

Charles B. Haley
Dennis M. Ritchie
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Introduction

This document discusses how to assemble or compile various parts of the UNIX† system software.
This may be necessary because a command or library is accidentally deleted or otherwise destroyed;
also, it may be desirable to install a modified version of some command or library routine. A few com-
mands depend to some degree on the current configuration of the system; thus in any new system
modifications to some commands are advisable. Most of the likely modifications relate to the standard
disk devices contained in the system. For example, the df(1) (‘disk free’) command has built into it the
names of the standardly present disk storage drives (e.g. ‘/dev/rf0’, ‘/dev/rp0’). Df(1) takes an argument
to indicate which disk to examine, but it is convenient if its default argument is adjusted to reflect the
ordinarily present devices. The companion document ‘Setting up UNIX’ discusses which commands are
likely to require changes.

Where Commands and Subroutines Live

The source files for commands and subroutines reside in several subdirectories of the directory
/usr/src. These subdirectories, and a general description of their contents, are

cmd Source files for commands.

libc/stdio Source files making up the ‘standard i/o package’.

libc/sys Source files for the C system call interfaces.

libc/gen Source files for most of the remaining routines described in section 3 of the manual.

libc/crt Source files making up the C runtime support package, as in call save-return and long
arithmetic.

libc/csu Source for the C startup routines.

games Source for (some of) the games. No great care has been taken to try to make it obvious
how to compile these; treat it as a game.

libF77 Source for the Fortran 77 runtime library, exclusive of IO.

libI77 Source for the Fortran 77 IO runtime routines.

libdbm Source for the ‘data-base manager’ package dbm (3).

libfpsim Source for the floating-point simulator routine.

libm Source for the mathematical library.

libplot Source for plotting routines.

__________________
†UNIX is a Trademark of Bell Laboratories.
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Commands

The regeneration of most commands is straightforward. The ‘cmd’ directory will contain either a
source file for the command or a subdirectory containing the set of files that make up the command. If
it is a single file the command

cd /usr/src/cmd
cmake cmd_name

suffices. (Cmd_name is the name of the command you are playing with.) The result of the cmake com-
mand will be an executable version. If you type

cmake – cp cmd_name

the result will be copied to /bin (or perhaps /etc or other places if appropriate).

If the source files are in a subdirectory there will be a ‘makefile’ (see make(1)) to control the
regeneration. After changing to the proper directory (cd(1)) you type one of the following:

make all The program is compiled and loaded; the executable is left in the current directory.

make cp The program is compiled and loaded, and the executable is installed. Everything is
cleaned up afterwards; for example .o files are deleted.

make cmp The program is compiled and loaded, and the executable is compared against the one in
/bin.

Some of the makefiles have other options. Print (cat(1)) the ones you are interested in to find out.

The Assembler

The assembler consists of two executable files: /bin/as and /lib/as2. The first is the 0-th pass: it
reads the source program, converts it to an intermediate form in a temporary file ‘/tmp/atm0?’, and esti-
mates the final locations of symbols. It also makes two or three other temporary files which contain the
ordinary symbol table, a table of temporary symbols (like 1:) and possibly an overflow intermediate file.
The program /lib/as2 acts as an ordinary multiple pass assembler with input taken from the files pro-
duced by /bin/as.

The source files for /bin/as are named ‘/usr/src/cmd/as/as1?.s’ (there are 9 of them); /lib/as2 is pro-
duced from the source files ‘/usr/src/cmd/as/as2?.s’; they likewise are 9 in number. Considerable care
should be exercised in replacing either component of the assembler. Remember that if the assembler is
lost, the only recourse is to replace it from some backup storage; a broken assembler cannot assemble
itself.

The C Compiler

The C compiler consists of seven routines: ‘/bin/cc’, which calls the phases of the compiler
proper, the compiler control line expander ‘/lib/cpp’, the assembler (‘as’), and the loader (‘ld’). The
phases of the C compiler are ‘/lib/c0’, which is the first phase of the compiler; ‘/lib/c1’, which is the
second phase of the compiler; and ‘/lib/c2’, which is the optional third phase optimizer. The loss of the
C compiler is as serious as that of the assembler.

The source for /bin/cc resides in ‘/usr/src/cmd/cc.c’. Its loss alone (or that of c2) is not fatal. If
needed, prog.c can be compiled by

/lib/cpp prog.c >temp0
/lib/c0 temp0 temp1 temp2
/lib/c1 temp1 temp2 temp3
as – temp3
ld – n /lib/crt0.o a.out – lc

The source for the compiler proper is in the directory /usr/src/cmd/c. The first phase (/lib/c0) is
generated from the files c00.c, ..., c05.c, which must be compiled by the C compiler. There is also c0.h,
a header file included by the C programs of the first phase. To make a new /lib/c0 use
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make c0

Before installing the new c0, it is prudent to save the old one someplace.

The second phase of C (/lib/c1) is generated from the source files c10.c, ..., c13.c, the include-file
c1.h, and a set of object-code tables combined into table.o. To generate a new second phase use

make c1

It is likewise prudent to save c1 before installing a new version. In fact in general it is wise to save the
object files for the C compiler so that if disaster strikes C can be reconstituted without a working ver-
sion of the compiler.

In a similar manner, the third phase of the C compiler (/lib/c2) is made up from the files c20.c and
c21.c together with c2.h. Its loss is not critical since it is completely optional.

The set of tables mentioned above is generated from the file table.s. This ‘.s’ file is not in fact
assembler source; it must be converted by use of the cvopt program, whose source and object are
located in the C directory. Normally this is taken care of by make(1). You might want to look at the
makefile to see what it does.

UNIX

The source and object programs for UNIX are kept in four subdirectories of /usr/sys. In the sub-
directory h there are several files ending in ‘.h’; these are header files which are picked up (via
‘#include ...’) as required by each system module. The subdirectory dev consists mostly of the device
drivers together with a few other things. The subdirectory sys is the rest of the system. There are files
of the form LIBx in the directories sys and dev. These are archives (ar(1)) which contain the object ver-
sions of the routines in the directory.

Subdirectory conf contains the files which control device configuration of the system. L.s
specifies the contents of the interrupt vectors; c.c contains the tables which relate device numbers to
handler routines. A third file, mch.s , contains all the machine-language code in the system. A fourth
file, mch0.s , is generated by mkconf(1) and contains flags indicating what sort of tape drive is available
for taking crash dumps.

There are two ways to recreate the system. Use

cd /usr/sys/conf
make unix

if the libraries /usr/sys/dev/LIB2 and /usr/sys/sys/LIB1, and also c.o and l.o, are correct. Use

cd /usr/sys/conf
make all

to recompile everything and recreate the libraries from scratch. This is needed, for example, when a
header included in several source files is changed. See ‘Setting Up UNIX’ for other information about
configuration and such.

When the make is done, the new system is present in the current directory as ‘unix’. It should be
tested before destroying the currently running ‘/unix’, this is best done by doing something like

mv /unix /ounix
mv unix /unix

If the new system doesn’t work, you can still boot ‘ounix’ and come up (see boot(8)). When you have
satisfied yourself that the new system works, remove /ounix.

To install a new device driver, compile it and put it into its library. The best way to put it into
the library is to use the command

ar uv LIB2 x.o

where x is the routine you just compiled. (All the device drivers distributed with the system are already
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in the library.)

Next, the device’s interrupt vector must be entered in l.s. This is probably already done by the
routine mkconf(1), but if the device is esoteric or nonstandard you will have to massage l.s by hand.
This involves placing a pointer to a callout routine and the device’s priority level in the vector. Use
some other device (like the console) as a guide. Notice that the entries in l.s must be in order as the
assembler does not permit moving the location counter ‘.’ backwards. The assembler also does not per-
mit assignation of an absolute number to ‘.’, which is the reason for the ‘. = ZERO+100’ subterfuge. If
a constant smaller than 16(10) is added to the priority level, this number will be available as the first
argument of the interrupt routine. This stratagem is used when several similar devices share the same
interrupt routine (as in dl11’s).

If you have to massage l.s, be sure to add the code to actually transfer to the interrupt routine.
Again use the console as a guide. The apparent strangeness of this code is due to running the kernel in
separate I&D space. The call routine saves registers as required and prepares a C-style call on the
actual interrupt routine named after the ‘jmp’ instruction. When the routine returns, call restores the
registers and performs an rti instruction. As an aside, note that external names in C programs have an
underscore (‘_’) prepended to them.

The second step which must be performed to add a device unknown to mkconf is to add it to the
configuration table /usr/sys/conf/c.c. This file contains two subtables, one for block-type devices, and
one for character-type devices. Block devices include disks, DECtape, and magtape. All other devices
are character devices. A line in each of these tables gives all the information the system needs to know
about the device handler; the ordinal position of the line in the table implies its major device number,
starting at 0.

There are four subentries per line in the block device table, which give its open routine, close rou-
tine, strategy routine, and device table. The open and close routines may be nonexistent, in which case
the name ‘nulldev’ is given; this routine merely returns. The strategy routine is called to do any I/O,
and the device table contains status information for the device.

For character devices, each line in the table specifies a routine for open, close, read, and write, and
one which sets and returns device-specific status (used, for example, for stty and gtty on typewriters). If
there is no open or close routine, ‘nulldev’ may be given; if there is no read, write, or status routine,
‘nodev’ may be given. Nodev sets an error flag and returns.

The final step which must be taken to install a device is to make a special file for it. This is done
by mknod(1), to which you must specify the device class (block or character), major device number
(relative line in the configuration table) and minor device number (which is made available to the driver
at appropriate times).

The documents ‘Setting up Unix’ and ‘The Unix IO system’ may aid in comprehending these
steps.

The Library libc.a

The library /lib/libc.a is where most of the subroutines described in sections 2 and 3 of the manual
are kept. This library can be remade using the following commands:

cd /usr/src/libc
sh compall
sh mklib
mv libc.a /lib/libc.a

If single routines need to be recompiled and replaced, use

cc – c – O x.c
ar vr /lib/libc.a x.o
rm x.o

The above can also be used to put new items into the library. See ar(1), lorder(1), and tsort(1).
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The routines in /usr/src/cmd/libc/csu (C start up) are not in libc.a. These are separately assembled
and put into /lib. The commands to do this are

cd /usr/src/libc/csu
as – x.s
mv a.out /lib/x

where x is the routine you want.

Other Libraries

Likewise, the directories containing the source for the other libraries have files compall (that
recompiles everything) and mklib (that recreates the library).

System Tuning

There are several tunable parameters in the system. These set the size of various tables and limits.
They are found in the file /usr/sys/h/param.h as manifests (‘#define’s). Their values are rather generous
in the system as distributed. Our typical maximum number of users is about 20, but there are many
daemon processes.

When any parameter is changed, it is prudent to recompile the entire system, as discussed above.
A brief discussion of each follows:

NBUF This sets the size of the disk buffer cache. Each buffer is 512 bytes. This number should
be around 25 plus NMOUNT, or as big as can be if the above number of buffers cause
the system to not fit in memory.

NFILE This sets the maximum number of open files. An entry is made in this table every time a
file is ‘opened’ (see open(2), creat(2)). Processes share these table entries across forks
(fork(2)). This number should be about the same size as NINODE below. (It can be a bit
smaller.)

NMOUNT This indicates the maximum number of mounted file systems. Make it big enough that
you don’t run out at inconvenient times.

MAXMEM This sets an administrative limit on the amount of memory a process may have. It is set
automatically if the amount of physical memory is small, and thus should not need to be
changed.

MAXUPRC This sets the maximum number of processes that any one user can be running at any one
time. This should be set just large enough that people can get work done but not so large
that a user can hog all the processes available (usually by accident!).

NPROC This sets the maximum number of processes that can be active. It depends on the
demand pattern of the typical user; we seem to need about 8 times the number of termi-
nals.

NINODE This sets the size of the inode table. There is one entry in the inode table for every open
device, current working directory, sticky text segment, open file, and mounted device.
Note that if two users have a file open there is still only one entry in the inode table. A
reasonable rule of thumb for the size of this table is

NPROC + NMOUNT + (number of terminals)

SSIZE The initial size of a process stack. This may be made bigger if commonly run processes
have large data areas on the stack.

SINCR The size of the stack growth increment.

NOFILE This sets the maximum number of files that any one process can have open. 20 is plenty.
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CANBSIZ This is the size of the typewriter canonicalization buffer. It is in this buffer that erase and
kill processing is done. Thus this is the maximum size of an input typewriter line. 256 is
usually plenty.

CMAPSIZ The number of fragments that memory can be broken into. This should be big enough
that it never runs out. The theoretical maximum is twice the number of processes, but
this is a vast overestimate in practice. 50 seems enough.

SMAPSIZ Same as CMAPSIZ except for secondary (swap) memory.

NCALL This is the size of the callout table. Callouts are entered in this table when some sort of
internal system timing must be done, as in carriage return delays for terminals. The
number must be big enough to handle all such requests.

NTEXT The maximum number of simultaneously executing pure programs. This should be big
enough so as to not run out of space under heavy load. A reasonable rule of thumb is
about

(number of terminals) + (number of sticky programs)

NCLIST The number of clist segments. A clist segment is 6 characters. NCLIST should be big
enough so that the list doesn’t become exhausted when the machine is busy. The charac-
ters that have arrived from a terminal and are waiting to be given to a process live here.
Thus enough space should be left so that every terminal can have at least one average line
pending (about 30 or 40 characters).

TIMEZONE The number of minutes westward from Greenwich. See ‘Setting Up UNIX’.

DSTFLAG See ‘Setting Up UNIX’ section on time conversion.

MSGBUFS The maximum number of characters of system error messages saved. This is used as a
circular buffer.

NCARGS The maximum number of characters in an exec(2) arglist. This number controls how
many arguments can be passed into a process. 5120 is practically infinite.

HZ Set to the frequency of the system clock (e.g., 50 for a 50 Hz. clock).
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ABSTRACT

This paper describes in high-level terms the implementation of the resident
UNIX† kernel. This discussion is broken into three parts. The first part describes how
the UNIX system views processes, users, and programs. The second part describes the
I/O system. The last part describes the UNIX file system.

1. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and about 1,000 lines of assembly code.
The assembly code can be further broken down into 200 lines included for the sake of efficiency (they
could have been written in C) and 800 lines to perform hardware functions not possible in C.

This code represents 5 to 10 percent of what has been lumped into the broad expression ‘‘the UNIX

operating system.’’ The kernel is the only UNIX code that cannot be substituted by a user to his own lik-
ing. For this reason, the kernel should make as few real decisions as possible. This does not mean to
allow the user a million options to do the same thing. Rather, it means to allow only one way to do one
thing, but have that way be the least-common divisor of all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a great
power. It is a soap-box platform on ‘‘the way things should be done.’’ Even so, if ‘‘the way’’ is too
radical, no one will follow it. Every important decision was weighed carefully. Throughout, simplicity
has been substituted for efficiency. Complex algorithms are used only if their complexity can be local-
ized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a user process. When a
system function is required, the user process calls the system as a subroutine. At some point in this call,
there is a distinct switch of environments. After this, the process is said to be a system process. In the
normal definition of processes, the user and system processes are different phases of the same process
(they never execute simultaneously). For protection, each system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all processes
executing the same code. There is no functional benefit from shared-text segments. An efficiency
benefit comes from the fact that there is no need to swap read-only segments out because the original
copy on secondary memory is still current. This is a great benefit to interactive programs that tend to be
swapped while waiting for terminal input. Furthermore, if two processes are executing simultaneously
from the same copy of a read-only segment, only one copy needs to reside in primary memory. This is
a secondary effect, because simultaneous execution of a program is not common. It is ironic that this
effect, which reduces the use of primary memory, only comes into play when there is an overabundance
of primary memory, that is, when there is enough memory to keep waiting processes loaded.

__________________
†UNIX is a Trademark of Bell Laboratories.
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All current read-only text segments in the system are maintained from the text table. A text table
entry holds the location of the text segment on secondary memory. If the segment is loaded, that table
also holds the primary memory location and the count of the number of processes sharing this entry.
When this count is reduced to zero, the entry is freed along with any primary and secondary memory
holding the segment. When a process first executes a shared-text segment, a text table entry is allocated
and the segment is loaded onto secondary memory. If a second process executes a text segment that is
already allocated, the entry reference count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As far as
possible, the system does not use the user’s data segment to hold system data. In particular, there are no
I/O buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the system
as a result of memory faults, is used for a stack. The second boundary is only grown (or shrunk) by
explicit requests. The contents of newly allocated primary memory is initialized to zero.

Also associated and swapped with a process is a small fixed-size system data segment. This seg-
ment contains all the data about the process that the system needs only when the process is active.
Examples of the kind of data contained in the system data segment are: saved central processor regis-
ters, open file descriptors, accounting information, scratch data area, and the stack for the system phase
of the process. The system data segment is not addressable from the user process and is therefore pro-
tected.

Last, there is a process table with one entry per process. This entry contains all the data needed
by the system when the process is not active. Examples are the process’s name, the location of the
other segments, and scheduling information. The process table entry is allocated when the process is
created, and freed when the process terminates. This process entry is always directly addressable by the
kernel.

Figure 1 shows the relationships between the various process control data. In a sense, the process
table is the definition of all processes, because all the data associated with a process may be accessed
starting from the process table entry.
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Fig. 1—Process control data structure.

2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a copy
of the original process (parent). There is no detectable sharing of primary memory between the two
processes. (Of course, if the parent process was executing from a read-only text segment, the child will
share the text segment.) Copies of all writable data segments are made for the child process. Files that
were open before the fork are truly shared after the fork. The processes are informed as to their part in
the relationship to allow them to select their own (usually non-identical) destiny. The parent may wait
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for the termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments of the
process for new text and data segments specified in the file. The old segments are lost. Doing an exec
does not change processes; the process that did the exec persists, but after the exec it is executing a dif-
ferent program. Files that were open before the exec remain open after the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another program, say
the second pass, then it simply execs the second program. This is analogous to a ‘‘goto.’’ If a program
wishes to regain control after execing a second program, it should fork a child process, have the child
exec the second program, and have the parent wait for the child. This is analogous to a ‘‘call.’’ Break-
ing up the call into a binding followed by a transfer is similar to the subroutine linkage in SL-5.1

2.2. Swapping

The major data associated with a process (the user data segment, the system data segment, and the
text segment) are swapped to and from secondary memory, as needed. The user data segment and the
system data segment are kept in contiguous primary memory to reduce swapping latency. (When low-
latency devices, such as bubbles, CCDs, or scatter/gather devices, are used, this decision will have to be
reconsidered.) Allocation of both primary and secondary memory is performed by the same simple
first-fit algorithm. When a process grows, a new piece of primary memory is allocated. The contents of
the old memory is copied to the new memory. The old memory is freed and the tables are updated. If
there is not enough primary memory, secondary memory is allocated instead. The process is swapped
out onto the secondary memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps the other processes in and
out of primary memory. It examines the process table looking for a process that is swapped out and is
ready to run. It allocates primary memory for that process and reads its segments into primary memory,
where that process competes for the central processor with other loaded processes. If no primary
memory is available, the swapping process makes memory available by examining the process table for
processes that can be swapped out. It selects a process to swap out, writes it to secondary memory,
frees the primary memory, and then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly many
processes that are swapped out is to be swapped in? This is decided by secondary storage residence
time. The one with the longest time out is swapped in first. There is a slight penalty for larger
processes. Which of the possibly many processes that are loaded is to be swapped out? Processes that
are waiting for slow events (i.e., not currently running or waiting for disk I/O) are picked first, by age in
primary memory, again with size penalties. The other processes are examined by the same age algo-
rithm, but are not taken out unless they are at least of some age. This adds hysteresis to the swapping
and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary memory,
these algorithms cause total swapping. This is not bad in itself, because the swapping does not impact
the execution of the resident processes. However, if the swapping device must also be used for file
storage, the swapping traffic severely impacts the file system traffic. It is exactly these small systems
that tend to double usage of limited disk resources.

2.3. Synchronization and scheduling

Process synchronization is accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables associated
with those events. For example, a process that is waiting for any of its children to terminate will wait
for an event that is the address of its own process table entry. When a process terminates, it signals the
event represented by its parent’s process table entry. Signaling an event on which no process is waiting
has no effect. Similarly, signaling an event on which many processes are waiting will wake all of them
up. This differs considerably from Dijkstra’s P and V synchronization operations,2 in that no memory is
associated with events. Thus there need be no allocation of events prior to their use. Events exist sim-
ply by being used.
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On the negative side, because there is no memory associated with events, no notion of ‘‘how
much’’ can be signaled via the event mechanism. For example, processes that want memory might wait
on an event associated with memory allocation. When any amount of memory becomes available, the
event would be signaled. All the competing processes would then wake up to fight over the new
memory. (In reality, the swapping process is the only process that waits for primary memory to become
available.)

If an event occurs between the time a process decides to wait for that event and the time that pro-
cess enters the wait state, then the process will wait on an event that has already happened (and may
never happen again). This race condition happens because there is no memory associated with the event
to indicate that the event has occurred; the only action of an event is to change a set of processes from
wait state to run state. This problem is relieved largely by the fact that process switching can only
occur in the kernel by explicit calls to the event-wait mechanism. If the event in question is signaled by
another process, then there is no problem. But if the event is signaled by a hardware interrupt, then spe-
cial care must be taken. These synchronization races pose the biggest problem when UNIX is adapted to
multiple-processor configurations.3

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of the
processes has called event-wait. The remaining process is the one currently executing. When it calls
event-wait, a process whose event has been signaled is selected and that process returns from its call to
event-wait.

Which of the runable processes is to run next? Associated with each process is a priority. The
priority of a system process is assigned by the code issuing the wait on an event. This is roughly
equivalent to the response that one would expect on such an event. Disk events have high priority, tele-
type events are low, and time-of-day events are very low. (From observation, the difference in system
process priorities has little or no performance impact.) All user-process priorities are lower than the
lowest system priority. User-process priorities are assigned by an algorithm based on the recent ratio of
the amount of compute time to real time consumed by the process. A process that has used a lot of
compute time in the last real-time unit is assigned a low user priority. Because interactive processes are
characterized by low ratios of compute to real time, interactive response is maintained without any spe-
cial arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking all sys-
tem processes first and user processes second. The compute-to-real-time ratio is updated every second.
Thus, all other things being equal, looping user processes will be scheduled round-robin with a 1-second
quantum. A high-priority process waking up will preempt a running, low-priority process. The schedul-
ing algorithm has a very desirable negative feedback character. If a process uses its high priority to hog
the computer, its priority will drop. At the same time, if a low-priority process is ignored for a long
time, its priority will rise.

3. I/O SYSTEM

The I/O system is broken into two completely separate systems: the block I/O system and the
character I/O system. In retrospect, the names should have been ‘‘structured I/O’’ and ‘‘unstructured
I/O,’’ respectively; while the term ‘‘block I/O’’ has some meaning, ‘‘character I/O’’ is a complete
misnomer.

Devices are characterized by a major device number, a minor device number, and a class (block or
character). For each class, there is an array of entry points into the device drivers. The major device
number is used to index the array when calling the code for a particular device driver. The minor
device number is passed to the device driver as an argument. The minor number has no significance
other than that attributed to it by the driver. Usually, the driver uses the minor number to access one of
several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between the sys-
tem code and the device drivers is very important. Early versions of the system had a much less formal
connection with the drivers, so that it was extremely hard to handcraft differently configured systems.
Now it is possible to create new device drivers in an average of a few hours. The configuration table in
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most cases is created automatically by a program that reads the system’s parts list.

3.1. Block I/O system

The model block I/O device consists of randomly addressed, secondary memory blocks of 512
bytes each. The blocks are uniformly addressed 0, 1, . . . up to the size of the device. The block device
driver has the job of emulating this model on a physical device.

The block I/O devices are accessed through a layer of buffering software. The system maintains a
list of buffers (typically between 10 and 70) each assigned a device name and a device address. This
buffer pool constitutes a data cache for the block devices. On a read request, the cache is searched for
the desired block. If the block is found, the data are made available to the requester without any physi-
cal I/O. If the block is not in the cache, the least recently used block in the cache is renamed, the
correct device driver is called to fill up the renamed buffer, and then the data are made available. Write
requests are handled in an analogous manner. The correct buffer is found and relabeled if necessary.
The write is performed simply by marking the buffer as ‘‘dirty.’’ The physical I/O is then deferred until
the buffer is renamed.

The benefits in reduction of physical I/O of this scheme are substantial, especially considering the
file system implementation. There are, however, some drawbacks. The asynchronous nature of the
algorithm makes error reporting and meaningful user error handling almost impossible. The cavalier
approach to I/O error handling in the UNIX system is partly due to the asynchronous nature of the block
I/O system. A second problem is in the delayed writes. If the system stops unexpectedly, it is almost
certain that there is a lot of logically complete, but physically incomplete, I/O in the buffers. There is a
system primitive to flush all outstanding I/O activity from the buffers. Periodic use of this primitive
helps, but does not solve, the problem. Finally, the associativity in the buffers can alter the physical I/O
sequence from that of the logical I/O sequence. This means that there are times when data structures on
disk are inconsistent, even though the software is careful to perform I/O in the correct order. On non-
random devices, notably magnetic tape, the inversions of writes can be disastrous. The problem with
magnetic tapes is ‘‘cured’’ by allowing only one outstanding write request per drive.

3.2. Character I/O system

The character I/O system consists of all devices that do not fall into the block I/O model. This
includes the ‘‘classical’’ character devices such as communications lines, paper tape, and line printers.
It also includes magnetic tape and disks when they are not used in a stereotyped way, for example, 80-
byte physical records on tape and track-at-a-time disk copies. In short, the character I/O interface means
‘‘everything other than block.’’ I/O requests from the user are sent to the device driver essentially unal-
tered. The implementation of these requests is, of course, up to the device driver. There are guidelines
and conventions to help the implementation of certain types of device drivers.

3.2.1. Disk drivers

Disk drivers are implemented with a queue of transaction records. Each record holds a read/write
flag, a primary memory address, a secondary memory address, and a transfer byte count. Swapping is
accomplished by passing such a record to the swapping device driver. The block I/O interface is imple-
mented by passing such records with requests to fill and empty system buffers. The character I/O inter-
face to the disk drivers create a transaction record that points directly into the user area. The routine
that creates this record also insures that the user is not swapped during this I/O transaction. Thus by
implementing the general disk driver, it is possible to use the disk as a block device, a character device,
and a swap device. The only really disk-specific code in normal disk drivers is the pre-sort of transac-
tions to minimize latency for a particular device, and the actual issuing of the I/O request.

3.2.2. Character lists

Real character-oriented devices may be implemented using the common code to handle character
lists. A character list is a queue of characters. One routine puts a character on a queue. Another gets a
character from a queue. It is also possible to ask how many characters are currently on a queue.
Storage for all queues in the system comes from a single common pool. Putting a character on a queue
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will allocate space from the common pool and link the character onto the data structure defining the
queue. Getting a character from a queue returns the corresponding space to the pool.

A typical character-output device (paper tape punch, for example) is implemented by passing char-
acters from the user onto a character queue until some maximum number of characters is on the queue.
The I/O is prodded to start as soon as there is anything on the queue and, once started, it is sustained by
hardware completion interrupts. Each time there is a completion interrupt, the driver gets the next char-
acter from the queue and sends it to the hardware. The number of characters on the queue is checked
and, as the count falls through some intermediate level, an event (the queue address) is signaled. The
process that is passing characters from the user to the queue can be waiting on the event, and refill the
queue to its maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very similar
manner.

Another class of character devices is the terminals. A terminal is represented by three character
queues. There are two input queues (raw and canonical) and an output queue. Characters going to the
output of a terminal are handled by common code exactly as described above. The main difference is
that there is also code to interpret the output stream as ASCII characters and to perform some transla-
tions, e.g., escapes for deficient terminals. Another common aspect of terminals is code to insert real-
time delay after certain control characters.

Input on terminals is a little different. Characters are collected from the terminal and placed on a
raw input queue. Some device-dependent code conversion and escape interpretation is handled here.
When a line is complete in the raw queue, an event is signaled. The code catching this signal then
copies a line from the raw queue to a canonical queue performing the character erase and line kill edit-
ing. User read requests on terminals can be directed at either the raw or canonical queues.

3.2.3. Other character devices

Finally, there are devices that fit no general category. These devices are set up as character I/O
drivers. An example is a driver that reads and writes unmapped primary memory as an I/O device.
Some devices are too fast to be treated a character at time, but do not fit the disk I/O mold. Examples
are fast communications lines and fast line printers. These devices either have their own buffers or
‘‘borrow’’ block I/O buffers for a while and then give them back.

4. THE FILE SYSTEM

In the UNIX system, a file is a (one-dimensional) array of bytes. No other structure of files is
implied by the system. Files are attached anywhere (and possibly multiply) onto a hierarchy of direc-
tories. Directories are simply files that users cannot write. For a further discussion of the external view
of files and directories, see Ref. 4.

The UNIX file system is a disk data structure accessed completely through the block I/O system.
As stated before, the canonical view of a ‘‘disk’’ is a randomly addressable array of 512-byte blocks. A
file system breaks the disk into four self-identifying regions. The first block (address 0) is unused by
the file system. It is left aside for booting procedures. The second block (address 1) contains the so-
called ‘‘super-block.’’ This block, among other things, contains the size of the disk and the boundaries
of the other regions. Next comes the i-list, a list of file definitions. Each file definition is a 64-byte
structure, called an i-node. The offset of a particular i-node within the i-list is called its i-number. The
combination of device name (major and minor numbers) and i-number serves to uniquely name a partic-
ular file. After the i-list, and to the end of the disk, come free storage blocks that are available for the
contents of files.

The free space on a disk is maintained by a linked list of available disk blocks. Every block in
this chain contains a disk address of the next block in the chain. The remaining space contains the
address of up to 50 disk blocks that are also free. Thus with one I/O operation, the system obtains 50
free blocks and a pointer where to find more. The disk allocation algorithms are very straightforward.
Since all allocation is in fixed-size blocks and there is strict accounting of space, there is no need to
compact or garbage collect. However, as disk space becomes dispersed, latency gradually increases.
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Some installations choose to occasionally compact disk space to reduce latency.

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the first 10
blocks of a file. If a file is larger than 10 blocks (5,120 bytes), then the eleventh address points at a
block that contains the addresses of the next 128 blocks of the file. If the file is still larger than this
(70,656 bytes), then the twelfth block points at up to 128 blocks, each pointing to 128 blocks of the file.
Files yet larger (8,459,264 bytes) use the thirteenth address for a ‘‘triple indirect’’ address. The algo-
rithm ends here with the maximum file size of 1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new type
of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-byte entries con-
sisting of a 14-byte name and an i-number. The root of the hierarchy is at a known i-number (viz., 2).
The file system structure allows an arbitrary, directed graph of directories with regular files linked in at
arbitrary places in this graph. In fact, very early UNIX systems used such a structure. Administration of
such a structure became so chaotic that later systems were restricted to a directory tree. Even now, with
regular files linked multiply into arbitrary places in the tree, accounting for space has become a problem.
It may become necessary to restrict the entire structure to a tree, and allow a new form of linking that is
subservient to the tree structure.

The file system allows easy creation, easy removal, easy random accessing, and very easy space
allocation. With most physical addresses confined to a small contiguous section of disk, it is also easy
to dump, restore, and check the consistency of the file system. Large files suffer from indirect address-
ing, but the cache prevents most of the implied physical I/O without adding much execution. The space
overhead properties of this scheme are quite good. For example, on one particular file system, there are
25,000 files containing 130M bytes of data-file content. The overhead (i-node, indirect blocks, and last
block breakage) is about 11.5M bytes. The directory structure to support these files has about 1,500
directories containing 0.6M bytes of directory content and about 0.5M bytes of overhead in accessing
the directories. Added up any way, this comes out to less than a 10 percent overhead for actual stored
data. Most systems have this much overhead in padded trailing blanks alone.

4.1. File system implementation

Because the i-node defines a file, the implementation of the file system centers around access to
the i-node. The system maintains a table of all active i-nodes. As a new file is accessed, the system
locates the corresponding i-node, allocates an i-node table entry, and reads the i-node into primary
memory. As in the buffer cache, the table entry is considered to be the current version of the i-node.
Modifications to the i-node are made to the table entry. When the last access to the i-node goes away,
the table entry is copied back to the secondary store i-list and the table entry is freed.

All I/O operations on files are carried out with the aid of the corresponding i-node table entry.
The accessing of a file is a straightforward implementation of the algorithms mentioned previously. The
user is not aware of i-nodes and i-numbers. References to the file system are made in terms of path
names of the directory tree. Converting a path name into an i-node table entry is also straightforward.
Starting at some known i-node (the root or the current directory of some process), the next component
of the path name is searched by reading the directory. This gives an i-number and an implied device
(that of the directory). Thus the next i-node table entry can be accessed. If that was the last component
of the path name, then this i-node is the result. If not, this i-node is the directory needed to look up the
next component of the path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of these are
open, create, read, write, seek, and close. The data structures maintained are shown in Fig. 2.
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Fig. 2—File system data structure.
In the system data segment associated with a user, there is room for some (usually between 10 and 50)
open files. This open file table consists of pointers that can be used to access corresponding i-node table
entries. Associated with each of these open files is a current I/O pointer. This is a byte offset of the
next read/write operation on the file. The system treats each read/write request as random with an
implied seek to the I/O pointer. The user usually thinks of the file as sequential with the I/O pointer
automatically counting the number of bytes that have been read/written from the file. The user may, of
course, perform random I/O by setting the I/O pointer before reads/writes.

With file sharing, it is necessary to allow related processes to share a common I/O pointer and yet
have separate I/O pointers for independent processes that access the same file. With these two condi-
tions, the I/O pointer cannot reside in the i-node table nor can it reside in the list of open files for the
process. A new table (the open file table) was invented for the sole purpose of holding the I/O pointer.
Processes that share the same open file (the result of forks) share a common open file table entry. A
separate open of the same file will only share the i-node table entry, but will have distinct open file table
entries.

The main file system primitives are implemented as follows. open converts a file system path
name into an i-node table entry. A pointer to the i-node table entry is placed in a newly created open
file table entry. A pointer to the file table entry is placed in the system data segment for the process.
create first creates a new i-node entry, writes the i-number into a directory, and then builds the same
structure as for an open. read and write just access the i-node entry as described above. seek simply
manipulates the I/O pointer. No physical seeking is done. close just frees the structures built by open
and create. Reference counts are kept on the open file table entries and the i-node table entries to free
these structures after the last reference goes away. unlink simply decrements the count of the number
of directories pointing at the given i-node. When the last reference to an i-node table entry goes away,
if the i-node has no directories pointing to it, then the file is removed and the i-node is freed. This
delayed removal of files prevents problems arising from removing active files. A file may be removed
while still open. The resulting unnamed file vanishes when the file is closed. This is a method of
obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of implied
seeks before each read or write in order to implement first-in-first-out. There are also checks and syn-
chronization to prevent the writer from grossly outproducing the reader and to prevent the reader from
overtaking the writer.
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4.2. Mounted file systems

The file system of a UNIX system starts with some designated block device formatted as described
above to contain a hierarchy. The root of this structure is the root of the UNIX file system. A second
formatted block device may be mounted at any leaf of the current hierarchy. This logically extends the
current hierarchy. The implementation of mounting is trivial. A mount table is maintained containing
pairs of designated leaf i-nodes and block devices. When converting a path name into an i-node, a
check is made to see if the new i-node is a designated leaf. If it is, the i-node of the root of the block
device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file lives.
Thus a file system consisting of many mounted devices does not have a common pool of free secondary
storage space. This separation of space on different devices is necessary to allow easy unmounting of a
device.

4.3. Other system functions

There are some other things that the system does for the user– a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well developed
because our use of the system in computing science research does not need them. There are some
features that are missed in some applications, for example, better inter-process communication.

The UNIX kernel is an I/O multiplexer more than a complete operating system. This is as it should
be. Because of this outlook, many features are found in most other operating systems that are missing
from the UNIX kernel. For example, the UNIX kernel does not support file access methods, file disposi-
tion, file formats, file maximum size, spooling, command language, logical records, physical records,
assignment of logical file names, logical file names, more than one character set, an operator’s console,
an operator, log-in, or log-out. Many of these things are symptoms rather than features. Many of these
things are implemented in user software using the kernel as a tool. A good example of this is the com-
mand language.5 Each user may have his own command language. Maintenance of such code is as easy
as maintaining user code. The idea of implementing ‘‘system’’ code with general user primitives comes
directly from MULTICS.6
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The UNIX I/O System
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This paper gives an overview of the workings of the UNIX† I/O system. It was written with an
eye toward providing guidance to writers of device driver routines, and is oriented more toward describ-
ing the environment and nature of device drivers than the implementation of that part of the file system
which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file system as
discussed in the paper ‘‘The UNIX Time-sharing System.’’ A more detailed discussion appears in
‘‘UNIX Implementation;’’ the current document restates parts of that one, but is still more detailed. It is
most useful in conjunction with a copy of the system code, since it is basically an exegesis of that code.

Device Classes

There are two classes of device: block and character. The block interface is suitable for devices
like disks, tapes, and DECtape which work, or can work, with addressible 512-byte blocks. Ordinary
magnetic tape just barely fits in this category, since by use of forward and backward spacing any block
can be read, even though blocks can be written only at the end of the tape. Block devices can at least
potentially contain a mounted file system. The interface to block devices is very highly structured; the
drivers for these devices share a great many routines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work must be
done by the driver itself.

Devices of both types are named by a major and a minor device number. These numbers are
generally stored as an integer with the minor device number in the low-order 8 bits and the major device
number in the next-higher 8 bits; macros major and minor are available to access these numbers. The
major device number selects which driver will deal with the device; the minor device number is not
used by the rest of the system but is passed to the driver at appropriate times. Typically the minor
number selects a subdevice attached to a given controller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in separate tables;
they both start at 0 and therefore overlap.

Overview of I/O

The purpose of the open and creat system calls is to set up entries in three separate system tables.
The first of these is the u_ofile table, which is stored in the system’s per-process data area u. This table
is indexed by the file descriptor returned by the open or creat, and is accessed during a read, write, or
other operation on the open file. An entry contains only a pointer to the corresponding entry of the file
table, which is a per-system data base. There is one entry in the file table for each instance of open or
creat. This table is per-system because the same instance of an open file must be shared among the
several processes which can result from forks after the file is opened. A file table entry contains flags
which indicate whether the file was open for reading or writing or is a pipe, and a count which is used
to decide when all processes using the entry have terminated or closed the file (so the entry can be aban-
doned). There is also a 32-bit file offset which is used to indicate where in the file the next read or
__________________
†UNIX is a Trademark of Bell Laboratories.
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write will take place. Finally, there is a pointer to the entry for the file in the inode table, which con-
tains a copy of the file’s i-node.

Certain open files can be designated ‘‘multiplexed’’ files, and several other flags apply to such
channels. In such a case, instead of an offset, there is a pointer to an associated multiplex channel table.
Multiplex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creat; if the same file is
opened several times, it will have several entries in this table. However, there is at most one entry in
the inode table for a given file. Also, a file may enter the inode table not only because it is open, but
also because it is the current directory of some process or because it is a special file containing a
currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on the disk;
the modified and accessed times are not stored, and the entry is augmented by a flag word containing
information about the entry, a count used to determine when it may be allowed to disappear, and the
device and i-number whence the entry came. Also, the several block numbers that give addressing
information for the file are expanded from the 3-byte, compressed format used on the disk to full long
quantities.

During the processing of an open or creat call for a special file, the system always calls the
device’s open routine to allow for any special processing required (rewinding a tape, turning on the
data-terminal-ready lead of a modem, etc.). However, the close routine is called only when the last pro-
cess closes a file, that is, when the i-node table entry is being deallocated. Thus it is not feasible for a
device to maintain, or depend on, a count of its users, although it is quite possible to implement an
exclusive-use device which cannot be reopened until it has been closed.

When a read or write takes place, the user’s arguments and the file table entry are used to set up
the variables u.u_base, u.u_count, and u.u_offset which respectively contain the (user) address of the
I/O target area, the byte-count for the transfer, and the current location in the file. If the file referred to
is a character-type special file, the appropriate read or write routine is called; it is responsible for
transferring data and updating the count and current location appropriately as discussed below. Other-
wise, the current location is used to calculate a logical block number in the file. If the file is an ordinary
file the logical block number must be mapped (possibly using indirect blocks) to a physical block
number; a block-type special file need not be mapped. This mapping is performed by the bmap routine.
In any event, the resulting physical block number is used, as discussed below, to read or write the
appropriate device.

Character Device Drivers

The cdevsw table specifies the interface routines present for character devices. Each device pro-
vides five routines: open, close, read, write, and special-function (to implement the ioctl system call).
Any of these may be missing. If a call on the routine should be ignored, (e.g. open on non-exclusive
devices that require no setup) the cdevsw entry can be given as nulldev; if it should be considered an
error, (e.g. write on read-only devices) nodev is used. For terminals, the cdevsw structure also con-
tains a pointer to the tty structure associated with the terminal.

The open routine is called each time the file is opened with the full device number as argument.
The second argument is a flag which is non-zero only if the device is to be written upon.

The close routine is called only when the file is closed for the last time, that is when the very last
process in which the file is open closes it. This means it is not possible for the driver to maintain its
own count of its users. The first argument is the device number; the second is a flag which is non-zero
if the file was open for writing in the process which performs the final close.

When write is called, it is supplied the device as argument. The per-user variable u.u_count has
been set to the number of characters indicated by the user; for character devices, this number may be 0
initially. u.u_base is the address supplied by the user from which to start taking characters. The system
may call the routine internally, so the flag u.u_segflg is supplied that indicates, if on, that u.u_base
refers to the system address space instead of the user’s.
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The write routine should copy up to u.u_count characters from the user’s buffer to the device,
decrementing u.u_count for each character passed. For most drivers, which work one character at a
time, the routine cpass( ) is used to pick up characters from the user’s buffer. Successive calls on it
return the characters to be written until u.u_count goes to 0 or an error occurs, when it returns −1.
Cpass takes care of interrogating u.u_segflg and updating u.u_count.

Write routines which want to transfer a probably large number of characters into an internal buffer
may also use the routine iomove(buffer, offset, count, flag) which is faster when many characters must
be moved. Iomove transfers up to count characters into the buffer starting offset bytes from the start of
the buffer; flag should be B_WRITE (which is 0) in the write case. Caution: the caller is responsible
for making sure the count is not too large and is non-zero. As an efficiency note, iomove is much
slower if any of buffer+offset, count or u.u_base is odd.

The device’s read routine is called under conditions similar to write, except that u.u_count is
guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available; it takes
care of housekeeping like cpass and returns −1 as the last character specified by u.u_count is returned
to the user; before that time, 0 is returned. Iomove is also usable as with write; the flag should be
B_READ but the same cautions apply.

The ‘‘special-functions’’ routine is invoked by the stty and gtty system calls as follows: (*p)
(dev, v) where p is a pointer to the device’s routine, dev is the device number, and v is a vector. In the
gtty case, the device is supposed to place up to 3 words of status information into the vector; this will
be returned to the caller. In the stty case, v is 0; the device should take up to 3 words of control infor-
mation from the array u.u_arg[0...2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt occurs, it
is turned into a C-compatible call on the devices’s interrupt routine. The interrupt-catching mechanism
makes the low-order four bits of the ‘‘new PS’’ word in the trap vector for the interrupt available to the
interrupt handler. This is conventionally used by drivers which deal with multiple similar devices to
encode the minor device number. After the interrupt has been processed, a return from the interrupt
handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most of these
handlers, for example, need a place to buffer characters in the internal interface between their ‘‘top half’’
(read/write) and ‘‘bottom half’’ (interrupt) routines. For relatively low data-rate devices, the best
mechanism is the character queue maintained by the routines getc and putc. A queue header has the
structure

struct {
int c_cc; /* character count */
char *c_cf; /* first character */
char *c_cl; /* last character */

} queue;

A character is placed on the end of a queue by putc(c, &queue) where c is the character and queue is
the queue header. The routine returns −1 if there is no space to put the character, 0 otherwise. The first
character on the queue may be retrieved by getc(&queue) which returns either the (non-negative) charac-
ter or −1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system and in the
standard system there are only some 600 character slots available. Thus device handlers, especially
write routines, must take care to avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The call
sleep(event, priority) causes the process to wait (allowing other processes to run) until the event occurs;
at that time, the process is marked ready-to-run and the call will return when there is no process with
higher priority.

The call wakeup(event) indicates that the event has happened, that is, causes processes sleeping on
the event to be awakened. The event is an arbitrary quantity agreed upon by the sleeper and the waker-
up. By convention, it is the address of some data area used by the driver, which guarantees that events
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are unique.

Processes sleeping on an event should not assume that the event has really happened; they should
check that the conditions which caused them to sleep no longer hold.

Priorities can range from 0 to 127; a higher numerical value indicates a less-favored scheduling
situation. A distinction is made between processes sleeping at priority less than the parameter PZERO
and those at numerically larger priorities. The former cannot be interrupted by signals, although it is
conceivable that it may be swapped out. Thus it is a bad idea to sleep with priority less than PZERO on
an event which might never occur. On the other hand, calls to sleep with larger priority may never
return if the process is terminated by some signal in the meantime. Incidentally, it is a gross error to
call sleep in a routine called at interrupt time, since the process which is running is almost certainly not
the process which should go to sleep. Likewise, none of the variables in the user area ‘‘u.’’ should be
touched, let alone changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible to sup-
ply a wakeup, (for example, a device going on-line, which does not generally cause an interrupt), the
call sleep(&lbolt, priority) may be given. Lbolt is an external cell whose address is awakened once
every 4 seconds by the clock interrupt routine.

The routines spl4( ), spl5( ), spl6( ), spl7( ) are available to set the processor priority level as indi-
cated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then timeout(func, arg, interval) will be use-
ful. This routine arranges that after interval sixtieths of a second, the func will be called with arg as
argument, in the style (*func)(arg). Timeouts are used, for example, to provide real-time delays after
function characters like new-line and tab in typewriter output, and to terminate an attempt to read the
201 Dataphone dp if there is no response within a specified number of seconds. Notice that the number
of sixtieths of a second is limited to 32767, since it must appear to be positive, and that only a bounded
number of timeouts can be going on at once. Also, the specified func is called at clock-interrupt time,
so it should conform to the requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of buffers con-
taining the images of blocks of data on the various devices. The most important purpose of these rou-
tines is to assure that several processes that access the same block of the same device in multipro-
grammed fashion maintain a consistent view of the data in the block. A secondary but still important
purpose is to increase the efficiency of the system by keeping in-core copies of blocks that are being
accessed frequently. The main data base for this mechanism is the table of buffers buf. Each buffer
header contains a pair of pointers (b_forw, b_back) which maintain a doubly-linked list of the buffers
associated with a particular block device, and a pair of pointers (av_forw, av_back) which generally
maintain a doubly-linked list of blocks which are ‘‘free,’’ that is, eligible to be reallocated for another
transaction. Buffers that have I/O in progress or are busy for other purposes do not appear in this list.
The buffer header also contains the device and block number to which the buffer refers, and a pointer to
the actual storage associated with the buffer. There is a word count which is the negative of the number
of words to be transferred to or from the buffer; there is also an error byte and a residual word count
used to communicate information from an I/O routine to its caller. Finally, there is a flag word with bits
indicating the status of the buffer. These flags will be discussed below.

Seven routines constitute the most important part of the interface with the rest of the system.
Given a device and block number, both bread and getblk return a pointer to a buffer header for the
block; the difference is that bread is guaranteed to return a buffer actually containing the current data
for the block, while getblk returns a buffer which contains the data in the block only if it is already in
core (whether it is or not is indicated by the B_DONE bit; see below). In either case the buffer, and the
corresponding device block, is made ‘‘busy,’’ so that other processes referring to it are obliged to wait
until it becomes free. Getblk is used, for example, when a block is about to be totally rewritten, so that
its previous contents are not useful; still, no other process can be allowed to refer to the block until the
new data is placed into it.
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The breada routine is used to implement read-ahead. it is logically similar to bread, but takes as
an additional argument the number of a block (on the same device) to be read asynchronously after the
specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other processes.
It is called, for example, after data has been extracted following a bread. There are three subtly-different
write routines, all of which take a buffer pointer as argument, and all of which logically release the
buffer for use by others and place it on the free list. Bwrite puts the buffer on the appropriate device
queue, waits for the write to be done, and sets the user’s error flag if required. Bawrite places the
buffer on the device’s queue, but does not wait for completion, so that errors cannot be reflected directly
to the user. Bdwrite does not start any I/O operation at all, but merely marks the buffer so that if it
happens to be grabbed from the free list to contain data from some other block, the data in it will first
be written out.

Bwrite is used when one wants to be sure that I/O takes place correctly, and that errors are
reflected to the proper user; it is used, for example, when updating i-nodes. Bawrite is useful when
more overlap is desired (because no wait is required for I/O to finish) but when it is reasonably certain
that the write is really required. Bdwrite is used when there is doubt that the write is needed at the
moment. For example, bdwrite is called when the last byte of a write system call falls short of the end
of a block, on the assumption that another write will be given soon which will re-use the same block.
On the other hand, as the end of a block is passed, bawrite is called, since probably the block will not
be accessed again soon and one might as well start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively to the
use of the caller, and make others wait, while one of brelse, bwrite, bawrite, or bdwrite must eventually
be called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the buffer.
Since they provide one important channel for information between the drivers and the block I/O system,
it is important to understand these flags. The following names are manifest constants which select the
associated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below) to indi-
cate a read operation. The symbol B_WRITE is defined as 0 and does not define a flag; it is
provided as a mnemonic convenience to callers of routines like swap which have a separate
argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is turned
on when the operation completes, whether normally as the result of an error. It is also used
as part of the return argument of getblk to indicate if 1 that the returned buffer actually con-
tains the data in the requested block.

B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an I/O or other error
occurred. If it is set the b_error byte of the buffer header may contain an error code if it is
non-zero. If b_error is 0 the nature of the error is not specified. Actually no driver at
present sets b_error; the latter is provided for a future improvement whereby a more
detailed error-reporting scheme may be implemented.

B_BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to someone’s
exclusive use. The buffer still remains attached to the list of blocks associated with its dev-
ice, however. When getblk (or bread, which calls it) searches the buffer list for a given
device and finds the requested block with this bit on, it sleeps until the bit clears.

B_PHYS This bit is set for raw I/O transactions that need to allocate the Unibus map on an 11/70.

B_MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone routine
knows to deallocate the map.

B_WANTEDThis flag is used in conjunction with the B_BUSY bit. Before sleeping as described just
above, getblk sets this flag. Conversely, when the block is freed and the busy bit goes
down (in brelse) a wakeup is given for the block header whenever B_WANTED is on. This
strategem avoids the overhead of having to call wakeup every time a buffer is freed on the
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chance that someone might want it.

B_AGE This bit may be set on buffers just before releasing them; if it is on, the buffer is placed at
the head of the free list, rather than at the tail. It is a performance heuristic used when the
caller judges that the same block will not soon be used again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer should
be released when the write has been finished, usually at interrupt time. The difference
between bwrite and bawrite is that the former starts I/O, waits until it is done, and frees the
buffer. The latter merely sets this bit and starts I/O. The bit indicates that relse should be
called for the buffer on completion.

B_DELWRIThis bit is set by bdwrite before releasing the buffer. When getblk, while searching for a
free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes the block to
be written out before reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each block
device.

Just as for character devices, block device drivers may supply an open and a close routine called
respectively on each open and on the final close of the device. Instead of separate read and write rou-
tines, each block device driver has a strategy routine which is called with a pointer to a buffer header as
argument. As discussed, the buffer header contains a read/write flag, the core address, the block
number, a (negative) word count, and the major and minor device number. The role of the strategy rou-
tine is to carry out the operation as requested by the information in the buffer header. When the transac-
tion is complete the B_DONE (and possibly the B_ERROR) bits should be set. Then if the B_ASYNC
bit is set, brelse should be called; otherwise, wakeup. In cases where the device is capable, under error-
free operation, of transferring fewer words than requested, the device’s word-count register should be
placed in the residual count slot of the buffer header; otherwise, the residual count should be set to 0.
This particular mechanism is really for the benefit of the magtape driver; when reading this device
records shorter than requested are quite normal, and the user should be told the actual length of the
record.

Although the most usual argument to the strategy routines is a genuine buffer header allocated as
discussed above, all that is actually required is that the argument be a pointer to a place containing the
appropriate information. For example the swap routine, which manages movement of core images to
and from the swapping device, uses the strategy routine for this device. Care has to be taken that no
extraneous bits get turned on in the flag word.

The device’s table specified by bdevsw has a byte to contain an active flag and an error count, a
pair of links which constitute the head of the chain of buffers for the device (b_forw, b_back), and a
first and last pointer for a device queue. Of these things, all are used solely by the device driver itself
except for the buffer-chain pointers. Typically the flag encodes the state of the device, and is used at a
minimum to indicate that the device is currently engaged in transferring information and no new com-
mand should be issued. The error count is useful for counting retries when errors occur. The device
queue is used to remember stacked requests; in the simplest case it may be maintained as a first-in first-
out list. Since buffers which have been handed over to the strategy routines are never on the list of free
buffers, the pointers in the buffer which maintain the free list (av_forw, av_back) are also used to con-
tain the pointers which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp) arranges
that the buffer to which bp points be released or awakened, as appropriate, when the strategy module
has finished with the buffer, either normally or after an error. (In the latter case the B_ERROR bit has
presumably been set.)

The routine geterror(bp) can be used to examine the error bit in a buffer header and arrange that
any error indication found therein is reflected to the user. It may be called only in the non-interrupt part
of a driver when I/O has completed (B_DONE has been set).
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Raw Block-device I/O

A scheme has been set up whereby block device drivers may provide the ability to transfer infor-
mation directly between the user’s core image and the device without the use of buffers and in blocks as
large as the caller requests. The method involves setting up a character-type special file corresponding
to the raw device and providing read and write routines which set up what is usually a private, non-
shared buffer header with the appropriate information and call the device’s strategy routine. If desired,
separate open and close routines may be provided but this is usually unnecessary. A special-function
routine might come in handy, especially for magtape.

A great deal of work has to be done to generate the ‘‘appropriate information’’ to put in the argu-
ment buffer for the strategy module; the worst part is to map relocated user addresses to physical
addresses. Most of this work is done by physio(strat, bp, dev, rw) whose arguments are the name of the
strategy routine strat, the buffer pointer bp, the device number dev, and a read-write flag rw whose
value is either B_READ or B_WRITE. Physio makes sure that the user’s base address and count are
even (because most devices work in words) and that the core area affected is contiguous in physical
space; it delays until the buffer is not busy, and makes it busy while the operation is in progress; and it
sets up user error return information.
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The Intermediate Language

Communication between the two phases of the compiler proper is carried out by means of a pair
of intermediate files. These files are treated as having identical structure, although the second file con-
tains only the code generated for strings. It is convenient to write strings out separately to reduce the
need for multiple location counters in a later assembly phase.

The intermediate language is not machine-independent; its structure in a number of ways reflects
the fact that C was originally a one-pass compiler chopped in two to reduce the maximum memory
requirement. In fact, only the latest version of the compiler has a complete intermediate language at all.
Until recently, the first phase of the compiler generated assembly code for those constructions it could
deal with, and passed expression parse trees, in absolute binary form, to the second phase for code gen-
eration. Now, at least, all inter-phase information is passed in a describable form, and there are no abso-
lute pointers involved, so the coupling between the phases is not so strong.

The areas in which the machine (and system) dependencies are most noticeable are

1. Storage allocation for automatic variables and arguments has already been performed, and nodes
for such variables refer to them by offset from a display pointer. Type conversion (for example,
from integer to pointer) has already occurred using the assumption of byte addressing and 2-byte
words.

2. Data representations suitable to the PDP-11 are assumed; in particular, floating point constants are
passed as four words in the machine representation.

As it happens, each intermediate file is represented as a sequence of binary numbers without any
explicit demarcations. It consists of a sequence of conceptual lines, each headed by an operator, and
possibly containing various operands. The operators are small numbers; to assist in recognizing failure
in synchronization, the high-order byte of each operator word is always the octal number 376. Operands
are either 16-bit binary numbers or strings of characters representing names. Each name is terminated
by a null character. There is no alignment requirement for numerical operands and so there is no pad-
ding after a name string.

The binary representation was chosen to avoid the necessity of converting to and from character
form and to minimize the size of the files. It would be very easy to make each operator-operand ‘line’
in the file be a genuine, printable line, with the numbers in octal or decimal; this in fact was the
representation originally used.

The operators fall naturally into two classes: those which represent part of an expression, and all
others. Expressions are transmitted in a reverse-Polish notation; as they are being read, a tree is built
which is isomorphic to the tree constructed in the first phase. Expressions are passed as a whole, with
no non-expression operators intervening. The reader maintains a stack; each leaf of the expression tree
(name, constant) is pushed on the stack; each unary operator replaces the top of the stack by a node
whose operand is the old top-of-stack; each binary operator replaces the top pair on the stack with a sin-
gle entry. When the expression is complete there is exactly one item on the stack. Following each
__________________
†UNIX is a Trademark of Bell Laboratories.
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expression is a special operator which passes the unique previous expression to the ‘optimizer’ described
below and then to the code generator.

Here is the list of operators not themselves part of expressions.

EOF

marks the end of an input file.

BDATA flag data ...

specifies a sequence of bytes to be assembled as static data. It is followed by pairs of words; the
first member of the pair is non-zero to indicate that the data continue; a zero flag is not followed
by data and terminates the operator. The data bytes occupy the low-order part of a word.

WDATA flag data ...

specifies a sequence of words to be assembled as static data; it is identical to the BDATA operator
except that entire words, not just bytes, are passed.

PROG

means that subsequent information is to be compiled as program text.

DATA

means that subsequent information is to be compiled as static data.

BSS

means that subsequent information is to be compiled as unitialized static data.

SYMDEF name

means that the symbol name is an external name defined in the current program. It is produced
for each external data or function definition.

CSPACE name size

indicates that the name refers to a data area whose size is the specified number of bytes. It is pro-
duced for external data definitions without explicit initialization.

SSPACE size

indicates that size bytes should be set aside for data storage. It is used to pad out short initializa-
tions of external data and to reserve space for static (internal) data. It will be preceded by an
appropriate label.

EVEN

is produced after each external data definition whose size is not an integral number of words. It is
not produced after strings except when they initialize a character array.

NLABEL name

is produced just before a BDATA or WDATA initializing external data, and serves as a label for
the data.

RLABEL name
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is produced just before each function definition, and labels its entry point.

SNAME name number

is produced at the start of each function for each static variable or label declared therein. Subse-
quent uses of the variable will be in terms of the given number. The code generator uses this only
to produce a debugging symbol table.

ANAME name number

Likewise, each automatic variable’s name and stack offset is specified by this operator. Argu-
ments count as automatics.

RNAME name number

Each register variable is similarly named, with its register number.

SAVE number

produces a register-save sequence at the start of each function, just after its label (RLABEL).

SETREG number

is used to indicate the number of registers used for register variables. It actually gives the register
number of the lowest free register; it is redundant because the RNAME operators could be counted
instead.

PROFIL

is produced before the save sequence for functions when the profile option is turned on. It pro-
duces code to count the number of times the function is called.

SWIT deflab line label value ...

is produced for switches. When control flows into it, the value being switched on is in the regis-
ter forced by RFORCE (below). The switch statement occurred on the indicated line of the
source, and the label number of the default location is deflab. Then the operator is followed by a
sequence of label-number and value pairs; the list is terminated by a 0 label.

LABEL number

generates an internal label. It is referred to elsewhere using the given number.

BRANCH number

indicates an unconditional transfer to the internal label number given.

RETRN

produces the return sequence for a function. It occurs only once, at the end of each function.

EXPR line

causes the expression just preceding to be compiled. The argument is the line number in the
source where the expression occurred.

NAME class type name
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NAME class type number

indicates a name occurring in an expression. The first form is used when the name is external; the
second when the name is automatic, static, or a register. Then the number indicates the stack
offset, the label number, or the register number as appropriate. Class and type encoding is
described elsewhere.

CON type value

transmits an integer constant. This and the next two operators occur as part of expressions.

FCON type 4-word-value

transmits a floating constant as four words in PDP-11 notation.

SFCON type value

transmits a floating-point constant whose value is correctly represented by its high-order word in
PDP-11 notation.

NULL

indicates a null argument list of a function call in an expression; call is a binary operator whose
second operand is the argument list.

CBRANCH label cond

produces a conditional branch. It is an expression operator, and will be followed by an EXPR.
The branch to the label number takes place if the expression’s truth value is the same as that of
cond. That is, if cond=1 and the expression evaluates to true, the branch is taken.

binary-operator type

There are binary operators corresponding to each such source-language operator; the type of the
result of each is passed as well. Some perhaps-unexpected ones are: COMMA, which is a right-
associative operator designed to simplify right-to-left evaluation of function arguments; prefix and
postfix ++ and – – , whose second operand is the increment amount, as a CON; QUEST and
COLON, to express the conditional expression as ‘a?(b:c)’; and a sequence of special operators for
expressing relations between pointers, in case pointer comparison is different from integer com-
parison (e.g. unsigned).

unary-operator type

There are also numerous unary operators. These include ITOF, FTOI, FTOL, LTOF, ITOL, LTOI
which convert among floating, long, and integer; JUMP which branches indirectly through a label
expression; INIT, which compiles the value of a constant expression used as an initializer;
RFORCE, which is used before a return sequence or a switch to place a value in an agreed-upon
register.

Expression Optimization

Each expression tree, as it is read in, is subjected to a fairly comprehensive analysis. This is per-
formed by the optim routine and a number of subroutines; the major things done are

1. Modifications and simplifications of the tree so its value may be computed more efficiently and
conveniently by the code generator.

2. Marking each interior node with an estimate of the number of registers required to evaluate it.
This register count is needed to guide the code generation algorithm.

One thing that is definitely not done is discovery or exploitation of common subexpressions, nor is
this done anywhere in the compiler.
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The basic organization is simple: a depth-first scan of the tree. Optim does nothing for leaf nodes
(except for automatics; see below), and calls unoptim to handle unary operators. For binary operators, it
calls itself to process the operands, then treats each operator separately. One important case is commu-
tative and associative operators, which are handled by acommute.

Here is a brief catalog of the transformations carried out by by optim itself. It is not intended to
be complete. Some of the transformations are machine-dependent, although they may well be useful on
machines other than the PDP-11.

1. As indicated in the discussion of unoptim below, the optimizer can create a node type correspond-
ing to the location addressed by a register plus a constant offset. Since this is precisely the imple-
mentation of automatic variables and arguments, where the register is fixed by convention, such
variables are changed to the new form to simplify later processing.

2. Associative and commutative operators are processed by the special routine acommute.

3. After processing by acommute, the bitwise & operator is turned into a new andn operator; ‘a & b’
becomes ‘a andn ˜b’. This is done because the PDP-11 provides no and operator, but only andn.
A similar transformation takes place for ‘=&’.

4. Relationals are turned around so the more complicated expression is on the left. (So that ‘2 >
f(x)’ becomes ‘f(x) < 2’). This improves code generation since the algorithm prefers to have the
right operand require fewer registers than the left.

5. An expression minus a constant is turned into the expression plus the negative constant, and the
acommute routine is called to take advantage of the properties of addition.

6. Operators with constant operands are evaluated.

7. Right shifts (unless by 1) are turned into left shifts with a negated right operand, since the PDP-11
lacks a general right-shift operator.

8. A number of special cases are simplified, such as division or multiplication by 1, and shifts by 0.

The unoptim routine performs the same sort of processing for unary operators.

1. ‘*&x’ and ‘&*x’ are simplified to ‘x’.

2. If r is a register and c is a constant or the address of a static or external variable, the expressions
‘*(r+c)’ and ‘*r’ are turned into a special kind of name node which expresses the name itself and
the offset. This simplifies subsequent processing because such constructions can appear as the the
address of a PDP-11 instruction.

3. When the unary ‘&’ operator is applied to a name node of the special kind just discussed, it is
reworked to make the addition explicit again; this is done because the PDP-11 has no ‘load
address’ instruction.

4. Constructions like ‘*r++’ and ‘*– – r’ where r is a register are discovered and marked as being
implementable using the PDP-11 auto-increment and -decrement modes.

5. If ‘!’ is applied to a relational, the ‘!’ is discarded and the sense of the relational is reversed.

6. Special cases involving reflexive use of negation and complementation are discovered.

7. Operations applying to constants are evaluated.

The acommute routine, called for associative and commutative operators, discovers clusters of the
same operator at the top levels of the current tree, and arranges them in a list: for ‘a+((b+c)+(d+f))’ the
list would be‘a,b,c,d,e,f’. After each subtree is optimized, the list is sorted in decreasing difficulty of
computation; as mentioned above, the code generation algorithm works best when left operands are the
difficult ones. The ‘degree of difficulty’ computed is actually finer than the mere number of registers
required; a constant is considered simpler than the address of a static or external, which is simpler than
reference to a variable. This makes it easy to fold all the constants together, and also to merge together
the sum of a constant and the address of a static or external (since in such nodes there is space for an
‘offset’ value). There are also special cases, like multiplication by 1 and addition of 0.

A special routine is invoked to handle sums of products. Distrib is based on the fact that it is better to
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compute ‘c1*c2*x + c1*y’ as ‘c1*(c2*x + y)’ and makes the divisibility tests required to assure the
correctness of the transformation. This transformation is rarely possible with code directly written by
the user, but it invariably occurs as a result of the implementation of multi-dimensional arrays.

Finally, acommute reconstructs a tree from the list of expressions which result.

Code Generation

The grand plan for code-generation is independent of any particular machine; it depends largely on
a set of tables. But this fact does not necessarily make it very easy to modify the compiler to produce
code for other machines, both because there is a good deal of machine-dependent structure in the tables,
and because in any event such tables are non-trivial to prepare.

The arguments to the basic code generation routine rcexpr are a pointer to a tree representing an
expression, the name of a code-generation table, and the number of a register in which the value of the
expression should be placed. Rcexpr returns the number of the register in which the value actually
ended up; its caller may need to produce a mov instruction if the value really needs to be in the given
register. There are four code generation tables.

Regtab is the basic one, which actually does the job described above: namely, compile code which
places the value represented by the expression tree in a register.

Cctab is used when the value of the expression is not actually needed, but instead the value of the
condition codes resulting from evaluation of the expression. This table is used, for example, to evaluate
the expression after if. It is clearly silly to calculate the value (0 or 1) of the expression ‘a==b’ in the
context ‘if (a==b) ... ’

The sptab table is used when the value of an expression is to be pushed on the stack, for example
when it is an actual argument. For example in the function call ‘f(a)’ it is a bad idea to load a into a
register which is then pushed on the stack, when there is a single instruction which does the job.

The efftab table is used when an expression is to be evaluated for its side effects, not its value.
This occurs mostly for expressions which are statements, which have no value. Thus the code for the
statement ‘a = b’ need produce only the approoriate mov instruction, and need not leave the value of b
in a register, while in the expression ‘a + (b = c)’ the value of ‘b = c’ will appear in a register.

All of the tables besides regtab are rather small, and handle only a relatively few special cases. If
one of these subsidiary tables does not contain an entry applicable to the given expression tree, rcexpr
uses regtab to put the value of the expression into a register and then fixes things up; nothing need be
done when the table was efftab, but a tst instruction is produced when the table called for was cctab, and
a mov instruction, pushing the register on the stack, when the table was sptab.

The rcexpr routine itself picks off some special cases, then calls cexpr to do the real work. Cexpr
tries to find an entry applicable to the given tree in the given table, and returns – 1 if no such entry is
found, letting rcexpr try again with a different table. A successful match yields a string containing both
literal characters which are written out and pseudo-operations, or macros, which are expanded. Before
studying the contents of these strings we will consider how table entries are matched against trees.

Recall that most non-leaf nodes in an expression tree contain the name of the operator, the type of
the value represented, and pointers to the subtrees (operands). They also contain an estimate of the
number of registers required to evaluate the expression, placed there by the expression-optimizer rou-
tines. The register counts are used to guide the code generation process, which is based on the Sethi-
Ullman algorithm.

The main code generation tables consist of entries each containing an operator number and a
pointer to a subtable for the corresponding operator. A subtable consists of a sequence of entries, each
with a key describing certain properties of the operands of the operator involved; associated with the key
is a code string. Once the subtable corresponding to the operator is found, the subtable is searched
linearly until a key is found such that the properties demanded by the key are compatible with the
operands of the tree node. A successful match returns the code string; an unsuccessful search, either for
the operator in the main table or a compatble key in the subtable, returns a failure indication.
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The tables are all contained in a file which must be processed to obtain an assembly language pro-
gram. Thus they are written in a special-purpose language. To provided definiteness to the following
discussion, here is an example of a subtable entry.

%n,aw
F
add A2,R

The ‘%’ indicates the key; the information following (up to a blank line) specifies the code string. Very
briefly, this entry is in the subtable for ‘+’ of regtab; the key specifies that the left operand is any
integer, character, or pointer expression, and the right operand is any word quantity which is directly
addressible (e.g. a variable or constant). The code string calls for the generation of the code to compile
the left (first) operand into the current register (‘F’) and then to produce an ‘add’ instruction which adds
the second operand (‘A2’) to the register (‘R’). All of the notation will be explained below.

Only three features of the operands are used in deciding whether a match has occurred. They are:

1. Is the type of the operand compatible with that demanded?

2. Is the ‘degree of difficulty’ (in a sense described below) compatible?

3. The table may demand that the operand have a ‘*’ (indirection operator) as its highest operator.

As suggested above, the key for a subtable entry is indicated by a ‘%,’ and a comma-separated
pair of specifications for the operands. (The second specification is ignored for unary operators). A
specification indicates a type requirement by including one of the following letters. If no type letter is
present, any integer, character, or pointer operand will satisfy the requirement (not float, double, or
long).

b A byte (character) operand is required.

w A word (integer or pointer) operand is required.

f A float or double operand is required.

d A double operand is required.

l A long (32-bit integer) operand is required.

Before discussing the ‘degree of difficulty’ specification, the algorithm has to be explained more
completely. Rcexpr (and cexpr) are called with a register number in which to place their result. Regis-
ters 0, 1, ... are used during evaluation of expressions; the maximum register which can be used in this
way depends on the number of register variables, but in any event only registers 0 through 4 are avail-
able since r5 is used as a stack frame header and r6 (sp) and r7 (pc) have special hardware properties.
The code generation routines assume that when called with register n as argument, they may use n+1, ...
(up to the first register variable) as temporaries. Consider the expression ‘X+Y’, where both X and Y
are expressions. As a first approximation, there are three ways of compiling code to put this expression
in register n.

1. If Y is an addressible cell, (recursively) put X into register n and add Y to it.

2. If Y is an expression that can be calculated in k registers, where k smaller than the number of
registers available, compile X into register n, Y into register n+1, and add register n+1 to n.

3. Otherwise, compile Y into register n, save the result in a temporary (actually, on the stack) com-
pile X into register n, then add in the temporary.

The distinction between cases 2 and 3 therefore depends on whether the right operand can be com-
piled in fewer than k registers, where k is the number of free registers left after registers 0 through n are
taken: 0 through n– 1 are presumed to contain already computed temporary results; n will, in case 2,
contain the value of the left operand while the right is being evaluated.

These considerations should make clear the specification codes for the degree of difficulty, bearing
in mind that a number of special cases are also present:
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z is satisfied when the operand is zero, so that special code can be produced for expressions like ‘x
= 0’.

1 is satisfied when the operand is the constant 1, to optimize cases like left and right shift by 1,
which can be done efficiently on the PDP-11.

c is satisfied when the operand is a positive (16-bit) constant; this takes care of some special cases
in long arithmetic.

a is satisfied when the operand is addressible; this occurs not only for variables and constants, but
also for some more complicated constructions, such as indirection through a simple variable,
‘*p++’ where p is a register variable (because of the PDP-11’s auto-increment address mode), and
‘*(p+c)’ where p is a register and c is a constant. Precisely, the requirement is that the operand
refers to a cell whose address can be written as a source or destination of a PDP-11 instruction.

e is satisfied by an operand whose value can be generated in a register using no more than k regis-
ters, where k is the number of registers left (not counting the current register). The ‘e’ stands for
‘easy.’

n is satisfied by any operand. The ‘n’ stands for ‘anything.’

These degrees of difficulty are considered to lie in a linear ordering and any operand which
satisfies an earlier-mentioned requirement will satisfy a later one. Since the subtables are searched
linearly, if a ‘1’ specification is included, almost certainly a ‘z’ must be written first to prevent expres-
sions containing the constant 0 to be compiled as if the 0 were 1.

Finally, a key specification may contain a ‘*’ which requires the operand to have an indirection as
its leading operator. Examples below should clarify the utility of this specification.

Now let us consider the contents of the code string associated with each subtable entry. Conven-
tionally, lower-case letters in this string represent literal information which is copied directly to the out-
put. Upper-case letters generally introduce specific macro-operations, some of which may be followed
by modifying information. The code strings in the tables are written with tabs and new-lines used freely
to suggest instructions which will be generated; the table-compiling program compresses tabs (using the
0200 bit of the next character) and throws away some of the new-lines. For example the macro ‘F’ is
ordinarily written on a line by itself; but since its expansion will end with a new-line, the new-line after
‘F’ itself is dispensable. This is all to reduce the size of the stored tables.

The first set of macro-operations is concerned with compiling subtrees. Recall that this is done by
the cexpr routine. In the following discussion the ‘current register’ is generally the argument register to
cexpr; that is, the place where the result is desired. The ‘next register’ is numbered one higher than the
current register. (This explanation isn’t fully true because of complications, described below, involving
operations which require even-odd register pairs.)

F causes a recursive call to the rcexpr routine to compile code which places the value of the first
(left) operand of the operator in the current register.

F1 generates code which places the value of the first operand in the next register. It is incorrectly
used if there might be no next register; that is, if the degree of difficulty of the first operand is not
‘easy;’ if not, another register might not be available.

FS generates code which pushes the value of the first operand on the stack, by calling rcexpr specify-
ing sptab as the table.

Analogously,

S, S1, SScompile the second (right) operand into the current register, the next register, or onto the stack.

To deal with registers, there are

R which expands into the name of the current register.

R1 which expands into the name of the next register.
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R+ which expands into the the name of the current register plus 1. It was suggested above that this is
the same as the next register, except for complications; here is one of them. Long integer vari-
ables have 32 bits and require 2 registers; in such cases the next register is the current register
plus 2. The code would like to talk about both halves of the long quantity, so R refers to the
register with the high-order part and R+ to the low-order part.

R– This is another complication, involving division and mod. These operations involve a pair of
registers of which the odd-numbered contains the left operand. Cexpr arranges that the current
register is odd; the R– notation allows the code to refer to the next lower, even-numbered register.

To refer to addressible quantities, there are the notations:

A1 causes generation of the address specified by the first operand. For this to be legal, the operand
must be addressible; its key must contain an ‘a’ or a more restrictive specification.

A2 correspondingly generates the address of the second operand providing it has one.

We now have enough mechanism to show a complete, if suboptimal, table for the + operator on
word or byte operands.

%n,z
F

%n,1
F
inc R

%n,aw
F
add A2,R

%n,e
F
S1
add R1,R

%n,n
SS
F
add (sp)+,R

The first two sequences handle some special cases. Actually it turns out that handling a right operand of
0 is unnecessary since the expression-optimizer throws out adds of 0. Adding 1 by using the ‘incre-
ment’ instruction is done next, and then the case where the right operand is addressible. It must be a
word quantity, since the PDP-11 lacks an ‘add byte’ instruction. Finally the cases where the right
operand either can, or cannot, be done in the available registers are treated.

The next macro-instructions are conveniently introduced by noticing that the above table is suit-
able for subtraction as well as addition, since no use is made of the commutativity of addition. All that
is needed is substitution of ‘sub’ for ‘add’ and ‘dec’ for ’inc.’ Considerable saving of space is achieved
by factoring out several similar operations.

I is replaced by a string from another table indexed by the operator in the node being expanded.
This secondary table actually contains two strings per operator.

I′ is replaced by the second string in the side table entry for the current operator.

Thus, given that the entries for ‘+’ and ‘– ’ in the side table (which is called instab) are ‘add’ and
‘inc,’ ‘sub’ and ‘dec’ respectively, the middle of of the above addition table can be written
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%n,1
F
I’ R

%n,aw
F
I A2,R

and it will be suitable for subtraction, and several other operators, as well.

Next, there is the question of character and floating-point operations.

B1 generates the letter ‘b’ if the first operand is a character, ‘f’ if it is float or double, and nothing
otherwise. It is used in a context like ‘movB1’ which generates a ‘mov’, ‘movb’, or ‘movf’
instruction according to the type of the operand.

B2 is just like B1 but applies to the second operand.

BE generates ‘b’ if either operand is a character and null otherwise.

BF generates ‘f’ if the type of the operator node itself is float or double, otherwise null.

For example, there is an entry in efftab for the ‘=’ operator

%a,aw
%ab,a

IBE A2,A1

Note first that two key specifications can be applied to the same code string. Next, observe that when a
word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruction, a mov or
movb as appropriate, does the job. However, when a byte is assigned to a word, it must pass through a
register to implement the sign-extension rules:

%a,n
S
IB1 R,A1

Next, there is the question of handling indirection properly. Consider the expression ‘X + *Y’,
where X and Y are expressions, Assuming that Y is more complicated than just a variable, but on the
other hand qualifies as ‘easy’ in the context, the expression would be compiled by placing the value of
X in a register, that of *Y in the next register, and adding the registers. It is easy to see that a better
job can be done by compiling X, then Y (into the next register), and producing the instruction symbol-
ized by ‘add (R1),R’. This scheme avoids generating the instruction ‘mov (R1),R1’ required actually to
place the value of *Y in a register. A related situation occurs with the expression ‘X + *(p+6)’, which
exemplifies a construction frequent in structure and array references. The addition table shown above
would produce

[put X in register R]
mov p,R1
add $6,R1
mov (R1),R1
add R1,R

when the best code is

[put X in R]
mov p,R1
add 6(R1),R

As we said above, a key specification for a code table entry may require an operand to have an indirec-
tion as its highest operator. To make use of the requirement, the following macros are provided.
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F* the first operand must have the form *X. If in particular it has the form *(Y + c), for some con-
stant c, then code is produced which places the value of Y in the current register. Otherwise, code
is produced which loads X into the current register.

F1* resembles F* except that the next register is loaded.

S* resembles F* except that the second operand is loaded.

S1* resembles S* except that the next register is loaded.

FS* The first operand must have the form ‘*X’. Push the value of X on the stack.

SS* resembles FS* except that it applies to the second operand.

To capture the constant that may have been skipped over in the above macros, there are

#1 The first operand must have the form *X; if in particular it has the form *(Y + c) for c a constant,
then the constant is written out, otherwise a null string.

#2 is the same as #1 except that the second operand is used.

Now we can improve the addition table above. Just before the ‘%n,e’ entry, put

%n,ew*
F
S1*
add #2(R1),R

and just before the ‘%n,n’ put

%n,nw*
SS*
F
add *(sp)+,R

When using the stacking macros there is no place to use the constant as an index word, so that particular
special case doesn’t occur.

The constant mentioned above can actually be more general than a number. Any quantity accept-
able to the assembler as an expression will do, in particular the address of a static cell, perhaps with a
numeric offset. If x is an external character array, the expression ‘x[i+5] = 0’ will generate the code

mov i,r0
clrb x+5(r0)

via the table entry (in the ‘=’ part of efftab)

%e*,z
F
I’B1 #1(R)

Some machine operations place restrictions on the registers used. The divide instruction, used to imple-
ment the divide and mod operations, requires the dividend to be placed in the odd member of an even-
odd pair; other peculiarities of multiplication make it simplest to put the multiplicand in an odd-
numbered register. There is no theory which optimally accounts for this kind of requirement. Cexpr
handles it by checking for a multiply, divide, or mod operation; in these cases, its argument register
number is incremented by one or two so that it is odd, and if the operation was divide or mod, so that it
is a member of a free even-odd pair. The routine which determines the number of registers required
estimates, conservatively, that at least two registers are required for a multiplication and three for the
other peculiar operators. After the expression is compiled, the register where the result actually ended
up is returned. (Divide and mod are actually the same operation except for the location of the result).

These operations are the ones which cause results to end up in unexpected places, and this possi-
bility adds a further level of complexity. The simplest way of handling the problem is always to move
the result to the place where the caller expected it, but this will produce unnecessary register moves in
many simple cases; ‘a = b*c’ would generate



- 12 -

mov b,r1
mul c,r1
mov r1,r0
mov r0,a

The next thought is used the passed-back information as to where the result landed to change the notion
of the current register. While compiling the ‘=’ operation above, which comes from a table entry like

%a,e
S
mov R,A1

it is sufficient to redefine the meaning of ‘R’ after processing the ‘S’ which does the multiply. This
technique is in fact used; the tables are written in such a way that correct code is produced. The trouble
is that the technique cannot be used in general, because it invalidates the count of the number of regis-
ters required for an expression. Consider just ‘a*b + X’ where X is some expression. The algorithm
assumes that the value of a*b, once computed, requires just one register. If there are three registers
available, and X requires two registers to compute, then this expression will match a key specifying
‘%n,e’. If a*b is computed and left in register 1, then there are, contrary to expectations, no longer two
registers available to compute X, but only one, and bad code will be produced. To guard against this
possibility, cexpr checks the result returned by recursive calls which implement F, S and their relatives.
If the result is not in the expected register, then the number of registers required by the other operand is
checked; if it can be done using those registers which remain even after making unavailable the
unexpectedly-occupied register, then the notions of the ‘next register’ and possibly the ‘current register’
are redefined. Otherwise a register-copy instruction is produced. A register-copy is also always pro-
duced when the current operator is one of those which have odd-even requirements.

Finally, there are a few loose-end macro operations and facts about the tables. The operators:

V is used for long operations. It is written with an address like a machine instruction; it expands
into ‘adc’ (add carry) if the operation is an additive operator, ‘sbc’ (subtract carry) if the operation
is a subtractive operator, and disappears, along with the rest of the line, otherwise. Its purpose is
to allow common treatment of logical operations, which have no carries, and additive and subtrac-
tive operations, which generate carries.

T generates a ‘tst’ instruction if the first operand of the tree does not set the condition codes
correctly. It is used with divide and mod operations, which require a sign-extended 32-bit
operand. The code table for the operations contains an ‘sxt’ (sign-extend) instruction to generate
the high-order part of the dividend.

H is analogous to the ‘F’ and ‘S’ macros, except that it calls for the generation of code for the
current tree (not one of its operands) using regtab. It is used in cctab for all the operators which,
when executed normally, set the condition codes properly according to the result. It prevents a
‘tst’ instruction from being generated for constructions like ‘if (a+b) ...’ since after calculation of
the value of ‘a+b’ a conditional branch can be written immediately.

All of the discussion above is in terms of operators with operands. Leaves of the expression tree
(variables and constants), however, are peculiar in that they have no operands. In order to regularize the
matching process, cexpr examines its operand to determine if it is a leaf; if so, it creates a special ‘load’
operator whose operand is the leaf, and substitutes it for the argument tree; this allows the table entry
for the created operator to use the ‘A1’ notation to load the leaf into a register.

Purely to save space in the tables, pieces of subtables can be labelled and referred to later. It
turns out, for example, that rather large portions of the the efftab table for the ‘=’ and ‘=+’ operators are
identical. Thus ‘=’ has an entry
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%[move3:]
%a,aw
%ab,a

IBE A2,A1

while part of the ‘=+’ table is

%aw,aw
% [move3]

Labels are written as ‘%[ ... : ]’, before the key specifications; references are written with ‘% [ ... ]’
after the key. Peculiarities in the implementation make it necessary that labels appear before references
to them.

The example illustrates the utility of allowing separate keys to point to the same code string. The
assignment code works properly if either the right operand is a word, or the left operand is a byte; but
since there is no ‘add byte’ instruction the addition code has to be restricted to word operands.

Delaying and reordering

Intertwined with the code generation routines are two other, interrelated processes. The first,
implemented by a routine called delay, is based on the observation that naive code generation for the
expression ‘a = b++’ would produce

mov b,r0
inc b
mov r0,a

The point is that the table for postfix ++ has to preserve the value of b before incrementing it; the gen-
eral way to do this is to preserve its value in a register. A cleverer scheme would generate

mov b,a
inc b

Delay is called for each expression input to rcexpr, and it searches for postfix ++ and – – operators. If
one is found applied to a variable, the tree is patched to bypass the operator and compiled as it stands;
then the increment or decrement itself is done. The effect is as if ‘a = b; b++’ had been written. In this
example, of course, the user himself could have done the same job, but more complicated examples are
easily constructed, for example ‘switch (x++)’. An essential restriction is that the condition codes not be
required. It would be incorrect to compile ‘if (a++) ...’ as

tst a
inc a
beq ...

because the ‘inc’ destroys the required setting of the condition codes.

Reordering is a similar sort of optimization. Many cases which it detects are useful mainly with
register variables. If r is a register variable, the expression ‘r = x+y’ is best compiled as

mov x,r
add y,r

but the codes tables would produce

mov x,r0
add y,r0
mov r0,r

which is in fact preferred if r is not a register. (If r is not a register, the two sequences are the same
size, but the second is slightly faster.) The scheme is to compile the expression as if it had been written
‘r = x; r =+ y’. The reorder routine is called with a pointer to each tree that rcexpr is about to compile;
if it has the right characteristics, the ‘r = x’ tree is constructed and passed recursively to rcexpr; then the
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original tree is modified to read ‘r =+ y’ and the calling instance of rcexpr compiles that instead. Of
course the whole business is itself recursive so that more extended forms of the same phenomenon are
handled, like ‘r = x + y  z’.

Care does have to be taken to avoid ‘optimizing’ an expression like ‘r = x + r’ into ‘r = x; r =+ r’.
It is required that the right operand of the expression on the right of the ‘=’ be a ’, distinct from the
register variable.

The second case that reorder handles is expressions of the form ‘r = X’ used as a subexpression.
Again, the code out of the tables for ‘x = r = y’ would be

mov y,r0
mov r0,r
mov r0,x

whereas if r were a register it would be better to produce

mov y,r
mov r,x

When reorder discovers that a register variable is being assigned to in a subexpression, it calls rcexpr
recursively to compile the subexpression, then fiddles the tree passed to it so that the register variable
itself appears as the operand instead of the whole subexpression. Here care has to be taken to avoid an
infinite regress, with rcexpr and reorder calling each other forever to handle assignments to registers.

A third set of cases treated by reorder comes up when any name, not necessarily a register, occurs
as a left operand of an assignment operator other than ‘=’ or as an operand of prefix ‘++’ or ‘– – ’.
Unless condition-code tests are involved, when a subexpression like ‘(a =+ b)’ is seen, the assignment is
performed and the argument tree modified so that a is its operand; effectively ‘x + (y =+ z)’ is compiled
as ‘y =+ z; x + y’. Similarly, prefix increment and decrement are pulled out and performed first, then
the remainder of the expression.

Throughout code generation, the expression optimizer is called whenever delay or reorder change
the expression tree. This allows some special cases to be found that otherwise would not be seen.
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Introduction

A C compiler has been implemented that has proved to be quite portable, serving as the basis for
C compilers on roughly a dozen machines, including the Honeywell 6000, IBM 370, and Interdata 8/32.
The compiler is highly compatible with the C language standard.1

Among the goals of this compiler are portability, high reliability, and the use of state-of-the-art
techniques and tools wherever practical. Although the efficiency of the compiling process is not a pri-
mary goal, the compiler is efficient enough, and produces good enough code, to serve as a production
compiler.

The language implemented is highly compatible with the current PDP-11 version of C. Moreover,
roughly 75% of the compiler, including nearly all the syntactic and semantic routines, is machine
independent. The compiler also serves as the major portion of the program lint , described elsewhere.2

A number of earlier attempts to make portable compilers are worth noting. While on CO-OP
assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was the basis of his
Master’s Thesis at M.I.T.3 This compiler was very slow and complicated, and contained a number of
rather serious implementation difficulties; nevertheless, a number of Snyder’s ideas appear in this work.

Most earlier portable compilers, including Snyder’s, have proceeded by defining an intermediate
language, perhaps based on three-address code or code for a stack machine, and writing a machine
independent program to translate from the source code to this intermediate code. The intermediate code
is then read by a second pass, and interpreted or compiled. This approach is elegant, and has a number
of advantages, especially if the target machine is far removed from the host. It suffers from some disad-
vantages as well. Some constructions, like initialization and subroutine prologs, are difficult or expen-
sive to express in a machine independent way that still allows them to be easily adapted to the target
assemblers. Most of these approaches require a symbol table to be constructed in the second (machine
dependent) pass, and/or require powerful target assemblers. Also, many conversion operators may be
generated that have no effect on a given machine, but may be needed on others (for example, pointer to
pointer conversions usually do nothing in C, but must be generated because there are some machines
where they are significant).

For these reasons, the first pass of the portable compiler is not entirely machine independent. It
contains some machine dependent features, such as initialization, subroutine prolog and epilog, certain
storage allocation functions, code for the switch statement, and code to throw out unneeded conversion
operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C compiler
has roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000 out of 3400 in Pass
2. In total, 1600 out of 8000, or 20%, of the total source is machine dependent (12% in Pass 1, 30% in
Pass 2). These percentages can be expected to rise slightly as the compiler is tuned. The percentage of
machine-dependent code for the IBM is 22%, for the Honeywell 25%. If the assembler format and
structure were the same for all these machines, perhaps another 5-10% of the code would become
machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of the
machine dependent code can be converted in a straightforward, almost mechanical way. On the other
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hand, a certain amount of the code requres hard intellectual effort to convert, since the algorithms embo-
died in this part of the code are typically complicated and machine dependent.

To summarize, however, if you need a C compiler written for a machine with a reasonable archi-
tecture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent is to give
the big picture, rather than discussing the details of a particular machine implementation. After a brief
overview and a discussion of the source file structure, the paper describes the major data structures, and
then delves more closely into the two passes. Some of the theoretical work on which the compiler is
based, and its application to the compiler, is discussed elsewhere.4 One of the major design issues in any
C compiler, the design of the calling sequence and stack frame, is the subject of a separate memoran-
dum.5

The compiler consists of two passes, pass1 and pass2 , that together turn C source code into
assembler code for the target machine. The two passes are preceded by a preprocessor, that handles the
#define and #include statements, and related features (e.g., #ifdef, etc.). It is a nearly machine indepen-
dent program, and will not be further discussed here.

The output of the preprocessor is a text file that is read as the standard input of the first pass.
This produces as standard output another text file that becomes the standard input of the second pass.
The second pass produces, as standard output, the desired assembler language source code. The prepro-
cessor and the two passes all write error messages on the standard error file. Thus the compiler itself
makes few demands on the I/O library support, aiding in the bootstrapping process.

Although the compiler is divided into two passes, this represents historical accident more than
deep necessity. In fact, the compiler can optionally be loaded so that both passes operate in the same
program. This ‘‘one pass’’ operation eliminates the overhead of reading and writing the intermediate
file, so the compiler operates about 30% faster in this mode. It also occupies about 30% more space
than the larger of the two component passes.

Because the compiler is fundamentally structured as two passes, even when loaded as one, this
document primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also constructs
parse trees for expressions, and keeps track of the types of the nodes in these trees. Additional code is
devoted to initialization. Machine dependent portions of the first pass serve to generate subroutine pro-
logs and epilogs, code for switches, and code for branches, label definitions, alignment operations,
changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right parenthesis
are copied by the second pass directly to its output file, with the parenthesis stripped off. Thus, when
the first pass produces assembly code, such as subroutine prologs, etc., each line is prefaced with a right
parenthesis; the second pass passes these lines to through to the assembler.

The major job done by the second pass is generation of code for expressions. The expression
parse trees produced in the first pass are written onto the intermediate file in Polish Prefix form: first,
there is a line beginning with a period, followed by the source file line number and name on which the
expression appeared (for debugging purposes). The successive lines represent the nodes of the parse
tree, one node per line. Each line contains the node number, type, and any values (e.g., values of con-
stants) that may appear in the node. Lines representing nodes with descendants are immediately fol-
lowed by the left subtree of descendants, then the right. Since the number of descendants of any node is
completely determined by the node number, there is no need to mark the end of the tree.

There are only two other line types in the intermediate file. Lines beginning with a left square
bracket (‘[’) represent the beginning of blocks (delimited by { ... } in the C source); lines beginning with
right square brackets (‘]’) represent the end of blocks. The remainder of these lines tell how much stack
space, and how many register variables, are currently in use.
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Thus, the second pass reads the intermediate files, copies the ‘)’ lines, makes note of the informa-
tion in the ‘[’ and ‘]’ lines, and devotes most of its effort to the ‘.’ lines and their associated expression
trees, turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees that are built by the first pass have
been declared to have room for the second pass information as well. Instead of writing the trees onto an
intermediate file, each tree is transformed in place into an acceptable form for the code generator. The
code generator then writes the result of compiling this tree onto the standard output. Instead of ‘[’ and
‘]’ lines in the intermediate file, the information is passed directly to the second pass routines. Assem-
bly code produced by the first pass is simply written out, without the need for ’)’ at the head of each
line.

The Source Files

The compiler source consists of 22 source files. Two files, manifest and macdefs , are header files
included with all other files. Manifest has declarations for the node numbers, types, storage classes, and
other global data definitions. Macdefs has machine-dependent definitions, such as the size and align-
ment of the various data representations. Two machine independent header files, mfile1 and mfile2 ,
contain the data structure and manifest definitions for the first and second passes, respectively. In the
second pass, a machine dependent header file, mac2defs , contains declarations of register names, etc.

There is a file, common , containing (machine independent) routines used in both passes. These
include routines for allocating and freeing trees, walking over trees, printing debugging information, and
printing error messages. There are two dummy files, comm1.c and comm2.c , that simply include com-
mon within the scope of the appropriate pass1 or pass2 header files. When the compiler is loaded as a
single pass, common only needs to be included once: comm2.c is not needed.

Entire sections of this document are devoted to the detailed structure of the passes. For the
moment, we just give a brief description of the files. The first pass is obtained by compiling and load-
ing scan.c , cgram.c , xdefs.c , pftn.c , trees.c , optim.c , local.c , code.c , and comm1.c . Scan.c is the lexi-
cal analyzer, which is used by cgram.c , the result of applying Yacc6 to the input grammar cgram.y .
Xdefs.c is a short file of external definitions. Pftn.c maintains the symbol table, and does initialization.
Trees.c builds the expression trees, and computes the node types. Optim.c does some machine indepen-
dent optimizations on the expression trees. Comm1.c includes common , that contains service routines
common to the two passes of the compiler. All the above files are machine independent. The files
local.c and code.c contain machine dependent code for generating subroutine prologs, switch code, and
the like.

The second pass is produced by compiling and loading reader.c , allo.c , match.c , comm1.c ,
order.c , local.c , and table.c . Reader.c reads the intermediate file, and controls the major logic of the
code generation. Allo.c keeps track of busy and free registers. Match.c controls the matching of code
templates to subtrees of the expression tree to be compiled. Comm2.c includes the file common , as in
the first pass. The above files are machine independent. Order.c controls the machine dependent details
of the code generation strategy. Local2.c has many small machine dependent routines, and tables of
opcodes, register types, etc. Table.c has the code template tables, which are also clearly machine depen-
dent.

Data Structure Considerations.

This section discusses the node numbers, type words, and expression trees, used throughout both
passes of the compiler.

The file manifest defines those symbols used throughout both passes. The intent is to use the
same symbol name (e.g., MINUS) for the given operator throughout the lexical analysis, parsing, tree
building, and code generation phases; this requires some synchronization with the Yacc input file,
cgram.y , as well.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a unary
or binary operator; clearly, it is necessary to know this by the time the parse tree is constructed. Thus,
an operator (really a macro) called UNARY is provided, so that MINUS and UNARY MINUS are both
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distinct node numbers. Similarly, many binary operators exist in an assignment form (for example, – =),
and the operator ASG may be applied to such node names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary operator
(one descendant) or a binary operator (two descendants). The macro optype(o) returns one of the mani-
fest constants LTYPE, UTYPE, or BITYPE, respectively, depending on the node number o . Similarly,
asgop(o) returns true if o is an assignment operator number (=, +=, etc. ), and logop(o) returns true if o
is a relational or logical (&&, ||, or !) operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with, there are
the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as UCHAR, USHORT,
UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a structure), UNIONTY, and
ENUMTY. Then, there are three operators that can be applied to types to make others: if t is a type,
we may potentially have types pointer to t , function returning t , and array of t’s generated from t .
Thus, an arbitrary type in C consists of a basic type, and zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold the basic
type, and the remaining bits are divided into two-bit fields, containing 0 (no operator), or one of the
three operators described above. The modifiers are read right to left in the word, starting with the two-
bit field adjacent to the basic type, until a field with 0 in it is reached. The macros PTR, FTN, and
ARY represent the pointer to , function returning , and array of operators. The macro values are shifted
so that they align with the first two-bit field; thus PTR+INT represents the type for an integer pointer,
and

ARY + (PTR<<2) + (FTN<<4) + DOUBLE

represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives the
basic type. ISPTR(t) , ISARY(t) , and ISFTN(t) ask if an object of this type is a pointer, array, or a func-
tion, respectively. MODTYPE(t,b) sets the basic type of t to b . DECREF(t) gives the type resulting
from removing the first operator from t . Thus, if t is a pointer to t’ , a function returning t’ , or an array
of t’ , then DECREF(t) would equal t’ . INCREF(t) gives the type representing a pointer to t . Finally,
there are operators for dealing with the unsigned types. ISUNSIGNED(t) returns true if t is one of the
four basic unsigned types; in this case, DEUNSIGN(t) gives the associated ‘signed’ type. Similarly,
UNSIGNABLE(t) returns true if t is one of the four basic types that could become unsigned, and
ENUNSIGN(t) returns the unsigned analogue of t in this case.

The other important global data structure is that of expression trees. The actual shapes of the
nodes are given in mfile1 and mfile2 . They are not the same in the two passes; the first pass nodes con-
tain dimension and size information, while the second pass nodes contain register allocation information.
Nevertheless, all nodes contain fields called op , containing the node number, and type , containing the
type word. A function called talloc() returns a pointer to a new tree node. To free a node, its op field
need merely be set to FREE. The other fields in the node will remain intact at least until the next allo-
cation.

Nodes representing binary operators contain fields, left and right , that contain pointers to the left
and right descendants. Unary operator nodes have the left field, and a value field called rval . Leaf
nodes, with no descendants, have two value fields: lval and rval .

At appropriate times, the function tcheck() can be called, to check that there are no busy nodes
remaining. This is used as a compiler consistency check. The function tcopy(p) takes a pointer p that
points to an expression tree, and returns a pointer to a disjoint copy of the tree. The function walkf(p,f)
performs a postorder walk of the tree pointed to by p , and applies the function f to each node. The
function fwalk(p,f,d) does a preorder walk of the tree pointed to by p . At each node, it calls a function
f , passing to it the node pointer, a value passed down from its ancestor, and two pointers to values to be
passed down to the left and right descendants (if any). The value d is the value passed down to the
root. Fwalk is used for a number of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be discussed
later.
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Pass One

The first pass does lexical analysis, parsing, symbol table maintenance, tree building, optimization,
and a number of machine dependent things. This pass is largely machine independent, and the machine
independent sections can be pretty successfully ignored. Thus, they will be only sketched here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the tokens of
the C language as it encounters them: names, constants, operators, and keywords. The conceptual sim-
plicity of this job is confounded a bit by several other simple jobs that unfortunately must go on simul-
taneously. These include

• Keeping track of the current filename and line number, and occasionally setting this information as
the result of preprocessor control lines.

• Skipping comments.

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well as char-
acter strings.

To achieve speed, the program maintains several tables that are indexed into by character value, to
tell the lexical analyzer what to do next. To achieve portability, these tables must be initialized each
time the compiler is run, in order that the table entries reflect the local character set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar on file cgram.y. The
grammar is relatively readable, but contains some unusual features that are worth comment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The problem is to
keep track of the basic type and the storage class while interpreting the various stars, brackets, and
parentheses that may surround a given name. The entire declaration mechanism must be recursive, since
declarations may appear within declarations of structures and unions, or even within a sizeof construc-
tion inside a dimension in another declaration!

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to handle con-
structions where a lot of left context information must be kept around. The problem is that the original
PDP-11 compiler is top-down in implementation, and some of the semantics of C reflect this. In a top-
down parser, the input rules are restricted somewhat, but one can naturally associate temporary storage
with a rule at a very early stage in the recognition of that rule. In a bottom-up parser, there is more
freedom in the specification of rules, but it is more difficult to know what rule is being matched until
the entire rule is seen. The parser described by cgram.c makes effective use of the bottom-up parsing
mechanism in some places (notably the treatment of expressions), but struggles against the restrictions in
others. The usual result is that it is necessary to run a stack of values ‘‘on the side’’, independent of the
Yacc value stack, in order to be able to store and access information deep within inner constructions,
where the relationship of the rules being recognized to the total picture is not yet clear.

In the case of declarations, the attribute information (type, etc.) for a declaration is carefully kept
immediately to the left of the declarator (that part of the declaration involving the name). In this way,
when it is time to declare the name, the name and the type information can be quickly brought together.
The ‘‘$0’’ mechanism of Yacc is used to accomplish this. The result is not pretty, but it works. The
storage class information changes more slowly, so it is kept in an external variable, and stacked if neces-
sary. Some of the grammar could be considerably cleaned up by using some more recent features of
Yacc, notably actions within rules and the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a break or con-
tinue statement is processed.

This use of external stacks dates from the time when Yacc did not permit values to be structures.
Some, or most, of this use of external stacks could be eliminated by redoing the grammar to use the
mechanisms now provided. There are some areas, however, particularly the processing of structure,
union, and enum declarations, function prologs, and switch statement processing, when having all the
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affected data together in an array speeds later processing; in this case, use of external storage seems
essential.

The cgram.y file also contains some small functions used as utility functions in the parser. These
include routines for saving case values and labels in processing switches, and stacking and popping
values on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number of storage classes available. One of the compiler
design decisions was to process the storage class information totally in the first pass; by the second pass,
this information must have been totally dealt with. This means that all of the storage allocation must
take place in the first pass, so that references to automatics and parameters can be turned into references
to cells lying a certain number of bytes offset from certain machine registers. Much of this transforma-
tion is machine dependent, and strongly depends on the storage class.

The classes include EXTERN (for externally declared, but not defined variables), EXTDEF (for
external definitions), and similar distinctions for USTATIC and STATIC, UFORTRAN and FORTRAN
(for fortran functions) and ULABEL and LABEL. The storage classes REGISTER and AUTO are obvi-
ous, as are STNAME, UNAME, and ENAME (for structure, union, and enumeration tags), and the asso-
ciated MOS, MOU, and MOE (for the members). TYPEDEF is treated as a storage class as well.
There are two special storage classes: PARAM and SNULL. SNULL is used to distinguish the case
where no explicit storage class has been given; before an entry is made in the symbol table the true
storage class is discovered. Similarly, PARAM is used for the temporary entry in the symbol table
made before the declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate storage class
is kept for each width bit field; a k bit bit field has storage class k plus FIELD. This enables the size to
be quickly recovered from the storage class.

Symbol Table Maintenance.

The symbol table routines do far more than simply enter names into the symbol table; consider-
able semantic processing and checking is done as well. For example, if a new declaration comes in, it
must be checked to see if there is a previous declaration of the same symbol. If there is, there are many
cases. The declarations may agree and be compatible (for example, an extern declaration can appear
twice) in which case the new declaration is ignored. The new declaration may add information (such as
an explicit array dimension) to an already present declaration. The new declaration may be different,
but still correct (for example, an extern declaration of something may be entered, and then later the
definition may be seen). The new declaration may be incompatible, but appear in an inner block; in this
case, the old declaration is carefully hidden away, and the new one comes into force until the block is
left. Finally, the declarations may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the user is not
always the type entered into the symbol table (for example, if an formal parameter to a function is
declared to be an array, C requires that this be changed into a pointer before entry in the symbol table).
Moreover, there are various kinds of illegal types that may be declared which are difficult to check for
syntactically (for example, a function returning an array). Finally, there is a strange feature in C that
requires structure tag names and member names for structures and unions to be taken from a different
logical symbol table than ordinary identifiers. Keeping track of which kind of name is involved is a bit
of struggle (consider typedef names used within structure declarations, for example).

The symbol table handling routines have been rewritten a number of times to extend features,
improve performance, and fix bugs. They address the above problems with reasonable effectiveness but
a singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called, together with a
flag which tells which symbol table should be searched (actually, both symbol tables are stored in one,
and a flag is used to distinguish individual entries). If the name is found, lookup returns the index to
the entry found; otherwise, it makes a new entry, marks it UNDEF (undefined), and returns the index of
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the new entry. This index is stored in the rval field of a NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY MUL
nodes for each *, LB nodes for each array descriptor (the right descendant has the dimension), and
UNARY CALL nodes for each function descriptor. This tree is passed to the routine tymerge , along
with the attribute type of the whole declaration; this routine collapses the tree to a single node, by cal-
ling tyreduce , and then modifies the type to reflect the overall type of the declaration.

Dimension and size information is stored in a table called dimtab . To properly describe a type in
C, one needs not just the type information but also size information (for structures and enums) and
dimension information (for arrays). Sizes and offsets are dealt with in the compiler by giving the asso-
ciated indices into dimtab . Tymerge and tyreduce call dstash to put the discovered dimensions away
into the dimtab array. Tymerge returns a pointer to a single node that contains the symbol table index
in its rval field, and the size and dimension indices in fields csiz and cdim , respectively. This informa-
tion is properly considered part of the type in the first pass, and is carried around at all times.

To enter an element into the symbol table, the routine defid is called; it is handed a storage class,
and a pointer to the node produced by tymerge . Defid calls fixtype , which adjusts and checks the given
type depending on the storage class, and converts null types appropriately. It then calls fixclass , which
does a similar job for the storage class; it is here, for example, that register declarations are either
allowed or changed to auto.

The new declaration is now compared against an older one, if present, and several pages of vali-
dity checks performed. If the definitions are compatible, with possibly some added information, the pro-
cessing is straightforward. If the definitions differ, the block levels of the current and the old declaration
are compared. The current block level is kept in blevel , an external variable; the old declaration level is
kept in the symbol table. Block level 0 is for external declarations, 1 is for arguments to functions, and
2 and above are blocks within a function. If the current block level is the same as the old declaration,
an error results. If the current block level is higher, the new declaration overrides the old. This is done
by marking the old symbol table entry ‘‘hidden’’, and making a new entry, marked ‘‘hiding’’. Lookup
will skip over hidden entries. When a block is left, the symbol table is searched, and any entries defined
in that block are destroyed; if they hid other entries, the old entries are ‘‘unhidden’’.

This nice block structure is warped a bit because labels do not follow the block structure rules
(one can do a goto into a block, for example); default definitions of functions in inner blocks also persist
clear out to the outermost scope. This implies that cleaning up the symbol table after block exit is more
subtle than it might first seem.

For successful new definitions, defid also initializes a ‘‘general purpose’’ field, offset , in the sym-
bol table. It contains the stack offset for automatics and parameters, the register number for register
variables, the bit offset into the structure for structure members, and the internal label number for static
variables and labels. The offset field is set by falloc for bit fields, and dclstruct for structures and
unions.

The symbol table entry itself thus contains the name, type word, size and dimension offsets, offset
value, and declaration block level. It also has a field of flags, describing what symbol table the name is
in, and whether the entry is hidden, or hides another. Finally, a field gives the line number of the last
use, or of the definition, of the name. This is used mainly for diagnostics, but is useful to lint as well.

In some special cases, there is more than the above amount of information kept for the use of the
compiler. This is especially true with structures; for use in initialization, structure declarations must
have access to a list of the members of the structure. This list is also kept in dimtab . Because a struc-
ture can be mentioned long before the members are known, it is necessary to have another level of
indirection in the table. The two words following the csiz entry in dimtab are used to hold the align-
ment of the structure, and the index in dimtab of the list of members. This list contains the symbol
table indices for the structure members, terminated by a – 1.
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Tree Building

The portable compiler transforms expressions into expression trees. As the parser recognizes each
rule making up an expression, it calls buildtree which is given an operator number, and pointers to the
left and right descendants. Buildtree first examines the left and right descendants, and, if they are both
constants, and the operator is appropriate, simply does the constant computation at compile time, and
returns the result as a constant. Otherwise, buildtree allocates a node for the head of the tree, attaches
the descendants to it, and ensures that conversion operators are generated if needed, and that the type of
the new node is consistent with the types of the operands. There is also a considerable amount of
semantic complexity here; many combinations of types are illegal, and the portable compiler makes a
strong effort to check the legality of expression types completely. This is done both for lint purposes,
and to prevent such semantic errors from being passed through to the code generator.

The heart of buildtree is a large table, accessed by the routine opact . This routine maps the types
of the left and right operands into a rather smaller set of descriptors, and then accesses a table (actually
encoded in a switch statement) which for each operator and pair of types causes an action to be returned.
The actions are logical or’s of a number of separate actions, which may be carried out by buildtree .
These component actions may include checking the left side to ensure that it is an lvalue (can be stored
into), applying a type conversion to the left or right operand, setting the type of the new node to the
type of the left or right operand, calling various routines to balance the types of the left and right
operands, and suppressing the ordinary conversion of arrays and function operands to pointers. An
important operation is OTHER, which causes some special code to be invoked in buildtree , to handle
issues which are unique to a particular operator. Examples of this are structure and union reference
(actually handled by the routine stref ), the building of NAME, ICON, STRING and FCON (floating
point constant) nodes, unary * and &, structure assignment, and calls. In the case of unary * and &,
buildtree will cancel a * applied to a tree, the top node of which is &, and conversely.

Another special operation is PUN; this causes the compiler to check for type mismatches, such as
intermixing pointers and integers.

The treatment of conversion operators is still a rather strange area of the compiler (and of C!).
The recent introduction of type casts has only confounded this situation. Most of the conversion opera-
tors are generated by calls to tymatch and ptmatch , both of which are given a tree, and asked to make
the operands agree in type. Ptmatch treats the case where one of the operands is a pointer; tymatch
treats all other cases. Where these routines have decided on the proper type for an operand, they call
makety , which is handed a tree, and a type word, dimension offset, and size offset. If necessary, it
inserts a conversion operation to make the types correct. Conversion operations are never inserted on
the left side of assignment operators, however. There are two conversion operators used; PCONV, if the
conversion is to a non-basic type (usually a pointer), and SCONV, if the conversion is to a basic type
(scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a machine depen-
dent routine, clocal , immediately after it is produced. This is to allow more or less immediate rewriting
of those nodes which must be adapted for the local machine. The conversion operations are given to
clocal as well; on most machines, many of these conversions do nothing, and should be thrown away
(being careful to retain the type). If this operation is done too early, however, later calls to buildtree
may get confused about correct type of the subtrees; thus clocal is given the conversion ops only after
the entire tree is built. This topic will be dealt with in more detail later.

Initialization

Initialization is one of the messier areas in the portable compiler. The only consolation is that
most of the mess takes place in the machine independent part, where it is may be safely ignored by the
implementor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine structure; one
collection of programs reading constants from the input stream, while another, independent set of pro-
grams places these constants into the appropriate spots in memory. The dramatic differences in the local
assemblers also come to the fore here. The parsing problems are dealt with by keeping a rather
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extensive stack containing the current state of the initialization; the assembler problems are dealt with by
having a fair number of machine dependent routines.

The stack contains the symbol table number, type, dimension index, and size index for the current
identifier being initialized. Another entry has the offset, in bits, of the beginning of the current
identifier. Another entry keeps track of how many elements have been seen, if the current identifier is
an array. Still another entry keeps track of the current member of a structure being initialized. Finally,
there is an entry containing flags which keep track of the current state of the initialization process (e.g.,
tell if a } has been seen for the current identifier.)

When an initialization begins, the routine beginit is called; it handles the alignment restrictions, if
any, and calls instk to create the stack entry. This is done by first making an entry on the top of the
stack for the item being initialized. If the top entry is an array, another entry is made on the stack for
the first element. If the top entry is a structure, another entry is made on the stack for the first member
of the structure. This continues until the top element of the stack is a scalar. Instk then returns, and the
parser begins collecting initializers.

When a constant is obtained, the routine doinit is called; it examines the stack, and does whatever
is necessary to assign the current constant to the scalar on the top of the stack. gotscal is then called,
which rearranges the stack so that the next scalar to be initialized gets placed on top of the stack. This
process continues until the end of the initializers; endinit cleans up. If a { or } is encountered in the
string of initializers, it is handled by calling ilbrace or irbrace , respectively.

A central issue is the treatment of the ‘‘holes’’ that arise as a result of alignment restrictions or
explicit requests for holes in bit fields. There is a global variable, inoff , which contains the current
offset in the initialization (all offsets in the first pass of the compiler are in bits). Doinit figures out
from the top entry on the stack the expected bit offset of the next identifier; it calls the machine depen-
dent routine inforce which, in a machine dependent way, forces the assembler to set aside space if need
be so that the next scalar seen will go into the appropriate bit offset position. The scalar itself is passed
to one of the machine dependent routines fincode (for floating point initialization), incode (for fields,
and other initializations less than an int in size), and cinit (for all other initializations). The size is
passed to all these routines, and it is up to the machine dependent routines to ensure that the initializer
occupies exactly the right size.

Character strings represent a bit of an exception. If a character string is seen as the initializer for
a pointer, the characters making up the string must be put out under a different location counter. When
the lexical analyzer sees the quote at the head of a character string, it returns the token STRING, but
does not do anything with the contents. The parser calls getstr , which sets up the appropriate location
counters and flags, and calls lxstr to read and process the contents of the string.

If the string is being used to initialize a character array, lxstr calls putbyte , which in effect simu-
lates doinit for each character read. If the string is used to initialize a character pointer, lxstr calls a
machine dependent routine, bycode , which stashes away each character. The pointer to this string is
then returned, and processed normally by doinit .

The null at the end of the string is treated as if it were read explicitly by lxstr .

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and statements.
The statement processing is relatively simple; most of it is carried out in the parser directly. Most of the
logic is concerned with allocating label numbers, defining the labels, and branching appropriately. An
external symbol, reached , is 1 if a statement can be reached, 0 otherwise; this is used to do a bit of sim-
ple flow analysis as the program is being parsed, and also to avoid generating the subroutine return
sequence if the subroutine cannot ‘‘fall through’’ the last statement.

Conditional branches are handled by generating an expression node, CBRANCH, whose left des-
cendant is the conditional expression and the right descendant is an ICON node containing the internal
label number to be branched to. For efficiency, the semantics are that the label is gone to if the condi-
tion is false .
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The switch statement is compiled by collecting the case entries, and an indication as to whether
there is a default case; an internal label number is generated for each of these, and remembered in a big
array. The expression comprising the value to be switched on is compiled when the switch keyword is
encountered, but the expression tree is headed by a special node, FORCE, which tells the code generator
to put the expression value into a special distinguished register (this same mechanism is used for pro-
cessing the return statement). When the end of the switch block is reached, the array containing the
case values is sorted, and checked for duplicate entries (an error); if all is correct, the machine depen-
dent routine genswitch is called, with this array of labels and values in increasing order. Genswitch can
assume that the value to be tested is already in the register which is the usual integer return value regis-
ter.

Optimization

There is a machine independent file, optim.c , which contains a relatively short optimization rou-
tine, optim . Actually the word optimization is something of a misnomer; the results are not optimum,
only improved, and the routine is in fact not optional; it must be called for proper operation of the com-
piler.

Optim is called after an expression tree is built, but before the code generator is called. The
essential part of its job is to call clocal on the conversion operators. On most machines, the treatment
of & is also essential: by this time in the processing, the only node which is a legal descendant of & is
NAME. (Possible descendants of * have been eliminated by buildtree.) The address of a static name is,
almost by definition, a constant, and can be represented by an ICON node on most machines (provided
that the loader has enough power). Unfortunately, this is not universally true; on some machine, such as
the IBM 370, the issue of addressability rears its ugly head; thus, before turning a NAME node into an
ICON node, the machine dependent function andable is called.

The optimization attempts of optim are currently quite limited. It is primarily concerned with
improving the behavior of the compiler with operations one of whose arguments is a constant. In the
simplest case, the constant is placed on the right if the operation is commutative. The compiler also
makes a limited search for expressions such as

( x + a ) + b

where a and b are constants, and attempts to combine a and b at compile time. A number of special
cases are also examined; additions of 0 and multiplications by 1 are removed, although the correct pro-
cessing of these cases to get the type of the resulting tree correct is decidedly nontrivial. In some cases,
the addition or multiplication must be replaced by a conversion op to keep the types from becoming
fouled up. Finally, in cases where a relational operation is being done, and one operand is a constant,
the operands are permuted, and the operator altered, if necessary, to put the constant on the right.
Finally, multiplications by a power of 2 are changed to shifts.

There are dozens of similar optimizations that can be, and should be, done. It seems likely that
this routine will be expanded in the relatively near future.

Machine Dependent Stuff

A number of the first pass machine dependent routines have been discussed above. In general, the
routines are short, and easy to adapt from machine to machine. The two exceptions to this general rule
are clocal and the function prolog and epilog generation routines, bfcode and efcode .

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by buildtree .
There are two major areas where this is important; NAME nodes and conversion operations. In the case
of NAME nodes, clocal must rewrite the NAME node to reflect the actual physical location of the name
in the machine. In effect, the NAME node must be examined, the symbol table entry found (through the
rval field of the node), and, based on the storage class of the node, the tree must be rewritten.
Automatic variables and parameters are typically rewritten by treating the reference to the variable as a
structure reference, off the register which holds the stack or argument pointer; the stref routine is set up
to be called in this way, and to build the appropriate tree. In the most general case, the tree consists of
a unary * node, whose descendant is a + node, with the stack or argument register as left operand, and a
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constant offset as right operand. In the case of LABEL and internal static nodes, the rval field is rewrit-
ten to be the negative of the internal label number; a negative rval field is taken to be an internal label
number. Finally, a name of class REGISTER must be converted into a REG node, and the rval field
replaced by the register number. In fact, this part of the clocal routine is nearly machine independent;
only for machines with addressability problems (IBM 370 again!) does it have to be noticeably different,

The conversion operator treatment is rather tricky. It is necessary to handle the application of
conversion operators to constants in clocal , in order that all constant expressions can have their values
known at compile time. In extreme cases, this may mean that some simulation of the arithmetic of the
target machine might have to be done in a cross-compiler. In the most common case, conversions from
pointer to pointer do nothing. For some machines, however, conversion from byte pointer to short or
long pointer might require a shift or rotate operation, which would have to be generated here.

The extension of the portable compiler to machines where the size of a pointer depends on its type
would be straightforward, but has not yet been done.

The other major machine dependent issue involves the subroutine prolog and epilog generation.
The hard part here is the design of the stack frame and calling sequence; this design issue is discussed
elsewhere.5 The routine bfcode is called with the number of arguments the function is defined with, and
an array containing the symbol table indices of the declared parameters. Bfcode must generate the code
to establish the new stack frame, save the return address and previous stack pointer value on the stack,
and save whatever registers are to be used for register variables. The stack size and the number of
register variables is not known when bfcode is called, so these numbers must be referred to by assem-
bler constants, which are defined when they are known (usually in the second pass, after all register vari-
ables, automatics, and temporaries have been seen). The final job is to find those parameters which may
have been declared register, and generate the code to initialize the register with the value passed on the
stack. Once again, for most machines, the general logic of bfcode remains the same, but the contents of
the printf calls in it will change from machine to machine. efcode is rather simpler, having just to gen-
erate the default return at the end of a function. This may be nontrivial in the case of a function return-
ing a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as good a
place as any. The C language now supports structure assignment, and the passing of structures as argu-
ments to functions, and the receiving of structures back from functions. This was added rather late to C,
and thus to the portable compiler. Consequently, it fits in less well than the older features. Moreover,
most of the burden of making these features work is placed on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is structured around
the idea that to compute something, you put it into a register and work on it. This notion causes a bit of
trouble on some machines (e.g., machines with 3-address opcodes), but matches many machines quite
well. Unfortunately, this notion breaks down with structures. The closest that one can come is to keep
the addresses of the structures in registers. The actual code sequences used to move structures vary
from the trivial (a multiple byte move) to the horrible (a function call), and are very machine dependent.

The practical problem is more painful. When a function returning a structure is called, this func-
tion has to have some place to put the structure value. If it places it on the stack, it has difficulty pop-
ping its stack frame. If it places the value in a static temporary, the routine fails to be reentrant. The
most logically consistent way of implementing this is for the caller to pass in a pointer to a spot where
the called function should put the value before returning. This is relatively straightforward, although a
bit tedious, to implement, but means that the caller must have properly declared the function type, even
if the value is never used. On some machines, such as the Interdata 8/32, the return value simply over-
lays the argument region (which on the 8/32 is part of the caller’s stack frame). The caller takes care of
leaving enough room if the returned value is larger than the arguments. This also assumes that the
caller know and declares the function properly.

The PDP-11 and the VAX have stack hardware which is used in function calls and returns; this
makes it very inconvenient to use either of the above mechanisms. In these machines, a static area
within the called functionis allocated, and the function return value is copied into it on return; the func-
tion returns the address of that region. This is simple to implement, but is non-reentrant. However, the
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function can now be called as a subroutine without being properly declared, without the disaster which
would otherwise ensue. No matter what choice is taken, the convention is that the function actually
returns the address of the return structure value.

In building expression trees, the portable compiler takes a bit for granted about structures. It
assumes that functions returning structures actually return a pointer to the structure, and it assumes that a
reference to a structure is actually a reference to its address. The structure assignment operator is rebuilt
so that the left operand is the structure being assigned to, but the right operand is the address of the
structure being assigned; this makes it easier to deal with

a = b = c

and similar constructions.

There are four special tree nodes associated with these operations: STASG (structure assignment),
STARG (structure argument to a function call), and STCALL and UNARY STCALL (calls of a function
with nonzero and zero arguments, respectively). These four nodes are unique in that the size and align-
ment information, which can be determined by the type for all other objects in C, must be known to
carry out these operations; special fields are set aside in these nodes to contain this information, and spe-
cial intermediate code is used to transmit this information.

First Pass Summary

There are may other issues which have been ignored here, partly to justify the title ‘‘tour’’, and
partially because they have seemed to cause little trouble. There are some debugging flags which may
be turned on, by giving the compiler’s first pass the argument

– X[flags]

Some of the more interesting flags are – Xd for the defining and freeing of symbols, – Xi for initializa-
tion comments, and – Xb for various comments about the building of trees. In many cases, repeating the
flag more than once gives more information; thus, – Xddd gives more information than – Xd. In the two
pass version of the compiler, the flags should not be set when the output is sent to the second pass,
since the debugging output and the intermediate code both go onto the standard output.

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this reason the
second pass is far harder to discuss in a file by file manner. A great deal of the difficulty is in under-
standing the issues and the strategies employed to meet them. Any particular function is likely to be
reasonably straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy in the
code generator, and will not get too intimate with the details.

Overview.

It is difficult to organize a code generator to be flexible enough to generate code for a large
number of machines, and still be efficient for any one of them. Flexibility is also important when it
comes time to tune the code generator to improve the output code quality. On the other hand, too much
flexibility can lead to semantically incorrect code, and potentially a combinatorial explosion in the
number of cases to be considered in the compiler.

One goal of the code generator is to have a high degree of correctness. It is very desirable to
have the compiler detect its own inability to generate correct code, rather than to produce incorrect code.
This goal is achieved by having a simple model of the job to be done (e.g., an expression tree) and a
simple model of the machine state (e.g., which registers are free). The act of generating an instruction
performs a transformation on the tree and the machine state; hopefully, the tree eventually gets reduced
to a single node. If each of these instruction/transformation pairs is correct, and if the machine state
model really represents the actual machine, and if the transformations reduce the input tree to the desired
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single node, then the output code will be correct.

For most real machines, there is no definitive theory of code generation that encompasses all the C
operators. Thus the selection of which instruction/transformations to generate, and in what order, will
have a heuristic flavor. If, for some expression tree, no transformation applies, or, more seriously, if the
heuristics select a sequence of instruction/transformations that do not in fact reduce the tree, the com-
piler will report its inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations, — most
of this is machine independent, or depends only on simple tables. The flexibility comes from the heuris-
tics that guide the transformations of the trees, the selection of subgoals, and the ordering of the compu-
tation.

The Machine Model

The machine is assumed to have a number of registers, of at most two different types: A and B .
Within each register class, there may be scratch (temporary) registers and dedicated registers (e.g., regis-
ter variables, the stack pointer, etc.). Requests to allocate and free registers involve only the temporary
registers.

Each of the registers in the machine is given a name and a number in the mac2defs file; the
numbers are used as indices into various tables that describe the registers, so they should be kept small.
One such table is the rstatus table on file local2.c . This table is indexed by register number, and con-
tains expressions made up from manifest constants describing the register types: SAREG for dedicated
AREG’s, SAREG|STAREG for scratch AREGS’s, and SBREG and SBREG|STBREG similarly for
BREG’s. There are macros that access this information: isbreg(r) returns true if register number r is a
BREG, and istreg(r) returns true if register number r is a temporary AREG or BREG. Another table,
rnames , contains the register names; this is used when putting out assembler code and diagnostics.

The usage of registers is kept track of by an array called busy . Busy[r] is the number of uses of
register r in the current tree being processed. The allocation and freeing of registers will be discussed
later as part of the code generation algorithm.

General Organization

As mentioned above, the second pass reads lines from the intermediate file, copying through to the
output unchanged any lines that begin with a ‘)’, and making note of the information about stack usage
and register allocation contained on lines beginning with ‘]’ and ‘[’. The expression trees, whose begin-
ning is indicated by a line beginning with ‘.’, are read and rebuilt into trees. If the compiler is loaded as
one pass, the expression trees are immediately available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first given the
tree; it attempts to delay some postfix ++ and – – computations that might reasonably be done after the
smoke clears. It also attempts to handle comma (,) operators by computing the left side expression first,
and then rewriting the tree to eliminate the operator. Delay calls codgen to control the actual code gen-
eration process. Codgen takes as arguments a pointer to the expression tree, and a second argument
that, for socio-historical reasons, is called a cookie . The cookie describes a set of goals that would be
acceptable for the code generation: these are assigned to individual bits, so they may be logically or’ed
together to form a large number of possible goals. Among the possible goals are FOREFF (compute for
side effects only; don’t worry about the value), INTEMP (compute and store value into a temporary
location in memory), INAREG (compute into an A register), INTAREG (compute into a scratch A regis-
ter), INBREG and INTBREG similarly, FORCC (compute for condition codes), and FORARG (compute
it as a function argument; e.g., stack it if appropriate).

Codgen first canonicalizes the tree by calling canon . This routine looks for certain transforma-
tions that might now be applicable to the tree. One, which is very common and very powerful, is to
fold together an indirection operator (UNARY MUL) and a register (REG); in most machines, this com-
bination is addressable directly, and so is similar to a NAME in its behavior. The UNARY MUL and
REG are folded together to make another node type called OREG. In fact, in many machines it is possi-
ble to directly address not just the cell pointed to by a register, but also cells differing by a constant
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offset from the cell pointed to by the register. Canon also looks for such cases, calling the machine
dependent routine notoff to decide if the offset is acceptable (for example, in the IBM 370 the offset
must be between 0 and 4095 bytes). Another optimization is to replace bit field operations by shifts and
masks if the operation involves extracting the field. Finally, a machine dependent routine, sucomp , is
called that computes the Sethi-Ullman numbers for the tree (see below).

After the tree is canonicalized, codgen calls the routine store whose job is to select a subtree of
the tree to be computed and (usually) stored before beginning the computation of the full tree. Store
must return a tree that can be computed without need for any temporary storage locations. In effect, the
only store operations generated while processing the subtree must be as a response to explicit assign-
ment operators in the tree. This division of the job marks one of the more significant, and successful,
departures from most other compilers. It means that the code generator can operate under the assump-
tion that there are enough registers to do its job, without worrying about temporary storage. If a store
into a temporary appears in the output, it is always as a direct result of logic in the store routine; this
makes debugging easier.

One consequence of this organization is that code is not generated by a treewalk. There are
theoretical results that support this decision.7 It may be desirable to compute several subtrees and store
them before tackling the whole tree; if a subtree is to be stored, this is known before the code generation
for the subtree is begun, and the subtree is computed when all scratch registers are available.

The store routine decides what subtrees, if any, should be stored by making use of numbers,
called Sethi-Ullman numbers , that give, for each subtree of an expression tree, the minimum number of
scratch registers required to compile the subtree, without any stores into temporaries.8 These numbers
are computed by the machine-dependent routine sucomp , called by canon . The basic notion is that,
knowing the Sethi-Ullman numbers for the descendants of a node, and knowing the operator of the node
and some information about the machine, the Sethi-Ullman number of the node itself can be computed.
If the Sethi-Ullman number for a tree exceeds the number of scratch registers available, some subtree
must be stored. Unfortunately, the theory behind the Sethi-Ullman numbers applies only to uselessly
simple machines and operators. For the rich set of C operators, and for machines with asymmetric
registers, register pairs, different kinds of registers, and exceptional forms of addressing, the theory can-
not be applied directly. The basic idea of estimation is a good one, however, and well worth applying;
the application, especially when the compiler comes to be tuned for high code quality, goes beyond the
park of theory into the swamp of heuristics. This topic will be taken up again later, when more of the
compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored, and
returns the subtree and the associated cookie in the external variables stotree and stocook . If a subtree
has been selected, or if the whole tree is ready to be processed, the routine order is called, with a tree
and cookie. Order generates code for trees that do not require temporary locations. Order may make
recursive calls on itself, and, in some cases, on codgen ; for example, when processing the operators
&&, ||, and comma (‘,’), that have a left to right evaluation, it is incorrect for store examine the right
operand for subtrees to be stored. In these cases, order will call codgen recursively when it is permissi-
ble to work on the right operand. A similar issue arises with the ? : operator.

The order routine works by matching the current tree with a set of code templates. If a template
is discovered that will match the current tree and cookie, the associated assembly language statement or
statements are generated. The tree is then rewritten, as specified by the template, to represent the effect
of the output instruction(s). If no template match is found, first an attempt is made to find a match with
a different cookie; for example, in order to compute an expression with cookie INTEMP (store into a
temporary storage location), it is usually necessary to compute the expression into a scratch register first.
If all attempts to match the tree fail, the heuristic part of the algorithm becomes dominant. Control is
typically given to one of a number of machine-dependent routines that may in turn recursively call
order to achieve a subgoal of the computation (for example, one of the arguments may be computed
into a temporary register). After this subgoal has been achieved, the process begins again with the
modified tree. If the machine-dependent heuristics are unable to reduce the tree further, a number of
default rewriting rules may be considered appropriate. For example, if the left operand of a + is a
scratch register, the + can be replaced by a += operator; the tree may then match a template.
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To close this introduction, we will discuss the steps in compiling code for the expression

a += b

where a and b are static variables.

To begin with, the whole expression tree is examined with cookie FOREFF, and no match is
found. Search with other cookies is equally fruitless, so an attempt at rewriting is made. Suppose we
are dealing with the Interdata 8/32 for the moment. It is recognized that the left hand and right hand
sides of the += operator are addressable, and in particular the left hand side has no side effects, so it is
permissible to rewrite this as

a = a + b

and this is done. No match is found on this tree either, so a machine dependent rewrite is done; it is
recognized that the left hand side of the assignment is addressable, but the right hand side is not in a
register, so order is called recursively, being asked to put the right hand side of the assignment into a
register. This invocation of order searches the tree for a match, and fails. The machine dependent rule
for + notices that the right hand operand is addressable; it decides to put the left operand into a scratch
register. Another recursive call to order is made, with the tree consisting solely of the leaf a , and the
cookie asking that the value be placed into a scratch register. This now matches a template, and a load
instruction is emitted. The node consisting of a is rewritten in place to represent the register into which
a is loaded, and this third call to order returns. The second call to order now finds that it has the tree

reg + b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a += opera-
tor, since the left operand is a scratch register. When this is done, there is a match: in fact,

reg += b

simply describes the effect of the add instruction on a typical machine. After the add is emitted, the tree
is rewritten to consist merely of the register node, since the result of the add is now in the register. This
agrees with the cookie passed to the second invocation of order , so this invocation terminates, returning
to the first level. The original tree has now become

a = reg

which matches a template for the store instruction. The store is output, and the tree rewritten to become
just a single register node. At this point, since the top level call to order was interested only in side
effects, the call to order returns, and the code generation is completed; we have generated a load, add,
and store, as might have been expected.

The effect of machine architecture on this is considerable. For example, on the Honeywell 6000,
the machine dependent heuristics recognize that there is an ‘‘add to storage’’ instruction, so the strategy
is quite different; b is loaded in to a register, and then an add to storage instruction generated to add
this register in to a . The transformations, involving as they do the semantics of C, are largely machine
independent. The decisions as to when to use them, however, are almost totally machine dependent.

Having given a broad outline of the code generation process, we shall next consider the heart of it:
the templates. This leads naturally into discussions of template matching and register allocation, and
finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of computation
around which the compiler is organized. In effect, each template has five logical sections, and
represents an assertion of the form:

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve (2),
and we have sufficient free resources (3), then we may emit an instruction or instructions (4), and
rewrite the subtree in a particular manner (5), and the rewritten tree will achieve the desired goals.
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These five sections will be discussed in more detail later. First, we give an example of a tem-
plate:

ASG PLUS, INAREG,
SAREG, TINT,
SNAME, TINT,

0, RLEFT,
" add AL,AR\n",

The top line specifies the operator (+=) and the cookie (compute the value of the subtree into an
AREG). The second and third lines specify the left and right descendants, respectively, of the += opera-
tor. The left descendant must be a REG node, representing an A register, and have integer type, while
the right side must be a NAME node, and also have integer type. The fourth line contains the resource
requirements (no scratch registers or temporaries needed), and the rewriting rule (replace the subtree by
the left descendant). Finally, the quoted string on the last line represents the output to the assembler:
lower case letters, tabs, spaces, etc. are copied verbatim . to the output; upper case letters trigger various
macro-like expansions. Thus, AL would expand into the Address form of the Left operand — presum-
ably the register number. Similarly, AR would expand into the name of the right operand. The add
instruction of the last section might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations of opera-
tors, cookies, types, and shapes. In practice, the number of combinations is very large. Thus, a consid-
erable amount of mechanism is present to permit a large number of subtrees to be matched by a single
template. Most of the shape and type specifiers are individual bits, and can be logically or’ed together.
There are a number of special descriptors for matching classes of operators. The cookies can also be
combined. As an example of the kind of template that really arises in practice, the actual template for
the Interdata 8/32 that subsumes the above example is:

ASG OPSIMP, INAREG|FORCC,
SAREG, TINT|TUNSIGNED|TPOINT,
SAREG|SNAME|SOREG|SCON, TINT|TUNSIGNED|TPOINT,

0, RLEFT|RESCC,
" OI AL,AR\n",

Here, OPSIMP represents the operators +, – , |, &, and ˆ. The OI macro in the output string expands
into the appropriate Integer Opcode for the operator. The left and right sides can be integers, unsigned,
or pointer types. The right side can be, in addition to a name, a register, a memory location whose
address is given by a register and displacement (OREG), or a constant. Finally, these instructions set
the condition codes, and so can be used in condition contexts: the cookie and rewriting rules reflect
this.

The Template Matching Algorithm.

The heart of the second pass is the template matching algorithm, in the routine match . Match is
called with a tree and a cookie; it attempts to match the given tree against some template that will
transform it according to one of the goals given in the cookie. If a match is successful, the transforma-
tion is applied; expand is called to generate the assembly code, and then reclaim rewrites the tree, and
reclaims the resources, such as registers, that might have become free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of implementation
techniques available for doing this matching. The most naive algorithm simply looks at the templates
one by one. This can be considerably improved upon by restricting the search for an acceptable tem-
plate. It would be possible to do better than this if the templates were given to a separate program that
ate them and generated a template matching subroutine. This would make maintenance of the compiler
much more complicated, however, so this has not been done.

The matching algorithm is actually carried out by restricting the range in the table that must be
searched for each opcode. This introduces a number of complications, however, and needs a bit of sym-
pathetic help by the person constructing the compiler in order to obtain best results. The exact tuning of
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this algorithm continues; it is best to consult the code and comments in match for the latest version.

In order to match a template to a tree, it is necessary to match not only the cookie and the op of
the root, but also the types and shapes of the left and right descendants (if any) of the tree. A conven-
tion is established here that is carried out throughout the second pass of the compiler. If a node
represents a unary operator, the single descendant is always the ‘‘left’’ descendant. If a node represents
a unary operator or a leaf node (no descendants) the ‘‘right’’ descendant is taken by convention to be
the node itself. This enables templates to easily match leaves and conversion operators, for example,
without any additional mechanism in the matching program.

The type matching is straightforward; it is possible to specify any combination of basic types, gen-
eral pointers, and pointers to one or more of the basic types. The shape matching is somewhat more
complicated, but still pretty simple. Templates have a collection of possible operand shapes on which
the opcode might match. In the simplest case, an add operation might be able to add to either a register
variable or a scratch register, and might be able (with appropriate help from the assembler) to add an
integer constant (ICON), a static memory cell (NAME), or a stack location (OREG).

It is usually attractive to specify a number of such shapes, and distinguish between them when the
assembler output is produced. It is possible to describe the union of many elementary shapes such as
ICON, NAME, OREG, AREG or BREG (both scratch and register forms), etc. To handle at least the
simple forms of indirection, one can also match some more complicated forms of trees; STARNM and
STARREG can match more complicated trees headed by an indirection operator, and SFLD can match
certain trees headed by a FLD operator: these patterns call machine dependent routines that match the
patterns of interest on a given machine. The shape SWADD may be used to recognize NAME or
OREG nodes that lie on word boundaries: this may be of some importance on word– addressed
machines. Finally, there are some special shapes: these may not be used in conjunction with the other
shapes, but may be defined and extended in machine dependent ways. The special shapes SZERO,
SONE, and SMONE are predefined and match constants 0, 1, and – 1, respectively; others are easy to
add and match by using the machine dependent routine special .

When a template has been found that matches the root of the tree, the cookie, and the shapes and
types of the descendants, there is still one bar to a total match: the template may call for some resources
(for example, a scratch register). The routine allo is called, and it attempts to allocate the resources. If
it cannot, the match fails; no resources are allocated. If successful, the allocated resources are given
numbers 1, 2, etc. for later reference when the assembly code is generated. The routines expand and
reclaim are then called. The match routine then returns a special value, MDONE. If no match was
found, the value MNOPE is returned; this is a signal to the caller to try more cookie values, or attempt a
rewriting rule. Match is also used to select rewriting rules, although the way of doing this is pretty
straightforward. A special cookie, FORREW, is used to ask match to search for a rewriting rule. The
rewriting rules are keyed to various opcodes; most are carried out in order . Since the question of when
to rewrite is one of the key issues in code generation, it will be taken up again later.

Register Allocation.

The register allocation routines, and the allocation strategy, play a central role in the correctness of
the code generation algorithm. If there are bugs in the Sethi-Ullman computation that cause the number
of needed registers to be underestimated, the compiler may run out of scratch registers; it is essential
that the allocator keep track of those registers that are free and busy, in order to detect such conditions.

Allocation of registers takes place as the result of a template match; the routine allo is called with
a word describing the number of A registers, B registers, and temporary locations needed. The alloca-
tion of temporary locations on the stack is relatively straightforward, and will not be further covered; the
bookkeeping is a bit tricky, but conceptually trivial, and requests for temporary space on the stack will
never fail.

Register allocation is less straightforward. The two major complications are pairing and sharing .
In many machines, some operations (such as multiplication and division), and/or some types (such as
longs or double precision) require even/odd pairs of registers. Operations of the first type are exception-
ally difficult to deal with in the compiler; in fact, their theoretical properties are rather bad as well.9 The



- 18 -

second issue is dealt with rather more successfully; a machine dependent function called szty(t) is called
that returns 1 or 2, depending on the number of A registers required to hold an object of type t . If szty
returns 2, an even/odd pair of A registers is allocated for each request.

The other issue, sharing, is more subtle, but important for good code quality. When registers are
allocated, it is possible to reuse registers that hold address information, and use them to contain the
values computed or accessed. For example, on the IBM 360, if register 2 has a pointer to an integer in
it, we may load the integer into register 2 itself by saying:

L 2,0(2)

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing the tar-
get register first, and then inserting the desired character:

SR 3,3
IC 3,0(2)

In the first case, if register 3 were used as the target, it would lead to a larger number of registers used
for the expression than were required; the compiler would generate inefficient code. On the other hand,
if register 2 were used as the target in the second case, the code would simply be wrong. In the first
case, register 2 can be shared while in the second, it cannot.

In the specification of the register needs in the templates, it is possible to indicate whether
required scratch registers may be shared with possible registers on the left or the right of the input tree.
In order that a register be shared, it must be scratch, and it must be used only once, on the appropriate
side of the tree being compiled.

The allo routine thus has a bit more to do than meets the eye; it calls freereg to obtain a free
register for each A and B register request. Freereg makes multiple calls on the routine usable to decide
if a given register can be used to satisfy a given need. Usable calls shareit if the register is busy, but
might be shared. Finally, shareit calls ushare to decide if the desired register is actually in the
appropriate subtree, and can be shared.

Just to add additional complexity, on some machines (such as the IBM 370) it is possible to have
‘‘double indexing’’ forms of addressing; these are represented by OREGS’s with the base and index
registers encoded into the register field. While the register allocation and deallocation per se is not
made more difficult by this phenomenon, the code itself is somewhat more complex.

Having allocated the registers and expanded the assembly language, it is time to reclaim the
resources; the routine reclaim does this. Many operations produce more than one result. For example,
many arithmetic operations may produce a value in a register, and also set the condition codes. Assign-
ment operations may leave results both in a register and in memory. Reclaim is passed three parame-
ters; the tree and cookie that were matched, and the rewriting field of the template. The rewriting field
allows the specification of possible results; the tree is rewritten to reflect the results of the operation. If
the tree was computed for side effects only (FOREFF), the tree is freed, and all resources in it
reclaimed. If the tree was computed for condition codes, the resources are also freed, and the tree
replaced by a special node type, FORCC. Otherwise, the value may be found in the left argument of the
root, the right argument of the root, or one of the temporary resources allocated. In these cases, first the
resources of the tree, and the newly allocated resources, are freed; then the resources needed by the
result are made busy again. The final result must always match the shape of the input cookie; other-
wise, the compiler error ‘‘cannot reclaim’’ is generated. There are some machine dependent ways of
preferring results in registers or memory when there are multiple results matching multiple goals in the
cookie.

The Machine Dependent Interface

The files order.c , local2.c , and table.c , as well as the header file mac2defs , represent the machine
dependent portion of the second pass. The machine dependent portion can be roughly divided into two:
the easy portion and the hard portion. The easy portion tells the compiler the names of the registers,
and arranges that the compiler generate the proper assembler formats, opcode names, location counters,
etc. The hard portion involves the Sethi– Ullman computation, the rewriting rules, and, to some extent,
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the templates. It is hard because there are no real algorithms that apply; most of this portion is based on
heuristics. This section discusses the easy portion; the next several sections will discuss the hard por-
tion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy part is
indeed easy. In mac2defs , the register numbers are defined, as well as various parameters for the stack
frame, and various macros that describe the machine architecture. If double indexing is to be permitted,
for example, the symbol R2REGS is defined. Also, a number of macros that are involved in function
call processing, especially for unusual function call mechanisms, are defined here.

In local2.c , a large number of simple functions are defined. These do things such as write out
opcodes, register names, and address forms for the assembler. Part of the function call code is defined
here; that is nontrivial to design, but typically rather straightforward to implement. Among the easy rou-
tines in order.c are routines for generating a created label, defining a label, and generating the argu-
ments of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on the target
assembler and the design decisions already made about the compiler. Thus they will not be further
treated here.

The Rewriting Rules

When a tree fails to match any template, it becomes a candidate for rewriting. Before the tree is
rewritten, the machine dependent routine nextcook is called with the tree and the cookie; it suggests
another cookie that might be a better candidate for the matching of the tree. If all else fails, the tem-
plates are searched with the cookie FORREW, to look for a rewriting rule. The rewriting rules are of
two kinds; for most of the common operators, there are machine dependent rewriting rules that may be
applied; these are handled by machine dependent functions that are called and given the tree to be com-
puted. These routines may recursively call order or codgen to cause certain subgoals to be achieved; if
they actually call for some alteration of the tree, they return 1, and the code generation algorithm
recanonicalizes and tries again. If these routines choose not to deal with the tree, the default rewriting
rules are applied.

The assignment ops, when rewritten, call the routine setasg . This is assumed to rewrite the tree at
least to the point where there are no side effects in the left hand side. If there is still no template match,
a default rewriting is done that causes an expression such as

a += b

to be rewritten as

a = a + b

This is a useful default for certain mixtures of strange types (for example, when a is a bit field and b an
character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by the
machine dependent routines. For historical reasons, the routines generating the calls return 1 on failure,
0 on success, unlike the other routines.

The machine dependent routine setbin handles binary operators; it too must do most of the job.
In particular, when it returns 0, it must do so with the left hand side in a temporary register. The
default rewriting rule in this case is to convert the binary operator into the associated assignment opera-
tor; since the left hand side is assumed to be a temporary register, this preserves the semantics and often
allows a considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent routine
setincr . If this routine chooses not to deal with the tree, the rewriting rule replaces

x ++

by
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( (x += 1) – 1)

which preserves the semantics. Once again, this is not too attractive for the most common cases, but
can generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The machine
dependent routine offstar is extremely important for the efficient generation of code. Offstar is called
with a tree that is the direct descendant of a UNARY MUL node; its job is to transform this tree so that
the combination of UNARY MUL with the transformed tree becomes addressable. On most machines,
offstar can simply compute the tree into an A or B register, depending on the architecture, and then
canon will make the resulting tree into an OREG. On many machines, offstar can profitably choose to
do less work than computing its entire argument into a register. For example, if the target machine sup-
ports OREGS with a constant offset from a register, and offstar is called with a tree of the form

expr + const

where const is a constant, then offstar need only compute expr into the appropriate form of register.
On machines that support double indexing, offstar may have even more choice as to how to proceed.
The proper tuning of offstar , which is not typically too difficult, should be one of the first tries at optim-
ization attempted by the compiler writer.

The Sethi-Ullman Computation

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This computation is
closely linked with the rewriting rules and the templates. As mentioned before, the Sethi-Ullman
numbers are expected to estimate the number of scratch registers needed to compute the subtrees without
using any stores. However, the original theory does not apply to real machines. For one thing, the
theory assumes that all registers are interchangeable. Real machines have general purpose, floating
point, and index registers, register pairs, etc. The theory also does not account for side effects; this rules
out various forms of pathology that arise from assignment and assignment ops. Condition codes are also
undreamed of. Finally, the influence of types, conversions, and the various addressability restrictions
and extensions of real machines are also ignored.

Nevertheless, for a ‘‘useless’’ theory, the basic insight of Sethi and Ullman is amazingly useful in
a real compiler. The notion that one should attempt to estimate the resource needs of trees before start-
ing the code generation provides a natural means of splitting the code generation problem, and provides
a bit of redundancy and self checking in the compiler. Moreover, if writing the Sethi-Ullman routines is
hard, describing, writing, and debugging the alternative (routines that attempt to free up registers by
stores into temporaries ‘‘on the fly’’) is even worse. Nevertheless, it should be clearly understood that
these routines exist in a realm where there is no ‘‘right’’ way to write them; it is an art, the realm of
heuristics, and, consequently, a major source of bugs in the compiler. Often, the early, crude versions of
these routines give little trouble; only after the compiler is actually working and the code quality is
being improved do serious problem have to be faced. Having a simple, regular machine architecture is
worth quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having different kinds
of registers, and the related problem of needing more than one register (frequently a pair) to store certain
data types (such as longs or doubles). There appears to be no general way of treating this problem;
solutions have to be fudged for each machine where the problem arises. On the Honeywell 66, for
example, there are only two general purpose registers, so a need for a pair is the same as the need for
two registers. On the IBM 370, the register pair (0,1) is used to do multiplications and divisions; regis-
ters 0 and 1 are not generally considered part of the scratch registers, and so do not require allocation
explicitly. On the Interdata 8/32, after much consideration, the decision was made not to try to deal
with the register pair issue; operations such as multiplication and division that required pairs were sim-
ply assumed to take all of the scratch registers. Several weeks of effort had failed to produce an algo-
rithm that seemed to have much chance of running successfully without inordinate debugging effort.
The difficulty of this issue should not be minimized; it represents one of the main intellectual efforts in
porting the compiler. Nevertheless, this problem has been fudged with a degree of success on nearly a
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dozen machines, so the compiler writer should not abandon hope.

The Sethi-Ullman computations interact with the rest of the compiler in a number of rather subtle
ways. As already discussed, the store routine uses the Sethi-Ullman numbers to decide which subtrees
are too difficult to compute in registers, and must be stored. There are also subtle interactions between
the rewriting routines and the Sethi-Ullman numbers. Suppose we have a tree such as

A – B

where A and B are expressions; suppose further that B takes two registers, and A one. It is possible to
compute the full expression in two registers by first computing B , and then, using the scratch register
used by B , but not containing the answer, compute A . The subtraction can then be done, computing the
expression. (Note that this assumes a number of things, not the least of which are register-to-register
subtraction operators and symmetric registers.) If the machine dependent routine setbin , however, is not
prepared to recognize this case and compute the more difficult side of the expression first, the Sethi-
Ullman number must be set to three. Thus, the Sethi-Ullman number for a tree should represent the
code that the machine dependent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as

* ( p + i )

where p is a pointer and i an integer, this can probably be done in one register on most machines.
Thus, its Sethi-Ullman number would probably be set to one. If double indexing is possible in the
machine, a possible way of computing the expression is to load both p and i into registers, and then use
double indexing. This would use two scratch registers; in such a case, it is possible that the scratch
registers might be unobtainable, or might make some other part of the computation run out of registers.
The usual solution is to cause offstar to ignore opportunities for double indexing that would tie up more
scratch registers than the Sethi-Ullman number had reserved.

In summary, the Sethi-Ullman computation represents much of the craftsmanship and artistry in
any application of the portable compiler. It is also a frequent source of bugs. Algorithms are available
that will produce nearly optimal code for specialized machines, but unfortunately most existing machines
are far removed from these ideals. The best way of proceeding in practice is to start with a compiler for
a similar machine to the target, and proceed very carefully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, rallo , that does register allo-
cation, if appropriate. This routine does relatively little, in general; this is especially true if the target
machine is fairly regular. There are a few cases where it is assumed that the result of a computation
takes place in a particular register; switch and function return are the two major places. The expression
tree has a field, rall , that may be filled with a register number; this is taken to be a preferred register,
and the first temporary register allocated by a template match will be this preferred one, if it is free. If
not, no particular action is taken; this is just a heuristic. If no register preference is present, the field
contains NOPREF. In some cases, the result must be placed in a given register, no matter what. The
register number is placed in rall , and the mask MUSTDO is logically or’ed in with it. In this case, if
the subtree is requested in a register, and comes back in a register other than the demanded one, it is
moved by calling the routine rmove . If the target register for this move is busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move between
scratch registers (unless such a move is buried in the depths of some template). This simplifies debug-
ging. In some cases, there is a rather strange interaction between the register allocation and the Sethi-
Ullman number; if there is an operator or situation requiring a particular register, the allocator and the
Sethi-Ullman computation must conspire to ensure that the target register is not being used by some
intermediate result of some far-removed computation. This is most easily done by making the special
operation take all of the free registers, preventing any other partially-computed results from cluttering up
the works.
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Compiler Bugs

The portable compiler has an excellent record of generating correct code. The requirement for
reasonable cooperation between the register allocation, Sethi-Ullman computation, rewriting rules, and
templates builds quite a bit of redundancy into the compiling process. The effect of this is that, in a
surprisingly short time, the compiler will start generating correct code for those programs that it can
compile. The hard part of the job then becomes finding and eliminating those situations where the com-
piler refuses to compile a program because it knows it cannot do it right. For example, a template may
simply be missing; this may either give a compiler error of the form ‘‘no match for op ...’’ , or cause
the compiler to go into an infinite loop applying various rewriting rules. The compiler has a variable,
nrecur , that is set to 0 at the beginning of an expressions, and incremented at key spots in the compila-
tion process; if this parameter gets too large, the compiler decides that it is in a loop, and aborts. Loops
are also characteristic of botches in the machine-dependent rewriting rules. Bad Sethi-Ullman computa-
tions usually cause the scratch registers to run out; this often means that the Sethi-Ullman number was
underestimated, so store did not store something it should have; alternatively, it can mean that the
rewriting rules were not smart enough to find the sequence that sucomp assumed would be used.

The best approach when a compiler error is detected involves several stages. First, try to get a
small example program that steps on the bug. Second, turn on various debugging flags in the code gen-
erator, and follow the tree through the process of being matched and rewritten. Some flags of interest
are – e, which prints the expression tree, – r, which gives information about the allocation of registers,
– a, which gives information about the performance of rallo , and – o, which gives information about the
behavior of order . This technique should allow most bugs to be found relatively quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty arises
because a fix to the particular bug of interest tends to break other code that already works. Regression
tests, tests that compare the performance of a new compiler against the performance of an older one, are
very valuable in preventing major catastrophes.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number of
diverse machines, and for testing a number of theoretical constructs in a practical setting. It has many
blemishes, both in style and functionality. It has been applied to many more machines than first antici-
pated, of a much wider range than originally dreamed of. Its use has also spread much faster than
expected, leaving parts of the compiler still somewhat raw in shape.

On the theoretical side, there is some hope that the skeleton of the sucomp routine could be gen-
erated for many machines directly from the templates; this would give a considerable boost to the porta-
bility and correctness of the compiler, but might affect tunability and code quality. There is also room
for more optimization, both within optim and in the form of a portable ‘‘peephole’’ optimizer.

On the practical, development side, the compiler could probably be sped up and made smaller
without doing too much violence to its basic structure. Parts of the compiler deserve to be rewritten; the
initialization code, register allocation, and parser are prime candidates. It might be that doing some or
all of the parsing with a recursive descent parser might save enough space and time to be worthwhile; it
would certainly ease the problem of moving the compiler to an environment where Yacc is not already
present.

Finally, I would like to thank the many people who have sympathetically, and even enthusiasti-
cally, helped me grapple with what has been a frustrating program to write, test, and install. D. M.
Ritchie and E. N. Pinson provided needed early encouragement and philosophical guidance; M. E. Lesk,
R. Muha, T. G. Peterson, G. Riddle, L. Rosler, R. W. Mitze, B. R. Rowland, S. I. Feldman, and T. B.
London have all contributed ideas, gripes, and all, at one time or another, climbed ‘‘into the pits’’ with
me to help debug. Without their help this effort would have not been possible; with it, it was often kind
of fun.
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ABSTRACT

A network of over eighty UNIX† computer systems has been established using the
telephone system as its primary communication medium. The network was designed
to meet the growing demands for software distribution and exchange. Some advan-
tages of our design are:

- The startup cost is low. A system needs only a dial-up port, but systems with
automatic calling units have much more flexibility.

- No operating system changes are required to install or use the system.

- The communication is basically over dial-up lines, however, hardwired commun-
ication lines can be used to increase speed.

- The command for sending/receiving files is simple to use.
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1. Purpose

The widespread use of the UNIX† system1 within Bell Laboratories has produced problems of
software distribution and maintenance. A conventional mechanism was set up to distribute the operating
system and associated programs from a central site to the various users. However this mechanism alone
does not meet all software distribution needs. Remote sites generate much software and must transmit it
to other sites. Some UNIX systems are themselves central sites for redistribution of a particular special-
ized utility, such as the Switching Control Center System. Other sites have particular, often long-
distance needs for software exchange; switching research, for example, is carried on in New Jersey, Illi-
nois, Ohio, and Colorado. In addition, general purpose utility programs are written at all UNIX system
sites. The UNIX system is modified and enhanced by many people in many places and it would be very
constricting to deliver new software in a one-way stream without any alternative for the user sites to
respond with changes of their own.

Straightforward software distribution is only part of the problem. A large project may exceed the
capacity of a single computer and several machines may be used by the one group of people. It then
becomes necessary for them to pass messages, data and other information back an forth between com-
puters.

Several groups with similar problems, both inside and outside of Bell Laboratories, have con-
structed networks built of hardwired connections only.23 Our network, however, uses both dial-up and
hardwired connections so that service can be provided to as many sites as possible.

2. Design Goals

Although some of our machines are connected directly, others can only communicate over low-
speed dial-up lines. Since the dial-up lines are often unavailable and file transfers may take considerable
time, we spool all work and transmit in the background. We also had to adapt to a community of sys-
tems which are independently operated and resistant to suggestions that they should all buy particular
hardware or install particular operating system modifications. Therefore, we make minimal demands on
the local sites in the network. Our implementation requires no operating system changes; in fact, the
transfer programs look like any other user entering the system through the normal dial-up login ports,
and obeying all local protection rules.

We distinguish ‘‘active’’ and ‘‘passive’’ systems on the network. Active systems have an
automatic calling unit or a hardwired line to another system, and can initiate a connection. Passive sys-
tems do not have the hardware to initiate a connection. However, an active system can be assigned the
job of calling passive systems and executing work found there; this makes a passive system the func-
tional equivalent of an active system, except for an additional delay while it waits to be polled. Also,
people frequently log into active systems and request copying from one passive system to another. This
requires two telephone calls, but even so, it is faster than mailing tapes.

Where convenient, we use hardwired communication lines. These permit much faster transmission
and multiplexing of the communications link. Dial-up connections are made at either 300 or 1200 baud;
__________________
†UNIX is a Trademark of Bell Laboratories.
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hardwired connections are asynchronous up to 9600 baud and might run even faster on special-purpose
communications hardware.45 Thus, systems typically join our network first as passive systems and when
they find the service more important, they acquire automatic calling units and become active systems;
eventually, they may install high-speed links to particular machines with which they handle a great deal
of traffic. At no point, however, must users change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool direc-
tory, in which work to be done (files to be moved, or commands to be executed remotely) is stored. A
standard program, uucico , performs all transfers. This program starts by identifying a particular com-
munication channel to a remote system with which it will hold a conversation. Uucico then selects a
device and establishes the connection, logs onto the remote machine and starts the uucico program on
the remote machine. Once two of these programs are connected, they first agree on a line protocol, and
then start exchanging work. Each program in turn, beginning with the calling (active system) program,
transmits everything it needs, and then asks the other what it wants done. Eventually neither has any
more work, and both exit.

In this way, all services are available from all sites; passive sites, however, must wait until called.
A variety of protocols may be used; this conforms to the real, non-standard world. As long as the caller
and called programs have a protocol in common, they can communicate. Furthermore, each caller
knows the hours when each destination system should be called. If a destination is unavailable, the data
intended for it remain in the spool directory until the destination machine can be reached.

The implementation of this Bell Laboratories network between independent sites, all of which
store proprietary programs and data, illustratives the pervasive need for security and administrative con-
trols over file access. Each site, in configuring its programs and system files, limits and monitors
transmission. In order to access a file a user needs access permission for the machine that contains the
file and access permission for the file itself. This is achieved by first requiring the user to use his pass-
word to log into his local machine and then his local machine logs into the remote machine whose files
are to be accessed. In addition, records are kept identifying all files that are moved into and out of the
local system, and how the requestor of such accesses identified himself. Some sites may arrange to per-
mit users only to call up and request work to be done; the calling users are then called back before the
work is actually done. It is then possible to verify that the request is legitimate from the standpoint of
the target system, as well as the originating system. Furthermore, because of the call-back, no site can
masquerade as another even if it knows all the necessary passwords.

Each machine can optionally maintain a sequence count for conversations with other machines and
require a verification of the count at the start of each conversation. Thus, even if call back is not in use,
a successful masquerade requires the calling party to present the correct sequence number. A would-be
impersonator must not just steal the correct phone number, user name, and password, but also the
sequence count, and must call in sufficiently promptly to precede the next legitimate request from either
side. Even a successful masquerade will be detected on the next correct conversation.

3. Processing

The user has two commands which set up communications, uucp to set up file copying, and uux
to set up command execution where some of the required resources (system and/or files) are not on the
local machine. Each of these commands will put work and data files into the spool directory for execu-
tion by uucp daemons. Figure 1 shows the major blocks of the file transfer process.

File Copy

The uucico program is used to perform all communications between the two systems. It performs
the following functions:

- Scan the spool directory for work.

- Place a call to a remote system.
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- Negotiate a line protocol to be used.

- Start program uucico on the remote system.

- Execute all requests from both systems.

- Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs (uucico,
uuxqt) to determine the files they should look at, the remote machines they should call and the order in
which the files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program directory.
At the start of the call process, a lock is set on the system being called so that another call will not be
attempted at the same time.

The system name is found in a ‘‘systems’’ file. The information contained for each system is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made. The phone
number may contain abbreviations (e.g. ‘‘nyc’’, ‘‘boston’’) which get translated into dial sequences
using a ‘‘dial-codes’’ file. This permits the same ‘‘phone number’’ to be stored at every site, despite
local variations in telephone services and dialing conventions.

A ‘‘devices’’ file is scanned using fields [3] and [4] from the ‘‘systems’’ file to find an available
device for the connection. The program will try all devices which satisfy [3] and [4] until a connection
is made, or no more devices can be tried. If a non-multiplexable device is successfully opened, a lock
file is created so that another copy of uucico will not try to use it. If the connection is complete, the
login information is used to log into the remote system. Then a command is sent to the remote system
to start the uucico program. The conversation between the two uucico programs begins with a
handshake started by the called, SLAVE , system. The SLAVE sends a message to let the MASTER
know it is ready to receive the system identification and conversation sequence number. The response
from the MASTER is verified by the SLAVE and if acceptable, protocol selection begins.

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol. The calling program checks
the proto-list for a letter corresponding to an available line protocol and returns a use-protocol message.
The use-protocol message is
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Ucode

where code is either a one character protocol letter or a N which means there is no common protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp transmission
program. Other protocols may be added by individual installations.

Work Processing

During processing, one program is the MASTER and the other is SLAVE . Initially, the calling
program is the MASTER. These roles may switch one or more times during the conversation.

There are four messages used during the work processing, each specified by the first character of
the message. They are

center; c l. S send a file, R receive a file, C copy complete, H hangup.

The MASTER will send R or S messages until all work from the spool directory is complete, at which
point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN, corresponding
to yes or no for each request.

The send and receive replies are based on permission to access the requested file/directory. After
each file is copied into the spool directory of the receiving system, a copy-complete message is sent by
the receiver of the file. The message CY will be sent if the UNIX cp command, used to copy from the
spool directory, is successful. Otherwise, a CN message is sent. The requests and results are logged on
both systems, and, if requested, mail is sent to the user reporting completion (or the user can request
status information from the log program at any time).

The hangup response is determined by the SLAVE program by a work scan of the spool directory.
If work for the remote system exists in the SLAVE’s spool directory, a HN message is sent and the pro-
grams switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the proto-
cols are turned off. Each program sends a final "OO" message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes ‘‘mail dan’’
to send mail to user ‘‘dan’’. By writing ‘‘mail usg!dan’’ the mail is sent to user ‘‘dan’’ on system
‘‘usg’’.

The primary uses of our network to date have been in software maintenance. Relatively few of
the bytes passed between systems are intended for people to read. Instead, new programs (or new ver-
sions of programs) are sent to users, and potential bugs are returned to authors. Aaron Cohen has imple-
mented a ‘‘stockroom’’ which allows remote users to call in and request software. He keeps a ‘‘stock
list’’ of available programs, and new bug fixes and utilities are added regularly. In this way, users can
always obtain the latest version of anything without bothering the authors of the programs. Although
the stock list is maintained on a particular system, the items in the stockroom may be warehoused in
many places; typically each program is distributed from the home site of its author. Where necessary,
uucp does remote-to-remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on remote
systems are caused by local misconfigurations or old versions of software, or whether they are bugs that
must be fixed at the home site. This helps identify errors rapidly. For one set of test programs main-
tained by us, over 70% of the bugs reported from remote sites were due to old software, and were fixed
merely by distributing the current version.

Another application of the network for software maintenance is to compare files on two different
machines. A very useful utility on one machine has been Doug McIlroy’s ‘‘diff’’ program which com-
pares two text files and indicates the differences, line by line, between them.6 Only lines which are not
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identical are printed. Similarly, the program ‘‘uudiff’’ compares files (or directories) on two machines.
One of these directories may be on a passive system. The ‘‘uudiff’’ program is set up to work similarly
to the inter-system mail, but it is slightly more complicated.

To avoid moving large numbers of usually identical files, uudiff computes file checksums on each
side, and only moves files that are different for detailed comparison. For large files, this process can be
iterated; checksums can be computed for each line, and only those lines that are different actually
moved.

The ‘‘uux’’ command has been useful for providing remote output. There are some machines
which do not have hard-copy devices, but which are connected over 9600 baud communication lines to
machines with printers. The uux command allows the formatting of the printout on the local machine
and printing on the remote machine using standard UNIX command programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below shows the
real throughput of characters on communication links of different speeds. These numbers represent
actual data transferred; they do not include bytes used by the line protocol for data validation such as
checksums and messages. At the higher speeds, contention for the processors on both ends prevents the
network from driving the line full speed. The range of speeds represents the difference between light
and heavy loads on the two systems. If desired, operating system modifications can be installed that
permit full use of even very fast links.

center; c c n n. Nominal speed Characters/sec. 300 baud 27 1200 baud 100-110 9600
baud 200-850

In addition to the transfer time, there is some overhead for making the connection and logging in rang-
ing from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte source program can
be transferred in four minutes instead of the 2 days that might be required to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20 files
moved and 5 remote commands executed in a typical day. A more normal traffic out of a single system
would be around a dozen files per day.

The total number of sites at present in the main network is 82, which includes most of the Bell
Laboratories full-size machines which run the UNIX operating system. Geographically, the machines
range from Andover, Massachusetts to Denver, Colorado.

Uucp has also been used to set up another network which connects a group of systems in opera-
tional sites with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Conventional
maintenance (a support group which mails tapes) has many well-known disadvantages.7 There are distri-
bution errors and delays, resulting in old software running at remote sites and old bugs continually reap-
pearing. These difficulties are aggravated when there are 100 different small systems, instead of a few
large ones.

The availability of file transfer on a network of compatible operating systems makes it possible
just to send programs directly to the end user who wants them. This avoids the bottleneck of negotia-
tion and packaging in the central support group. The ‘‘stockroom’’ serves this function for new utilities
and fixes to old utilities. However, it is still likely that distributions will not be sent and installed as
often as needed. Users are justifiably suspicious of the ‘‘latest version’’ that has just arrived; all too
often it features the ‘‘latest bug.’’ What is needed is to address both problems simultaneously:

1. Send distributions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving systems.
Acceptance testing on the receiving systems can be automated and permits the local system to ensure
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that its essential work can continue despite the constant installation of changes sent from elsewhere.
The work of writing the test sequences should be recovered in lower counseling and distribution costs.

Some slow-speed network services are also being implemented. We now have inter-system
‘‘mail’’ and ‘‘diff,’’ plus the many implied commands represented by ‘‘uux.’’ However, we still need
inter-system ‘‘write’’ (real-time inter-user communication) and ‘‘who’’ (list of people logged in on dif-
ferent systems). A slow-speed network of this sort may be very useful for speeding up counseling and
education, even if not fast enough for the distributed data base applications that attract many users to
networks. Effective use of remote execution over slow-speed lines, however, must await the general ins-
tallation of multiplexable channels so that long file transfers do not lock out short inquiries.

7. Lessons

The following is a summary of the lessons we learned in building these programs.

1. By starting your network in a way that requires no hardware or major operating system changes,
you can get going quickly.

2. Support will follow use. Since the network existed and was being used, system maintainers were
easily persuaded to help keep it operating, including purchasing additional hardware to speed
traffic.

3. Make the network commands look like local commands. Our users have a resistance to learning
anything new: all the inter-system commands look very similar to standard UNIX system com-
mands so that little training cost is involved.

4. An initial error was not coordinating enough with existing communications projects: thus, the first
version of this network was restricted to dial-up, since it did not support the various hardware
links between systems. This has been fixed in the current system.
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Uucp Implementation Description

D. A. Nowitz

Introduction

Uucp is a series of programs designed to permit communication between UNIX† systems using either
dial-up or hardwired communication lines. It is used for file transfers and remote command execution.
The first version of the system was designed and implemented by M. E. Lesk.1 This paper describes the
current (second) implementation of the system.

Uucp is a batch type operation. Files are created in a spool directory for processing by the uucp
demons. There are three types of files used for the execution of work. Data files contain data for
transfer to remote systems. Work files contain directions for file transfers between systems.
Execution files are directions for UNIX command executions which involve the resources of one or more
systems.

The uucp system consists of four primary and two secondary programs. The primary programs are:

uucp This program creates work and gathers data files in the spool directory for the
transmission of files.

uux This program creates work files, execute files and gathers data files for the remote
execution of UNIX commands.

uucico This program executes the work files for data transmission.

uuxqt This program executes the execution files for UNIX command execution.

The secondary programs are:

uulog This program updates the log file with new entries and reports on the status of uucp
requests.

uuclean This program removes old files from the spool directory.

The remainder of this paper will describe the operation of each program, the installation of the system,
the security aspects of the system, the files required for execution, and the administration of the system.

1. Uucp - UNIX to UNIX File Copy

The uucp command is the user’s primary interface with the system. The uucp command was designed
to look like cp to the user. The syntax is

uucp [ option ] ... source ... destination

where the source and destination may contain the prefix system-name! which indicates the system on
which the file or files reside or where they will be copied.

The options interpreted by uucp are:

– d Make directories when necessary for copying the file.

– c Don’t copy source files to the spool directory, but use the specified source when the
actual transfer takes place.

__________________
†UNIX is a Trademark of Bell Laboratories.
1 M. E. Lesk and A. S. Cohen, UNIX Software Distribution by Communication Link, private communication.
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– gletter Put letter in as the grade in the name of the work file. (This can be used to change
the order of work for a particular machine.)

– m Send mail on completion of the work.

The following options are used primarily for debugging:

– r Queue the job but do not start uucico program.

– sdir Use directory dir for the spool directory.

– xnum Num is the level of debugging output desired.

The destination may be a directory name, in which case the file name is taken from the last part of the
source’s name. The source name may contain special shell characters such as ‘‘?*[]’’. If a source argu-
ment has a system-name! prefix for a remote system, the file name expansion will be done on the
remote system.

The command

uucp *.c usg!/usr/dan

will set up the transfer of all files whose names end with ‘‘.c’’ to the ‘‘/usr/dan’’ directory on the‘‘usg’’
machine.

The source and/or destination names may also contain a ˜user prefix. This translates to the login direc-
tory on the specified system. For names with partial path-names, the current directory is prepended to
the file name. File names with ../ are not permitted.

The command

uucp usg!˜dan/*.h ˜dan

will set up the transfer of files whose names end with ‘‘.h’’ in dan’s login directory on system ‘‘usg’’ to
dan’s local login directory.

For each source file, the program will check the source and destination file-names and the system-part of
each to classify the work into one of five types:

[1] Copy source to destination on local system.

[2] Receive files from other systems.

[3] Send files to a remote systems.

[4] Send files from remote systems to another remote system.

[5] Receive files from remote systems when the source contains special shell characters as men-
tioned above.

After the work has been set up in the spool directory, the uucico program is started to try to contact the
other machine to execute the work (unless the – r option was specified).

Type 1

A cp command is used to do the work. The – d and the – m options are not honored in this case.

Type 2

A one line work file is created for each file requested and put in the spool directory with the following
fields, each separated by a blank. (All work files and execute files use a blank as the field separator.)

[1] R

[2] The full path-name of the source or a ˜user/path-name. The ˜user part will be expanded on
the remote system.

[3] The full path-name of the destination file. If the ˜user notation is used, it will be immedi-
ately expanded to be the login directory for the user.
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[4] The user’s login name.

[5] A ‘‘– ’’ followed by an option list. (Only the – m and – d options will appear in this list.)

Type 3

For each source file, a work file is created and the source file is copied into a data file in the spool
directory. (A ‘‘– c’’ option on the uucp command will prevent the data file from being made.) In this
case, the file will be transmitted from the indicated source.) The fields of each entry are given below.

[1] S

[2] The full-path name of the source file.

[3] The full-path name of the destination or ˜user/file-name.

[4] The user’s login name.

[5] A ‘‘– ’’ followed by an option list.

[6] The name of the data file in the spool directory.

[7] The file mode bits of the source file in octal print format (e.g. 0666).

Type 4 and Type 5

Uucp generates a uucp command and sends it to the remote machine; the remote uucico executes the
uucp command.

2. Uux - UNIX To UNIX Execution

The uux command is used to set up the execution of a UNIX command where the execution machine
and/or some of the files are remote. The syntax of the uux command is

uux [ – ] [ option ] ... command-string

where the command-string is made up of one or more arguments. All special shell characters such as
‘‘<> ˆ’’ must be quoted either by quoting the entire command-string or quoting the character as a
separate argument. Within the command-string, the command and file names may contain a system-
name! prefix. All arguments which do not contain a ‘‘!’’ will not be treated as files. (They will not be
copied to the execution machine.) The ‘‘– ’’ is used to indicate that the standard input for command-
string should be inherited from the standard input of the uux command. The options, essentially for
debugging, are:

– r Don’t start uucico or uuxqt after queuing the job;

– xnum Num is the level of debugging output desired.

The command

pr abc  uux – usg!lpr

will set up the output of ‘‘pr abc’’ as standard input to an lpr command to be executed on system
‘‘usg’’.

Uux generates an execute file which contains the names of the files required for execution (including
standard input), the user’s login name, the destination of the standard output, and the command to be
executed. This file is either put in the spool directory for local execution or sent to the remote system
using a generated send command (type 3 above).

For required files which are not on the execution machine, uux will generate receive command files
(type 2 above). These command-files will be put on the execution machine and executed by the uucico
program. (This will work only if the local system has permission to put files in the remote spool direc-
tory as controlled by the remote USERFILE . )

The execute file will be processed by the uuxqt program on the execution machine. It is made up of
several lines, each of which contains an identification character and one or more arguments. The order
of the lines in the file is not relevant and some of the lines may not be present. Each line is described
below.
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User Line

U user system

where the user and system are the requester’s login name and system.

Required File Line

F file-name real-name

where the file-name is the generated name of a file for the execute machine and real-name is the
last part of the actual file name (contains no path information). Zero or more of these lines may
be present in the execute file . The uuxqt program will check for the existence of all required files
before the command is executed.

Standard Input Line

I file-name

The standard input is either specified by a ‘‘<’’ in the command-string or inherited from the stan-
dard input of the uux command if the ‘‘– ’’ option is used. If a standard input is not specified,
‘‘/dev/null’’ is used.

Standard Output Line

O file-name system-name

The standard output is specified by a ‘‘>’’ within the command-string. If a standard output is not
specified, ‘‘/dev/null’’ is used. (Note – the use of ‘‘>>’’ is not implemented.)

Command Line

C command [ arguments ] ...

The arguments are those specified in the command-string. The standard input and standard output
will not appear on this line. All required files will be moved to the execution directory (a sub-
directory of the spool directory) and the UNIX command is executed using the Shell specified in
the uucp.h header file. In addition, a shell ‘‘PATH’’ statement is prepended to the command line
as specified in the uuxqt program.

After execution, the standard output is copied or set up to be sent to the proper place.

3. Uucico - Copy In, Copy Out

The uucico program will perform the following major functions:

- Scan the spool directory for work.

- Place a call to a remote system.

- Negotiate a line protocol to be used.

- Execute all requests from both systems.

- Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp, uux, uuxqt or uucico programs,

c) directly by the user (this is usually for testing),

d) by a remote system. (The uucico program should be specified as the ‘‘shell’’ field in the
‘‘/etc/passwd’’ file for the ‘‘uucp’’ logins.)

When started by method a, b or c, the program is considered to be in MASTER mode. In this mode, a
connection will be made to a remote system. If started by a remote system (method d), the program is
considered to be in SLAVE mode.
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The MASTER mode will operate in one of two ways. If no system name is specified (– s option not
specified) the program will scan the spool directory for systems to call. If a system name is specified,
that system will be called, and work will only be done for that system.

The uucico program is generally started by another program. There are several options used for execu-
tion:

– r1 Start the program in MASTER mode. This is used when uucico is started by a pro-
gram or ‘‘cron’’ shell.

– ssys Do work only for system sys. If – s is specified, a call to the specified system will be
made even if there is no work for system sys in the spool directory. This is useful for
polling systems which do not have the hardware to initiate a connection.

The following options are used primarily for debugging:

– ddir Use directory dir for the spool directory.

– xnum Num is the level of debugging output desired.

The next part of this section will describe the major steps within the uucico program.

Scan For Work

The names of the work related files in the spool directory have format

type . system-name grade number

where:

Type is an upper case letter, ( C - copy command file, D - data file, X - execute file);

System-name is the remote system;

Grade is a character;

Number is a four digit, padded sequence number.

The file

C.res45n0031

would be a work file for a file transfer between the local machine and the ‘‘res45’’ machine.

The scan for work is done by looking through the spool directory for work files (files with prefix ‘‘C.’’).
A list is made of all systems to be called. Uucico will then call each system and process all work files .

Call Remote System

The call is made using information from several files which reside in the uucp program directory. At
the start of the call process, a lock is set to forbid multiple conversations between the same two systems.

The system name is found in the L.sys file. The information contained for each system is;

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number if field [3] is ACU or the device name (same as field [3]) if not ACU,

[6] login information (multiple fields),

The time field is checked against the present time to see if the call should be made.

The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into dial
sequences using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available device for
the call. The program will try all devices which satisfy [3] and [4] until the call is made, or no more
devices can be tried. If a device is successfully opened, a lock file is created so that another copy of
uucico will not try to use it. If the call is complete, the login information (field [6] of L.sys ) is used to
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login.

The conversation between the two uucico programs begins with a handshake started by the called,
SLAVE , system. The SLAVE sends a message to let the MASTER know it is ready to receive the sys-
tem identification and conversation sequence number. The response from the MASTER is verified by
the SLAVE and if acceptable, protocol selection begins. The SLAVE can also reply with a ‘‘call-back
required’’ message in which case, the current conversation is terminated.

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol.

The calling program checks the proto-list for a letter corresponding to an available line protocol and
returns a use-protocol message. The use-protocol message is

Ucode

where code is either a one character protocol letter or N which means there is no common protocol.

Work Processing

The initial roles ( MASTER or SLAVE ) for the work processing are the mode in which each program
starts. (The MASTER has been specified by the ‘‘– r1’’ uucico option.) The MASTER program does a
work search similar to the one used in the ‘‘Scan For Work’’ section.

There are five messages used during the work processing, each specified by the first character of the
message. They are;

S send a file,

R receive a file,

C copy complete,

X execute a uucp command,

H hangup.

The MASTER will send R , S or X messages until all work from the spool directory is complete, at
which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN, XY, XN,
corresponding to yes or no for each request.

The send and receive replies are based on permission to access the requested file/directory using the
USERFILE and read/write permissions of the file/directory. After each file is copied into the spool
directory of the receiving system, a copy-complete message is sent by the receiver of the file. The mes-
sage CY will be sent if the file has successfully been moved from the temporary spool file to the actual
destination. Otherwise, a CN message is sent. (In the case of CN , the transferred file will be in the
spool directory with a name beginning with ‘‘TM’.) The requests and results are logged on both sys-
tems.

The hangup response is determined by the SLAVE program by a work scan of the spool directory. If
work for the remote system exists in the SLAVE’s spool directory, an HN message is sent and the pro-
grams switch roles. If no work exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the protocols are
turned off. Each program sends a final ‘‘OO’’ message to the other. The original SLAVE program will
clean up and terminate. The MASTER will proceed to call other systems and process work as long as
possible or terminate if a – s option was specified.
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4. Uuxqt - Uucp Command Execution

The uuxqt program is used to execute execute files generated by uux. The uuxqt program may be started
by either the uucico or uux programs. The program scans the spool directory for execute files (prefix
‘‘X.’’). Each one is checked to see if all the required files are available and if so, the command line or
send line is executed.

The execute file is described in the ‘‘Uux’’ section above.

Command Execution

The execution is accomplished by executing a sh – c of the command line after appropriate standard
input and standard output have been opened. If a standard output is specified, the program will create a
send command or copy the output file as appropriate.

5. Uulog - Uucp Log Inquiry

The uucp programs create individual log files for each program invocation. Periodically, uulog may be
executed to prepend these files to the system logfile. This method of logging was chosen to minimize
file locking of the logfile during program execution.

The uulog program merges the individual log files and outputs specified log entries. The output request
is specified by the use of the following options:

– ssys Print entries where sys is the remote system name;

– uuser Print entries for user user.

The intersection of lines satisfying the two options is output. A null sys or user means all system
names or users respectively.

6. Uuclean - Uucp Spool Directory Cleanup

This program is typically started by the daemon, once a day. Its function is to remove files from the
spool directory which are more than 3 days old. These are usually files for work which can not be com-
pleted.

The options available are:

– ddir The directory to be scanned is dir .

– m Send mail to the owner of each file being removed. (Note that most files put into the
spool directory will be owned by the owner of the uucp programs since the setuid bit
will be set on these programs. The mail will therefore most often go to the owner of
the uucp programs.)

– nhours Change the aging time from 72 hours to hours hours.

– ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be specified.)

– xnum This is the level of debugging output desired.

7. Security

The uucp system, left unrestricted, will let any outside user execute any com-
mands and copy in/out any file which is readable/writable by the uucp login user.
It is up to the individual sites to be aware of this and apply the protections that
they feel are necessary.

There are several security features available aside from the normal file mode protections. These must be
set up by the installer of the uucp system.
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- The login for uucp does not get a standard shell. Instead, the uucico program is started. Therefore,
the only work that can be done is through uucico .

- A path check is done on file names that are to be sent or received. The USERFILE supplies the
information for these checks. The USERFILE can also be set up to require call-back for certain
login-ids. (See the ‘‘Files required for execution’’ section for the file description.)

- A conversation sequence count can be set up so that the called system can be more confident that the
caller is who he says he is.

- The uuxqt program comes with a list of commands that it will execute. A ‘‘PATH’’ shell statement
is prepended to the command line as specifed in the uuxqt program. The installer may modify the
list or remove the restrictions as desired.

- The L.sys file should be owned by uucp and have mode 0400 to protect the phone numbers and
login information for remote sites. (Programs uucp, uucico, uux, uuxqt should be also owned by
uucp and have the setuid bit set.)

8. Uucp Installation

There are several source modifications that may be required before the system programs are compiled.
These relate to the directories used during compilation, the directories used during execution, and the
local uucp system-name.

The four directories are:

lib (/usr/src/cmd/uucp) This directory contains the source files for generating the uucp
system.

program (/usr/lib/uucp) This is the directory used for the executable system programs and the
system files.

spool (/usr/spool/uucp) This is the spool directory used during uucp execution.

xqtdir (/usr/spool/uucp/.XQTDIR) This directory is used during execution of execute files .

The names given in parentheses above are the default values for the directories. The italicized named
lib, program, xqtdir, and spool will be used in the following text to represent the appropriate directory
names.

There are two files which may require modification, the makefile file and the uucp.h file. The following
paragraphs describe the modifications. The modes of spool and xqtdir should be made ‘‘0777’’.

Uucp.h modification

Change the program and the spool names from the default values to the directory names to be used on
the local system using global edit commands.

Change the define value for MYNAME to be the local uucp system-name.

makefile modification

There are several make variable definitions which may need modification.

INSDIR This is the program directory (e.g. INSDIR=/usr/lib/uucp). This parameter is used if
‘‘make cp’’ is used after the programs are compiled.

IOCTL This is required to be set if an appropriate ioctl interface subroutine does not exist in
the standard ‘‘C’’ library; the statement ‘‘IOCTL=ioctl.o’’ is required in this case.

PKON The statement ‘‘PKON=pkon.o’’ is required if the packet driver is not in the kernel.

Compile the system The command

make

will compile the entire system. The command
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make cp

will copy the commands to the to the appropriate directories.

The programs uucp , uux , and uulog should be put in ‘‘/usr/bin’’. The programs uuxqt , uucico , and
uuclean should be put in the program directory.

Files required for execution

There are four files which are required for execution, all of which should reside in the program direc-
tory. The field separator for all files is a space unless otherwise specified.

L-devices

This file contains entries for the call-unit devices and hardwired connections which are to be used by
uucp. The special device files are assumed to be in the /dev directory. The format for each entry is

line call-unit speed

where;

line is the device for the line (e.g. cul0),

call-unit is the automatic call unit associated with line (e.g. cua0), (Hardwired lines have a
number ‘‘0’’ in this field.),

speed is the line speed.

The line

cul0 cua0 300

would be set up for a system which had device cul0 wired to a call-unit cua0 for use at 300 baud.

L-dialcodes

This file contains entries with location abbreviations used in the L.sys file (e.g. py, mh, boston). The
entry format is

abb dial-seq

where;

abb is the abbreviation,

dial-seq is the dial sequence to call that location.

The line

py 165–

would be set up so that entry py7777 would send 165– 7777 to the dial-unit.

LOGIN/SYSTEM NAMES

It is assumed that the login name used by a remote computer to call into a local computer is not the
same as the login name of a normal user of that local machine. However, several remote computers
may employ the same login name.

Each computer is given a unique system name which is transmitted at the start of each call. This name
identifies the calling machine to the called machine.

USERFILE

This file contains user accessibility information. It specifies four types of constraint;

[1] which files can be accessed by a normal user of the local machine,

[2] which files can be accessed from a remote computer,
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[3] which login name is used by a particular remote computer,

[4] whether a remote computer should be called back in order to confirm its identity.

Each line in the file has the following format

login,sys [ c ] path-name [ path-name ] ...

where;

login is the login name for a user or the remote computer,

sys is the system name for a remote computer,

c is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for user.

The constraints are implemented as follows.

[1] When the program is obeying a command stored on the local machine, MASTER mode, the
path-names allowed are those given for the first line in the USERFILE that has a login
name that matches the login name of the user who entered the command. If no such line is
found, the first line with a null login name is used.

[2] When the program is responding to a command from a remote machine, SLAVE mode, the
path-names allowed are those given for the first line in the file that has the system name that
matches the system name of the remote machine. If no such line is found, the first one with
a null system name is used.

[3] When a remote computer logs in, the login name that it uses must appear in the USERFILE .
There may be several lines with the same login name but one of them must either have the
name of the remote system or must contain a null system name.

[4] If the line matched in ([3]) contains a ‘‘c’’, the remote machine is called back before any
transactions take place.

The line

u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose names start with
‘‘/usr/xyz’’.

The line

dan, /usr/dan

allows the ordinary user dan to issue commands for files whose name starts with ‘‘/usr/dan’’.

The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u , but if its system name is not m , it can only ask to
transfer files whose names start with ‘‘/usr/spool’’.

The lines

root, /
, /usr

allows any user to transfer files beginning with ‘‘/usr’’ but the user with login root can transfer any file.

L.sys

Each entry in this file represents one system which can be called by the local uucp programs. The fields
are described below.
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system name

The name of the remote system.

time

This is a string which indicates the days-of-week and times-of-day when the system should be
called (e.g. MoTuTh0800– 1730).

The day portion may be a list containing some of

Su Mo Tu We Th Fr Sa

or it may be Wk for any week-day or Any for any day.

The time should be a range of times (e.g. 0800– 1230). If no time portion is specified, any time
of day is assumed to be ok for the call.

device

This is either ACU or the hardwired device to be used for the call. For the hardwired case, the
last part of the special file name is used (e.g. tty0).

speed

This is the line speed for the call (e.g. 300).

phone

The phone number is made up of an optional alphabetic abbreviation and a numeric part. The
abbreviation is one which appears in the L-dialcodes file (e.g. mh5900, boston995– 9980).

For the hardwired devices, this field contains the same string as used for the device field.

login

The login information is given as a series of fields and subfields in the format

expect send [ expect send ] ...

where; expect is the string expected to be read and send is the string to be sent when the expect
string is received.

The expect field may be made up of subfields of the form

expect[– send– expect]...

where the send is sent if the prior expect is not successfully read and the expect following the
send is the next expected string.

There are two special names available to be sent during the login sequence. The string EOT will
send an EOT character and the string BREAK will try to send a BREAK character. (The BREAK
character is simulated using line speed changes and null characters and may not work on all dev-
ices and/or systems.)

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm looks at the last part of the string as illustrated in the password field.

9. Administration

This section indicates some events and files which must be administered for the uucp system. Some
administration can be accomplished by shell files which can be initiated by crontab entries. Others will
require manual intervention. Some sample shell files are given toward the end of this section.
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SQFILE – sequence check file

This file is set up in the program directory and contains an entry for each remote system with which
you agree to perform conversation sequence checks. The initial entry is just the system name of the
remote system. The first conversation will add two items to the line, the conversation count, and the
date/time of the most resent conversation. These items will be updated with each conversation. If a
sequence check fails, the entry will have to be adjusted.

TM – temporary data files

These files are created in the spool directory while files are being copied from a remote machine. Their
names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at zero for each invocation
of uucico and incremented for each file received.

After the entire remote file is received, the TM file is moved/copied to the requested destination. If pro-
cessing is abnormally terminated or the move/copy fails, the file will remain in the spool directory.

The leftover files should be periodically removed; the uuclean program is useful in this regard. The
command

uuclean – pTM

will remove all TM files older than three days.

LOG – log entry files

During execution of programs, individual LOG files are created in the spool directory with information
about queued requests, calls to remote systems, execution of uux commands and file copy results.
These files should be combined into the LOGFILE by using the uulog program. This program will put
the new LOG files at the beginning of the existing LOGFILE. The command

uulog

will accomplish the merge. Options are available to print some or all the log entries after the files are
merged. The LOGFILE should be removed periodically since it is copied each time new LOG entries
are put into the file.

The LOG files are created initially with mode 0222. If the program which creates the file terminates
normally, it changes the mode to 0666. Aborted runs may leave the files with mode 0222 and the uulog
program will not read or remove them. To remove them, either use rm , uuclean , or change the mode to
0666 and let uulog merge them with the LOGFILE .

STST – system status files

These files are created in the spool directory by the uucico program. They contain information of
failures such as login, dialup or sequence check and will contain a TALKING status when to machines
are conversing. The form of the file name is

STST.sys

where sys is the remote system name.

For ordinary failures (dialup, login), the file will prevent repeated tries for about one hour. For sequence
check failures, the file must be removed before any future attempts to converse with that remote system.

If the file is left due to an aborted run, it may contain a TALKING status. In this case, the file must be
removed before a conversation is attempted.
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LCK – lock files

Lock files are created for each device in use (e.g. automatic calling unit) and each system conversing.
This prevents duplicate conversations and multiple attempts to use the same devices. The form of the
lock file name is

LCK..str

where str is either a device or system name. The files may be left in the spool directory if runs abort.
They will be ignored (reused) after a time of about 24 hours. When runs abort and calls are desired
before the time limit, the lock files should be removed.

Shell Files

The uucp program will spool work and attempt to start the uucico program, but the starting of uucico
will sometimes fail. (No devices available, login failures etc.). Therefore, the uucico program should
be periodically started. The command to start uucico can be put in a ‘‘shell’’ file with a command to
merge LOG files and started by a crontab entry on an hourly basis. The file could contain the com-
mands

program /uulog
program /uucico – r1

Note that the ‘‘– r1’’ option is required to start the uucico program in MASTER mode.

Another shell file may be set up on a daily basis to remove TM , ST and LCK files and C. or D. files
for work which can not be accomplished for reasons like bad phone number, login changes etc. A shell
file containing commands like

program /uuclean – pTM – pC. – pD.
program /uuclean – pST – pLCK – n12

can be used. Note the ‘‘– n12’’ option causes the ST and LCK files older than 12 hours to be deleted.
The absence of the ‘‘– n’’ option will use a three day time limit.

A daily or weekly shell should also be created to remove or save old LOGFILE s. A shell like

cp spool /LOGFILE spool /o.LOGFILE
rm spool /LOGFILE

can be used.

Login Entry

One or more logins should be set up for uucp . Each of the ‘‘/etc/passwd’’ entries should have the
‘‘program/uucico’’ as the shell to be executed. The login directory is not used, but if the system has a
special directory for use by the users for sending or receiving file, it should as the login entry. The vari-
ous logins are used in conjunction with the USERFILE to restrict file access. Specifying the shell argu-
ment limits the login to the use of uucp ( uucico ) only.

File Modes

It is suggested that the owner and file modes of various programs and files be set as follows.

The programs uucp , uux , uucico and uuxqt should be owned by the uucp login with the ‘‘setuid’’ bit
set and only execute permissions (e.g. mode 04111). This will prevent outsiders from modifying the
programs to get at a standard shell for the uucp logins.

The L.sys , SQFILE and the USERFILE which are put in the program directory should be owned by the
uucp login and set with mode 0400.
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Recently there has been much interest in the security aspects of operating systems and software.
At issue is the ability to prevent undesired disclosure of information, destruction of information, and
harm to the functioning of the system. This paper discusses the degree of security which can be pro-
vided under the UNIX† system and offers a number of hints on how to improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense, in mind;
this fact alone guarantees a vast number of holes. (Actually the same statement can be made with
respect to most systems.) The area of security in which UNIX is theoretically weakest is in protecting
against crashing or at least crippling the operation of the system. The problem here is not mainly in
uncritical acceptance of bad parameters to system calls— there may be bugs in this area, but none are
known— but rather in lack of checks for excessive consumption of resources. Most notably, there is no
limit on the amount of disk storage used, either in total space allocated or in the number of files or
directories. Here is a particularly ghastly shell sequence guaranteed to stop the system:

while : ; do
mkdir x
cd x

done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk blocks will be
consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number of
processes simultaneously, so unless users are in collusion it is unlikely that any one can stop the system
altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few resources available for
others. Also, if many large jobs are run simultaneously, swap space may run out, causing a panic.

It should be evident that excessive consumption of disk space, files, swap space, and processes can
easily occur accidentally in malfunctioning programs as well as at command level. In fact UNIX is
essentially defenseless against this kind of abuse, nor is there any easy fix. The best that can be said is
that it is generally fairly easy to detect what has happened when disaster strikes, to identify the user
responsible, and take appropriate action. In practice, we have found that difficulties in this area are
rather rare, but we have not been faced with malicious users, and enjoy a fairly generous supply of
resources which have served to cushion us against accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unauthorized
perusal and destruction. Here the degree of security seems (almost) adequate theoretically, and the prob-
lems lie more in the necessity for care in the actual use of the system.

Each UNIX file has associated with it eleven bits of protection information together with a user
identification number and a user-group identification number (UID and GID). Nine of the protection bits
are used to specify independently permission to read, to write, and to execute the file to the user himself,
to members of the user’s group, and to all other users. Each process generated by or for a user has
associated with it an effective UID and a real UID, and an effective and real GID. When an attempt is
made to access the file for reading, writing, or execution, the user process’s effective UID is compared
__________________
†UNIX is a Trademark of Bell Laboratories.
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against the file’s UID; if a match is obtained, access is granted provided the read, write, or execute bit
respectively for the user himself is present. If the UID for the file and for the process fail to match, but
the GID’s do match, the group bits are used; if the GID’s do not match, the bits for other users are
tested. The last two bits of each file’s protection information, called the set-UID and set-GID bits, are
used only when the file is executed as a program. If, in this case, the set-UID bit is on for the file, the
effective UID for the process is changed to the UID associated with the file; the change persists until the
process terminates or until the UID changed again by another execution of a set-UID file. Similarly the
effective group ID of a process is changed to the GID associated with a file when that file is executed
and has the set-GID bit set. The real UID and GID of a process do not change when any file is exe-
cuted, but only as the result of a privileged system call.

The basic notion of the set-UID and set-GID bits is that one may write a program which is execut-
able by others and which maintains files accessible to others only by that program. The classical exam-
ple is the game-playing program which maintains records of the scores of its players. The program
itself has to read and write the score file, but no one but the game’s sponsor can be allowed unrestricted
access to the file lest they manipulate the game to their own advantage. The solution is to turn on the
set-UID bit of the game program. When, and only when, it is invoked by players of the game, it may
update the score file but ordinary programs executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since executing
a directory as a program is a meaningless operation, the execute-permission bit, for directories, is taken
instead to mean permission to search the directory for a given file during the scanning of a path name;
thus if a directory has execute permission but no read permission for a given user, he may access files
with known names in the directory, but may not read (list) the entire contents of the directory. Write
permission on a directory is interpreted to mean that the user may create and delete files in that direc-
tory; it is impossible for any user to write directly into any directory.

Another, and from the point of view of security, much more serious special case is that there is a
‘‘super user’’ who is able to read any file and write any non-directory. The super-user is also able to
change the protection mode and the owner UID and GID of any file and to invoke privileged system
calls. It must be recognized that the mere notion of a super-user is a theoretical, and usually practical,
blemish on any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories have the
proper protection modes. Traditionally, UNIX software has been exceedingly permissive in this regard;
essentially all commands create files readable and writable by everyone. In the current version, this pol-
icy may be easily adjusted to suit the needs of the installation or the individual user. Associated with
each process and its descendants is a mask, which is in effect and -ed with the mode of every file and
directory created by that process. In this way, users can arrange that, by default, all their files are no
more accessible than they wish. The standard mask, set by login, allows all permissions to the user
himself and to his group, but disallows writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to make
one’s files inaccessible to others. The lack of sufficiency could follow from the existence of set-UID
programs created by the user and the possibility of total breach of system security in one of the ways
discussed below (or one of the ways not discussed below). For greater protection, an encryption scheme
is available. Since the editor is able to create encrypted documents, and the crypt command can be used
to pipe such documents into the other text-processing programs, the length of time during which clear-
text versions need be available is strictly limited. The encryption scheme used is not one of the strong-
est known, but it is judged adequate, in the sense that cryptanalysis is likely to require considerably
more effort than more direct methods of reading the encrypted files. For example, a user who stores
data that he regards as truly secret should be aware that he is implicitly trusting the system administrator
not to install a version of the crypt command that stores every typed password in a file.

Needless to say, the system administrators must be at least as careful as their most demanding user
to place the correct protection mode on the files under their control. In particular, it is necessary that
special files be protected from writing, and probably reading, by ordinary users when they store sensitive
files belonging to other users. It is easy to write programs that examine and change files by accessing
the device on which the files live.
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On the issue of password security, UNIX is probably better than most systems. Passwords are
stored in an encrypted form which, in the absence of serious attention from specialists in the field,
appears reasonably secure, provided its limitations are understood. In the current version, it is based on
a slightly defective version of the Federal DES; it is purposely defective so that easily-available
hardware is useless for attempts at exhaustive key-search. Since both the encryption algorithm and the
encrypted passwords are available, exhaustive enumeration of potential passwords is still feasible up to a
point. We have observed that users choose passwords that are easy to guess: they are short, or from a
limited alphabet, or in a dictionary. Passwords should be at least six characters long and randomly
chosen from an alphabet which includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For example:
write a program which types out ‘‘login: ’’ on the typewriter and copies whatever is typed to a file of
your own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained. The first
thing to keep in mind is that a writable set-UID file can have another program copied onto it. For
example, if the super-user (su) command is writable, anyone can copy the shell onto it and get a
password-free version of su. A more subtle problem can come from set-UID programs which are not
sufficiently careful of what is fed into them. To take an obsolete example, the previous version of the
mail command was set-UID and owned by the super-user. This version sent mail to the recipient’s own
directory. The notion was that one should be able to send mail to anyone even if they want to protect
their directories from writing. The trouble was that mail was rather dumb: anyone could mail someone
else’s private file to himself. Much more serious is the following scenario: make a file with a line like
one in the password file which allows one to log in as the super-user. Then make a link named ‘‘.mail’’
to the password file in some writable directory on the same device as the password file (say /tmp).
Finally mail the bogus login line to /tmp/.mail; You can then login as the super-user, clean up the
incriminating evidence, and have your will.

The fact that users can mount their own disks and tapes as file systems can be another way of
gaining super-user status. Once a disk pack is mounted, the system believes what is on it. Thus one
can take a blank disk pack, put on it anything desired, and mount it. There are obvious and unfortunate
consequences. For example: a mounted disk with garbage on it will crash the system; one of the files
on the mounted disk can easily be a password-free version of su; other files can be unprotected entries
for special files. The only easy fix for this problem is to forbid the use of mount to unprivileged users.
A partial solution, not so restrictive, would be to have the mount command examine the special file for
bad data, set-UID programs owned by others, and accessible special files, and balk at unprivileged
invokers.
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INTRODUCTION

Password security on the UNIX† time-sharing system [1] is provided by a collection of programs
whose elaborate and strange design is the outgrowth of many years of experience with earlier versions.
To help develop a secure system, we have had a continuing competition to devise new ways to attack
the security of the system (the bad guy) and, at the same time, to devise new techniques to resist the
new attacks (the good guy). This competition has been in the same vein as the competition of long
standing between manufacturers of armor plate and those of armor-piercing shells. For this reason, the
description that follows will trace the history of the password system rather than simply presenting the
program in its current state. In this way, the reasons for the design will be made clearer, as the design
cannot be understood without also understanding the potential attacks.

An underlying goal has been to provide password security at minimal inconvenience to the users
of the system. For example, those who want to run a completely open system without passwords, or to
have passwords only at the option of the individual users, are able to do so, while those who require all
of their users to have passwords gain a high degree of security against penetration of the system by
unauthorized users.

The password system must be able not only to prevent any access to the system by unauthorized
users (i.e. prevent them from logging in at all), but it must also prevent users who are already logged in
from doing things that they are not authorized to do. The so called ‘‘super-user’’ password, for exam-
ple, is especially critical because the super-user has all sorts of permissions and has essentially unlimited
access to all system resources.

Password security is of course only one component of overall system security, but it is an essen-
tial component. Experience has shown that attempts to penetrate remote-access systems have been
astonishingly sophisticated.

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are threats at
the remote terminal, along the communications link, as well as at the computer itself. Although the
security of a password encryption algorithm is an interesting intellectual and mathematical problem, it is
only one tiny facet of a very large problem. In practice, physical security of the computer, communica-
tions security of the communications link, and physical control of the computer itself loom as far more
important issues. Perhaps most important of all is control over the actions of ex-employees, since they
are not under any direct control and they may have intimate knowledge about the system, its resources,
and methods of access. Good system security involves realistic evaluation of the risks not only of deli-
berate attacks but also of casual unauthorized access and accidental disclosure.

PROLOGUE

The UNIX system was first implemented with a password file that contained the actual passwords
of all the users, and for that reason the password file had to be heavily protected against being either
read or written. Although historically, this had been the technique used for remote-access systems, it
was completely unsatisfactory for several reasons.
__________________
†UNIX is a Trademark of Bell Laboratories.
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The technique is excessively vulnerable to lapses in security. Temporary loss of protection can
occur when the password file is being edited or otherwise modified. There is no way to prevent the
making of copies by privileged users. Experience with several earlier remote-access systems showed
that such lapses occur with frightening frequency. Perhaps the most memorable such occasion occurred
in the early 60’s when a system administrator on the CTSS system at MIT was editing the password file
and another system administrator was editing the daily message that is printed on everyone’s terminal on
login. Due to a software design error, the temporary editor files of the two users were interchanged and
thus, for a time, the password file was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone’s password must be changed, usually
simultaneously, at a considerable administrative cost. This is not a great matter, but far more serious is
the high probability of such lapses going unnoticed by the system administrators.

Security against unauthorized disclosure of the passwords was, in the last analysis, impossible with
this system because, for example, if the contents of the file system are put on to magnetic tape for
backup, as they must be, then anyone who has physical access to the tape can read anything on it with
no restriction.

Many programs must get information of various kinds about the users of the system, and these
programs in general should have no special permission to read the password file. The information which
should have been in the password file actually was distributed (or replicated) into a number of files, all
of which had to be updated whenever a user was added to or dropped from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and it is not
difficult to decide that this can be done by encrypting each user’s password, putting only the encrypted
form in the password file, and throwing away his original password (the one that he typed in). When
the user later tries to log in to the system, the password that he types is encrypted and compared with
the encrypted version in the password file. If the two match, his login attempt is accepted. Such a
scheme was first described in [3, p.91ff.]. It also seemed advisable to devise a system in which neither
the password file nor the password program itself needed to be protected against being read by anyone.

All that was needed to implement these ideas was to find a means of encryption that was very
difficult to invert, even when the encryption program is available. Most of the standard encryption
methods used (in the past) for encryption of messages are rather easy to invert. A convenient and rather
good encryption program happened to exist on the system at the time; it simulated the M-209 cipher
machine [4] used by the U.S. Army during World War II. It turned out that the M-209 program was
usable, but with a given key, the ciphers produced by this program are trivial to invert. It is a much
more difficult matter to find out the key given the cleartext input and the enciphered output of the pro-
gram. Therefore, the password was used not as the text to be encrypted but as the key, and a constant
was encrypted using this key. The encrypted result was entered into the password file.

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and the com-
plete password file. Suppose also that he has substantial computing capacity at his disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a general
method of inverting the encryption algorithm. Very possibly this can be done, but few successful results
have come to light, despite substantial efforts extending over a period of more than five years. The
results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords until one succeeds;
this is a general cryptanalytic approach called key search. Human beings being what they are, there is a
strong tendency for people to choose relatively short and simple passwords that they can remember.
Given free choice, most people will choose their passwords from a restricted character set (e.g. all
lower-case letters), and will often choose words or names. This human habit makes the key search job a
great deal easier.
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The critical factor involved in key search is the amount of time needed to encrypt a potential pass-
word and to check the result against an entry in the password file. The running time to encrypt one trial
password and check the result turned out to be approximately 1.25 milliseconds on a PDP-11/70 when
the encryption algorithm was recoded for maximum speed. It is takes essentially no more time to test
the encrypted trial password against all the passwords in an entire password file, or for that matter,
against any collection of encrypted passwords, perhaps collected from many installations.

If we want to check all passwords of length n that consist entirely of lower-case letters, the
number of such passwords is 26n . If we suppose that the password consists of printable characters only,
then the number of possible passwords is somewhat less than 95n . (The standard system ‘‘character
erase’’ and ‘‘line kill’’ characters are, for example, not prime candidates.) We can immediately estimate
the running time of a program that will test every password of a given length with all of its characters
chosen from some set of characters. The following table gives estimates of the running time required on
a PDP-11/70 to test all possible character strings of length n chosen from various sets of characters:
namely, all lower-case letters, all lower-case letters plus digits, all alphanumeric characters, all 95 print-
able ASCII characters, and finally all 128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII
n letters and digits characters characters characters

1 30 msec. 40 msec. 80 msec. 120 msec. 160 msec.
2 800 msec. 2 sec. 5 sec. 11 sec. 20 sec.
3 22 sec. 58 sec. 5 min. 17 min. 43 min.
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs.
6 107 hrs.

One has to conclude that it is no great matter for someone with access to a PDP-11 to test all lower-case
alphabetic strings up to length five and, given access to the machine for, say, several weekends, to test
all such strings up to six characters in length. By using such a program against a collection of actual
encrypted passwords, a substantial fraction of all the passwords will be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to use a
list of names. For example, a large commercial dictionary contains typicallly about 250,000 words;
these words can be checked in about five minutes. Again, a noticeable fraction of any collection of
passwords will be found. Improvements and extensions will be (and have been) found by a determined
bad guy. Some ‘‘good’’ things to try are:

- The dictionary with the words spelled backwards.

- A list of first names (best obtained from some mailing list). Last names, street names, and city
names also work well.

- The above with initial upper-case letters.

- All valid license plate numbers in your state. (This takes about five hours in New Jersey.)

- Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users’ habits in the choice of
passwords when no constraint is put on their choice. The results were disappointing, except to the bad
guy. In a collection of 3,289 passwords gathered from many users over a long period of time;

15 were a single ASCII character;

72 were strings of two ASCII characters;

464 were strings of three ASCII characters;

477 were string of four alphamerics;

706 were five letters, all upper-case or all lower-case;
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605 were six letters, all lower-case.

An additional 492 passwords appeared in various available dictionaries, name lists, and the like. A total
of 2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictionary results and the character string
searches. The dictionary search alone, which required only five minutes to run, produced about one
third of the passwords.

Users could be urged (or forced) to use either longer passwords or passwords chosen from a larger
character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force users to
use less predictable passwords. The users did not choose their own passwords; the system supplied
them. The supplied passwords were eight characters long and were taken from the character set consist-
ing of lower-case letters and digits. They were generated by a pseudo-random number generator with
only 215 starting values. The time required to search (again on a PDP-11/70) through all character
strings of length 8 from a 36-character alphabet is 112 years.

Unfortunately, only 215 of them need be looked at, because that is the number of possible outputs
of the random number generator. The bad guy did, in fact, generate and test each of these strings and
found every one of the system-generated passwords using a total of only about one minute of machine
time.

IMPROVEMENTS TO THE FIRST APPROACH

1. Slower Encryption

Obviously, the first algorithm used was far too fast. The announcement of the DES encryption
algorithm [2] by the National Bureau of Standards was timely and fortunate. The DES is, by design,
hard to invert, but equally valuable is the fact that it is extremely slow when implemented in software.
The DES was implemented and used in the following way: The first eight characters of the user’s pass-
word are used as a key for the DES; then the algorithm is used to encrypt a constant. Although this
constant is zero at the moment, it is easily accessible and can be made installation-dependent. Then the
DES algorithm is iterated 25 times and the resulting 64 bits are repacked to become a string of 11 print-
able characters.

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure passwords.
If the user enters an alphabetic password (all upper-case or all lower-case) shorter than six characters, or
a password from a larger character set shorter than five characters, then the program asks him to enter a
longer password. This further reduces the efficacy of key search.

These improvements make it exceedingly difficult to find any individual password. The user is
warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he is not prevented
from using his spouse’s name if he wants to.

3. Salted Passwords

The key search technique is still likely to turn up a few passwords when it is used on a large col-
lection of passwords, and it seemed wise to make this task as difficult as possible. To this end, when a
password is first entered, the password program obtains a 12-bit random number (by reading the real-
time clock) and appends this to the password typed in by the user. The concatenated string is encrypted
and both the 12-bit random quantity (called the salt ) and the 64-bit result of the encryption are entered
into the password file.

When the user later logs in to the system, the 12-bit quantity is extracted from the password file
and appended to the typed password. The encrypted result is required, as before, to be the same as the
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remaining 64 bits in the password file. This modification does not increase the task of finding any indi-
vidual password, starting from scratch, but now the work of testing a given character string against a
large collection of encrypted passwords has been multiplied by 4096 (212). The reason for this is that
there are 4096 encrypted versions of each password and one of them has been picked more or less at
random by the system.

With this modification, it is likely that the bad guy can spend days of computer time trying to find
a password on a system with hundreds of passwords, and find none at all. More important is the fact
that it becomes impractical to prepare an encrypted dictionary in advance. Such an encrypted dictionary
could be used to crack new passwords in milliseconds when they appear.

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible to find
out whether a person with passwords on two or more systems has used the same password on all of
them, unless you already know that.

4. The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and they are very fast.
The use of such a chip speeds up the process of password hunting by three orders of magnitude. To
avert this possibility, one of the internal tables of the DES algorithm (in particular, the so-called E-table)
is changed in a way that depends on the 12-bit random number. The E-table is inseparably wired into
the DES chip, so that the commercial chip cannot be used. Obviously, the bad guy could have his own
chip designed and built, but the cost would be unthinkable.

5. A Subtle Point

To login successfully on the UNIX system, it is necessary after dialing in to type a valid user
name, and then the correct password for that user name. It is poor design to write the login command in
such a way that it tells an interloper when he has typed in a invalid user name. The response to an
invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done only if the
user name was valid, because otherwise there was no encrypted password to compare with the supplied
password. The result was that the response was delayed by about one-half second if the name was
valid, but was immediate if invalid. The bad guy could find out whether a particular user name was
valid. The routine was modified to do the encryption in either case.

CONCLUSIONS

On the issue of password security, UNIX is probably better than most systems. The use of
encrypted passwords appears reasonably secure in the absence of serious attention of experts in the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX systems have
instituted what is called an ‘‘external security code’’ that must be typed when dialing into the system,
but before logging in. If this code is changed periodically, then someone with an old password will
likely be prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthorized per-
sons, it is wise to keep a record of both successful and unsuccessful attempts to get at the secured
resource. Just as an out-of-hours visitor to a computer center normally must not only identify himself,
but a record is usually also kept of his entry. Just so, it is a wise precaution to make and keep a record
of all attempts to log into a remote-access time-sharing system, and certainly all unsuccessful attempts.

Bad guys fall on a spectrum whose one end is someone with ordinary access to a system and
whose goal is to find out a particular password (usually that of the super-user) and, at the other end,
someone who wishes to collect as much password information as possible from as many systems as pos-
sible. Most of the work reported here serves to frustrate the latter type; our experience indicates that the
former type of bad guy never was very successful.

We recognize that a time-sharing system must operate in a hostile environment. We did not
attempt to hide the security aspects of the operating system, thereby playing the customary make-believe
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game in which weaknesses of the system are not discussed no matter how apparent. Rather we adver-
tised the password algorithm and invited attack in the belief that this approach would minimize future
trouble. The approach has been successful.
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