

A Practical Guide to

Computer
Programming
Management

AUERBACH Data Processing Management Library

James Hannan, Editor

•

Contributors To This Volume

George N. Baird
Woodbridge VA

Paul F. Barbuto, Jr.
Data Base Manager, Washington State Library Network

OlympiaWA

Norman Carter
Development Systems International, Los Angeles CA

David M. Clark
Computer Applications Consultant, Richmond VA

James F. Gross
Sheboygan WI

Kathryn Heninger
IBM Corporation, Chapel Hill NC

Paul Oliver
President, EDS-World Corporation, Bethesda MD

David Schechter
Consultant, Adjunct Assistant Professor of Management

School of Continuing Education, New York University, New York NY

John E. Shore
Naval Research Laboratory, Washington DC

Bruce Winrow
Wolfe Computer Aptitude Testing Incorporated

Montreal, Canada

A Practical Guide to

A
AUERBAC~

~

Computer
Programming
Management

Edited by James Hannan

AUERBACH Publishers Inc
Pennsauken NJ

VAN NOSTRAND REINHOLD COMPANY
New York Cincinnati Toronto London Melbourne

Copyright © 1982 by AUERBACH Publishers Inc

Library of Congress Catalog Card Number 82-11339

ISBN 0-442-20920-7

All rights reserved. No part of this work covered by the copyright hereon
may be reproduced or used in any form or by any means-graphic,
electronic, or mechanical, including photocopying, recording, taping,
or information storage and retrieval systems-without written permis­
sion of the publisher.

Printed in the United States of America

Published in the United States in 1982
by Van Nostrand Reinhold Company Inc
135 West 50th Street
New York NY 10020 USA

16 15 14 13 12 11 10 9 8 7 6 5

Library of Congress Cataloging in Publication Data
Main entry under title: .

A Practical guide to computer programming management.

(Auerbach data processing management library; v. 2)
1. Computer programming management. I. Hannan,

James, 1946- . ll. Series.
QA76.6.P677 1982 658' .054 82-11339
ISBN 0-442-20920-7 (Van Nostrand Reinhold Co. : pbk.)

Contents

Preface vii

Introduction ix

Chapter 1 Acquiring Entry-Level Programmers
Bruce Winrow

2 Performance Appraisal of Programmers
Norman Carter 11

3 Estimating the Cost of Software
Paul Oliver 33

4 Designing Modular Programs
Kathryn Heninger and John E. Shore 49

5 Decision Tables
Paul F. Barbuto, Jr. 69

6 Program Portability
Paul Oliver 89

7 Writing Straightforward, Maintainable
Programs

James F. Gross 0 ••••••••••••••••• 101

8 Programming Style in COBOL
George N. Baird 113

9 The Skeleton Program Approach to Standard
Implementation

David Schechter 125

10 Tools for Top-Down Testing
Paul F. Barbuto, Jr 137

11 A Methodology for Program Maintenance
David M. Clark 145

Preface

In its relatively brief existence, the computer has emerged
from the back rooms of most organizations to become an integral part of
business life. Increasingly sophisticated data processing systems are being used
today to solve increasingly complex business problems. As a result, the typical
data processing function has become as intricate and specialized as the business
enterprise it serves.

Such specialization places a strenuous burden on computer
professionals. Not only must they possess specific technical expertise, they
must understand how to apply their special knowledge in support of business
objectives and goals. A computer professional's effectiveness and career hinge
on how ably he or she manages this challenge.

To assist computer professionals in meeting this challenge,
AUERBACH Publishers has developed the AUERBACH Data Processing
Management Library. The series comprises eight volumes, each addressing the
management of a specific DP function:

A Practical Guide to Data Processing Management
A Practical Guide to Programming Management
A Practical Guide to Data Communications Management
A Practical Guide to Data Base Management
A Practical Guide to Systems Development Management
A Practical Guide to Data Center Operations Management
A Practical Guide to EDP Auditing
A Practical Guide to Distributed Processing Management

Each volume contains well-tested, practical solutions to the
most common and pressing set of problems facing the manager of that function.
Supplying the solutions is a prominent group of DP practitioners-people who
make their living in the areas they write about. The concise, focused chapters
are designed to help the reader directly apply the solutions they contain to his or
her environment.

AUERBACH has been serving the information needs of
computer professionals for more than 25 years and knows how to help them
increase their effectiveness and enhance their careers. The AUERBACH Data
Processing Management Library is just one of the company's many offerings in
this field.

James Hannan
Assistant Vice President
AUERBACH Publishers

vii

Introduction

Perhaps no other function in data processing has gained the
notoriety that programming has. To the uninitiated, it is the most impenetrable
of all the DP black arts, with technical sorcerers employing ritualistic "metho­
dologies" and arcane "languages" to make the electronic leviathan do their
bidding. Solutions to the most complex business and scientific problems can be
had simply by petitioning the sorcerers, who then produce results in the time it
takes to utter the requisite incantations.

For most programming managers, this naive but all-too­
prevalent attitude on the part of users is a fact they must cope with in meeting
their organizations' need for application systems. Creating programs entails the
skillful management of both people and technology, a process that many
managers might argue is almost as difficult as conjuring spells. And whether
users are knowledgeable or uninformed about the realities of programming,
they generally make rigorous demands of programming managers. This vol­
ume of the AUERBACH Data Processing Management Library is designed to
help programming managers satisfy those demands.

We have commissioned an outstanding group ofDP practition­
ers to share the benefits of their extensive and varied experience in program­
ming. Our authors have written on a carefully chosen range of topics and have
provided proven, practical advice for managing the programming function
more efficiently and effectively.

In Chapter One, Bruce Winrow discusses an effective way to
deal with the chronic shortage of experienced programmers-hiring and train­
ing entry-level programmers. He provides guidelines for hiring high-potential
graduates from educational institutions and outlines procedures for establishing
an entry-level training program.

In addition to hiring and training programmers, a manager is
also responsible for assessing programmer performance. Such assessments
help reduce turnover by keeping programmers informed about their strengths,
weaknesses, and progress. In his "Performance Appraisal of Programmers,"
Norman Carter discusses techniques that help managers make and understand
evaluations; he also offers procedures, a checklist, and sample forms that can
facilitate performance appraisal.

As challenging as personnel issues are, the programming man­
ager must also deal with an equally demanding set of technical problems.
Determining the resources required to develop a software product is one such
problem. In Chapter Three, Paul Oliver explains why it is so difficult to
develop accurate estimates and suggests policies, procedures, and formats that
can reduce the level of difficulty and improve the accuracy of estimates.

ix

Introduction

System design is another subject that presents knotty technical
problems. Managers and programmers are often encouraged to design modular
programs to increase software reliability and reduce overall software costs.
Kathryn Heninger and John E. Shore introduce the basic concepts of modular
program design and explain how to apply them in Chapter Four.

In the area of program design, an effective but often over­
looked technique is the use of decision tables. Most programming tools are
valuable at a specific stage in the program life cycle but do not serve nearly as
well at other stages. Decision tables, on the other hand, can be used with equal
effect in analysis, design, programming, and documentation. In Chapter Five,
Paul F. Barbuto, Jr., discusses the construction, modification, and uses of
decision tables.

Since many programs are moved from computer to computer
during their lifetimes, it makes economic sense to consider the costs of portabil­
ity at the design stage. In "Program Portability," Paul Oliver describes the
problems inherent in portability and discusses how to minimize software
conversion costs during program design and implementation.

Many of the problems and costs associated with program
design and implementation can be reduced or eliminated through the develop­
ment and enforcement of standard policies and procedures. In "Writing
Straightforward, Maintainable Programs, " James F. Gross examines some of
the factors that make programs hard to maintain and suggests some general
considerations and specific coding practices that can yield more maintainable
programs. George N. Baird presents guidelines for producing source programs
that appear as though written by a single programmer, thus facilitating mainte­
nance, in his "Programming Style in COBOL." And David Schechter de­
scribes a technique for reducing implementation costs in his chapter detailing
the skeleton program approach to implementation.

The testing phase of program development can benefit as much
from the use of top-down methods as the design phase. Moving the testing
process forward in the development cycle and integrating it into top-down
design enables testing to provide timely feedback. Paul Barbuto describes top­
down testing and the tools that support it in Chapter Ten.

Although it consumes a significant amount of time and re­
sources, program maintenance is generally viewed as an uncontrollable neces­
sity. To help bring this activity under control, David M. Clark presents a
workable methodology for program maintenance that emphasizes programmer
preparation, program and task overviews, and change follow-through.

x

~ Acquiring Entry-Level
Programmers by BruceWinrow

INTRODUCTION

Many organizations are encountering difficulties caused by the severe
shortage of experienced programmers. The various recruiting alternatives are
expensive and often unfruitful. In addition, even experienced personnel often
require considerable training to become familiar with an organization's unique
mix of hardware, software packages, programming techniques, project
methodologies, and so on.

As a result, an increasing number of programming managers are establishing
entry-level training courses to attract high-potential (but inexperienced) gradu­
ates of educational institutions. The aim is to produce-as quickly as possible­
productive programmers trained to meet the organization's specific needs.
Recent graduates can be hired at lower salaries than experienced programmers.
Hiring inexperienced candidates also encourages promotion from within for
other job openings, and effective programmer training can reduce turnover.

In this chapter, it is assumed that the reader is familiar with the basic tasks
involved in undertaking a training needs analysis, exploring training sources,
and setting up the training program. This chapter discusses the need for
management commitment to entry-level training and recruiting, the value of
aptitude testing for entry-level candidates, and a proven procedure for hiring
trainees. A case study of a large DP installation is presented.

MANAGEMENT COMMITMENT

Senior management support is essential for success in hiring programmer
trainees. This support will come only after an appropriate presentation that
outlines the cost and benefits of setting up a training program and recruiting
entry-level personnel. Approval must be obtained for the anticipated hiring
costs, the training budget, and the salary scale for the new trainees. There are
several advantages in hiring trainees in groups; therefore, senior management
should be encouraged to identify manpower requirements for the coming year
or two.

2 PROGRAMMING MANAGEMENT

ROLE OF THE TRAINING DEPARTMENT

If the organization includes a training department, this department must
establish its role in the hiring process, and senior management must demon­
strate its support of that role. Often, department managers or personnel depart­
ments hire new employees and tum them over to the training department to
upgrade their skills. The problem with this procedure is that different managers
use different criteria for selection and have varying degrees of skill in the hiring
process (e.g., interviewing). Even though the training department often has to
train less-than-ideal candidates, the trainers are still held responsible for the
new employee's performance. If the training department is judged by the
performance of its trainees, it behooves the training manager to have some
control over the quality of the candidates.

Many organizations, of course, have no separate training department; con­
sequently, essential functions of establishing the program, obtaining manage­
ment support, determining hiring criteria, and coordinating the efforts must be
performed by other appropriate personnel. The trainers can be drawn from
programming managers, senior programmers, personnel department staff, and
soon.

RECRUITING PROGRAMMER TRAINEES

Hiring high-aptitude candidates maximizes the likelihood of success. Hiring
poor candidates, even at the entry level, is expensive and can be disastrous.
Selection techniques are limited and usually involve screening resumes, inter­
viewing, checking references, and objective testing. To use only one of these
approaches would be irresponsible, especially since all but testing are more or
less subjective.

As with any other worthwhile project, the most important step .in the
recruiting process is planning. Figure 1-1 illustrates a network plan for hiring
entry-level trainees. This plan has proved successful for a large organization
with approximately 2,500 DP employees at all skill levels.

It is essential to identify the type of individual desired, where he or she can
be found, and the best recruiting method. Four obvious groups that may provide
candidates for entry-level programming positions are:

• University graduates whose curricula include DP courses
• Community college graduates in DP
• Graduates of an accredited computer institute
• Internal candidates possessing a high aptitude for programming

If the organization plans to put the new workers through a comprehensive
training program, the recruiting process need not be limited to computer
science graduates. The greater the candidates' exposure to such courses,
however, the greater the chance they will know what they are getting into, and
the less chance they will resign because they "just don't like data processing. "
Some exposure to DP may also make the training process easier.

Determine role
of testing

Determine
role of
training
dept

Establish
costs

Determine criteria for selection

Schedule
test

Determine interviewers

Figure 1·1. Sample Network Plan for Hiring Programmer Trainees

m z
-f

~
r
~
m
r
"'0

~
Ci)
JJ »
s:::
s:::
m
JJ en

CAl

4 PROGRAMMING MANAGEMENT

Many educational institutions have a placement selVice that will supply
organizations with resumes of graduating students on request. At the vel)' least,
notices can be posted on campus, announcing the organization's intent to hire.
The training manager should sUlVey local schools to determine which offer
courses that best match the organization's needs. Advertising in local papers
and using placement agencies are other alternatives, but these can be time
consuming and vel)' expensive, especially for entty-Ievel personnel.

Prior to obtaining resumes, the criteria for screening should be determined.
Some criteria (e.g., scholastic average, work experience, curriculum) may
have particular value to an employer. The job requirements should be studied
(even for entty-Ievel personnel) in order to compare the candidate's qualifica­
tions with the needs of the job. The resumes should then be read over carefully,
noting such things as gaps in background, inconsistencies, insufficient infor­
mation, reasons for leaving previous employment, and attitudes.

If testing is used as a tool for selection, administrative details must be taken
care of first. This may include arranging for testing premises and ensuring that
there are enough tests on hand. Potential employees will be taking the test, and
the company should give a professional first impression. There is no excuse for
administrative foul-ups, considering the enormous value of hiring the best
candidates. As many candidates as possible should be tested at one sitting,
especially if many of them are being recruited from the same educational
institution. Avoid using the same test more than once for students from a single
institution. Some applicants who have already spent hundreds of dollars on
programming courses may rationalize that there is nothing wrong with getting
"help" with the test as long as they finally understand how to do the problems.
Most good tests are designed on the assumption that the problems are new to the
applicant. Scheduling as few testing sessions as possible greatly reduces the
problem of one applicant coaching another.

APTITUDE TESTING AND HIRING DISCRIMINATION

Because of the intense EEOC scrutiny to which aptitude tests have been
subjected, many employers wonder whether they are allowed by law to use
objective tests as part of their selection criteria. Employers should realize that
testing is not illegal; it is not even disapproved of. Organizations are free to use
any professionally developed aptitude test that is not discriminatol)'. They are
also free to use a test that, in practice, screens out protected classes of
individuals in disproportionate numbers, provided the test can be shown to be a
valid indicator of on-the-job performance.

Both public and private employers with 15 or more employees who work at
least 20 weeks per year must comply with EEOC guidelines. The guidelines
cover any procedure used to make an employment decision, including inter­
viewing, reviewing applications and work experience, oral and written tests,
physical requirements, and so on. The fundamental principle of the guidelines
is that employer policies or practices having adverse impact-as determined by
the "4/5 rule" illustrated in Table I-I-on the employment opportunities of

ENTRY-LEVEL PROGRAMMERS

Table 1-1. Determination of Adverse Impact (4/5 Rule)

Selection Procedure
Administered to

100maies
60femaies

Hired

65maies
20 females

Percentage
Selected

65
33

Hiring
Ratio·

33/65(50%)

'In this example, the hiring ratio for females is less than 80% of that for males, indicating hiring practices
adversely affect females. This means the selection procedure must be validated.

5

any race, sex, or ethnic group are not permissable unless justified by business
necessity,

Employers who use a selection procedure that has no adverse affect on a
protected group may avoid application of the guidelines. Selection procedures
that do have adverse impact should be validated to demonstrate the relationship
between the procedure and on-the-job performance. In the case of testing,
scores must be predictive of performance on the job. If the employer has
substantial evidence of the validity of a particular test, it may be used in the
selection procedure while data is collected for a local validation study. To
determine "substantial evidence," the abilities required for successful per­
formance of the jobs should be established, and these criteria should be
compared to what is measured by the test. If the criteria in the job description
and those in the test are very much the same, and if the test has been validated
elsewhere, the test can be used. It should be considered only one factor (less
than 50 percent) in making the selection decision.

To perform a validation study, a sample of at least 30 persons-either
present employees (concurrent validation) or new hires (predictive
validation)-must be measured over a period of time to determine whether there
is a meaningful relationship (predictive validation coefficient) between on-the­
job performance ratings and the test predictions. The testing/test marketing
organization should gather the data on the employer's behalf, perform all
necessary statistical work, and provide a detailed written validation report
showing the results of the study for the employer's organization.

At least three factors should be considered when selecting a test to use:
• Relevance-A relevant test measures abilities that are critical to job

success.
• Reliability-A reliable test should predict success on the job over a long

period of time and with a wide range of applications.
• Predicting on-the-job success-There should be close agreement of test

scores and supervisory ratings of performance on the job.

To optimize fairness, time-limited and multiple-choice tests should be
avoided. In addition, physical security measures during the test-taking proce­
dure should be considered to ensure against cheating. When evaluating cost, a
better test should not be discounted just because it is more expensive: the higher
cost is justified if the test prevents hiring a poor candidate.

6 PROGRAMMING MANAGEMENT

THE INTERVIEW PROCESS

Screening resumes and testing are only two tools in the selection procedure
and, although they are important, they involve very little interaction between
the organization and the candidate. The interview process, if well planned and
executed, can mean the difference between hiring excellent candidates and not
meeting the recruiting quota.

First, qualified interviewers should be chosen, and the same interviewers
should be used throughout the hiring campaign. If experienced interviewers are
not available, a course on effective interviewing should be considered.

In one successful organization, the training manager, an employment coor­
dinator from the personnel department, and the programmer training instructor
separately interview each candidate. After all candidates have been seen, each
interviewer arranges the applicants in order of preference. A general meeting
takes place to merge the lists and select those to whom job offers will be sent.

The interviewers should meet before the interviews and plan their approach.
They should establish objectives for interviewing and, as much as possible,
avoid duplication of questions or areas of discussion. Planning also facilitates
probing for in-depth information; inexperienced interviewers often try to cover
too many items in too short a time and might never, for example, uncover the
real reason for a job change.

Careful scheduling is also important. Applicants appreciate professionalism
and are impressed when they are interviewed on time by three successive
people, with no delays in between. This can be accomplished by allowing each
interviewer about 45 minutes (30 minutes for the interview and 15 minutes to
document the evaluation). At the end of30 minutes, the candidate is brought to
the next interviewer. Each interviewer must be well prepared and familiar with
the applicant's resumes. With this system, the candidate is finished with three
interviews in 90 minutes, with no delays (this assumes that the interviewers are
in close proximity). "

Another benefit of planning the interview procedure is establishing the
"selling approach." The demand for high-potential programming graduates is
increasing as more and more organizations establish training programs and hire
entry-level people. Once an organization finds a person who fits the job
opening, there remains the task of convincing the candidate to pick that
organization above several others. In many organizations, this aspect of the
interview process is neglected or handled very poorly. A hard-sell approach is
frequently not appreciated by applicants; however, an experienced interviewer
who is enthusiastic about his or her company and can incorporate the likes and
dislikes mentioned by the applicants into the discussion is a very valuable asset.
The interviewer should capitalize on the benefits the organization offers and
provide direct answers to inquiries about the functions the applicant would
perform and the career paths available. The more specific and honest an
interviewer can be, the greater the likelihood that the desired programmers will
be hired and retained.

ENTRY-LEVEL PROGRAMMERS 7

It is important that the organization remain in constant contact with the
applicant at all stages of the selection process. This reduces the chances of
surprise if a candidate accepts a position elsewhere; in addition, it improves the
organization's professional image. Every applicant, whether accepted or re­
jected, should receive some sort of response. The vehicle may be a form letter
or a personal phone call. A company with good follow-up procedures has a
competitive edge over those with shoddy hiring practices. Even though a
candidate is turned down, he or she may be in a position to refer future
candidates; thus, the interview process should leave all candidates with a
positive image of the organization.

THE JOB OFFER

Before making a job offer (even, in fact, before initiating the interview
process), competitive salary ranges for entry-level programmers should be
established. Many companies set their pay scales according to scholastic
attainment and thus offer salaries that depend on whether the applicant is a
community college, computer institute, or university graduate. It is possible to
offer lower than competitive salaries if there is an extensive entry-level training
program; however, the salaries should be made competitive at the end of
training, or the students who have completed the program may be enticed to
other firms.

Consideration should be given to raising everyone's salary to the same level
at the completion of training, regardless of educational background. If the
training is effective, the students will have similar abilities to perform similar
jobs. Salary figures that competent performers can expect after training and
after one year with the organization should be identified. Commitment to these
figures when making a job offer can help offset any negative feelings an
applicant might have about a less-than-competitive starting salary.

It is important to be careful about having the applicant sign a contract
committing him or her to the firm for a period of time in an attempt to guarantee
some return for the training. If the individual becomes disgruntled, the firm
may be better off without him or her.

Before writing the job offer, it is wise to inform the applicant by telephone
that it is coming. This may cause the applicant to stop job hunting; it also
provides an opportunity for the applicant to affirm his or her interest in the
position.

CASE STUDY OF A LARGE DP INSTALLATION

The procedure outlined in Figure 1-1 has been used for eight years by a very
large bank that hires approximately 40 programmer trainees every year. The
bank conducts four training sessions a year, with approximately 10 students in
each session. The course begins on the date of hire and lasts for 20 weeks.
Aptitude testing is used extensively both for selection and for identifying
possible "fast trackers." A recent study conducted by the bank revealed that

8 PROGRAMMING MANAGEMENT

employees who were hired when testing was part of the selection procedure
were rated higher-by a margin of approximately 20 percent-by their manag­
ers than candidates selected without testing.

The bank's training department was responsible for both recruiting and
training the new personnel. Table 1-2 indicates the cost of hiring 10 candidates
and training them in a five-month course.

Table 1-2. Budgetfor Hiring and Training 10 Trainees

Management Salaries (0.8 man-years)
Clerical
Trainee Salaries

Aptitude Tests
Training Materials·
Computer Time
Hardware (TSO terminal rental)
Premises
Travel

Subtotal

$1,000

21
4

50
75

3
4

12
5

11
1

Total 111
CostfTrainee 11.1

CostfTrainee/Month 2.2

"This amount represents replacement costs only, since this organization owns most of Its training materials.

The bank found that graduates of the training program performed at a level
comparable to that of an externally hired programmer with approximately two
years of experience. Part of the cost justification for the training was that the
five-month graduates, who were familiarized with organization-specific proce­
dures and became productive quickly, were paid a lower salary than their
counterparts with two years of experience. In addition, turnover was lower, in
part because entry-level personnel are not attractive to other firms until they
gain some experience. Over an eight-year period, the average yearly turnover
rate of personnel who had completed the training (approximately 350 people)
was 8.8 percent. Those who did resign stayed for an average of2.6 years.

The bank used the scale in Table 1-3 for entry-level salaries. As can be seen,
all students were brought to the same salary level towards the end of the training
program and were reviewed again in six months. It was felt that the 10-month
review was necessary for competitive reasons, especially since the graduates
were by then fully productive. From that point, the bank's yearly salary policy
took over, with employees receiving a five to ten percent increase based on
performance ratings established by the employee's immediate supervisor. In
addition, the bank usually granted a six to nine percent across-the-board
increase (a market adjustment for competent or better-than-competent
employees).

The benefit of determining this salary scale in advance was that the 10-
month salary of $15,700 could be quoted in the job offer, and it appeared more

ENTRY-LEVEL PROGRAMMERS

Table 1-3. Salary Scale for Entry-Level Programmers

Time

Entry

4 months
10 months
22 months

Education

1-year institute
2-year community college
University
Everyone
Everyone
Everyone

Salary

$11,200
11,760
12,400
13,800
15,700

5-10% merit
6-9% market

9

competitive than the entry-level rates. The interviewers explained the training
program to the applicants to ensure that they understood why the initial salary
was low. Using this procedure, the bank had no difficulty in attracting and
keeping good candidates.

The bank experienced another benefit from hiring and training in groups.
With several people going through the same curriculum, students with perform­
ance problems were identified and dealt with early. (In some instances this
meant dismissal.) This relieved individual supervisors of the burden of ident­
ifying poor performers, provided a more objective means of evaluation, and
saved the company time and money by releasing substandard personnel before
they became long-term employees.

During the 20-week training program, the training manager received re­
quests from other managers for the services of the graduating students. The
training manager, knowing the capabilities of the students and the work
requirements of the various requesting areas, made a preliminary allocation of
students to the various managers. Interviews were arranged, and if the manager
and student reached amutual agreement, the graduating student was assigned a
position. If there were problems (such as personality clashes), other interviews
were held until good matches could be found. Because of careful manpower
planning, in eight years there were never more graduating students than
available positions at the end of training.

CONCLUSION

When hiring entry-level programmers for a training program, the following
points should be considered:

• Plan the recruiting process, and adopt a uniform recruiting procedure.
• Obtain budget approval in advance for recruiting and training.
• Use selection tools wherever possible in the hiring process.
• Hire candidates for their potential, and train them in the necessary skills.
• Consider long-term manpower requirements, and hire and train in

groups.
• Determine the role the training department should take in the recruiting

process.
• Establish an entry-level salary scale and subsequent salary progression

for the new trainees.

10 PROGRAMMING MANAGEMENT

• Conduct planned and professional interviews with appropriate follow­
up.

• Identify standards of perfonnance for the training program so that
substandard trainees can be identified early.

Following these guidelines can help staff the organization with productive,
satisfied programmers.

72 Performance
Appraisal of
Programmers

INTRODUCTION

by Norman Carter

DP employees with excellent working tools (e.g., systems development
methodologies and test data generators) are usually well trained in their use.
The question of how well the individual actually uses these tools, however, is
often ignored. Some managers apparently feel that a raise and an occasional pat
on the back obviate the need for fonnal employee evaluation.

Companies that conduct regular feedback interviews six months after em­
ployees leave have found that lack of effective performance appraisal is high on
the list of reasons for leaving. In many cases, this reason precedes the financial
motivation so often discussed at the time of leaving. If lack of effective
performance appraisal is indeed a major reason for employee turnover, there
are straightforward ways to attack the problem.

There is another reason for conducting regular formal performance appraisal
of DP personnel: both the Equal Employment Opportunity Commission
(EEOC) and Affirmative Action (AA) require that a company be able to
demonstrate a direct and traceable relationship among a job description, per­
formance criteria for the job, appraisal of performance against the description
and criteria, and direct involvement of the individual in setting, monitoring,
and measuring objectives.

Objectives of Performance Appraisal

The primary objectives of performance appraisal are to:
• Review employee progress in terms directly related to the organization

and the individual's job family and position
• Review and establish measurable performance goals for the next given

time period
• Design objectives, action plans, and training curricula for each individ­

ual for current, and in preparation for future, job responsibilities
• Comply with company personnel and salary administration policies and

guidelines
Justification for a requested salary increase is not among these objectives. In
fact, a combined performance and compensation appraisal detracts from the

12 PROGRAMMING MANAGEMENT

objectivity of the perfonnance evaluation; the manager may find that in order to
support a requested increase, he must make unsupported statements or state­
ments that do not reflect a consistent view of the individual's contribution to the
department.

Perfonnance appraisal provides the framework within which the growth of
an employee can be evaluated independently of the availability of money to
compensate that individual. In fact, consistent appraisals are one lever a
manager can use to correct salary grades or ranges with the compensation
manager. Once-a-year fudged perfonnance appraisals make correction of sal­
ary inequities almost impossible.

Perfonnance appraisal can also be used for mutual discussion of the profes­
sional and technical achievements of the employee. Perfonnance objectives
can be negotiated, thus avoiding unilateral goal-setting by the manager.

Managers as Coaches, Not Umpires

The role of a manager can be likened to that of the coach of a team. Each
player is taught what to do and how to do it in nonnal circumstances. As the
game proceeds, minor adjustments are made by the coach. A coach who does
not modify the game plan in response to the play is usually neither respected by
his players nor successful in developing or maintaining a winning team.

At the same time, a player has the responsibility to call time-out to discuss a
situation he has observed on the field so that the coach can offer further
assistance. In this sense, the success of the team is as important as the success of
each individual.

Perfonnance appraisal involves the manager, supervisor, or team leader in
the coaching or counseling of employees in tenns of their ongoing overall
development, not just as an umpire dealing with disputes and disruptions. In
addition, perfonnance appraisal helps the leader and staff feel like members of
a team and helps allay the feeling that each approach by the manager is related
to disciplinary action or financial reward.

TYPES OF PERFORMANCE APPRAISAL

Perfonnance appraisal is typically viewed as a single activity: sit down, fill
out the fonn, conduct a cursory everything-is-all-right discussion, sign the
fonn, and get back to work. It is not, however, as simple as that.

Employees generally fall into three categories:
• High perfonners with high potential
• Averageperfonners
• Marginal perfonners

Figure 2-1 shows the perfonnance/training activities prescribed for each type of
employee. Figure 2-2 shows career planning relationships. These activities and
relationships should be considered when preparing employee perfonnance
objectives.

PERFORMANCE APPRAISAL 13

~
High P.rformer Average Performer Marglna' Performer

Training Category R.ady Future Short Plan Long Plan Keep Separate
Activity

SeIf-devetDpment High High Above Average Low None
average expected

CI.,sesl To round out Key subjects for Next required Selective skill for
To maintain skill workshops' knowledge next pOSition mlssmgSkllis advancement

.. mlnar.

To maintain
To supplement To prepare lor CoachingicounMHng Intensive Intensive To maintain skill minimum skill

skills advancement until separation

Involvement In other
High High Some As available Minimum company acltvlt~.

Figure 2-1. PerformancelTraining Activity Requirements

The high perfonner should, of course, be expected to do more than the low
perfonner and should also be expected to perfonn more job-related develop­
ment activities outside of work. A low perfonner, however, who will be
separated from the company, may be on the job for longer than expected while a
replacement is found. Training may be required to ensure that job skills do not
fall below an acceptable level. No other training activities should be scheduled
for this category.

Performance Appraisal Roles

Three complementary roles in perfonnance appraisal-the company, the
manager, and the individual-can, when linked, provide an effective
perfonnance-oriented environment. Effective communication among the three
areas is essential.

The three roles can be defined as follows:
• The Company

-Provides the overall climate for individual growth
-Demands high perfonnance standards
-Expects managers to develop their subordinates
-Recognizes the need for training and makes it available
-Rewards accomplishments financially and in tenns of advancement

• The Manager
-Provides continuous coaching and guidance
- Demands the demonstration of immediate and sustained performance

improvement in each assigned task
-Expects help from staff resources in the coaching role and recognition

for the accomplishment of this role
• The Individual

-Is self-motivated in the area of personal and professional growth
-Demands a say in detennining his or her career path
- Expects help from the company and immediate supervisor
-Recognizes responsibility for applying his or her training
-Rewards the company with an immediate return on investment

through increased productivity
A self-assessment guide can also be provided by the company for employee
use; no supervisory input is required unless requested by the individual.

14 PROGRAMMING MANAGEMENT

I Career Path Chart

Where You Are l Where You Can Go

!
Position Definition

Critical
Performance Areas

What to DO!

-~~ Position Definition
Individual

Performance Career Path Plan
Descriptions

Howto Do Itt
Career Counseling:

You and Your Your Map fo

Task/Training Supervisor the Next Yea

Matrix and the Job

t t I
Training

What you Need More
to Know Knowledge

Figure 2·2. Performance Evaluation/Career Planning Relationships

PREPARING FOR THE PERFORMANCE APPRAISAL

As one of the most demanding, difficult, and rewarding managerial activi­
ties, effective performance appraisal takes time-and managers often say they
have no time for such appraisals. Time can always be found, however, to
interview applicants, to correct work if employee objectives have been poorly
set, or to provide training when lack of knowledge causes errors. In many
cases, more time is required to correct a performance problem than is necessary
to conduct an appraisal, set objectives, and help the employee understand them.
Preparing and conducting a thorough, effective performance appraisal should
require less than five hours per person.

Review and Evaluation of Performance. This step involves gathering the
tools for appraisal, reviewing objectives and accomplishments, considering
why things were or were not done as agreed, reviewing the employee's overall
performance and comparing it with others as appropriate, and identifying
training strengths and deficiencies. This crucial preparation activity takes
between one and one-and-one-halfhours per person.

PERFORMANCE APPRAISAL 15

Discussion. After preparation by the employee and the supervisor, per­
formance, productivity, and new and continuing objectives should be dis­
cussed. This step should also take an hour to an hour and a half per person.

Negotiation. If performance evaluation is done consistently and at logical
checkpoints throughout the year, differences of opinion and viewpoint should
be minimal. Several discussions may be necessary, however, to reach a
mutually agreeable set of performance objectives. These discussions may
require two meetings of about an hour each.

Completion, Completing and submitting all paperwork in accordance with
company procedures (after appraising and ranking all individuals in a section or
department) should take about 15 minutes per person.

The Tools

The following types of tools facilitate performance appraisal.

Standard Forms and Procedures. If standard forms and procedures have
not been specified by the company, they should be developed and used
consistently. This requirement becomes increasingly important as EEOC and
AA continue to expand their roles as protectors of employee rights. Standard­
ization also helps avoid government audits that often occur when individuals
feel that varying standards are being applied.

Position Descriptions. Job descriptions should be written in specific terms
detailing what is to be done and how, in addition to giving broad statements of
responsibility and authority.

Job Standards. Job standards and tools should describe project require­
ments, system development standards and guidelines, departmental standards
and policies, and pertinent company policies and procedures.

Assignments/Results. The objectives set for the period should be avail­
able for review, as should a list of assignments that may have facilitated or
impeded achievement of the objectives.

Previous Appraisals. Several prior appraisals should be available for re­
view to help detect such trends as failure to meet objectives or exceeding
objectives frequently.

Setting the Meeting Date

To ensure that both parties are effectively prepared, the employee should
receive copies of the performance evaluation forms and instructions at least a
week before the discussion date. If special or additional goals have been
included, they should be reviewed and communicated to the individual at this

16 PROGRAMMING MANAGEMENT

time (preferably in writing). Self-assessment aids can also be made available at
this time for the individual to use, if desired.

THE PERFORMANCE APPRAISAL DISCUSSION

At best, performance appraisal begins as a stressful interview. Both partici­
pants come with different expectations. Until it is understood that the differ­
ences are professional and not personal, that compromise need not be one­
sided, and that effective negotiation is a sign of professional maturity, the
discussion will achieve less than optimum results. The following suggestions
help reduce the threatening aspects of the discussion.

The Environment. Do not conduct the discussion in a noisy environment or
with other people present. For example, do not hold the meeting in a restaurant
where customers and serving make communication difficult. (In addition, it is
extremely difficult to enjoy a meal under the constraints of such a critical
activity as performance appraisal.)

The best setting is a neutral environment such as a conference room, where
both parties can come from behind their desks. In addition, try to ensure that the
discussion is not interrupted; in no case should telephone calls be taken by
either person during the discussion. Behaviorists state that each time a discus­
sion is interrupted, it takes from five to ten minutes to regain the concentration
and flow that existed before the interruption.

The atmosphere should be as comfortable as possible. If the atmosphere of
the department is shirt sleeve, keep it that way. Do not set up artificially formal
barriers. Have some liquid refreshment (coffee, soft drink, or water) available.

The Discussion. The process must be a discussion, not a monologue. Both
parties, but especially the manager, should practice active listening techniques.
Notes should be taken and, whenever necessary, read back so that both parties
understand and agree on what has been discussed.

Negotiating. When differences of opinion on performance arise, the man­
ager should be prepared to use conflict-resolution skills. Resolutions must be
within the scope of and consistent with the performance appraisal tools men­
tioned earlier. Agreements reached outside these constraints, unless carefully
documented and well understood, often lead to additional conflict. They are,
therefore, self-defeating as a means of improving performance.

Legal Requirements

Although all of the EEOC rulings and AA requirements cannot be detailed in
this chapter, the following points should not be overlooked:

• Compliance with the law is compulsory, not voluntary.
• Intent to follow the law is not sufficient.
• Documentation of appropriate procedures and policies is required in

case of audit.

PERFORMANCE APPRAISAL 17

• The responsible organizations have stated that audits of compliance will
be conducted more frequently than in the past.

Goal Setting

Two types of goal setting are required for performance evaluations: qualita­
tive and quantitative.

Qualitative Goals. Too often, all of the established goals are qualitative
and include such statements as:

• Will maintain a level of production consistent with the average achieved
by the group

• Will comply with procedures established by management
Although some qualitative goals can be beneficial, they should be expressed in
concrete terms so that the individual understands exactly what is expected. For
example, a more explicit qualitative goal might be:

• To comply with the requirements described in the Systems Standards
Manual for the appropriate phase of the assigned development tasks

• To comply with Documentation Standard X
• To understand and be guided by Company Policy Y related to attendance

on the job
Qualitative goals should be kept to the minimum consistent with the assumption
that the employee knows the general requirements of the company and the job.

Quantitative Goals. As far as possible, performance goals should be quan­
titative and restricted to an attainable number, generally between three and five.
With more than five goals, activity and accomplishment tend to become too
diffuse, and judgment can become imprecise. Spreading fewer than three goals
over a similar period of time tends to make recalling sufficient detail difficult.

A quantitative goal should at least include the following elements:
• A description of the task to be done
• A definition of the standard to be used
• A breakdown of the task into deliverable items and the standard for each
• The relationship of each deliverable to a phase or project activity with

earliest/latest completion schedules, such as:

To complete program A in System B with fewer than three as­
semblies, using Test Assembly Standard E and Document Standard
F. To be completed not later than Date H. Performance of this goal
contingent on input from prior program delivery by Date G.

• Statement of the value to the individual in meeting the goal. For
example:

This objective will carry a weight of 50 percent in the next ap­
praisal, based on completion within the schedules established.

18 PROGRAMMING MANAGEMENT

JUDGING REWARDS AND PENALTIES

An effective challenge to individuals to improve their performance requires
rewards and penalties. Often, the reward is more money and the penalty less,
with a range of three to six percent. In view of today' s economy, this may not be
sufficient motivation. Rewards that are not exclusively tied to money should be
used.

Weighted Performance Goals. Once agreed-upon objectives are accepted
as the normal, expected performance, the effect of other-than-normal perfor­
mance can be judged. Weighted goals, which define other-than-standard
performance, can be expressed as follows:

• The objective is to complete the tasks on the schedule described and
within a budget of $X, over which you have control. Upon completion,
your performance reward will be:
-On schedule, below budget = Normal increase + 10 percent of budget

saved
-Before schedule, below budget = Normal increase + 25 percent of

budget saved
-After schedule or over budget = No increase

• The objective is to successfully implement the XYZ software package in
accordance with the vendor's contract terms and planned schedule and to
achieve a level of user satisfaction so that fewer than four complaints will
be received by senior management in the first three months of operation.
-Should this occur, 50 percent of your performance award will be

earned.
-If the schedule is missed by more than one month or if user complaints

exceed four during that period, the performance award will be de­
creased to 35 percent.

-If the schedule is missed by more than three months or if complaints
exceed 10, the goal will be considered not met.

These examples show that while weighted goals expedite quantification of
rewards, they require considerable thought, precise definition, and tough­
mindedness in their enforcement. In most cases, however, a demanding atmo­
sphere, coupled with fair and firm goal-setting and evaluation, is beneficial to
the individual and the company.

Additional Techniques

Three additional techniques can be used to make performance appraisal
more effective. Totem poling, tie breaking, and ranking aid in weighing
individuals against one another; they are perhaps most beneficial in situations
where resources and opportunities are limited.

Totem Poling. Totem poling is the listing of all employees in order of
performance, top to bottom. The totem pole is constructed from the supervi­
sor's empirical judgment and then refined by the performance appraisals.

PERFORMANCE APPRAISAL

Individual Rating Value Rating

1. Demonstrated ability to bring projects in on time and within
budget (±5%)

1.. Usually better ~ As planned ..!.. Usually misses

2. Adherence to SDlC Process, stated guidelines, project (Job
Procedure)

~Always 2 Satisfactory ..!.. Fails to Comply

3. Effective user relationships (does not require manager
intervention)

3 Fewer than 2 complaints/yr 2 3 to 5 complaints

x 3

x 1

- ..!. More than 6 complai nts x 3

4. Quality Production

~ Consistently above standard .l. Meets standard
..!. Below standard

5. Quantity Production

3 Consistently above standard 2 Meets standard
- 1 Below standard

6. Meeting agreed-upon objectives

3 Usually betters performance
- 2-Rarely meets

2 Meets at least 2 out of 3

7. Making creative input outside of assigned project area

x 2

x 2

x 1

1.. Often (2 to 3 times/yr) 1.. Sometimes (1/yr) .LRarely x 1

8. Applies training received, when back on job

LAlways 2 Sometimes .LRarely x 1

9. Consistency and accuracy of project planning and estimating

3 Plan always met (barring outside intervention) .£ Plan met
- 80% of time ..!. Plan met less than half the time x 3

10. Knows and actively supports management objectives

LAlways 2... Usually ..!..Rarely x 2

Figure 2-3. Typical Tie-Breaking Questions

19

Inconsistencies in judgment at appraisal time are minimized since the person
completing the totem pole is forced to ask:

Why have I put this person in this place? Is this placement consis­
tent with the perfonnance appraisal rating?

Tie Breaking. Some fonn of tie breaking is required when two or more
employees seem to have identical ratings but only one can be selected for

20 PROGRAMMING MANAGEMENT

advancement. Pertinent rating questions can be developed, with the value of
each determined on a basis acceptable to all managers involved in the selection
process. Figure 2-3 shows the kinds of questions and value rating that can be
created.

With this tie-breaking technique, each individual is rated and the score
calculated by multiplyin~ the numeric value of the answer by the value rating
and adding all rated items. The result can be used as one input to help break a
tie.

Ranking. Totem poles of the employees in an organization (or department)
can be combined for similar job families or project groups. This provides top­
to-bottom ranking of all programmers, for example, covered by one job
description. Using a master ranking list, management can:

• Identify evaluation inconsistencies between organizations or supervi­
sors

• Identify candidates
-For advancement
-For evaluation oflow performance
-Who are expected to change ranking position during the next 12 to 24

months

PERFORMANCE APPRAISAL PROCEDURES

Regularly conducted performance appraisals are vital in keeping program­
mers aware of how well they are doing in their jobs. Use of standard forms and
procedures makes the performance appraisal process easier to accomplish and
to apply consistently. This enables managers and employees to communicate
more freely; it also helps meet EEOC and AA requirements. The remainder of
this chapter describes standardized procedures for planning, preparing, and
conducting performance evaluations and shows the types of forms that can be
used.

STEPS IN PERFORMANCE EVALUATION

The steps to be taken in conducting an effective appraisal, including prepa­
ration, the discussion itself, and follow-through, are indicated in subsequent
sections.

Planning Procedures

• Review with the employee the position description, task definition, job
standards or requirements, and other pertinent procedures or policy
statements.

• Establish personal objectives. Briefly discuss performance evaluation
and career planning as it relates to company policy.

PERFORMANCE APPRAISAL 21

During the Year

• Give ongoing feedback to the employee about his or her strengths and
weaknesses.

• Solicit the individual's input on how well he or she is accomplishing the
set objectives. Adjust goals as needed.

• Monitor performance, and keep notes. Perform interim evaluations as
goals are reached or as observation indicates a necessity for corrective
action or review.

Before the Formal Appraisal

• Set an appointment for the interview.
• Discuss the procedures to be followed (i.e., who will do what).
• Prepare for the discussion:

-The employee should prepare his or her own performance assessment.
-The supervisor should prepare his or her assessment of the employee.

• Assemble job and career planning tools.

The Discussion

• Discuss the employee's performance, and share perceptions of it.
• Negotiate in order to gain concurrence on the performance, if necessary .
• Jointly review the position definition, job standards, and work assign-

ments.
• Establish new or revised objectives.
• Discuss career planning.
• Allow the employee to add his or her comments to the appraisal form.
• Both the evaluator and the employee should sign the forms.

PERFORMANCE EVALUATION AND PLANNING PROCEDURES

Each employee's job performance should be evaluated regularly. This
evaluation becomes part of the employee's personnel records and is a factor in
compensation, promotion, training, transfer, and termination. The forms
shown in Figures 2-4 through 2-14 can be used in preparing for and conducting
performance evaluations.

A performance evaluation is a communication tool in that employees are
involved in planning their work, targeting performance goals, and measuring
results. This allows employees and their immediate supervisors to discuss job
performance (as it relates to the desired results) openly. It encourages the
discussion of career aspirations and the development of plans toward their
realization. It enables the supervisor to evaluate the employee's job perfor­
mance objectively in terms of the position requirements and other negotiated
objectives.

22 PROGRAMMING MANAGEMENT

Employee Performance Categories

Explicitly defined tenns, such as the following, should be inserted in
describing an employee's level ofperfonnance:

• New in Position-This category includes employees who need more
training and/or experience to achieve basic competence levels (e.g.,
trainees and persons in new positions). An employee should remain in
this category until perfonnance and productivity increase through expe­
rience. A limit of three months is suggested.

• Marginal-This category includes employees whose perfonnance needs
improvement to achieve basic competence levels; that is, the perfor­
mance does not meet minimum job standards or the negotiated objec­
tives. The expected results have not been achieved. Improvement to a
competent perfonnance level within a reasonable time is required for the
employee to continue in the position.

• Competent-This is the standard level of fully adequate performance;
that is, the employee's performance meets the previously negotiated
objectives. Employees in this category consistently discharge all job
requirements in an able manner, and the expected results are achieved.

• Commendable-This category includes employees whose job perfor­
mance exceeds the previously negotiated objectives. The commendable
employee is clearly above average in meeting requirements; better-than­
expected results are consistently achieved.

• Distinguished-Employees in this category have proved themselves
exceptional in surpassing objectives. Such employees are outstanding
perfonners whose achievements are readily apparent. These employees
are ready for promotion or added responsibilities at an early time.

PERFORMANCE PLANNING

The Performance Planning Interview. The supervisor should prepare for
the interview by reviewing:

• The employee's position definition.
• Organizational objectives-This review aids in determining which em­

ployee accomplishments are necessary to achieve organizational objec­
tives.

• Appropriate documents prepared by the employee on the job.

The Performance Planning Worksheet. The worksheet should be com­
pleted as follows:

• The supervisor and employee should discuss the job standards, in order
of importance, that will be used to evaluate the employee's perfonnance
(see Figure 2-4).

• Specific objectives that should be met by the employee should be
discussed and listed, also in order of importance (see Figure 2-5).

• Common performance factors (i.e., those not related to specific jobs or
departments) that are significant for this employee should be checked off
(see Figure 2-6); appropriate comments should be added.

PERFORMANCE APPRAISAL

PERFORMANCE PLANNING JOB STANDARDS

FOR (EMPLOYEE) DATE

JOB TITLE SUPERVISOR

Here are the job standards we will use to evaluate your performance at vour
next performance appraisal in (Month, Year),

They are in order of their importance,

EMPLOYEE INITIAL SUPERVISOR INITIAL

Figure 2·4. Performance Planning Worksheet: Job Standards

23

PERFORMANCE PLANNING SPECIFIC OBJECTIVES

FOR (EMPLOYEE) DATE

JOB TITLE SUPERVISOR

Here are the specific objectives we will use to measure your performance at
your next performance appraisal in (Month, Year),

They are in order of their importance,

[-s
'V'

EMPLOYEE INITIAL SUPERVISOR INITIAL

Figure 2·5. Performance Planning Worksheet: Specific Objectives

24 PROGRAMMING MANAGEMENT

PERFORMANCE PLANNING COMMON PERFORMANCE FACTORS

FOR (EMPLOYEE) DATE

JOB TITLE SUPERVISOR

We will consider the common performance factors checked here in monitoring and evaluating
your job performance. These will be considered in addition to. not a replacement for. job standards
and objectives.

(NOTE: Only check the most important factors. Use the comment section to further explain level of
performance expected and the relative Importance of each to overall performance on the job.)

COMMENTS o QUALITY - of finished work regardless of amount completed.
Accuracy. neatness. thoroughness.

D QUANTITY - amount of satisfactory work completed. Volume
of output. speed in completing assignments.

D TIME MANAGEMENT - meeting deadlines. Utilizing time ef-
fectively for maximum output andlor highest quality. Punctu-
ality. Attendance.

D ORGANIZATION - logically plans and organizes own andlor
others' work for most effective handling or reduction of un-
necessary activities.

D COMMUNICATIONS - Effectiveness of written. oral. listening
skills.

D KNOWLEDGE OF OWN JOB - know-how and skills necessary
to do the job. Adequacy of practical. technical. or professional
skills and experience.

D KNOWLEDGE OF RELATED AREAS - awareness of work re-
lationships with other areas.

o LEADERSHIP - ability. skills in orienting. motivating. guiding
others. Serving as a good example. Optimum use of staff.
other resources to complete task. achieve a goal.

D SELF-DEVELOPMENT - awareness of own strengths.
weaknesses. interests. Plans for elimination of deficiencies.
attainment of goals. Accepts/seeks new responsibilities.

o SELF-STARTER - working with limited supervision or direc-
tion. Following through on own initiative.

o HUMAN RELATIONS - effective work relations with supervi-
sor. peers. others outside working unit. favorable customer
relations.

o PLANNING - setting objectives. budgeting. scheduling. fore-
casting.

o DECISION MAKING - making prompt decisions considering
relevant factors and evaluating alternatives.

o COST AWARENESS - awareness of financial impact of deci-
sions. actions. Good business ludgment.

D DEVELOPING PEOPLE - Recognizing growth potential. de-
velopment of opportunities. skill in coaching and counseling.
Fair and consistent use of discipline. Respect for the individ-
ual.

o PERSONNEL PRACTICES - effective and appropriate use of
salary and benefits programs. performance appraisal. internal
placement. career planning. trainmg and development oppor-
tunities. etc.

D AFFIRMATIVE ACTION - working with others harmoniously
without regard to race. religion. national origin. sex. age. or
handicap. Seeking ways to achieve organiza~jonal EEO objec-
tives and timetables. Actively seeking to erlhance career ob-
jectives of minorities. women and handicapped people.

D SUPPORT OF SOCIAL POLICY. CONSUMER AFFAIRS PRO-
GRAMS - professional. community. or volunteer activities
which promote company objectivps. Actively promoting Af-
firmative Lending and other consumer programs.

OOTHER-

Figure 2-6. Performance Planning Worksheet: Common Performance
Factors

PERFORMANCE APPRAISAL 25

Quarterly Reviews. When quarterly reviews are necessary or desirable, the
supervisor should review the Perfonnance Planning Worksheet in order to
gauge the employee's progress toward achieving the stated goals. The em­
ployee should be notified of the review and its expected content at least 24 hours
in advance. The following should occur during the review:

• Objectives and desired results should be discussed. If altered circum­
stances require changing the objectives, new or modified objectives
should be inserted at this time (see Figure 2-7).

• The supervisor and the employee should discuss the progress made and
complete the appropriate section on the worksheet (see Figure 2-8).

The Perfonnance Planning Worksheet is nonnally retained within the depart­
ment after this review.

PERFORMANCE PLANNING

These are the revisions, additions,or deletions we've made and the date of
change.

Figure 2·7. Performance Planning Worksheet: Negotiated Objectives

PERFORMANCE APPRAISAL

The perfonnance planning interview, at which objectives should be nego­
tiated between the employee and the supervisor, should be held within three
weeks of the last evaluation (these activities can, of course, be done together).
The completed Performance Planning Worksheet should be forwarded within
one week to the general manager, personnel, and other appropriate departments
for review. The worksheet should then be returned to the supervisor.

The Appraisal Form

One week before the scheduled evaluation, the employee should receive
copies of the Perfonnance Planning Worksheet and the position description;
both documents should be brought to the discussion. The supervisor should
complete the appropriate sections on the Perfonnance Appraisal fonn prior to
the interview. The evaluator should compare the results expected (as indicated
on the Perfonnance Planning Worksheet) to the achieved results (see Figures 2-
9 and 2-10).

26 PROGRAMMING MANAGEMENT

PERFORMANCE PLANNING INTERIM PERFORMANCE REVIEWS

(FOR (EMPLOYEE) IJOB TITLE)

FIRST REVIEW DATE

lEMPLOYEE INITIAL ISUPERVISOR INITIAL

SECOND REVIEW DATE

[EMPLOYEE INITIAL ISUPERVISOR INITIAL

THIRD REVIEW DATE

[EMPLOYEE INITIAL ISUPERVISOR INITIAL

Figure 2-8. Performance Planning Worksheet: Interim Reviews

PERFORMANCE APPRAISAL 27

PERFORMANCE APPRAISAL SUPERVISOR ASSESSMENT

FOR (EMPLOYEE) JOB TITLE

LOCATION SUPERVISOR

TIME INJOB PERFORMANCE PERIOD: FROM --
TO

SUPERVISOR ASSESSMENT

Here is how I see your performance in EXPECTED LEVEL
OF PERFORMANCE relation to the Standards and ObjS!.Q:

Does Not ~ we agreed to. They are listed in Exceeds Meets
order of importance. Meet

COMMENTS:

~ TIl
Figure 2·9. Performance Appraisal-Supervisor Assessment: Standards and

Objectives

PERFORMANCE APPRAISAL SUPERVISOR ASSESSMENT

COMMON PERFORMANCE FACTORS

Focus for Here's how I see your per- EXPECTED LEVEL
Improve- formance in relation to OF PERFORMANCE
ment the Common Perfor- Does Not mance Factors we set at Exceeds Meets

the beginning of this ap- Meet

praisal cycle. They are
listed in order of impor-
tance.
COMMENTS:

,.../"'..

rl
-

r
~ ----

I [
Figure 2-10. Performance Appraisal-Supervisor Assessment: Common

Performance Factors

J

28 PROGRAMMING MANAGEMENT

PERFORMANCE APPRAISAL SUPERVISOR ASSESSMENT

Here are what I see as your major strengths and abilities, the things you've
done particularly well, and the significant improvements you've made since
your last appraisal:

I think improvement in these areas will increase your overall effectiveness on
the job: (Explain)

I also considered these additional factors (if any) in reaching the overall rating
for you:

OVERALL PERFORMANCE

Here's how I rate your overall performance, based on the performance criteria
we established and considering the relative importance of each:

DOES NOT MEET
EXPECTED LEVEL
OF PERFORMANCE 0

MEETS EXPECTED
LEVEL OF
PERFORMANCE 0

EXCEEDS
EXPECTED LEVEL
OF PERFORMANCE 0

Figure 2-11. Performance Appraisal-Supervisor Assessment and Rating

PERFORMANCE APPRAISAL 29

Other factors that the evaluator might consider are absences, outside job­
related activities, time management, human relations, and such administrative
skills as planning, leadership, organizing, and controlling (see Figure 2-11).
The overall performance rating (as shown in Figure 2-11) should be the
criterion later used to recommend merit increases. The rating should be based
on a comparison of the achieved results with the expected results. The supervi­
sor should emphasize the employee's strengths and abilities in relation to his or
her job performance (see Figure 2-11). The supervisor should comment on
areas in which the employee can upgrade his or her current performance rating
and/or be considered for additional responsibilities.

During the discussion the following should occur:
• The evaluator should consider the employee's own assessment (see

Figures 2-12 and 2-13) in terms of improving his or her effectiveness in
the current position as well as possibly developing the employee for
advancement (see Figure 2-14).

• The employee should write any additional comments concerning the
evaluation (see Figure 2-14).

• If there is not sufficient time to prepare a Performance Planning Work­
sheet for the next period (see Figures 2-4 through 2-7), the evaluator and
employee should schedule a time within the next three weeks in which to
do so.

PERFORMANCE APPRAISAL EMPLOYEE ASSESSMENT

FOR (EMPLOYEE) JOB TITLE

LOCATION SUPERVISOR

TIME INJOB PERFORMANCE PERIOD: FROM--
TO

EMPLOYEE ASSESSMENT
Here is how I see my performance in relation to Job Standards and S~
Q.bj~since my last appraisal. They are listed in order of importance.

~ -- ----~

'l==~~~ ~-~

Figure 2-12. Performance Appraisal-Employee Assessment: Standards
and Objectives

30 PROGRAMMING MANAGEMENT

PERFORMANCE APPRAISAL EMPLOYEE ASSESSMENT

I have shown greatest strength or improvement in performing my job in these
areas:

I would like to improve my performance on the job in these areas:

These are my objectives for this job, or for a career, or for my own
improvement, for now and in the future.
OR: 0 At this time, I am satisfied in my current position and wish to remain.
(NOTE: This section is optional. By noting your interests, even if they change
later on, your supervisor can provide counseling and direction to help you
reach your goals.)

Here are ways that would help me improve my performance or meet my
objectives (e.g., more or different help from your supervisor, special training in
basic or new skills, cross-training in other areas,).

Figure 2-13. Performance Appraisal-Employee Assessment: Strengths and
Objectives

PERFORMANCE APPRAISAL 31

PERFORMANCE APPRAISAL DEVELOPMENT/COMMENTS

DEVELOPMENTAL PLAN
I think we should take these steps to improve your performance on the job or
to help you progress toward your personal career objectives.
(Use career planning tools if appropriate. If the employee wants to remain in
the present assignment at this time, please say so here.)

EMPLOYEE COMMENTS

What do you think about this appraisal?

EMPLOYEE SIGNATURE DATE
(Signature indicates you have seen and discussed this appraisal with your
supervisor. It does not necessarily imply agreement with the appraisal or
overall rating.)

SUPERVISOR'S SIGNATURE DATE

REVIEWED BY DATE

ADDITIONAL REVIEW - (If any) DATE

Figure 2·14. Developmental Plan and Employee Comments

32 PROGRAMMING MANAGEMENT

Processing the Performance Appraisal Form

The Perfonnance Appraisal fonn should be routed to Personnel and other
appropriate departments within two days after the interview. The Perfonnance
Planning Worksheet covering the period evaluated should be attached.

CONCLUSION

Regular perfonnance appraisals, using the methods and standardized proce­
dures and fonns recommended in this chapter, can significantly help employees
understand how well they are performing their jobs and how they are perceived
by their supervisors. The lack of this infonnation is frequently an important
factor in employee dissatisfaction and subsequent resignation.

Such evaluations require time and effort to prepare and execute; the benefits
to employees, managers, and the organization, however, can be substantial.

Estimating the Cost
of Software

THE NECESSITY FOR RESOURCE ESTIMATES

by Paul Oliver

A software estimate is the most knowledgeable statement that can be made
about the resources required to develop a software product. It is used in
planning to help management decide when to add, delete, or modify resources
or when to modify the end product.

A management estimate should be more than a statement of estimated costs.
A useful estimate includes time schedules, precise definitions of end products,
a list of all pertinent assumptions, and a risk analysis.

The end product of a software development effort is a set of programs and
their documentation. Accurate cost and time estimates should be based in part
on the estimated program size and characteristics as well as the volume and type
of documentation. The assumptions made when estimating constitute an impor­
tant part of the software plan. Minimally, assumptions must be made about the
type and quantity of computer time available.

Three types of estimates must be made during the development cycle. A
feasibility estimate is a gross estimate used to evaluate trade-offs on alternative
approaches. A commitment estimate is used to commit resources and make
cost/quality trade-offs. An operational estimate specifies how project manage­
ment will use its resources. An operational estimate is an iterative estimate in
that it may be modified during a project. Good judgment on which items to
incorporate allow!'. use of the same data base and procedures for each of these
estimates.

Any sound estimating technique relies, to some extent, on the estimator's
experience. The very essence of an estimate is the inference of a relationship
between unknown future costs and past experience. There are several basic
methods of deriving such a relationship: specific analogy, unit cost, percent of
other items, and parametric equations. Note that statistical analysis mayor may
not be part of these methods.

In using a specific analogy, costs for new software development are esti­
mated by using known costs for previously produced software. The successful
application of this method depends on the skills and experience of the estima-

34 PROGRAMMING MANAGEMENT

tor, who must be thoroughly familiar with the organization, standards of
operation, personnel, programming languages, hardware, and system require­
ments of the projects used in the analogy. The unit cost method extrapolates the
cost per unit of a given resource from a previously determined cost per unit
(e.g., the cost of computer time). The percent of other items method sets the
cost of a part of a proposed project as a predetermined fraction of the cost of
another part. Both the unit cost and the percent of other items methods suffer
from the same disadvantages-error magnification and imprecision. Finally, a
parametric equation can be used to determine the cost of a proposed project or
task. The estimates of time, cost, and effort are functions of required resources
and characteristics expected to be present in a project.

Most estimating guidelines rely on the unit cost method of estimating; While
this technique is acceptable for operational estimates, previous experience is
usually the best guideline when making feasibility estimates. Quantitative
formulas are generally not substantiated with respect to the parameters used,
and statistics are often presented out of context. One drawback of statistics­
based estimates is that they are often based on poor methodology. For example,
the fact that an average development project devotes 36 percent of the effort to
design does not imply that this is a good allocation of resources. Thus, statistics
should not be used blindly; they are not a substitute for good judgment. Finally,
on small projects, a manager should be aware that an estimate may actually
become a constraint.

THE CURRENT STATUS OF ESTIMATING METHODOLOGY

The most common technique in making operational estimates is the use of
experience gained on one or more similar projects. The application of such
experience can be remarkably accurate as long as the prior experience was on a
project comparable in terms of size, mode, complexity, and application.

Quantitative techniques, of which there are many variations, are commonly
used. They all rely on an initial estimate of the size of the project in terms of
delivered instructions. Following this, an estimate of programmer productivity
is obtained, ideally from an existing data base of past projects. The estimate is
then adjusted according to the complexity of the project and other pertinent
factors. This done, a man-month requirement is obtained based on the produc­
tivity figures and the staffing level for the project. Finally, an additional
estimate must be made of the percentage of the total project effort represented
by the implementation phase.

Wolverton [1] cites the following breakdowns:

Project Phase
Analysis & Design Code & Debug Test

% % %

SAGE 39 14 47
NTDS 30 20 50
GEMINI 36 17 47
SATURN V 32 24 44

ESTIMATING SOFTWARE COSTS 35

A rule ofthumb is 40-20-40 (i.e., 40 percent of project effort is devoted to
analysis and design, 20 percent to coding, and 40 percent to testing). The
coding time estimate is generally extrapolated to the entire project. This process
has potential pitfalls:

• It relies on an initial estimate of project size that may be inaccurate.
• Accurate productivity figures are often not available.
• The 40-20-40 rule of thumb is not always reliable.
• Adjustments for complexity may simply compound the estimating error.

These considerations notwithstanding, a carefully developed quantitative esti­
mate can be quite accurate if a data base is available consisting of pertinent
information gathered from past projects comparable, at least in size, to the one
being planned.

A variation on the use of prior experience is to use group estimates that
represent an average of individual estimates based on prior experience. Such
group estimates can be used for feasibility or resource commitment estimates.
The average can give equal weight to the estimate of all participants, or weights
can be varied if there are reasons for doing so. Each of the estimators could be
asked, for example, to provide a pessimistic, optimistic, and most likely
estimate. Giving the most weight to the most likely estimate, a weighted
average could be computed. The difficulty with this technique, as with all
quantitative techniques, is that it is very easy to lapse into a numbers game,
where the production of figures gives the appearance of accuracy even though
the figures have little basis in substantive and applicable experience.

Putnam [2] has developed an estimating methodology at the macro level and
has had some success in applying this methodology to several Department of
the Army projects. His methodology produces the estimates of manpower,
cost, and time required to meet critical milestones of software projects. There
are four parameters in the basic system. These are in terms managers are
comfortable working with-effort, development time, elapsed time, and the
state of technology. The system attempts to provide managers with sufficient
information to assess the financial risk and investment value of a new software
development project before it is undertaken and provides techniques to update
estimates once the project is underway.

Putnam's model of the software development life cycle is interesting from
an analytic standpoint, but there is little evidence to indicate that it is more
accurate as an estimating tool than other works cited in this paper.

Much attention has recently been given to Maurice Halstead's theory,
known as software science [3]. The theory attempts to provide precise, objec­
tive measures of software complexity; to predict program length; and to
estimate the amount oftime required to implement a program. This is done by
simply counting operators and operands in programs. Despite its apparent
simplicity, Halstead's theory has many supporters, and a number of statistical
studies have been performed with high correlations between the theory's
predictions and actual program measures.

36 PROGRAMMING MANAGEMENT

Despite the attention being given to the software estimating problem, it is
probably fair to say that no one methodology is close to being as accurate as a
businessman or manager would like.

FACTORS THAT INFLUENCE PROGRAMMING

Barry Boehm has provided an excellent picture of the cost factors that affect
software and of the cost components of software development [4]. Boehm cites
the cost of software to the U. S. Air Force for 1972 alone to be between $1 and
$1.5 billion. This is a staggering figure, representing some 70 percent of the Air
Force DP budget and nearly five percent of the total Air Force budget. Even
considering that the U.S. Air Force is probably not a representative organiza­
tion, it is safe to suspect that software is an expensive product for any organiza­
tion.

Even more important is how the cost of software is spread. Boehm's survey
indicates that some 40 percent of this cost is in maintenance; it is important,
therefore, that we consider the life cycle of software. Boehm also suggests that
the following cost factors influence programming:

• Personnel-for whom studies have revealed a productivity ratio between
individuals of as much as 26 to 1 [5].

• Management-A manager who knows how to make trade-offs, who can
evaluate the implications of using new development tools, and who can
make difficult decisions (and recognize when a difficult decision needs
to be made) will have a much different impact on the programming for
which he is responsible than one who does not possess these qualities.

• Hardware-Strict limitations on hardware resources or execution-speed
requirements can seriously affect the programming task, driving soft­
ware costs upward at an exponential rate.

The programming craft also has an enormous effect on software costs and
influences the programming task. Equally important are several new trends that
promise to have a strong impact on programming.

Programming Tools and Experience

The use of such programming tools as a programming support library and
utility programs has a positive impact on programmer productivity and program
reliability. This in tum results in lower system life cycle costs. It is important to
stress that costs must be determined over the entire system life cycle, not just
over the development phase; programming and support tools require an invest­
ment that mayor may not be recovered in productivity increases alone, and the
positive effects of increased reliability are not realized until the maintenance
phase is reached. It is also important that such nonautomated tools as work­
sheets, standards, and planning and design aids be available.

Programming Language. The programming language and the program­
mer's experience with the language are also important factors. The technical
manager is, unfortunately, faced with several conflicting considerations. For

ESTIMATING SOFTWARE COSTS 37

example, COBOL is generally considered superior to FORTRAN for business
applications, but compilation times may be more than double for COBOL
programs. The manager must weigh suitability of language against resource
utilization. It has also been observed that there is no appreciable difference in
the amount of training needed to acquire professional competence in the use of a
procedural language or an assembly language and that productivity, measured
in lines of code produced in a given time period, is roughly the same using
either language. This sometimes causes programmers to opt for an assembly
language for the sake of the presumably improved object code efficiency. Yet,
with a good compiler, a programmer will generally turn out code that is as
efficient as the code he would produce using an assembler. Because a proce­
dural language statement explodes into four to eight assembly language state­
ments, there is a substantial increase in productivity. Furthermore, the use of a
procedural language improves the communication of algorithms between pro­
grammers and facilitates the transfer of programs between computer types.

Regardless of the programming language used, the experience of a program­
mer with the language is an important factor in both productivity and reliability.
Also important are the experiences of the programming team with a similar
application and with the target computer.

Nelson [6] gives us a measure of just how important some of these factors
can be. He cites a difference of as much as 40 percent in program run time
attributable to programmer experience and an even greater discrepancy in
memory utilization. Nelson also cites up to 90 percent reduction in coding costs
resulting from the use of decision tables. This saving is obtained by obviating
the use of flowcharts and by improved system design and checkout procedures.

Interactive Programming. A particularly important trend affecting cost
estimating is online interactive programming. Edward Lias reported on an
experiment conducted to measure the impact of online programming on life
cycle costs [7]. Sackman has also collected data on a number of independent
studies of this issue [5]. Generally, comparative results were quite close,
indicating that using the same programming techniques online does not signifi­
cantly improve programmer productivity. Detractors of online systems have
also pointed out that, besides the higher costs of interactive programming, there
is the danger of overusing the computer to compensate for poor design and
planning by careless development and program testing.

Environmental Factors

The environment in which programming takes place has an impact on the
cost of programming and the programming task itself. Computer turnaround
time for jobs submitted by project personnel affects productivity, reliability of
programs, and work habits. It is better for the programmer to have one big block
of time with concentrated access to the system than several cracks at the
computer during the day. Unfortunately, block time is seldom available in this
era of online systems and time sharing. One successful mode of operation is 24-
hour turnaround time: the programmer knows that he will not get his output for

38 PROGRAMMING MANAGEMENT

a given run until the next day and devotes his time to other work, without further
concern for the job related to the run submitted.

A disciplined environment is, in the short run, a more costly one (developing
and enforcing standards and procedures is costly) but leads, in the long run, to
more efficient and reliable software that is produced more rapidly. This is also
true with regard to disciplined use of supplies, work space, storage space, and
the like.

Continuity is important to a software development project. There are two
cost factors that can disrupt continuity: personnel turnover and travel. Person­
nel turnover creates obvious problems. The disrupting influence of frequent
travel on the part of the programming staff is sometimes not recognized. There
is a loss of productivity during travel as well as some time before and after each
trip.

Application Factors

The nature of the system being developed affects timeliness, reliability, and
resource requirements for a software development project. Some of the more
significant factors in this category are:

• Data file characteristics-for example, the number and types of fields in
each input and output format for the system being developed, the number
of nonoverlapping fields used to define the data base for a system (i.e.,
the number of distinct formats), the number of input and output formats.

• Size of the project-the number of lines of source code and the number
of programs in the system.

• Complexity of the project-whether the end product is system software
or an application system, the number of branches in a program, the
number of source code updates.

• Volume of documentation-This includes the system definition; func­
tional specifications and descriptions; user guides; test specifications;
and design, implementation, and evaluation documentation.

THE PROBLEMS WITH CURRENT ESTIMATING TECHNIQUES

Limitations of Historical Data. The consensus among experts is that the
major source of difficulty in making accurate estimates is the lack of adequate
historical data. This is due, in large part, to the fact that programming is an
infant discipline. In addition, the existing data is not fully comprehended. The
economics of programming are not well understood, nor is the nature of large
systems. Thus, a major task for the software development manager is to better
comprehend the cost factors that influence the programming activity in his
organization and, concomitantly, to create an organizational and procedural
structure that delineates these factors.

Although we have some data on the software development process, it is
fragmentary and inconclusive. Kosy, for example, compiled the available data
on productivity for the Air Force Command and Control Information Process-

ESTIMATING SOFTWARE COSTS 39

ing study [8]. His summary covers the period from 1960 to 1970 and includes
the Bell Labs Electronic Switching System No.1, the IBM OS/360 project, and
the Multics project. It is difficult, however, to arrive at any meaningful
conclusions from the figures given. Consider, for example, the following:

• Productivity on 169 System Development Corporation programs ranged
from 100 to 1,000 machine instructions per man-month. What caused
the variability? What factors influenced the productivity? The questions
are not answered by the data.

• The Multics-2 project reveals a productivity of some 100 instructions
per man-month, but these are in a higher-level language, and the produc­
tivity ratio includes the system design and integration testing phases.
How does this figure relate to the SDC data?

• The OS/360 project data shows a productivity ofless than 100 machine
instructions per man-month, but the size of OS/360 was 10 times that of
Multics-2, and its development effort (in man-months) was nearly 50
times that of Multics-2.

What is one to conclude from this data? To say simply that large systems
(e.g., OS/360) are more difficult to develop than smaller ones (e.g., Multics-2)
is hardly a startling revelation. Furthermore, we do not know the details of what
was being measured in these projects. For some, the figures cited account for
the entire development process (including design and testing); for others, the
figures apply only to the implementation phase of the software project.

One of the most thorough data collection efforts was performed by SDC in
the mid-1960s. In his handbook of cost estimates [6], Nelson points out the
limitations of even this large data base. The data is representative of only the
design, code, and test phases of software development. Extrapolated estimates
of time and cost for analysis, preparation, acceptance testing, documentation,
and the like would not necessarily be accurate. A second problem with the SDC
study is that the data is subject to a large standard error. The programs sampled
varied in size from 150 instructions to 217,000, the effort levels ranged from 1
to 300 man-months, and productivity ranged from 10 to 13,889 machine
instructions per man-month. It is obvious that such factors as program size,
complexity, and programmer skills had an impact on the statistics, but the
extent of that impact is not clear from the data. Perhaps most important, the data
in this and similar studies does not reflect changing technology.

Limitations on th~ Understanding of the Product. Although certain mea­
sures of software have been quantified (e.g., cost, speed in performing a given
function on a given system, size, effort to produce, time to produce, and
resource utilization), most have not. As every manager knows, unfortunately,
there are many critical characteristics that have not been quantified because
there is no way to measure them. We have, for example, no generally applica­
ble definition of software reliability, nor is acceptability (generality or flexibil­
ity) of a software package amenable to precise measurement. The time and
effort required to modify a system, either to use it in a different environment or
to maintain it in its native environment, cannot be accurately estimated, nor can

40 PROGRAMMING MANAGEMENT

system integrity (i.e., the degree to which the operation of one program can
protect the operation of another).

Equally critical is the lack of fundamental principles governing the scope
and complexity of software functions. There have been attempts to analyze the
computational efficiency of software, but these techniques are too limited to
apply to practical software systems. As Brooks points out [9], the very tractabil­
ity of the medium has created a situation in which there may be no theoretical
limits on software production techniques.

Limitations on the Management of People. Hardware production is a
well-defined process, and the individual on the production line has precisely
defined tasks to perform with no provisions for creativity. It is the nature of
programmers, on the other hand, to do interesting work (e.g., design and
coding) at the expense of dull work (e.g., testing and documenting). Past
practices in the profession have led to a persistent attitude that doing the job in a
clever way is often considered more important than doing it on time, ade­
quately, and within the constraints of cost and resource utilization.

Programmers and software development managers also tend to be optimis­
tic. They often consider the bulk of a project to be the production of code (in
fact, it comprises about 20 percent of the task) and regard planning, design, and
testing as minor adjuncts.

LaBolle makes an interesting comparison between buying or producing
television sets and buying or producing software [10]. The buyer of a television
set can enter a store and choose from many models. The buyer can observe and
compare the models, consult with others regarding the relative quality of these
models, read descriptive literature and comparisons prepared by commercial
publications, and readily obtain data on reliability, weight, power consump­
tion, and ease of use. There are, however, no broadly applicable standards for
comparing computer programs. Computer programs are developed from func­
tional specifications that lack quantitative measures, and there seldom exists
reliable descriptive information on them.

A manager responsible for producing television sets benefits from standard
parts and terminology, proven techniques for predicting and measuring per­
formance, a voluminous data base that can be used to predict what to expect
from the workers on the assembly line, and proven quality control techniques.
The manager of software development is faced with an absence of standards for
products, components of products, activities, manpower requirements, and
performance measures.

RECOMMENDED POLICIES AND PROCEDURES

Accurate estimates cannot be made except within the context of sound
project management. Sound project management requires a formal structure
within the software project and uniform management procedures and develop­
ment methodologies. A data base of information on past projects is of limited
use, unless such uniform conditions exist. The development cycle must first be

ESTIMATING SOFTWARE COSTS 41

divided into a standard set of phases so that meaningful comparisons between
projects are possible. The following list is representative:

• Definition-The technical problem is defined, and a plan is produced. A
baseline design may be initiated, but the emphasis at this time is on what
is to be solved rather than on how to solve it.

• Design-A proposed solution is adopted after evaluation of the alterna­
tives. The project plan and baseline design are completed. The detailed
design and preparation for all testing are initiated.

• Production-Programs are developed and tested. Unit and integration
testing are completed, as is all program documentation. Preparation for
system testing (i.e., validation performed by a separate quality assur­
ance group) is completed. Preparation for acceptance testing continues.

• System testing-Integration testing is repeated, using different data in a
live environment, by a separate quality assurance group. Any required
customer training is initiated.

• Acceptance testing-Systems and related documentation are presented
to the customer for formal acceptance according to predefined criteria.

• Installation and operation-Systems are installed in their operational
environment, retested as required, and put into operation.

• Maintenance-Enhancements, modifications, and corrections are made
over the remaining life of the system.

From these life cycle phases, we can define functional requirements that a
project management system must satisfy. The system should include policies,
procedures, standards, guidelines, methodologies, and tools that enable project
managers to:

• Identify resources, schedules, and deliverables; make accurate esti­
mates of costs associated with manpower, computer time, publications,
travel, relocation, equipment, and checkpoints; develop budget control
procedures, project budgets by resource and accounts, and operating
budgets.

• Define a meaningful reporting structure that includes internal and exter­
nal reviews and provides reports from nonmanagers, technical manag­
ers, and task or project managers.

• Divide the task accomplishment cycle into meaningful phases, defining
primary and secondary objectives for each.

• Define a project organization from a series of alternatives, evaluating
the advantages and disadvantages of each.

• Define testing levels and establish objectives, procedures, responsibili­
ties, and tools for each.

• Define procedures to be used in controlling changes, defining baseline
documents, establishing change control boards, and implementing
customer-initiated changes.

• Define procedures and resources required for all project publications
and outline the basic set of project documents.

• Develop external and internal training programs in support of the proj­
ect.

• Develop procedures for the installation and operation of completed
systems.

42 PROGRAMMING MANAGEMENT

• Acquire and evaluate technical data for projecting schedules and re­
source requirements, including planning .versus actual data; data to
define, design, implement, and evaluate systems; data on the system
environment; and data at the system, subsystem, and module levels.

Such a project management system is essential if management estimates are to
have any degree of accuracy.

Estimating Guidelines

The guidelines listed below can be used for estimating large software
development projects. This includes any project that involves more than eight
full-time professionals and whose eventual size will exceed 100,000 lines of
source code.

System Design Phase [11]
• Requirements analysis-5 to 19 man-weeks, depending on the nature

of the project
• Total system design-one to three man-months
• Software system design-10 percent of total man-months
• Review of system design with user-three man-days per design docu­

ment
• Training-one month for programmers if analysts tum over design to

programmers

Production [11]
• Develop system test plan-one man-month per 10,000 estimated in-

structions
• Program design-one man-month per 1,000 instructions
• Program file design-one man-month per 10,000 items
• Establish system files (used by more than one program)-two man­

months per 10,000 machine instructions
• Program coding-gross estimates: one man-month per 5,000 machine

instructions

Program Testing [11]
• Familiarization with procedures-one week
• Individual program testing-approximately 20 percent of the testing

effort
• Subsystems testing-from 0 to 30 percent of the total testing effort,

depending on the number of subsystems
• System testing-approximately 50 percent of testing effort; about 25

percent of total effort

Design, Coding, Debugging, and Testing Estimating
The following formulas can be used to determine the man-months required

for program design through testing:

man-months = 5.2 (x The Number of Thousands Of)
Source Code Instructions

or

0.91

[12]

ESTIMATING SOFTWARE COSTS

man-months = 4.495 x (The Number of Thousands Of)
Source Code Instructions

0.781

[13]

43

Note that the second formula is to be used for small business systems where the
number of source code instructions is to be less than 10,000.

Project Administration and Data Collection. Guidelines for data collec­
tion and reporting represent a most essential support component. Accurate,
timely, and uniformly understood data is needed by managers at all levels for
the planning, organization, and control of a project and for the communication
of project information within and outside the project structure. Guidelines are
applicable to all levels of management in a software development project since
the information requirements of all managers are essentially the same, differing
only in the level of detail required.

Managers are cautioned that there are several problems regarding project
data that require flexibility on their part. The most difficult of these problems is
a lack of understanding of what the software development and management
process should be. The many studies on the subject emphasize the difficulty and
complexity of the process but have done little to reveal a well-defined method­
ology or to delineate precise relationships among project variables. Thus, we
do not know precisely what data is required, when it is required, or in what form
it is required to enable managers to make sound estimates. Such knowledge,
however, will come not from additional studies but from the monitoring,
evaluation, and refinement or modification of established procedures.

A related problem is that of defining programmer productivity, since most
estimates discussed here relate to the determination and prediction of produc­
tivity. Quantity of source code produced, expressed in terms oflines of code per
time period, has been the most widely accepted measure but has never become
an industry standard. One problem with this definition is its lack of precision.
This is not a particularly serious problem, however, since greater precision
would simply be a matter of interpretation. A more serious problem is the
narrowness of the definition. There is ample evidence to suggest that a good
definition of productivity should have elements that address the correctness,
efficiency, and complexity of programs.

Finally, data collection and reporting requirements are implemented to­
gether with certain development methodologies that can be lumped under the
term structured programming technology. Such technology requires increased
collecting, analysis, and reporting of management data and, to be truly effec­
tive, requires the support of a software development library. A library allows
data items to be collected and counted in a standardized manner and a focal
point (the librarian) to be established for manually collected data items and as a
source of control on the collection process. Note that a library facilitates the
merging of technical and management or administrative data. Such a develop­
ment library, however, requires a disciplined approach to development, which
is not always welcomed.

44 PROGRAMMING MANAGEMENT

A reporting system uses as input a base of estimated and actual data on a
project's environment, system module descriptions, resource costs, processing
resources, and program production. The data is gathered and stored in a
computerized data base. Data is added to, deleted from, or replaced from this
data base during the course of a project. Additional capabilities must exist for
summarizing, sorting, and othelWise processing the data. Reports are gener­
ated and disseminated for project support and historical purposes. Thus, the
functional requirements of the system can be expressed as processing func­
tions: collecting, updating, processing, reporting, and archiving.

Two classes of data are required to plan and manage a project: planned data
is developed during the planning phase of a project and is derived in part from
actual data on previous projects; actual data is collected during the course of the
project. Within these two classes, five types of data should be collected:

• Project environment-general data of a static nature, defining the scope
of the project.

• Module descriptions-data that is usually automatically collected and
that applies to programs, subprograms, and units of a system.

• Service data-This type of data is limited to turnaround time for various
sources of computer service.

• Cost data-All cost data, from personnel costs to travel costs, falls into
this category .

• Production data-includes all characteristics related to the production of
source code and includes quality assurance and programming data (e.g.,
categories of source-code updates, enhancements, changes to functional
requirements, and errors).

A project manager requires information on the general project characteris­
tics, project and program status, quality of the products produced, use of
resources, and adherence to standards and guidelines. The following report
classes provide this information:

• Statistics on programs, subprograms, and units
• Production statistics
• Use of computer resources
• System design/program structure
• Historical/summary data
• Combinations of the preceding

Certain reports should be produced on a fixed reporting cycle. This is
determined by management and usually depends on customer requirements.
All reports should be available upon request. Project managers should be
responsible for all data collection and reporting activities but should delegate
some authority for collection and reporting to the appropriate organizational
levels or functions within the project.

Management Reporting. The contents of management reports are derived
from the data items previously listed and from calculations based on these
items. The reports defined here are primarily technical in nature and deal with
the project per se:

• Status Reports-used by managers in determining the status of the

ESTIMATING SOFTWARE COSTS 45

source code during production and testing phases
• Update Reports-used by programmers and managers in tracking unit,

program, and system update activity during production and testing
• Time Reports-used by managers in monitoring, optimizing, and allo­

cating computer test time during the design and production phases
• Project History-used by prospective project managers and middle

management for planning and control purposes
• System Cost Reports-used by managers at all levels, but principally by

project managers, in the monitoring of development costs

FUTURE DIRECTIONS

It is clear that the software manager faces a lack of adequate historical data
on completed software development projects, a lack of precise understanding
of the variables influencing programming, and an inability to determine just
how much work is to be accomplished on a given software development
project. Furthermore, few standards and management controls are enforced.

There have been a few significant trends in programming during the past 15
to 20 years. The use of online systems is one of these, and it has already been
discussed. Structured programming is another, more fundamental trend. What­
ever the merits of the various components of structured programming, the many
experiments with this discipline represent the first serious attempt at under­
standing programming and its many aspects; more important, they imply the
recognition that programming is not simply a tool to be used by subject matter
specialists but is a discipline in its own right.

Structured programming technology includes [14]:
• Top-down structured programming
• Program support libraries
• Program design languages (PDLs)

Although it does not currently appear that the use of PDLs has a significant
bearing on estimating techniques, given the importance of system design, their
use should be significant. It is too early, however, to evaluate the extent of this
impact.

The use of top-down structured programming will, on the other hand,
definitely help the standards and control problem because it is a set of standards
and controls. Top-down development and integration reduces or eliminates the
unpredictable cost elements of redoing interfaces and modules, hence alleviat­
ing the problem of work determination. Unfortunately, we do not yet have
enough experience to know the magnitude of these effects. It is equally
unfortunate that structured programming does not appear to have any direct
impact on our understanding of the factors affecting programming, although
the data collection inherent in using a programming support library may
eventually bear some fruit. Note that the development and use of a program­
ming support library can be invaluable in collecting data on software projects,
with such data to be used on future projects for estimating purposes.

46 PROGRAMMING MANAGEMENT

The Critical Nature of Requirements

Many groups involved in the development of new programming languages
have concentrated on giving the programmer a greater variety of tools with
which to express programs. Recently, however, evidence shows that the most
serious software errors are caused by problems in requirements engineering and
design specification and that coding errors are best avoided by simplifying
programs and languages, not by adding to them. The severity of these problems
can be appreciated by noting that, according to data gathered at TRW [15],
requirements specifications errors not found until a system is in operation can
be as much as 50 times more costly to repair than those recognized during the
requirements specifications phase itself. In addition to the repair cost problems,
the lack of good requirements specifications causes other difficulties:

• Top-down design is extremely difficult when there is no well-defined
"top."

• Testing is difficult if one is testing against ill-defined specifications.
• It is difficult to convince users and management that they are really a part

of the development effort if what is being developed is poorly specified.

Present Status and Future Technology

Software requirements are generally written in free-form English, an ambig­
uous form of communication. Such terms as real time, sufficient, and reliable
abound, as do more precise-sounding but equally vague terms as 99 percent
reliable. Determination of requirements, when done well, is usually performed
using various ad hoc techniques and common sense. When such determination
is done poorly, it generally follows guidelines dictated by preconceptions.

Recent years have seen attempts at ameliorating this situation with the
development of specification languages and automatic programming systems.
Teichroew and Sayani [16] reported what is probably the pioneer system for
specifying software requirements in a machine analyzable way. While this
system (ISDOS) was developed primarily for business systems applications, its
concepts apply to any application area. This system uses a Problem Statement
Language, which allows a designer to specify a system using a set of formalized
primitives (e.g., inputs, outputs, and updates) and a Problem Statement Ana­
lyzer, which can produce statistics, directories of key ,words , and other useful
summaries.

There has also been a growing interest in automatic programming, moti­
vated partly by the desire to bring some sanity to software production and partly
by the realization, due largely to the work of Dijkstra [17], Mills [18], and
others, that sanity is possible.

CONCLUSION

The impact of many factors and trends on programming costs is ac­
knowledged but poorly understood. Some of the most important questions
requiring further study and understanding are:

ESTIMATING SOFTWARE COSTS 47

• What is the productivity of the average programmer, and what factors
affect it? How do we know when we have identified the proper parame­
ters? Given data on a specific project, how do we know if a resulting
productivity is caused by project complexity or poor design? Is a high
error rate a result of project size or poor functional specifications?

• What impact does complexity have on a software project? Wolverton [1]
cites an increase in the cost of a complex project (e.g., a real-time
project) ranging from 3 to 5.5 times the average, but we do not know
what factors contribute how much to complexity.

• What resource constraints (e. g., memory or execution-time limitations)
affect productivity and reliability?

• How does productivity vary with programmer ability, and what effect
will the Chief Programmer Team concept have on this?

The manager of software development can do much to answer some of these
questions for his organization. Adopting a structured programming methodol­
ogy is a good place to start, particularly using a programming support library .
Of the other factors likely to be influential, the following should receive the
closest attention:

• The use of programming support tools
• Precise specification of functional requirements
• Programming languages
• Test turnaround time
• Programming practices and standards
• Number of lines of source code
• Project complexity
• Volume of documentation
• Number of files per program
• Access methods and data structures for files

Once gathered, this information should be augmented by similar data obtained,
as available, from sources outside the organization. The manager can then
adapt the programming practices in his organization to improve productivity
and reliability of the software developed under his management.

References

1. Wolverton, R. W. "Tile Cost of Developing Large Scale Software." TRW -SS-7Hll (March 1972).
2. Putnam, L.H. "A General Empirical Solution to the Macro So~ware and Estimating Problem." IEEE Transaction on

Software Engineering. Vol SE4, No.4 (July 1978).
3. Halstead, G.H. Elements of Software Science. New York: Elsevier North-Holland Inc, 1977.
4. Boehm, B. W. "The High Cost of Software." Proceedings of a Symposium on the High Cost of Software. Stanford Research

Institute, MenloParkCA, 1973.
5. Sackman, H. Man-Computer Problem Solving. Pennsauken, NJ: Auerbach Publishers, 1970.
6. Nelson, E.A. "Management Handbook for the Estimation of Computer Progrsmming Cash. " SDC, Santa Monica CA, 1967.
7. Lias, E.J. "On-Line vs. Batch Costs." Datamation, (Decemller 1974).
8. Kosy, D.W. "Air Force Command and Control Information Processing in the 1980s: Trends in Software Technology."

R-I0l2-PR, Rand Corporation, 1974.
9. Brooks, F.P. Jr. "Why is the Software Late?" Data Management (August 1971), 18-21.

10. LaBoll., V. "Estimation of Computer Progrsmming Costs." SDC, Santa Monica CA, 1964.
II. Farr, L., LaBolle, V., and Norman Withworth. Planning Guidefor Computer Program Development. SOC, Santa Monica

CA,I965.
12. Walston, C.E., and C.P. Felix. "Progrsmming Measurement and Estimation." IBM Systems Joumal. No. I (1977).
13. Daty Associates, Inc. "Software Cost Estimation Study." Vol. 1,2 (June 1977).
14. Structured Programming Series. "Programming Language Standards. " RADC-TR-74-300, Vol. I, 1974.
15. Boehm, B.W. "Software Engineering." TRW-SS-76-08, October 1976.
16. Teichroew, D. and Sayani, H. "Automation of System Building." Datamation, (August 1971), 25-30.

48 PROGRAMMING MANAGEMENT

17. OijkslIa, Edsger. A Discipline a/Programming. Englewood Clifi)! NJ: Prentice-Hall, 1976.
18. Mills, Harlan Structured Programming. Reading MA: Addison-Wesley, 1979.

Bibliography

Baker, F. T. "Chief Programmer Team Management of Production Programming." IBM Systems Journal. Vol. 2, No. I (1972),
56-73.

~ Designing
Modular
Programs

INTRODUCTION

by Kathryn Heninger
and John E. Shore

In system design, a module is a self-contained unit that perfonns a specific
task or set of tasks in support of the overall system opemtion. If the allocation of
tasks to modules is well done and the module interfaces well defined, modules
can be built and tested independently. Even after they are integrated into a
system, individual modules can be modified or replaced independently. As a
result, modifications to improve perfonnance or change functionality can be
made much more easily with a modular system than with a nonmodular
counterpart.

The advantages of modularity are routinely achieved for computer hardware
but not for computer software. The reason for this is that hardware development
is governed to a much larger degree by intrinsic constraints that impose
discipline on the design process. Such physical characteristics as layout,
connections, and power, for example, place limits on design alternatives.
These constraints have resulted in accepted standards for component design.

In contrast, the software design medium fails to impose an inherent disci­
pline. Far from following standard practices, software professionals cannot
even agree on a definition for software modules. Although many people equate
software modules with subroutines, there is growing recognition that subrou­
tines are not necessarily self-contained and cannot necessarily be built and
modified independently. This chapter presents a different view-a software
module is a collection of programs and data that takes care of one separately
changeable aspect of a system. Because input data fonnats frequently change,
for instance, all programs in a system that must know a particular input fonnat
in order to read data belong in one module.

Based on this definition of module, this chapter discusses the basics of
modular program design. Some common software development problems that
can be alleviated by modular program design are presented and basic concepts
introduced. Also presented is a step-by-step methodology for modular design
and a discussion of the performance issues related to modular program design,
as well as related management considerations.

50 PROGRAMMING MANAGEMENT

THE EFFECT OF MODULAR DESIGN ON LIFE-CYCLE PROBLEMS

Figure 4-1 shows the major stages in the life cycle of a software product.
Because of short-term pressures, the design phase is often shortchanged. As a
result, software projects commonly suffer from unpredicted delays and cost
overruns in the programming and integration stages and produce programs that
are unreliable and hard to modify.

In contrast, modular design methods require that substantial effort be ex­
pended in the design stage so that the software structure is developed systemati­
cally and documented thoroughly. This effort can alleviate the problems
described in the following paragraphs by making the programs easier to code,
integrate, and maintain. The advantages do not come automatically, however;
modular design principles do not provide a foolproof algorithm for software
design. A good design requires that these principles be applied intelligently,
since each application area presents its own special design problems.

Determining what the system is supposed
to do. Documenting the requirements com­
pletely and unambiguously.

Creating a good overall system structure.
ASSigning tasks to modules. Defining mod­
ule interfaces. Checking that the design
meets the system requirements.

Coding and debugging the individual mod­
ules.

Putting the modules together. Testing the
running program against the system re­
quirements.

Correcting errors discovered by users. Add­
ing new functions requested by users. Mak­
ing system changes required by changes in
its interfaces to other systems or equipment.

Figure 4-1. Five-Stage Software Life Cycle

Problem 1: Making Changes is Costly. Software can be so difficult to
change that it is cheaper to reprogram it entirely. It is often difficult to find the
right code sections to change, either because the original structure is hard to
understand or because it has become lost beneath layers of patches. Changes to
one part of a program often have a ripple effect, causing errors in apparently
unrelated parts. When changes are not followed by exhaustive retesting, new
versions can be released with errors that were introduced in the maintenance
process.Many of these problems can be traced to failure to anticipate change.

DESIGNING MODULAR PROGRAMS 51

Programmers suffer from a common illusion that software requirements will at
some point be frozen. Functional requirements and system interfaces are never
completely fixed; they change frequently during all stages of the life cycle.
There are many reasons for this: the original requirements are often too
complicated to be spelled out completely, and specification techniques are
often too primitive to ensure that all aspects will be covered adequately. In
addition, changes in user needs, new operating system releases, and hardware
result in required modifications even to the well-specified aspects of the
system.

Modular Programming Can Help. Unanticipated changes can invalidate
basic but implicit assumptions made throughout a program, requiring alteration
of many parts of the code. Modular programming techniques can be used to
isolate code sections associated with a particular change so that they are self­
contained, easy to find, and reasonably small. Unless changes must be made in
module interfaces, a programmer can be confident that modifications will not
cause subtle errors to be introduced into other parts of the system. It is
impossible to design a program so that any conceivable change is easy. If it is
possible to identify classes of changes that are likely to occur, however, it is
possible to design a program so that changes are easy to make.

Problem 2: Staff Communication and Training are Costly. According to
Brooks' law[1], "Adding manpower to a late software project makes it later. ' ,
This phenomenon is caused partly by an increase in the overhead of staff
communication and partly by the cost of training new programmers.

The amount of time spent in staff communication depends to some extent on
how interrelated the separate programming assignments are. If programs are
highly interrelated, programmers must spend time learning of each other's
problems and approaches; otherwise, their individual products will not fit
together correctly. It is common for a project to depend dangerously on the few
key people who understand how the whole system works. Not only are these
people constantly distracted from their work by questions from other program­
mers, but the project is delayed by their absences.

Additional problems are caused by the high turnover rates characteristic of
programming departments. Training new people is time-consuming, expen­
sive, and does not contribute directly to progress. If programs are so interre­
lated that a new programmer must understand most of the system before
working on even a small part of it, it may be months before that programmer can
make a contribution to the project.

Modular Programming Can Help. Modular programming results in the
division of a project into small, well-documented, manageable tasks. This
division limits the amount of information that anyone person must know and
reduces the dependencies among members of a software team. Programmers of
different modules can proceed without constantly referring to each other's
work. Training is easier since programmers can make progress without under­
standing the whole system.

52 PROGRAMMING MANAGEMENT

Problem 3: Integration is Often Unexpectedly Difficult. The system inte­
gration stage can be a nightmare. Because of omissions, misunderstandings,
and unstated assumptions made during the design and programming stages,
components that pass their individual checkout tests can fail to work when they
are put together, and it can be very difficult to determine why. Frequently,
every programmer must participate in this process because no one except the
authors of particular components understands those components.

Modular Programming Can Help. Modular programming techniques can
lead to fewer sutprises during system integration because well-modularized
software is characterized by simple interfaces and clear allocation of responsi­
bility. By reviewing module specifications before coding starts, manyambi­
guities and misunderstandings can be discovered before they are built into the
individual components. As a result, a module that passes its unit tests is more
likely to fit smoothly into the overall system. Because the individual modules
are well documented, the problems that do occur are not difficult to trace.

Problem 4: Documentation is Either Useless or Not Produced at All. Be­
cause it is typically not performed by the same programmers who develop a
system, software maintenance can be made much more difficult by poor
documentation. Software documentation is typically written as an afterthought
by programmers who are poor writers or by writers who are poor programmers.
Even if the programmers write it willingly, documentation for a muddled
design cannot be clear. Useless documentation is almost worse than none; it
gives management false confidence that the information needed to maintain the
software is available.

Modular Programming Can Help. Documentation should be written as
software is developed so that it captures the fundamental reasons behind the
design. Feedback from the writing can improve the design. If an aspect of the
design cannot be described clearly, it can usually be designed better. Relevant
information tends to disappear if it is not written down while the design is in
progress; notes get lost, and people forget the factors that influence design
decisions. Modular programming techniques dictate that documentation be the
only product of the design stage; not until the documentation is approved can
coding begin. Careful documentation is an integral part of modular program­
ming methods.

Reusing the Results of Modular Programming. An additional advantage
of modular programming is the reusability of some of its products. Well­
defined modules that perform such common functions as sorting or statistical
calculations can often be used without modification in other systems. More­
over, one can sometimes take an overall modular design and reuse it for a
similar system by adapting some of the modules to the new circumstances.

BASIC CONCEPTS

In this section, some fundamental concepts of modular programming are
introduced. Several of them are illustrated through a simple example-a mail-

DESIGNING MODULAR PROGRAMS 53

ing list program. The requirements of this program are to maintain a file of
addresses and to generate mailing lists of addresses selected from the file.
Mailing lists produced by the system need not contain all names in the file; the
system is to select records that match predefined criteria (e.g., those with the
title "Doctor"). The address file is to be assembled from different sources,
including magazine subscription lists and organization membership lists. These
lists are all in machine-readable form, but their record formats vary. The
system, therefore, must be able to process inputs with different formats and
must be easy to modify for the processing of new input formats. In order to give
clients a selection, various print formats must be available. It alsl) must be easy
to add new print formats.

Modules
A module is a collection of related programs and data structures that take

care of a single changeable aspect of a system. The programs within a module
are all based on information that is not used in the design of other programs in
the system. This information is termed the secret of the module (see Figure
4-2). Another good example of this would be a tape-handler module of an
operating system, which would contain the programs to read a record, write a
record, and rewind the tape. All three programs would be based on informa­
tion about how a specific tape drive device behaves, including transmission
protocols, validity checking, and timing.

Modules that isolate information are sometimes called information-hiding
modules [2]. The two main advantages of information-hiding modules are that
they simplify the rest of the system because it does not refer to the hidden
details and the encapsulated aspect of the system can be changed by replacing
only one module. For example, application programs are simpler because
they use the tape-handler programs; they can write on a tape without knowing
the details of the hardware interface to the device. Substituting a new tape
drive model can be done without changing all of the application programs that
store data on tape; only the tape-handler module need be rewritten. Note that
these modules are not necessarily equivalent to single subroutines, nor do they
consist entirely of programs. They may also include data bases, job control
language, or compile-time parameters.

Software modules serve two complementary pUlposes: they are units in the
software structure (i.e., units that can be changed independently), and they are
units in the programming process (i.e., independent work assignments). A
good module for one pUlpose is generally a good module for the other because
both depend on clear definitions of module tasks and interfaces. Both pUlposes
should be considered during module design.

The maintainability of a system depends on how well it is divided into units
of software change. If this division is done well, a change will require that only
one module be reprogrammed, without requiring any changes in the rest of the
system.

The rate of programming progress can be affected significantly by how well
the system is divided into work assignments. If this division is done well, each

54 PROGRAMMING MANAGEMENT

Module Module
What Might Cause
the Secret to

Name Type Responsibility Secret Change

Address Facility Stores and retrieves ad- Hides the choice of data These choices may

~:~?: dress data associated with structure used to repre- change,because the timel
each person in the file. sent the file in the com- space trade-offs are af-

puter, how the information fected by changes in the
for a given individual is ar- size of the address file, in
ranged, and whether or the availability of memory,
not the file is all in main or in the required access
memory or stored partly on speed.
disk.

Input Facility Reads records or charac- Hides commands and data Changes If the device is
Device ters from an input device formats expected by the replaced by a new model.
Module (e.g., tape drive, OCR, device (e.g., EBCDIC vs.

card reader). ASCII).

Input Facility Uses programs in the input Hides the format of the in- May chan~e because
Format device module to read in put data, including the ar- many mac ine-readable
Module addresses; analyzes input ~~~~i:~eg~I?~lr:~:e~~~-Of_ address lists are available,

records into component and the lists have different
parts and stores them in record delimiters, size of formats.
the address holder. fields, etc.

Output Facility Writes characters or Hides commands and data Changes if the device is
Device strings to an output device formats expected brc the replaced by a new model.
Module (e.g., printer). device (e.g., EBCD C vs.

ASCII).

Output Facility Uses output device mod- Hides details of the format, May change because dif-
Format ule programs to write ad- including spacing, ar- ferent clients want their
Module dresses in a selected for- rangement, and supplied mailing lists printed differ-

mat. punctuation. enlly; even the require-
ments of the same client
change over time.

Selection Facility Determines, for a given Hides the specific criteria Criteria vary because dif-
Module address, whether or not it used to make the decision. ferent clients require mail-

belonga in a particular set ing lists with different sub-
(e.g., all Maryland res~ sets of the people in the
dents). file.

Command Facility Uses programs in the input Hides the format and ~n':is c:na;Po~~:~:~:w~~~r Format device module to read in a source of user input (e.g.,
Module command frOm a user; in- whether options are on or because he wants dil-

terprets commands. JCL cards, on an extra in- ferent defaults.
put data file, or from a ter-
minal). Hides the defaults
assumed if user fails to
supply commands.

Master Control Calls programs in all Hides the sequence of ae-
Control other modules to get the tions required to meet the
Module job done. overall system require-

ments.

Figure 4-2. Mailing List Program Example-Modules and Their Secrets

unit will be sufficiently self-contained to be performed by a single programmer,
with very little interaction with other programmers, In order for a module to be
self-contained, its purpose, function, and interfaces to other modules must be
precisely defined. Otherwise, programmers will spend much of their time
negotiating with each other about who is responsible for what and how informa­
tion is to be transmitted among programs. If the system is properly partitioned,
programmers can make progress independently most of the time, with a
minimum of time wasted waiting for or talking to others.

If the software system is very large, it may have several teams of program­
mers working on it. In this case, it should be divided into large modules that
can be assigned to different teams, and each of these modules should be
divided into modules for individual programmers.

Different modules often require programmers with different expertise. If
the various talents of the available programmers are considered during the

DESIGNING MODULAR PROGRAMS 55

module design process, there can be a payoff in tenns of efficient use of
people. This consideration should be secondary to the considerations involv­
ing ease of change, however, partly because the ease of change affects the
whole life cycle and partly because the people available tend to change even
during the programming stage.

Each module is a building block of the entire software system and must
therefore cooperate with other modules in order to meet the requirements
placed on the system as a whole. There are two main types of modules. Facility
modules provide a facility or resource that makes the rest of the software easier
to program. The secrets of these modules can be details about peripheral
devices, data structures, or algorithms. Control modules use the facilities in
order to meet overall system requirements. The secrets of these modules are the
sequences of actions required.

Module Hierarchy

Evenif modules have clearly defined tasks and interfaces, the sheer number
of them can make the system hard to understand unless they are organized in
some way. An appropriate organization is a module hierarchy (see Figure 4-3):
the relationship between a module and its parent in the hierarchy is "part of. "
Modules thus belong to module classes, and the module classes may them­
selves be viewed as modules. At the top of the hierarchy is a small number of
large modules or module classes that together meet the system requirements.
Each of these modules is subdivided into smaller, more specialized modules
that together meet the requirements of the parent module, and so on. The
modules at the lowest level are so simple that subdividing them further does not
make the system easier to understand.

Input Format Modules

I
Input format
modules for
magazines

I
Input format
module for
Time/Life (and
other format
modules)

I
I

Input format
modules for
charities

I
Input format
module for
UNICEF (and
other format
modules)

Output Format Modules

I
Print format
modules for
political mailing

I

I

Print format
module for
Democratic Party
(and other print
modules)

I
Print format
modules for
advertisements

I
Print format
module for
Bloomingdales
(and other print
modules)

Figure 4-3. Part of the Mailing List Module Hierarchy

A module hierarchy allows a person to learn about a system by first reading
about the top-level modules, seeing how they cooperate to meet the top-level
requirements, and then studying the child modules of one module, seeing how
they cooperate to meet its requirements, and so on. The reader need consider
only a small number of modules at a time. A maintenance programmer can find

56 PROGRAMMING MANAGEMENT

the way to the right module in order to make a change by starting at the top,
selecting the appropriate top-level module, and then selecting the appropriate
submodule at each intermediate level until the appropriate lowest-level module
is reached. At any level, the programmer has only a small number of modules
from which to choose. Note that higher-level modules can be used as team
assignments and lower-level modules as individual assignments.

Module Interfaces and Access Functions

In order for programmers to work independently, each facility module must
have a well-defined interface. The interface to a module consists of all informa­
tion that other programmers must know about the module in order to write their
own modules. Interface descriptions consist of two parts:

• Prose descriptions of the underlying assumptions that user programs are
allowed to make

• Descriptions of programming constructs that can be used in program
source text

These programming constructs are programs called access functions. When
the rest of the software needs to use a facility, it calls an access function
provided by the appropriate facility module. The access function descriptions
should include calling formats, parameter semantics, parameter limitations, the
effects of calls on future calls, calls that are considered errors, and restrictions
on call sequences (see Figure 4-4). In the tape-handler example, user programs
call a tape-handler access function in order to write a record on a tape.

The information belonging in an interface must be chosen carefully. If
enough information is not made available in the interface, the modules will not
fit together smoothly. In the tape-handler example, this might happen if a
particular user needs to know how much space remains on the tape, but the
module interface does not include an access function to reveal this information.
If too much information is provided, part of the module's secret is given away;
programs using the facility will cease to operate correctly if the secret is
changed. In the tape drive example, this might happen if the interface revealed
the exact time required to write a record. If a user program used an algorithm
based on this timing information, it would no longer work correctly if the tape
driver were replaced by a faster model.

Module Specifications

Module design documentation consists primarily of specifications (i.e.,
precise statements of what the modules must do to be considered correct).
Specifications serve as problem statements for programmers, leaving them
free to choose appropriate module implementations. Such specifications are
sometimes called black-box specifications, in fact, since they define only
externally visible module behavior. There are three main types of module
specifications: interface specifications for facility modules (see Figure 4-5),
task specifications for control modules (see Figure 4-6), and usagespecifica­
tions for module interconnections (see Figure 4-7). A discussion of each
follows.

DESIGNING MODULAR PROGRAMS

Address Storage Module
GET _NUMADDRESSES: Returns the number of addresses in the file
CREATEJDDRESS (person-id): Creates a new record in the internal

file and associates it with the identifier "person-id." Increases by 1
the number returned by GET _NUMADDRESSES

GET _STREET(person-id): Returns the street name stored for the indi­
vidual identified by person-id

SEL..2IPCODE(person-id, zipcode): Stores a zip code for person identi­
fied by person-id.

Input Device Module
READ_CARD: Reads and returns the next card from the card reader.

Input Format Module
SET _INFORMAT(format-code): Determines the input format to be used

for all subsequent input actions, until called again with different
format-code

READ_RECORD: Calls READ_CARD (or a different input device pro­
gram, depending on the device in use) to read in data; analyzes it into
records and fields; calls Address storage "SET" functions to store
the data for use by other programs.

Output Device Module
WRITLLlNE(string): Writes out a line to a printer

Output Format Module
SET _OUTFORMAT: Determines the output format to be used for sub­

sequent addresses
WRITE_RECORD(person-id): Prints the address associated with

person-id with correct spacing and punctuation according to a speci­
fied format. Retrieves data to be printed from the Address Storage
Module.

Selection Module
SELECT _DOCTORS(person-id, is-doctor): Returns a true/false indica­

tor in "is-cloctor" indicating whether the individual identified by
person-id is a doctor.

Command Module
INPUT _OPTION(format-code, medium-code): Returns either the input

options selected by the user or the system defaults.

Figure 4·4. Some Access Functions of the Mailing List Example

57

Interface Specifications. Besides serving as problem statements, inter­
face specifications communicate interface information to programmers of
other modules. These specifications serve as an agreement between the pro­
grammer of a module and the rest of the programmers, concerning what his
module will do. If his module meets its specifications, their modules should
work with it correctly. Programmers of the rest of the system should refer to
the interface specifications to find answers to their questions on the module. If
they cannot find a particular answer there, they should avoid making assump­
tions because information not documented in the interface specification

58 PROGRAMMING MANAGEMENT

FUNCTION NAME: GET_STREET MODULE: Address Storage
INPUT PARAMETERS:

Name Type Description
person-id integer identifier of an address

FUNC.TION VALUE TYPE: Character string
FUNCTION VALUE: The street address stored for the address identi­

fied by person-id
EFFECT: None (Le., no side effects)
ERROR ACTIONS: If person-id is not between 1 and

GET_NUMADDRESSES, then the module flags
UE-OUT_OF_RANGE; if the STREET fierd of the address
is undefined (i.e., SET_STREET has not been called for
"person-id"), then the module flags UE-UNDEFINED_FIELD.

FUNCTION NAME: READ_RECORD MODULE: Input Format
INPUT PARAMETERS: None
FUNCTION VALUE TYPE: None
FUNCTION VALUE: None
EFFECT: This function cannot be called legally until

SET_INFORMAT and SET_INMEDIUM have been called.
Reads in next record on the input medium identified by
SET_INMEDIUM; analyzes it according to format identified by
SET_INFORMAT. After this program has been called, other pro­
grams can call Address Storage programs to read the component
values of the new record.

ERROR ACTIONS: If the assumed format does not match the record
format, then UE-WRONG_FORMAT is flagged by this mod­
ule.

Figure 4-5. Interface Specifications for the Mailing List Program Example

Master Control Module Specifications

Prerequisite data:
1. What type of action or actions to take (input, print, or both).
2. If action is to input new addresses, what input medium and format

should be used.
3. If action is to print a mailing list, what print format and selection criteria

should be used.

Requirements (i.e., what must be true after the system has run)
1. If any prerequisite data is missing, print error message.
2. If input is requested:

• If the format is recognized as a legal format and it matches the in­
put, then address data from the input file is subsequently retriev­
able from the address storage module.

• If the format is not recognized or does not match the input, then an
error message is printed.

3. If output is requested:
• If the print format and selection criteria are recognized as legal op­

tions, then all addresses in the address storage module corres­
ponding to the selection criteria are printed out according to the se­
lected format.

• If any options are not recognized, then an error message is printed.

Figure 4-6. Task Specifications for the Mailing List Program Example

DESIGNING MODULAR PROGRAMS 59

should be part of the module secret. If they cannot write their programs with
only the information in the interface specification, they must appeal to the
designer to correct the interface. The requirement that users of a module refer
only to module specifications is the principal means of limiting the amount of
direct communication among programmers and of preventing the use of a
module's secret by programmers of other modules.

Task Specifications. Task specifications for a control module define
which part of the overall system requirements it must meet. These specifica­
tions can be written in terms of references to the overall system specification.

Usage Specifications. Usage specifications limit interconnections be­
tween modules by stating, for each program, which other programs it can call.
These limitations are required so that the system is not so interrelated that no
part of it works without all the rest of it available. Usage specifications also
show the control structure of the overall program.

MASTEFL-CONTROL INPUT_OPTION
uses:

To find out user input format
and medium choices

READ_RECORD To read in new records and
put them in the file

SELECT_DOCTORS To find out for a particular ad-
dress whether it should be
printed in the doctors mailing
list

WRITE_RECORD To print out a selected ad­
dress

INPUT_OPTION uses: READ_CARD To read in a control card on
the card reader

READ_RECORD uses: READ_CARD To read in a card image from
the card reader

CREATE---.ADDRESS To create a new address in
the file

SET~IPCODE

SELECT_DOCTORS GET_TITLE
uses:

WRITE_RECORD uses: GET_STREET

WRITE_LINE

To store the zipcode field for
that address

To read the title field in an ad­
dress to see if it equals "Dr."
or "Doctor"

To get the street data that it is
supposed to print

To write out a line on the line
printer

Figure 4-7. Usage Specifications for the Mailing List Program Example

60 PROGRAMMING MANAGEMENT

The concepts discussed thus far fonn the basis of modular programming.
Designing and implementing modular programs can increase programmer
productivity in the following ways:

• By producing program designs that are easier to code
• By producing programs that are easier to integrate
• By producing programs that are easier to modify
• By reducing the need for intra-project-team communication
• By reducing the amount of training required for those joining project

teams midstream
• By requiring design documentation that helps maintenance program­

mers
• By producing reusable modules and designs

METHODOLOGY AND RELATED ISSUES

The steps of a methodology for dividing a system into modules and for
writing module specifications are not strictly sequential: the products of one
step need not be fully determined before the next step is started. Earlier steps
can be iterated if working out details in the later steps reveals errors in the
overall design.

The proper product of module design is documentation, not code. Module
documentation has many uses during the life cycle of a program, including:

• Allowing the designer to communicate the design to reviewers
• Outlining work assignments for programmers
• Defining module interfaces, reducing interactions among programmers
• Guiding integrators as they put modules together and search for sources

of errors
• Guiding maintenance programmers as they search for the right module

to change or correct
Discussed in the following paragraphs is the appropriate documentation for
each stage in the method. Questions that should be asked when reviewing the
documentation are suggested.

MODULAR PROGRAM DESIGN METHODOLOGY

Step 1: Identify Secrets

Based on the system requirements, knowledge of the applications area, and
experience with similar systems, the designer should list all aspects of the
system that are likely to change. To supplement his own experience, the
designer may want to interview the customers (users) to gain their ideas of
future enhancements for the system, reference change request mes for similar
systems, and consult with other experienced designers. It is important to resist
the notion that system requirements are fixed and unchangeable.

It is especially sensible to encapsulate any aspect of the system that is
difficult to program correctly (e.g., scaled arithmetic on a fixed-point ma-

DESIGNING MODULAR PROGRAMS 61

chine). If this is done, the error-prone operations are performed systematically
throughout the system and are isolated in one module, where they can be
programmed and debugged by a single expert.

Each secret that is identified in this step should be encapsulated in a separate
module. In order to make the individual modules small and easy to understand,
secrets should be identified in considerable detail. The system has been suffi­
ciently decomposed when the work assignment represented by each module is
small enough for one programmer to do it and small enough that it would be
practical to throw it out and start over if the secret changed substantially.

Tables 4-1 and 4-2 list the types of secrets commonly found in DP and real­
time systems. The lists are not all-inclusive.

The product of this design step is a detailed list of secrets and a correspond­
ing list of small modules. The module descriptions should not refer to details
that are the secrets of other modules. The documentation should be reviewed
for completeness and consistency by people other than the designers. The
primary review question of this step is: Are all plausible types of changes listed
as module secrets? Potential users are often able to think of other changes when
shown such a list.

Table 4·1. Common Secrets in Data Processing Systems

Secret

Data Base Structure (logical)

Algorithms

Data Storage (physical)

Input

Output

Operating System Interface (e.g.,
JCL)

Software Functions as Seen by
User

Typical Reasons for Changes

• New fields needed in records
• Field sizes changed
• More records required
• Faster access required for particular fields

• Different time-space trade-offs required
• More accurate or efficient algorithms invented

• Size of available storage changed
• Type of available storage changed (e.g., from

one tape drive model to another or from tape to
disk)

• Faster access required

• Input medium changed (e.g., from cards to
OCR)

• Fields rearranged within records
• More extensive error-checking required
• Input sequence changed (e.g., from unsorted

to sorted)

• Change in output device (e.g., from printer to
computer output microform)

• New release issued by manufacturer

• New types of reports required
• Changes in report formats required by client
• New data added to input records

62 PROGRAMMING MANAGEMENT

Table 4·2. Common Secrets In Real· Time Systems

Secret

Computer Characteristics

Peripheral Devices

Resource Allocation (e.g.,
scheduling)

Algorithms

Software Functions

Typical Change

• Computer replaced by faster, larger, or
cheaper model

• Computer replaced by standard model (e.g.,
military standard)

• Sensors replaced by more accurate, more
reliable, or faster versions

• Displays replaced by more flexible or more
reliable models

• Relative priorities of activities changed
• Single computer replaced by set of micro­

computers
• Capacity of resources changed (new mem­

ory)

• More accurate or faster algorithms invented
• More general algorithm invented that can re­

place several more specialized algorithms

• User preferences changed, including:
-New modes needed
-Transition between modes changed
-New responses required to user inputs
-New displays needed

• Computer-driven devices used for different
purposes

Step 2: Devise the Module Hierarchy

Since any substantial system may have hundreds of small modules, people
will find it difficult to understand the overall structure or to find the correct
module to change unless the modules are organized into a comprehensible
structure such as a module hierarchy. To design the module hierarchy, secrets
and their corresponding modules are grouped into classes having something in
common. For example, all modules that communicate with peripheral devices
can be grouped into a single class. If there are more than 10 classes, the classes
should be grouped into classes in the same way. There is no standard method for
determining the correct class groupings; whatever makes the system easier to
grasp is permissible if the designer is still free to make changes as he or she
proceeds.

It is important that the structure accurately describe the software product:
every secret must be accounted for somewhere in the structure, and it should be
possible to locate every secret by starting at the top and working down. It is
important that the designer develop clear criteria for class membership.

A good place to look for help in this step is the module hierarchy of a
successful modular system that has similar functional requirements.

The product of this step is high-level program documentation, showing the
top-level module classes and how each is broken down into successively
smaller modules. The document should contain indexes and cross-references,

DESIGNING MODULAR PROGRAMS 63

including an alphabetized list of secrets with pointers to the associated module
descriptions.

The module hierarchy should be independently reviewed for completeness
and consistency. The following review questions should be asked:

• Are all important aspects of the system accounted for?
• Is it easy to find the module corresponding to a typical change request?
• Are the criteria for class membership clear?
• Are the module descriptions clear and unambiguous?

Step 3: Design Module Interfaces and Write Module Specifications

The next step is to design the module interfaces and to write black-box
specifications for the externally visible behavior of each module. Because of
the close relationship between these two activities, they are described as a
single step.

Designing the interfaces properly is crucial for attaining the benefits of
modularity. A module interface should not have to change when the module
secret changes. For example, the interface to a sort module should not reveal
the sort algorithm chosen so that the algorithm can be replaced by a faster
algorithm without requiring the access function calls in the user programs to
change.

To design the interface to a particular module, the designer should first list
all the assumptions he or she is willing to allow other programmers to make
about it. The following are examples of typical assumptions:

• It is assumed that the input list is already sorted.
• It is assumed that all tape drivers will rewind tapes.
• It is assumed that all mailing addresses will include name, street, city,

and state data.
It should be noted that if these assumptions change, user programs that depend
on them will have to change.

Assumptions are usually documented in prose so that they can be reviewed
by programmers and nonprogrammers familiar with the application area. For
example, the set of assumptions that user programs are allowed to make about
the tape handler module should be reviewed by those familiar with tape driver
devices. Review questions might be:

• Are the assumptions true of the current device?
• Are they true of replacement devices on the market?
• Are they true of replacement devices being developed?

The list of assumptions should also be reviewed by programmers, who
should determine what choices are eliminated by the assumptions and whether
these choices might be desirable alternatives.

Once the assumptions have been listed and reviewed, specifications for the
access functions are written. Access functions incorporate the assumptions in a
form that can be used in programs. Access functions should be specified
rigorously in terms of externally visible behavior. Questions to be answered for
each function include:

64 PROGRAMMING MANAGEMENT

• What parameters does it require? In what order? What are the restrictions
on legal parameter values? What do the parameters mean?

• What effect does calling this function have on future calls to access
functions belonging to this module?

• What errors can be associated with this access function? What action is
to be taken in each case?

Additional questions to be answered in the specifications include:
• Does the module have to be initialized? How? What happens if it is not

initialized?
• What information or facilities does the module require from other

programs for it to operate correctly?
• What are the time and space budgets for this module?

The access function specifications should be reviewed thoroughly by sen­
ior programmers. The review should consist of three parts:

• A cross-check against the assumptions-Is all information in the as­
sumptions accounted for by at least one access function? Are any
additional assumptions made? (If so, these assumptions should be writ­
ten out and reviewed.)

• Implementation feasibility-Can the access functions be implemented
with reasonable efficiency?

• Effects on other programs-Can user programs be written reasonably
efficiently with calls to these access functions? Can they get their own
jobs done?

Task specifications must be written in terms of the overall system require­
ments. Writing task specifications is much easier if the system requirements are
properly documented because they can consist mainly of references to the
requirements documentation. These specifications do not include access func­
tion descriptions because control modules have no access functions.

In the process of writing module specifications, the designer makes many
design decisions. These issues should be documented as should the alternatives
that are considered and the reasons for making a particular choice. Difficult
decisions are not really made until they are written down; people continue to
discuss design problems until there is some record of their resolution. This type
of documentation provides invaluable guidance to maintenance programmers,
who consider the same issues when they evaluate the feasibility of requested
changes. Documenting design issues not only makes systems easier to maintain
but helps train programmers to become designers by exposing them to the
factors that influence design.

Step 4: Write the Usage Specifications

While designing the interconnections between programs, the designer
should seek to avoid two expensive errors: unnecessary code duplication and

, interdependencies. If there is already a module to provide a facility, it is
wasteful of programmer time and computer space for other programmers to
write their own code to implement the same facility. If they do, the final system
will have sections of code that are similar but not quite the same, making the

DESIGNING MODULAR PROGRAMS 65

maintenance programmer's job more difficult. Interdependencies, which exist
when two programs use each other either directly or indirectly, make the system
difficult to integrate, test, and maintain. For example, if an operating system
scheduler module depends on the file system to maintain its data and the file
system depends on the scheduler to schedule its disk accesses, neither compo­
nent can work unless the other is present and working. Thus, neither component
can be tested without the other, making incremental integration impossible. In
addition, neither component can be reused in another system without the other
(e.g., the scheduler module could not be reused in a simpler operating system
without disk storage).

To write the usage specifications, the designer must list the legal intercon­
nections, trying to avoid both problems mentioned previously. This compro­
mise can be characterized as avoiding loops in the uses relation [3]. The best
way to start is by listing all programs that will not be allowed to use any other
programs; these programs form the bottom level of a hierarchy. Next, all
programs that use only programs in the layer should be listed below; these form
the next level. This process continues, with the programs at each level using
only programs in the lower levels.

Documentation for this step should include a list for each program, showing
the programs it can use. In addition, there should be lists of programs at each
level. These lists can be used to plan system integration; the bottom level can be
tested first, then the next level added and tested, and so on.

PERFORMANCE ISSUES

Modular programming can increase the memory or execution time required
for a particular program. If this happens, software managers must consider a
basic trade-off: if the modular program is easier to understand, modify, and test
than is an unmodular counterpart, is modular design worth a small performance
cost (especially since hardware costs are decreasing and programmer salaries
increasing)?

There are two main sources of performance penalties in modular programs:
increased context switching, caused by additional subroutine calls, and the
requirement of more operations, caused by separating the program into differ­
ent modules. If a project has no performance leeway at all, there are certain
actions that can be taken to speed up and slim down a modular program.

More Context Switching

If every access function in a module is a subroutine, modular programming can
result in substantially more subroutine calls than with nonmodular programming.
Consider the mailing list system described earlier. The Address Storage module
interface provides an access function, GET_STREET(person-id) that returns the
street address of the individual identified by person-id. If the programmer who
implements the module decides to store the street addresses in an array in which
each array element is a PLil-type structure containing all data associated with a
particular person, a call to the access function GETJTREET becomes an array

66 PROGRAMMING MANAGEMENT

reference, ADORESS--DATA(person-id).STREET. If the user were pennitted to
know the secret of the module and to access the array directly, a subroutine call
could be avoided, and the program would run slightly faster. In this case, however,
if it were decided to replace the array with a linked list, it would be necessary to
change every program that accessed the data, not just the single access function.

This problem can be avoided by implementing some of the access func­
tions as macros. With macros, the secret of the module is hidden from other
programs without any additional run-time context switching. If
GET_STREET were implemented as a macro, during macro expansion all
calls to it would be replaced by the appropriate array reference. The advan­
tages of modularity would be preserved because programmers look at the
source text, not the expanded code. Many high-order programming languages
provide macro facilities that can be used in this way.

More Operations

Separating independently changeable concerns into different modules can
result in an increased number of operations because programmers are not
allowed to fold together operations too tightly. In a real-time system with one
module that hides sensor characteristics and one that hides the details of
filtering algorithms, programs in the sensor module must take the following
steps:

1. Read in raw values from the sensor and scale them for compatibility
with the engineering units expected by other programs.

2. Apply a correction for a known bias.
3. Call a filter access function to smooth out fluctuations.

If the programmer were allowed to write his own filter algorithm, he or she
might be able to combine some of the arithmetic operations of the filtering
with the operations required to scale and correct the value. Of course, separat­
ing the algorithms into different modules has major advantages: a mainte­
nance programmer can change the sensor correction without having to under­
stand the filter or untangle the algebraic combination of the two algorithms.
This can, however, result in increased execution time, even if the filter
program is a macro, so that there is no run-time context switching. The
authors of this chapter know no cure for this problem.

Tuning a Modular Program

It is well known that programs usually spend most of their execution time in
relatively small portions of the code, often called bottlenecks. Because there are
usually only a few bottlenecks, where extra subroutine calls or extra operations
incur a significant speed penalty, a small number of program modifications can
lead to major improvements. After a system is integrated, its performance can
be measured in order to find the bottlenecks. The modular structure makes it
easy to make the changes that result in a considerable improvement: algorithms
and data structures are isolated so that it is easy to replace them with faster or
smaller choices without massive reprogramming.

DESIGNING MODULAR PROGRAMS 67

MANAGEMENT CONSIDERATIONS

Project Scheduling. Properly modularized software is easier and less
expensive to code, integrate, alter, and maintain. It can, however, be more
difficult and time-consuming to design. An early investment in careful design
can payoff over the rest of the software life cycle, but it can also cause a
considerable amount of money to be spent before there is any running code.
Managers who measure productivity in terms of lines of code can find this
disturbing, but it is a mistake to pressure the software team to start coding
before the design is complete. Such shortsightedness can be very expensive in
the long run because it compromises the simplicity and integrity of the software
design. It is important that managers and customers be aware that initial costs
are necessary so that they do not conclude prematurely that modular program­
ming is a detriment rather than a help.

Personnel. Software system designers should be able to express their
design concepts in clear, precise terms. The product is more likely to be
coherent and cleanly designed if a small number of experienced people design it
than if the whole programming team has a part in it. F. P. Brooks calls his
decision to have 150 rather than 10 people design OS/360 "a multimillion
dollar mistake" [4], for exactly this reason.

Designers should also have access to people who can review their documen­
tation from several viewpoints. Some reviewers should be familiar with the
application: these people look for gaps, misunderstandings about the require­
ments, and assumptions that are likely to change. Other reviewers should be
expert programmers: they look for modules that will be difficult to implement
and design decisions that will result in inefficient programs.

Documentation Support. Sufficient secretarial and WP support must be
provided to keep documentation up-to-date. Procedures must be established to
make and distribute documentation changes reflecting design changes. These
procedures should be, on the one hand, carefully controlled so that changes are
not haphazardly introduced and, on the other hand, sufficiently flexible that the
software team is not hampered by excessive red tape.

Note:

The opinions expressed in this chapter are those of the authors. The chapter is not endorsed by
the U.S. Government and does not represent an official U.S. Government position. The authors
are grateful to their colleagues at the Naval Research Laboratory for the stimulating discussions
that contributed to their understanding of the techniques. They are particularly grateful to David
Parnas, whose contributions to the field of software engineering form the basis of much that
appears in this chapter. They are also grateful to Edward Britton and David Parnas for reviewing
the manuscript.

References

1. Brooks, F.P., Jr. The Mythical Man·Month: Essays on Software Engineering. Reading MA: Addison·Wesley, 1975.
2. Pamas, D. "On the Criteria to be Used in Decomposing Systems into Modules." Communications of the ACM. Vol. 15, No.

12. (December 1972).
3. Pamsa, D. "Designing Software for Ease of Extension and Contraction." IEEE Transactions on Software Engineering.

SE·5(2), MIlICh 1979.
4. Brooks, F.P., Jr. The Mythical Man·Month: Essays on Software Engineering. Reading MA: Addison·Wesley, 1975.

~ Decision
Tables

INTRODUCTION

by Paul F. Barbuto, Jr.

Decision tables, a powerful technique that can be applied to the solution of
computing problems, are compatible with top-down design, programming, and
testing. They function in a number of areas: analysis, design, programming,
and documentation. Because they are so useful and so often ignored, decision
tables qualify for the title of structured programming's forgotten technique.

Designing with decision tables is no different than other styles of designing
except that the result is more spatially organized. The decision table structure
facilitates a top-down design where the control structure is expressed in the
table and the "pure code" exists in the action stubs. The decision to produce
more than one such table as part of a design effort is similar to that made to
introduce another level in any other hierarchical design. Normally, decision
tables would represent a node of the hierarchy or a subtree (the part of the
hierarchy beneath anode). Partitioning the design into tables is motivated by
the usual considerations of program size and homogeneity of purpose. For
example, a small program might be represented by two decision tables: one for
normal processing and error determination and a second table to sort out and
process the error conditions.

Because decision tables communicate logic clearly, they can be considered
documentation tools. In the design stage, the specifications easily motivate
(can be transformed into) a preliminary table that can be verified with the user.
The table, then, becomes part of the documentation. The same table can be
translated from the symbolic "read input" to the actual read statement in a
chosen implementation language, and if a decision table translator is available,
the decision table can be a vehicle that literally takes the idea from inception
through implementation and testing.

It is easy to include probes to collect testing coverage information in a
decision table implementation; this assists in evaluating the quality of program
testing.

Resistance to using decision tables seems unfounded; it is primarily attribut­
able to lack of knowledge. Although decision tables are laid out spatially, they
require no more skills to use than do other programming aids. Decision tables

70 PROGRAMMING MANAGEMENT

make linear translation unnecessary, since they replace linear representation
with a multidimensional representation of the solution to the problem. In the
case of machine translation, one additional piece of system software needs to be
supported; however, if resistance to supporting system software were a valid
point, one would be writing in machine language.

DESCRIPTION AND DEFINITION

Decision tables are sometimes referred to more precisely as decision logic
tables. Each word contributes precision to the definition.

Decision relates to the making of choices.

Logic relates to making the choices in a logical fashion by using current
conditions to determine the future course of action.

Tables relates to the manner in which the relationship between extant
conditions and future actions are recorded. The rules relating conditions to
actions are represented in tabular form.

The process of understanding, reading, interpreting, or executing a decision
table depends on selecting the appropriate rule from the table (based on an
evaluation of current conditions) and performing the indicated actions.

Anatomy of a Decision Table

The anatomy of a decision table is shown in Figure 5-1. Its four primary
parts can be characterized by two dichotomies: conditions versus actions and
stubs versus entries.

I TableName Stubs Entries

Conditions Condition Condition
Stubs Entries

Actions Action Action
Stubs Entries

Figure 5-1. Anatomy of a Decision Table

Conditions versus actions divides the decision table parts according to the
conditions (data) existing when the table is entered and the inputs (what is
observed) as well as the actions taken as the result of the inputs, or that might be
taken, given a different set of input conditions (what is done). Stubs versus
entries distinguishes between the stub that contains the question or action to
take and the entries that represent answers to the question or indications that a

DECISION TABLES 71

particular action is to be taken. Thus, the four main parts of a decision table, as
shown in Figure 5-1, are:

• Condition stubs-questions that can be used to determine the state of the
process or program on entry to the table.

• Condition entries-the sets of answers to the condition stub questions,
each set representing a possible state of the process or program. The
answers to the questions are arranged vertically, and each column
identifies a different course of action or policy (a rule).

• Action stubs-an ordered list of actions (a menu) from which a set of
actions is selected.

• Action entries-the selection list (from the action stubs) that relates a set
of actions to be performed to a given input state. It is coded at the bottom
of each rule.

Another important part of the decision table is the table name, which is useful
for referencing the table (e.g., execute table input edit). A sample decision
table (shown in Figure 5-2) might involve one's policy concerning wearing a
raincoat when leaving for work:

"If it rains, I put on a raincoat before I go to work. "

One enters the table in the upper left-hand comer, asking the question, "Is it
raining?" One evaluates the answer in the upper right-hand comer, choosing
the "Rain Rule" or "Dry Rule," depending upon the answer to the question.
One then proceeds down the chosen rule (column) and looks for an "X" that
shows that the listed action should be done. In the Rain Rule, one first puts on a
raincoat and then leaves for work. In the Dry Rule, after deciding it is not
raining, one leaves for work.

I Ii ~
Raincoat I a: Q

Is it raining? Y N

Put on a raincoat X

Leave for work X X

Figure 5·2. Raincoat Decision Table I

If one decided to wear a raincoat, if rain were predicted, the decision table
would be revised, as shown in Figure 5-3. A comparison of the rules in Figures
5-2 and 5-3 shows that for the first three, the actions taken (outcomes) are the
same. If the conventional notation of a dash (-) is used to indicate' 'Do Not

72 PROGRAMMING MANAGEMENT

Care," two alternate but equivalent decision tables can be produced (see
Figures 5-4 and 5-5). They differ with respect to which condition is ignored
when two rules with similar actions are collapsed. There is no required order
among the conditions or rules.

I

I

"a
.!

"a .S!
.! "a

.S! e
"a D-
e -0
D- c

Raincoat II "i "i "i ~
a: a: a: Q

c c c

Is rain predicted? y y N N

Is it raining? y N Y N

Put on a raincoat X X X
Leave for work X X X X

Figure 5·3. Raincoat Decision Table II

Raincoat III

Is rain predicted?

Is it raining?

Wear a raincoat

Leave for work

N
oil
0-
Il CO) ...

.!.!.!
:::I :::I :::I
a: a: a:
:g:g :g
00 0
y N N

- y N

X X
X X X

Figure 5·4. Raincoat Decision Table III

The decision table in Figure 5-6 also represents the raincoat-wearing policy.
Note that two rules can be interchanged and two conditions can be inter­
changed. Although one of the equivalent tables may be preferable, based on a
specific view of the problem, the decision tables shown in Figures 5-3 through
5-6 are all equivalent. It is frequently helpful to view alternative representations
of the captured policies presented in a decision table.

There is, howe:ver, a canonical form for decision tables. Figures 5-3 and 5-4
are in canonical form; Figures 5-5 and 5-6 are not. To place a decision table in
canonical form:

DECISION TABLES 73

1. The conditions must be sorted into ascending order with respect to the
number of Do Not Care responses. Within groups of conditions with the
same number of Do Not Cares, the conditions must be sorted into
ascending order with respect to the number of N responses. This tends to
put conditions with the most positive' 'information" near the top of the
decision table.

2. The rules must be sorted, placing Do Not Cares before Y sand Y s before
Ns, treating the first row as a high-ordered position, and so on, down to
the last condition specified (see Figure 5-3).

Figure 5-5 violates the first sort on conditions; the Do Not Cares should have
been in the second row. Figure 5-6 violates the second sort; the second and third
rules must be interchanged.

Although having decision tables in canonical form is not truly necessary,
they are often more tractable. Fortunately, this can easily be done automatically
(this is discussed later in this chapter).

I

I

Raincoat IV

Is rain predicted?

Is it raining?

Wear a raincoat

Leave for work

'" 011
~
.N'Ot
II.!!.!!
:; :::I :::I
a: a: a:
:!!:!! :!!
00 0

- Y N
y N N

X X
X X X

Figure 5·5. Raincoat Dec/slon Table IV

Raincoat V
:!! :!! :!!
00 0

Is it raining? y N N

Is rain predicted? - N y

Put on a raincoat X X
Leave for work X X X

Figure 5·6. Raincoat Decision Table V

74 PROGRAMMING MANAGEMENT

COMMON CONTROL STRUCTURES

The common control structures of structured programming can be compared
with decision tables.

The IF THEN ELSE control structure is displayed as a flowchart in Figure
5-7 and as a decision table in Figure 5-8. Just as X = B or X = C in the example
could be replaced in structured programming by any other single-entry, single­
exit block of code, the same type of substitution could be made in the decision
table.

Figure 5-7. IF THEN ELSE Flowchart

I IF THEN ELSE

IFA = B

X = C
X = 0

.!! ~
~ a:
ID ID

II II

2 ii

C C
u 81
~ IL

Y N

X
X

Figure 5-8. IF THEN ELSE Decision Table

The DO WHILE structure is shown as a flowchart in Figure 5-9 and as a
decision table in Figure 5-10. As with IF THEN ELSE, the simple statements
could be replaced with more complex single-entry, single-exit structures. It
should be noted how the condition to be tested is separated from the actions to
be taken and how clearly the alternative courses of actions are identified and
related to the input conditions.

The CASE STATEMENT is displayed in Figure 5-11 as a flowchart and in
Figure 5-12 as a decision table. While it would be possible to default if X were

DECISION TABLES 75

not equal to one or two, that is, to assume X is equal to three, decision tables
lend themselves to the more logically complete expression; if none of the
above, then it is an error, as demonstrated in the fourth rule.

The following example combines control structures:

Problem: Read in a deck of cards, sum together data from alternate
cards, and print out the two sums and number of cards read.

Figure 5-13 shows a decision table describing the process; developing the
equivalent flowchart is left to the reader.

Figure 5-9. DO WHILE Flowchart

00

I !I II
DO WHILE Z z

IFN > 0 y N

N = N-1 X
Reenter DO WHILE X

Figure 5-10. DO WHILE Decision Table

Figure 5-11. CASE STATEMENT Flowchart

76 PROGRAMMING MANAGEMENT

I CASE
STATEMENT

IFX = 1 y N N N
IFX = 2 - y N N
IFX = 3 - - y N

Y = A X
Y = B X
Y = C· 0 X
ERROR X

Figure 5-12. CASE STATEMENT Decision Table

Cc
a: a:
~C

~ Z u
ALTERNATE CIL.~ c
SUMS 1-0 c

cnww 0

STARTUP Y N N N

EOF - Y N N

#_REAO_ TRIES IS EVEN - - Y N

#_REAO_TRIES=O X

EVEN,OOO=O X

EVEN=EVEN+X X

OOO=OOO+X X

#_REAO_ TRIES=

#_REAO_ TRIES+ 1 X X X

READ X X X X

STARTUP=N X

REENTER ALTERNATE SUMS X X X

#_CAROS= #_REAO_ TRIES-1 X

PRINT #_CAROS, EVEN, 000 X

Note: STARTUP must be set equal to YES before entering table for the first time.

Figure 5-13. ALTERNATE SUMS Decision Table

Limited versus Extended Entries

The types of decision tables discussed so far are called limited-entry deci­
sion tables. They are limited in that their condition entries are only Yes, No, or
Do Not Care (-), and the action entries are Do It, X or Do Not Do It, and

DECISION TABLES 77

blank. Extended-entry tables admit a wider variety of entries, much as a CASE
STATEMENT permits more states than an IF THEN ELSE statement. Exam­
ples of condition stubs and condition entries are:

• X = 1,2,3,4,5
• Condition stubs querying the relationship A : B
• Condition entries specifying the relationship < = >, >, <, and the

like

Similarly, Action Stub Y = , with Action Entries 1, 2, 3,4,5 in different
rules, is permitted in extended-entry decision tables. Although these appear
more powerful, they are not; in fact, anything that can be expressed as an
extended entry can be expressed as a combination oflimited-entry conditions or
actions. Such recoding is shown in Figures 5-14 and 5-15 and in Figures 5-16
and 5-17. The rest of this discussion, therefore, is restricted to limited-entry
decision tables, without loss of generality.

I Extended Example 1

IFX = 1 2 3

Y = B E Z

Figure 5-14. Extended Example 1

I Recode 1

IFX = 1 Y N N N
IFX = 2 - Y N N
IFX = 3 - - Y N

Y = B X
Y = E X
Y = Z X
ERROR X

Figure 5-15. Recode 1

I Extended Example 2

X:Y < = >

A = B X X
C = D X X
E = F X

Figure 5-16. Extended Example 2

78 PROGRAMMING MANAGEMENT

I Recode2

IFX < Y Y N N
IFX = Y - Y N

A = B X X
C = D X X
E = F X

FigureS-17. Recode2

Decision Table Properties

Several properties of decision tables make them effective vehicles for
capturing the design process: completeness, unambiguousness, limited paths,
and usefulness in debugging and testing.

Completeness. It is possible to detennine mathematically whether a
limited-entry decision table represents all possible outcomes implied in the
given situation. Only one rule should apply. In a limited-entry decision table
with two conditions, there are a maximum of 2 times 2, or 4 rules; with three
conditions, 2 times 2 times 2, or 8 rules; 4 conditions, 16 rules; nconditions, 2 n
rules. This does not mean that each decision table with five conditions must
have 32 rules, although it might, if each possible co-occurrence of input
conditions elicited a different set of actions (responses). In most cases, some
conditions are more important than others, so if a certain condition occurs, the
others can be ignored. The technique for counting rules when testing the
decision table for completeness must therefore take Do Not Care conditions
into account. Specifically, in thinking about what the Do Not Care dash
indicates, it can be concluded that a rule with one dash represents the rule with a
Y as well as the rule with an N in that position. Thus, a single dash in a rule
counts as two. A rule with two dashes represents 22 rules (the rule with (Y, Y),
(Y,N), (N,Y) and (N,N) substituted for the two dashes). The number of rules
that a rule with Do Not Care dashes has is equal to 2n, when n is the number of
dashes. This sum is equal to 2x , where x is the number of conditions, if the table
is complete, provided the rules are unambiguous (as defined in the next
section).

Examples of two decision tables are shown in Figures 5-18 and 5-19. Figure
5-18 is missing two rules. The two rules marked with asterisks in Figure 5-19
represent those that are missing from Figure 5-18. They could have been
accidentally forgotten, logically impossible, or impossible according to the
specifications. In any case, they probably deserve at least an action: "Error
should never have occurred." Some designers define an ELSE RULE to pick
up missed rules; however, the practice weakens this analysis and should be
avoided.

DECISION TABLES 79

llncomPlete 2 +2 +1 +1 =
Decision Table 21+21+2°+2°1

IFX =Y Y Y N N
IFQ = P Y N N N
IFA = B - - Y N

EXECUTET1 X
EXECUTET2 X
EXECUTET3 X
EXECUTET4 X

Figure 5-18. Incomplete Decision Table

2 2 + + + + + = I Completed XQA 21+21+2°+2°+2°+2°= Decision Table . .
IFX =Y Y Y N N N N
IFQ = P Y N Y Y N N
IFA = B - - Y N Y N

EXECUTET1 X
EXECUTET2 X
EXECUTET3 X
EXECUTET4 X

N ote: ERROR X X
Missing from Figure 5·18

Figure 5-19. Completed Version of Figure 5-18

The property of completeness and the straightforward means of evaluating it
are important as an analysis, design, and programming aid. It permits (or
forces) consideration of whether all possible eventualities have been planned
for, given the set of conditions to be tested. In a regular, linearly written
program, it is not evident what co-occurrences of conditions are considered.
Perhaps no one has thought of all possible co-occurrences.

Unambiguousness. Rules must be unambiguous when being counted;
they are considered so if they are mutually exclusive and exhaustive. This
means that no two rules apply at the same time. Functionally, this requires that
rules be distinguishable from each other. This means that any two rules must
differ with respect to YN on at least one condition: (Y, -), (N, -), (Y, Y),
(N,N), (-,Y), or(-,N) do not. The only two that differ are (Y,N) and (N,Y).
Although checking decision tables for ambiguity takes time-to examine each
pair of rules (for n rules, n*(n-1)/2 pairs)-the assurance that only one rule
applies makes the effort worthwhile.

Checking for completeness and mutual exclusivity is a valuable evaluation
tool. This well-defined checking process can easily be relegated to a computer.

80 PROGRAMMING MANAGEMENT

Limited Paths. The analysis to evaluate nonambiguity and completeness
demonstrates the limited number of paths within a decision table. Thus, given
the conditions being tested, their logical impact has been completely evaluated.
There is no other way in which they can co-occur, and all of the ways identified
are explicitly listed side by side. It is then possible to compare actions taken
under different rules or to identify under which rules a given action occurs. It is
often possible to assign names to rules; for example, "start up," "wrap up,"
"normal loop, " and "new type. " This naming aids in evaluating the proposed
design, and knowing all paths is relevant in terms of debugging.

Debugging and Testing. As Chapter 10 will indicate, important aspects of
testing include evaluating the coverage of testing and detennining sequences of
flow groups. Rules conveniently represent flow groups so that coverage and
flow group sequence can be examined using the rule as a unit of measure. For
example, in testing, have all the rules been exercised? Have all possible
sequences occurred?

The point in the decision table implementation where the rule has been
identified, and before any actions for that rule have been taken, is a practical
place to log which rule has been identified and the sequential (pairwise) rule
transitions. It is quite simple to include this feature in machine translation.

MODIFICATION OF EXISTING TABLES

Modifications of decision tables are important in system development; one
often starts with a simplified version of a table and revises it. Modifications are
also important in the maintenance of existing programs, particularly since
maintenance costs can be more than 50 percent in the software life cycle.

There are four basic ways in which a decision table can be changed:
• Change the number of rules.
• Change the number of conditions.
• Change the number of actions.
• Reorder the actions.

Change the Number of Rules. The number of rules in a decision table can
be changed without changing the number of conditions, while maintaining a
complete, unambiguous set of rules, only by introducing or eliminating a Do
Not Care. Doing this would decrease or increase the number of rules; for
example, Figure 5-20 would become like Figure 5-21, or Figure 5-21 would
become like Figure 5-20 if a rule were added or deleted, respectively. This type
of change occurs when there is no need to distinguish between two rules
because the actions are the same or when a slight clarification of a particular
rule definition is necessary. Usually, in the clarification or simplification
process, when the number of rules changes, so does the number of conditions.

Change the Number of Conditions. The number of conditions changes
when it is determined (during analysis) that a question has become superfluous
or that an additional question must be asked to prescribe a solution correctly.

DECISION TABLES 81

I TableXA

IFX = Y Y N N
IFA = B - Y N

CALLSUBXY X
CALLSUBAB X
CALL SUB OTHER X

Figure 5·20. Decision Table XA

I Added Rule XA

IFX = Y Y Y N N
IFA = B Y N Y N

CALLSUBXY1 X
CALL SUB XY2 X
CALLSUBAB X
CALL SUB OTHER X

Figure 5·21. Decision Table XA with Rule Added

The deletion of a condition occurs when all of the condition entries for the
specified condition have become Do Not Cares because of two rules collapsing
into one. For example, when the condition A = B becomes superfluous, the
decision table in Figure 5-20 becomes like that shown in Figure 5-22.

I Deleted Condition XA

IFX = Y Y N
IFA = B - -

CALLSUBXY X
CALL SUB OTHER X

Figure 5·22. Decision Table XA: Superfluous Condition

Sometimes, however, a condition is missing from the original decision
table. Unless the condition is being added specifically to clarify (divide) a
specific rule, it can be useful to double the number of rules (splitting each from
the original table into two rules). The set of actions from the original rule can be
duplicated and, after evaluating the suitability of the rules and revising them as
necessary, the pair of rules that have identical actions can be collapsed. For

82 PROGRAMMING MANAGEMENT

example, after the addition of IF C = D and the prescribed expansion, the
decision table in Figure 5-20 becomes like that shown in Figure 5-23. Figure 5-
24 represents the revised table after manual intervention because of a logical
process external to the decision table. After collapsing the rules with identical
actions, Figure 5-24 becomes like Figure 5-25.

I Added
Old Rule Numbers { Condition XA 1 1 2 2 3 3

IFX = Y Y Y N N N N
IFA = B - - Y Y N N
IFC = D Y N Y N Y N

CALLSUBXY X X
CALLSUBAB X X
CALL SUB OTHER X X

Figure 5·23. Decision Table XA: Added Condition

New Rule Numbers { 1 2 3 4 5 6

I RevisedXA Old Rule Numbers 1 1 2 2 3 3

IFX = Y Y Y N N N N
IFA = B - - Y Y N N
IFC = D Y N Y N Y N

CALLSUBXY X
CALLSUBAB X
CALL SUB OTHER X X X X

Figure 5·24. Decision Table XA: Revised

Old Rule Numbers {1 2 3 4 5

I Collapsed XA 6

IFX = Y Y Y N N N
IFA = B - - Y Y N
IFC = D Y N Y N -

CALLSUBXY X
CALLSUBAB X
CALL SUB OTHER X X X

Figure 5·25. Decision Table XA: Collapsed

Change the Number of Actions. Adding an action is simple. The new
action is entered in the list of action stubs, and appropriate entries are made in
the action entries.

DECISION TABLES 83

Reorder Actions in a Table. Obviously, actions can be reordered to mod­
ify the meaning of a table. They can also be reordered such that the meaning of
the table is unchanged or that, at most, only the meanings of a few rules are
changed. Once a rule is identified as the appropriate rule in that instance, the
action entries for that rule are scanned, and, if indicated, a particular action stub
is executed. Thus, within a rule, any action can be moved toward the top or
bottom of the table, any distance from its original position, provided it is not
moved beyond another action whose execution depends on its original position
in the rule.

The range through which an action can be moved without changing the
table's meaning is limited by the smallest move with respect to each rule in
which it participates. In Figure 5-26, for example, with respect to Rule 1, the
action A = A -1 could be moved as far forward (toward the top of the table) as
after C = C -lor as far backward as just before D = D/2 without changing the
meaning of the first rule. Similarly, with respect to Rule 3, A = A-I could be
moved forward as far as after D = D + 1, but it could not be moved backward
from its present position. With respect to Rules 2 and 4, it could be moved
anywhere in the lists of actions.

When the ranges are combined by looking for those most restricted,
A = A -1 can be moved forward, behind C = C - 1, but it cannot be moved
backward without changing the original definition of the table. The point of this
discussion is that these limitations represent a partial ordering of the actions, in
which actions may be moved without modifying the meaning of the table. It
should be understood, however, that it is often possible (with malice) to modify
(reorder) one rule without modifying another by using this property. For
instance, PRINT A could be moved before the action A = A-I, changing the
meaning of Rule 3 without changing the meaning of Rules 1, 2, and 4.

Only rarely is it necessary to duplicate an action to allow optimum ordering,
as determined by the logic of the situation. This is usually unnecessary,
however, because most actions are independent of each other and can thus be
reordered without affecting the computation.

I Reorder Table

IFA = B Y Y N N
IFC = 0 y N Y N

o = 0+1 X
C = C-1 X
A = 211-0 X X
A = A-1 X X
PRINT A X X
B = B + 1 X
o = 0/2 X

Figure 5-26. Reordering a Table

84 PROGRAMMING MANAGEMENT

DECISION TABLES AS A SYSTEMS ANALYSIS TOOL

In exploring how to design using decision tables and how to do iterations on
the design, the problem of designing a merge program can be considered.

The conditions would be identified as:
1. A KEY <BKEY
2. A KEY = BKEY
3. A KEY >BKEY

The actions to be performed would be identified as:
1. WRITE an output record from A File
2. READ a record from A File
3. WRITE an output record from B File Record
4. READ a record from B File

A preliminary decision table to merge the two fIles is shown in Figure 5-27.
The decision table assumes that a record has been read from both fIles before the
table is entered. The table, as defined, is an infinite process, and the specifica­
tions include an ambiguity. "Merge Files A and B" does not specify which
record is to be placed in the output fIle first if equal keys are found.

To take care of the end-of-fIle condition, two new conditions, End of File A
and End of File B, must be introduced; a new action, End of Job, is also
required to show successful completion (see Figure 5-28). The precondition to
entering the table is reduced to an attempted read of both fIles. Please observe
that the original decision table (in Figure 5-27) is the same as Rules 4,5, and 6
in Figure 5-28, where both End-of-File tests fail. It is frequently easier to
develop a decision table to process the normal case and then expand it to take
care of end cases, as has been done here. It can be seen, for instance, that even
with one or both fIles empty, the revised table works. Notice also the action
similarities between Rule 2 and Rule 6: Rule 2, End of File on File A Rule is
similar to Rule 6, A KEY> B KEY. Likewise, Rule 3 parallels Rule 4. Neither
pair can be collapsed, as their condition entries differ by more than one YN
pair.

I Merge Table I

II) II) II)

V II II

Rule Numbers { ~
« «
2 3

AKEY < SKEY Y N N
AKEY = SKEY - N N

WRITE A X ?
READ A X ?
WRITES ? X
READS ? X
REENTER Fig 5-27 X ? X

Figure 5-27. Preliminary Decision Table

DECISION TABLES 85

I Merge Table II Rule Numbers 1 2 3 4 5 6

EOFA Y Y N N N N
EOFB Y N Y N N N
A <B - - - Y N N
A = B - - -- Y N

WRITE A X X ?
READ A X X ?
WRITEB X ? X
READB X ? X
LOOP X X X ? X
EOJ X ?

Merge Files A and B

Note: Before entering table, read Files A and B once.

Figure 5·28. Merging Files A and B: Table II

How to handle the A KEY = B KEY Case (Rule 5) must still be determined.
One rejects writing and reading both files, since there might be multiple equal
keys on one of the other files. Temporarily, records with equal keys from File A
can be placed before records with equal keys from File B. This results in the
decision table shown in Figure 5-29. Note the similarity in the actions for Rules
3, 4, and 5. It is possible to process File A and retain the status quo of File B in
all three rules.

<IDIDIDID
(3ooVil/\
www«<

I Merge Table III Rule Numbers { 1 2 3 4 5 6

EOFA Y Y N N
EOFB Y N Y N
A <B - -- Y

Merge Files A and B.
Put equal As before Bs.

A = B

WRITE A
READA
WRITEB
READB
LOOP
EOJ

Note: Attempt read Files A and B • -nee before entering table.

- -

X
X
X

X

Figure 5·29. Merging Files A and B: Table III

- -

X X
X X

X X

N N
N N
N N
Y N

X
X

X
X

X X

86 PROGRAMMING MANAGEMENT

Single versus Multiple Tables

Size and homogeneity of purpose are two factors that influence the use of
multiple decision tables instead of one. Detennining whether a decision table is
too big depends more on the number of rules than on the number of conditions.
At about the time the table becomes difficult to fit on one page (generally, more
than 60 rules), groups of rules are likely to be fonning. This clumping is often
obvious logically or visually if the table is in canonical form. Other indicators
of clumping would be that certain conditions are used in only a subset of rules.
When a table is entered at a lower level of the hierarchy, it inherits the
conditions of the rules that cause it to be executed. For example, a 60-rule table
was used to implement a complicated three-way merge with date-matching of
multiple records. Although it might have been possible to split the table, it was
more advantageous to have the entire control structure in one place for perusal
and sight verification. This is achieved by comparing logically similar rules (do
they or should they have the same or similar actions?) and by viewing the
actions one by one, comparing the rules that execute each action. One part of
the process focuses on the columns of the table, the other on the rows. This type
of analysis is difficult, if not impossible, in a li~early described design.

Transfer of Control in Multiple Decision Tables

A decision table as a whole can be executed in three basic ways:
• Sequentially
• As a subroutine (Execute, Perform, Call Return)
• By transfer of control (GO TO)

If a decision table is viewed as a rather complex CASE STATEMENT, it
functions nicely as a structured construct. One can usually either flow through it
sequentially (as with any other structured construct) or execute it with the
assumption that the flow of control would return from it as it would from a
subroutine.

Transfer of control without expecting a return is an alternative technique that
is less compatible with a structured viewpoint. It is compatible if the GO TO
statement specifies reentry into the same table, since transfer to itself is
structurally equivalent to a CASE STATEMENT within a DO WHILE. This is
the natural way to specify looping in a decision table; however, at least one rule
must not reenter the table to provide a terminating condition for the loop, or an
infinite loop will occur.

Any action containing a GO TO (reenter) should be at or near the bottom of
the list of actions; it must be the last action in any rule in which it is specified. If
this is not so, the subsequent actions specified within the rule will not be
executed, since the plan is for the flow of control not to retum. Even unre­
strained use of GO TO in a decision table context should imply only jumping to
the start of the decision tables. Any other destination would harm the logic and
destroy the clarity of meaning intended through the use of decision tables in the
first place. Unrestrained GO TO use, transferring control between a group of
tables, can be replaced by a higher-level table that determines where to go and

DECISION TABLES 87

executes the appropriate simplified tables from the group using Call Return
logic. The result is a more visible, viable control structure.

MANUAL AND AUTOMATIC TRANSLATION

If it is desirable to go further than using decision tables as design and
documentation tools, it is necessary to implement the resulting decision table­
to stop short of using an automatic implementation of the decision table is to
lose some of its power.

A decision table can be translated manually or with a translator program or
preprocessor. Translating a decision table requires determining which rule
applies by evaluating input conditions. Then, with respect to the action entries
of the identified rule, it requires selecting and executing the specified actions.
The first task, determining the rule, might be accomplished by using a set of
nested IF THEN ELSEs, which can be read vertically from a canonical decision
table. The actions can be executed by using the action entries as a selection
matrix and inspecting the column associated with the active rule and each action
in a series ofIF THEN statements.

Although it is possible to translate a table manually, if necessary, there is no
certainty that it has been done correctly. Verifying this, however, is much
easier than verifying a linearly coded program.

One is free to revise and experiment with a decision table if a translator or
preprocessor program is available to translate it flawlessly. This is particularly
helpful if the translator automatically does completeness and uniqueness check­
ing and places the decision table in canonical form. (For additional information
on translation, see Bibliography.)

CONCLUSION

There is little distinction between the design and implementation of decision
tables. In addition, they can be used in both design and implementation
activities of program development and modification.

Decision tables are valuable in design activities because they shatply sepa­
rate control structure from required processing. Exhibiting the control structure
in tabular form is a decision table documentation function; in fact, decision
tables are excellent vehicles for representing systems and programs. Unique­
ness and completeness properties and tests help in evaluating design quality;
probes for evaluating the adequacy of testing are also facilitated. As such,
decision tables are useful throughout the program life cycle.

Bibliography

Glass, Robert L. Software Reliability Guidebook. Englewood Cliffs NJ: Prentice-Hall Inc, 1979.

Hughes, Marion L., Shank, Richard M., and Stein, Elinor Svendson. Decision Tables. Wayne PA: MDI Publications, 1968.

London, Keith R. Decision Tables. Princeton NJ: AUERBACH Publishers, 1972.

McDaniel, Hennan. Applications a/Decision Tables; a Reader. Princeton NJ: Brandon/Systems Press, 1970.

88 PROGRAMMING MANAGEMENT

Metzner, John R. Decision Table Languages and Systems. New Yorl<: Academic Press, 1977.

Montalbano, Michael. Decision Tables. Chicago 11.: Science Research Associates, 1974.

Pollack, Solomon 1.., Hicks, Hany T., Jr., and Harrison, William J. Decision Tables, Theory and Practice. New York:
Wiley-IntelliCience, 1971.

Sethi, I.K. and Chattetjee, B. "Conversion of Decision Tables to Efficient Sequential Testing Procedures. t. Communications o/the
ACM, Vol. 23, No.5 (May 1980) 279-293.

<0 Program Portability by Paul Oliver

INTRODUCTION

A report by the General Accounting Office [1], published in September
1977, states that the annual federal government cost of modifying computer
programs to enable their correct execution on a computer different from the
one for which they were originally devised is estimated at more than $450
million. Comparable industry-wide figures are not available, but it is reason­
able to assume that the overall cost of software conversion is significant.
Furthermore, this cost is nonproductive; conversion per se results in no direct
step toward achieving corporate goals.

Research and development efforts are underway at several universities and
research laboratories to determine ways of producing portable software, that
is, software that is machine- and configuration-independent over a set of
computer installations (see [2, 3]). At the same time, industry is reacting to
the problem in a variety of ways, including softening architectural differences
(e.g., there are about a half-dozen IBM 370 "derivatives") and improving
emulation capabilities. Until such efforts bear practical fruit, DP organiza­
tions are faced with the prospect of expensive, disruptive conversions. The
expense and disruption of a conversion, however, can be reduced, although
seldom eliminated, by designing portable programs.

The motivation for portable programs, however, goes beyond these con­
siderations. Parnas makes a convincing case for the importance of regarding
programs as members of a family of programs, rather than as standalone
products [2]. He regards a set of programs as a program family when they
share so many characteristics that it pays to study these characteristics before
investigating the special properties of individual programs. An example of
such a family is the set of versions and releases of a manufacturer's operating
system.

Pamas suggests, in effect, that programs be designed for change. The
failure to do so can lead to several problems:

• Some changes will be made poorly.
• Some changes will not be made at all.
• Maintenance and equipment costs will be higher.

90 PROGRAMMING MANAGEMENT

• Readiness will be impaired because of long completion time.
• At some point, wholesale conversions will be required.

Complete portability is probably not achievable because of irreconcilable
differences in machine architectures; however, portable programs can be
produced with the aid of appropriate design techniques. Whitten and de Maine
give the following definitions for machine-independent, configuration­
independent, and portable programs [3]:

A source program is machine independent with respect to a set of
computers if the program will compile, execute, and produce the same
results on each computer. A machine independent program is configu­
ration independent if required computer resources can be dynamically
allocated during program execution, and the amount of memory
available to the program does not by itself determine the amount of
data that can be processed. A source program which is both machine
and configuration independent over a set of computer installations is
said to be portable with respect to these installations.

APPROACHES TO PORTABILITY

Portability can be achieved in several ways. The design approach, particu­
larly modular programming (the organizing of a program into a number of units
whose behavior is governed by a set of rules) can significantly affect portabil­
ity. Another approach is parameterization, in which the machine-dependent or
software-system-dependent features of a program are reduced to parameters
that can be reorganized by a preprocessor and appropriately modified to render
the program executable on a specific hardware/software configuration. Code
constraints, with which limitations are imposed on the use oflanguage features
known to create portability problems, represent the most painful (to a program­
mer) way of achieving portability. Some constraints, however, are essential.

The specific approach chosen should depend in part on the goal to be
achieved through portability:

• If the goal is to reduce the cost of an envisioned conversion, modularity
helps. In a modular program, the nonportable features of the program
(e.g., code that uses vendor-unique extensions to a standard language
because of a real or imagined need to use those extensions) can be
isolated into a few, identifiable modules.

• If the goal is to facilitate future design changes to the program, modular­
ity again helps (if we can predict which design decisions are likely to
change over time and thus reflect these decisions in discrete, identifiable
modules).

• If the goal is to execute a given program on a variety of hardware/
software systems, each different from the other, parameterization is a
good approach to portability (see [4]). This approach also helps when
executing programs at different sites that mayor may not have different
computers.

PROGRAM PORTABILITY 91

• Code constraints help in all of these situations.
These approaches are often applied in combination.

Modular Programming

There are several approaches to modular programming (see references 5, 6,
7, 8); of those that address portability, the two most common are based on
processing flow within programs (the main-flow method) and the idea oflevels
of abstraction or decompositions (the hierarchical approach). Although the
choice of approach depends on the project at hand, most installations adopt a
design philosophy that is a mixture of the two. Although the two may overlap,
the major difference between them is that control is retained by the top-level
program module when the main-flow method is used, while it is delegated to
subordinate modules when hierarchical design is used.

The Hierarchical Approach. The hierarchical approach is based on the
idea of levels (e. g., the levels of control used in typical management reports). A
hierarchical program to print totals at department and location levels, for
instance, would be structured so that each level of the report is handled by a
distinct level of the program structure.

More generally, the levels of a hierarchical program are levels of abstraction
of the problem. The designer considers the problem at the highest level of
abstraction and solves it in terms of functions appropriate to that level. The
process is similar to mapping a geographic area by drawing maps of succes­
sively larger scales, each of the same physical size. The maps then form a
hierarchy, with each level more detailed than the last.

Design cannot, however, proceed quite that neatly from top to bottom. It is
always necessary to look down toward lower levels to anticipate problems and
to ensure that low-level functions are already available and that their use is not
precluded by poor design decisions at a higher level.

The Main-Flow Approach. The main-flow design philosophy results in the
main control of the program-and possibly the file processing-being under­
taken in the top-level module, the highest segment of the program structure.
The size of that module can vary greatly, and larger modules may suffer from
inadequate testing. These consequences are especially unfortunate because it is
the size and complexity of the top-level module that tends to be related to the
size and complexity of the program.

The differences in these two approaches can best be discerned through a
specific example. Let us consider the design of a program to allocate memory
space to other programs from a list of free spaces. The list could be in the form
of a table, with each row representing a free block of space by its starting
address and length. A number of additional assumptions would have to be
stated in order to produce the program (e.g., no items will be added to or
removed from the space list during execution of the program), but these
assumptions are not pertinent at this time.

92 PROGRAMMING MANAGEMENT

The main-flow approach (which also applies the principle of infonnation
hiding) might result in the following program structure:

• Master Control Module-controls sequencing among other modules and
contains interfaces between modules. This module would also "hide"
the action to be taken in case of error. Should this action change in the
future, only this module would be affected.

• Free-Space List Module-consists of the functions that access infonna­
tion about spaces on the list and the program that adds items to the free­
space list. This would be the only one that' 'turns" the representation of
the variables that identify items on the list.

• Space Selection Module-consists of functions that select suitable space
from the free-space list. The criterion used in selecting the space is
known only to this module.

• Allocation Module-allocates all or part of the selected space to the
requesting program. Infonnation pertaining to the allocation of storage
areas to programs (e.g., a table listing all storage areas) would be hidden
in this module.

The resulting program would look something like this:

MASTER CONTROL
, 'Initiation housekeeping' ,
"Call FREE-SPACE to find candidate"
, 'Call SELECT to select suitable space"
"Call ALLOCATE to allocate space to re-

questing program"
"On ERROR call ERROR ACTION"

FREE-SPACE
SELECT
ALLOCATE

The design approach is somewhat bottom-up, in that the program compo­
nents are first identified (in this case, by using the principle of infonnation
hiding) and then combined into a program.

In a top-down or hierarchical approach we might start with a single module:

MEMORY-ALLOCATOR
"Get space for requesting program"
"If no space is available take suitable error

action"

At this point we would assume that there is a list of some kind identifying the
space available, if any. We can refine this program by making certain decisions
about the representation of the list, the order in which elements are placed in the
list, and the search technique to be used. This would refine the program into:

PROGRAM PORTABILITY

MASTER CONTROL
"Initiation housekeeping"
"Call FREE-SPACE to find candidate"
"Select and allocate free space to program"
"On ERROR call ERROR ACTION"

FREE-SPACE

93

We can then decide that we will not allocate just any space but rather look for
a best fit and, furthermore, that we will allocate only the space that is needed by
the program and return the rest to the space pool:

MASTER CONTROL
"Initiation housekeeping"
"Call FREE-SPACE to find candidate"
"Call SELECT ... "
"Call ALLOCATE ... "
"On ERROR call ERROR ACTION"

FREE-SPACE
SELECT
ALLOCATE

The resulting design is the same in both approaches; it is the design process
that is different and that, were we actually to reduce the aforementioned to
code, would possibly result in somewhat different code. In the main-line
approach we reached as many design decisions as possible as early as possible,
basing the decisions on the criterion of localizing those functions that might .
change in future versions of the program (e.g., the structure of the free-space
list). In the hierarchical approach, we delayed design decisions; at each step in
the design process we assumed as little as possible and then proceeded to refine
the assumptions step by step. The motivation for refinement was, in each case,
functional, with little concern given to future design changes. Even so, modu­
larizing according to functions makes the program more maintainable and
easier to modify (if such modification is required to transport the program to a
system different from that for which it was designed). The fact that the modules
turned out to be the same in both cases is a result of the size and simplicity of the
example. This is, unfortunately, a persistent problem in attempting to illustrate
software engineering concepts; the concepts are effective only with "large"
programs, yet it is not feasible to use large programs for illustrative purposes.

Certain benefits can be derived from either approach. The main-flow
method is easily learned by programmers familiar with conventional flowchart­
ing techniques. The hierarchical method is more difficult to teach and apply
properly.

The main-flow method tends to relate the size of the top module to the size of
the program. Top-level module size in hierarchical design can remain the same
regardless of program size. This makes the latter more suited to large systems,
and it is frequently employed for large, real-time programs.

94 PROGRAMMING MANAGEMENT

The main-flow technique often mirrors the processing flow within the
program. This tendency, coupled with a change in the direction of program
flow, can result in widespread alterations of program structure. Hierarchical
design, however, tends to reflect the data structure, and any changes to this
structure may necessitate program structure changes.

Like program design, construction of each module can follow a particular
design philosophy. The technique used to build the modules can affect core
requirements, execution time, and the amount of coding required.

Implementing Modules. Modules are generally implemented as either
internal (sectional) subroutines or as independently compiled subroutines.
Sectional subroutines are those that can be entered only by instructions con­
tained in the same compilation unit. In COBOL, a section entered by a
PERFORM statement is a sectional subroutine.

An independently compiled subroutine is one that can be compiled sepa­
rately, placed on a library, and linked together with others by a linkage editor or
its equivalent. The instruction that calls the module is contained in another
object module. An independently compiled subroutine in COBOL would be
executed by a CALL (module name) USING ... statement. Although an
independently compiled subroutine is more flexible than its counterpart, it can
measurably increase program core requirements and execution time.

However modules are constructed, certain characteristics are desirable. It is
important that each module be considered an entity, particularly if developed
by different programmers. Independent specifications and documentation
should be produced to allow module implementation in isolation from the rest
of the program.

Each module should be capable of calling or being called by another. It is
also desirable for the modules to be closed. A called module is closed if it can be
CALLed from a calling module and the programmer can be certain that the
program will return to the statement after the CALL in the calling module.

Several languages allow several entry points in one module. It is safer,
however, to produce a structure with extra modules, each with single entry and
exit points. In addition, single entry and exit points save core and facilitate
maintenance.

Modules should also have a standard interface: they should be activated in
the same way, pass parameters in the same way, store the contents of registers
on entry and reinstate the contents on exit, and return control to the calling
module.

Once again, these recommendations are not intended to reduce the changes
required in transporting a program to a different machine; rather, they will
make any required changes less painful.

PORTABLE FORTRAN PROCEDURES

PFORTRAN. The most systematic and comprehensive attempt at produc­
ing portable FORTRAN programs has led to the development of

PROGRAM PORTABILITY 95

PFORTRAN [3]. PFORTRAN is composed of four components:
• A set of FORTRAN statements that is a common dialect of seven

FORTRAN dialects and a superset of American Standard (1966)
FORTRAN [9]. The seven dialects are:

CDC 6000 FORTRAN IV
HIS 6000 FORTRAN IV
IBM 360/370 FORTRAN G
RCA SPECTRA 70 FORTRAN
XDS Sigma 517 FORTRAN
Sperry Univac 1108 FORTRAN V
Digital Equipment PDP-II FORTRAN IV-PLUS

The statements included in the set are:

ASSIGN
Assignment
statements
BLOCK
DATA
CALL
COMMON
CONTINUE
DATA

DIMENSION
DO
END
ENTRY
EQUIVALENCE
EXTERNAL
FUNCTION

GO TO
IF
RETURN
Statement function
STOP
SUBROUTINE
Type statement

• The standard FORTRAN data type set extended to include kernels, bit
strings, and virtual arrays. Kernels are variable-length data units (e.g.,
contiguous storage). Virtual arrays provide the means of maintaining
configuration independence, since their size can exceed available mem­
ory.

• A simple, machine-independent 1/0 function or interface.
• A variable arithmetic package that allows the programmer to specify the

numerical precision required in calculation (which allows this precision
to be modified as required by the differences in word size among
machines of different architectures). Unfortunately, PFORTRAN itself
is not portable, since a substantial portion of it consists of assembler
language support subroutines. These could, of course, be recoded.

Programming Practices. A system like PFORTRAN is not generally
acceptable in a production environment. An alternative is to apply code re­
straints [10] that enhance a FORTRAN program's portability, such as:

• Looping (DO statements)-the following should be avoided:
-One terminal statement for a sequence of vested loops
-Terminating a DO-loop with an IF statement
-Altering the looping parameters within the loop
-Assuming a loop is always executed at least once
- Transferring into a loop
-Assuming the value of an index outside the loop

96 PROGRAMMING MANAGEMENT

• Transfer of Control-the following should be avoided:
-Recurring subroutines
-Returning from subroutines by way of an assigned GO TO
-Making assumptions about incorrectly computed GO TO variables
-Variable-length arguments in subroutine calls

• Miscellaneous-the following should be avoided:
-Testing for equality with floating-point numbers
-Double exponentiation
-Assumptions regarding division by zero
-Shifting by multiplication

PORTABLE COBOL PROGRAMS

The Benchmark Preparation System (BPS). The Federal COBOL Com­
piler Testing Service (FCCTS), a system that produces portable COBOL
programs [4], was developed in 1974. Intended for use in a benchmarking
environment, the system is, in fact, generally applicable.

The Benchmark Preparation System performs conversion of application
COBOL programs in the major areas affecting portability: nonstandard
COBOL functions, implementor names, and data representation. A COBOL
source-program translator converts native-machine COBOL programs to
machine-independent COBOL (i.e., standard adhering COBOL). Those func­
tions in the native-machine COBOL that are extensions to the ANSI language
specifications (and therefore cannot be automatically converted) are flagged by
the translator. Implementor names in the programs are replaced with unique
names in the machine-independent source programs. These names are recog­
nized and replaced by a preprocessor when the programs are implemented on
the target machine.

Input data files associated with the programs are translated by a series of
COBOL programs. These data translation programs use data conversion sub­
routines in the respective COBOL compilers (native or target machine) in
translating the machine-dependent data to machine-independent format and
vice versa. Machine-dependent data characteristics include arithmetic sign,
word boundary alignment, and certain internal representations. The COBOL
data translation programs are generated programmatically from the program
file descriptions. File descriptions in the data translation programs are those for
the native-machine file, machine-independent file, and ANSI/target file. The
native-machine file description is used to read the native-machine data files and
to build machine-independent data files. All data in these files will be stored in
display or character mode, with the signs of numeric data stored separately.
Essentially, machine-dependent data is translated to a string of characters that
may then be subject to straight character-code translations for the appropriate
machine.

Upon transfer of the data files to the target machine, the reverse operation
occurs. The machine-independent data is read according to the file descriptions
and written using the ANSI/target file descriptions. The data translation pro-

PROGRAM PORTABILITY 97

grams also provide the capability of validating the data files (e.g., numerically
described fields with nonnumeric data are identified). Validation can be exe­
cuted separately or performed in conjunction with creating the independent-or
target-machine data files. One important feature of the BPS is that, unlike
PFORTRAN, it is itself portable, since it is written in a subset of COBOL.

Programming Practices. As with FORTRAN, certain features of COBOL
are known to be potential problems with regard to portability. The sources of
those problems are:

• General-the program
-Requires operator intervention in processing
-Requires operator console input(s)
-Has checkpoint/restart capabilities
-Contains an interface to data base systems
- Requires object -code patches not incorporated into the current source
-CALLS to an assembler or other non-COBOL language subprogram
-Uses overlays or segmentation

• IDENTIFICATION DIVISION entries
-Entries out of order with respect to the ANS COBOL standard

• ENVIRONMENT DIVISION entries
-FILE-CONTROL
-I-O-CONTROL

• DATA DIVISION entries
-FILE SECTION
-RECORDING MODE
-LOCK CONTAINS 0
-USAGE IS COMP-l short-precision floating-point data
-COMP-210ng-precision floating-point data
-COMP-3 internal decimal data (packed data)
-COMP-4 binary data

• WORKING-STORAGE section
- Logic of the program expects certain initial values when data has not

been initialized
-REDEFINES
-OCCURS DEPENDING ON
-Bit-level data fields (noncharacter aligned)
-Logical switches
-Logical masks
-Floating-point literals
-Floating-point fields
-Signed zero
-Unsigned numeric fields used in computations
-INDEX
-Subscripts
-Sort description SD-names

• Linkage section
- Linkage entries

• Report section

98 PROGRAMMING MANAGEMENT

-Report writer description RD-names
• Communication section

-Communication description CD-names
• PROCEDURE DIVISION entries

-Program logic sensitive to numeric precision
-Program logic dependent on the collating sequence
-Logic dependent on HIGH-VALUE or LOW -VALUE
-Logic dependent on rounding or truncation of numeric results
- Logical shifts or bit manipulation
-Miscellaneous verbs including:

ALTER
CLOSE
COMPUTE
EXAMINE
GO TO DEPENDING
Certain MOVE statements
OPEN
PERFORM (but not PERFORM. . . THRU . . .)
SEARCH
COPY
TRANSFORM
WRITE
SORT
LABEL

Some of these practices occasionally cause portability problems because of
machine differences (e. g. , operation interfaces, console messages, checkpoint­
restart). In most cases, however, these problems are caused by differences in
the way compilers implement the COBOL language. The verb COMPUTE, for
example, is defined by the COBOL standard in such a way that almost any
implementation is acceptable. The only solution in cases involving verbs that
are incompatible with portability is to avoid the verbs in question.

Programming standards that identify and prohibit the use of the practices and
verbs previously listed encourage the production of more portable programs,
but only if the standards are enforced. This enforcement must be automated to
be effective (e.g., with a preprocessor that identjfies standards violation and
prevents compilation of an offending program).

PORTABILITY IN DATA BASE MANAGEMENT SYSTEMS

The use of data base management systems (DBMS) generally aggravates the
portability problem. There has, however, been at least one successful attempt at
producing a machine-independent DBMS, appropriately called MIDMS (Ma­
chine Independent Data Management System).

MIDMS was developed by the Defense Intelligence Agency and the General
Electric Company in 1973. In the batch processing portion of MIDMS, 97
percent of the programming language statements are in COBOL.

PROGRAM PORTABILITY 99

MIDMS, which is composed of modules, submodules, and subroutines, has
a dynamic overlay structure that pennits the system to be executed using a
minimal amount of main storage. The modular structure gives the system a high
degree of flexibility, allows for growth, and facilitates modification. Special
features ofMIDMS include:

• The capability to process large variable-length records as well as the
nonnal fixed-length record

• The capability to call subroutines and to use tables in the maintenance,
retrieval, and output phases

• Special operators to perfonn geographic searches
• An extensive validation capability for use during the maintenance phase

In addition, using the standard MIDMS interface, the user can call COBOL,
FORTRAN, or assembler language programs during maintenance, retrieval, or
output processes.

MIDMS is characterized by variable-length records containing fixed, peri­
odic, and variable sets of data. The fixed infonnation can have only one unique
value for each record (e. g., name and social security number for an employee's
record in a personnel file). The system provides a second level of data elements
within a record by means of the periodic set structure. Each set represents a
category of infonnation that is either empty or has one or more elements, each
requiring one subset. In a personnel ftle where a record would apply to one
employee, there might be a periodic set for the dependents category and a
periodic set for the education category. The first set would contain a subset for
each dependent, and the second would contain a subset for each school the
employee has attended. Finally, unstructured information of unknown length
(e.g., remarks) can be placed in variable sets. Thus the MIDMS concept
affords space saving by compacting the data. This also leads to time saving with
sequential ftles, since large empty areas need not be read. (If the records were of
a fixed length, extensive reading would be required, since the records would
have to be large enough to accommodate a maximum amount of data.) Despite
its attractive features, MIDMS suffers limited use because it was not developed
by a major software producer. The system does, however, provide concrete
evidence that portability in a DBMS environment is possible.

CONCLUSION

Complete program portability is not practical at this stage in the DP indus­
try's evolution. Hardware architectures are still too diverse, and there is little
order in the system software arena. Until discipline and standards prevail, users
must achieve a measure of portability at the expense of other program charac­
teristics. Programmers should be encouraged to take the steps suggested in this
chapter when it is economically advisable and it is anticipated that execution
will be on different or diverse computer systems.

100 PROGRAMMING MANAGEMENT

References

1. GenetaI Accounting Office Report of the Congress, FGMSD-77-34, September 15, 1977.
2. Pamas, D.L. "On the Design and Development of Program Families." IEEE Transactions on Software Engineering, March

1976.
3. Whitten, D.E., and de Maine, P.A.D. "A Machine and Configuration Independent FORTRAN: Portable FORTRAN

(PFORTRAN)," Computer Science Department, Pennsylvania State University (1974), Univeraity Psrk, PA 16802.
4. BainI, G.N. and Johnson, L.A. "System for Efficient Program Portability." Proceedings o/the 1974 NCC, MIPS, 1976.
5. Jackson, M.A. Principles 0/ Program Design. New York: Academic Press, 1975.
6. Myers, G.J. Software Reliability. New York: Jobo Wiley and Sons, 1976.
7. Rohder, J. "Tackle Software with Modular Programnting." Computer Decisions, October 1973.
8. Younlon, E. Techniques of Program Structure and Design. Englewood Cliffs, Nl: Prentice-Hall, 1975.
9. "American Standanl FORTRAN," American Standanls Association, 1966.

10. Heiss, Joel E., et aI. "Programming for Transferability." International Computer Systems, Inc. (1972), 10801 National
Boulevard, Los Angeles, CA, 90064.

f! Writing Straightforward,
Maintainable
Programs by James F. Gross

INTRODUCTION

The realities of a programming manager's life include keeping up with
changes in hardware, system software, and user requirements while dealing
constantly with upper-level budget and schedule constraints on one side and
programmers' egos on the other. All of these factors must be considered in
changing the view of maintenance as a crisis and a curse into the view of it as
simply an expected part of the job. It must be remembered, too, that the strong
influence of past maintenance experience has shaped the manager's thinking
and actions, and strong positive measures are needed to counteract this gener­
ally negative opinion.

THE EFFORT AND COST OF MAINTENANCE

It would certainly make life easy-or at least easier-if a program or system
could be designed, constructed, thoroughly tested, and then put into operation
with never another look. Unfortunately, this ideal situation rarely happens,
even with small programs; it has been said that a program that does not change
is one that is probably not being used.

Why should this be the case? Before construction of the original program
began, all details were carefully planned, approved, and deemed adequate­
and the actual code faithfully implemented the plan. If it works, why should it
require maintenance? Three situations can force modification of a program:

• There may be changes in the system itself. Normal growth of a business
may require the installation of bigger and newer disks. CRTs may
replace teletypes, and the program must then be changed to take advan­
tage of the differences. Not only may the hardware change, but the
system software may change as well. When a new release offers attrac­
tive capabilities, some rewriting will be essential to make use of them.

• There may be internal changes in the organization or its business. The
shop becomes unionized and the payroll program must now deduct union
dues, or the mortgage loan department wants to offer customers a choice
of payment due dates. The customer service department may want an
online inquiry capability to trace orders. Each of these situations would
require some change to the DP support packages. It should be noted that

102 PROGRAMMING MANAGEMENT

since the need to change is internal, so is the decision to change. If a
modification is too costly, it may be abandoned-but, at the same time, it
may send customers elsewhere.

• There may be external changes that cannot be ignored. The Internal
Revenue Service reporting requirements change from time to time and
must be satisfied. The proposed 9-digit ZIP code plan will require many
program and file changes. Employee fringe benefit packages may
change with each new contract.

Thus, no matter what the source of the need for modification, maintenance
must be performed, and the costs are high. Since there are more computers, and
they run faster than their predecessors, there are more programs to be main­
tained. Even if there were only a fixed number of systems to maintain, the
expense would increase with time, as staff members-and their salaries­
mature. The result is that maintenance costs make up a substantial part of the
budget. Estimates indicate that 80 percent of the cost of a computer operation is
software, and as much as 75 percent of that figure may be for maintenance.

The figures for programmer time are similar. A programmer who is doing
maintenance on old applications is obviously not making much progress on new
applications. Therefore, making programs easier to maintain will increase
productivity while reducing cost. Since this fact seems to be understood and
accepted, it might be wise to look more closely at why the real situation is so
different from the ideal. How did DP departments get into this mess of hard-to­
maintain programs? Contributing factors can be classified as the general philos­
ophy of perfection, educational bias, tradition, laziness, and the company.

Philosophy of Perfection. This is a social viewpoint. Most consumer
products are designed and constructed with the assumption that no repair for
this perfect product will ever be needed. Appliances, for example, have panel
lights buried inside where replacement is difficult or impossible without disas­
sembling the whole unit. Many automobiles have notoriously complicated
arrangements that cause great effort and expense when repairs are required. In
some cars, even the most routine maintenance (e.g., changing spark plugs or
oil filters) cannot be accomplished without elaborate equipment, considerable
time, and expensive labor. In contrast, some cars are built to encourage easy
maintenance and to simplify smooth operation. Dashboards that swing down
to expose the switches and gauges for replacement or adjustment and owner
manuals with electrical circuit diagrams reflect a different philosophy and make
it quite easy for the mechanic (programmer) or buyer (user) to understand the
problem and make the necessary repair. It may well be time to change the long
tradition of making something without worrying about its future maintenance.

Educational Bias. Another factor to consider is the bias inherent in much
programmer training. With few exceptions, from the first exposure to computer
programming, the student is directed toward one-shot programs. The emphasis
is on building a program from scratch, getting it running, and then going on to
something else. Many systems used by beginners cater to this load-and-go
mode. The concepts oflibraries, copying, and linking are postponed until near

WRITING MAINTAINABLE PROGRAMS 103

the end of the school year, by which time the lesson of writing from scratch has
been well learned. Even at higher levels of study where the entire class works
on a system project, there is seldom preparation for going back three years later
to modify it. Performance to specification is the yardstick, and often the top
grades go to the students who come up with clever convoluted solutions.

Tradition. A difficulty in overcoming this educational bias is that program­
mers tend to do what they were taught, their instructors teach what they were
taught, and so on back to the first generation of computing. In the early days of
computing, programmers had reason to be concerned about the speed of a
program; a few thousand cycles equalled a full second. The limited memory of
perhaps only 4,000 words of core was even more confining. It demanded
squeezing a great deal into and out of each instruction, relying on tricks, bit
fiddling, redefining variables, and modifying actual instructions. These atti­
tudes die hard. Furthermore, it is easy to measure and compare length of code,
speed of execution, or memory required; it is far more difficult to measure ease
of maintenance. It is thus apparent what managers look for and programmers
work for-and why.

Laziness. It has been observed that people will avoid unpleasant jobs and
what they consider excessive or unnecessary amounts of work. For most
programmers, this means spending time on enjoyable coding rather than dull
documenting. They can get away with this much of the time since operating
instructions usually require written documentation, but little more is insisted
upon. In addition, when a program has been debugged, a new assignment is
frequently made immediately, with no time for documentation, which had been
left for last.

The Company. The company and one's coworkers also encourage these
bad habits. Consider, for example, the organization's pressures. The project
status reporting form traces the stages of development: Design, Coding,
Testing, and Complete. Here, it seems, debugged and finished are synony­
mous. To be truly finished, however, may require a week or more of organiz­
ing, writing, general cleaning up, and making the package more usable and
maintainable. In some shops, the documentation for a program product is
simply the most recent compilation listing. In these same shops, of course,
there is always another urgent project waiting, and a programmer is strongly
encouraged to get on with the new task. Time pressures and urgency preclude
doing as careful and complete ajob as should be done.

Fellow programmers exert pressure to continue the artful programming
alluded to earlier. One seldom hears such comments as, "Boy, that Charlie is a
quiet, steady worker. His code is longer and slower than anyone else's, and it's
easy to maintain." On the other hand, there will be much comment about
Marv's new calculation that determines whether February has 29 days (it works
for any year between 1700 and 2400). A whole office buzzes with admiration
when Jane finds a way to replace two subroutines with one 4th-degree polyno­
mial. It is small wonder that changing attitudes is so hard.

104 PROGRAMMING MANAGEMENT

The Programmer as a Creative Individual

The personality of a programmer must also be considered. Most program­
mers regard themselves as artists, as creative individuals with a need to
personalize their work. This is really not surprising. As previously noted, most
programmers have been encouraged to be inventive throughout their education.

A trainee-level programmer is doubtless given programs written by others to
study, perhaps to document, and perhaps to modify slightly. Being full of new
self-importance, he or she probably looks for inefficiencies, obvious construc­
tions, or straightforward data formats and tries to make them all a bit more
clever.

As his or her career progresses, the programmer may become a specialist in a
particular area of software. Like a magician, he or she is honor-bound not to
reveal any secrets. Some of the programming, of course, is nothing more than
sleight of hand to keep the uninitiated from knowing what is going on by
building labyrinths and using incantations known only to the wizard in order to
preserve the mystery .

Less imaginative, but just as real and harmful (and quite common), is the
programmer's attitude of putting something of himself or herself into a program
to make it uniquely that programmer's. The programmer sees himself or herself
as a painter instead of a draftsman, and the details of the code show his or her
personality. It is easy to look at a listing and identify the author from the habits,
preferences, and idiosyncracies that are the hallmarks of the artisan. The
original author is undoubtedly quite familiar and comfortable with a certain
style. Someone other than that person, unfortunately, will be assigned the
subsequent modifications, and those individual touches will make things less
obvious and more difficult.

This belief that programming is a creative act, not a methodical and produc­
tive job, is an attitude that makes a programmer ignore the obvious solution and
seek a new approach. Some of this , of course, is good. Progress depends upon a
willingness to leave the well-worn paths to explore new territory. It is sense­
less, however, to hack a tortuous path through underbrush if a road already
exists. Later travelers will find a well-marked, well-groomed highway far
easier to follow.

A BETTER PHILOSOPHY

The best way 'around the present state of affairs is to write programs initially
with modification and maintenance in mind. Programs will change, and such
change should be anticipated and accommodated. A simple parallel can be
drawn with a home remodeling project. Having a shutoff valve in a plumbing
line makes repairing, replacing, or rerouting the rest of the pipe easy; the best
time to install that valve is during initial construction.

When a house is being framed, a gap can be left in the wall studs, where the
doorway to a possible future addition would be, and a separate electrical circuit
can be run to that wall for eventual connection. The cost of including these

WRITING MAINTAINABLE PROGRAMS 105

features in the original plan is very small, compared to the cost of modification
after the house is finished. There is clearly some risk that the addition will never
be realized, in which case the extra circuit is wasted. The benefit derived from
having it available when it is needed, however, is well worth the risk.

Foresight

The decisions about what to build in and what to ignore require foresight,
one of the rarest and most elusive gifts among human beings. Although there
are no reliable crystal balls, historical lessons and the combined experience of
several people can provide a workable substitute. One of the most important
steps a programmer can take when considering future changes is to ask what
possibilities exist and what their probabilities are.

To illustrate this idea, one can suppose that a new payroll file is being laid
out. Foresight at the programmer's level. whether gained by bad experiences of
one's own or by hearing about those of others, may suggest that it is wise to
leave some extra space to allow for wages of more than $9.99, for example. But
how many spare fields should be included? Is it likely that the company will
establish a credit union or that it will allow employees to purchase stock through
payroll deductions? Answering questions such as these requires a knowledge of
long-range fiscal policy. Since the programmer does not have such informa­
tion, he or she must consult someone who does.

In addition to considering the various options, it is important to let others
know what has been done. Like a blueprint notation about the future doorway,
the possibilities for change must be included in the original documentation.
There is only a minor difference in the effort involved in specifying a field
adjacent to the STATE part of a customer's address as FILLER and specifying
it as ZIP-GROWTH. The difference means very little additional work at the
time, and the field might never be needed. Making the intention clear, how­
ever, will also make it clear to those who follow. It may also protect the field
from the programming whiz who sees this as an opportunity to eliminate a 4-
column filler from every record.

A Team Effort

The next part of the new philosophy may be harder for programmers to
accept since it may signal the end of the golden age when the programmer was
king. The new view is that a program is a job to be done and a task to be
accomplished, instead of a monumental work of art for the glorification of the
individual who does it. There are to be no more wizards, just steady, reliable
coders: team members. There is to be good sound code that is easy to under­
stand and maintain; there are to be portable programs. The workers are master
craftsmen, not artists. This view should not be construed as deprecating the
programmers' craft; their skills will still be admired and rewarded, but in
different ways.

Programmers may find this concept hard to accept because they lose much
immediate praise and glory. If they have come to depend upon the approval and

106 PROGRAMMING MANAGEMENT

admiration of their peers, it will take a long time to adjust to the loss. They will
find in time, however, that there is less stress in the job, for they no longer have
to worry about finding the cleverest way. If the job is a modification, for
example, it will be clearer where and how to make the changes, and the
programmers will simply do them. Their satisfaction will then come from doing
the job correctly and quickly, with a resulting overall improvement. As users
become more sympathetic to the need for planning ahead, they will offer more
suggestions regarding future situations.

A group that works more closely together provides additional rewards. The
programmer has questions, and the supervisor either has answers or can get
them. The programmer has suggestions about how to build for future changes;
the supervisor considers and discusses those suggestions. Since the programs­
the actual code-will be clearer, the manager will be able, when necessary, to
look at particulars without needing a great deal of time to study them. Keeping
closer track of the progress of a job allows the manager to make directions more
specific, relieving the programmer of the need to make some of the stress­
producing decisions.

Accurate Reports and Schedules. Keeping in closer touch will also help
the manager plan ahead. If things are going smoothly (and possibly faster than
expected), additional projects can be planned. If there is a snag or if some
questions are still awaiting answers from upper management, there is more
advance warning that the job will be late. Even long deadline slips can be
accommodated with enough advance warning. The worst problems arise when
everything is assumed to be proceeding nicely and, at the last minute, one
component knocks the schedule off course. A bank, for example, is planning to
institute a new service on June 1. The ads have been run, brochures printed and
distributed, dignitaries invited (months ahead) to the ribbon cutting, and then, a
few days before instituting the service, a programmer reveals that it is not quite
finished. Hurrying to meet the deadline creates even more problems, of course;
accurate progress reports would have warned of the slippage and saved the bank
embarrassment.

There are other long-range benefits to be gained from sensible program
design. Money may be saved by modifying instead of rewriting. Under the old
rules, so much time was spent figuring out how a program worked in the first
place and then figuring out how to change it, that modifications were often
abandoned in favor of building a new system. The reputation of the DP
department within the company may improve when things go haywire less
frequently, and awkward procedures and formats can be adjusted more easily.

BENEFITS OF STANDARDS

Working within standards promotes clarity and maintainability in programs.
The use of standards protects against individualism, which is crucial in any
system where the originator of a task will probably not be its modifier.

WRITING MAINTAINABLE PROGRAMS 107

Levels of Standards

What standards are there in programming? Generally, there are two levels
(which are not in conflict): those of the organization and those of the language.

Organizational Standards. Just as telephone companies have stated rules
about what red wire is used for, so most programming groups adhere to their
own internal standards. These must be in written form, and they must be
reviewed periodically. If they are not, the programmers might stray from them
and train new staff members in their own versions of the standards, very quickly
making the standards worthless. Although it may be assumed that computer
people are alert to the dangers of multiple standards (based on their experience
with hardware/software, communications protocols, and other notorious in­
compatibilities), this is not the case.

The kinds of standards the organization sets up usually cover such things as
program naming or numbering conventions, the use of copy libraries, whether
or not to use middle initials, and what color the punched cards should be. The
standards should go far beyond these superficial specifications, however, and
include some guiding principles to help the programmer make consistent
decisions. If two data entries seem inconsistent, which should take precedence?
Should both be rejected? Should all programs include some optional user
instruction displays? Which is generally more critical, space or time? Under­
standing organizational standards in these areas will eliminate some of the
recurring questions of design and help guide the programmer to a design that is
consistent with others.

Language Standards. The language also has standards, usually those of
the American National Standards Institute (ANSI). Nearly all of the vendor­
supplied compilers recognize and work with the standard syntax, and nearly all
offer their own extensions to the standard. This is not surprising, since an
extension gives the vendor a slight competitive edge, allowing more effective
use of certain hardware features. For the most part, the extensions are good, and
it is tempting to use them.

This temptation, unfortunately, must be avoided in order to write maintain­
able software. As should be obvious, real difficulties will arise when new and
different-vendor hardware comes along. To allow a change of vendors without
a concomitant need to retool the entire software library, it would be wise to stick
with the standards. This will also permit more continuity between program­
mers. In situations where the use of added features is allowed, one person may
get into the habit of using a given construction, while another person never uses
it. That means unfamiliarity with the program and the need to learn new
methods, both of which increase the time required to do a modification.

TECHNIQUES

There are a variety of ways to make programs better and easier to maintain.
The techniques described in the following paragraphs are based on experience
and research. Some may be familiar; all will be helpful.

108 PROGRAMMING MANAGEMENT

Modular Design. The highest-level technique, with the greatest effect over
the life of a software package, is using the top-down approach and a modular
design. For all but the simplest programs, this technique clarifies the function
of each segment and the interrelationships between segments. Problems are
usually isolated in an individual module, and the maintenance effort can be
concentrated in that part. There may be temptations to bend this rule and
combine similar modules or put two functions into one unit. Although there
might be a situation where program length is critical or some other compelling
reason exists to do this, every step taken away from modularity is a step toward
complicated maintenance.

Most telephone equipment, for example, is now modular: this makes repair
or modification more efficient. If the cord is damaged, any customer can simply
unclip it and install a new one. One style of phone can be exchanged for
another, without tools or knowledge of the circuitry. The analogy is clear: it
should be possible for any programmer to modify or replace a section of a
system as easily as that.

Computers themselves are modular. Although hardware alterations are
uncommon, parts can fail. Replacement of components that have failed is a
matter of removing a board or a chip and plugging in a new one. When
programs are modular, a single functional piece that is no longer doing the job
(perhaps because the definition of the job has changed slightly) can be pulled
out entirely and a new piece put in. (As with its hardware counterpart, this new
software module should be tested before installation.)

Program modules should be as specific in their functions as possible. For
given inputs, they produce certain outputs, with (ideally) no side effects. If a
program has options, it is better to call or not call a particular procedure than to
call one that sometimes does one thing and sometimes another.

Using Variables. Second in importance to the structured approach is build­
ing to accommodate the needs and possibilities of the future. In carpentry, for
example, later changes are much easier if screws are used instead of nails and
glue. If the project is a bookcase, perhaps movable shelf brackets can be
installed. The result is every bit as good as one with fixed shelves, the cost is
comparable, and changes can be made without calling in the original carpenter.
This can be accomplished in programs primarily by using variables instead of
constants. As another example, when dealing with sales tax computations,
SALES-TAX-RATE should be used rather than 0.04 or 0.06. When the
legislature raises the tax rate, resetting this variable will affect all of the separate
computations that use it, eliminating any danger of changing all but one. If the
programming language allows it, this use of variables can also apply to lists and
tables, letting them grow or shrink as needed.

The concept is certainly not new; many special-purpose systems for statis­
tics and engineering problems allow users to specify formats and select options
by means of control cards. In production programs, although it is rare to require
or to allow that degree of freedom, it can be considered. If there is some
convenient way to input the parameters for the situation, the program can be

WRITING MAINTAINABLE PROGRAMS 109

built to behave differently, without recompiling and linking. If the options are
explained sufficiently, the user can tailor the content or form of his or her
results, without bothering the programming staff, just as one can replace a
telephone cord or rearrange the bookshelves.

Obviously, determining what should be fixed and what should be variable
means inquiring and speculating about future possibilities. Like the house
addition that never gets built, some options in a program may never be
activated; however, it is still less costly to put them in originally than to rewrite
to accommodate the changes later.

There is a danger, of course, of carrying flexibility too far. The real and
practical world must be kept in mind. Specific, rather than general, approaches
should be used wherever the former are adequate. It is foolish to build a
program whose output will adjust itselfto any paper width from 2 to 20 inches:
the chances of that range being necessary are extremely small. Furthermore, if
as much time and energy are spent on tricks for easy maintenance as were
previously spent on tricks for fast execution or short code, there is obviously no
overall gain. The point is to abandon the idea of tricks entirely, and the goal is
increased productivity at present and in the future. Looking ahead and using
these techniques in the original code will not increase the time needed to get it in
working condition, but may decrease it instead. Debugging, after all, is just
early maintenance: the program is modified to behave differently (i.e., cor­
rectly).

Documentation. Documenting the decision process can be a great help
when modifications are called for. Why a particular structure or technique was
chosen (in addition to what it is) should be recorded for later viewers. Some
choices may be arbitrary and not based on careful analysis; where such analysis
has been done, however, the need to redo it can be avoided by passing on the
original considerations and insights.

How many times has one programmer taken a listing to the original author to
ask why it was done in this way? Then the author must try to remember
something that may have been done long before. If there is any documentation
(perhaps comments in the code itself) supporting the choice, the question need
not be asked. The time required for such explanations is usually not figured into
the schedule in any case, nor is it included in progress report forms; from an
official point of view , it is wasted time. Even if the author has moved to another
job, retired, or died, the successor can still understand the reasons. Lacking
such records, some well-meaning but still-ignorant maintenance programmer
may switch to an alternative that had been tried and abandoned.

Documenting should be done as the code is written, for several reasons.
First, there is the motivation factor: a programmer who is in the midst of the
original code is intensely interested in it, knows what it is about, and knows
why he or she is doing things in certain ways. Second, there is the time factor: if
comments are part of the original coding forms, the cards are already where
they belong, which is obviously faster than hand-inserting them later or editing
them into a file copy. Third, there is the schedule problem: as noted earlier,

110 PROGRAMMING MANAGEMENT

when at last a program runs, there is pressure to consider it completed and go on
to something else. If the work of documenting is done along the way, then when
the program is finished, it is really finished.

Managers must also consider what could be done if the programmer were to
leave tomorrow. That brings a sharp focus to the consequences of not annotat­
ing work. Some of the best organizing and documenting occurs when a
conscientious programmer knows that he or she is leaving. There is a need to
tidy up, to organize, and to make it comfortable for the newcomer. This results
in a smooth transition but takes a week or two of redoing rough work, indexing,
filing, and discarding. Time will be saved if the manager insists that this kind of
effort be a part of the ongoing development.

An article in a local paper recently described the chaotic state of that city's
DP system. The system was in danger of collapsing because of a succession of
programmers who modified without documenting and then moved out. The
result was ridiculous performance, no understanding about what was happen­
ing, and the hiring of an outside firm on a quarter-million-dollar contract to
straighten out the mess.

Reasonable Shorthand. In addition to the liberal use of remarks within the
code, one of the simplest and most effective aids to understanding is the use of
meaningful names for variables, procedures, and files. FORTRAN's restric­
tion to six characters still allows the use of reasonable shorthand. An example
of the problems caused by ignoring the possible effect of names comes from
life. The value of PI in a program was given as 6.2832. Apparently the young
programmer, in his first encounter with spherical trigonometry, started out with
the value of pi as 3.1416 and then discovered that he needed to use two pi. The
easiest fix was to redefine the variable as shown. The program worked well,
since computers do not care what names are used. Other programmers, how­
ever, certainly do care. When the time came to correct another problem (the
original writer had, of course, left for another job) , the 3.1416 value was taken
for granted, and the variable PI was used in some of the changes. When the
changes blew up, a considerable amount of detective work was required to
reveal the culprit.

A less serious example cropped up in a COBOL program with a procedure
named WRTHDING. On initial reading and for some time after, this was
thought to mean WORTH DOING-a strange label indeed. Closer inspection
of the code within the procedure made it clear that the name was a compressed
form of WRITE HEADING, which should have been said initially. The reason
it was not may have been laziness and or an attempt to perpetuate the mystique.
Programmers must be reminded not to do this; the goal should and must be
clarity.

Ordered Arrangement. Another helpful habit is to arrange both variable
and procedure names in order so that the future reader does not have to look
through listings for a needle in a haystack of code. Unless core storage is
extremely precious and word boundaries must be considered, unrelated varia-

WRITING MAINTAINABLE PROGRAMS 111

bles can be assigned to any locations. They might be arranged in alphabetical
order so that rather than looking through the entire data division for METER­
READING-START, only the M section is viewed.

A similar benefit results from keeping procedure names or statement num­
bers in generallow-to-high sequence. (With alphanumeric labels, this means
keeping part of the name, perhaps a prefix or suffix, as a numeric.) When a
transfer of control occurs, the value of the destination itself gives an indication
of where (within the whole program) it can be found. PAGE-HEADING­
PRINT-lOoo, for example, would be somewhere after FORM-AVERAGE­
COST-600. Some programmers or organization standards reserve certain
blocks of numbers for particular functions. All FORMATs may be grouped at
the end with numbers in the 9000s, or all procedures ending with 500s may be
I/O routines. Whatever the convention, consistency and documentation make
follow-up modifications easier.

Interactions. Interactions among the parts must be considered when de­
signing and implementing in a modular fashion. As an illustration, there is a
module for printing some summary information, and there is a variable keeping
concurrent count of the number of lines on the page. Ideally, the printing
module should do only the printing; the next higher level segment that invoked
the printing would advance the line counter. This has the desirable property of
restricting what the printing module does. Unfortunately, it also implies that a
change within the printing module shortening or lengthening the output causes
a separate change to be made to the calling module. This side effect must be
dealt with and should be noted in the original documentation. Such interactions
can be minimized by using global variables or explicit parameters, which does,
however, dilute the strength of modularity.

Classifications. A series of simple decisions should be used to make
classifications. Frequently, however, many decisions and branches are lined
up, one after another. There is usually an implicit none-of-the-above category
that drops through all the decisions to the statement following the series of tests.
This is clearly the intention in a simple two-way choice. In a longer list,
however, the "other" category should be made explicit so that the default
below it becomes an error indicator. This provides one small measure of
protection against unexpected values and makes it easy to insert one more valid
condition test at a later time.

CONCLUSION

These recommendations for design and coding reflect the general philoso­
phy of planning for change. Every minute spent concentrating on clarity and
flexibility during initial construction will be saved many times in maintenance
time. Although programs may be slightly longer or slower, machinery is not the
costly component today-people are. At least as important as the monetary
rewards are the personal rewards. Managers will be more content because
schedules and budgets are more realistic and reliable. Supervisors will be

112 PROGRAMMING MANAGEMENT

happier because users are more satisfied and there is closer contact with the
staff. Programmers, too, will be more satisfied because they are doing a better
job, with less pressure and far less frustration. It should be noted that these
personal rewards translate into increased productivity and ultimately into
dollars.

@ Programming
Style in
COBOL

INTRODUCTION

by George N. Baird

The vast increase in the ratio of computing power to cost during the past
decade has not been accompanied by a similar rise in the ratio of programming
productivity to cost. Execution efficiency was extremely important when
computers had small memories, and the cost of hardware performance was
high. The cost of the time spent producing execution-time-efficient programs
today, however, may never be recovered, and the programs may cause addi­
tional maintenance costs-the efficiency techniques might not be understood
by the next programmer.

Current trends in software development are toward the enhancement of
existing code and less production of new source code. The higher the quality of
the source code, the lower the cost of maintaining or enhancing the programs.

Programming style dictates the degree of maintainability. At one time,
programmers were frequently treated like temperamental artists and given free
rein in the methodologies they used to develop programs. Any attempt to
standardize programming styles or techniques was considered an attempt to
stifle creativity.

Many new programmers still believe that there is virtue in producing
programs using a minimum of source statements. (They also frequently use
ADD, SUBTRACT, and MOVE CORRESPONDING statements in trying to
reduce the number of statements in the procedure division.) This generally
leads to programs that are very difficult to maintain.

As programmers' salaries continue to rise, so do maintenance costs (which
consume most of the time spent on software). It is now obvious that adopting
and enforcing programming standards can help to keep the costs of software
manageable. This chapter provides guidelines for producing easily maintained
and enhanced source programs.

DESIGN CONSIDERATIONS

Several criteria determine the level of maintainability of a program. The
structural design (or lack of it) is probably the most important factor in

114 PROGRAMMING MANAGEMENT

detennining the level of difficulty. A program should be put together in a
logical fashion, with each discrete function or set of related functions isolated in
a code segment or module. There should be no wild branches (GO TOs) out of
or into a code segment. A top-down structured design approach with a code
segment to handle each function will result in a highly structured program. (See
Procedure Division section of this chapter for further definition and discussion
of code segments.)

Readability, the second most important factor in determining the level of
maintainability, concerns the ease with which a programmer can understand the
design and processing logic of a source program. User-defined names should be
as descriptive as possible. IPT -FILE-I, for example, would be better stated as
TRANSACTION-INPUT -FILE; L-CTR is more readable as REPORT -LINE­
COUNTER.

While such short names as SSN for social security number might be readily
understood, programmers should not hesitate to use long descriptive names.
User-defined names in COBOL can be up to 30 characters in length, and
hyphens should be used to separate the words (e.g., EMPLOYEE-NUMBER,
not EMPLOYEENUMBER).

When creating data and procedure names, programmers should make sure
these names cannot be confused with others. It would be easy, for example, to
confuse SWTCH-l and SWITCH 1. Only one statement, clause, or phrase per
line should be coded, except for data description entries (discussed later). A
top-down design with well-defined names results in a program that is more
easily read than one that uses some of the traditional nonstructured techniques.

General Guidelines

Code Formatting. Coding conventions must be stringent. All programs in
a given installation should be stylized, that is, coded using these conventions so
that they appear to have been produced by the same person. Maintenance
programmers will thus not have to deal with varying programming styles.

The current interactive source-program development environment in which
programmers enter and modify their own programs makes it easier for them not
to follow standard coding conventions. In such circumstances, commercially
available utility packages that produce neatly formatted source programs can be
used. This approach may represent a cost-effective alternative to forcing
programmers to adhere to coding conventions when producing and modifying
source programs. (Subsequent sections of this chapter provide coding and
formatting guidelines for each of the four divisions of a COBOL program.)

Comments. All source programs should contain comments that describe
the function of each module or code segment. Descriptive comments should be
used when the code is not self-explanatory.

It must be remembered that comment!;, in order to be useful, must be
accurate. Comments addressing modified code that are not updated to reflect
the change in the source code can detract from the maintainability of the

PROGRAMMING STYLE IN COBOL 115

program. No comments would be better than those that are inaccurate or
misleading.

Punctuation

The period is the only punctuation required in COBOL. It terminates
sentences in the procedure division, data and file description entries in the Data
Division. Although commas and semicolons can be used to highlight the end of
phrases, clauses, or statements, their use can detract from the readability of a
program and can hide potential logic errors. Some high-speed printers produce
almost indistinguishable commas and periods, especially if the ribbon is not
fresh. Because this can confuse the logic in the procedure division (particularly
in IF and other conditional statements), the use of commas and semicolons
should be avoided completely.

IDENTIFICATION DIVISION

The identification division names the source program and author. It is also
an ideal place to include program comments describing function, general
terms, and the file and parameters necessary for execution. When maintenance
or enhancement is performed on the program, the name of the maintainer
should be recorded as well as the date and the goal of the maintenance.

ENVIRONMENT DIVISION

The environment division tailors the source program to a specific hardware
configuration and is thus defined by the implementor. In the following exam­
ple, the SELECT statement uses the one-phrase-per-line guideline, making it
easy to read the code and understand the file's attributes quickly.

8 12
FILE-CONTROL

SELECT MASTER-FILE ASSIGN TO IMPLEMENTOR-NAME-l
ORGANIZATION IS INDEXED
RECORD KEY IS ACCOUNT-NUMBER
ALTERNATE RECORD KEY IS SOCIAL-SECURITY -NUMBER
ACCESS MODE IS DYNAMIC.

SELECT ...

DATA DIVISION

File Descriptions

File description entries (e.g., FD, SD) should be coded one clause per
source line. FD should be coded:

8 12
FD TRANSACTION-INPUT-FILE

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS 160 CHARACTERS
DATA RECORD IS TRANSACTION-RECORD.

116 PROGRAMMING MANAGEMENT

Saving two source lines in the following example in no way makes up for its
lack of readability.

8 12
FD TRANSACTION-INPUT-FILE LABEL RECORDS STANDARD

BLOCK CONTAINS 10 RECORDS RECORD CONTAINS 160
CHARACTERS DATA RECORD IS TRANSACTION-RECORD.

Record Descriptions

The record description entries for a ftle should (when possible) completely
define the record(s) contained in that ftle. Disguising a record's true description
by reading or writing it with one description and operating on it in the working
storage section under another should not be permitted.

Data Descriptions

Only for data description entries can the one-clause-per-source-line guide­
line be relaxed because many of these entries have only a PICTURE or a
PICTURE and VALUE clause. In this case, coding the entire entry on a single
line actually increases its readability. The PICTURE clause should begin in a
specific column (36 or 40) and be aligned throughout the data division; PIC
should be used instead of PICTURE. The VALUE clause could start in column
52. If a literal of 11 characters or less is used in a V ALUE clause, it should be
coded on the same line. If it is longer, it should begin on the next source line.
Any other clauses used in describing the data item should appear on successive
lines, indented to column 36 or 40 under the PICTURE clause.

8 12 40 52
01 DATA-ITEM GROUP.

03 ALPHA-ITEM
03 NUMBER-ITEM

03 NAME-FIELD

PICX(15)
PIC S9(6)
USAGECOMP

VALUE SPACE.
VALUE ZERO
SYNC RIGHT.

05 LAST-NAME PICX(12) VALUE SPACE
05 FIRST-NAME PICX(l2) VALUE SPACE
05 MIDDLE-INITIAL PIC X VALUE SPACE.

03 BIG LITERAL PIC X(60) VALUE
"THIS IS A BIG LITERAL-LONGER THAN 11 CHARACTERS".

Subordinate entries should be indented four character positions to clearly
show the hierarchy of the data descriptions.

128
01 RECORD-l

03 ADDRESS-LINE.
05 STREET
05 TOWN-STATE-ZIP.

07 TOWN-STATE.
09 TOWN
09 STATE

07 ZIP
02 NAME

40
VALUE SPACE

PICX(l5).

PICX(15).
PICX(2).
PICX(5).

PROGRAMMING STYLE IN COBOL 117

Several current philosophies on subordinate-level numbers suggest incre­
ments of2, 5, or 10; others suggest 1:

01 01
05 02

10 03
15 04

The number actually used makes no difference; however, the organization's
guidelines should require a consistent method of incrementing the numbers.

Tables/Arrays

Tables in COBOL are defined by using the OCCURS clause in the data
description entry of an item that is to be repeated within the table/array. When
defining a table/array, a numeric data item should also be defined and initial­
ized to a value that equals the occurrences of the table. The data item can then be
referenced in the procedure division, in lieu of a numeric literal, when a value
must be checked against the size of the table. This facilitates changing the table
size without requiring a search through the procedure division to change
numeric literals to reflect the new table length. With this technique, all refer­
ences to table size are changed automatically; this eliminates the possibility of a
missed reference causing the program to work incorrectly.

01 TABLE-DEFINITIONS.
03 TABLE-I-LENGTH
03 TABLE-I

05 TABLE-I-ENTRY

IF TABLE-I-ENTRY (INDEX-I) EQUAL TO
PERFORM ...

IF INDEX-I EQUAL TABLE-I-LENGTH
GO I TOTABLE-PROCESS-EXIT.

SETINDEX-l UP BY 1.

PIC 9(3) VALUE 500.

PICX(20)
OCCURS 500 TIMES
INDEXED BY INDEX-I.

TABLE-I-LENGTH represents the length of TABLE-I and can be used in
the procedure division to determine whether SUbscripts or indexes are within the
proper range.

PROCEDURE DIVISION

Code Segments or Modules

A code segment or module is a related set of procedures that are necessary to
perform a single function. A section with one or more paragraphs or a series of
paragraphs with a common exit point can constitute a code segment or module.
A single entry point at the beginning and a single exit point at the end of the code
segment are necessary. There should be no entry into a code segment at other
than the entry point, and control should not leave a code segment except at the
exit point. A section name is referenced in a PERFORM statement. A series of

118 PROGRAMMING MANAGEMENT

paragraphs is referenced in a PERFORM statement using the THRU phrase,
naming the beginning and exit point paragraphs:
Section

PERFORM PROCESS-PARAMETERS

PROCES-PARAMETERS SECTION
PROC-PARAM-OOl

PROCESS-PARAMETERS-EXIT
EXIT.

NEXT SECTION.

Paragraph

PERFORM PROCESS-PARAMETERS THRU PROCESS-PARAMETERS-EXIT.

PROCESS-PARAMETERS.

PROCESS-PARAMETERS-EXIT .
EXIT.

The following procedure division fragment of a COBOL program should be
considered:

8 12
PROCEDURE DIVISION.
MAIN-SEGMENT SECTION.
MAIN-OOI.

PERFORM PROGRAM-INITIALIZATION.
PERFORM OPEN-FILE-I-INPUT.
PERFORM OPEN-FILE-2-0UTPUT.

*--PROCESS PARAMETERS
*--

*--

PERFORM OPEN-PARAMETER-FILE.
PERFORM PROCESS-PARAMETERS

UNTIL END-OF-PARAMETERS.
PERFORM CLOSE-PARAMETER-FILE.

*-- PROCESS FILE-
*--

*--

PERFORM COPY-INPUT-FILE
UNTIL END-OF-FILE-l.

PERFORM CLOSE-FILE-I.
PERFORM CLOSE-FlLE-2.

*-- PROCESS FILE COMPARE
*--

PERFORM OPEN-FILE-I-INPUT.
PERFORM OPEN-FILE-2-INPUT.
PERFORM COMPARE-FILES

UNTIL (END-OF-FILE-l
AND END-OF-FILE-2).

PERFORM CLOSE-FILE-I.
PERFORM CLOSE-FlLE-2.

STOP RUN.
*-- All referenced code segments follow.

PROGRAMMING STYLE IN COBOL 119

PROCESS-PARAMETERS SECTION.

COPY -INPUT -FILE SECTION.

COMPARE-FILES SECTION.

OPEN-FILE-I-INPUT SECTION.

OPEN-FILE-2-INPUT SECTION.

CLOSE-FILE-l SECTION.

CLOSE-FILE-2 SECTION.

READ-FILE-l SECTION.

READ-FILE-2 SECTION.

WRITE-FILE-2 SECTION.

PROGRAM-INITIALIZATION SECTION.

As indicated in this source code, the main segment provides a table of
contents for the program:

• Initialization takes place.
• Files are opened and input parameters processed.
• One file is copied to another.
• Files are closed and reopened for the next operation.
• The two files are compared.
• The files are closed.
• Processing is terminated.

Code that would, by its clutter, affect the readability of the main module
(e.g., initialization code and the 110 statements for each file) are coded as
modules and referenced through a PERFORM statement. These modules are
placed toward the end of the procedure division since they are easily debugged,
contain simple (if any) logic, and rarely need to be seen during maintenance or
enhancement.

A further refinement of the code in the main segment might be to include the
references to opening and closing the files in their respective processing
modules:

PROCEDURE DIVISION.
MAIN-SEGMENT SECTION
MAIN-OOI.

PERFORM PROGRAM-INITIALIZATION.
PERFORM PROCESS-PARAMETERS

UNTIL END-OF-PARAMETERS.
PERFORM COPY-INPUT-FILE

UNTIL END-OF-FILE-l.
PERFORM COMPARE-FILES

UNTIL END-OF-FILE-l
AND END-OF-FILE-2.

STOP RUN.

120 PROGRAMMING MANAGEMENT

PROCESS-PARAMETERS SECTION

Note the added clarity and simplification of the main segment after the
removal of references to file opening and closing modules.

A code segment should begin at the top of a page in the compilation listing
using "I" in column 7 of the source line prior to the beginning paragraph or
section. The segment should not be larger than one.page of code (e.g., 50 to 55
lines). This relieves programmers of the need to skim several pages of listings
in order to read a single code segment or module.

The PERFORM statement is the only permissible way to execute code
segments. The UNTIL phrase of the PERFORM statement is used to control
the iteration, or looping, of code segments that must be executed until a specific
condition is satisfied. A variable to be incremented during execution of a code
segment is controlled by the VARYING phrase of the PERFORM statement.

The GO TO

Much has been written about GO TO and about programming that does not
use it. COBOL was designed before GO TO fell from favor; thus, the statement
is used. It should be limited, however, because it is very easy to GO TO the
wrong place and produce a hard-to-find logic error. Moreover, a clearly
structured program is difficult to produce unless the use of GO TO is restricted.

As indicated in these guidelines, the PERFORM statement is a far better tool
for executing a code segment and ensuring proper return of control. PERFORM
controls looping or iteration in the same manner. When GO TO is used, it
should always reference a procedure name in the same code segment that is
forward of the statement (a backward reference would constitute looping or
iteration).

1/0 Statements

Each 110 statement for a file should be isolated in a code segment and
referenced through a PERFORM statement. Only one I/O statement of each
type should exist for any file (e.g., READ, WRITE, OPEN); this eases
required maintenance or enhancement. A condition, name, or data item can
provide status information about an 110 statement to the code segment referenc­
ing it:

01 EOF-CONDffiON-FILE-1 PICX(3) VALUE SPACE
88 END-OF-FILE-1 VALUE "YES".

PERFORM READ-FILE-1
IF END-OF-FILE-1

READ-FILE-1 SECTION.
R-FILE-1-001.

IF END-OF-FILE-1
GO TO R-FILE-1-EXIT.

PROGRAMMING STYLE IN COBOL 121

READ FILE-I AT END
MOVE "YES" TO EOF-CONDITION-FILE-l.

R-FILE-I-Exit.
EXIT.

IF Statements and Nested IF Statements

The code should be indented to reflect the hierarchy of control when the IF
statement is used:

IF AGE LESS THAN 21
PERFORM PROCESS-MINOR

ELSE
PERFORM PROCESS-ADULT.

ADD ...

The ELSE phrase (if present) should be aligned under the IF statement. The
indentation clearly delineates which code is subordinate to the IF statement
(executed if the condition is true) and to the ELSE phrase (executed if the
condition is false).

IF statements should not be nested more than three deep. Further nesting
results in logic that is difficult to understand. The following represents an IF
statement nested three deep:

IF condition-I
statement -1
IF condition-2

statement-2
IF condition-3

statement -3
ELSE

statement -4
ELSE

IF condition-4
statement -4

ELSE statement-7
IF condition-5

statement -8
IF condition-6

statement -9
ELSE

statement -10
ELSE statement-II

IF condition-7
statement-I2

ELSE
statement -13.

Other Conditional Statements

Several statements (other than IF) contain conditionally executed source
code. This code should be indented to identify it as well as its range. Unlike the
IF statement, the ELSE clause is not associated with conditional statements,
which include the following:

• ON SIZE ERROR clause of the arithmetic statements

122 PROGRAMMING MANAGEMENT

• AT END/INV ALID KEY clauses of the I/O statements
• WHEN and AT END clauses of the SEARCH statement
• ON OVERFLOW clause of the CALL statement
• NO DATA clause of the RECEIVE statement

General Coding Practice for the Procedure Division

All of the previous examples of procedure division source code have
followed the one-statement/clause-per-source-line guideline. Statements that
do not include or use subordinate clauses should be coded on a single source
line.

S 12
ADD THIS-MONTH-HOURS TO YTD-HOURS.
MOVE ACCOUNT -NAME TO REPORT -NAME.

Statements with subordinate clauses should follow the same guidelines. The
ADD statement can have an ON SIZE ERROR clause, which is executed when
the result of the addition is too large to be stored in the receiving operand.

S 12
ADD THIS-MONTH-HOURS- TO YTD-HOURS

ON SIZE ERROR
PERFORM HOURS-ERROR-ROUTINE.

The ON SIZE ERROR clause is on the line following the ADD statement;
this clause is indented to show that it is part of the ADD statement. The
conditionally executed source code is on the next source line; it is indented
further to show that it is the conditionally executed source code associated with
the ON SIZE ERROR clause.

The SEARCH statement that follows is a good example of the use of the
source-code iteration technique. The WHEN clause is executed if the desired
entry is found; AT END is executed if it is not found.

S 12
01 TABLE-GROUP-2.

03 TABLE-2 OCCURS 100 TIMES
ASCENDING KEY IS SOCIAL-SECURITY-NUMBER
INDEXED BY INDEX-2.

04 TABLE-ENTRY.
05 DISCOUNT-RATE PIC V99.

SEARCH ALL TABLE-2
WHEN DISCOUNT -RATE EQUALS TRANSACTION-DISCOUNT -RATE

PERFORM PROCESS-TRANSACTION
AT END

PERFORM DISCOUNT -RATE-ERROR.

CONCLUSION

The programming and coding techniques discussed in this chapter are
intended to enable programmers to produce COBOL source code that is easy to

PROGRAMMING STYLE IN COBOL 123

read and understand. It should be noted that these techniques are not absolutes
and should be modified to meet the particular needs of a programming shop.
The purpose of using a standardized methodology is to produce stylized,
consistent programs.

Consistency makes programs easier to test and debug. This, in tum, leads to
a reduction in the time and cost of maintenance because the staff responsible for
this function will be familiar with the style used in producing the programs.

The many software tools that can help in enforcing programming standards
should be fully exploited. In a labor-intensive industry such as one that
produces computer software, it is essential to do everything possible to reduce
labor and control the spiraling cost of software.

Bibliography

Chmura, Louis J. "COBOL with Style-Programming Provems." Rochelle Park NJ: Hayden Book Co inc, 1976.

Cobn, Lawrence S. "Effective Use of ANS COBOL Computer Programming Language." New York NY: Wiley-Inrerscience,
1975.

® The Skeleton Program
Approach to Standard
Implementation by David Schechter

INTRODUCTION

The skeleton program concept presupposes the availability of a source­
program library-a direct-access facility in which source code can be stored and
from which code can be copied into any program. Source libraries generally are
supported by utility programs that enable particular members to be reproduced
and, at the same time, assigned new names.

BUILDING THE SKELETON PROGRAM

There are seven stages in the development and customization of the skeleton
program and its descendants.

First Stage. Encoding fIle and record descriptions used in several programs
before specifying the programs that will deploy these resources is a fairly
common procedure. The encoded descriptions are cataloged in the source
library (see Figure 9-1).

The utility program that catalogs entries in the source library is generally
insensitive to the syntax of the programming language in which the entries have
been coded. A COBOL fIle description, for example, will not be syntax­
checked by the source-library utility program.

The skeleton program began as a vehicle to verify the syntactic correctness
of each copyable entry in the source library. In a COBOL environment, the first
item of business is to identify the source computer and object computer. Using
the IBM utility IEBUPDTE as the source librarian, this would be accomplished
by running the following job step:

/ /UPDATE EXEC PGM=IEBUPDTE
/ / SYSPRINT DD SYSOUT=A
/ / SYSUTl DD DlSP=SHR, DSN=COPYLffi
/ / SYSUT2 DD DlSP=SHR, DSN=COPYLIB
/ / SYSIN DD *
. / ADD NAME = SRCCOM

126 PROGRAMMING MANAGEMENT

*-------
*SOURCE-COMPUTER. COpy SRCCOM.
*-------

IBM-370 WITH DEBUGGING MODE.

*
. I ADD NAME=OBJCOM

*-------
*OBJECT -COMPUTER. COPY OBJCOM.
*-------

ffiM-370 .
. /ENDUP

Now, in order to prove that the code just added to the source statement library is
valid COBOL code, the nucleus of a COBOL program skeleton must exercise
the COpy statements and thereby fetch previously cataloged library members.

The nucleus of the COBOL program skeleton is as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

----+-SOURCE-COMPUTER.
----+-OBJECT -COMPUTER.

DATA DIVISION.
PROCEDURE DIVISION.
OlOO-START.

STOP RUN.

SKELETON-PROGRAM.

COPY SRCCOM.
COpy OBJCOM.

Compiling this program will reveal whether SRCCOM and OBJCOM are
copyable and syntactically correct.

Continuation of the first stage entails supplying COPY statements to the
skeleton program as additional entries are cataloged in the source library. At the
completion of stage one, the skeleton program contains COpy statements for
every data description cataloged in the source library pertaining to the specific
application under construction. Coding errors are eliminated from the record
descriptions by compiling the skeleton program and by removing any error
diagnostics that are revealed.

Second Stage. The next step is to augment the procedure division with a
standard structure that perfonns major procedures. This stage will give rise to
program modules in which specific functions are implemented at predictable
paragraphs. Revision to data descriptions are expected to be required; these
changes will be recorded in the specific entries within the source library that are
affected. A major advantage of using the COpy statement is that maintenance
is localized in the source library, and the definitions are automatically available
upon recompilation of those programs that exercise the COpy statement. Even
such environmental changes as an upgrade of the computer mainframe can be
accommodated simply by altering the source and object computer entries in the

SKELETON PROGRAM APPROACH

File/Recordl
ReporUData --~
Descriptions

Update
COPY
Library

Compile
Program
Skeleton

Update
Program
Skeleton

127

• Verifies presence of COpy member
• Verifies syntactic correctness
• Confirms record lengths

Figure 9-1. Evolution of Program Skeleton

library members SRCCOM and OBJCOM and by recompiling the source
programs that copy these members. The need for software that identifies where
specific library members are used is discussed later in this chapter. At the
completion of stage two, the skeleton program would resemble the program
shown in Figure 9-2.

Third Stage. The fully evolved program skeleton is now cloned as many
times as there are modules to be produced for the entire application. Figure 9-3
illustrates this process. Each reproduction of the program skeleton is identical
to the original except that the member name is that of the specific module to be
developed. Although no fully implemented individual module will require all
of these copy statements, each clone contains every copy statement that is
available to the application.

Fourth Stage. The first level of customization begins in the fourth stage. At
this point, the application programmer should receive the module specifica­
tions. Each specification should be reviewed against the version of the program
skeleton to be customized. All inapplicable copy statements should be deleted.

000100 IDENTIFICATION DIVISION
000200· --------------------------------
000300* A BRIEF NARRATIVE OVERVIEW OF THE FUNCTION PERFORMED
000400~ BY MODULE IS ENTERED HERE AS A REPLACEMENT FOR
000500" THIS COMMENT.
000600" IF THE MODULE IS A SUBPROGRAM REQUIRING A CALLING
000700· SeOUENCE AN ILLUSTRATION OF THE CALL STATEMENT TO
000800'" INVOKE THE MODULE IS SUPPLIED AS A COMMENT
000900· --
001000 PROGRAM-IO SKELETON-PROGRAM.
001100· --
001200~ THE ACTUAL PROGRAM-NAME INDICATED BY THE MODULE
001300'" SPECIFICATION REPLACES THE OPERAND,

001400· ~~~ETL~11°c~~':fE~~~~~EN DELETED
001500~ ---

luDAY 001600 DATE-COMPILED. --
001700 AUTHOR.
00'800
00'900 INSPECTED BV
002000
002100 INSTALLATION

AUTHOR·NAME

REVIEWER-NAME

002200 INSTALLATION-NAME
002300· ---
002400· DATE-WRITIEN. DATE-WHfN·CODING-STARTED ~
002500* DATE-REVISED DATE-OF· REVISION
002600* PROGRAM·STATUS U
002700· U=UNMODIFIED SKELETON M: MODIFIED SKELETON
002800'" C=CODED T",TESTED
002900* P" PRODUCTION A ., UNDER REVISION
003000· ---------------------
0031001
003200· --
003300 ENVIRONMENT DIVISION.
003400· ----------------------------------
003500 CONFIGURATION SECTION
003600· -•. -------------.-•• --•••• ------.----.
003700 SOURCE-COMPUTER
003800 OBJECT-COMPUTER.
003900· ------------------------------
004000 INPUT-OUTPUT SECTION
004100· ••. -.----•• -•• --------.----•• ----••.
004200 FILE-CONTAOL
004300· -----------------------
004400
004500
0046001

SELECT
SELECT

Ft·filename-FILE
F2-tllename-FILE.

COPY SRCCOM.
COpy OBJCOM.

copy select-l
COpy select-2.

004700" --
004800 DATA DIVISION
004900· --------------------
005000 FILE SECTION.
005100· -----.-•• -----.-••••.
005200 FD f1-tilename-FILE
005300 01 F1-filename-RECORD
005400· .-•• --.-••• ----------.
005500 FO F2-filename-FILE
005600 01 F2-filename-RECORD
0057001

COPYfd·t
COpy record-1

COPYfd-2
Copy record·2

005800· --
005900 WORKING-STORAGE SECTION
006000'" -----•• -••• -----.------------•• -.
006100 01 W1-filename-RECORD copy record-1
006200· .------------•• -.-----
006300 01 W2-filename-RECORD copy record-2

006400'" --•• -----------------------------••. -----•• -.-
006500 01 W21-SWITCHES
006600 03
006700 03
006800 03
006900
007000
0100001

88
88

W21·'-ON PIC X VALUE ··f
W21·2-0FF PIC X VALUE ZERO.
W21-3-END-OF·FILE PICX VALUE ZERO.
CW2t-3-1-MORE·DATA VALUE ZERO.
CW21-3-2-NO-MORE-DATA VALUE .. ,.

010100· -------------------------------------•• -------------------------
010200" PROCEDURE DIVISION.
010300· ------.--------.-.-----------
010400 01-MAIN SECTION.
010500· -.-•• -.----.-----------------•••• ----•• -.-----.-- .•.
010600 01 OO-ST ART -OF-PROGRAM
010700'" .-.-----•••• ----••••.
010800
010900
011000

t'J:Ht-"ORM
PERFORM
IF

011100 PERFORM
011200 PERFORM
011300 UNTIL
011400 PERFORM
011500 STOP RUN.

700Q-HOUSEKEEPING
0200-INPUT
CW21·3-1-MORE-DATA
O3OQ-INITIALIZE
0400-PROCESS
CW21-3-2-NO-MOAE·OATA
8QOO-END-OF-JOB.

020000· -------.---------------.----.-------.----.-------------------.----
020100 02-INPUT SECTION
020200· ---------.-.-----•.... -.------.-----------------•• --.-----.-------.
020300 02QO-INPUT
020400~ --------•• --.--.--.
020500 READ mput·flle-name INTO work-area AT END
020600 MOVE W21-1-0N TO W21-3-END-OF-FILE
030000~ -.----.---••• ---•.•. --.-.------.-•• -----•••• ----.---•• -.---.-----••• -------.---.. --------•• -------
030100 03-INITIALIZE SECTION 030200· -------___ _

030300 03OU-INI' IALI.lt::
030400· ••••• -----•• -----•.
030500· .----------.-----~ate detaIl coding here .-----------•• -.-----.-•• -.-------.--•.
0400001
040100· --
040200 04-PROCESS SECTION.
040300· ----------------------
040400 0400-PROCESS
040500'" .--.-------------••.
040600~ -----·····-···---·-+fttefPDIate detaIl codmg here
049900 PERFORM 0200-INPUT
7000001
7001 00· •••••• ----------.--------------.----.. -.----... -----.. ---..•••. ----.-••• -•••• -.----••••. -------••
700200 7a-HOUSEKEEPING SECTION

700300" --.--••. -...•• ------
700400 7000-HOUSEKEEPING
700500· -.• -------.----.--
700600· •. --·---------·····..ffttelpDlate detail codIng here
8000001
800100· -.-.-----------------------------.---.-------•• ---------------------------------.---------
800200 8o-END-OF-JOB SECTION
800300· •• --------•• ----•••• -.-••• ----.------•• ------- .---•• --.-.. ----.--•• -----.--.
800400 8000-END-OF-JOB
800500~ ----••• ----.------.--
800600· --.-.-.------··-·~afe detaIl coding here
9000001
900100· --
900200· END OF PROGRAM
900300"

Figure 9-2. Illustration of (COBOL) ProSJramming Standards

...
~

"tJ

~
G>

~
so:
so:
Z
G>

~
~
G>
m
so:
m z
-I

SKELETON PROGRAM APPROACH 129

Stages of Program Development

Program
Skeleton

I Prog-n

I Prog-3

I Prog-2

Prog-1

Prog-1

I-

• Program skeleton updated to
test each addition/change to
COPY Library

""" ____ Cloning
program skeleton

Replicated program
skeletons collated with

"""- - - associated program
specifications

• Delete inapplicable
COPY statements

_----Customized program
skeletons

Completed
_-source

programs

To
Unit
Test
Procedure

• Interpolate source coding according
to module specifications

• Produce clean
compilation

Figure 9-3. Cloning/Customizing Program Skeletons

130 PROGRAMMING MANAGEMENT

In addition, the programmer should add commentary to the identification
division that explains the function that the fully implemented module is to
accomplish. The pared-down skeleton program should then be recompiled to
ensure that it is free of error diagnostics. If the programmer has inadvertently
deleted too many statements or otherwise clobbered his version of the skeleton,
it is a simple matter to regenerate his starting point; in other words, stage three
should be repeated. For any given module, a programmer should be able to
complete the fourth stage in one day (assuming three test turnarounds).

Fifth Stage. The details of the module specifications are now implemented
by the programmer making interpolations at the places indicated in the program
skeleton (see Figure 9-3). Essentially, this is the point at which the programmer
translates the analyst's pseudocode into compiler-intelligible code. Again, the
module is compiled. When error free, the module is available for unit testing.
This stage should be reached in approximately three days.

Sixth Stage. The completed module is tested using either a driver program
(itself devised from an all-purpose test-driver skeleton program) or a partially
completed version of the run unit where the top-level modules have already
been customized (see Figure 9-4).

Test
Driver

Subprogram
(M~dule)
Being
Tested

Repair/Retest Document/Store

Figure 9-4. Use of Module Test Driver

Dump
Program

SKELETON PROGRAM APPROACH 131

Seventh Stage. When all modules comprising the run unit have been
independently tested (stage six), they are fully integrated and the run unit is
tested under conditions that simulate the actual production operation.

ADVANTAGES OF THE SKELETON PROGRAM METHOD

There are a number of reasons that building application modules from a
common program skeleton that resides in a source statement library is desir­
able. These reasons are discussed in the following sections.

Custody. A problem that often besets the implementation of large
computer-based applications is that of locating all code. When programmers
are permitted to develop their own work individually, simply finding all the
source programs is sometimes difficult. Having a disgruntled programmer quit
and abscond with the only working version of a key source program is not
unusual. Starting with all programs already recorded in a source library and
customized therein ensures effective custody over all code (assuming that the
library is regularly backed up for offline storage).

Illustration and Enforcement of Standards. Nearly every DP organiza­
tion possesses and promulgates programming standards. These standards are
often handsomely printed, bound in manuals, and conspicuously displayed.
Typically, however, the standards are honored only in these manuals and are
not observed in the working program code where they should be embedded.

Programmers are not always to blame for this. For one thing, standards are
often not self-explanatory; they must be illustrated to be understood. Occasion­
ally programmers are unaware that there are programming standards that they
are expected to follow. Standards not applied in existing code are useless. The
skeleton program provides working code built according to standards. The
programmer is faced with prewritten code and the task of customizing that code
according to standards already evident in the skeleton.

Uniformity. Managers must have the flexibility to reassign programmers in
order to match their skills to the type and difficulty of the programming
involved in particular modules. To achieve this flexibility, it is essential that all
modules share a common architecture. The skeleton program ensures that all
modules call identical functions by the same names. Consequently, a program­
mer need not be concerned with the idiosyncrasies of another programmer
working on the same project. Data names and procedure names retain identical
spelling and relative placement wherever they are specified. This facilitates the
reassignment of work.

Control over Progress. Short-range customizing tasks provide a concrete
basis for evaluating programmer skills. Progress is controlled effectively only
when there are frequent checkpoints at which binary determinations (Le., tasks
are either completed or not) are made. Tasks are not considered in terms of
percent completed; rather, only two percentages are reportable-l 00 percent or

132 PROGRAMMING MANAGEMENT

o percent. A lO-module program, for example, is 70 percent complete only
when seven of the modules are 100 percent complete. Because modules are to
be kept small (no more than 100 lines of procedural code), no module should
require more than five working days to customize and unit test.

Visibility. The sight of a programmer hunched over a coding sheet or
working at a screen reveals nothing about his progress or the quality of his
work. Is he on the second of three pages or the second of three hundred? Until
the program is unit tested, the quality of the code and its relevance to the
program specification are not easily observed. The source-library discipline
requires that the code be deposited in the library daily. This makes it easy to
subject the programs to automated review.

The Copycall Procedure (see Figure 9-5) shows a utility that was devised
in order to obtain reports on the status of modules in the source library and
their interfaces. With such a utility, the project manager can obtain a daily
census of modules and lines of code (See Figure 9-6). Furthermore, when any
copyable entry is subject to change, the impact can be readily assessed by

Copycall Procedure

1/ EXEC COPYCALL,NAME = library

IEBPTPCH
Create
Sequential File

COPYCALL
Cross-Reference
Interfaces

Step 1-Unload library
(Partitioned Data Set)
to sequential file

Step 2-Generate
cross-reference
reports

Figure 9-5. Cross-Referencing System Interfaces

SKELETON PROGRAM APPROACH

OBJECT VERSION
RUN TIME/DATE

®
1. COPYCALL .
2.DATEWORK

13.45.37
134737

MAR 13. 1979 CALL/COPY
03/13/79 INPUT REPORT

AY99300.DS.SOURCE3 ©
®

..... 697
14

3. DEBUGCOM 5
23
95
10

~ DEBUGGER
5. DRIVER
6. FD000001
7. F0000001
8. F0000002
9. INFILFD

10. INSEL
11. LlBMAINT
12. MOCKUP
13. MOCKUP1
14.0BJCOM
15. OUTFILFD
16. OUTSEL
17. PRINT01
18. RDOOOOOO
19. RD000001
20. RD000003
21. RULER
22. RULER1 ...
23. SD000003
24. SKELETON
25. SORTSEL
26. SQUAROOT
27. SRCCOM
28. S0000003
29. TOGREGRY .. .
30. TOJULIAN ..

RECORDS SORTED . 142

Logend:

A Name of module or copy able component (library member)

B Number of statements (coded lines) within library member

C Name of library being cross-referenced

o Total number of lines of code within library

5
5

................ 6
.............. 5

........ 326
29

. 191
5
7
5

191
59
39
37
37

.. 297
17

........ 130
.......... 5

.. 269
5
5

129
.. 112

=
2.760@

Figure 9·6. Example of Library Census Report

133

reviewing the Where-Used Report (see Figure 9-7). Modules that have not
been customized will exhibit proftles identical to that of the program skeleton.
(For an example of the Program-Contains Report, see Figure 9-8.)

Reduction of Cost. The preceding advantages are all significant primarily
because of their effect on the bottom line; they result in better-built applications
constructed and maintained at lower cost. The benefit of using program skele­
tons as building blocks of a system is that one can treat a defective module like a
burned-out light bulb. Rather than fix the module, one can replace it. Tradi­
tional systems generally are repaired not by replacing a bulb but by rewiring the
building. Maintenance often consumes more than 60 percent of the program­
ming budget because systems that were defective throughout the development
stage are maintained. Programmers often solve a problem i.n one part of the

OBJECT VERSION 13.45.37 MAR 13. 1979 XREF.lCOPY STATEMENTS
RUN TIME/DATE 134737 03/13179 AY99300.DS SOURCE3

COPYNAME

DATEWORK

DEBUGCOM

DEBUGGER

EOOOOOOl

E 0000001

E0000002

IMFILFD

IMSEL

MOCKUP

OBJCOM
OBJCOM

OUTFILFD

OUTSEL

PRINTOl

RDOOOOOO

RDOOOOOl

RD000003

RULER

SP000003

SORTSEL

SRCCOM

SR000003

Note;

CONTAINED BY THESE MODULES

TOGREGRY-000073

MOCKUP1--000025

SKELETON-000069

COPYCALL-000080

COPYCALL-000067

COPYCALL-000068

MOCKUP1--00004E'

MOCKUP1--000032

MOCKUP1--000088

COPYCALL-000057
TOJU LlAN-000024

MOCKUP1--000048

MOCKUP1--000036

SKELETON-000062

COPYCALL-000246

COPYCALL-000270

COPYCALL-000282

RULER1---000120

COPYCALL-000091

MOCKUP1--000037

COPYCALL-000055

COPYCALL-000070

TOJULIAN-000068

RU LE Rl---000026

MOCKUP1--000046

MOCKUP1--000035

DRIVER---000020

RULER1---000051

RU LE Rl---000039

COPYCALL-000250

COPYCALL-000272

COPYCALL-000284

RULER1---000040

DRIVER---000019

Each copy member i!sted on the lefl15 used by the source programs listed on the
right

SKELETON-000024

RULER1---000048

RULER1---000035

LlBMAINT-000017

SKELETON-000042

SKELETON-000033

LlBMAINT-000016

PAGEl

TOGREGRY-000023

RULER1---000049

RULER1---000038

MOCKUP1--000026

TOJULIAN-000023

SKELETON-000040

SKELETON-000031

RULER1---000029

Figure 9-7. Example of Where-Used COPY(s) Report

SKELETON-000025 TOGREGRY-OOOOO

.....
(,)
.jlo.

""0
:0 o
G>

~ s::
s::
z
G>
s:: » z »
G>
m
s::
m z
-i

OBJECT VERSION 13.45.37 MAR 13, 1979 COpy STATEMENTS WITHIN MODULE
RUN TIME/DATE 13.47.37 03113179 AY99300.DS.SOURCE3

MODULE CONTAINS THESE MEMBERS
-.------------------------- ---------------------------

CDPYCALL FDOOOO01·000080 FOOOOOO 1·000067 FOOOOO02·000068
COPYCALL R DOOOO01·000272 RDOOOO03·000282 R DOOOO03·000284

DRIVER DBJCOM .. ·000020 SRCCDM .. ·000019

L1BMAINT OBJCOM .. ·000017 SRCCOM .. ·OOQ016

MOCKUP1 DEBUGCOM·000025 INFILFD .. 000045 INFILFD .. 000046
MOCKUP1 OUTFI LFD·000048 OUTSEL .. ·000036 SORTSEL .. 00OO37

RULER1 DEBUGCOM·OOOO26 INFILFD .. OOO048 INFILFD .. OOOO49
RULER1 OUTSEL .. ·OOO039 RU LER 000120 SORTSEL .. OOOO40

SKELETON DEBUGCOM·OOO024 DEBUGGER·000069 INFILFD .. OOOO40
SKELETON PRINT01 .. 000062

TOGREGRY DATEWORK·OOOO73 DEBUGCOM·000023 OBJCOM· .. 000024

TOJULIAN DATEWORK·000068 DEBUGCOM·000023 OBJCOM· .. OOOO24

Notes:
Each COBOL source module is shown in far-left column.
Copied library members and statment numbers of the COPY statements are

shouwn on the right

PAGE 1

DBJCOM .. ·000057 RDOOOOOO·000248
SDOOOO03·000091 SRCCOM .. ·000055

INSEL 000032 INSEL 000035

INSEL 000035 INSEL OOO038

INSEL OOO031 OBJCOM .. ·00OO25

Figure 9-8. Example of Program Contains COPY(s) Report

RDOOOOOO·000250 RDOOOO01·000270
SOOOOO03·000070

MOCKUP .. ·000088 OBJCOM .. ·000026

OBJCOM .. ·OOOO29 OUTFILFD·OOOO51

OUTFILFD·OOOO42 OUTSEL .. ·000033

en
" m
r
m
a
z
"U
JJ o
(j)
JJ »
s:
»
"U
"U
JJ o »
()
I

(,)
01

136 PROGRAMMING MANAGEMENT

system only to experience a negative side effect elsewhere. Furthennore, new
programmers often spend weeks trying to understand the code they must
maintain.

Program developers seldom consider the needs of the maintenance program­
mer. What the skeleton program method accomplishes is verifying that the
development programmer is a maintenance programmer. Maintenance begins
with the customization of the undifferentiated program skeleton. Some mod­
ules developed in this manner may even be reusable in other applications. How
many installations have 10 or more date routines distributed in various applica­
tions? In fact, the calendar has probably been reinvented more often than the
wheel.

CONCLUSION

Application programming can be approached as an assembly-line discipline.
When selecting an application that has been designed but not yet specified, the
methodology described in this chapter should be considered as follows:

• Define all data descriptions , and catalog the structures containing them
in a source-program library .

• Evolve the program skeleton to exercise the COPY function to verify the
presence and syntactic correctness of cataloged descriptions.

• Replicate the skeleton, using the planned names of each module to be
developed.

• Build program specifications that list the COPY statements required for
each module.

• Assign programmers to implement the customizing of the program
skeletons by following the steps outlined in this chapter.

From this course of action will emerge an integrated, modular system that is
readily maintainable and that has been produced on a timely and cost-beneficial
basis.

1l@ Tools for Top-Down
T esti n 9 by Paul F. Barbuto, Jr.

INTRODUCTION

As the DP industry matures and society becomes more dependent on
computers, spectacular failures of computer systems must be avoided. The
concern for producing correct systems has, therefore, stimulated investigation
of such techniques as top-down design and structured programming.

Top-down design and structured programming take a high-level functional
requirement and decompose it into subgoals that, when achieved, enable the
original requirement to be met. Testing provides a method for assessing
whether functional requirements are being fulfilled and whether there are errors
in the implementation of the design. This, however, is not quite enough to
ensure that a system or program is "correct." For correctness, a system or
program must, in addition, not go haywire when confronted with incorrect
input data. A good testing program, therefore, is designed to search out
boundary conditions (i.e., those between correct and out-of-range data) and
generate multiple errors to test program reaction to unusual conditions. In
addition, a good testing program ensures execution of all of the code.

TYPES OF TESTING

There are two ways to look at the testing process. The black-box approach
evaluates a program based on whether it operates in the manner described in the
specification. The white-box approach looks inside the program and analyzes
the code in an attempt to demonstrate the functions of the software and
understand their relationships. This type of testing then attempts to use the
knowledge gained from the analysis to increase the thoroughness and variety of
the test data.

Black-box testing depends on the correctness of the functional specification.
This is both a blessing and a curse: a blessing in that it underscores the need for
good documentation; a curse in that if the documentation is poor, nonexistent,
or late, the planning of the testing is delayed and therefore can be rushed or
inadequate.

In addition to these testing operating modes, there are three dynamic testing
strategies from which to choose-bottom up, top down, and mixed.

138 PROGRAMMING MANAGEMENT

Bottom-Up Testing. Bottom-up testing is a stepped process in which
individual modules are tested first, subsystems (combinations of modules) are
tested next, and system integration testing is perfonned when the other two
steps have been completed successfully. It should be noted that this process can
make for extremely complex integration testing and requires a test harness for
each module and subsystem.

Top-Down Testing. Top-down testing, which assumes a hierarchical
structure, first tests the main program with one or two immediately subordinate
subroutines. Then, using the just-tested modules as a test harness, subordinate
subroutine levels are tested one at a time. This process continues until all
subroutines have been tested. Because this type of testing proceeds in the
opposite direction from that of bottom-up testing, test stubs are required, rather
than test harnesses. It should be noted, however, that whereas test harnesses
(drivers) are usually discarded after use, test stubs can often be expanded into
the modules that they are written to replace.

Top-down testing is the third link in the chain that also consists of top-down
design and structured programming. With it, testing can begin earlier in the
development process and be distributed, to some degree, throughout the life
cycle. When the test designer is preparing tests sequentially as new modules are
added to the program, the ramifications of adding a particular module of code
can be seen. Furthennore, the number of test cases that must be added to
exercise the new code is minimal.

AN EXAMPLE OF TOP-DOWN TESTING

Let us use the easy-to-understand example of designing, coding, and testing
a card-to-print program using top-down methods. The initial goal, providing a
card~to-print program, is illustrated in Figure 10-1. This function fonns the top
level of the hierarchy that will be constructed as the program function is
decomposed. In this example, we name the top-level routine CRDPRNT.

I Copy Card to Printer I
(CRDPRNT)

Figure 10-1. Sample Top-Down Design-Main Program Goal

If top-down implementation and testing are to progress as they should, the
next step is to generate proper JCL for the "program" and compile and execute
it with just the DECLARE statement for the variable buffer in it. When this
version of the program is working (and it should be, quickly), one is ready to
refine (or decompose) the top-level function. To do a card-to-print, the follow­
ing fuuctions must be perfonned: open the ftles, process the records, close the
ftles, and report the record counts. These subgoals represent the second level of
the hierarchy; they become four subroutines that are called by the main logic
path, CRDPRNT. For purposes of this example, these routines are named

TOP-DOWN TESTING 139

OPENFILS, PRCSRCRD, CLOSFILS, and RPRTCNTS, respectively (see
Figure 10-2). When first generated, the new routines need only contain com­
ments indicating their intended functions.

When this version of the program is working, one would add appropriate
JCL and actually open and close the input and output files (without actually
reading or writing them).

I Copy Card to Printer I
/ / \ " Open Process Close Report

Files Records Files Record
(OPENFILS) (PRCSRCRD) (CLOSFILS) Counts

(RPRTCNTS)

Figure 10-2. Sample Top-Down Design-First Level of Decomposition

The next level of the hierarchy includes decomposition of the PRCSRCRD
routine. Getting a record (GETRCRD) and printing a record (PRNTRCRD) are
the two functions that comprise the process record function; the design to this
point is shown in Figure 10-3. Note that an automatic transfer at end-of-file
makes this routine into a DO WHILE loop. As such, the READ in GETRCRD
must be included or the DO WHILE loop will never be satisfied. At this point,
the program can be executed with a null input file (and later with real input
data).

The last step would be to actually write the code that puts the record out (in
PRNTRCRD) and also the routine that increments the output record counter
each time a record is written, and then test the entire program.

I Copy Card to Printer I
/ / \ ~

Open Process Close Report

Files Records Files Record
Counts

/ "'-
Get Print
Record Record
(GETRCRD) (PRNTRCRD)

Figure 10-3. Further Decomposition of the Top-Down Design Example

140 PROGRAMMING MANAGEMENT

The Benefits of Top-Down Testing

Top-down testing is beneficial to both management and the programming
staff. Because it is more timely and manageable, both cost savings and a more
reliable product are likely to result.

Concurrent top-down design, coding, and testing begin to produce parts of
the final product early in the production cycle. This is achieved without risking
an early start to implementation without proper analysis. It gives all concerned
a real object to relate to, which can lead to higher morale and less tension
between the planners and the doers.

The constant feedback to the analyst provided by top-down testing points to
problem areas long before the system is complete. This early warning is useful
because it is harder to determine what caused a bug in a processing routine if the
first time it is apparent is during a test of the complete program.

With top-down testing, it is often possible to show the results of the last test
to the end user, with an explanation such as, "At this time, the program can
read all of the proposed input record types, and it can locate absurd values in
input cards." This makes it possible to enlist the user's assistance and capitalize
on his knowledge of the application.

When testing is integrated with development, some of the usual testing effort
devoted to understanding the program is unnecessary. Since testing is spread
over the entire project, demands for huge blocks of computer time for testing
are avoided near project completion. In general, this tends to level the computer
demands of the project over the life of the project-with respect to testing as
well as implementation.

It is the nature of top-down design that as one goes down the hierarchy, the
scope of a particular goal becomes smaller and the tasks needed to accomplish it
more specific. Thus, as one designs and programs from the top down, a clearer
and clearer opinion of what is necessary to complete the program is developed.

The part of the program that is written first is the main decision logic
controller. This is important and useful since it is tested and retested each time
new code is added at a lower level. Thus, that which, if incorrect, could do the
most damage and be hardest to debug receives the most testing under the top­
down testing approach.

TOOLS FOR TOP-DOWN TESTING

Hardware costs are decreasing, hardware speed is increasing, and staff costs
are increasing; a worthwhile management strategy, therefore, is to let the
machine assist the programmer. One way to do this is to build generalized tools
that collect data about programs that are being written and display it in such a
way that programmers can evaluate the quality of the design, the programming,
and the testing that are being done.

Such programmer aids can be used in a number of ways, including:
• As part of the program and design under construction
• As part of the translator program

TOp·DOWN TESTING 141

• As part of a preprocessor
• As part of the operating system

Flow Trace

A flow trace attempts to capture the dynamic sequence of program activities
over time by, in some fashion, recording milestones passed. This definition is
vague because flow traces vary a great deal. Unfortunately, flow traces are not
always easy to get or, just as bad, are not very meaningful.

One way of realizing meaningful flow traces is by inteIpOsing a preprocessor
between the source program and the translator. A simple preprocessor (i.e., one
that was written in half a day) takes properly coded FORTRAN comments
(those with a "CT" in columns one and two) and makes WRITE statements
out of them. The output of the preprocessor is sent through the compiler, and
the program's flow is displayed "in your own words." With this sort of trace
and the value of a few key variables available from the debug INIT option, a lot
of testing can be accomplished.

To obtain a production version of the code, the source program can be
recompiled without first passing it through the preprocessor and changing the
debug packet into comment statements. A similar comment converter has been
implemented for PLll, using preprocessor procedures-one set of procedures
for testing, the other set for production. Any language with a macro facility can
be provided with this type of enhanced flow-trace facility.

Completeness of Testing Coverage

As mentioned in the opening sections of this chapter, another requirement of
a good testing strategy is to verify that all parts of the program code have been
executed. Although executing all parts of the program does not ensure that
testing is complete, not going through each part at least once surely indicates
failure to provide complete test data.

Probes to collect test coverage data can be inserted by a preprocessor, just as
meaningful flow traces can. Alternatively, or better still, some form of sum­
mary statistics should be included. A competently written piece of software
would usually include the number and types of records processed, the number
and types of errors generated, the number of records read, and the number of
records written.

When considering testing coverage, it may very well be necessary to keep
the results of testing over multiple runs to provide the summary as described.
This is because you cannot have both no input records and records displaying
certain properties in the same run. Testing may have to be spread over different
executions of the program.

Flow Groups

A flow group is a single-entry, single-exit block of code that contains no
transfers. This concept is important when deciding where to place probes to
capture flow information; flow data must only be captured once per flow group.

142 PROGRAMMING MANAGEMENT

Sequences of Flow Groups. As was mentioned in the section on testing
completeness, merely passing through each section of code is not necessarily
indicative of a complete test. Going through all possible sequences of flow
groups, however, is a better indication.

Probes to collect flow-group execution data are easily included in a pro­
gram. The data can be recorded in an M X M matrix, where M is the number of
flow groups. The matrix is initialized to zero the first time it is used. An entry is
made in (i.e., one is added to) the matrix location associated with the appropri­
ate row-column pair when a transition occurs between one flow group and
another. The row number is determined by the "from" flow group. The
column number is determined by the "to" flow group. Interpretively, nonzero
rows are rows associated with flow groups from which transitions occur.
Nonzero columns are columns associated with flow groups into which transi­
tions occur.

Armed with sequential flow-group data, one must still decide whether these
are the only possible transitions and whether a particular transition has been
exercised for all possible reasons. For example, if a bug occurs only when two
error transactions of a particular type occur in sequence, it might remain
undetected if all possible sequences are not tested. Going from the flow group
associated with a correct transaction to that of an incorrect transaction, to
another error, to a correct transaction will represent adequate testing only if
there is only one possible error. Because it is always possible that there are
many errors, the entire flow-group matrix must be filled in in order to be certain
that all such "combination" errors have been detected.

If it is necessary to summarize over different runs, the matrix must be written
out and read in at the beginning of the next run, unless matrices are to be
preserved separately for each run and externally combined. This is probably the
preferred approach in that the effect of each batch of test data can be inspected
individually.

Module Structure Hierarchy

Another useful program that can assist in visualizing the top-down structure
of a program is a program that traces through all macro expansions and text
inclusions and displays the implied structure. Such a program aids in keeping
documentation up-to-date, since it is easier to command the machine to redraw
a hierarchy chart than to require a programmer or clerk to do the same task. It is
also more cost-effective. Such a program, appropriately named Tree, was
developed at the Multistate Patient Information System at the Rockland State
Hospital in Orangeburg, New York. The program scans a PLit source-library
partitioned data set containing a main routine and included members (CALLed
subroutines). It then draws a tree, taking its text from the comments that would
be generated into trace statements placed at the beginning and end of each
module. Its structuring of the tree is based on the nesting of these beginning­
and end-of-module indicators. This is possible since the structure of a tree can
be represented as a series of parentheses; the tree representing the hierarchy of
modules in the skeleton PLit program shown in Figure 10-3 is shown in

TOP-DOWN TESTING 143

Figure 10-4. In programs where there are many common routines realized by
subroutine calls, a display similar to that proposed for the module hierarchy is
useful.

Copy C~rd t? Print

Open . pr~~~~~ : : : .' :.' CI~;e 'Report Record
Files Records Files Counts

((

Get'
Record

((

Pririt
Record

))

Figure 10-4. Module Structure Hierarchy Display

Automated Regression Testing

))

Once a program gets big enough to require extensive tests, the problem of
generating adequate test data is only surpassed by the problem of reading test
results. Harnessing the computer to read and evaluate its own test output can go
a long way toward solving the latter problem.

One type of computer self-testing that can be built into systems that must be
extremely reliable is to have the systems software execute problems with
known solutions and check the results during idle moments. Any deviation
from expected results indicates failure of some sort and is cause for alarm. Any
program execution under test, with test data for which known, expected, or
approved results are available, is called a regression test. If a regression test is
run successfully, when a bug is fixed, one knows that additional bugs have not
been (re)introduced into already-tested code, at least not within the coverage of
the existing test data. This should be reassuring, since the test data was
considered to have been adequate in the past or is at least the best currently
available.

When top-down testing is being performed on a new system, regression
testing is done as the system modules are being integrated. Regression testing
attempts to ensure that the addition of a new module has not adversely affected
the previously tested modules. As an example, consider a project where the
primary goal is to rewrite an existing program to decrease execution time and
produce a well-documented top-down version of the data base summary ftle
generator. Regression testing could be accomplished in this case by comparing
the output ftles generated by the old and new versions of the program with the
standard mM utility program IEBCOMPR. This would be done after blanking
out those parts of the records in the ftles that one knows would be different,
either because of known bugs in the old program or because parts of the
program have not yet been implemented. Ultimately, the corrected parts would
have to be verified manually, but the bulk of the comparison could be done by
the computer. This technique enables one to test early program versions and get
run timings as the development effort progresses.

144 PROGRAMMING MANAGEMENT

String-Matching Problems. The problem of automatic output reading gen­
erally boils down to string-matching; the problem is threefold. The first
difficulty is in selecting the string to be compared, which, depending on
context, can be difficult. The second difficulty can arise in comparing the
string. This is relatively easy to do unless a tolerance band is allowed. The third
problem is that of resynchronization after a nonmatch, or because a fix or
addition is generating new output. The most likely solution to such a resyn­
chronization problem is the purposeful generation of milestones of some nature
(e.g., beginning of transaction xxx).

Remember, a computer is better suited to read and check voluminous test
results than is the average human; it is tireless and a stickler for detail. Solving
these string-matching problems will probably result in an excellent return on
the time and resources invested.

CONCLUSION

The use of the top-down method of testing with the associated tools de-
scribed in this chapter can do the following:

• Provide a low-risk environment and increased programmer productivity
• Provide earlier feedback to systems analysts, designers, and users
• Shorten project test time and total development time
• Provide more accurate project completion data
• Result in more thoroughly tested control logic

Furthermore, developing the testing tools required to support top-down testing
will constitute a relatively minor investment of programmer time and effort.

The challenge of the 1980s is to condition programmers to view testing in a
positive light and to integrate top-down testing into the design development
cycle. Making tools available to facilitate this integration will improve pro­
grammer productivity. Testing needs science, not art; tools, not techniques.

Bibliography

Barbuto, Paul and Geller, Joe. "Tools for Top-Down Testing." Datamation, Vol. 24, No. 10 (October 1978), 178-182.

Fairley, Richard E. "Tutorial: Static Analysis and Dynamic Testing of Computer Software." Computer, Vol. II, No.4 (April
1978), 14-23.

Hetzel, William C., ed. Program Test Methods. Englewood Cliffs NJ: Prentice-Hall Inc, 1973.

IBM OS PUI Optimidng Compiler Generollriformation. OC33-OO1-2.

McGowan, Clement L., and Kelly, John R. Top-Down Structured Programming Techniques. New Vorl<: Pettoce1lilCharter,
1975.

Rustin, Randall, ed. Debugging Techniques in Large Systems. Englewood Cliffs NJ: Prentice-Hall Inc, 1971.

Westley, Anne E., ed. lrifotech State of the Art Report, Software Testing, Volume 1: Anolysis and Bibliography. Maidenhead,
England: Infutech International Limited, 1979. Contributions by Fairley, Howden, Clarke, Kundu, and the editor.

Younion, Edward. Techniques of Program Structure and Design. Englewood Cliffs NJ: Prentice-HaIIInc:, 1975.

~~ A Methodology
for Program
Maintenance

INTRODUCTION

by David M. Clark

The large, complex systems currently demanded by users require detailed
know ledge of a given system in order to effect even the smallest change without
disruption. The high turnover in many DP shops, however, combined with the
need to rotate creative, easily bored people through various programming
challenges often requires that programmers make changes to a program or
system about which they know little.

Determining where and how to change an unfamiliar program under such
circumstances can be a serious problem. This chapter addresses this topic and
discusses program overviews, organization, and documentation as they relate
to program maintenance. Techniques for quickly and efficiently finding the
right code to change and ways of making future programs easy to maintain are
presented.

THE CHANGE TASK OVERVIEW

Determining where to change or not change a program is one of the biggest
problems maintenance programmers face; typically, they spend a great deal of
time on frustrating, misdirected, expensive searches for the right code. It is a
truism of programming that it takes more time to find where to change a
program than it does to make the change. Consequently, the methodology
discussed here emphasizes the proper preparation for making a change, rather
than the change itself. It is easy to write a MOVE statement in COBOL;
however, it is harder to know where to put that MOVE statement.

Importance of the Task

Management's first step in trying to control the maintenance effort should be
to indicate to the maintenance programmers the importance and priority of each
maintenance task. This step is important but often overlooked. Because mainte­
nance is the frequent burden of those least qualified to perform it (trainees and
programmers who are new to the shop), cost overruns often start with this first
step. Management should pay careful attention to the cost:benefit ratio of each

146 PROGRAMMING MANAGEMENT

maintenance task in determining its importance in relation to the overall work
load. It should be remembered, of course, that the additional expense incurred
by using new or inexperienced programmers is a training cost that should be
assumed by programming management. Thus, if the cost of changing a pro­
gram exceeds the immediate benefit to be derived, management should deter­
mine whether the task should be given a lower priority, completed by someone
more knowledgeable about the system, or perhaps not performed at all.

Available Resources

Determining and marshalling the resources available to the maintenance
programmer should be performed early in the maintenance effort. To do this,
management should ask the following questions:

• Are programmers who are knowledgeable about this system available to
help the maintenance programmer? How much time can they afford to
spend in the change task? Although knowledgeable, experienced pro­
grammers should always be made available to maintenance personnel,
the amount of time actually spent assisting in the change will vary
greatly, depending primarily on the skills and background of the mainte­
nance programmer.

• Has the maintenance programmer been assigned permanent responsibil­
ity for maintaining this program? If so, allowing the maintenance pro­
grammer extra time to become familiar with the entire program will pay
dividends later in the form of faster response to critical system crashes or
top-priority "hot" changes.

• How much time is available for testing? If a programmer can complete
only one or two test runs a day, extra emphasis must be placed on
analyzing and desk-checking the required changes.

• How difficult is it to test the changes? Can the maintenance programmer
try out several changes quickly and easily, or should dry runs and testing
models be relied on? Failure to determine the optimum testing/desk­
checking ratio of a maintenance effort is another reason for time and cost
overruns.

Change Instructions

Careful attention to change instructions is another important part of getting
an overview of the maintenance task. Change instructions should always be in
writing; unwritten instructions invite problems, including:

• Problems in determining why the change was made-after it causes
unpredictable or unforeseen results.

• Problems in deterrIJ.ining who asked for the change-Did the person
have the authority (especially if he or she was not the sole user of the
program's output)?

• Problems in determining the scope of the change-Why were only
certain programs or certain sections of a program changed?

PROGRAM MAINTENANCE 147

In addition to serving as a record of the change, written instructions often
force the user to be more explicit and thorough in detennining what should be
changed. Written instructions, however, may still not be enough, and manage­
ment should urge maintenance programmers to speak directly with the user who
first requested the change. The maintenance programmer can then compare the
written instructions with the user's interpretation of them. (It is worth noting
that most user-related DP problems are communications rather than technical
problems.)

A simple example illustrates this written versus oral communication pro­
cess. A user requested two changes to a program that produced a budget report
very similar to a more frequently used actual expense report. Recent changes
had been made to the expense program, and in discussing the changes with the
user, the maintenance programmer discovered that the user really wanted the
two report formats to correspond exactly. Instead of having to hunt and peck to
make the requested changes, the programmer simply inserted in the first
program all recent changes made to the second program. The task became
logically easier to accomplish since the programmer did not have to detennine
where the two programs differed; it took only slightly longer to do, and the user
was satisfied.

THE PROGRAM OVERVIEW

An overview of the program or programs to be changed is as important as an
overview of the change task. The length of time spent on this overview will, of
course, depend upon the importance assigned to the task.

Program Purpose and Type

This overview should attempt to determine the program purpose and type by
addressing the following questions:

• What is the basic purpose of this program? Is it a report generator, a fIle
update, or an edit/update?

• What is the primary output of the program? If the result or objective of
the program is known, it is easier to understand intennediate calculations
or processing.

• What is the basic framework of the program? How are loops handled?
What type of organization does the program have-fonnally structured,
loosely structured (GO TOs allowed, within limits), or waterfall (GO
TOs cascading down through the program)?

• What was the style of the programmer who originally wrote the pro­
gram? Most programmers have styles of coding as individual, and
sometimes as hard to comprehend, as their handwriting. Understanding
how loops are handled in a simple section of code will probably help the
programmer understand how loops are coded in a more difficult section.
A programmer's style is revealed in such things as how data names are
fonned, how IF conditions are handled (positive or negative logic), and
soon.

148 PROGRAMMING MANAGEMENT

Answering these questions will help the programmer make intelligent guesses
about what the program will do in the section requiring change. The program­
mer will thus be able to decide more quickly, with more assurance, what will
happen if the program control statements (and hence program logic) are
changed.

Program Control Structure

Getting an overview is usually easier with a program that has some structure
(i.e., it falls somewhere between modularized and formally structured). In such
a program, the major sections are identified in some sort of mainline or high­
level processing module, and the major processing loops are usually isolated
and thus easily identified. The section that needs to be changed can therefore be
located far more quickly and easily than in an unstructured program. This is
frequently given as a major justification for writing structured code . •

Getting an overview of an unstructured program is more difficult. It may, in
fact, be impossible in a program with countless hard-to-follow GO TOs, in
which case the programmer may be forced to start the overview at the begin­
ning, with the first procedural statement, and follow each one sequentially. A
more rational and efficient method is first to stake out the major boundaries of
program logic in order to break the program down into its identifiable sections
(mainline code, initialization routines, and the like). This process, which
makes an unstructured program emulate a structured one, is necessary to
determine into which section the change will fall.

The easiest way to do this is to look for the major processing loops in a
program, since they serve as the boundaries, or "fence posts," of logic.
Almost every program has them, even if implied (PERFORM UNTIL or DO
WHILE). The main loops are usually marked, especially in an unstructured
program, by some type of input statement, usually a read, and a program
control statement such as GO TO. Underlining these statements on the source
listing can be helpful. Particular attention should be paid to unconditional
branches, looking, for example, forGO TOs before paragraph or section names
in COBOL-especially GO TOs that loop back to the main input paragraph.

Picking out the major loops in an unfamiliar program has a tremendous
psychological advantage also: It reassures the programmer that there is, in fact,
some way to understand and therefore change a complex program. This
advantage is not to be taken lightly, since frustration over a seemingly incom­
prehensible program frequently causes programmers to make careless, stab-in­
the-dark changes. These are the changes that return to haunt their successors in
the form of system crashes, missing input, and the like. From this comes the

. infamous vicious circle in which programmers do not have enough time to write
correct, easy-to-maintain programs because they are too busy putting out the
fires of someone' s previous mistakes.

PROGRAM MAINTENANCE 149

Extraneous Sections

Ignoring the parts of the program that will not be affected by the change is
one of the most important-yet most difficult-steps in maintenance program­
ming; however, it is this step that causes programmers so much trouble. Some
general guidelines can be given as to which areas of a program can be ignored,
at least on the first pass. Initialization sections, for example, are usually
important only later, when the programmer needs to know when and where a
key data field is first accessed. Sections that build tables internally are impor­
tant only when changing the layout ofthose tables; otherwise, the programmer
can concentrate on what is done after data is stored on the tables. In a file update
program, the key matching logic can be ignored if the change affects only the
output on one of those files.

DETERMINING WHERE TO MAKE THE CHANGE

Performing the steps discussed simplifies the task of weeding out inapplica­
ble parts of the program. Keeping an overview of the program in mind and
knowing the style of the original programmer, the maintenance programmer
can determine where the mainline section of the program falls, where initializa­
tion is performed, when the program is likely to loop-and why-and, in
general, focus on the specific section to be changed. The programmer's
familiarity with the change instructions may then allow the change to be made
directly, without any further analysis.

If the program to be changed is particularly incomprehensible or if the
programmer has been unable to get an overview, an alternative strategy for
determining where to make the change may be necessary. This alternative
strategy focuses on the specific data element to be changed. If the programmer
knows the program data name for that data element, he or she can find out
where the element is accessed in the program cross-reference dictionary. If the
programmer does not know the exact name of a data element, the cross­
reference dictionary can be searched for a name suggesting that data element or
data function. If the data segment (record) is to be changed but the programmer
does not know where to find the code that accesses that data segment, he or she
can look for the occurrences of one of the fields in that record in the cross­
reference dictionary. An analogy can be drawn to a too-large or confusing
pattern in a piece of fabric; following a certain strand of cloth may help decipher
thepattem.

A data movement chart (see Figure 11-1) may help. Starting at the right­
hand side of a paper, a box should be drawn containing the last output field
name. The lines in the program in which that field appears should be indicated
below the box. One checks each occurrence of the field, crossing out superflu­
ous accesses and concentrating on the lines in which the field is created or
otherwise manipulated. Fields that provide data for that output field are drawn
to the left of the field, in their own boxes, with arrows connecting the two
boxes, showing the direction of the data movement. The statements that modify
or create the data can be written above those arrows. This process of working

150 PROGRAMMING MANAGEMENT

MOVE

1010,1899,2300,2310 ... 2300,2310,4200 ...

28,40,110,1899

Input Intermediate Output
Field ----- Field -----. Field

Figure 11-1. Data Movement Chart

backward through each field is continued until the original source of the data, or
the field that needs to be changed, is encountered The data movement chart can
then be filed with the change instructions for subsequent use by other mainte­
nance programmers.

Data movement can also be traced through procedural names. The para­
graph or section that needs to be changed would become the last output box, and
all paragrdphs or sections that perform or branch to that section would become
the intermediate boxes to be traced in this manner

MAKING THE CHANGE

Although maintenance programmers should not go overboard with mainte­
nance changes, they should not be afraid to make a change. Most novice
maintenance programmers, however, go through an unfortunate cycle in mak­
ing program changes. They start out eager to set things straight and become
overanxious about their deadlines and work load. (This anxiety underscores the
importance of assigning priorities.) As a result, the programmers often make
more changes than necessary, learning very soon that changing code because it
is not sufficiently elegant can lead to sudden and disastrous results. Feeling
foolish about their programming idealism, they overreact, vowing to change
only the bare minimum of code in all future maintenance tasks.

Management should stress to the maintenance programmers that this "once
burned, twice shy" philosophy is not necessarily effective programming,
although it neatly fits in with the novice's defense mechanism. People write
code, and people can change code. Changes can and should be made to poorly
written or incomprehensible programs to make them easier to follow and thus to
change.

Conversely, management should also stress the value of using code that one
is reasonably confident already works. Not all existing code works, to be sure,
but it must be given the benefit of the doubt if changes are to be made in a
reasonable amount of time. Similar routines in existing programs can often be

PROGRAM MAINTENANCE 151

copied or modified into the program to be changed. Establishing libraries or
directories of commonly used routines can be one of management's greatest
services for its maintenance programmers.

This is also a good time for a maintenance programmer, with the program
logic still fresh in his or her mind, to consider what other changes the user might
want in the near future. Management, by apprising the programmers of long­
term user objectives and plans as well as organizational considerations, can aid
in this process.

MAKING FUTURE CHANGES EASIER

After a stint doing maintenance, most programmers appreciate the difficul­
ties involved in changing obscure, hard-to-follow code. This may be why some
companies start their trainees in maintenance programming.

Documenting the Change

One of the best ways to ensure that future changes are easier to make is to
document what has been learned about the program logic (in addition to
documenting the changes currently being made). For example, a few words
inserted directly into the code about what a switch does, where it is initialized,
under what conditions this paragraph is performed, and so on can help subse­
quent programmers tremendously. In the absence of management directives to
perform this type of documentation (a lack that is hard to understand, given the
amount of time and money spent doing maintenance tasks), programmers who
do perform it sometimes start a trend toward greater documentation in their
shops. This trend has even spread to those who insisted they would not, or could
not, document. It is interesting to watch these programmers making changes to
an unfamiliar program. When scanning a page of code, their eyes usually jump
immediately to any documentation, even if the documentation is irrelevant or
out of date. Once in place, program documentation is hard to ignore.

The pros and cons of documentation, and how to document effectively, lie
outside the scope of this chapter. The question most frequently asked when a
program has problems is: Has it been changed lately? The following simple
guidelines should prove helpful in answering this question:

• Documentation should be done at the lowest level possible in the system
hierarchy, which is usually where the changes to the program were
made. Although separate documentation folders or program/system
narratives are helpful (and important), they are too far removed from the
level of the system that changes most frequently. Most programmers go
to the code first when they need to change a program; the documentation
should be put there.

• Some reference to the task or change instructions should be put in the
code. This enables subsequent programmers to spot the changed code
quickly. For example, the word "TASK" followed by a4-position task
number could be inserted in columns 73 to 80 of COBOL source
programs. If a programmer wanted additional information, he or she

152 PROGRAMMING MANAGEMENT

could pull the file on that task (if easily retrievable) to gather such
additional infonnation as the original user change request or notes made
during the change.

• The changes to the program should be filed with the program source
listing. This supplements the previous suggestion and provides a ready
reference to the changes. For example, a copy of the permanent program
changes could be filed in front of the COBOL source listings, allowing
programmers to tell instantly whether the program has been changed
recently.

Structured Retrofit

One concept that can aid program maintainability is that of structured retrofit
[1], which is basically the process of redesigning existing programs to conform
to the latest structured programming techniques. (This effort would, of course,
not be required if a system redesign were being considered.) A project team
consisting of a chief programmer, programmer analysts, and supporting per­
sonnel reviews existing programs to determine which need improvement most.
These programs are then changed, using certain criteria that primarily empha­
size clarity of logic flow, 110 standardization, and readability; they are not,
however, changed to correct any revealed errors, bugs, or user requests.

The idea of systematically revamping and retrofitting all programs not
meeting current standards is appealing and could probably be cost-justified
following sufficient research into a shop's current maintenance costs. It may
not be practical, however, for a maintenance programmer to wait for such a
retrofit to take place, given the current backlog, in most DP organizations, of
higher-priority projects with more user appeal.

There may be cases, of course, where a program is so incomprehensible that
it may have to undergo redesign and reorganization before any maintenance can
be done. In such cases, it may even be necessary to create a "shadow pro­
gram. " The shadow program is used only for maintenance efforts and contains
the same code as the original program (identifiable dead code is removed) but in
a rearranged sequence that is as straight line and as straightforward as possible.
GO TO statements are taken to code on the same source page, not buried in the
program. Additional comments, source line numbers of such statements, and
paragraph or section headings can be handwritten on a listing of this shadow
program. The shadow program may not be syntactically or logically correct (it
may not even compile successfully), but it is a clearer, easier-to-read map of the
original program. This listing is filed with the original program so that future
maintenance programmers can have it as a ready reference.

Increasing Program Maintainability

Although a large-scale reorganization or retrofit may be politically or
organizationally unfeasible, increasing a program's readability (and therefore
maintainability) is a sound concept that can be applied by maintenance pro-

PROGRAM MAINTENANCE 153

grammers, one program at a time. Certain changes can be made to any program
that will render future maintenance changes easier but that do not necessarily
involve a complete retrofit or reorganization and the consequent risk of altering
program logic or output. These changes, which make a program easier to read
and comprehend, include indentation; the ample use of blank space; succinct,
meaningful comments; and the use of mnemonic names.

Indentation. Indentation is a simple, frequently overlooked way to im­
prove program readability. Its major value lies in drawing the maintenance
programmer's attention to the chief divisions of program logic or data structure.
Code that is indented to other code suggests visually that it is dependent on or
inferior to the nonindented code. The programmer, therefore, must keep in
mind only the nonindented code, rather than the entire block of code. For
example, with the following code in COBOL:

IF FRACTION-INPUT NOT = SPACES
PERFORM A020-FRACTION-DECIMAL-CONVERT.

The indentation of "PERFORM A020-FRACTION-DECIMAL­
CONVERT" suggests to the programmer, even if he or she does not know the
syntactical requirements of the IF statement, that the PERFORM phrase is
somehow dependent on the IF phrase. Without indentation, this dependence
would not be suggested:

IF FRACTION-INPUT NOT = SPACES
PERFORM A020-FRACTION-DECIMAL-CONVERT.

As a result, the programmer would have to work harder to spot the IF statement
and know that the syntax of the COBOL IF statement requires a subsequent
imperative statement. Such additional time and knowledge requirements ulti­
mately add to the cost of maintenance.

Open Space. The ample but judicious use of open space in a program
listing can also improve program readability and maintainability. Open space
emphasizes and attracts-a device used successfully in advertising. The
boldest, most direct message is a simple sentence or two surrounded by
uncluttered space. In the same manner, textbook editors separate chapter
headings from text by open space. In a program, open space should be used
around procedure headings (paragraph or section names in COBOL) and major
divisions of the programs as well as individual statements. For example:

A020-FRACTION-DECIMAL-CONVERT.

Asterisks are also frequently used to highlight statements:

*********************** ..
: A020-FRACTION-DECIMAL-CONVERT. *

154 PROGRAMMING MANAGEMENT

Another example illustrates the importance of free space and indentation:

IF INPUT = SPACES MOVE ERROR-MESSAGE
TO DISPLAY-MESSAGE STOP RUN ELSE
MOVE INPUT TO HOLD-AREA GO TO CONTINUE.

This code obscures the major procedural statement STOP RUN, buried in the
middle.

Comments. The use of succinct explanatory comments is another impor­
tant part of program maintainability. There has been much hand-wringing over
the seeming inability of many programmers to document their programs with
comments; however, as noted previously, program comments, once in place,
are visually hard to ignore. Given this prominence and the realization that the
programming function is basically a process of mentally translating from one
language (e.g., COBOL, FORTRAN) to another (e.g., English, German) each
time a program is read (maintained), the use of comments to explain program
logic assumes added importance. Management should require a reasonable
number of program comments from the maintenance programmers (four or five
lines of comments for every page of text; more for complex code, less for
straightforward code).

Mnemonic Names. The use of meaningful mnemonic data and procedure
names helps speed maintenance efforts, primarily because a programmer who
knows what a section of code does (because of its representative name) does not
have to worry about exactly how it does it. (This is the cornerstone of the black­
box theory of software engineering, which has been used by computer and
systems software designers for years.) In the previous example (PERFORM
A020-FRACTION-DECIMAL-CONVERT.), the reader can probably assume
that A020-FRACTION-DECIMAL-CONVERT takes some input fraction and
converts it to its equivalent decimal. How it accomplishes that task is not
important, especially if the programmer knows that the code has been obtained
from another program or a system library and has probably been debugged
already. In fact, if the output of that section of code is irrelevant to the sections
that need to be changed, the maintenance programmer can ignore the section
completely, speeding comprehension of the program.

These techniques for improving program maintainability are not to be taken
lightly. In one experiment [2], participants in a simulated maintenance situation
obtained significant results in terms of productivity and accuracy when they
used indentation, comments, and meaningful mnemonics. The use of mnemon­
ics created productivity gains of 48 percent, and the use of comments fostered
gains of from 34 to 69 percent. Thus, these simple techniques provided
significant gains.

CONCLUSION

A significant reduction in maintenance programming costs is possible when
a methodology for maintaining programs is followed. This methodology
should emphasize programmer preparation, program and task overview, and

PROGRAM MAINTENANCE 155

change follow-through. Documentation, both before and after the change, is
also important. Revising current or writing future programs to include indenta­
tion, free space, comments, and mnemonic names will help to reduce future
maintenance programming costs.

References

I. Miller, J .C. "Structured Retrofit." Techniques of Program and System Maintenance. Edited by Girish Parikh. LincolnNE:
Ethnotech Inc, 1980.

2. Gilb, T. "Structured Prognun Coding: Does It Really Increase Prognun Maintainability?" Techniques of Program and System
Maintenance. Edited by Girish Parikh. Lincoln NE: Ethnotech Inc, 1980.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I

