L)

VANCE

R SYST

NMPU T

—MS

AUERBACH INSTITUTE

ADVANCED COMPUTER SYSTEMS
APPLICATIONS, TECHNIQUES

AND CONCEPTS

o June, 1968

Training Course
Prepared and Presented
by
AUERBACH Institute

A

AUERBACH
®

TABLE OF CONTENTS

Tirie Pace

Introduction and Course Outline v ittt it vttt v v e 1.1
Origins of Operating Systems and Multiprogramming 2.1
Multiprocessors « - - « -« v et i e e e e e e e e e e e e e 3.1
Transition to Third Generation Machines: System/360 4.1
Third Generation Operating Systems 5.1
Univac 1108 and Introduction to High Performance Machine 6.1
Realtime Considerations for Operating Systems: Univac 1108

Executive Systems . . . - oL o e e 7.1
High Performance Hardware v o 8.1
High Performance Software . - oo e 9.1
Stack Machines and Other Advanced System Concepts 10.1
Stack Machine Executives and Precision Considerations 11.1
Resource Allocation and Time Sharing 12.1
Systems Development for Time Sharing: GE 635 and OS 360/67 eeee 1301
Software for Time Sharing - - MULTICS and TSS/360 « -« -« oo v v v v 14.1
Basic Concepts in Programming Languageso 16.1
Structure of ALGOL « « « t v o o o e et e e i e e e e e e e e e e e e e 1701
Data Management Environment - . . - oo oo oo e 18.1
Structure Of PLI « v« v o e e e e e e e e e 19.1
The Job Management Function, 20.1
Assemblers, Symbol Tables and Macros 21.1
File Systemot e e e e e e e 22.1
Programming Systems e e e e e 23.1
Data Management Technology B 24.1
List Processing i e e e e 25.1
Data Management Technology and Conversational Systems 26.1
String Manipulation Languages « - « « « v v v v v e v ... e e e 27.1
Simulation Languages vt o i e e e e 28.1
Software Projection for the Near Future, 29.1
Hardware Projection for the Near Future 30.1
Bibliography« o o i e e e e e e e Al

iii

NOTES

vor e 20 e %My
nood dew BSA

A

A Q/ngzfz zva&.fﬂ},z ¢4

|
wi
Dondlon s

2
ANk

e
5 (22
b

t
{
i

®

AUERBACH

B e d Blichite,
| |
|
|
%
|
|
|

: QM&/_L/%W

i
i

. . R
| Guald m/(? oKy Tiwe ¢

. qﬂmﬁux@
| HAea %ﬁ%

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

OBJECTIVE OF FIRST HALF OF COURSE

e DESCRIBE THE ORIGINS AND DEVELOPMENTS OF SYSTEMS
ARCHITECTURAL FEATURES PRESENT IN 3RD GENERATION COMPUTERS.

e HARDWARE

MULTIPROCESSORS

MICROPRO GRAMMING
INTERRUPT SYSTEMS
SCRATCHPAD .
HIGH PERFORMANCE MACHINES
STACK MACHINES

TIME SHARING SYSTEMS

e OPERATING SYSTEMS

MULTIPROGRAMMING
, RESOURCE ALLOCATION
TIME-SHARING
‘ REAL-TIME

PURPOSE: TO IDENTIFY IMPORTANT ORGANIZATIONAL CONCEPTS

FOR COMPUTING SYSTEMS, AND THEIR AREA OF GREATEST
APPLICABILITY.

1.1

A INTRODUCTION AND COURSE OUTLINE
AUERBACg

1

YEAR CHRONOLOGY AND GENEALOGY OF COMPUTER SYSTEMS

53 701 C ul D 1101
/
C B20os D C nos>

f

54

55

56

Al
U

GorevD |
.

57

58

59

60

61

1440,60,7010

62 7094
63
64

65 SPECTRA 70/15,25,460/30,40,44,50,65 C 1108 D
-

Il " *@ _1
66 70/55 360/75 360,67 @ SIPROS

i i g ! i
67 70/35 360/90) : C Bssoo > 6800 D

68 7015 QuLTic <)

69 _ .360/85
- e

/
@

A

AUERBACH
®

INTRODUCTION AND COURSE OUTLINE

Q ‘ " ;*\ g g,
MAJOR INFLUENCES ”‘“&'“(T 0.

®* OPERATING EASE
®* THRUPUT
®* PROGRAMMER SERVICE

L LANGUAGE SUPPORT

1.3

()

A

AUERBACH
®

INTRODUCTION AND COURSE OUTLINE

N

i 0
TRADEOFFS)% ’
)

MORE SERVICE

LESS SPACE

MORE EXECUTION TIME
LESS PROGRAMMING TIME

THE EGO QUESTION

1.4

A

AUERBACH
®

INTRODUCTION AND COURSE OUTLINE

THE SYSTEM AS AN ENVIRONMENT

¢ USER HAS NO CHOICE
® FACILITIES PROVIDED:
® PROGRAM INSERTION
. DEBUGGING
. LANGUAGE TRANSLATION

i CORRECTION

® MORE SOPHISTICATION

° /0
g LINKAGE

b MULTIPLE LANGUAGE SUPPORT

1.5

A INTRODUCTION AND COURSE OUTLINE
AUERBAC};

A 3—PHASE OPERATING SYSTEM

(SQUOZE
" source - » ScAT || BINDER | SNAP | o
PROGRAM EXECUTION TRAN
- (DECLARATION , T | DEBUG
m l
SOURCE 1/0
| 5 OUTRAN|—pl
DATA INTRAN -
N

}(PHASE 1 + PHASE 2 + PHASE 3 —lbl

O o e

A

AUERBACH
®

INTRODUCTION AND COURSE OUTLINE

BINDING CONCEPT
TIME WHEN PROGRAM IS ASSIGNED ACTUAL LOCATIONS
IN MEMORY
EARLY SYSTEMS — DURING CODING
BY ASSEMBLER
BY RELOCATION AND LINKAGE PROCESS
BY SYSTEM, VIA COMPACTING

DYNAMICALLY, BY PROCESS CALL

1.7

=

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

USE AND DEFINITION TABLES FOR A PROGRAM UNIT w
ENTRY SYMBOL VALUE
_ _ DEFINITION
TABLE
EXTERNAL SYMBOL #1
USE 1 USE 2 USE n USE
VALUE |VALUE VALUE TABLE
EXTERNAL SYMBOL #2
USE1 |UsE2 | . . . | UsEn C
VALUE | VALUE VALUE
L
L ENTRY 2
PROGRAM
TEXT

——»= ENTRY 1

CALL EXTERNAL 3 g
CALL EXTERNAL 2 i

L]
CALL EXTERNAL 1 ot

1.8

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

MAIN/SUB-PROGRAM ORGANIZATION

LINKAGE METHOD 1: DIRECT
CALL COS
]
PROGRAM
CALL SIN ONIT
: "MAIN"
CALL ZILCH
» COS
L PROGRAM
. UNIT
—> SIN TRIG"
1
]
]
—» ZILCH <
[}
CALL SIN PROGRAM
| UNIT
\ "ZILCH"
CALL CRUD
,
CRUD
, PROGRAM
\ UNIT
l IICRUD!I
[

1.9

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

LINKAGE METHOD 2: TRANSFER VECTOR

PROGRAM

0 EXTERNAL SYMBOL 1 I JE—

1 EXTERNAL SYMBOL 2 <

TRANSFER
VECTOR '

e o e » ®» =

n-2 EXTERNAL SYMBOL n-1

n-1 EXTERNAL SYMBOL n 4—7

OPR n-1

PROGRAM OPR 1
TEXT

OPR 0

A

INTRODUCTION AND COURSE OUTLINE

AUERBAC:
LINKAGE METHOD 3: EXECUTION MAPPING
:
STORAGE R T
MAPPING —» EXT 1 LOCATION >
TABLE
/\/\:/\/\/
| T
1 EXT 1 [3 —» EXT1 |
L e]]
—® EXT 1 I .
|
CALL EXT 1.
CALL EXT 1 CALLEXT 1
CALL EXT 1 /\/\/\/
CALL EXT 1
CALLEXT 1
/MN\/

P1

WW

P2 P3

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

FIELDS OF TYPICAL ASSEMBLER STATEMENT

e SYMBOLIC LOCATION NAME OR LABEL
e OPERATION

e OPERAND

o COMMENTS

e SERIAL IDENTIFICATION

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

RELOCATABLE SYMBOL RULES

REL: LABEL IN MACHINE ORDER OR LOCATION-DEFINING OPERATION
NONREL: LABEL IN NON-LOCATION-DEFINING OPERATION
REL + 5 — REL
REL + NONREL —» REL
REL + REL —» NONREL
REL * REL — NONREL

ALPHA CLA B (REL)
Z EQU 7 (NONREL)
Y EQU ALPHA (REL)
X EQU ALPHA+7 (REL)
w EQU ALPHA*Z (NONREL)

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

TEXT AND RELOCATION DATA

1

2

3

4 PROGRAM

' TEXT
WORDS

- e mece@-e - -
© = = === e -

RELOCATION
DATA

A

AUERBACH
®

INTRODUCTION AND COURSE OUTLINE

TYPES OF STATEMENTS IN A TYPICAL ASSEMBLER

MACHINE INSTRUCTIONS

DATA DEFINING PSEUDO -OPERATIONS
"BUILT-IN" SYSTEM MACROS

ASSEMBLER CONTROL PSEUDO -OPERATIONS
CONDITIONAL AND ASSIGNMENT OPERATIONS
MACRO DECLARATIONS AND CALLS

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

OPERATION OF A SIMPLE TWO -PASS ASSEMBLER
@) PASS 1; PASS

INITIALIZE FOR PASS 1 INITIALIZE FOR PASS 2
SIR = O ,, RESET SCAN TO FIRST RECORD
- SIR = O
READ SYMBOLIC < | READ SYMBOLIC <
INSTRUCTION INSTRUCTION
GO TO VES
PASS 2 TEST FOR END INCREMENT INCREMENT
OF PROGRAM SLR SLR
A NO A
LOOK-UP OPERATION
NG CODE
TEST FOR LOCATION SYMBOLJ) ¢
YES LOOK-UP ADDRESS
. CODE
ENTER SYMBOL IN
SYMBOL TABLE WITH ASSEMBLE AND STORE
CURRENT VALUE OF SLR BINARY INSTRUCTION

(@) (b)

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

DATA DEFINING PSEUDO -OPERATIONS:

e OCT
e DEC
e CHAR

e PREFIX CODES

BUILT-IN SYSTEM MACROS:

e CALL
e SAVE
e RETURN

e VARIOUS I/O OPERATIONS
e SUPERVISOR SERVICE REQUESTS O

ASSEMBLER CONTROL PSEUDO -OPERATIONS:

e START

e END

e PRINT

e PUNCH

e ORG

e BSS

e USE

e ENTRY

o EXTERNAL

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

CONDITIONAL AND ASSIGNMENT STATEMENTS

S SET E VE) — V(S)
S - SET 1 1 — V(S)
S SET s+1 V(ES)+1— V(S)

“IF A,B,L
(IF V(A) = (V(B) THEN SKIP ASSEMBLY TO LOCATION L)

IFF A,B
(IF V(A) = V(B), THEN SKIP COUNTER BY 2)

A

AUERBACH
®

INTRODUCTION AND COURSE OUTLINE

CALCULATION OF N FACTORIAL BY ASSEMBLER

N EQU

SET 1
SET]
IF S
SET - S
SET K
GO TO M
CONTINUE .

PO ol KWZKU" « o o

1%
|=

GahwON-—
N
AON—

120

A INTRODUCTION AND COURSE OUTLINE

AUERBACH
®

MACRO DEFINITION AND CALL

SUM MACRO A,B,C

LDA A

ADD B

STO C

ENDM
ALPHA SUM ADDEND, AUGEND, TOTAL
ALPHA LDA ADDEND

ADD AUGEND

STO TOTAL

1.20

A

AUERBACH
®

INTRODUCTION AND COURSE OUTLINE

UM

ALPHA

ALPHA

ITERATIVE REPEAT FUNCTION

MACRO
LDA
ADD

IRP

STO

IRP
ENDM

SUM

LDA
ADD
STO
STO
STO

A,B,C
A

B
C
C
X,Y, (21,22,23)

Z1
Z2
Z3

1.21

A ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING
AUERBACH
[

DEFINITION OF MULTIPROGRAMMING

THE TIME SHARING OF A CPU BY THE SEQUENTIAL OPERATION

OF MULTIPLE PROGRAMS.

2.1

A

AUERBACH
®

ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING

ORIGINS OF MULTIPROGRAMMING

CPU TIME < < I/O TIME
VISIBLY SLOW EARLY MACHINES

INTRODUCTION OF LARGER (E..G. 32K) MEMORIES

2.2

C

A ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING
AUERBAC:

FUNCTION OF SIMPLE MULTIPROGRAMMING SUPERVISOR

® DECIDE THE ORDER OF EXECUTION AMONG RESIDENT JOBS BASED ON:

AVAILABILITY OF DATA AND FACILITIES
THE PRIORITY OF THE JOB

RELATIVE PRIORITIES OF OTHER JOBS

2.4

A ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING
AUERBACH :
®

TYPES OF MULTIPROGRAMMING

JOB
MIX FIXED FIXED VARIABLE
MEMORY CONTENT | NUMBER | NUMBER AND
ALLOCATION ‘ CONTENT
FIXED PARTITIONS X X
VARIABLE—STATIC X X
VARIABLE—-DYNAMIC X

2.5

A ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING
AUERBACH
®

FIXED PARTITION — FIXED CONTENT

° EARLIEST MULTIPROGRAMMING

d IN EFFECT COMBINED TWO PROGRAMS INTO ONE;
PROGRAMS SHIFTED CONTROL BACK AND FORTH.

o CHOICE OF PROGRAMS CRITICAL — ONE 'COMPUTATIONAL,'
ONE 1/0 BOUND

° NO INTERNAL SCHEDULING — COOPERATIVE CONTROL

2.6

A

AUERBACH
®

ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING

FIXED PARTITION FIXED NUMBER

MODEL. FOR PRESENT 360 DOS
EARLY EMPHASIS ON MIX (E.G. COMPUTATIONAL AND 1/0)

IN PRINCIPLE ANY PROGRAM CAN BE RUN AS LONG AS IT
FITS PARTITION

USES EXECUTIVE TO SCHEDULE CPU TIME ON (POTENTIALLY)

POSITION IN MEMORY
1/0 ACTIVITY
PRIORITY

MINIMUM USEFUL LEVEL OF MULTIPROGRAMMING

2.7

A ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING
AUERBACH
®

VARIABLE—STATIC FIXED NUMBER

° ALMOST COMPLETE — FIXED NUMBER OF PROGRAM
ESTABLISHED TO FIX SIZE OF OP. SYSTEM TABLES

° SEQUENCING THROUGH RESIDENT PROGRAMS

ROUND —ROBIN

FIFO

PRIORITY :

JOB LIST POSITION—DEPENDENT
TIMER LIMITATIONS

o INTRODUCES MEMORY MANAGEMENT PROGRAMS

COMPACTING FOR FREE SPACE
ALLOCATION MADE AT LOAD TIME
PERMITS QUEUEING JOBS ON SECONDARY STORAGE

2.8

A ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING
AUERBACH
[]

VARIABLE—STATIC VARIABLE NUMBER AND CONTENT

° SIMILAR CAPABILITIES AS WITH FIXED NUMBER —
MAY BE ABLE TO GET SOME FEW MORE PROGRAMS IN.

o REQUIRES MEMORY ALLOCATION FOR OPERATING SYSTEM
AS WELL.

2.9

A ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING
AUERBACg

VARIABLE—DYNAMIC VARIABLE NUMBER AND CONTENT

) MODEL FOR MOST 'LARGE SCALE' MULTIPROGRAMMING
SYSTEMS

o PERMITS RUN—TIME ALLOCATION OF MEMORY FOR HANDLING
COMPLEX PROGRAM STRUCTURES

° PERMITS RUN—TIME COLLECTION AND BINDING OF PROGRAMS

FORK
JOIN

2.10

A

AUERBACH
®

ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING

OTHER MULTIPROGRAMMING OPERATING SYSTEM ISSUES

® CONTROL INTERPRETERS

® RESOURCE ALLOCATION FOR QUEUED JOBS

PERIPHERAL DEVICES

MEMORY

RESERVATION TECHNIQUES

A

AUERBACH
®

ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING

CONTRIBUTIONS TO MACHINE ORGANIZATION

e HONEYWELL 800

e BASE REGISTER CONCEPT

2,12

A ORIGINS OF OPERATING SYSTEMS AND MULTIPROGRAMMING
AUERBAC!;

THREE STAGES OF MULTIPROCESSOR DEVELOPMENT

1. HIGHER PERFORMANCE SYSTEMS THROUGH
CONCURRENT PROCESSING

2. HIGH RELIABILITY SYSTEMS

3. IMPROVED PERFORMANCE AND SYSTEMS BALANCE

2. 13

A

AUERBACH
®

MULTIPROCESSOR

CPU

CPU

CHANNEL

MEMORY

CHANNEL

3.

1

A MULTIPROCESSOR
AUERBACH

MULTICOMPUTER

MEMORY
CHANNEL cPU
= MEMORY
CHANNEL CPU
MEMORY

3.2

A

\UERBACH
®

MULTIPROCESSOR

UNIVAC LARC

1 2 MEMORY 10
"ececee
A
cut cu2
)
TAPE
SYNCH DRUM _____{j::::)
SYNCH
| PRINTER I/o
SYNCH PROCESSOR
PAGE
CARD RECORDER P.R.
l ' SYNCH SYNCH

3.3

A

AUERBACH
®

MULTIPROCESSOR

GAMMA 60

A

(INSTRUCTION

e

REQUESTS)
PRIORITY €~ —— oo b |
LOGIC L) A K
Y | | |
TRANSFER | of PGM ARITH LOGICAL GEN.
DISTRIBUTOR S DISTR. CALC. CALC. COMP.

PRIORITY
LOGIC

(DATA REQUESTS)

TA

|
b

3.4

A MULTIPROCESSOR
\UERBACF;

TRW—400

DM DM | *°** | T™ ™ (TOTAL 64)

CM

CcM

CM

BM /

BM

J CENTRAL
EXCHANGE

BM

(TOTAL 16)

3.5

A

AUERBACH
®

MULTIPROCESSOR

MULTIPROCESSOR MODULAR MEMORY

4095

COMPUTER 1/0
ACCESS BUSSES

4096

8191

8192

12. 288

3.6

A

AUERBACH
®

MULTIPROCESSOR

TIME-SLOTTED BUS

1/0
CHANNEL

CPU

CPU

3.7

MEMORY
SUBSYSTEM

A
/ 2—WAY
. \, .
\ / DATA PATH
! \ -
/O
CHANNEL

™

A

AUERBACH
®

MULTIPROCESSOR

BANK SWITCHING (3600)

SELECTS SELECTS
MODULE WORD
MODULE

DESIGNATION WORD ADDRESS

3.8

A\

AUERBACH
®

MULTIPROCESSOR

6°€

ACCESS DISTRIBUTION ON LARC BUS

4uS
A
/
I/OP COMP 1 COMP 2 I/O P ‘| NOT COMP 2 COMP 1 1/0 DISP.
INST. OR INST. OPERAND | DISPACT. USED INST. OPERAND | ACCESS
OPERAND | ACCESS ACCESS ACCESS ACCESS ACCESS
ACCESS

<+~ S5uS -

~

A

AUERBACH
®

MULTIPROCESSOR

CROSS BAR SWITCHED MEMORY

MEMORY
#1

MEMORY
2

CPU

"MEMORY
3

e o o o

MEMORY
4

CPU

CHANNEL.

3.10

A

AUERBACH
®

MULTIPROCESSOR

CROSS BAR SWITCH MEMORY (SHOWING UNIQUE CONNECTION TO EACH PROCESSOR BUS)

MEMORY
UNIT #1

MEMORY
UNIT # 2

CPU

MEMORY
UNIT # 3

MEMORY
UNIT #4

CPU

I/O

3. 11

A MULTIPROCESSOR
AUERBACH

" DISTRIBUTED" CROSS BAR SWITCH

MEMORY MEMORY ~ MEMORY MEMORY
o o o o
SWITCH SWITCH SWITCH SWITCH
LOGIC LOGIC LOGIC LOGIC

A

AUERBACH
®

MULTIPROCESSOR

CHANNEL SHARING MEMORY CIRCUITS OF CPU

ARITH.
&
CONTROL

(INHIBIT)

!

CHANNEL

O

-MEMORY
ADDRESS
REGISTER

MEMORY CONTROL

MEMORY

<€——» BUFFER

REGISTER

3.13

MAIN
MEMORY

A\

AUERBACH
®

MULTIPROCESSOR

MACHINE

1108
360,65, 67
625/35/45

REPRESENTATIVE MEMORY MODULE SIZES

MAXIMUM PERMITTED

SlZE IN SYSTEM
32K WORDS 8
256K BYTES. (32K WORDS) 8
32K OR 64K 8 (4)

O

3.14

A

AUERBACH
®

MULTIPROCESSOR

INDEPENDENT 1I/O CHANNEL

@,

ARITHMETIC

CONTROL

(INTERRUPTS)

CHANNEL

<«— DATAPATHS — 3

MEMORY L.OGIC

STORAGE

3.15

A

AUERBACH
®

MULTIPROCESSOR

D825 CHANNEL ARRANGEMENT

DEVICES

Ct
®
[]
C3
1/0 BUS.
1/0 BUS.
10C | Ioc
1 1
1oc | | Ioc
2 2
® []
® [)
. . <«—— PERIPHERAL
. . EXCHANGE
Y L]
IoC Ioc
2 10

3.16

A MULTIPROCESSOR
AUERBACH

360/67 CHANNEL ARRANGEMENT

(SIMPLIFIED)
M1 M2< ¢ o o o o MU
Py
P
cc; CCy
cal CG2

TCU

3.17

A MULTIPROCESSOR
AUERBACH

SINGLE BASE REGISTER AND MEMORY
ALLOCATION

BASE REGISTER >

PROGRAM

STORAGE

3.18

A -MULTIPROCESSOR
AUERBAC!;

SEPARATE PROGRAM AND DATA BASE REGISTERS

PROGRAM BASE '
REGISTER
DATA

DATA BASE
REGISTER

PROGRAM

STORAGE

A

AUERBACH
®

MULTIPROCESSOR

BASE REGISTER ADDRESSING

2174

BASE REGISTER

503

CUA 508 INSTS.

fe . a — —— - - o

/0 11/ 0lol|*(508,
RELA—

TIVE, 2680
ACTUAL)

STORAGE

3.20

A

AUERBACH
®

MULTIPROCESSOR

360.RX INSTRUCTION

OP
CODE

D2

3.21

A MULTIPROCESSOR
AUERBACH

EVENT PROPAGATION IN AN OPERATING SYSTEM

DISPATCHER

USER PROGRAM
RETURN POINT, ID
(CPU ID)

DATA REQUIRED,
PLACE IN USER PROGRAM ,
TO RESUME PROCESSING, (ID)

M

1/0
CONTROL

3.22

A

AUERBACH
®

MULTIPROCESSOR

TYPICAL UNIPROCESSOR INTERRUPT IMPLEMENTATION

INTERRUPT —3

INTERRUPT
TRANSFER
VECTOR

IHR,

IHR,

3.23

STORAGE

A

AUERBACH
®

MULTIPROCESSOR

INTERRUPT CLASSES ON 360

MACHINE CHECK (FAULT)
EXTERNAL

SUPERVISOR CALL
PROGRAM (FAULT)
1/0

3.24

A

AUERBACH
®

MULTIPROCESSOR

32
33
34
35
36
37
38
39

360 CHANNEL STATUS WORD

KEY 0000

COMMAND ADDRESS

31

STATUS

COUNT

32

ATTENTION
STATUS MODIFIER
CONTROL UNIT END
BUSY

CHANNEL END
DEVICE END

UNIT CHECK

UNIT EXCEPTION

47

40
41
42
43
44
45
46
47

3.25

PROGRAM—CONTROLLED INTERRUPT
INCORRECT LENGTH

PROGRAM CHECK

PROTECTION CHECK

CHANNEL. DATA CHECK

CHANNEL. CONTROL CHECK
INTERFACE CONTROL CHECK
CHAINING CHECK

A MULTIPROCESSOR
AUERBACH

METHODS OF PROGRAM & DATA PROTECTION

e BOUNDS REGISTERS

e STORAGE LOCKS

3.26

A\

AUERBACH
®

MULTIPROCESSOR

COMMON DATA IN A REAL—TIME APPLICATION

PGM #1

PGM 2

COMMON
DATA

STORAGE

3.27

A

AUERBACH
®

MULTIPROCESSORS

TEST AND SET

CYCLE MEMORY

!

FETCH SPECIFIED
DATA, SETBYTE
IN STORAGE TO
ALL 1'S

!

SET CONDITION CODE TO
0 IF LEFTMOST BIT IS 0
1IF LEFTMOST BIT IS 1

v

3.28

A

AUERBACH
®

MULTIPROCESSORS

STRUCTURE OF INTERRUPT DRIVEN OPERATING SYSTEM

e

HALT (CONTROL MACROS) —»
1/0 COMPLETE —
REAL TIME I
CLOCK OVERFLOW —3p N
T
E
R
INTERRUPT COMPUTER N —» R
u
P
EXTERNAL REQUESTS — T
R
______________ |E
G
ARITHMETIC OVERFLOW — I
S
T
PARITY ERROR —>
R
ILLEGAL INSTRUCTION —_—
WRITE OUT OF BOUNDS —
POWER FAILURE RESTART —»

Y
m<—-Hcomxm

TERMINATION

RESPONDERS

ALLOCATION
I/O
COMPLETE
TIMING
/O
SCHEDULING
‘SCHEDULING
FILE
MAINTENANCE
READYING

DIAGNOSTIC

CONFIDENCE

TRACE

OPERATING SYSTEM

E'uo TrP»3360013707 rKr>»313$O0 =Z
{

DOV M

<AM<OOmMmM™

POWER FAILURE -
COUNT REAL TIME CLOCK —»

3.29

©

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

FACTORS ENTERING INTO SYSTEM/360 DESIGN

LARGE NUMBER OF EXISTING IBM INSTALLATIONS.

COSTS OF MAINTAINING SEPARATE SOFTWARE
SUPPORT FOR DIVERSE MACHINES,

IMPACT OF HONEYWELL. AND CDC.
DESIRE TO CONSOLIDATE ALL LINES.
BREAKDOWN OF SCIENTIFIC/BUSINESS DISTINCTION.,

GROWTH OF REAL—TIME APPLICATIONS.

4.1

A

TRANSITION TO THIRD GENERATION MACHINES:

AUERBACH SYSTEM/360
SYSTEMS F'AMILIES
704 1401 1604
709 1410 3600
7090 1440/7010
7094
709411

® LARGELY COMPATIBLE AT MACHINE
LANGUAGE LEVEL

4,2

AUAERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

METHODS FOR CONVERTING BETWEEN MACHINES

e SIMULATION

®¢ RE—COMPILATION

e LANGUAGE TRANSLATORS

e SUB—MACHINES

4.3

AUER}ACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

MACHINE SIMULATION AS CONVERSION AID

¢ ATTEMPTS TO COPE WITH CONVERSION AT MACHINE—LANGUAGE
LEVEL

¢ COMPLEX PROGRAM
e USUALLY CANNOT HANDLE I/O DIRECTLY
e RUNS 1/100—1/1000 SPEED OF MACHINE BEING SIMULATED

e PRACTICAL ONLY IF A VERY SMALL NUMBER OF INFREQUENTLY
RUN PROGRAMS WILL BE RUN ON SIMULATOR

e MOST FREQUENTLY USED AS A DESIGN TOOL FOR NEW MACHINES

¢ NEW MACHINE(S) SIMULATED ON AN OLDER MACHINE.

e OTHER DIFFICULTIES

— WORD SIZE COMPATIBILITY

— SPECIAL INSTRUCTIONS (E. G., WORD MARK
HANDLING ON 1401)

— EASY TO OVERLOOK SUBTLE MACHINE FEATURES

— LIMITS SIZE OF PROGRAM THAT CAN RUN.

4.4

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

RECOMPILATION AS CONVERSION AID

ASSUMES ALL OF PROGRAMS WRITTEN IN POL

ORIGINAL COMPILER CAN'T HAVE 'EXTENSIONS'NOT
PRESENT IN SECOND COMPILER

PROGRAM DOES NOT TAKE ADVANTAGE OF STRUCTURE
OF ORIGINAL. MACHINE

IN GENERAL FEASIBLE ONLY IF LOWEST COMMON ‘
DENOMINATOR BETWEEN TWO COMPILERS WAS USED =

POL'S STILL NOT UNIVERSALLY IN USE

SLOW DEVELOPMENT AND ACCEPTANCE OF LANGUAGE
STANDARDS

OBJECT PROGRAMS RUN AT TARGET MACHINE SPEED.

4.5

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

LANGUAGE TRANSLATOR AS CONVERSION AID

WITH RECOMPILATION, MOST SUCCESSFUL..

CAN OPERATE AT MACHINE—LANGUAGE OR POL LEVEL
— HONEYWELL LIBERATOR

— BURROUGHS FORTRAN—-TO—ALGOL TRANSLATOR.

TO OPERATE AT MACHINE—LANGUAGE LEVEL, TARGET
MACHINE MUST BE CLOSE REPLICA OF SOURCE MACHINE

— HONEYWELL 200 LIKE IBM 1410. G
REQUIRES MANUAL FIXUP FOR 1/0.
WITH POL'S, CAN TRANSLATE TO EQUIVALENT LANGUAGE,

ALTHOUGH FIXUP FOR MISSING FEATURES REQUIRED

— BURROUGHS FORTRAN-TO-ALGOL SIMULATES
SENSE SWITCH (LITE) OPERATORS IN FORTRAN

— SIMSCRIPT TRANSLATES TO FORTRAN.

OBJECT PROGRAMS RUN AT TARGET MACHINE SPEED.

4.6

A

AUERBACK TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

SUBMACHINES AS CONVERSION AID

e WITHIN-FAMILIES, CAN BE USED.

® UNIVAC Il OPERATED IN UNIVAC | MODE

e COMPATIBILITY SWITCH ON 709 TO RUN 704 PROGRAMS.
e DOESN'T HELP ACROSS MACHINE (MFGR.) LINES.

¢ MINIMUM COMPATIBILITY OF WORD SIZE, TAPE
FORMATS.

e NOVEL, BUT NOT DONE EXCEPT WITH OLDER FAMILIES.

4,7

A

AUERBACH
@®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

EMULATION — A SOLUTION TO CONVERSION PROBLEMS

COMBINATION SIMULATION AND MICROPROGRAMMING,

OBJECTIVES — TO EASE CONVERSION BY PROVIDING
SIMULATION AT CLOSE TO ORIGINAL SPEEDS.

PERMITS ORDERLY CHANGE OF MACHINES.

WAS ALMOST MANDATORY WITH 360.

MICROPROGRAMMING VALUABLE IN ITS OWN RIGHT.

4,8

AUAERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
[

MICROPROGRAMMING

¢ PROGRAMMING WITH ELEMENTARY MACHINE
OPERATIONS.

® ELEMENTARY OPERATIONS
— REGISTER TRANSFERS
— ONE BIT SHIFT

— MICROCODE BRANCHING.

e WILKES MACHINE.

® OBJECTIVES OF MICROPROGRAMMING PER SE
— CUSTOM—TAILORED INSTRUCTION SETS
— COST REDUCTION

— CONTROL. SYSTEM SIMPLIFICATION.,

4,9

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

ORDER
REGISTER

CONTROL
PULSES

WILKES MICROPROGRAM CONTROL

REGISTER 11

l

G

'

REGISTER 1

MATRIX B
MATRIX A
A N
l l EEEEER
_i
| I l .
| | | ,
l | | B
I I [
|
| | |
] ' !
| l
| |
| ' | |
| |
LYyv vy b |
L — —__ I L J
TO ARITHMETIC
UNIT, REGISTER FROM
GATING ETC. CONDITIONAL
FLIP—-FLOP

4.10

A

s TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

IMPORTANT FEATURES OF WILKES DESIGN

e CONDITIONAL BRANCH.

® USE OF OP CODE AS ADDRESS OF
FIRST MICROORDER.

4,11

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/ 360

OTHER IMPORTANT MICROPROGRAMMING DEVELOPMENTS

® MICRO SUBROUTINES.

® MICRO CONSTANTS.

® GROUPING FIELDS AND DECODING TO
CONTROL. PARTICULAR DATA PATHS.

° WRITABLE CONTROL STORAGE.

° TAILORED MACHINE LANGUAGE INSTRUCTION
SETS.

4,12

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

USE OF MICROPROGRAMMING IN 360

¢ REDUCE CONTROL COSTS IN SMALLER
MODEL.S.

® GIVE COMPREHENSIVE INSTRUCTION
SETS ACROSS ALL MACHINE MODEL.S.

® PERMITS TAILORING FOR SPECIAL
APPLICATIONS OR FOR VARIANTS ON
BASIC LINE,

e READ—ONLY MEMORY (ROM) STORES
MICRO-ORDERS.

A\

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

EMULATOR DESIGN COMPONENTS

e DEDICATED ROM FOR EMULATOR (MAY
BE SEPARATE ROM FOR MACHINE
INSTRUCTIONS) .

® SELECTION OF SPECIAL INSTRUCTIONS
TO ADD TO BASIC (EMULATING MACHINE)
— DIL
— BRANCH IF.
¢ DETERMINE WHETHER FULL COMPATIBILITY
OR SOME PROGRAMMED OPERATIONS
— COST
— COMPLEXITY

— FREQUENCY OF OCCURRENCE,

4,14

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

LIMITATIONS OF MICROPROGRAMMING/EMULATOR APPROACH

MICROPROGRAMMING ATTRACTIVE FOR COMPLEX
AND/OR LARGE INSTRUCTION SETS.

ROM TECHNIQUE FAST, INFLEXIBLE (TO USER).

MAIN MEMORY (WRITEABLE CONTROL STORE)
PERMITS GREATEST FLEXIBILITY TO USER.

EMULATOR (MICROPROGRAM + PROGRAMS) FOR
LARGER MACHINES.

COMPATIBLE (THRU MICROPROGRAM) FOR SMALLER
MACHINES.

EMULATING MACHINE REGISTER STRUCTURE AND
DATA PATHS MUST BE COMPATIBLE WITH TARGET
MACHINE. GREATER DEVIATION, MORE COMPLEX
AND DIFFICULT.

NO RPQ OR OTHER NON-STANDARD FEATURES ON
SOURCE MACHINE.

A

& EReACh TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
. ®
PRINCIPAL. COMPONENTS OF 360 SYSTEM
0 7
e o o CONTROL
UNITS
MAIN MULTIPLEXOR oo
MEMORY CHANNEL
CPU SELECTOR cee
CHANNEL
o o o CONTROL
UNITS
0 7

4,16

AUAERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

INFORMATION STRUCTURE IN 360

e BYTE — (FAT CHARACTER)
e HALF WORD (2 BYTES)

e FULL WORD (4 BYTES)

0 7 BITS
BYTE
0 15
l .
l _
. HALF. WORD
|
0 31
T T T
: : : FULL WORD
| 1 1
0 63

DOUBLE WORD

4.17

AUAERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

360 CPU STRUCTURE

GENERAL FLTG-PT

REGISTERS REGISTERS

0 0
PGM CTR
3
0 63

15

0 32

AUﬁCH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

360 INSTRUCTION FORMATS

2

oP Ry R REG. TO REGISTER

Ry) <OP> (R,) —= Ry

OoP Rl X2 B2 D,

oP| Ry | Ry | B, D,
or | 1, | B, D,
oP | Ly | L, | By D, B, D,

4.19

A TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

AUERBACH
®

360 TYPES OF OPERATIONS AND DATA FORMATS

R | 15

S INTEGER HALF WORD
0 1 31

S INTEGER FULL WORD
FIXED POINT

BYTE|BYTE BYTE

D|D|D|D|D|D|D

PACKED DECIMAL

Z|DIG | ZIDIG S| DIgG|
BYTE|BYTE eeeo BYTE ZONED DECIMAL
DECIMAL
0 1 78 31
S| CHAR. FRACTION ONE WORD
0 1 78 61
S | CHAR. FRACTION
FLOATING POINT DOUBLE WORD
B
—N—
FIXED LENGTH
HALF 'WORD
AN /7
FULL WORD
B B B B B B B B eeoeo B B
LOGICAL VARIABLE
1—256 BYTES

4,20

C

A

AUERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

360 STATEWORD — PSW

SYSTEM } INTERRUPT
mask | KEY| AMWP ~ CODE
PROGRAM

ILc | cc MASK INSTRUCTION ADDRESS
A — ASCII-8 MODE C
M — MACHINE CHECK MASK
W — WAIT STATE
P — PROBLEM STATE
ILC — INST. LENGTH CODE
CC — CONDITION CODE

4.21

A

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

AUERBACH
®
ADDRESS FORMATION IN 360
(24)
. GENERAL (24) ADDRESS |(24) EFFECTIVE
M REGISTERS (12 ADDER ADDRESS
| A
' |
| |
oP X B, Dy (RX)
(24)
GENERAL ADDRESS | (24) EFFECTIVE
™ REGISTERS a2y | APPER ADDRESS
I
|
-
|
oP R3 B, Dy (RS)

4,22

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

360 INTERRUPT SYSTEM

PSwW

CPU

'OLD' PSW STORAGE

INTERRUPT

PSW — X

PSW— S

PSW — P '"NEW' PSW STORAGE
PSW — M

PSW — |

4,23

PRIMARY STORAGE

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

360 CPU FEATURES FOR MULTIPROGRAMMING
AND MULTIPROCESSING

e PROVIDES MULTIPLE BASE ADDRESSING
(NOT IN ALL INSTRUCTIONS)

® COMPREHENSIVE INTERRUPT SYSTEM

¢ PROBLEM STATE/SUPERVISOR STATE
C

® NO INDIRECT ADDRESSING ’

® FIXED INTERRUPT RESPONSE LOCATIONS

4,24

AUERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/ 360
®

MEMORY SUBSYSTEM — 360

MINIMUM MAXIMUM

MODEL PRIMARY PRIMARY
STORAGE - STORAGE
30 8,192 65,536
40 16,384 262,144
44 32,768 262,144
50 65,536 524,288
65 131,072 1,048,576
67 262,144 1,048,576
75 262,144 1,048,576
85 524,288 4,194,304
91 1,048,576 6,291,456

4.25

A

4 rency TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

STORAGE PROTECTION — 360

11

' 8
R . VT
s

v VVWAV 00
(5 s e e

ZEROS
NO NO ,
MATCH? interrupt 0
| YEs YES

PROCESS MEMORY REQUEST

} PSW

Ki Ky, | K3 * *)
. . . . 2048
BYTE
BLOCKS

T

4,26

AUERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
® .

ILLUSTRATION OF MEMORY INTERLACE

1 2
3 4
5 6
7 8
))
))
) o
MODULE 1 MODULE 2

2—WAY INTERLACE

® FASTER OPERATION (ON AVERAGE) BY NOT
HAVING TO WAIT FOR WRITE HALF—CYCLE

e FAILURE IN ONE MODULE EXCLUDES USE OF
OTHER

4,27

AUERB‘ACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

LCS — SYSTEM IMPLICATIONS

e SIZE — 1M, 2M (UP TO 8M)
e SPEED—-8usS
® AVAILABLE FOR MOD 50, 65, 75 —>

® WHAT TO DO WITH IT
— SYSTEM PROGRAMS RESIDENCE
— FILE bIRECTORlES
— OPERATING SYSTEM RESIDENCE

— SWAPPING STORE

4,28

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES:

SYSTEM/ 360

360 CHANNEL.S

® SELECTOR

— 'BURST MODE' OPERATIONS

— HIGH SPEED DEVICES

® MULTIPLEXOR

— SLOWER DEVICES

— SHARE MULTIPLEXOR LOGIC

— USING SUBCHANNELS

4,29

AUAERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
@

CHANNEL COMMAND WORD — AN I/O PROGRAM

COMMAND

CODE DATA ADDRESS

FLAGS: CHAIN DATA C

CHAIN COMMAND

SUPPRESS LENGTH INDICATION

SKIP

PROGRAM CONTROLLED INTERRUPT

4,30

A\

AUERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

CHAINING

DATA AREA1 (CCW1)

CcCwi

I : ccw2 DA—-3

cCcw3i >

ccw4

DATA AREA?2 (ccw2)

DA—1 y DA-2 Y C
. .y)

PRIMARY STORAGE

4. 31

AUAERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/ 360
®

© v

360 PROVISIONS FOR MULTISYSTEM OPERATION

e CPU COMMUNICATION

— SHARED 1I/0 — DISK
— CHANNEL TO CHANNEL
— SHARED STORAGE

— CPU START SIGNAL (FROM ANOTHER CPU)

e INSTRUCTION AIDS

— READ (WRITE) DIRECT
— EXTERNAL INTERRUPT LINES

— PERMANENT STORAGE RELOCATION AND
ALTERNATE LOC. (PREFIX)

— TEST AND SET

4,32

AUE‘IR&BACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
®

DIAGNOSTIC FACILITIES FOR 360

® 5 CLASSES OF INTERRUPTS

— /0

— MACHINE CHECK

— PROGRAM CHECK

— SUPERVISOR CALL
.~ — EXTERNAL.

®¢ PROGRAM CHECK ON

— OPERATION EXCEPTION 0
— PRIVILEGED — OPERATION EXCEPTION
— EXECUTE EXCEPTION

— PROTECTION EXCEPTION

— ADDRESSING EXCEPTION

— SPECIFICATION EXCEPTION

— DATA EXCEPTION

— FIXED POINT OVERFLOW

— FIXED POINT DIVIDE

— DECIMAL OVERFLOW

— DECIMAL DIVIDE

— EXPONENT OVERFLOW

— EXPONENT UNDERFLOW

— SIGNIFICANCE

— FLOATING POINT DIVIDE

4,33

A\

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

FEATURES OF RCA SPECTRA/70

® COPY OF 360 (PROBLEM MODE)

® HAS 4 PROCESSOR STATES

1. PROBLEM (USER) STATE
2. INTERRUPT RESPONSE STATE
3. INTERRUPT CONTROL STATE

4, MACHINE CONDITION STATE

4.34

A

AUERBACH
®

TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360

SPECTRA 70 PROCESSOR STATE REGISTERS

REGISTER

PROGRAM COUNTER

GENERAL REGISTERS

FLOATING POINT REGISTERS
INTERRUPT STATUS REGISTERS

INTERRUPT MASK REGISTERS

4,35

16

16

STATE

AUAERBACH TRANSITION TO THIRD GENERATION MACHINES: SYSTEM/360
[}

SUMMARY OF IMPORTANT CHARACTERISTICS OF S/70

® PROVIDES MULTICOMPUTER ARRANGEMENTS
THROUGH DIRECT CONTROL. TRUNK.

® EMULATORS FOR 301, 501 (RCA) 1401
1410

e INTERNAL OPERATION LIKE 360

4,36

-

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

OPERATING SYSTEMS FOR 360

BPS (BASIC PROGRAMMING SUPPORT)
DOS (DISK)

TOS (TAPE)

OS (FULL)

MFT (FULL WITH MULTIPROGRAMMING)
MVT (FULL WITH VARIABLE TASKING)

5.1

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

THE DOS ENVIRONMENT

CONTROL PROGRAM

SUPERVISOR

JOB CONTROL

IPL

PROCESSING PROGRAMS

LANGUAGE
TRANSLATORS

ASSEMBLER
COBOL
FORTRAN
PL/1

RPG

SERVICE PROGRAMS

LINKAGE EDITOR
LIBRARIAN
SORT/MERGE
UTILITIES
AUTOTEST

USER-WRITTEN
PROBLEM PROGRAMS

5.2

A

AUERBACH
[]

THIRD GENERATION OPERATING SYSTEMS

A BACKGROUND

CONTROL STREAM
SEQUENTIAL

USES JOB CONTROL

NO OPERATOR INTERVENTION
LOWEST PRIORITY

A FOREGROUND

NO CONTROL STREAM
OPERATOR CONTROLLED
USES INITIATORS
HIGHEST PRIORITY

5.4

e

A THIRD GENERATION OPERATING SYSTEMS

AUERBACH
®

CREATION OF OVERLAY PHASE

MOD 1
CSECTI .
CSECT2
CSECT3
MOD 2
CSECT4
CSECT5 ‘ 0

PHASE PHNAME],*
INCLUDE MOD1, (CSECT1, CSECT3)
INCLUDE MOD2, (CSECTS)

!

CSECTI

PHNAME 1

CSECT3

CSECTS

5.5

A

THIRD GENERATION OPERATING SYSTEMS

AUERBACH
®
TWO PHASES FROM ONE OBJECT MODULE

MOD1 MOD2
CSECT! o , CSECT4
CSECT2 CSECTS
CSECT3

PHASE PHNAME2, *

INCLUDE MODI, (CSECTI, CSECT2)

PHASE PHNAME3, *
INCLUDE MOD1, (CSECT3)
PHNAME?2
CSECTI
CSECT?2
PHNAME3
CSECT3

5.6

o

A

THIRD GENERATION OPERATING SYSTEMS

AUERBAC:
USING SAME OBJECT MODULE TWICE
MOD MOD?2
CSECTI - CSECT4
CSECT2 CSECT5
CSECT3
PHNAME4, *
NCLUDE MODI, (CSECT1, CSECT2
l OD1, (CSECTI, CSECT2) . \\c,
(CSECTI
| CSECT?2 c

INCLUDE MOD1, (CSECT2, CSECT3)

PHNAMES, *

PHNAMES5
k CSECT2
>

CSECT3

5.7

A

THIRD

GENERATION OPERATING SYSTEMS
AUERBACI;
LIBRARIES
CORE IMAGE RELOC ATABLE SOURCE
DIRECTORY DIRECTORY DIRECTORY
PHASE 1 C
Pl PHASE 2 01 2
__________] ASSEMBLER
SUBLIB
PHASE 3 C3
P2 02
PHASE 1 Cl
P3 f———————— 0B f——————= ~
PHASE 2 C2 COBOL
SUBLIB
P4 04

5.8

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

DIRECT LINKAGES

FIRST-
MAIN LEVEL
PROGRAM SUBROUTINE
(A) (8)

——=- ——— SAVE

CALL EE— CALL —_—

_ < —_——

l — RETURN

SECOND-
LEVEL
SUBROUTINE

©)

— % SAVE

—— ———

RETURN

5.9

A THIRD GENERATION OPERATING SYSTEMS

AUERBACI;
PROGRAM STAGES
h R
RELO - CORE
CATABLE IMAGE
LIBRARY LIBRARY
(LIBRARIAN
LANGUAGE CONTROL
o TRANSLATOR PROGRAM
o
LINKAGE : - |
EDITOR ~
MAIN
STORAGE
) J . 7
SOURCE OBJECT PHASE

MODULE MODULE

A

AUERBACH
®

‘THIRD GENERATION OPERATING SYSTEMS

GENERATION OF AN OVERLAY TREE STRUCTURE

PHASE PHASEA,ROOT
PHASE PHASEB,*
PHASE PHASEC,*
PHASE . PHASED,PHASEC
PHASE PHASEE,PHASEB

ENTRY POINT ——»

PHASEA

PHASEB

PHASEC
PHASED

PHASEE

5.11

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

//

//
//

/*
//
//

/*
/&
//

//
//
//

/*
/&

JOB CONTROL EXAMPLE

JOB EXAMPLE1

OPTION LINK,LIST
EXEC COBOL

>
(COBOL Source Deck)
EXEC INKEDT }
EXEC

(Data for Object Program)

JOB EXAMPLE2

VOL SYS004, MASTER
TPLAB 'label-information'
EXEC PAYROLL

(Data for Payroll Program)

Step 1

Step 2

Step 3

/

> Job 1

 Job 2

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

OPERATING SYSTEM ELEMENTS

1
| Control Program Elements |
e e !
| - 1 fm—————————— 11
| 1Job | | Task |
| | Management | | - |Management ||
| L - J (IR —
I I
I [-—————————- 1 |
I |Data I I
| | Management | |
| b 1 |
b {
| Processing Program Elements |
- L T ——————
| |Service | Application |
| Languages | Programs | Programs |
I S 1
| ALGOL |Data Set | User |
| Assembler | Utilities | Written |
| COBOL | Independent | |
| FORTRAN | Utilities | |
| PL/I | Linkage | |
| RPG | Editor | |
| | Sort/Merge | |
| |System | |
| | Utilities | l
| | TESTRAN | |
b e S i J

5.13

A

THRD GENERATION OPERATING SYSTEMS

AUERBACH
®
PRODUCING A LOAD MQDULE
Source Program + Transcribed to [Cards or
User Input Translator Control Statements
T
Operating System E;’ogessed
Component Language
Translator
n Which Yields

Output of Language
Translator and Input
to Linkage Editor

Linkage Editor
Control Statements

An Object Module

Operating System
Component

Processed
by the
Linkage
Editor

1

Output of Linkage
Editor

* Which Yields

A Load Module

=)

A THIRD GENERATION OPERATING SYSTEMS

AUERBACH
®

LOAD MODULE ATTRIBUTES

(=== T T————————————= 1
		Passes Con-
Structure	Loaded All At	trol to Other
Type	One Time	Load Modules
p-m—m - pommmm e pommm oo i		
Simple M Yes	No	
P —— fommm oo T i		
Planned	No	NOo or Yes?
Overlay		
O ommm oo fommm o i		
Dynamic]Yes or No?	Yes
R ——— i __ y		
tA segment of a load module can dynami-		
cally call another load module.		
S 4

5.15

A

THIRD GENERATION OPERATING SYSTEMS

AUERBAC';
SYSTEM LOGIC FLOW FOR A SIMPLE STRUCTURE
Find the Allocate Load the
Program H-——b Space pr—— Entire
SIMPLE for it Module
Terminate s | Supervise < Give Control
Task Execution to Module

S —

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

STORAGE ALLOCATION FOR A PLANNED OVERLAY STRUCTURE

Storage Available to OVERLAY

Storage Occupied by Segment A (the Root Segment)

Storage When Segments A and B are Resident

Storage After Segment C Overlays Segment B

A 'THIRD GENERATION OPERATING SYSTEMS

AUERBACH
®

SYSTEM RESPONSE FOR A PLANNED OVERLAY STRUCTURE

Find the Allocéte Load the
Program p——! Space pp| ROt Sfagmenf epp| Supervise
OVERLAY for it ‘é’;‘i&'l"e It Execution
Load
Segment B
. . Overlay Seg- .
Ier:mcte ¢ Supervgse ¢ ment B with : Superv[se
as Execution Segment C Execution

5.18

A

THIRD GENERATION OPERATING SYSTEMS
AUERBACH

DYNAMIC EXECUTION, ONE TASK PER JOB STEP

USER'S REQUEST

DYNAMIC A 8

1 SAVE 3 SAVE
——— SAVE 2

LINK B - 4

— — [RETURN
___7Z / RETURN

LINK A

Nk S B

— SAVE
8 ———————
\
RETURN RETURN

SYSTEM RESPONSE

2 Intervention 3 Intervention 4 Intervention
Find and Load Find, Load, and Find, Load, and Return Control to
DYNAMIC; Give Control e Give Control
. - - > Program A at Instr
Give It Control; = to Program A; #1 to Program B; .
. L ! Following LINK;
Supervise Supervise Supervise S . .
. . . upervise Execution
Execution Execution Execution
7 Intervention 6 Intervention 5 Intervention
8 Return Control . Return Control
S to DYNAMIC at Give Control to DYNAMIC at
erminate Instr Following | to Program B; B in Storage | Instr Following
Job Step . Supervise i
LINK; Supervise ! LINK; Supervise
Execution Execution Execution

Find and
Load B

5.19

A ;I'HIRD GENERATION OPERATING SYSTEMS

AUERBACH
®

DYNAMIC EXECUTION, MORE THAN ONE TASK PER JOB STEP

User Requests

Task A

Attach
Task B

Wait Task B

Wait | /O

|:|(|/O Completed)

System Response

Find, Load, and
Give Control to
Task A: - Task B Needed

Supervise
Execution

Terminate
Terminate Job Step i Task B and Give |
Control to Task A

Yes

Find and
Load Task B

®

Give Control to
Tosk B,
Supervise
Execution

©

Tosk B Must
Wait for

)

Q)

Task B
Completed

No

®

Task B 1/O
Completed; Give

Wait Until
Task B Completed

5.20

Control to Task B

Completion of
an | /O Event

© y

Give Control
to Task A;

Supervise
Execution

A THIRD GENERATION OPERATING SYSTEMS

AUERBACH
®

REUSABILITY

e NON-REUSABLE
e SERIALLY REUSABLE
e REENTERABLE

5.21

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

DATA SETS, BLOCKS, AND RECORDS

RECORD 1
RECORD 2
BLOCK 1
RECORD n
BLOCK 2
¥ DATA
SET -
BLOCK n

5.22

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

// DD

DESCRIBING A DATA SET

S

JOB STREAM

DATA SET
LABEL

PROGRAM <

5.23

A

AUERBAC);

THIRD GENERATION OPERATING SYSTEMS

The Volume Label

The Volume Table
of Contents- VTOC

DIRECT- ACCESS LABEL

—\ Volume

5.24

SN

Serial .
Number

Address Additional

of VTOC kabels, if
ny

DSCB
DSCB| DSCB

DSCB
for Data
Set 29A4

~

7

Data Set 29A4

S~

_

A\

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

Search for —_—
Input e Payrolle

* April
Begins Here

DATA SET RETRIEVAL THROUGH THE CATALOG

Catalog Volume

\
| Datrec
/

This Volume (21) Contains
Data Set Input ® Payrolle April

lssue
Mounting
Message

Is Vol 21
Mounted ?

Aumnnmeneees Catalog (Major Entries)

s [ndex (Input o)

i |ndex (Input ® Payroll @)

Search Vol Index
and Position

Is Data Set
on Tape or
Direct - Access

Check Seq
Number and
Position

5.25

A

AUERBACH
®

'THIRD GENERATION OPERATING SYSTEMS

PARTITIONED DATA SET

Data, Set Address

Data Set Name

Partitioned Data Set

.

Address
of B

Optional
Information

Optional
Information

Address

-

Data Set C

Data Set D

? Directory

Data Set B

5.26

o

r Members

A THIRD GENERATION OPERATING SYSTEMS

AUERBACH
®

INDEXED SEQUENTIAL DATA SET

Records Sorted on Key

81

Key

Cylinder One —_—

/ : Cylinder
Cylinder Zero / Index

Track
/// Index

5.27

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

EXCHANGE BUFFERING -- SUBSTITUTE MODE

Original Buffer Assignments

All Segments Assigned to Work Area All Segments Assigned to
Input Buffer Output Buffer

Record 1 - Record 2
Record 3 Record 4
After A " GET "
This Segment Now Assigned This Segment Now Assigned
to Work Area to Input Buffer

Record 2 . -
Record 3 Record 4 '
After A" PUT "

This Segment Now Assigned This Segment Now Assigned

to Output Buffer to Work Area
Record 1 Record 2
Record 3 Record 4

ey

A

THIRD GENERATION OPERATING SYSTEMS

AUERBACH

®
ACCESS METHOD SUMMARY

(oot T T L - T S TOoTTTTTTTT 1

| Organization | Sequential |Partitioned| Indexed Sequential | Direct |

p-———————— - - e t-— t-———————— B - 1

| | | | | GISAM | | |

| | T o | |

| Access Method | QSAM | BSAM | BPAM I LOAD | SCAN | BISAM | BDAM [

T e —— ommmm e e pommm - frmmmmmmmm e pommmm oo ommmmmmmem 1

|Primary |GET, PUT, |READ | READ,WRITE | |SETL,GET, |READ | READ |

|macro instructions#*|PUTX | WRITE | FIND,STOW | PUT | PUTX | WRITE | WRITE |

e —— T frm e ¥ SR D prmmmm e fommmm e y

|Synchronization of | | | | | | | |

|program with I/0 |Automatic | CHECK | CHECK |Automatic |Automatic |WAIT | WAIT]

e - p————————— - e e i

| Recora format | Logical F,V|Block |Block (Part| | | |Block |

|transmitted |Block U |F,v,0 |of member) |Logical F,V|Logical F,V|Logical F,V|F,V,U |

w | | | |F,V,U | | | | |

R T P 3- e D pommmmmeee e prmmmmmmm o pommmmmmem o ommmmmmme- i

O |Buffer creation and|BUILD | BUILD | BUILD | BUILD | BUILD | BUILD | BUILD |

|construction | GETPOOL | GETPOOL |GETPOOL | GETPOOL | GETPOOL | GETPOOL |GETPOOL |

| | Automatic |Automatic |Automatic |Automatic |Automatic |Automatic |Automatic |

prmmmm o m oo pommmm oo pommmm o ommmmm oo oo oo s e D 1

| |Automatic |GETBUF | GETBUF | Automatic, |Automatic |GETBUF, | GETBUF, |

|Buffer technique |Simple | FREEBUF | FREEBUF | Simple |Simple | FREEBUF | FREEBUF |

| | Exchange | | | | | Dynamic |Dynamic |

| | i I | | | FREEDBUF |FREEDBUF |

T — R e + - - oo fommmm o $m - 1

| Transmittal modes |Move,] | | Move, |Move,] | |

| (work area/buffer) |locate, | | | Locate | Locate | | |

| | substitute | | | | | | |

e e T pommmmm e e fommmm - pom o oo {

| I I | | | | | |

| | | | | | | | |

| | I | | | | | |

pm——— i i i i 5 4 R i

| *All macro instructions introduced 1in this table are defined in the publication IBM System/360 |

| Operating System: Supervisor and Data Management Macro Instructions,

Form C28-6647.

- — o ————— ———————— —— o, o " ——— —— — ——

A ' THIRD GENERATION OPERATING SYSTEMS
AUERBACH

A JOB MANAGEMENT FUNCTIONS
e ANALYSISOF INPUT STREAM (JCL)
e ALLOCATION OF 1/O DEVICES
e OVERALL JOB SCHEDULING
e TRANSCRIPTION OF INPUT/OUTPUT DATA
e OPERATOR COMMUNICATIONS

A FEATURES OF JOB CONTROL LANGUAGE
e REFERENCING EXISTING STATEMENTS
o DATA SET NAME RETRIEVING
¢ OPTIMIZATION OF 1/0
o PASSING DATA SETS AMONG JOB STEPS

e SHARING DATA SETS AMONG JOBS

5.30

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

//
//
//
//

TYPICAL JOB STATEMENTS

DEMO1 JOB 62-7

DEMO2 JOB (131-22,AZ6), TOM, MSGLVL = 1
DEMO3 JOB 62-7, AL, PRTY = 13, REGION = 32K
DEMO4 JOB 135, JOE, COND= (12,GT)

5.31

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

//

-/

//
//

//

//

STEP 1

STEP 2

STEP 2

STEP 2

STEP 3

STEP 4

EXEC

EXEC

EXEC

EXEC

EXEC

EXEC

TYPICAL EXEC STATEMENTS

PGM = MYCODE

PGM = *.STEP6.MYDATA

PGM = *,STEP7 .PRSTEP2.YOURD ATA
PROC = CATPROC

PGM = YOURCODE,COND = (17,EQ, STEP9)

PGM = INTERP, TIME = (2,10),REGION = 64K

5.32

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

//
//
//
//

//
//
//

MYDATA
YOURDATA
HISDATA
HERDATA

OURDATA
OLDDATA
PASSDATA

DD
DD
DD
DD

DD
DD
DD

SOME TYPICAL DD STATEMENTS

SYSOUT =Z
SYSOUT = 9,SPACE = (CYL,(7,1),RELSE ,ROUND)
UNIT = 180,DSNAME = HISSET, DISP = (CATLG, KEEP)

UNIT = 2311, DSNAME = HERSET,DISP = (CATLG)
,SPACE = (CYL,3,,,,ROUND)

DSNAME = OURSET, DISP = MOD, UNIT = TAPE, DEFER
DSNAME = OLDSET,DISP =OLD, VOLUME = PRIVATE, RETAIN
DSNAME =*,STEP3.HISDATA,DISP = (OLD,PASS)

'5.33

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

|

|
|
|
|
|
|
I
|
|
|
|
|

n

Job Stream

Card

. Reader

|
|
I
I
|
|
I
[
i
|
I
|
|
I
I

A SEQUENTIAL SCHEDULING SYSTEM

S

System
Conscle

A
Commands 1 Messages

Commands M ﬂesscge
> aster L]

Scheduler

or

Y

o —————— ————————

2) 3) 4
Task Mgmnt
Reader/ " Initiator/ C | .
Tope - Inter- - Terminator ontrolto > Supervise
preter Job Step
Execution

4

Your programs, in the form of jobs or job steps defined throughrthe job control
language, may enter the system in the input stream from a card or tape device.
Input data may be entered into the system with the control statements.

The reader/interpreter reads in the control statements for one job step.
The initiator/terminator allocates the required I/O devices, notifies the operator
of volumes to be mounted (if any), and requests the task management programs to:

supervise execution of the named job step.

The task management programs turn control over to the first 1load module and
supervise its execution.

The master scheduler accepts and takes action on commands.

h—"—_—_“—_"__"—_"__“__ub_5?!5__"__"_;"__"#_f

5.34

o

A

AUERBACH
®

THIRD GENERATION OPERATING SYSTEMS

A PRIORITY SCHEDULING SYSTEM

r-—

1

1.

|
I
|
I
|
I
|
|
|
I
I
|
I
I
I
|
]
|
|
|
|
I
|
|
|
|
|
|
|
|
|
]
I
I
I
|
| 2.
|

I

I

|

|

I

|

|

|

|

|

|

Job Stream

Card

Commands Master Messages
Reader | Scheduler [
or

System
Console 7
[
Commands Messages
i

)

2 . 3 4 5

\i

Y

Initiator/

Reader / o
| Terminator Job Step

Interpreter

Output
Queve

Chart Text:

Your programs, defined as jobs or job steps by the job control language, enter
the system through the input stream from a card or tape device.

The reader/interpreter reads in control statements for one or more jobs and
places them, by priority, on the input work queue.

The job with the highest priority is selected for execution by the
initiator/terminator.

The initiator/terminator turns your 3job step over to the task management
programs, which supervise its execution.

The master scheduler accepts and takes action on commands.

Output is written (by job step priority) when the job has terminated and while
other jobs are being processed.

5.35

——-——.—___—_—..—_—_———-——————-——.—_——__—__—_—_————_———————-—-—-‘

A

THIRD GENERATION OPERATING SYSTEMS

AUERBACH
®
RESOURCE QUEUES
Task Queves
D c B A " .
— anager o
- > - .
PR=3 PR =4 . PR=10 PR=12 CPU Time
(8, . .
Q@ Queued Resource Requests C > A > ::\\:?:gsi;r:;e
Queuved Resource Requests 2 Manager of
| ; > A 1/ O Channels

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

P> TOPICS FOR THIS SESSION

SCRATCH PAD MEMORY
COMPUTER NETWORKS

UNIVAC 1108

SYSTEM APPROACHES TO HIGH
PERFORMANCE MACHINES.

ﬁ k UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH :

DEFINITION OF SCRATCH PAD MEMORIES

SCRATCH—PAD MEMORIES:

SMALL, LOGIC—SPEED MATCHED MEMORIES
USED FOR REGISTERS AND/OR VERY HIGH SPEED
WORKING STORAGE.

6.2

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

UNIVAC LARC

ACCUMULATOR OR INDEX REGISTER

PROCESSOR

e mm— 1 MSEC CORE

2500

4 uSEC CORE,

6.3

PRIMARY STORAGE

(UP TO 40 MODULES)

A UNIVAC 1108 AND INTRODUCTION TO

AUERBACH HIGH PERFORMANCE MACHINES

D825 WITH THIN FILM REGISTER MEMORY

—s= 300 NS THIN FILM

128

ARITHMETIC (16 BIT WORDS)

AND

(CONTROL . C)

4U SEC CORE

4096

PRIMARY STORAGE

6.4

A UNIVAC 1108 AND INTRODUCTION TO

AUERBACH HIGH PERFORMANCE MACHlNES

D825 THIN FILM REGISTERS

'PROGRAM STORAGE REGISTER 1 (48) | | INTERRUPT STORAGE REGISTER (48)
PROGRAM STORAGE REGISTER 2 (48)
SUBROUTING STORAGE REGISTER (48)
INTERRUPT PROGRAM REGISTER (48)
REPEAT PROGRAM REGISTER (64)
REAL—TIME CLOCK (24) ‘
INTERRUPT DUMP REGISTER (16)
REPEAT COUNT REGISTER (12)
POWER FAILURE DUMP REGISTER (32)
INDEX INCREMENT REGISTER (12) ey — 0o
CHARACTER COUNT REGISTER (12)
BASE PROGRAM REGISTER (16)
3 REPEAT INCREMENT REGISTERS (12 EA)
BASE ADDRESS REGISTER (16)
T—F C REGISTER (48) SUBROUTINE BASE ADDRESS (16)
REGISTER
STACK 1 (48) INTERRUPT BASE ADDRESS 16)
REGISTER
STACK 2 (a8)
15 INDEX REGISTERS (16 EA)
STACK 3 (48) .
15 LIMI T
cTACK 4) LIMIT REGISTERS (16 EA)

6.5

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

360 GENERAL REGISTERS

6.6

0 32 0 64
ACCUMULATORS,
BASE OR
INDEX
REGISTERS
15 3

ﬁ UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH

SPECTRA 70/35 SCRATCH—PAD MEMORY

GENERAL PURPOSE AND
FLOATING POINT
REGISTERS, PROGRAM
COUNTER, INTERRUPT

k
STATUS AND MASK } gggi:zoi?AB"E
REGISTERS.
/
8l — T
SUBCHANNEL REGISTERS
FOR MULTIPLEXOR NON—ADDRESSABLE

CHANNEL

*IMPLEMENTED AS A SEPARATE MEMORY ON 70/45, 70/55.

6.7

A\

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

ARITHMETIC
AND CONTROL

STORE AND

(IDXQ, PRTQ)

ASSOCIATIVE
MEMORY

ADVAST
ST, .
e o p——
PROCESSOR ™ quEuE
¥

REQUEST FOR
DATA

STACK
EXTENSION
A
INST. LOOK AHEAD (12 WORDS)
SIMPLIFIED DIAGRAM DATA/INSTS.
B8500 AND PROCESSOR FROM MEMORIES
ILLUSTRATING PRINCIPAL MODULES

SCRATCH—PAD MEMORIES

6.8

a UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH

LOOK—ASIDE MEMORY

PRIMARY STORAGE

- |a [
b Pl
ASSOCIATIVE < R A| DATA
STORAGE E R| PART
s T|
. S |
MAR MBR
CPU

6.9

A UNIVAC 1108 AND INTRODUCTION TO

Aieranch HIGH PERFORMANCE MACHINES

SUMMARY OF SCRATCH—PAD CHARACTERISTICS

® PRIMARY FUNCTIONS
CLOSE—IN STORAGE MATCHED TO LOGIC SPEEDS, INEXPENSIVE
IMPLEMENTATION OF CONTROL. REGISTERS, MASK REAL SPEED
OF PRIMARY STORAGE

® POTENTIAL PROBLEMS
CONTENTS OF SCRATCH—PAD BECOMES PART OF THE STATE
OF AN ACTIVE PROCESS

® SOLUTIONS

ASSOCIATIVE STORE

MULTIPLE SCRATCH—PAD

6.10

A UNIVAC 1108 AND INTRODUCTION TO

AUERBACH HIGH PERFORMANCE MACHINES

TYPES OF COMPUTER NETWORKS

e DEDICATED
COMMUNICATIONS SWITCH
RESERVATION SYSTEMS

AIR DEFENSE SYSTEMS

® LOAD—SHARING

REMOTE COMPUTING

6. 11

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

COMMUNICATIONS SWITCHING SYSTEM

ST+ FWD
SWITCH

A\

ST + FWD
SWITCH TRUNK LINES—

/

ST+ FWD s
SWITCH
S
S S
S
S S

6. 12

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

FUNCTIONS OF CONCENTRATOR

® IT'S A COMPUTER

® SPEED MATCHING

® BUFFER FOR ECONOMICAL.
TRANSMISSION TO SWITCH

® LOCAL DISTRIBUTION

TO STORE AND FORWARD SWITCH

.13

ﬁ UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH

FUNCTIONS OF SWITCH

@

c TRUNK
©r SWITCH LINES

MULTIPLE—ADDRESS ROUTING

6. 14

ﬁ UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH

STORE AND FORWARD NETWORK PROBLEMS

® RELIABILITY
MULTIPLE COMMUNICATIONS PATHS
MULTIPROCESSOR OR MULTICOMPUTER ELEMENTS
TRANSMISSION CONTROL
CHECKING

DISTRIBUTED CONTROL

® LONG TERM STORAGE

MULTIPLE ADDRESS MESSAGES

STATION LOGS
® EFFICIENT PROCESSING

INDEPENDENT 1/0 (COMMUNICATIONS) CHANNELS
® PEAK LOADS

SUFFICIENT SECONDARY STORAGE FOR BUFFERING
DISC/DRUM

TAPE

6.15

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

AIR—DEFENSE NETWORK

6.

16

COMPUTER

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

SATELLITE
CENTERS

LOAD SHARING NETWORK

CENTRAL

COMMUNICATIONS

LINES

6. 17

ﬁ UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH

TYPES OF LOAD—SHARING

® REMOTE JOB PROCESSING
SATELLITES ACCEPT DATA AND CONTROL INFORMATION
CENTER QUEUES JOB FOR EXECUTION
CENTER RETURNS RESULTS TO SATELLITE .
SATELLITE PRINTS RESULT

GENERALIZATION OF DCS CONCEPT

® ACTIVE SATELLITES
SMALL JOBS PERFORMED IN SATELLITE

LARGE (FOR SATELLITE) JOBS PERFORMED REMOTELY

® FULL SHARING
2 OR MORE CENTERS
ALL JOBS DONE AT CENTER

OVERLOAD AT ONE CENTER TRANSMITTED TO ANOTHER

6.18

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

SOME LOAD SHARING PROBLEMS

EQUIPMENT AND CONFIGURATION COMPATIBILITY

PROGRAM AND DATA LOCATION

AUTONOMOUS CENTERS

ALL THE COMMUNICATIONS PROBLEMS

6.19

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES

UNIVAC 1108 SIMPLIFIED MULTIPROCESSOR CONFIGURATION

BANK 1 BANK 2 BANK 3 BANK 4
o ; o ; o ; o T
! I !
obD |EVEN| | opbp |EVEN opp |EVEN obD | EVEN
|
65K ! 65 ' 65K 65K
MMA | MMA MMA | MMA MMmA | Mma mMMA| MMA
cPU cPU cPU
1 L
r 1 r 1
|___MPA MPA i
l/oc l/oc
MPA MPA MPA
DEV. DEV. DEV.
CONT. CONT. CONT.

6.20

A

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

AUERBACH
®
OVERLAPPED FETCH IN UNIVAC 1108
BANK 1 BANK 2
0
oDD i EVEN obD { EVEN
|
| NEXT INST. |
| |
OPERAND | |
| |
32K 32K C
| MEMORY MEMORY MEMORY MEMORY
CONTROL CONTROL CONTROL | CONTROL
LoGIC LOGIC LOGIC LOGIC
: B |
PROCESSOR

6. 21

A UNIVAC 1108 AND INTRODUCTION TO

AUERBACH HIGH PERFORMANCE MACHINES

ADDRESSING AND STORAGE PROTECTION — UNIVAC 1108 — SIMPLIFIED

BI BD le— 16 I
M
+
+ ' fe— 18 -
| XM
u + BI _ u + BD <lf
11 [
| Y
U+ XM=U
M + BE + XM p + BD + XM /
’ % BSIU
INST. LIMITS TEST DATA LIMITS TEST
| |
LOWER | UPPER LOWER | UPPER
| |
PRIMARY STORAGE
REGISTERS
USER
REAL ADDRESS SPACE i ADDRESS SPACE
- ; —-

6.22

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES

1108 1/0

PRIMARY STORAGE

CPU

1108
CHANNEL

CHANNEL CONTROLLER

I‘—— CHANNELS

0

6.23

15

o

A

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

1108 AS A MUL TIPROCESSOR

DESIGNED AS A UNIPROCESSOR

MULTIPROCESSING CONNECTIONS THROUGH ADAPTORS

MMA
MPA

FULL 1107 COMPATIBILITY

GUARD MODE = USER STATE (MODE)

SEPARATE PROGRAM AND DATA AREA BOUNDS REGISTERS

I/0 OPERATES WITHOUT STORAGE PROTECT FEATURE C;

ADDITIONAL MODULE FOR MULTIPROCESSOR SYSTEMS —
AVAILABILITY CONTROL UNIT

6. 24

ﬁ UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACP;

PROBLEMS IN ATTAINING HIGH PERFORMANCE SYSTEMS

® EXTREME MISMATCH BETWEEN SPEED OF LOGIC AND
PRIMARY STORAGE

® MISMATCH BETWEEN PRIMARY AND SECONDARY STORAGE

® SERIAL REPRESENTATION OF PROGRAMS

6.25

! ‘ UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH

OVERLAP

——MVEMORY CYCLE —J-—-— MEMORY CYCLE —&=

AVAILABLE AT CPU

—

|
|
l
! 1 INFORMATION
|
|

OPERAND
F'gi;_l ADDRESS FPQ_T:I‘_I EXECUTE SIMPLE MACHINE
DETERMINED |

OVERLAPPED
MACHINE (DATA AND
L OAD1 D1 X1 INSTRUCTIONS
RESIDING IN
l2 OADz ALTERNATE BANKS

OR MODULES)

6.26

ﬁ | UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH

LOOK—AHEAD

¢«— MEMORY CYCL.E —»«—MEMORY CYCLE —»1<€—MEMORY CYCLE —A

I B
IA 1 OAD

P e

OAD D

A A l

D

6.27

ﬁ UNIVAC 1108 AND INTRODUCTION TO

- HIGH PERFORMANCE MACHINES
AUERBACH

PIPELINE
MEMORY MEMORY MEMORY - MEMORY
<~ CYCLE ™™~ CYCLE ™" CYCLE —™™— cycLE ™
I IA+|B D, Dy X, Xg X XD...
I I D D, D D
e e 's Iy

6.28

! ‘ UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBAC:

FUNCTIONAL OUTLINE PIPELINE MACHINE

INST. DATA
QUEUE QUEUE PRIMARY
STORAGE
ARITHMETIC RESULT
LOGIC QUEUE

6.29

! UNIVAC 1108 AND INTRODUCTION TO

: : HIGH PERFORMANCE MACHINES
AUERBACH

OTHER TECHNIQUES TO REDUCE LOGIC—-MEMORY SPEED MISMATCH

® LOOKASIDE

® SCRATCHPADS

6.30

ﬁ ' UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACi;

TECHNIQUES FOR REDUCING PRIMARY—SECONDARY STORAGE SPEED MISMATCH

® MULTIPLE CHANNELS
e HEAD PER TRACK DISC UNIT

® SECTOR QUEUES

6. 31

! UNIVAC 1108 AND INTRODUCTION TO

. HIGH PERFORMANCE MACHINES
AUERBACI;

DISC—SECTOR QUEUEING FUNCTIONAL DIAGRAM

DISC ACCESS QUEUE SECTOR
TR/D |oP| TR/D |oP 1
/
TR/D |OP 2,
<EMPTY> 3 .
. DISC
TR/D |OP| TR/D |oP | TR/D |oOP | ' CONTROL
TR/D |OP | TR/D |OP s\
<EMPTY> 6 \\

A
|
S~
TR/D |oP | TR/D |OP 7 | ©
|
|
l
|
|
|

READ—WRITE
SIGNALS

AN .
R

6. 32

ﬁ ' UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACZ

SOURCE OF PARALLELISM IN PROGRAMS

® INDEPENDENT OPERATIONS
STATEMENT LEVEL
ARITHMETIC EXPRESSION LEVEL

® PARALLEL LOOPS

® OVERLAPPED LOOPS

6.33

a UNIVAC 1108 AND INTRODUCTION TO

- HIGH PERFORMANCE MACHINES
AUERBACH

(1) A=B
@) C=A+1
3) D=B+2
4) B=B+ 1
INDEPENDENT STATEMENTS, 1, 3

2, 4

6. 34

ﬁ A UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBAC’;

EXPRESSION PARALLELISM

EXPRESSION: B+ C)/(E—F) +D— (R+ P)/Q—M) + R

EXPRESSION TREE

IN N
NANA

ALL OPERATIONS AT SAME LEVEL ARE INDEPENDENT AND CAN BE
EXECUTED IN PARALLEL

6.35

! ' UNIVAC 1108 AND INTRODUCTION TO

HIGH PERFORMANCE MACHINES
AUERBACH

PARALLEL LOOP

R=5
DO 1g1=1, 1§
M=1+R

A1) =B() + M

18 CONTINUE
ITERATION I ITERATION 2 ITERATION 3
M=1+R M=2+R M=3+R
A(1) =B(1) + M A(2) =BR) +M A(B) =B(3) + M

6. 36

A\

AUERBACH
®

UNIVAC 1108 AND INTRODUCTION TO
HIGH PERFORMANCE MACHINES

PARALLEL LOOP CHARACTERISTICS

® SAME OPERATION(S) APPLIED TO DIFFERENT DATA
® INDEX SET DETERMINES DATA IN A REGULAR MANNER

® PERMITS BULK EXECUTION OF PROGRAMS

6. 37

A ' - REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

.p» CAPABILITIES

® BATCH PROCESSING
e DEMAND REMOTE

® REAL—TIME COMMUNICATIONS

» FEATURES

® PROGRAM PROTECTION

~— MEMORY

— RESERVED OPERATIONS
® MASS STORAGE UTILIZATION
® ELABORATE PROGRAM FILE SYSTEM
® CONTROL STATEMENTS MAY BE CATALOGUED

e MULTIPLE VERSIONS

» LANGUAGES

® FORTRAN
® COBOL

® ASSEMBLY
® ALGOL

® CONVERSATIONAL FORTRAN

7.1

A

AUERBACH
®

REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
UNIVAC 1108 EXECUTIVE SYSTEM

p BASIC CONCEPTS AND DEFINITIONS

® ACTIVITY

® BATCH

® COLLECTION

e FILES

— GRANULES

— PACKETS

® RUN

® TASK

® SWAPPING

® PRIVILEGED INSTRUCTIONS

7.2

A

AUERBACH REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
®

UNIVAC 1108 EXECUTIVE SYSTEM

» SYSTEM COMPONENTS

® SUPERVISOR
® EXECUTIVE REQUESTS
® SYMBIONTS
® 1/0 HANDLERS
® OPERATOR COMMUNICATIONS
® FILE CONTROL
® DATA HANDLING
® FILE UTILITIES @
® AUXILIARY PROCESSORS

— COLLECTOR

— PROCEDURE DEFINITION

— LANGUAGE PROCESSORS

e PROCESSOR INTERFACE ROUTINES

® DIAGNOSTIC SYSTEM

— SNAPSHOTS

— POST—MORTEM
® SYSTEM GENERATION

® UTILITY ROUTINES

7.3

A REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

» STATEMENT FORMAT

@ [(LABEL)] . { COMMAND > [(, OPTIONS >] {SPEC. LIST> { COMMENTS >

» STATEMENT TYPES

@ ORGANIZATIONAL

® 1/O SPECS

® PROCESSOR CALLS

® PROGRAM EXECUTION

® CONDITIONAL

7.4

A . 'REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

ORGANIZATIONAL STATEMENTS

@ RUN APPEARS AT THE BEGINNING OF EACH RUN. PROVIDES
ACCOUNTING AND IDENTIFICATION INFORMATION.

@ FIN APPEARS AT THE END OF EACH RUN.

@ LOG PLACES USER SPECIFIED INFORMATION IN THE SYSTEM
LOG.

@ MSG PLACES A MESSAGE ON THE CENTRAL—SITE CONSOLE
TYPEWRITER.

@ HDG USED TO PLACE A HEADING LINE ON PRINT OUTPUT. ﬂ

@ ADD USED TO DYNAMICALLY EXPAND THE RUN STREAM.

@ START USED TO SCHEDULE THE EXECUTION OF AN INDEPENDENT
RUN.

@ sYM USED TO SCHEDULE NON—STANDARD SYMBIONT ACTION,

@ COL USED TO SPECIFY VARIOUS FORMS OF INPUT.

@ CKPT USED TO ESTABLISH A CHECKPOINT DUMP THAT MAY

BE USED FOR RESTART AT SOME FUTURE TIME,

@ RSTRT USED TO RESTART A RUN AT SOME PREVIOUSLY TAKEN
CHECKPOINT.

7.5

A REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

INPUT/OUTPUT SPECIFICATION STATEMENTS

@ ASG USED TO ASSIGN A PARTICULAR INPUT/OUTPUT DEVICE
OR MASS STORAGE FILE TO A RUN. THERE ARE FOUR
TYPES OF @ ASG STATEMENTS:

FASTRAND

TAPE

DRUM

ARBITRARY DEVICE

ALSO USED TO CATALOGUE FILES.

@ MODE USED TO CHANGE THE MODE SETTINGS (DENSITY,
PARITY, ETC.) OF A TAPE FILE.

@ CAT CATALOGUES FASTRAND FORMATTED OR EXISTING TAPE @
FILES.

@ FREE USED TO DEASSIGN A FILE AND ITS INPUT/OUTPUT DEVICE

OR MASS STORAGE AREA.

@ USE USED TO SET UP A CORRESPONDENCE BETWEEN INTERNAL
AND EXTERNAL FILE NAMES.

@ ELT INSERTS OR UPDATES A PROGRAM—FILE ELEMENT FROM
THE CONTROL STREAM.

@ DATA USED TO INTRODUCE OR UPDATE A DATA FILE FROM THE
CONTROL STREAM.

@ END USED TO TERMINATE A DATA FILE.

@ FILE USED TO CAUSE THE DIRECT CREATION OF A FILE CONTAIN—
ING DATA TAKEN FROM THE CONTROL STREAM.,

@ ENDF USED TO TERMINATE THE DATA THAT FOLLOWS THE @FILE
STATEMENT.

@ QUAL USED TO DEFINE A STANDARD FILE NAME QUALIFIER. w

7.6

A

AUERBACH
®

REAL-TIME CONSIDERATIONS FOR OPERATING SYSTEMS
UNIVAC 1108 EXECUTIVE SYSTEM

MAP

XQT

EOF

PMD

PROGRAM EXECUTION STATEMENTS

USED TO CALL THE COLLECTOR AND PREPARE AN
ABSOLUTE ELEMENT.

USED TO INITIATE THE EXECUTION OF A PROGRAM.,

USED TO SEPARATE DATA WITHIN THE CONTROL
STREAM.,

USED TO TAKE EDITED POST—MORTEM DUMPS OF
THE PROGRAM JUST EXECUTED.

7.7

C

AUERABAC!; REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
UNIVAC 1108 EXECUTIVE SYSTEM

PROCESSOR CALL STATEMENTS

@ PROCESSOR USED TO EXECUTE A PROCESSOR (@COB FOR
: COBOL. COMPILER, @FOR FOR FORTRAN, @ ASM
FOR ASSEMBLER, ETC.)

7.8

A

AUERBACH
®

REAL—TIMEACONSIDERATIONS FOR OPERATING SYSTEMS
UNIVAC 1108 EXECUTIVE SYSTEM

LABEL.:

SETC

JUMP

TEST

CONDITIONAL STATEMENTS

USED TO ATTACH A LABEL TO AN EXISTING CONTROL
STATEMENT.

PLACES A VALUE IN THE 'CONDITION' WORD.

USED TO BRANCH CONTROL WITHIN THE CONTROL
STREAM.

USED TO TEST THE 'CONDITION' WORD IN THE COURSE
OF DECIDING THE EFFECTIVE CONTROL STREAM.

7.9

C

A

AUERBACH
®

REAL~TIME CONSIDERATIONS FOR OPERATING SYSTEMS

UNIVAC 1108 EXECUTIVE SYSTEM

BATCH PROCESSING

~ @ SIMPLE FORTRAN LOAD—AND—-GO EXAMPLE:

@
@

RUN AK4,888,0PTICS,5,75
ASG, T ATMOS,T,A341

. FOR

® A MORE COMPLEX EXAMPLE:

@

@ e

e ®

RUN ALS5,888,0PTICS,10

ASG, T ATMOS,T,A341

ASG SPEC,F SPECIAL FILE
FOR PROGS. MURK(15) , PROGS. MURK/ABER

CORRECTIONS TO CREATE MURK/ABER FROM MURK (15)

IN PROGS. MURK/ABER
XQT
SYM PRNT,SPEC
FIN

A REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS

AUERBACH
®

UNIVAC 1108 EXECUTIVE SYSTEM

DEMAND PROCESSING EXAMPLE

» USER SIGN-ON:
U1108 T/S 1

READY

RUN XYZ,311202,DEMO

ASG,C PF,F/5

ASM,l PF. ODDEVEN

ASM 1/1/67

(TERMINAL IDENTIFIED WITH WRU.)

(THE SYSTEM IS READY FOR FIRST
INPUT.)

(THE RUN BEGINS WITH RUNID, ACCOUNT,
AND PROJECT NUMBER TO IDENTIFY THE
USER.)

(A 5 TRACK FILE 'DEMO PF’ IS ASSIGNED,
TO BE CATALOGUED AT THE END OF RUN.)

(START ASSEMBLY OF ELEMENT CALLED
'ODDEVEN'.)

(THE ASSEMBLER IS READY TO ACCEPT
INPUT.)

7. 11

RACH | REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

DEMAND PROCESSING EXAMPLE

» ASSEMBLY LANGUAGE PROGRAM:

REGNAM : " (A PROC TO DEFINE REGISTER NAMES
IS CALLED FROM THE SYSTEM LIBRARY.)

P FORM 12,6,18 (AS THE USER TYPES, THE ASSEMBLY
ST * P$RINT (P 5,4,STMSG) IS TAKING PLACE. THE SYMBIONTS WILL

R$EAD (+ EXlT$,lNPUT) 'QUEUE A LINE IF NECESSARY WHEN THE
USER GETS AHEAD OF THE ASSEMBLER.)

L A1, INPUT? (FORGOT ’,S1'; DELETE IMAGE AND TRY
AGAIN.) '

L.S1 A1, INPUT

L A0, (P 1'4’0DD)

JB A1,ST+1

L A0, (P 1'4E'",EVEN) (WENT BACK TO FIX A MISSING COMMA,

(DOUBLE QUOTE-TTY.))

J ST+1
INPUT RES 14
STMSG 'TYPE A SINGLE NUMBER.’
oDD ‘IT'S ODD; TRY ANOTHER.’
EVEN ‘IT'S EVEN; TRY ANOTHER. '’
END ST

A , REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

DEMAND PROCESSING EXAMPLE

» EXECUTION OF PROGRAM AND SIGN-OFF

ASM COMPLETE (THE ASSEMBLY IS FINISHED. PRO-

$0 000043 GRAM IS 043 WORDS LONG.) (REQUEST
EXECUTION.) |

XQT,N

TYPE A SINGLE NUMBER. (NOW THE PROGRAM AND THE USER
1 CONVERSE.)

IT'S ODD; TRY ANOTHER.

4

IT’S EVEN; TRY ANOTHER.

A

IT'S EVEN; TRY ANOTHER. (SMART PROGRAM— .)
FIN (THAT’'S ENOUGH.)

27/ 3/67 0945

RUNID: XYZ ACCOUNT: 311202 PROJECT: DEMO
TIME: 0000.02 IN: 00023 OUT: 00000 PAGES: 0001

(EOT) (END OF TRANSMISSION REQUEST TO
QUIT THE LINE.)

LINE RELEASED (LAST WORDS FROM SYSTEM.)

A : REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

SUPERVISOR COMPONENTS

» RESIDENT ROUTINES

— INTERRUPT SUPERVISOR,
— CPU DISPATCHER.
— INPUT/OUTPUT CONTROL.
— DEVICE HANDLERS FOR TAPE, FASTRAND, COMMUNICATIONS
SUB—SYSTEMS, ETC. (RECOVERY SEQUENCES ARE TRANSIENT).
— DRUM HANDLER, INCLUDING RECOVERY SEQUENCES.
— DYNAMIC ALLOCATOR.
— CORE CONTENTS CONTROL..
— EXECUTIVE REQUEST SUPERVISOR.
— REAL~-TIME CL.OCK AND DAY CLOCK ROUTINES.
— BLOCK BUFFERING PACKAGE,
— TASK AND SEGMENT LOADER. c)
— CONSOLE CONTROL.
— BASIC QUEUEING PACKAGE AND QUEUE AREA,
— READS AND PRINTS.
— LOGGING CONTROL..
— ERROR INTERRUPT SUPERVISOR,.
— CORE PARITY RECOVERY ROUTINE.
— POWER-LOSS CONTROL ROUTINE.

A . REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

SUPERVISOR COMPONENTS

» TRANSIENT ROUTINES

— CONTROL STATEMENT INTERPRETER.

— COARSE SCHEDULER.

— DEMAND CONTROL

— FACILITIES INVENTORY.

— SECONDARY FASTRAND SPACE ASSIGNMENT.

— COMMUNICATIONS INTERFACE ROUTINES.

— CLT DIAL—UP AND AUTOMATIC—ANSWER

— SYMBIONT PROBE ROUTINES.

— MISCELLANEOUS DEVICE HANDLERS (PAPER TAPE, ETC.).
— SYMBIONTS. |

— CONSOLE HANDLER.

— LOGGING AND ACCOUNTING.

— 1/O ERROR RECOVERY SEQUENCES FOR TAPE, FASTRAND, ETC.
— TAPE LABEL CHECKING.

— ABSOLUTE DUMP ROUTINE.

7.15

A _ REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

COARSE SCHEDULER

» BATCH PROCESSING
® RUN QUEUE
® STATEMENT QUEUE
— WAIT FOR FACILITIES
— BEING PROCESSED BY C.S.
— IN CORE QUEUE
— WAITING FOR OPERATOR
® CORE QUEUE
— ACTIVE
— SUSPENDED
— READY

» DEMAND PROCESSING

® RUN

® STATEMENT

® CORE—-SWAP QUEUE
— ACTIVE
— SWAPPED—-OUT
— READY
— INPUT—WAIT

A : REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

DYNAMIC ALLOCATOR

» CORE ALLOCATION
@ USES CORE CONTENT CONTROL (C.C. C)

p» TIME ALLOCATION
® DISPATCHER
® PRIORITIES
— REAL~TIME
— CRITICAL DEADLINE
— DEMAND
— BATCH

» PROGRAM STATES
® TERMINATED
® SUSPENDED FOR HIGHER PRIORITY
® WAITING FOR COMPLETION OF EXTERNAL EVENT
® INPUT—WAIT
® ACTIVE

7.17

A _ REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

DATA FLOW IN THE SUPERVISOR

RUN STATEMENT
QUEUE QUEUE
C.S
CORE CORE—SWAP P.C.T
QUEUE QUEUE.

SWITCH LIST

CORE TIME

MAP MAP
e

A

AUERBACH
®

REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
UNIVAC 1108 EXECUTIVE SYSTEM

THE SWITCH LIST

N—-LEVEL, MULTIPLE ENTRY (L=0, 1, 2,..., N)

INITIAL LEVEL =0 v

LEVEL L HAS PRIORITY OVER LEVEL L+1

WITHIN LEVEL, CDU TIME PRIORITIES ARE EQUAL

PROGRAM LOSES CONTROL BY VOLUNTARY OR INVOLUNTARY ACTION

— THE TIME—LIMIT QUANTUM Q:

= oL
OTLZ

e A =ALLOCATION FACTOR BY D.A.
e F =PRIORITY FACTOR
® Q=Ax(1+P/F)xT_
IF Q IS EXCEEDED, L + 1-> L FOR THAT TASK

® SWITCH LIST FUNCTIONS FOR DA:

ENTER (INITIAL L FOR A TASK)

SET (ALTERS VALUE OF A FOR A TASK)

MOVE (ALTERS VALUE OF L FOR A TASK)

MOVE 1 (ALTERS VALUE OF L FOR ALL TASKS OF GIVEN TYPE)

MOVE 2 (INCREMENTS OR DECREMENTS L FOR ALL TASKS OF
GIVEN TYPE)

AUAERBACH REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
° UNIVAC 1108 EXECUTIVE SYSTEM

DISPATCHER

® CPU GIVEN TO HIGHEST PRIORITY
® FULL LEVEL—CYCLE MUST BE COMPLETED
® DISPATCHER USES SWITCH LIST FOR:

— ENTRY POINT

— RUNID.

— STATEWORD

— ACTIVITY MARK

— MEMORY LOCKOUTS

— RUNNING TIME

— P.C.T. ADDRESS POINTER

7.20

A : REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

FILE CONTROL SYSTEM

» FUNCTIONS

® DIRECTORY MAINTENANCE

® MASS STORAGE ALLOCATION

® INTERFACE WORKER PROGRAMS AND DEVICE HANDLERS
® PROTECTION .

7.21

A REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

COLLECTOR EXAMPLE

FILEA ELEMENTS REFERENCES OUTSIDE OF FILEA REQUIRED
NAME/VERSION FILE, NAME/VERSION

MAIN FILEA, A1,B1, F1

A1/A

A2/A LIB1, SIN/X

A3/A LIB2, COS/X

B1/B LIB1, SQRT/X

B2/B

B3/B

ci/c LIB1, SQRT/X

cz2/c

D1/D LIB2,CAT/Y

D2/D

E1/E ‘ LIB2, CAT/Y

E2/E

F1

F2

G1/G LIB1, SIN/X @
G2/G LIB2,COS/X \
G3/G

A PARTICULAR COLLECTION SETUP FOR SEGMENTING A PROGRAM
FROM THIS FILE MIGHT BE AS FOLLOWS:

MAP, L , X
SEG MAIN

IN FILEA, MAIN

SEG A*, (MAIN)

IN FILEA,A1/A,A2/A, A3/A
SEG Bx, (A)

IN FILEA,B1/B, B2/B,B3/B
SEG Cx, B

IN FILEA,C1/C,C2/C

SEG D*, (B,C)

IN FILEA,D1/D,D2/D

SEG Ex, D

IN FILEA, E1/E, E2/E
DSEG F*, (D,G)

IN FILEA, F1,F2

SEG G*, (MAIN)

IN FILEA,G1/G,G2/G

LIB LIB1, LIB2

@ XQT

7.22

A o REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM
®

STORAGE MAP

INSTRUCTION AREA MEMORY MAP

01000 K M
CAT -B1-B2-B3---
SQRT ‘ -D1-D2------

cos -AT- A2 -A3

SIN -E1-E2---—--

~-MAIN—————- C1 c2 Fl-- F2omeem-
e Glee G2 | e | e |

DATA AREA MEMORY MAP

CAT - B1- B2- B3------
ILDS$| SQRT -D1-D2___
COS |-Al1-A2 -A3 —- -E1-E2---
SIN e C1 L2 ¢
LT- BC-- MAIN- | - F1- F2-—=-=======-m==
-G1-- G2 ———- '
- Cos SIN
MAIN (A1,;Bl, F1) /////// \\\\ <
2; & CAT SQRT
G1 (SIN) A3 (COS) A NN
C1 (SQRT) B1 (SQRT)
c2 B2
S s
G2 (COS) E; (CAT) E1 (CAT)
F1
F2

7.23

A

AUERBACH
®

REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
UNIVAC 1108 EXECUTIVE SYSTEM

CONVERSATIONAL FORTRAN

» SERVICE LANGUAGE

PROGRAM ENVIRONMENT STATEMENTS
EXECUTION CONTROL
STATEMENT MODIFICATION

DISPLAY
TEST FUNCTIONS

— TRACE (REPORT VALUE CHANGES)

— TRAP (REPORT ALL TRANSFERS)

— TRAIL (REPORT ALL EXTERNAL PROCEDURE CALLS) ‘

— DUMP

— LIMIT (REPORT VALUE OUTSIDE LIMITS)

— KEYIN (ALLOW CONSOLE CONTROL.)

— EX (IMMEDIATE, BUT NOT PERMANENT)

— EXR (IMMEDIATE AND PERMANENT)

— OFF

7.24

A- REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

CONVERSATIONAL FORTRAN

@CFOR
+NOTE CONVERSATIONAL FORTRAN IN EFFECT
101. READY o @EX
READY Z = SQRT (CONSTANT)
Z = VALUE
READY Y = SIN (CONSTANT)
Y = VALUE
READY ‘ R = SIN (CONSTANT)
R = VALUE
READY @OFF (EX)
101. READY
@CFOR
+NOTE CONVERSATIONAL FORTRAN IN EFFECT
101. READY @ACTIVITY TEST
101. READY READ (2, 20), A, B, C
102. READY , 10 A=B+ C
103. READY @UPDATE
* READY —101, 101 '
* 101, READY READ (2, 20), B, C
* 101, 1 READY @OFF (UPDATE)
103. READY @TRACE A
103. READY R=B/A+C
104. READY
@CFOR
+NOTE CONVERSATIONAL FORTRAN IN EFFECT
101, READY @ACTIVITY EXAMPLE
101, READY @TRACE A, B, C
101. READY READ (2, 20), A, B, C
102. READY D=A—-B+C
103. READY A =D+C/A
104, READY B=A-D
105. READY 20 FORMAT (F8. 3)
106. READY @BEGIN
—101. READY (INPUT VALUES ENTERED FOR A, B AND C)
+TRC 103. A = VALUE
+TRC 104. B = VALUE
106. READY

7.25

A REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

CONVERSATIONAL FORTRAN

@ CFOR :
+NOTE CONVERSATIONAL FORTRAN IN EFFECT
101. READY DIMENSION A(100)
102. READY @ EXR
102, READY 20 FORMAT (F8. 3)
103, READY READ (2, 20), B, C
—103. READY (INPUT VALUES ENTERED FOR B AND C)
104, READY D =20
105. READY E=20—B—C
E = VALUE
106. READY E=20—C—B
E = VALUE
107. READY EX E=B/C+19.9
E = VALUE
107. READY @ UPDATE
* READY —102
* 102, READY READ (2, 50), (A (I;
),1=1,100)
* 102, READY @ OFF (UPDATE)
107. READY A(2) =B—C
108, READY A(3) =—A(2)
109. READY

7,26

A REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
AUERBACH UNIVAC 1108 EXECUTIVE SYSTEM

CONVERSATIONAL FORTRAN

@ CFOR
+NOTE CONVERSATIONAL FORTRAN IN EFFECT

101. READY ' @ EXR

101. READY 10 FORMAT (13)

102, READY 5 READ (2,10), J, K, L
—102. READY (INPUT VALUES ENTERED FOR J, K AND L)

103. READY 4 IF J—K) 5,7, 9

104. READY IF (L) 4,5,9
+ERR STATEMENT AT 104. REQUIRES A LABEL

104, READY 7 IF (L) 4,5,9

105. READY 9 L=L-—1

L = VALUE

106. READY @ OFF (EXR) ‘

106. READY ‘ @ UPDATE
* READY —103, 103
* 103. READY 4 IF (K—J)5, 7,9
*103. 1 READY @ LIST

101. 10 FORMAT (13)

102. 5 READ (2,10),J,K,L

103. 4 IF (K—J) 5,7, 9

104. 7 IF (L) 4, 5,9

105. 9 L=L—1

7.27

A

AUERBACH ‘ REAL—TIME CONSIDERATIONS FOR OPERATING SYSTEMS
® UNIVAC 1108 EXECUTIVE SYSTEM

CONVERSATIONAL FORTRAN

@ CFOR
+ NOTE CONVERSATIONAL FORTRAN IN EFFECT

101. READY @ LIMIT A.GT. 20
101. READY @ EXR
102, READY 20 FORMAT (F8. 3)
103. READY READ (2,20), A,l

—103. READY (INPUT VALUES ENTERED FOR A AND I)
104. READY @ OFF (EXR)
104, READY READ (2,20). (B(J). ; J=1,I)
105. READY 3IF (B(1)) 5,15,4
106. READY 4A=B(I) + SINB (1))
107. READY 5A=B()*A @
108, READY =1 |
109. READY GO TO 3
110, READY 15A=cos B(1))
111, READY @ BEGIN 104
101. READY DIMENSION B (100)

—104. READY (INPUT VALUES ENTERED FOR B—ARRAY)

+LMT A.GT.20 110. A =21.75

READY

7.28

A

AUERBACH
®

HIGH PERFORMANCE HARDWARE

TOPICS COVERED THIS SESSION

e HIGH PERFORMANCE MACHINES

6600

360/9X, 360/85
B8500

ILLIAC IV

8.1

A HIGH PERFORMANCE HARDWARE

AUERBAC:
FUNCTIONAL ORGANIZATION-CDC 6600
ADD MUL
1 12 | |
PRIMARY MUL
l«— CHANNELS —»] STORAGE

1 2 3 32 / DIV

T 1T o[

MULTIPLEXED l l l l REGISTERS «—>| SHIFT

PERIPHERAL
AND CONTROL

PROCESSOR ‘ \:\A BOOLEAN

INCREMENT ”

BRANCH INCREMENT

1 2 3 10

e e

(4K MEMORYS, 1 FOR
EACH VIRTUAL P&C PROCESSOR)

8.2

A HIGH PERFORMANCE HARDWARE

AUERBACH
®

PROGRAM [NITIATION - 6600

PRIMARY STORAGE

N:
1
16
6X00 CONTROL
— 7 — REGISTERS
P AND C N -
PROCESSOR

8.3

A ’ HIGH PERFORMANCE HARDWARE

AUERBACH
®

CDC-6400
1 12
[«— CHANNELS —]
1 2 32

l INTEGRATED

| ARITH. AND

CONTROL

MULTIPLEXED UNIT
PERIPHERAL AND

CONTROL PROCESSOR

4K MEMORY, 1 FOR
EACH VIRTUAL P&C
PROCESSOR

8.4

A HIGH PERFORMANCE HARDWARE

AUERBACH
®

€DC-6500

ol 39 INTEGRATED
ARITH. AND

<—— CHANNELS —— CONTROL
UNIT

MUX P&CP

INTEGRATED
ARITH. AND
CONTROL
UNIT

8.5

A

AUERBACH
®

HIGH PERFORMANCE HARDWARE

360/91

FUNCTIONAL DIAGRAM

HIGH PERFORMANCE
PRIMARY STORAGE

.75,us

(INTERLEAVED 8 OR 16
WAYS)

256K

I

MAIN STORAGE CONTROL
ELEMENT

EXTENDED
PRIMARY STORAGE

e — —— — — s — ——— — —

(16 WAY INTERLEAVE)
o

|

I T ST

:

» PERIPHERAL STORAGE
CONTROL ELEMENT (PSCE)

|

le\——\
CHANNELS AND 1/O

INST STORG C,iPNEDR‘ |
BUFFERS | |BUFFERS | | a(FFERS
I I |
|
FLOATING POINT
GEN .PURP. REGISTERS
REGISTERS
FIXED FLOATING
POINT POINT
»| EXECUTION EXECUTION

1

8.6

A HIGH PERFORMANCE HARDWARE

AUERBACH
®

MODULO 8 INSTRUCTION STACK - 360/91

SAMPLE
POINTER
SETTINGS
0
1
< B
9 < | B
3
4 C
5 «— |R
lt————————— AOC
6
7

|

e e,

OP REGISTER

8.7

A ” HIGH PERFORMANCE HARDWARE

AUERBACH
®

ELEMENTS OF 360/91 CONTRIBUTING TO SPEED

e MULTIPLE INTERLEAVED HIGH SPEED STORAGE
e STORAGE ACCESS BUFFERING
e INSTRUCTION BUFFERING

INST FETCH LOOKAHEAD

SHORT LOOP EXECUTION

e OPERAND FETCH AND STORE BUFFERING

e MULTIPLE ARITHMETIC EXECUTION ELEMENTS

8.8

A

AUERBACH
®

HIGH PERFORMANCE HARDWARE

360/85 TWO LEVEL STORAGE SYSTEM

80 ns

CPU

LOCAL
STORE

80 ns

8.9

BACKING STORE

A

AUERBACH
®

HIGH PERFORMANCE HARDWARE

OBJECTIVES OF 360/85 2-LEVEL STORE SYSTEM
GENERALIZATION OF LOOK-ASIDE MEMORY

'PAGE' CONCEPT APPLIED FOR INCREASED PERFORMANCE
AMORTIZE ACTUAL ACCESS TIME OVER SEVERAL WORDS

8.10

A HIGH PERFORMANCE HARDWARE

AUERBACg
360/85 BUFFER MEMORY LOGIC
24 BIT ADDRESS 8
BLOCK ID | B-D
\ ‘F /
8 8
BLOCK ID | BEMD
(16) (8)
W
ASSOCIATIVE
Y (<]
NO MATCH

y BUFFER TO
MEMORY [k™ CPU

PRIMARY STORAGE

A

AUERBACH
®

HIGH PERFORMANCE HARDWARE

SUMMARY OF MODEL 85 CHARACTERISTICS

MODEL 85 EMBODIES 'LOOK ASIDE' CONCEPT
IMPLEMENTATION SIMILAR TO PAGING IN 360/67 (TO BE DISCUSSED)

WITH THE PARAMETERS CHO SEN, DATA OR INSTRUCTIONS FOUND IN
BUFFER MEMORY BETTER THAN 95% OF THE TIME

SIMULATION STUDIES SHOWED THAT STORAGE FOR~-128 BLOCKS
WAS SUFFICIENT TO LOWER REFERENCES OUTSIDE OF BUFFER -
STORE TO LESS THAN 5% REGARDLESS OF THE PROGRAM SIZE

THE ADDRESSING PATTERN OF THE PROGRAM IS THE ONLY
SIGNIFICANT CHARACTERISTIC AFFECTING THE EFFICIENCY OF
THE BUFFER

8.12

A HIGH PERFORMANCE HARDWARE

AUERBACH
®
SYSTEM ORG ANIZATION - 88500
MEM MEM
1 w .
] DFC cre | | m1c TY
Py
2 /o] 2 3| --- |52
CPU 3
4
, /o
16

8.13

A ’ HIGH PERFORMANCE HARDWARE

AUERBACH
®
B8500 CPU - SIMPLIFIED FUNCTIONAL DESCRIPTION
ADVAST FINST
o
| | ol T
ADDRESS | FINST ¥
DETERMINATION [<——— 5| ARITH. &
ADDER | CONTROL
>
X § | | s
l (INSTS)
. | DATA)
| .
PRTQ INST. LNSTS) | of v | Temea
DECODE
| STACK
INDEXQ | X | EXTENSION
FINST j
]
B —+ <]
- STOREQ — |
| I
INST.
ASSOCIATIVE ! LOOK AHE AD | K
MEMORY : (12 WORDS) |
" | (DATA)
NO HIT |

MGM.ADDR -REG

MEMORY BUFFER REG . (=

i

PRIMARY
STORAGE

8.14

A

HIGH PERFORMANCE HARDWARE

AUERBACH
®
B8500 INPUT/OUTPUT MODULE BLOCK DIAGRAM
LOCAL MEMORY UNIT
1024 Addresses - 104 Bits Per
512 Control Channels - 2 Addresses Per
A == 7
| | 1/O PROCESSING UNIT DATA SERVICE UNIT I |
|
. : : Ins:rjrucfions Descriptor + Data Register | |
- Adders + Comparators I
O | CENTRAL | Field Control Input Data | PERIPHERAL |
| Relative Addressing Capability (Local Output Data EQUIPMENT |
MOCESIOR| | g o Here) e pacivg « Unpadivo || conmRoLLEs |
: MODULES | Job Stack Addresses Service Requests | :
I | Interrupt Stack Addresses Start Lines | |
L L _l

COMMUNICATIONS UNIT

Memory Conflict Resolver
Input and Output Registers

HIGH PERFORMANCE HARDWARE

A

AUERBACH

®

B8500 -~ DISC FILE CONTROLLER DETAILED INTERFACE

ELECTRONICS UNIT

/O MODULE

. - ..||“
A : ()
i e G] “ $sanbay_/J 921AJ9G _ocmm'
_ I
<) — I ysenbay_/ SISERS o:_>>'
sjouon \/' | m I(1) 990U S N
. _ 2 " (1) sip3g\/ (Zs) oo |
IS Aév __ : _mN.n. _ ~
I o) | &) pIpQ
S[onuoS @l.“lv © _ a
_ | \\ A 9qo1}g §93]9g
(S)—i» _ ()~
30015 \/ “ ! A\ HRyg
I |1PAY 1PPY "
| _
| _
_ \ |
O ®
_ _
_ _
|
| |
~ | ()
ppy) T “ = oS
" e | _/ 1senbay mu_Zom'
©O—" 2 ~—®
[IDAY _ S _ \/ pybQg
{3 | ? -1 @ aqo
o) }—> | qoHs
01D N | m)
L] / 104G

8.16

A : HIGH PERFORMANCE HARDWARE

AUERBACH
®

FUNCTIONAL CHARACTERISTICS - B8500 MEMORY MODULE

e 500 NS CYCLE, 200 NS READ ACCESS, 300 NS REGENERATE

e FETCH/STORE 1 OR 4 WORDS

<«— 208 BITS (4 X 52) >

4095 ‘ C

0 Y 208

MEMORY BUS
(52)

A

AUERBACH
®

HIGH PERFORMANCE HARDWARE

ELEMENTS OF B8500 CONTRIBUTING TO PERFORMANCE

MULTIPLE INDEPENDENT MEMORY MODULES
MULTIPLE PROCESSORS/ CHANNELS
QUEUED ACCESS DISC CONTROLLER

FUNCTIONAL SEPARATION OF INSTRUCTION PREPARATION,
EXECUTION LOGIC, AND COMMUNICATION WITH MEMORY

INCORPORATION OF ASSOCIATIVE MEMORY FOR
INDEX VALUES
DESCRIPTORS

STORE BUFFER

A | HIGH PERFORMANCE HARDWARE

AUERBACH
®

ILLIAC IV ORGANIZATION

— | Ry >

A
Y
<> O [—>

«—] O | O [—»

<> PE's PE's >

(O

PERIPHERAL
SUBSYSTEM

8.19

A HIGH PERFORMANCE HARDWARE
AUERBACH

SYSTEM DATA INTERCONNECTIONS

D\
m@kKj +] ol '
I /K\kK/ 1
TO 10P<—.@ -4 A4 b EVeN ., L
TO 10C =——(N)- 3 CU ¢ l
.——;_-i PUC ¢ ¢ t —1 (L 1
o O%R 4= PUC ¢ 7 L__q O !
o PEQs
o
S Doy
105 8 PUB ¢1 Callv)
o -t & ||
Ot 8 © ~
PES
Px1¢
(8)
9X€
! @E(PUC ¢6 Qr,_\ *
j;a Ty b !
:_E.:{ PUC 5 © 1
3 PUC 3 t L) *
_} PUC ¢4 *___ © [
e PEQ ¢ g PEQ 3 PEQ 1

PEC.

A HIGH PERFORMANCE HARDWARE
AUERBACH

SYSTEM DATA INTERCONNECTIONS - 1i

@ A FULL WORD (64 BITS) BIDIRECTIONAL PATH BETWEEN THE PROCESSING
ELEMENT AND ITS OWN MEMORY MODULE FOR DATA FETCHING AIND
STORING.

A PARTIAL WORD (16 BITS), UNIDIRECTIONAL PATH BETWEEN THE PROCESS-
ING ELEMENT AND ITS OWN MEMORY MODULE FOR ALL ARRAY MEMORY
ADDRESSING.

®

A FULL WORD (64 BITS) BIDIRECTIONAL PATH BETWEEN THE PROCESSING
ELEMENT AND EACH OF ITS FOUR DESIGNATED ORTHOGONAL NEIGHBORS
FOR INTERNETWORK DATA TRANSFERS.

A B-WORD (256 BITS) UNIDIRECTIONAL PATH BETWEEN EACH MEMORY
MODULE AND THE PROCESSING UNIT BUFFER (PUB) FOR TRANSFERS TO
IOS AND THE CU.

A 2-WORD (128 BITS) UNIDIRECTIONAL PATH BETWEEN THE PROCESSING
UNIT BUFFER OF THE PROCESSING UNIT CARINET AND THE PROCESSING
ELEMENT MEMORIES FOR 1/O STORES. @

A 2-WORD (128 BITS) BIDIRECTIONAL PATH BETWEEN TWO PROCESSING
UNITS AND THE PROCESSING UNIT BUFFER FOR INTERQUADRANT
ROUTING.

A 1-WORD (64 BITS) UNIDIRECTIONAL PATH BETWEEN THE PROCESSING
UNIT BUFFER AND ALL EIGHT PROCESSING UNITS IN THE CABINET (CDB).

A FULL WORD (64 BITS) UNIDIRECTIONAL PATH FROM THE CONTROL UNIT
TO EACH OF ITS EIGHT PROCESSING UNIT CABINETS FOR OPERAND BROAD-
CASTING, MEMORY ADDRESSING AND SHIFT COUNT TRANSFERS.

A 200-BIT (APPROXIMATELY) UNIDIRECTIONAL PATH FOR CONTROL UNIT
SEQUENCING OF THE PROCESSING ELEMENT QUADRANT.

AN 8-WORD (512 BITS) UNIBIDIRECTIONAL PATH (ONE WORD FROM EACH
PUB) FOR DATA TRANSFERS TO THE CONTROL UNIT.

A FULL WORD (72 BITS) BIDIRECTIONAL PATH BETWEEN EACH OF THE FOUR
CONTROL UNITS IN THE SYSTEM FOR SYNCHRONIZING AND FOR THE
DISTRIBUTION OF COMMON OPERANDS IN THE UNITED ARRAY MODE.

© 00 @0 @ 0 @ ©

A FULL WORD (64 BITS) BIDIRECTIONAL PATH BETWEEN ADJACENT PROCESS-
ING ELEMENT CABINETS IN ALL FOUR QUADRANTS FOR INTERQUADRANT
ROUTING.

8.21

A HIGH PERFORMANCE HARDWARE

AUERBACH
@

SYSTEM DATA INTERCONNECTIONS - Il (Cont)

@ A FULL WORD (64 BITS) BIDIRECTIONAL PATH BETWEEN THE FOUR CONTROL
UNITS AND THE 1/O SUBSYSTEM.

@ A PART WORD (32 BITS) UNIDIRECTIONAL PATH BETWEEN THE FOUR
CONTROL UNITS AND THE /O CONTROLLER FOR MEMORY ADDRESSING.

(O) A 16-WORD (1024 BITS) BIDIRECTIONAL PATH BETWEEN THE INPUT/
OUTPUT SWITCH AND EACH PROCESSING ELEMENT QUADRANT.

A 16-WORD (1024 BITS) BIDIRECTIONAL PATH BETWEEN THE INPUT/
OUTPUT SWITCH AND THE 1/O SUBSYSTEM. .

8.22

A HIGH PERFORMANCE HARDWARE
AUERBACH

ILLIAC IV SUBARRAY

" CONTROL
l CONTR?;L LINES l
TO PE's
I | | | | I
| I I I I I I C
| | [|| | -
I I I [I
I | I I I | | I
| | | - ||
| I | I | I I |
| I [
- | - || - | -
| I I | | I I I

8.23

A

HIGH PERFORMANCE HARDWARE

AUERBACg
_ COMMON DATA BUS
CONTROL -
1/O BUS
//\\
! N
2K MEMORY 2K MEMORY |<—»E
W <—>» [
- PEI,I W] PE1,8
S I
> S
|
2K MEMORY|@—>F 2K MEMORY|e&—»
S S

8.24

A

AUERBACH
®

HIGH PERFORMANCE HARDWARE

DISCUSSION OF ARRAY PROCESSORS
e WHERE DEALING WITH ARRAYS, VERY HIGH PERFORMANCE IS POSSIBLE
(UP TO 256 TIMES A VERY HIGH PERFORMANCE SERIAL SYSTEM)

e DATA PLACEMENT CRITICAL IN ILLIAC IV BECAUSE OF LIMITATIONS
OF SYSTEM CONNECTIVITY

e INTRODUCES CONCEPT OF PROCESSOR-RELATIVE ADDRESSING.

e CONTROL PROBLEMS COMPOUNDED WHEN INDEXING EXCEEDS
DIMENSIONS OF ARRAYS

e ULTIMATE LIMITATION IS HIGHLY PARALLEL ACCESS MEMORY,

WITH ILLIAC IV CONNECTIVITY, ONLY 4 PORTS NEEDED FOR
EACH MEMORY MODULE

WITH SAME NUMBER OF PE'S AS A VECTOR CONNECTIVITY
EACH MEMORY WOULD REQUIRE 64 PORTS

e EFFICIENCY DEPENDENT ON SOLUTION METHOD ISOMORPHISM
WITH STRUCTURE

8.25

A HIGH PERFORMANCE SOFTWARE

AUERBACH
®

PERIPHERAL PROCESSOR MEMORY ALLOCATION

PP1-8 PP9 PPO
0000 T o
Temborary Stor'age
0075 i :
Communica}tion Area Addresses
0100 : ;
i]
Peripheral Resident Program
1 1
0773
Basic
Transient
Programs
System System
1773 Display | Monitor
Equipment
Driver
Overlays w)
7777

A

HIGH PERFORMANCE SOFTWARE

AUERBACH
®
RESIDENT CENTRAL STORAGE (TYPICAL)
57| CONTROL POINT _
56 STACK INDICATORS
55 MTR TEMPORARY STORAGE RESIDENT PERIPHERAL LIBRARY
54 BLANK (RPL)
53 BLANK
52 7000
PP STARTING TIMES
41
40| CENTRAL PROCESSOR STARTING TIMES
37 - RESIDENT SUBROUTINE LIBRARY
DATES (RSL)
31
30 TIMES (Hr. Min. Sec)
27 SIMULATOR P ADDR.
26 SIMULATOR XJ ADDR. 5000
25| PSEUDO-CONTROL POINT O RECALL IR
24 PP IDLE TIME
23 CP IDLE TIME DAYFILE BUFFER
22 not used (DFB)
21 JOB NAME - MTR
20 PSEUDO-CONTROL POINT O 4000
7
16 [CHANNEL STATUS TABLE(CST) FILE NAME/FILE STATUS TABLE
1S (FNT /FST)
14 MTR STEP FLAG
3000
(12 100g 2700 TRACK RES. TABLE 2
11| TRTI [last trackjnot used 100g 62g 2600 TRACK RES. TABLE |
10| TRTO |iasttrack|not used| 100g | 62g 2500 TRACK RES. TABLE O
7| cLo [umiT not used - 2400 PERIPH. LIB. DIRECTORY
TABLE 6| RSL [LiMIT not used
POINTERS 3 o Meor Towr — H e 2200 CENTRAL LIB. DIRECTORY
4| FNT [LMIT not used T —T—=2100 EQUIP STATUS TABLE
3[oFB | IN [out [LiMIT | 2000 CP RESIDENTS
2| PLD |LIMIT not used
_ 1 [RPL no! used CONTROL POINT AREAS
o] ZEROS 0200
s 0060 PP COMM. AREAS
0000 POINTERS AND FLAGS

9.2

A HIGH PERFORMANCE SOFTWARE

AUERBACH
®
CONTROL POINT AREAS AND EXCHANGE JUMP AREA
Words
12-BIT BYTE Program Address (P)[AO (Address Registers)]_ o)
r A ~ Reference Address(RAYA | Bl(Increment Register)| |
59 48 Field Length (FL) |A2 B2 2
status (W]x]i]e]3]a[s]e[7]e]s]o "~ |Exit Mode (EM) [A3 B3 3
“ v J . . ~1_ {A4 B4 4
E [B5 5
" A6 B6 6
indi P'resen::: oy :n ' i AT 87 Y EXCHANGE PACKAGE
indicates: e corresponding - -
PP is assigned to this~ XO (Operand Registers) 10
control point X1 i
i This control point is in recall status X2 12
The Job at this control point is waiting X3 13
for the central processor X4 14
X5 15
12-BIT BYTE X6 16
A
r —/ X7 17)
a7 36 STATUS [ERROR FLAG]stor. move flag|RA(Hundreds)|FL(Hundreds) | 20
ERROR FLAG[X X X X X X X X X[x X | JOB NAME (DISPLAY CODE) next cont.stat.| 2 | — Boar it 1O NEXT o cer
——— A PRIORITY |MSG.COUNT[TRACK COUNTITIME LIMIT bp.assign.equip| 22 @
: e T 2
i CP TIME (SECS) (MSECS) 3 | .URRENT RUNNING T8
oooteas f PP TIME (SECS) (MSECS) | 24
Q0| Time limit exceeded PP RECALL REG. 25—HOLDS PP INPUT REGISTEl
010 Arithmetic error DURING PP RECALL
01! PP Abort SENSE SWITCHES, LIGHTS 26
100 CP Abort EQUIPMENT ASSIGN 27
Not used 101 PP Call Error g £ ED 30
| 10 Operator drop
111 Disk Track Limit LAST DAYFILE MESSAGE
(OR CONSOLE MESSAGE)
37
40
CONTROL STATEMENT BUFFER
(PACKED DISPLAY CODE)
EQUIPMENT ASSISNVENT \77
59 0
4 17|20 33|34 47|50 63|64 77
| agla7 36[35 2423 1201 |

9.3

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

MONITOR/PP COMMUNICATION AREA

PP _COMMUNICATION AREA

PP RES.

INPUT REGISTER
CLEARED?

MTR FUNCTION 17
— QUTPUT REG.

OUTPUT REGISTER\ N
CLEARED?

Y

LOAD & EXECUTE |*
REQUESTED PROG.

EXIT FROM
TRANSIENT

MTR FUNCTION (2
—» OUTPUT REG.
1

A

OR
1R

\MB

OR
IR

\MB
OR

IR

MB

IR

* The Transient Program moy
olso initiate MTR Requests
via PP Resident

MB Message Buffer
IR Input Register

OR Output Register
CP Control Point

ARG Argument

MB
OR
IR

/__’/}

CENTRAL PROCESSOR PROG.

RA +1

NAME | | ARG.

RA

Y

NAME |[cP] [ARG
00170 0
NAME | cp| | ARG
0 0
NAME [cP] | ARG
00120 0
NAME [cP| | ARG
0 0
0 0

\ / /

9.

1
ASSIGN PP TO CONTROL POINT.
INSERT CP NO. T IN CALL,

N e

™

!

| MTR
!

\L (RA+1) CILEARED?)
N
C D,

i
PP AVAILABLE ?

T
N Y

PLACE CALL IN PP
INPUT REGISTER
CLEAR RA+1

A

READ PP OUTPUT REG. 1
1

(STORAGE MOVE FLAG SETD

N

CLEAR OUTPUT REGISTER]

L
READ PP OUTPUT REG. 1

I
I
1
RELEASE PP
CLEAR PP OUTPUT REG.
CLEAR PP INPUT REG.

T
|

N

1T Requestor's

CcP Num

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

S°6

Min

Hours

DAYFILE DISPLAY

ACTUAL TIME

Sec.

A

00,12.55.
P

This column represents
the time each control

statement was requested
for execution.

(A total of 32 lines may
be contained on the day-
file)

00.00.17. MERGE
00.00.17. MERGE
00.00.17. MERGE
00.00.17. MERGE
00.00.18. MERGE
00.00.25. MERGE
00.00.25. MERGE
00.00.27, BETA
00.00.30. MERGE
00.00.30. MERGE
00.00.30. MERGE
00.00. 30, MERGE
00.00. 30. MERGE
00.00.30. MERGE
00.00.31, BETA
00.00.31. BETA
00.00.31. BETA
00.01.04. BETA
New dayfile information 00.01.05. BETA
appears at the bottom of 00.01.11. BETA
the screen automatically; 00.01.12. BETA

old dayfile information 00.01.12. BETA
is deleted at the top of 00.01.12. BETA
the column as new times 00.01.24. BETA

are entered into the day- 00,04.05 BETA
file. 00.04.10 BETA
00.04.10 BETA
00.04.10 BETA
00.04.,40 BETA
00.04.40

‘PROGRAMMING CHECKOUT

00.00.16. MERGE

MERGE 7, 1000,1000.)

ASSIGN 50,A.

(50 ASSIGNED)
ASSIGN 51,B.

(51 ASSIGNED)
REWIND (F)
REWIND (F)
COPYBF (F.D)
READ,
REWIND (F)
REWIND (F)
CP 006. (D) SEC,
PP 019.421 SEC.
PRINT,
PP 000 SEC,
PP 015 SEC.
BETA,77,70000, 50000,
DIS.
INPUT.
LOC.
BUFFER ARG ERROR.
CP 002.575 SEC,
PP 020.265 SEC.
PRINT.
PP 011 SEC.
READ
PP 015 SEC.
BETA,77,70000,50000.
DIS.
INPUT.
LoC.

J

Name of JOB to which
message belongs

SYSTEM TAPE LABEL

JOB NAME

This column represents the
control statements introduced
via card input and contains

7 the system's history.

A summary of the day's total
run may be printed out upon
request,

NOTE: Dayfile display data will appear on the
printout at the end of each job automatically

A

HIGH PERFORMANCE SOFTWARE

AUERBACH
®
JOB STATUS DISPLAY
an S in place of P indicates STATUS_OF CHANNELS
simulator in use D - Disconnected
PROGRAM CHANNEL EQUIPMENT E - Empty
ADDFESS ASSI?NMENT F - Full
- " N\ A N
P = 2. CHANNELS DDDD EDDD DDDD
FILE NAME \
1. READ . .) mmmmmme,
14000, 4000, 05, Blank
FIELD e, PROGRAM | W
LENGTH STATUS X
© 2. PRINT . . L meaem . . A-G
P 20000 4000. 07.
IDLE,
TIME LIMIT
_3. NEXT) . . L (OCTAL SECONDS)
24000
IDLE,
CONTROL
POINTS aéagggm . R b . ACTUAL CENTRAL
IDLE. PROCESSOR TIME
. (OCTAL SECONDS)
5. NEXT . . R
Igigoo. . PERIPHERAL PROCESSOR
PRIORITY < . (PP5 ASSIGNED TO THIS
REFERENCE \\\ \\\ 6. BETA) 17.70000" 10%---322--, CONTROL POINT)
ADDRESS 24000. 50000, 11. y

LAST PROGRAM
MESSAGE (NAME
OF PP PROGRAM
BEING RUN)

EQUIPMENT
ASSIGNMENTS

A HIGH PERFORMANCE SOFTWARE

AUERBACH
®
STORAGE DISPLAYS
CONTENTS OF ADDRESS
00.17.21. PROGRAMMING CHECKOUT
ADDRESS -
10000° 32670 62330
010001 30645 26010 14316 53261 CUD’E DISPLAYS
010002 07125 06232 00101 43165
F,G 010003 32610 70401 00235 00000 oooog
DISPLAYS 010004 20002 06602 00053 11413 aoaaag
010005 02000 76101 00010 00000 OggOoan
010006 00000 00000 00000 00000
010007 35022 40000 00000 00126 C‘gj oo
010010 01000 00002 00224 13024
© 010011 12020 51430 03100 - 70705
. 010012 02002 56130 17000 00200 -
FO OF FIVE-OCTA
~N 010013 24010 32100 00020 02561 DlgﬁTg’_‘?‘(’g: FIVEIZiOggS L
010014 02002 56102 00210 13004 OF FOUR-OCTAL DIGITS)
010015 10660 56730 00346 23464
010016 30615 46334 05140 06010 ‘
010017 30625 41330 05341 43053
010020 10063 15510 06315 41602
010021 62103 06434 13306 53414
010022 30531 00631 55100 65154
010023 16036 21001 00200 00000
010024 00000 00000 00000 00100
010025 00003 03102 00074 13032
010026 76000 20023 01140 03403 Job Names
010027 30725 40430 32162 07600 (Input stack)
010030 74002 00050 00710 02700
010031 04113 40137 04150 55501
010032 04020 67303 03000 07500
010033 02002 30112 02040 50200
010034 23011 22004 12305 10200
010035 07513 62210 03352 10100
010036 21000 00036 03110 50407
DISPLAY AREA 010037 30321 63076 00010 02115

Jobs stacked for output
(If no jobs are waiting for
output none will appear)

FOR OPERATOR TYPEIN
(Always on left screen)

6

A

AUERBACH
®

HIGH PERFOR

MANCE SOFTWARE

JOB FLOW
yd
pd
yd
y4
pd
JOHN, 5,500,40000. A _DISPLAY
I I. READ
JOHNOOS
PROGRAMMER
INPUT
TAPES
H DISPLAY
DISK
INPUT OUTPUT.. .\-
JOHNOOS
A DISP
CONTROL ___ ___ 4. JOHNOOS 4 DISPLAY
POINT 4 REQUEST TAPE
H DISPLAY

PROGRAMMER
OUTPUT
TAPES

INPUT OUTPUT
JOHNOOS

LINE PRINTER

9.8

\ CARD PUNCH

\ A DISPLAY

2. OUTPUT

I. PRINT 2. PRINT 3. PUNCH
JOHNOOS IDLE JOHNOOS

_

A

AUERBACH
®

" HIGH PERFORMANCE SOFTWARE

TYPICAL DECK SEQUENCE

Card arrangement to begin a job, separate records, and terminate.

6
(; FILE SEPARATOR
9

7
(: RECORD SEPARATOR

/
£
pA
L
Z
DATA CARDS

7
(g RECORD SEPARATOR

£

/

Al
yl

£

SOURCE DECK

(é RECORD SEPARATOR

//]

(ALL CONTROL CARDS

JOB NAME ,P,T,FL.

9.9

A HIGH PERFORMANCE SOFTWARE
AUERBAC';

FORTRAN LOAD AND RUN

Card arrangement for a FORTRAN Load and Run job:
Tape references:

TAPE1 - assumed input tape which operator loads on a particular
unit

TAPES - output tape drawn from tape pool

TAPEG - scratch file on disk

L |

4
g

y 4

7
(” DATA DECK
(1
8
: []

ya
(’ SOURCE DECK

/.
|4
[4

PROGRAM ALFRED (INPUT,OUT;
PUT, TAPE |, TAPE 5, TAPE 6)

/7 —

(RUN.
ﬁeouesr TAPE I,

(REQUEST TAPE 5.

ABCDEFG,2,500,40000.

9.10

A HIGH PERFORMANCE SOFTWARE
AUERBACH

SIPROS ENVIRONMENT

OPERATOR OVERRIDE DISPLAY INFORMATION

ADD-DELETE JOSS, JOB STATUS,
CHANGE PRIORITY, JOB HisTORY,
STATUS REQUEST, INSTRUCTIONS
ErcC. TO OPERATOR
SYSTEM OUTPUT

~ - =
I
||

Executive Function

Scheduling
Priority Urdare

l

§ LIsRIOUS
CONTROL ALLOCATION VO PrOCESSOR I

PROGRAMMING ACCO
SYSTEM CONTROL INFORMATION
Monirer Function Library Control
l Exchange hmp, arc. | | CM- Ditk. Tepos, orc PROCESSOR @

EXECUTION EQUIPMENT

e el

PROGRAMMING SYSTEM

o] FORTRAN

R |

o1 ASCENT r—-—l
1
!

l aseEr FOR EXECUTION ALSC LISTINGS,

Back to SIPROS Centrel | MEMORY MAP,
for Enacution Scheduling ETC.

9.11

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

POOL PP RESIDENTS
PICK UP I/O REQUESTS
LOAD JOBS
REPORT COMPLETION

SYSTEMS COMPONENTS

JOB AREA
PROGRAM ASSEMBLY CENTRAL
PROGRAM COMPILATION CENTRAL MEMORY PROCESSOR
PROGRAM EXECUTION "
CM RESIDENT vls Jos | Jos | Jo8
COMMUNICATES WITH SYSTEM s nlntn
INTERPRETS MACROS NMHHE
CONTROL INFORMATION vl .
RUNNING TIME M annneEs COMPUTATIONAL
PRIORITY HHHE LOAD
EQUIPMENT REQUIREMENTS UHEHE
il A
SYSTEM ROUTINES 1T
BATCH LOADER ie
JOB LOADER
EXECUTIVE OVERLAYS
RESIDENT OVERLAYS LJ
PP PACKAGES
EXECUTIVE
CONTROLS SYSTEM
EVALUATES PRIORITIES
SCHEDULES JOBS
oISK “‘f:;"" MAINTAINS |/O REQUESTS
executverr [| e . PROVIDES CONSOLE DISPLAY
MONITOR
MONITORS /O REQUESTS
CHECKS /O STATUS
L]
[
H]
1
°
€
"
v

PROGRAMMER SCRATCH AREA
WORK AREA

JOB STACK
JOBS YO BE ASSEMBLED
JOBS TO BE COMPILED
JOBS TO OE EXECUTED

QUTPUT BUFFERS
PRINT DATA
PUNCH DATA

SYSTEM ROUTINES
ALL ROUTINES

9.12

T

CARD READER I
AND PUNCH

301
LINE PRINTER

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

JOB IDENTIFICATION

JOB CONTROL

CONTROL CARDS

(*REQUIRED CONTROL CARDS)

MEMORY ESTIMATE

* JOB NAME AND ACCOUNT NUMBER CENTRAL MEMORY
PRIORITY FIXED
CENTRAL PROCESSOR RUNNING TIME LIMIT VARIABLE
DISK MEMORY
FIXED
EQUIPMENT VARIABLE
SCRATCH TAPE DEBUGGING
INPUT TAPE MEMORY DUMP
OUTPUT TAPE MEMORY MAP
PR TER CONSOLE DEBUGGING
s
ORRS READER ERROR HALT CONDITION
CARD PUNCH OTHER
PERIPHERAL PROCESSOR IGNORE EXPONENT OVERFLOW -
VARIATIONS IGNORE INDEFINITE RESULT

VARIABLE vs FIXED REQUIREMENTS
EQUIPMENT EXCHANGE
SPECIFIC ASSIGNMENT

IGNORE EXPONENT OVERFLOW AND INDEFINITE RESULY
COMPILE PROGRAM
* FINIS

CARD DECK LAYOUT

‘ cececheecccnscsse END-OF-JOB CARD

DATA CARDS

PROGRAM CARDS

OPTIONAL CONTROL CARDS

REQUIRED CONTROL CARD

9.13

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

JOB DECK EXAMPLES

CASE A: JOB COMPILATION

FORTRAN

CASE B: JOB COMPILATION AND EXECUTION

FORTRAN
SOURCE SOURCE
ROUTINE %2 ROUTINE 72
ASPER I
SOURCE
ROUTINE #)

FORTRAN
SOURCE

ROUTINE £}
:Jol, MATRIX,
12348

FORTRAN
SOURCE

ROUTINE 4

SCONPILE §

CASE C: JOB EXECUTION (NO OPTIONAL CARDS) CASE D: JOB EXECUTION (OPTIONAL CONTROL CARDS)

FORTRAN
OBJECT
ROUTINE 2

ROUTINE 1

8108, POLYNOM I

1233

8
ofRI. 01028

2108, 1ano,
VAR, 5461§

9.14

HIGH PERFORMANCE SOFTWARE
AUERBACH

USE OF MEMORY

- COMBINATIONS OF ABOVE

ARE POSSIBLE
SIEPS INVOLYED
1. JO8 TO SYSTEM
€O CARD
CENTEAL PROCESSOR
OF FORTRAN
ASCENT AND ASPER ROUTINES
OTHER CONTROL CARDS AS REQURED
CONTIOL CAID SYSTEM REQUIRBMINTS
P REQUREMENT
. DISK EXECUTIVE AND BALANCE OF
. POOL PPy PERF NOMAL
Jou caro . SYSTEM FUNCTIONS .
2. SYSTEM SCHEDULES HATION :
com ‘ Om™ER POGRAMS ;
3. JOB COMPILED -- COMPILED JOB BACK
10 JO8 $TACK
4. SYSTEM SCHEDULES EXECUTION
p—
3. ENTRE JOB (INCLUDING PP PROGRAM)
o CM.
6. WHEN PRIONITY 1S THE WIGNEST,
SYSTBM EXCHANGE JUMP TO CF s b wonwion execuTve
PROGRAM. EXECUTION STARTS N CP. COMMUMICA T o
7 ™ MACRO ENC
CP PROGRAM
IN CP PROGRAM.
NAMED ASPER PROGRAM TRANSFENED TO PP o m"‘"“"‘"‘_:’__ J
4. EXECUTION STARTS IN P9, SPECIAL PP L
PERtOMs CP ASIOMID FUNCTION. PeOGRANS e]
COMMUNICATE AND TANSFER 1/O INFORMATION COMMON MDA INFOMMATION AL POOL PP ASHIGNID TO
VIA COMMON AMIA. rorcraw " o REAL TIME DEVICES) SPECIAL FUNCTION PER
AND CON oG PROGRAMMER QUEST
9. STEPS 7 AND § REPEATED FOR AL AN PICIML VO $T0RMGE oL

SUBROUTINES, OVERLAYS, E7C.

9.15

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

PROCESSING STEPS

PROCESSING STEPS

2,

3.

BATCH LOADER
LOADS JOB INTO JOB STACK ON DISK FROM CARDS OR
TAPE MAKES ENTRY IN JOB TABLE FOR EACH JOB LOADED

EXECUTIVE
EXAMINES JOB TABLE FOR JOBS TO BE LOADED INTO CM

INSTRUCTS JOB LOADER TO LOAD JOB WITH HIGHEST PRIORITY
(IF IT MEETS LOADING REQUIREMENTS)

MAKES EQUIPMENT ASSIGNMENTS IN EQUIPMENT TABLE
REQUESTS OPERATOR TO PREPARE EQUIPMENT

EXECUTI

VE
EXCHANGE JUMPS TO JOS TO BE EXECUTED

CENTRAL MEMORY
JOB TABLE
_ CENTRAL MEMORY
108 EQUIPMENT
" Tase 08 TAMLE
—_ | [=
JOB LOADING CRITERIA
JOB MUST HAVE PROPER PRIORITY
MUST BE SUFFICIENT CENTRAL MEMORY
MUST BE SUFFICIENT DISK SPACE
MUST 88 ENOUGH FAEE EQUIPMENT
EXECUTIVE OPERATORS REQUEST
AND MOUNT TAPES
MONITOR PP
CENTRAL MEMORY
08 EQUIPMENT
0 TEMENT so8 Tante
EXECUTIVE m
AND W >
vonromer | W

9.16

A

'HIGH PERFORMANCE SOFTWARE
AUERBACH
®
PROCESSING STEPS (CONT.)
CENTRAL MEMORY
BRSO sos Tane
SYSTEM
DISK

e ———
FROM
JOB STACK

SYSTEM
DIsSK

4. EXECUTIVE

INSTRUCTS JOB LOADER TO LOAD OTHER JOBS INTO
CENTRAL MEMORY UNTIL IT IS FULL

MULTIPROCESSES JORS IN CENTRAL MEMORY

TO ouTPUT
SUFFER

D (D

H

YSTEM
DIsK

CENTRAL MEMORY s
- . EXECUTIVE
Jos ng Jg' ‘“;::&“' OB TABLE DIRECTS OUTPUT DATA FOR PRINTER AND PUNCH TO
OUTPUT BUFEER ON DISK
I | g DIRECTS OUTPUT DATA FOR TAPE TO POOL PP WHICH
= = WRITES TAPE
— .
EXECUTIVE roOL PP
AN L] T
MONITOR PP PACKAGE
CENTRAL MEMORY
6. EXECUTIVE
o8 | SOURMENT 08 Tame

3
W
Vo=
=3

SCHEDULES NEW JOB FOR CM WHEN JOB TERMINATES

INSTRUCTS JOB LOADER TO LOAD NEW JOS FROM JOB
STACK ON DISK INTO CM

9.17

A HIGH PERFORMANCE SOFTWARE
AUERBAC!;

REMOTE HOOKUPS

CENTRAL PROCESSOR _—
SYSTEM AND POOL PPs
CENTRAL MEMORY 3 FOR NORMAL SYSTEM FUNCTIONS
SYSTEM REQUIREMENTS r v
. NORMAL IN
r————— : e ORMAL IN
: . NORMAL OUT
— ummm——
.
| |
OTHER PROGRAMS : |
l l
n CASE | _-- AUXILIARY
| | £ | casen
: | : PP SPECIAL PP PROGRAM PERFORMING
| ¢ AUXILIARY FUNCTION FOR CP PROGRAM
[| § | FROGRAM NO /O INVOLVED .
| | L ¥ EXAMPLE: EDITING
CASE 1: CP PROGRAM ; ' .
INFORMATION & CONTROL
CASEZ: CPPROGRAM : I CASE2 - REAL TIME
L -
| CASE 2 SPECIAL PP PROGRAM PERFORMING
CASE3: DUMMY CP PROGRAM ! ! o o CONTROL AND TRANSMISSION OF
! | DEVICE REAL TIME INFORMATION FOR CP
{ : PROGRAM PROGRAM .
| |
: : 2] cases
I ' PP pe—el MULTIPLEXER . CASE3 - REMOTE STATION 0
PROGRAM
SYSTEM DISK | | . SPECIAL PP PROGRAM FUNNELING
i NORMAL JOBS T . NORMAL JOBS IN AND OUT OF
JOB STACK FROM REMOTE STATIONS SYSTEM.
|
1
|
| ouTPUT REMOTE
0 AREA
v TO REMOTE STATIONS DEVICES
PROGRAMMER "SCRATCH" AREA

9.18

A HIGH PERFORMANCE SOFTWARE
AUERBACH

LANGUAGE PROCESSING 0

Source Language

PASS | l

ASPER FORTRAN
ASPER Control FORTRAN
ASSEMBLER e —————————— e ———— Language <
PASS | Language . Progrom Statements Processor
ASCENT
Condensed
Source ASCENT Languoge Language
v :
ASCENT
| < » Symbol Table <
Assembler Literals
PASS |
Condensed
¢ Source
Memory or
Disk
Yy
ASPER ASPER PASS It ASCENT ASCENT
¢ Control
PASS 1} Language Program Languoge PASS 11
Relocatable PP Relocatable CM
Binary Binory
DISK
» (Cords or Tape) <
Listings Printer v Listings
P or a

Tape

9.19

A\

AUERBACH
®

HIGH PERFORMANCE SOF TWARE

SCOPE FEATURES

CHIPPEWA SUPERVISOR

DATA MANAGEMENT

ADVANCED LOADER

REMOTE PACKAGE

9.20

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

STORAGE ASSIGNMENT DURING SEGMENTATION

Loading |Segment Contents of User's Job Area in
Order Level Memory after Loading of Segment
1 0 SEG 0 ; Unused
Storage
2 3 SEG 0 SEG 3 Area
3 4 SEG 0 SEG 3 SEG 4
4 9 SEG 0 SEG 3 SEG 4 SEG 9
5 2 SEG 0 SEG 2
6 1 SEG 0 SEG 1
7 5 SEG 0 SEG 1 SEG 5
8 8 SEG 0 SEG 1 SEG 5 SEG 8
9 7 SEG 0 SEG 1 SEG 5 SEG 7

9.21

A HIGH P-ERFORMANCE SOFTWARE
AUERBACP;

STORAGE ASSIGNMENTS FOR OVERLAYS

Primary Secondary ,
Loading Level Level Contents of User s Job Area in
Order Number Number Memory after Loading of Overlay
1 0 0 (0,0) Unused
Storage
Area
2 1 0 (0,0) (1,1) s
3 1 1 (0,0) (1,0)
4 1 2 ©0.0 la9
5 1 1 (0,0) (1,0)
6 1 3 (0,0) (1,0)
7 1 2 0,0 | @1,0 |12 J |
8 2 0 (0,0) @,0 Froing ke
9 2 1 (0,0) 2,0 | et %
7
10 2 2 (0,0) (2,0) (2,2) =
11 3 0 (0,0) (3,0)
12 4 0 (0,0) 4,0)

9.22

/a\ " HIGH PERFORMANCE SOFTWARE
AUERBACI;

FILE ENVIRONMENT TABLE (FET)

Bits 59 47 44 35 32 29 23 17 0 Words
logical file name (lfn) code and status 1
. ul ¢ disposition
device type [rin D code £ FIRST 2
0 IN 3
0 ouT 4
FNT voint d block . physical record LIMIT 5
pointer [recor ock size unit size

. working storage
working storage fwa lwa+1 6
record request/return infprmation 7
rfti;(l))l;i index length index address 8
EOI address error address 9
Label file name (first 10 chars) 10
Label file name (last 10 chars) 11
edition retention cycle creation date 12

number

ﬁgls;&;): multi-file name reel number 13

9.23

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

IN
FIRST —
ouT

ve'e6

LIMIT __

INITIAL
STATE

BUFFERING DURING A READ

OUTe

ouUT-»

IN —= IN —

AFTER AFTER
READ PROCESS

IN o

OUT+»

AFTER L_

READ

A HIGH PERFORMANCE SOFTWARE
AUERBACH

RESPOND COMMANDS TO SCOPE

COMPILE -

. ASSEMBLE
° EXECUTE
° COPY

. SUBMIT

9.25

A ' HIGH PERFORMANCE SOF TWARE
AUERBACI;

SYSTEM ACTION REQUESTS

® MEMORY
* CKPT

® RECALL

® MESSAGE
®* ENDRUN
® ABORT

® LOADER

®* TIME/DATE

9.26

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

FILE ACTION REQUESTS

e REQUEST
e OPEN

e CLOSE

e EVICT

e READ

* WRITE

e SKIP

®* BKSP

e REWIND

e UNLOAD

9.27

A HIGH PERFORMANCE SOFTWARE
AUERBACI;

A RESPOND DIALOGUE

LOGIN JRV, 2359 A
CONTINUE

\

'FORMAT FTN 80 TAB 2,74
'CO'NTIN'UE‘

INPUT FTN

0010 # PROGRAM EOQ (INPUT=
TAPE1,0OUTPUT=TAPE2)A

0020 4 LUI=TAPEL A
| 0030 1 LU2=TAPE2 A
0040 151 READ(LUL, 10)USE, POC, UC A
0050 $10+ FORMAT (3F8.2) A
0060 44 IF (USE.EQ.7777)40,304
0070 +30t CONTINUE A
0080 .

.

iii0 4 40 4 CALL REPORT(QTY, POC,UCOST,
TCOST) A

iijo # RETURN A
iiko 4 END A

iim0 + EOF A
CONTINUE

FILE EOQ, 10 TO iim0
CONTINUE

COMPILE EOQ

Job name from SCOPE
Notification of job completion

LIST FILESA
PRIVATE FILES
TAPE1 150 DIS 80 1 1/1/67
EOQ 130 DIS 80 1 3/1/67
EOQ L 230 DIS VL1 2/12/67
EOQ B 52 BIN 20 1 2/12/67

9.28

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

A RESPOND DIALOGUE

EXECUTE EOQ B, INPUT=TAPEI1,
OUTPUT=TAPEZ2 A
Job name from SCOPE
Notification of job completion

OPEN TAPE1l A
CONTINUE

DISPLAY RECORD1TO 5 A

ORDER PO UNIT TOTAL
QTY COST COST COsT
942 100.00 120.00 113140.00
330 8.00 33.50 110663.00
481 1.20 9.80 4715.00

DISPLAY RECORD 5 TO 10 A
481 1.20 9.80 4715.00
366 1.80 5.50 2014.80

TOTAL 358320.15

DISPLAY RECORD 1, 2, 5 TO8A
ORDER PO UNIT TOTAL
QTY COST COST COST
481 1.20 9.80 4715.00
366 1.80 5.50 2014.80

TOTAL 358320.15

OPEN FILE EOQ L A
CONTINUE

DELETE EOQ L A
CONTINUE

COPY TAPE2 TO PRINTER A
Job name from SCOPE
Notification of job completion

LIST FILES A
PRIVATE FILES
TAPE1 150 DIS 80 2 1/1/67
EOQ 130 DIS 80 1 3/1/67
EOQ B 52 BIN 20 1 2/12/67
TAPE2 8 DIS 80 3 2/12/67

LOGOUT A
TIME 00.35.05

9.29

A

AUERBACH
®

HIGH PERFORMANCE SOFTWARE

A RESPOND DIALOGUE

LOGIN GFC, 2106 A
. CONTINUE

INPUT A
0010 ASPER MUX
0020 TERM EQU 12 A
0030 CHAN EQU 13B A
0040 CONN EQU 5001B A

0050

iii0 IOP FNC CHAN, CONNA
iijo END A

iik0 + EOF A

CONTINUE

FILE MUXIO A
CONTINUE

ASSEMBLE MUXIO A
Job name from SCOPE
Notification of job completion

LIST FILES A
PRIVATE FILES
MUXIO 122 DIS 80 1 2/10/67
MUXIO L. 352DIS VL 1 2/10/67
MUXIOB 37BIN 20 1 2/10/67

LOGOUT A
TIME 00.13.20

9.30

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

AUERBACH
®

P TOPICS COVERED THIS SESSION

e THE INFLUENCE OF PROGRAMMING LANGUAGE ON MACHINE
DESIGN - PARTICULARLY THE EFFECT OF ALGOL 60

e SEVERAL MACHINE DESIGNS REFLECTING THIS INFLUENCE
B 5000
KDF 9

B 55/65,/7500

0.1

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

AUERBACH
®

P NEW NOTIONS IN ALGOL 60

ORIGINS IN ALGOL '58

PRODUCED BALGOL
MAD
NELLIAC
JOVIAL
e BLOCK STRUCTURE ‘
(STATIC LEVELS)

e RECURSION IN PROCEDURES
(DYNAMIC LEVELS)

e MIXED MODE ARITHMETIC

10.2

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS
AUERBACH

BLOCK STRUCTURE AND STORAGE ALLOCATION

BLOCK A
B
E—
S (&)
T (s () (o)
B ©
=g OJGIONO
T
c_) (D
H.-—.
C
L
L
a. b.
BLOCK STRUCTURE TREE FORM FOR CODE
AS WRITTEN

PROGRAM STORAGE = MAX (ACH, ADIJ, ABF, ABEG)
TO BE RESERVED

10.3

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

SAMPLE ALGOL PROGRAM WITH BLOCK STRUCTURE AND SUBROUTINES

A:

BEGIN REAL SCR, THETA; REAL ARRAY VAL, (1:29);

 INTEGER ARRAY M (1:50, 1:15), PLT (1:50, 1:15), V (1:29);

INTEGER i, j, k, n, p, q, score, length, wd, rmk;

PROCEDURE B (m, n, Z, PLT);
VALUE m, n, ¢;
BEGIN INTEGER i, s, n;
FOR i:=1STEP 1 UNTIL N DO
BEGIN FOR j:=1STEP 1 UNTIL 2 DO
BEGIN k:= K 1;
PLT [k J:= PLT [i, {]. 10000000 END;
k : [k] 1 END END END B: '

PROCEDURE C (length, score, q, plt);
VALUE length, g;
BEGIN INTEGER t, u;
t :=length . g;
B(t, u, length, PLT);
score : = PLT/u end C;

IF(PLT [i] #0) A (PLT [i] #wd) then
go to D else if PLT [i] >SCR then
go to E else

t 1=k [k];
B (fI'Z r 9 m);
C (il kl P, m);

BEGIN REAL k;

gt

I
k

wononon

-
s
-

end D;
BEGIN REAL k; ‘

PROCEDURE F (j, k);
value ji
k:zj 5 end F;
q :=n.p;
F(q, wd);
t : =q/lgth. end E;
END A AND PROGRAM;

10.4

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

AUERBACH
®

BLOCK STRUCTURE OF SAMPLE PROGRAM

A

*B

*C

o

10.5

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

STRUCTURE OF PROGRAM A ON TAPE, REARRANGEMENT SUPPLIED BY COMPILER

SWITCH TABLE FOR A

DECL. of A

DECLARATIONS AND
BODY OF R

DECLARATIONS AND
BODY OF C

BODY OF A

DECL. OF D

BODY OF D

DECLARATIONS OF E

DECLARATIONS AND
BODY OF F

BODY OF E

10.6

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS
AUERBACH

C

MEMORY ALLOCATION AFTER INITIAL LOADING

SUBROUTINE B

C ——=! CODE BODY OF A
P ARRAY STORAGE
FOR A
K e —— — — — — — — —

ARITHMETIC STACK
FOR A

DECLARATIONS FOR A
SWITCH TABLE FOR
A 6.9

SB

10.7

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

MEMORY AFTER CALL ON B

SB

\

\

SUBROUTINE B

pr — — —— o— — — — o— — —

ARRAY STORAGE OF B

ARITHMETIC STACK FOR B

\l DECLARATIONS FOR B

ARITHMETIC STACK FOR A

DECLARATIONS FOR A

SWITCH TABLE FOR A

10.8

Auﬁw STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS
®

MEMORY AFTER CALL ON C

SUBROUTINE B

C —-s= SUBROUTINE C

CODE BODY OF A

| RETURN POINT IN A, SB FOR A

D S

/7
P RETURN POINT IN C, SB FOR C

\ ARITHMETIC STACK FOR B

\ [DECLARATIONS FOR B

ARITHMETIC STACK FOR C

DECLARATIONS FOR C

7| ARITHMETIC STACK FOR A

SB

DECLARATIONS FOR A

SWITCHTABLE FOR A
10.9

AU%CH STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

ENTRY INTO NEW BLOCK D

CONTROL WORD, RETURN POINT IN A/, SBIN A/P

SUBROUTINE B -

frs e ——— — — — — — — o— — — — — — — d——

K / ARITHMETIC STACK FOR D

\
\\ DECLARATIONS FOR D
\.| SWITCH TABLE FOR D
% '
\ ARITHMETIC STACK FOR A
\

\ DECLARATIONS FOR A
\

\ SWITCH TABLE FOR A

10.10

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

SB

MEMORY AFTER CALL ON F WITHIN E

/ CONTROL WORD, RETURN POINT IN A,/ SB FOR A/P

SUBROUTINE B

s c— —— — — — — —— — — — — — — a—

— — — — —— — — p— —— — — — ——— ——

A
/

/ CONTROL WORD, RETURN POINT IN E, SB FOR E

ARITHMETIC STACK FOR F

~ DECLARATIONS FOR F

ARITHMETIC STACK FOR E

DECLARATIONS FOR E

\J SWITCH TABLE FOR E

ARITHMETIC STACK FOR A

DECLARATIONS FOR A

SWITCH TABLE FOR A
10. 11

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

RECURSION IN AN UNRELATED PROGRAM

SB

———— SUBROUTINE R

~ 7}~ —— SUBROUTINE S

I

RET.
RET.
RET.
RET.
RET.

A.S. FORR3

CODE BODY Q

POINT IN Q, SB FOR Q
POINT IN R, SB FOR R

POINT IN S', SB FOR §'
POINT IN R, SB FOR R2
POINT IN S, SB FOR S9

___ DECL. FORRj

A.S. FOR Sy
_ _DECL. FOR Sy
A.S. FOR Rp
__DECL. FOR Ry
A.S. FOR S
DECL. FOR
A.S. FOR R
___DECL. FOR R
ARITHMETIC STACK FOR Q =

DECLARATIONS FOR Q

SWITCH TABLE FOR Q R,S)

10.12

]

STORAGE
CREATED AT
RUN TIME

A

A ERBACH STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

POLISH NOTATION AND ARITHMETIC EXPRESSIONS

(A+ B-C)X D/E+F)

S——
1 3 ~
\-'2-\/\-/ \J4v~/ EVALUATION ORDER
S ———
5

X\
/ +,
+ / \ :
N TREE REPRESENTATION
A — F OF EXPRESSION
7 /N

AI BICI.I+I FI DI EI/I+IX
B,C,-,A + D,E,/,F, + X

EQUIVALENT SUFFIX POLISH
FORMS FOR EXPRESSION

Xl+l “r BI CI Al+l/l DI E,F

POLISH PREFIX FORM

10.13

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

AUERBACH
®
FLOWCHART FOR CONVERTING EXPRESSIONS TO SUFFIX POLISH FORM BASED ON OPERATOR HIERARCHY
GET NE No /|5 opsTAC No IS ITEM No
; —= OPSTAC A T NEXT IS IT AN OPERAND?)2 1S ITEM a ;?
ITEM FROM a 1 a ?
\ SOURCE
LANG UAGE
YES YES YES YES
i
- ITEM — ANDSTAC ITEM —> Is OPS IS OPSTAC NO
— OPSTAC A A;?
’YES YES
ELIMINATE
TOP OF
OPSTAC
5] '
< ELIMINATE
— TOP OF
= ANDSTAC
ANDSTAC —> ANDSTAC ANDSTAC NO 1S ANDSTAC —
POLISH STRING A <PR> —= POLISH A (PR)? A “ OPSTAC - ITEM
(PR) —= ANDSTAC STRING
YES YES NO
L i
ELIMINATE
> TOP OF YES(opstac > ITEM
ANDSTAC
NO
OPSTAC L
—
POLISH ITEM —= OPSTAC
STRING
—+ 'GOES INTO"
/ - OPSTAC AN OPERATOR STACK
B
2 ANDSTAC OPERAND ADDRESS STACK
c EQUAL PRECEDENCE
ITEM—= > GREATER PRECEDENCE
OPSTAC
<PR> SYMBOL FOR PARTIAL RESULT
|

O

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

DATA FETCH AS A SEPARATE OPERATOR

CLA
SuB
ADD
STO
CLA
DIV
ADD
MUL

Od>» 0O
z
]

—4mm
m
<
o

SINGLE ADDRESS INST
PROGRAM FOR
EXPRESSION

10.15

FETCH B
FETCH C
SUB
FETCH A
ADD
FETCHD
FETCHE
DIV
FETCHF
ADD
MUL

'STACK' PROGRAM
FOR
EXPRESSION

4 %CH STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS
u

FUNCTIONS IN STACK MACHINE

SIN (X)

MAX (a, b, ¢, d, e. . .)
FUNCTIONS

X, SIN,<SRE >
a, b, ¢, d, e. ..., MAX,<SRE>

POLISH FORM

10. 16

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS
AUERBACH
®

STACK AS A COMMUNICATIONS MEDIUM

SUBRA (A, B, C)

A
B
- C

WORK SPACE
FOR SUBRA

10.17

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

AUERBACH
®

SIMPLIFIED FUNCTIONAL DIAGRAM OF B5000 ORGANIZATION

A TOP OF STACK
ARITHMETIC
AND
CONTROL 2ND POSITION
B OF STACK
F S
STACK
EXTENSION IN
PRIMARY
STORAGE

10.18

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

INSTRUCTIONS IN B5000

0 1
BIT BIT SYLLABLE
_o RN TYPE
0 0 LITERAL CALL
0 1 OPERATOR
I 0 OPERAND CALL
1 | 1 DESCRIPTOR CALL

10.19

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS
AUERBACH
®

EFFECT OF OPERAND CALL SYLLABLE IN B5000

TYPE OF WORD

ACCESSED ACTION

OPERAND PLACE IN TOP OF STACK

CONTROL WORD PLACE IN TOP OF STACK, TREAT
AS AN OPERAND

DATA DESCRIPTOR WORD ADDRESSED BY DESCRIPTOR -
PLACED IN TOS, TREATED AS AN
OPERAND

PROGRAM DESCRIPTOR PLACE A RETURN CONTROL WORD

IN TOS, BRANCH TO SUBROUTINE

10.20

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

EFFECT OF DESCRIPTOR CALL SYLLABLE IN B5000

TYPE OF WORD

ACCESSED ' ACTION
OPERAND GENERATE A DATA DESCRIPTOR WITH
ABSOLUTE ADDRESS OF OPERAND AND
PLACE IN TOS
DATA DESCRIPTOR PLACE DATA DESCRIPTOR IN TOS
PROGRAM DESCRIPTOR PLACE A RETURN CONTROL WORD

IN TOS, BRANCH TO SUBROUTINE

10.21

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

THE KDF-9 COMPUTER SYSTEM

PRIMARY
STORAGE
N
i ARITHMETIC
N2 AND -«
] CONTROL
N3
) I |
16 WORD 16 WORD 16 WORD
NESTING Q
STORE SINS STORE

10.22

A STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

AUERBACH
®

O

VARIABLE LENGTH INSTRUCTIONS IN KDF-9

0
ARITHMETIC
SYL OPERATORS
SHIFT INSTRUCTIONS,
SYL SYL 1/O OPERATORS
s MEMORY FETCH,
SYL YL SYL STORE, JUMPS

(o

10.23

A

AUERBACH
®

STACK MACHINES AND OTHER ADVANCED SYSTEMS CONCEPTS

SUMMARY OF STACK MACHINE DESIGN PRINCIPLES

e STACK CONCEPT PROVIDES 'AUTOMATIC AND ANONYMOUS!
TEMPORARY STORAGE

e STACK PROVIDES DYNAMIC STORAGE ALLOCATION FOR NESTED
AND RECURSIVE SUBROUTINES

o POLISH NOTATION SUGGESTS SYLLABIC INSTRUCTION FORMATS

e SEPARATE FETCH AND STORE OPERATORS PERMITS HARDWARE
DETECTION AND INTERPRETATION OF CONTROL WORDS AND
DESCRIPTORS

e STACK MACHINES SIMPLIFY COMPILING BECAUSE INTERNAL
STRUCTURE MATCHES A 'NATURAL' INTERMEDIATE LANGUAGE,
AND ELIMINATES NEED TO KEEP TRACK OF TEMPORARY
STORAGE

10.24

A STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

AUERBACH
®

P THIS SESSION WILL COVER
e OPERATING SYSTEMS OVERHEAD
e OPERATING SYSTEMS DESIGN FOR 'STACK' MACHINES

e PRECISION IN COMPUTERS

A

STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS
AUERBACH

DISTRIBUTION OF FUNCTIONS IN OPERATING SYSTEMS

P FUNCTIONS REQUIRED BY USER IN EXECUTION OF THIS PROGRAM(S)
e |I/O

e SUPERVISORY SERVICES (OBTAINING OVERLAYS,
EXECUTION OF COMMON SUBROUTINES)

P FUNCTIONS TRANSPARENT TO USER
e MEMORY ALLOCATION/DEALLOCATION
e SCHEDULING/DISPATCHING
e INTERRUPT SERVICING

e SWAPPING (IF PRESENT)

A STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS
AUERBACH

P> SOURCES OF OVERHEAD
e SPACE REQUIRED BY OPERATING SYSTEM (RESIDENT AND
NON-RESIDENT) ,
e TIME REQUIRED TO RE-DIRECT CPU FOR INTERRUPT PROCESSING

e SWAPPING FOR CONVENIENCE OF OPERATING SYSTEM

A STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS
AUERBACH

P_ METHODS FOR REDUCING OVERHEAD
e 'WIRED-IN' OPERATING SYSTEMS MICROPROGRAMMING
DEDICATED STORAGE FOR SYSTEM TABLES

e MULTIPLE CONTROL STATES WITH SEPARATE STATE WORDS
RCA SPECTRA 70 SERIES
SDS SIGMA 7

e ASSOCIATIVE STORAGE FOR SCRATCHPAD REGISTERS

e INDEPENDENT CHANNELS

e HIGH SPEED BULK STORAGE

LCS
QUEUE DRIVEN ROTATING STORAGE

11.4

A STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS
AUERBACH

P OPERATING SYSTEM CONCERNS FOR STACK MACHINES

e DYNAMIC STORAGE ALLOCATION FOR BLOCK STRUCTURES

e DYNAMIC STORAGE ALLOCATION FOR STACK EXTENSION
INTO PRIMARY STORAGE

e RECURSIVE SUBROUTINES
e DYNAMIC ARRAYS

e ARITHMETIC STACK

A STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS
AUERBACH

B5500 PROGRAM STRUCTURE AND PRT

A ——o : PRT

D; R | A

2 Dy(A)

D Do(A)
3

B r— D3(A)

Dy D1(B)
B Do(B)

D2 Dy(E)
D2(E)
D3(E)

D;(F)
— Do(F)
D3(F)

A

AUERBACH
®

STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

ADDRESSING HIGHER LEVEL BLOCK DATA

PRT

rR A
Dy(A)

Do(A)
D3(A)

D3 (A) *

(rR) + PRT - REL ADDRESS OF A + INDEX OF D

A

STACK MACHINE EX'ECUTNES AND PRECISION CONSIDERATIONS

AUERBACZ
B5500 STACK STRUCTURE FOR SUBROUTINES
rF . =
TOS-2
MARK STACK
(rF) CONTROL WORD
rs > 710572
Pi
Py
P3
; RETURN CONTROL
FS (rL) (rF) (rQ) WORD
LV]
LVo

.8

A STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

AUERBACH
®

P DF MCP CLASSIFICATION OF PRIMARY STORAGE

e NON-OVERLAYABLE STORAGE
RESIDENT MCP
SYSTEM TABLES
PROGRAM PRT AND STACK AREAS

e OVERLAYABLE STORAGE
PROGRAM SEGMENTS
DATA AREAS. (ARRAYS)

e AVAILABLE STORAGE

A STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

AUERBACH
®

DFMCP ORGANIZATION OF PRIMARY STORAGE

Available \ 4‘\ ‘ \ r‘ \ / f
- 4 T \
In-Use /(\ ’I " | AN g \\ ‘
7/ y)] ! [\
b\ 1] I ||
/ || I
/ | | | |
! | |
I I |
[| . I
| ' I Y |
\ | |
\ | !
' o | |
\ I | I
' o | |
\ [|
i |
! I 1 I
/ 7/ N, |
/! 1/ ‘ II
7 7 ! | |
7] l 7R
/ / I
y | ¢ | ‘ |
| / l “ |
/ // *& \ \
! / ' |
o Y WL |
| / ’])
| / 'I / |
!
*] y - *

PRIMARY STORAGE

11.10

A

AUERBACH
®

STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

DF MCP PROCEDURES

STATUS
CONTROL CARD
SELECTION

RUN

INITIATE

PRESENCE BIT

11.11

A

AUERBACH
®

STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

DF MCP CONTROL PROCEDURES

e SLEEP

e NOTHINGTODO

e GETSPACE

e OLAY

e FORGETSPACE

e ESPBIT

11.12

(;

A

AUERBACH
®

STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

B5500 PARALLEL PROCESSING AND CHECKPOINT FACILITIES

e PARALLEL PROCESSING AND PRIORITY INTERRUPTS

e BREAKOUT, RESTART, EMERGENCY INTERRUPT

11.13

O

A STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

AUERBACH
®

CHARACTERISTICS OF B5500 OP. SYSTEM.

e MULTIPROGRAMMING DESIGNED IN AT THE START
e PROVIDES MULTIPROCESSING CONTROL

e PROVIDES DYNAMIC STORAGE ALLOCATION FOR
PROGRAM SEGMENTS
DATA (ARRAYS)

e STACK MECHANISM HANDLES
RECURSIVE SUBROUTINES
ARITHMETIC STACK

e SUPPORTS ON-LINE USE

THE INTERP SYSTEM
DATACOMM SYSTEM

11.14

A

STACK MACHINE EXECUTIVES AND PRECISION CONSIDERATIONS

AUERBACg
PRECISION COMPARISONS
SINGLE FLOATING DOUBLE FLOATING
SYSTEM INTEGERS
CHAR. | MANT. | CHAR. MANT. s/H
B5500 48 6+S 39+S
B8500 48 10+S 35+5
= CDC 36,/3800 48 1 36 1N 84 H
& CDC 6600 60 11+ 48 1145 96 S (SOFTWARE)
GE 625/35/45 36,72 745 27 S 745 63+5 H
IBM 360 16,32 7 24 7 5645 H
IBM 360/44 16,32 7 24 7 24,32,40,48,56 | H
RCA SPECTRA 70| 16,32 7 24 7 56+5 H
SDS SIGMA 7 32 7 5645 H
UNIVAC 494 15,30 1 48+5 H
UNIVAC 1108 36 8 27 S 1 60+S H (+ - ONLY)

Q

A RESOURCE ALLOCATION AND TIME-SHARING
AUERBACH

EARLY DEVELOPMENTS

e MILITARY INFLUENCE
e SAGE
e L-SYSTEMS
e SHARED-DEVICE SYSTEMS
o ASP/HASP
e ON-LINE 1401
o MIT/CTSS
e DARTMOUTH BASIC

e IBM QUIKTRAN 0

12.1

A

AUERBACH
®

RESOURCE ALLOCATION AND TIME-SHARING

BASIC ELEMENTS OF TIME-SHARING

e ON-LINE UTILIZATION
e TERMINAL INTERFACE

ILLUSORY USE OF VIRTUAL MACHINE

e HUMAN VS. MACHINE RESPONSE TIME

12.2

A RESCURCE ALLOCATION AND TIME-SHARING
AUERBACH

TYPES OF MULTIPROGRAMMING SYSTEMS

e SPECIAL PURPOSE
e DEDICATED MACHINE
e FIXED PROGRAM STRUCTURE
e HIGHLY VARIABLE DATA LOADS
e EXAMPLES:
AIRLINE RESERVATIONS
THEATER TICKET
BROKERAGE
e LIMITED PURPOSE
e DESIGNED FOR ONE LANGUAGE
e BASIC
e QUIKTRAN
e GENERAL PURPOSE
e PURE MULTIPLE BATCH
e PURE ON-LINE

e MIXED BACKGROUND/FOREGROUND

12.3

A RESOURCE ALLOCATION AND TIME-SHARING

AUERBACH
®

O

OPERATING SYSTEM PRINCIPLES

e MUST ACCOMMODATE MULTIPROCESSING
e HANDLES MANY USERS |

e HANDLES VARIED USER NEEDS

e COMPUTER UTILITY

o ALLOCATION OF ALL FACILITIES

e DEVICE-INDEPENDENCE

e SCHEDULING

e SWAPPING

e RESPONSIVENESS AND RELIABILITY O

OTHER CONSIDERATIONS

e NEED FOR ON-LINE LANGUAGES
o CONVERSATIONAL/NONCONVERSATIONAL

e MIXED-MODE OPERATIONS

12.4

A RESOURCE ALLOCATION AND TIME-SHARING
AUERBACH

MAPPING OF 2¢ ONTO 2b, (b> a).

M
r‘N
p I
I
|
|
1
|
]
|
|
1
1
L __ 1
BAR
NAME SPACE
MEMORY SPACE 0
A S~ A
a T~a
2 I
Y 2a Zb
~ e y
|

12.5

A

AUERBACH
®

RESOURCE ALLOCATION AND TIME-SHARING

REASONS FOR COMPACTING

e FREE LARGEST BLOCKS OF CONTIGUOUS CORE
e ALLOWS FLEXIBILITY IN CHOOSING NEXT USER
e PROVIDES CORE REQUEST/RELEASE

e TO PROVIDE A MEMORY SPACE 2P WHICH ACCOMMODATES
THE NAME SPACE 29 (b > q).

e CONTROL SWITCHED BY RE-SETTING BAR.

12.6

A

AUERBACH
®

RESOURCE ALLOCATION AND TIME-SHARING

COMPACTING FOR MEMORY RE-ALLOCATION

UNUSED UNUSED
\\\\\\ F h____
E T~
\\\\ E

D T~ |
D f

B
B

< A \\\‘\~~\\

12.7

A

AUERBACH RESOURCE ALLOCATION AND TIME-—-SHARING

REQUIREMENTS FOR COMPACTING

¢ ALL PROGRAMS PRE—BOUND

® ALL PROGRAMS SELF—RELATIVE

e BASE ADDRESS REGISTER USED

e NO MOVING DURING I/O OPERATIONS
e ALL QUEUES MUST BE DRAINED

e ALL BUFFERING MUST RE—-START

® NO SHARED REFERENCES

12.8

A

AUERBACH
®

RESOURCE ALLOCATION AND TIME-SHARING

ALLOCATION PROBLEM:
NAME SPACE OF G > MEMORY SPACE

12.9

A

AUERBACH
®

RESOURCE ALLOCATION AND TIME-SHARING

RESOURCE-INDEPENDENCE

e PROGRAMMER CONTROLS TIME SEQUENCE
e SYSTEM CONTROLS RESOURCE ALLOCATION
e PROGRAMMER REFERENCES NAMES

e SYSTEM TRANSFORMS NAMES TO DEVICES

e PROGRAMMER USES VIRTUAL LANGUAGE

e SYSTEM INTERPRETS VIRTUAL LANGUAGE

e PROGRAMMER SEES VIRTUAL PROCESSOR,
VIRTUAL MEMORY, VIRTUAL REGISTERS

e SYSTEM ALLOCATES PHYSICAL RESOURCES TO
MATCH VIRTUAL RESOURCES

12.10

A\

RESOURCE ALLOCATION AND TIME-SHARING

AUERBACH
®
SEGMENTATION WITH FIXED BLOCKS
- P1,SI
st | bFee——————
(PROGRAMMER) 2 P1,52
‘ Pl s | [7" e]
P1,S3
s4a | @ ———————
P1,54
N -7 P2,S1
SI P2,52
(PROGI; AMMER) by > 52 P2,53
s
3 S A
P3,52
//
(PROGRAMMER) S1
3 P3
52

ONRVHS-IWIL ANV NOILVDOOTIV 312¥N0SId

T~ —]
, €S
a z £d
/7
s IS
4
/s
/ P
7/ -
¢S '€d - "
€S ‘¢d €S
|||||||| T T ¢d
IS "¢d és o~
£s ‘Id SIT-- 1S o
zs ‘Id ////
//
N o €S
N
AN [A ld
//
N IS
r-\/i\/|\\|/\|.)\
SINIWO3IS 3AILDV 40 NOILVIOTIV
®
HOVBY3NY

A\

A

RESOURCE ALLOCATION AND TIME-SHARING

AUERBACH
®
SEGMENTATION INTO NON-CONTIGUOUS MEMORY
\ d SEGMENT 2
SEGMENT AN e GMENT
1 \ ,// /’
\v y
P /
70\ 7/
A% N 7
\ \s
\\ /\\
\ \
PROGRAMMER) — PROCESS | — s SEGMENT ,/\\ \
// \\ \\
S \ \\
- \\
« \ SEGMENT 1
SEGMENT TS
n S
L \\\ ~
TS~ SEGMENT n
STATEWORD |[—{ MOD. ADDRESS [— SEG. WORD |— PHYS. ADDRESS

A RESOURCE ALLOCATION AND TIME-SHARING

AUERBACH
®

THE SEGMENTS OF A PROCESS

X
EXECUTABLE
SEGMENT
R
READ-ONLY
SEGMENT
W
READ-WRITE _
SEGMENT Q
A
ALTERABLE
SEGMENT
X
EXECUTABLE
SEGMENT
P
PRIVATE
SEGMENT
1 ' D |
| :
| t.---] DESCRIPTOR
! I SEGMENT
b ees r---
:- v L 4' LINKAGE
i SEGMENT -
| I ®,
e | C

A RESOURCE ALLOCATION AND TIME-SHARING

AUERBACH
®

TWO PROCESSES WITH A SHARED SEGMENT

A i e W P
]
I
— X
P1,S1
X
P2, S1
S —
P
—>> P1,S2
R
S— P1,S3/P2,52
<—|
, D
| M.
P1
' D
P2 T
!
1
'
— T N———— e — T

12.15

A RESOURCE ALLOCATION AND TIME-SHARING

AUERBACH
®

USE OF SHARED SEGMENT FOR SYSOUT

]
X
P1,SI
X
P2, 51
P
P1,52
A
P1,53/P2, 52
[}
|
|
1
]
/\/"\/\/\/—\

12.16

A

AUERBACH
®

RESOURCE ALLOCATION AND TIME-SHARING

PAGING

e PROVIDES ADDITIONAL LEVEL OF CORE USAGE
e IMPLEMENTED BY HARDWARE
e REQUIRES SUBSTANTIAL SOFTWARE INTEGRATION

e IMPORTANT FOR ADVANCED SYSTEMS

12.17

A

AUERBACH
®

SYSTEMS DEVELOPMENT FOR TIME SHARING

(.

P TOPICS TO BE COVERED THIS SESSION
e REVIEW OF MULTIPROGRAMMED/MULTIPROCESSOR
CONTROL PHILOSOPHY - '
e ORIGINS OF 'TIME-SHARING'
e HARDWARE/SYSTEMS DEVELOPMENTS FOR TIME-SHARING
o GE 645
o 360/67

o OTHER 'TIME-SHARING' SYSTEMS

13.1

A

AUERBACH
®

SYSTEMS DEVELOPMENT FOR TIME-SHARING

P TIME -SHARING CHARACTERISTICS

e TIME-SHARING IS AN OUTGROWTH OF MULTIPROGRAMMING

e TERM ASSOCIATED WITH 'INTERACTIVE' OR 'ON-LINE! COMPUTING
WHERE USERS PRESENCE (OR INTERVENTION) IS REQUIRED FOR
SUCCESSFUL OPERATION OF A PROGRAM

e LACK OF ON-LINE COMPONENT YIELDS SIMPLE MULTI-
PROGRAMMING

e ON-LINE COMPONENT PERMITS SYSTEM TO SERVE‘MANY MORE
ON-LINE USERS BECAUSE OF USER INTRODUCED DELAY (SO-CALLED
'THINK' TIME)

e NEEDS MECHANISM FOR MAKING PHYSICAL SPACE AVAILABLE TO
USERS -- SWAPPING

13.2

A

AUERBACH
®

SYSTEMS DEVELOPMENT FOR TIME-SHARING

A
CTSS SUPERVISORY
PROGRAM
32K
6 TAPES AlB
PRINTER
PUNCH CR
6 TAPES ——
DIRECT DATA
CHANNEL
1302-2 DISC

(9.3x106 WORDS)

CTSS SYSTEM - FUNCTIONAL DESCRIPTION

B

USERS PROGRAMS
IN EXECUTION

32K

7094 |

G 7320A DRUM
(208,608 WORDS)

M320 DRUM

13.3

SAME AS
CHANNEL D

7750 TRANSMISSION
CONTROL (TO USER'S
CONSOLES) -

1050's MOD 35TTs

A SYSTEMS DEVELOPMENT FOR TIME-SHARING
AUERBACH

P PERTAINENT EXPERIENCE WITH CTSS

e HIGH OVERHEAD FOR SWAPPING

e 'GROWTH' OF DATA AREAS-LIST PROCESSING, ON-LINE
COMPILING/ASSEMBLY

e PRACTICAL LIMIT OF 25-30 ON-LINE USERS
e GENERAL COMPUTING REQUIREMENTS

e NOTION OF COMPUTER UTILITY

13.4

A SYS-TEMS DEVELOPMENT FOR TIME-SHARING

AUERBACH
®

P> APPROACHES TO PROVIDING USER ADDRESS SPACE

e EARLY ASSEMBLERS
REGIONAL ADDRESSING
e ALGOL BLOCK STRUCTURE

e SEGMENT RELATIVE ADDRESSING

13.5

A

AUERBACH
®

SYSTEMS DEVELOPMENT FOR TIME-SHARING

TWO COMPONENT ADDRESSING

SEGMENT WORD

Sl

S2

SEGMENT SELECTS INFORMATION STRUCTURE SEGMENT
WORD SELECTS WORD WITHIN SELECTED SEGMENT

13.6

A : SYSTEMS DEVELOPMENT FOR TIME-SHARING
AUERBACH

P DEFINITIONS

e SEGMENT: AN OBJECT (CODE, DATA, etc.)
IN USER ADDRESS SPACE

GENERALIZED ADDRESS: CONTAINS

SEGMENT #
WORD #
SEGMENT WORD

DESCRIPTOR: DEFINES AND LOCATES INFORMATION IN
PHYSICAL MEMORY, - A BASE ADDRESS

13.7

A SYSTEMS DEVELOPMENT FOR TIME-SHARING

AUERBACH
®

P PAGE CONCEPT -
e ORIGINS IN ATLAS SYSTEM
e FITS SWAPPING REQUIREMENT
e DEFINITION:

UNIT OF RELOCATABLE STORAGE

13.8

A

AUERBACH
®

SYSTEM DEVELOPMENT FOR TIME-SHARING

PRIMARY STORAGE

P
P2 \
: P
P, 3
Pa
Pn
PAGE TABLE

ILLUSTRATE USE OF DESCRIPTORS IN PAGE TABLE
EACH DESCRIPTOR POINTS TO A BLOCK (PAGE)

13.9

A SYSTEM DEVELOPMENT FOR TIME-SHARING
AUERBACH

645 REGISTERS

PC PBR
:
X0 AP |
X
‘ :
BP |
_
|
P! |
- C
r
X7 sp !
A
Q DBR

13.10

A

AUERBACH
®

SYSTEM DEVELOPMENT FOR TIME-SHARING

GE645 ADDRESSING

SEGMENT NR WORD
DBR
(ADDRESS OF
SEGMENT DESCRIPTOR)
(rTTTC - :
: S : BASE :
: S : BASE :
| , ! (MATCH)
']
ASSOCIATIVE ' ' | , !
MEMORY < : . | |
I]
I ! | \ !
I - | !
| I ' r<
| | |
| | I
L — S B
_I(Noq MATCH)
' No
GAGED SEGMENTD—V SEGMENT BASE |—»
Yes
(PAGE |ID)
Y
SEG . DESC. PAGE TABLE BASE

13.11

GENERALIZED
ADDRESS

PHYSICAL
ADDRESS

A

AUERBACH
®

SYSTEM DEVELOPMENT FOR TIME-SHARING

645 INSTRUCTION ADDRESSING

!
I
i
GENERALIZED ADDRESS
1
|
1
'

PBR PC
DBR L >
SELECTS
SEGMENT
DESCRIPTOR
PHYSICAL
SEG. DESCRIPTOR >+ ADDRESS

13.12

A SYSTEM DEVELOPMENT FOR TIME-SHARING
| AUERBACH

i

h

P 645 ADDRESSING CHARACTERISTICS

o INFORMATION STRUCTURE MAY BE
2'® SEGMENTS
EACH SEGMENT MAY BE

218 WORDS.

e PAGES

64 OR 1024 WORDS

13.13

o

A

AUERBACH
®

SYSTEM DEVELOPMENT FOR TIME-SHARING

CPU

MEMORY
MODULE

I/O CONTROL - GE 645

MEMORY
MODULE

GIOoC

]

MEMORY
MODULE

GIOC

N

DISC
CONTROLLER

DIsC

13.14

DISC
CONTROLLER

el

DISC

A SYSTEM DEVELOPMENT FOR TIME-SHARING

AUERBACH
®

GIOC - GEé645
I PRIMARY STORAGE I

COMMON CONTROL

AD APTORS -t AD APTOR
AD APTOR AD APTOR AD APTOR .
CHANNEL | CHANNEL CHANNEL Q
DEVICES OR
TERMINALS

13.15

A\

AUERBACH
®

SYSTEM DEVELOPMENT FOR TIME-SHARING

SEGMENT-PAGE ADDRESSING

STR

(Segment Table Base)

/ NPage Table Base

S P L ADDRESS IN USER
I 7 N ADDRESS-SPACE
I / \

P \

| 7 \

| / \

H— ‘

|

\

I\

N

/
Y, / Segment Table
y / //
/ ' /
/
[
l
A\
\
N Page Base
Page Table Page

13.16

A

SYSTEM DEVELOPMENT FOR TIME-SHARING

AUERBACP;
360/67 ADDRESSING
—_——
r (24)
! GENERAL
: REGISTERS
L (24) .| ADDRESS NORMAL 360
: | , ADDER ADDRESS FORMATION
L !
(12)
RX) |OP | Ry Xo | Bo Dy (24)
v 360/67 INTERPRETATION
SEGMENT | PAGE BYTE
(4) (8) (12)
A\ /
\V4
\ 4 ;
. A HIGH ORDER | LOW ORDER
CoT T T (12) (12)
| { | | ‘
I I | |
I _L I |
b e]
AsMs?A%wVE o St 1 AGE | PHYSIC,aLZ)ADDRESS | (MATCH)
e — o ————
R |
| | ‘ [—— == -
L1 1 | (LOADED INTO
— ——— — —— —-J "ASSOCIATIVE
REGISTER WITH
(NO MATCH) SEG,/PAGE)
STR (24) T (24) ———>
PAGE TABLE BASE
PHYSICAL
ADDRESS
SEGMENT TABLE
PAGE TABLE

13.17

A

AUERBACH
®

SYSTEM DEVELOPMENT FOR TIME-SHARING

360/67 WITH PARTITIONING SWITCHES

2067 2067
CENTRAL . CENTRAL
PROCESSING PROCESSING
1052 uNIT unIT 1082
KEYBOARD KEYBOARD
2365 2365 2365
PROCESSOR PROCESSOR PROCESSOR
STORAGE STORAGE STORAGE
262,144 BYTES 262,144 BYTES 262,144 BYTES
FEX Y FXEYX] YY)
& p ¢ a
b 4
(] 9
2846 2846
CHANNEL COMTROLLER 2167 CHANNEL CONTROLLER

2870 2860-3 2060~ 2870
HIGH SPEED SELECTOR ”';:"so“&m" seLecTOR l HIGH SPEED

2840
SW. | DISPLAY CONTROL

DISPLAY CONTROL | SW.

STATION

N,
—1
2803

TAPE CONTROL

I
2803 [2803 2003
l TAPE CONTROL I TAPE CONTROL TAPE CONTROL
=,_"1_.=,—'—'
2816-1
| 4x16 SW._UNIT l—o

1

1403-N1
PRINTER

A

AUERBACH
®

SYSTEM DEVELOPMENT FOR TIME-SHARING

P PAGING ADVANTAGES AND DISADVANTAGES

e PERMITS ARBITRARY ALLOCATION OF STORAGE IN
SMALL BLOCKS

e DEFERS BINDING UNTIL EXECUTION TIME PERMITS
ALLOCATION AND EXECUTION OF FRAGMENTS OF PROGRAMS

e COUPLED WITH OPERATING SYSTEM, PERMITS EACH USER TO HAVE
EXTREMELY LARGE ADDRESS SPACE

e NOT ALL PROGRAMS REQUIRE TREATMENT AS ABOVE
e EXPENSIVE IN TIME AND MONEY FOR MANY APPLICATIONS

e THERE ARE OTHER WAYS TO ACHIEVE SAME ENDS

13.19

Ol

A SYSTEM DEVELOPMENT FOR TIME-SHARING

AUERBACH
®

P OTHER MACHINES ORIENTED TO TIME-SHARING

e SDS 940

e SDS SIGMA 7

e CDC 3500

e PDP 10

13.20

A\

AUERBACH
®

SYSTEM DEVELOPMENT FOR TIME-SHARING

PAGING:

P SUMMARY OF PERTAINENT ADDRESSING CONCEPTS

SEGMENTS - COMPONENT OF USER ADDRESS SPACE

COMPONENT OF PHYSICAL ADDRESS SPACE

MAPS SEGMENTS (USER ADDRESS SPACE) INTO
PAGES (PHYSICAL ADDRESS SPACE)

13.21

A

AUERBACH , SOFTWARE FOR TIME—SHARING: MULTICS

MOTIVATION

. MULTIPLE INFORMATION AND COMPUTING SERVICE

) COMPUTER UTILITY

HARDWARE

) TWO—LEVEL ADDRESSING
° ONE—LEVEL STORE
. SEGMENTATION BY USER

° PAGING BY SYSTEM

SOFTWARE

° SYMBOLIC SEGMENT REFERENCES
. REC%SIVE PROCEDURES
e LOCATION—INDEPENDENCE
. PRIVATE STACK FOR TEMPORARY STORAGE
) FILE SYSTEM
° SYMBOLIC

° ACCESS—CONTROLLED

14. 1

A

AUERBACH SOFTWARE FOR TIME —-SHARING: MULTICS
®

VIRTUAL MEMORY OF A MULTICS PROCESS

DIRECTORY
STRUCTURE

<vl

SEGMENTS

VIRTUAL
MEMORY

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBACD;

THE GENERALIZED ADDRESS

SEGMENT NUMBER WORD NUMBER

14.3

A SOFTWARE FOR TIME—-SHARING: MULTICS
AUERBACI‘@‘

PROCESSOR REGISTERS FOR ADDRESS FORMATION

PC PBR
X0 AP |
X1 BP |
: LP I
X7 SP |
A
DBR
Q
INSTRUCTION FORMAT
ADDRESS EXTERNAL FLAG
SEGMENT TAG OPERATION CODE ADDRESSING MODE

14.4

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING: MULTICS

ADDRESS FORMATION FOR INSTRUCTION FETCH

GENERALIZED ADDRESS

SEGMENT NUMBER WORD NUMBER

RS

— T~

PC PBR

ADDRESS FORMATION FOR DATA ACCESS

GENERALIZED ADDRESS

SEGMENT NUMBER

WORD NUMBER

—» SEGMENT NUMBER WORD NUMBER

BASE REGISTER

14.5

N +
SEGMENT
TAG MODE
—>»
INDEX REG.
ADDRESS OPR |1

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBAC;

INTERPRETATION OF WORD PAIR AS INDIRECT ADDRESS

GENERALIZED ADDRESS

SEGMENT NUMBER WORD NUMBER

SEGMENT NUMBER \ ——————— ITS

WORD NUMBER = /| —cce—m——— MODE

14.6

A SOFTWARE FOR TIME —SHARING: MULTICS
AUERBACZ

ADDRESSING BY GENERALIZED ADDRESS

SEGMENT NUMBER WORD NUMBER

X y
DESCRIPTOR INFORMATION
SEGMENT SEGMENT
DBR /
y
/ | C
X
J_ /
|

14.7 _

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBACH

ADDRESS FORMATION FOR AN UN—PAGED SEGMENT

DESCRIPTOR SEGMENT

DBR >

+ - SEGMENT ADDRESS| N

A/C

SEGMENT NUMBER WORD NUMBER

GENERALIZED ADDRESS

PHYSICAL LOCATIO;I

14,8

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING: MULTICS

ADDRESS FORMATION FOR A PAGED SEGMENT

DBR

SEGMENT PAGE

N |A/C
TABLE BASE -

SEGMENT DESCRIPTOR

SEGMENT NUMBER

PAGE NO.

LINE NO.

CONTROL
DATA

PAGE LOCATION

PAGE DESCRIPTOR

14.9

PHYSICAL LOCATION

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING: MULTICS

AN INTERSEGMENT REFERENCE BY PROCEDURE P

14. 10

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBACH

LINKAGE OF P TOD | X FOR PROCESS «

P Ly D

=

/ X

its

* INDICATES

INDIRECT -
ADDRESSING
A)
 — / £t
. A MODE
/POINTER TOo<D> |[X]
B)
D# its
o
X , MODE

STATES OF THE LINK DATA

14, 11

A

AUERBACH
®

SOFTWARE FOR TIME —SHARING: MULTICS

ADDRESSING THE LINK DATA

P L
o
~_ e
~ - }
K
o |its -

<p>

[x]

LINKAGE SECTION
FOR P

k OPR 1 *

14.12

-

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING: MULTICS

PROCEDURE P IN PROCESS ¢« BEFORE LINKAGE

LP | K|OPR |1|x

——

PROCEDURE P IN PROCESS o AFTER FIRST EXECUTION

LP

<p> | [x1] ’/////

L o
——— —
5
K
v
- FT
& —

P

LP | kK| oPRr |1]*

<D> [X]

LP

La

p |ITs

14. 13

D

O

A\

AUERBACH
®

SOFTWARE FOR TIME—SHARING: MULTICS

REFERENCE TO COMMON DATA SEGMENT BY TWO PROCEDURES

) L D
—
LPP *
Kp
LP |KP| ORR \ {
P4 \
7
pd \
\
<D> | [X] \
\
\
LPq \\
] LA
Ka
Q ‘ //
//
7/
v
7
/
LP |ka| oPR //
/
/
/
/ LP4
<D> | [X]
L PRI Y — . —— e
BEFORE & AFTER BEFORE ONLY AFTER ONLY

LINKAGE

14, 14

C

A SOFTWARE FOR TIME—-SHARING: MULTICS
AUERBACH

LINKAGE MECHANISM FOR PROCEDURE ENTRY

P LINKAGE LINKAGE Q
SECTION SECTION
L FORP L FOR Q
Pp Pa
/' -—C
—> -~
/ L

/ it
caLL =2 //
< Q>|[e] 4 its |-y

N\ P_K TRA% |=~——————"

TRA y, *

-— —— — — ——3p» CONTROL FLOW
—»= INDIRECT ADDRESS FLOW

14, 15

A\

AUERBACH
®

SOFTWARE FOR TIME—SHARING: MULTICS

STATUS OF A PROCESS

e RUNNING

e READY

e BLOCKED

14.16

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBACH

AN EXAMPLE OF A HIERARCHY

14, 17

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBAC:

THE SAME HIERARCHY WITH LINKS ADDED

DIRECTORY MANIPULATION

1. SUPPOSE CURRENT WORKING DIRECTORY IS 4 -
(PATHNAME H) O

2. THE COMMAND CHANGE DIRECTORY : C WILL
ALTER THE WORKING DIRECTORY TO 1
(PATHNAME H: C)

3. A SUBSEQUENT REFERENCE TO :* : | WILL
THEN INDICATE BRANCH 5. ’

14.18

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBACH

ACCESS CONTROL

a2 USER ACCESS CONTROL LIST

e MODE ATTRIBUTES:

MODE DIRECTORY BRANCH NON—DIRECTORY BRANCH
READ: READ AVAIL. CONTENTS READ FILE
WRITE: ALTER EXISTING ENTRIES WRITE FILE
EXECUTE: | SEARCH THE DIRECTORY EXECUTE PROCEDURE
)
APPEND: ADD NEW ENTRIES : WRITE AT E.O.F. C

e THE TRAP ATTRIBUTE

¢ MONITORS FILE USAGE
e RESTRICTS ACCESS

e DYNAMIC REFERENCE CONTROL

14.19

A

AUERBACH SOFTWARE FOR TIME—SHARING: MULTICS
0 -

THE BASIC FILE SYSTEM

CALLS
FROM USER
PROCEDURES

CALLS
FROM USER
PROCEDURES

PERIODIC
INTERRUPT

!

PAGE SEGMENT SEARCH FILE DIRECTORY
MARKER MANAGEMENT MODULE COORDINATOR MANAGEMENT
) oI-
RECTORY
FILE ACCESS
CONTROL CONTROL
MODULE MODULE
AFT 1o DEVICE
QUEUE INTERFACE
MODULE
: To ‘ ,
PAGE | PAGE q&ége » o C;
FAULTY MANAGEMENT MANAGEMENT \ MODULES
' : DEVICE
: INTERFACE
) /0 MODULE
: QUEUE

14.20.

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBACH

CALLS
FROM USER
PROCEDURES

CALLS
FROM USER
PROCEDURES

PERIODIC
INTERRUPT

P !

PAGE SEGMENT SEARCH FILE DIRECTORY
MARKER MANAGEMENT| MODULE COORDINATOR MANAGEMENT
. DI-
RECTORY
FILE ACCESS
CONTROL CONTROL
MODULE MODULE
POT AFT 10
DEVICE
QUEUE INTERFACE
MODULE
FPAAUGLET PAGE o&é?;s . 178
MANAGEMENT MANAGEMENT MODULES
C
DEVICE C
et INTERFACE
MODULE

SEGMENT MANAGEMENT

° MAINTAINS RECORD OF ALL KNOWN SEGMENTS (S.N.T.)
ACTIVE: IF PAGE TABLE IN CORE (S.S.T.)
INACTIVE: IF PAGE TABLE NOT IN CORE
° CALLS LINKER FOR FIRST—TIME REFERENCE
. IF NOT IN SNT,
LOCATE SEGMENT, ASSIGN SEGMENT NUMBER, UPDATE SNT,
OPEN FILE, CREATE SST ENTRY, SET UP PAGE TABLE AND
SEGMENT DESCRIPTOR; THEN
. RET URN SEGMENT NUMBER TO CALLING PROCEDURE
° IF IN SNT BUT INACTIVE, ACTIVATE 0
U OTHER FUNCTIONS: g

RELEASE, REASSIGN, VERIFY, CREATE, TERMINATE

/14,21

A SOFTWARE FOR TIME—SHARING: MULTICS
AUERBAC!;) .

CALLS
FROM USER
PROCEDURES

CALLS
FROM USER
PROCEDURES

PERIODIC
INTERRUPT

PAGE SEGMENT SEARCH FILE DIRECTORY
MARKER MANAGEMENT MODULE COORDINATOR MANAGEMENT
DI-
RECTORY
' FILE ACCESS
CONTROL CONTROL
' MODULE MODULE
AFT DEVICE
INTERFACE
MODULE
‘ T0
O /
PAGE PAGE Qlféue 1/0
FAuLY MANAGEMENT MANAGEMENT \ MODULES
S DEVICE
S - INTERFACE
: MODULE

SEARCH MODULE

(] CALLED SEGMENT MANAGEMENT
. USES FILE COORDINATOR

(] LOCATES SPECIFIC BRANCH IN USER’S HIERARCHY

FILE COORDINATOR

. BASIC WORKING DIRECTORY ENTRY MANIPULATION
. INTERFACES WITH ACCESS CONTROL FOR PERMISSION
. KEEP TREE NAME OF WORKING DIRECTORY IN WDT
. FUNCTIONS:
. CREATE, DELETE, RENAME AN ENTRY
(] STATUS OF AN ENTRY
. CHANGE ACCESS CONTROL FOR A BRANCH

° CHANGE ‘WORKING DIRECTORY

14,22

A SOFTWARE FOR TIME - SHARING: MULTICS
AUERBACH

CALLS
FROM USER
PROCEDURES

CALLS
FROM USER
PROCEDURES,

PAGE SEGMENT SEARCH FILE DIRECTORY
MARKER MANAGEMENT MODULE COORDINATOR MANAGEMENT

<

FILE | ACCESS
CONTROL CONTROL
MODULE MODULE

PERIODIC
INTERRUPT

POT AFT DEVICE
INTERFACE

MODULE

T0
PAGE PAGE m{éﬁ E I/0

FAULT —*IMANAGEMENT MANAGEMENT \ MODULES

DEVICE
INTERFACE
MODULE

DIRECTORY MANAGEMENT

(] SEARCHES FOR A SINGL.E DIRECTORY BY TREE NAME
. MAY CALL SEGMENT MANAGEMENT TO GET SEGMENT NUMBER
] MAY BE RE—CALLED BY SEGMENT MANAGEMENT

(] RECURSION MAY REACH TO ROOT OF TREE

FILE CONTROL MODULE

e OPENS FILES FOR SEGMENT MANAGEMENT

. MAKES ENTRY IN ACTIVE FIL.E TABLE (AFT)

e RETURN AFT POINTER

e GETS PERMISSION FROM ACCESS CONTROL MODULE

e MAY BLOCK PROCESS ON INCOMPATIBLE REQUEST

14.23

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING: MULTICS

PERIODIC
INTERRUPT

CALLS
FROM USER
PROCEDURES

CALLS
FROM USER
PRQCEDURES

PAGE SEGMENT SEARCH FILE DIRECTORY
MARKER MANAGEMENT MODULE COORDINATOR MANAGEMENT
SYNT @\
FILE ACCESS
CONTROL CONTROL
MODULE MODULE
AFT I/E%E DEVICE
Qu INTERFACE
MODULE
TO
PAGE PAGE Q&écu)g / Ilo
FAULT MANAGEMENT MANAGEMENT \ MODULES
DEVICE
INTERFACE
1/0 MODULE
QUEUE

ACCESS CONTROL MODULE

o CHECKS DIRECTORY, RETURN EFFECTIVE MODE

° FOR TRAP MODE, PASSES CONTROL TO INDICATED PROCEDURE FOR
EFFECTIVE MODE DETERMINATION

PAGE MARKER

. PERIODICALLY INTERRUPTS

[RESETS PAGE USE BITS

° PUTS SELDOM—USED PAGE DATA IN PAGE OUT TABLE (POT)

14.24

A SOFTWARE FOR TIME—SHARING: MULTICS

CALLS CALLS
FROM USER FROM USER
PROCEDURES, PROCEDURES

AUERBACH
®
PERIODIC
INTERRUPT

PAGE » SEGMENT SEARCH FILE DIRECTORY
MARKER MANAGEMENT MODULE COORDINATOR MANAGEMENT

N

FILE ACCESS
CONTROL CONTROL |
MODULE MODULE
AFT QL/E%E DEVICE
INTERFACE
MODULE
T0
PAGE PAGE Q&QE 1/0
FAULT MANAGEMENT MANAGEMENT \ MODULES
: . DEVICE
oo INTERFACE
-) MODULE

PAGE MANAGEMENT MODULE

o ENTERED BY MISSING PAGE FAULT
[ASSIGNS FREE PAGE FROM AVAILABLE SPACE OR POT

° FOR NEW PAGE, POINTER FROM PAGE TABLE TO SEGMENT STATUS
TABLE USED TO GET POINTER TO ACTIVE FILE

° POINTER PASSED TO I/O QUEUE MANAGEMENT TO READ PAGE

14.25 -

A SOFTWARE FOR TIME—SHARING
AUERBACH TSS/360

TIME SLICING AMONG THREE TASKS IN TSS/360

TASK A

TASK B

TASK C

Points — B
Time Slices —o

- Task Active
mmwwww Task Waiting for 1/O

E Task Inactive

14.26 _.

A ' SOFTWARE FOR TIME—SHARING
AUERBACH TSS/360

PRIVATE CODE AND SHARED CODE

Page-Formatted Disk

User B's

Virtual

Storage
T
User A's +
Virtual i
Storage K

+

coe-Formarted Disk
\-,

4

Private Code-0
Shored Code -m
] I Main Storage

14.27

A SOFTWARE FOR TIME—SHARING
AUERBACH TSS/360

DYNAMIC ADDRESS TRANSLATION

mm— - Oe-—-—-— -
'
| Qe —-——n |
; l . ment Page Byte
t) [—_— __—
| | TABLE REGISTER [
l [o] 8 S.’Mﬂl' Table 2526 3 l
Length Origin | S S —_——
| L 000000 1
L___] d l
y SEGMENT TABLE ‘ :
| |
g | - - & ASSOCIATIVE MEMORY
Length Page Table Origin
=
0 11H Ay 29
Logical Poge Pbysiclol
Pé etock |
|
' |
PAGE_TABLES I
RELOCATED Instruction Cwaer
0 IIHIS © D— {
Block [15 I
j
'._ ____________
|
I
!
, |
| |
© LoGIcAL ComPARE vy h 4
@ LOGICAL ADCITION 0 iz 23 PHYSICAL ADDRESS
Block Byte.
A = AVAILABLE BIT
U= USED BIT

14,28

A SOFTWARE FOR TIME—SHARING
AUERBACQ TSS/360

PROTECTION LEVELS

HOW CALLS
WORK IN A .
BEGIN 1/0 RE - USER'S
OPERATION ENTER- VIRTUAL RE- PROTECTION
EXAMPLE : ABLE? STATE MEMORY ? LOCATED ? PAGED ? BY
PROBLEM PROGRAMS
/ FORTRAN, ASSEMBLER ? PROBLEM YES YES YES NONE
sve . .
SUPERVISOR
CALL

INSTRUCTION

SERVICE PROGRANS
ACCESS METHODS,

/ COMMAND LANGUAGE YES SUPERVISOR YES YES YES PROTECT KEY

10CAL
MACRO

) -~ MOT IN VIRTUAL
RESIDENT SUPERVISOR NO SUPERYISOR NO N0 no MEMORY

o p” C
PRIVILEGED T . .

INSTRUCTION

NHARDWARE WICRO-
PROGRAM - - - - - READ - ONLY

14,29

A SOFTWARE FOR TI ME—SHARING
AUERBACH TSS/360

C

NONCONVERSATIONAL TASK
INITIATED BY PRINT COMMAND

User 4

LOGON

(PRINT Data Set A)

LOGOFF C
r———-- b

SYSIN
Task 1

—
)
2
U

SYSOUT
Task 1

SYSOUT
Task 2

[S
'

Dato Set A

r=—=\
‘\
\
H
/’__‘
I
!
|
E——

155/360 Task 2

—/ Data Set A '
[H

LIl

1]

-1

Printer

14, 30

A

SOFTWARE FOR TIME—SHARING

AUERBACH TSS/360
®
NONCONVERSATIONAL TASK
INITIATED BY EXECUTE COMMAND
U
User [
IV__— LOGON
EXECUTE ©
Task 1 (Procedure A)

Conversational

Nonconversational

LOGOFF
\N___/
Direct-Access Device
SYSIN _———
Task 1 SYSOuT Procedure A
Task 1 LOGON
—— Task 2
LOGOFF J
SYSIN
Task 2
" J "
SYSOUT
Task 2
L oy
T55/360

Intermediate Storage

14. 31

Jf

Printer

A SOFTWARE FOR TIME —SHARING
AUERBAC!; TSS/360

1

CONVERTING A CONVERSATIONAL TASK ﬂ
TO NONCONVERSATIONAL MODE USING
THE BACKGROUND COMMAND

[SY

User

T ‘‘‘‘‘ T

Conversational

BACKGROUND
Task

Nonconversational

* Y _—— = N

Conversational Conversational
SYSOUT SYSIN
DIRECT-ACCESS DEVICE
Nonconversational Nonconversational
SYSIN SYSOUT L
- F s
L v |
—
)
TSS/360 . =
-J)
— \

Printer ﬂ

14.32

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING
TSS/360

TIME SHARING SYSTEM/360 DATA MANAGEMENT FACILITIES

DATA MANAGEMENT FACILITIES

DATA SET MANAGEMENT

Cataloging
System catalog
Cataloging facilities
(including CATALOG
and DELETE commands)

Sharing
PERMIT command
SHARE command

Manipulation
MODIFY command
COPY DATA SET command
ERASE command

Definition
DEFINE DATA command

CALL DATA DEFINITION command

RELEASE command
SECURE command

14.33

PROBLEM PROGRAM 1/0O

Prestore input data in system
DATA command -- by user
READ CARDS command -- by operator
READ TAPE command -- by operator

Obtain input data and generate output data
during program execution
Conventional |/O facilities, using 1/0O
statements in source program
Dynamic 1/O facilities, using program
checkout commands and statements,
and special source-language statements

Transfer data from system storage to standard

1/0 devices

PRINT command
PUNCH command
WRITE TAPE command

A\

AUERBACH
®

SOFTWARE FOR TIME—SHARING
TSS/360

FULLY AND PARTIALLY QUALIFIED NAMES

A
A] C
/
A] C
/
Data Data Data Data Data
Set Set Set Set Set
A.A A.B.A ABB | JADBC A.C

14.34

Data Set

A SOFTWARE FOR TIME—SHARING
AUERBACH TSS/360

SYSTEM CATALOG CONCEPT

Data Set Name —ﬂ

zys'elv? J T—Unr Supplied ~——sf
Vi el
PP Master Index

-
[30HNDOE. | ENG.PHYSICS.COMAR. TEST2 JOHNDOE | |FRANKLEG | |

- - — = — -User Catolog —— — = — ==

JOHNDOE liNG }rL PAYRL

-

I
|
|
|
|

| ENG [pHYsICS
|
|

—
L]
1

[crem |

PHYSICS L COMAR

comar [resm 7 Jres2 1]

-
e e

VTOC | JOHNDOE . ENG.PHYSICS.COMAR. TEST2 |

J

Data Set Beginning Address J

14.35.

o

AUERBACH
®

SOFTWARE FOR TIME—SHARING

TSS/360

O

TYPICAL VIRTUAL INDEX SEQUENTIAL DATA SET

g -/

.

t———————————— Directory Page ———————1

Directory

Ky

K2

Page Number

Data Set Page

—1

Logical Record 1]Logical Record 2 z Kpy ! Kr2 KRg
1
Overflow Page
i T
Kre ! Kr2o |
I

Logical Record %.ogical Record 6

| AN—

14.36 .

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING
TSS/360

VIRTUAL PARTITIONED DATA SET

1 Page —Ol

1 Page ——u|

r———— Partitional Organization Directory-1 Page —-OT
Entry for Entry for Entry for Member Member
Member Member Member SQRT SQRT
~ ARCT CcOs SQRT (First Part) . (Continued)
r 1 Page =|‘ r———-—- 1 Page —0‘ lﬂ——l Page ——01 C
Member ARCT (First Part) Memb‘er ARCT Member COS
(Continued)

14,37 — -

A SOFTWARE FOR TIME-—SHARING
AUERBACH TSS/360

SHARING OF CATALOGED DATA SETS

Issued by SHARE | ENG.CHEM.NOTAR.TESTI | ,RKP100, ENG.PHYSICS. COMAR. TEST2
User JMC200
Sharer's Reference to Data Set Owner's Identification of Data Set

Data Set's Owner

v
[JMC200 : T ENG.CHEM.NOTAR.TEST] ‘

i Master Index

T
l JMC200 : I _X i RKP100]

® ©

JMC's User Catalog

TESTI I l RKP100. ENG.PHYSICS. COMAR. TEST2 | l

- | | i
: JMC200 LI NG ’: l 1 { : RKP100 [l ENG i l I i
| ! I]
L , o , |
e L 1] | oLl e (] |
| , L ‘ |
g s N R o v o
| | i] I
| NOTAR [l TESTI ili J ; i COMAR [I TESTI 1:] TEST2 jll I }
| o |
| | ! I

i
|
I
|
|
|
I
I
I
l
I
|
I
I
|
I
|
L
r
| .
I
I
I
I
I
I
I
l
I
I
I
I
I
|
L

()
O/
- Volume Label
1
VTOC = l l
- T
RKP100.ENG.PHYSICS.COMAR. TEST2 :] Qy

]

/

Data Set Beginning AddressJ

14,38

A

SOFTWARE FOR TIME—SHARING

AUERBACH TSS/360

Assembly
Time

_.{. ______ — e e e ——— e - —_—— e —E———————_—————— -
) 1

FLOW OF INFORMATION TO AND FROM A DATA CONTROL. BLOCK

DCB
Macro
Instruction

DCBD
Macro
Instruction

Symbolically Defines DCB Fields

. Adds to or Modifies DCB
g;:;rr\;" (User's Problem Progrom} e
Note: Circled number 1-3 indicate System Catalo l
order of sampling sources i 9 Y
for inputs to DCB. Circled DEFINE DATA | 3] @ ' B
numbers 4-6 indicate Command
sources of data set label
information and order they
are used when output data
sets are opened. Boxed .
numbers 1-4 show priorities | 2
of sources sampled for
inputs. New Data Set Label j¢— — — ——— — DCB
Execution OPEN
Time Time
Existing Data Set Label —‘@—4
User Modification | 1]
Routines (BSAM Only) () '
Data Set) T\ Adds to or Modifies DCB Fields
is Open User's Problem Programj

14. 39

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING
TSS/360

DATA SET IDENTIFICATION, FORTRAN-WRITTEN PROGRAMS

READ or WRITE Statement

(data set reference number xx
FT xx Fyyy

DEFINE DATA command

DSNAME = dsname

dsname in data set label

DATA SET

DATA SET IDENTIFICATION, ASSEMBLER LANGUAGE PROGRAM

Macro Instructions
(GET,PUT,READ, WRITE, etc)

decb address \

\ Data Control Block

ddname

ddname

DEFINE DATA command

DSNAME = dsnome
dsnome in data set label

DATA SET

14. 40

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING

TSS/360

SUMMARY OF DATA MANAGEMENT SYSTEM MACRO INSTRUCTIONS

AND DATA SET ORGANIZATIONS

General Service Macro Instructions
Applicable in All Access Methods

DCB
DCBD
OPEN
CLOSE
} VSAM ‘ VISAM VPAM { BSAM l |IOREQ
Virtual Virtual Index Virtual Basic Input/Output
Sequential Sequential Partitioned Sequential Request Facility
Macro Instructions Macro Instructions Macro Instructions Macro Instructions Macro Instructions
GET GET FIND GETPOOL VCCW
PUT PUT STOW FREEPOOL IOREQ
PUTX READ GETBUF CHECK
SETL WRITE FREEBUF
SETL FEOV
ESETL CNTRL
DELREC PRTOV
RELEX READ
WRITE
CHECK
NOTE
POINT
BSP
CLOSE (TYPE = T)
DQDECB
| i] 1 Y
Virtual sequential Virtual index Virtual partitioned data
data set, or sequential data set; - set, with virtual sequen- Sequential data set,
virtual sequential or virtual index se~ tial or virtual index usually one with Device oriented
member of a quential member of a sequential members or unblocked records
partitioned data set partitioned data set a mixture of both

14. 41

A SOFTWARE FOR TIME—SHARING
AUERBACH TSS/360

FORMAT OF AN OBJECT PROGRAM MODULE

Program Module Dictionary

PMD Header
Control Control Control Control
Section Section Section Section
! 2 3 h A n
Dictionary Dictionary Dictionary Dictionary
Text

Instruction and/or Data (Hexadecimal)

Control Section 1

Control Section 2

Control Section 3

-

Control Sectionm

Internal Symbol Dictionary
(Optional)

14. 42

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING

TSS/360

ATTRIBUTES OF CONTROL SECTIONS

e READONLY
¢ PUBLIC

® PSECT

¢ COM

® PRVLGD

® VARIABLE

14.43

A SOFTWARE FOR TIME—SHARING
AUERBACH ’ TSS/360

V— AND R—VALUES OF EXTERNAL SYMBOLS

Reference Reference Reference Reference

by Module by CSECT by Entry by PSECT

Name M Name X Point Z Name Y
V(M) RM) - VI(X) RX) V(Z) R(Z) V() R(Y)

L X CSECT
W (Standard
Entry O
Point) : "

Z (Deferred =

Entry
Point

Y PSECT
ENTRY Z

END (W)

14. 44

A

AUERBACH
®

SOFTWARE FOR TIME—SHARING
TSS/360

SHARING A MODULE

Module A

(of task 1)

Module B

(of task 2)

M
\ X
— CSECT
Y Y
PSECT PSECT

14, 45

A SOFTWARE FOR TIME—SHARING
AUERBACH TSS/360

PROGRAM WITH IMPLICIT AND EXPLICIT LINKAGES

@
[a]

O b———— e

Implicit Call

— ——=— Explicit Call

14.46-

SOFTWARE FOR TIME—SHARING

AUERBACH TSS/360
®
C-
OBJECT PROGRAM MODULE COMBINATION
—————————— — — Optional Linkage Editing == — = —— = = = ———
Task Libraries
Edited Object
Object Program Module
\\ Program
\ Modules
N
N\
AN
. : N\
Object \ DEFINE DATA
Program AN RUN LNK
Modules User A Parameters
\\ Control
N Statements
N\
N\
N
\\
= DLyn:m-c ’?Eﬁ t:s DATA N Listing
! oader UN Program \\ Data C\
Set o
Explicit and N N Us&ﬁg'og
Inplicit N Listing Data
Linkage N Set/Control
Requirements N\ Statement
During N Data Set
Execution N\ N
: ; Input Data Sets N\
[N -
| User's
L Virtual
Storage .

Output
Data Sets

14,47

A SOFTWARE FOR TIME —SHARING
AUERBACH TSS/360

A REENTERABLE ROUTINE THAT REQUESTS ITS OWN TEMPORARY STORAGE

PROGI

CALL —

PROG2 PROGA Work AREA
for Use
= / With PROGI
caw — _—
GETMAIN \\
- \ Work Area
for Use
FREEMAIN " With PROG2
RETURN

14.48 -

AUAERBACH BASIC CONCEPTS IN PROGRAMMING LANGUAGES
®

P> INSIGHTS INTO

® MACHINE ORGANIZATION
® PROGRAMMING LANGUAGES

® PROGRAMMING SYSTEMS

P> BY MEANS OF

® CONCEPTUAL FRAMEWORK

® CASE STUDIES

16.1

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

ALGORITHM

PROGRAM

COMPUTER

COMPILER
(TRANSLATOR)

SOURCE LANGUAGE

TARGET LANGUAGE

ASSEMBLER

PROGRAMMING
SYSTEM

BASIC DEFINITIONS

— A RULE FOR COMPUTING THE SOLUTION TO A PROBLEM
OR CLASS OF PROBLEMS IN A FINITE NUMBER OF STEPS.

— REPRESENTATION OF AN ALGORITHM IN SOME PRO--
GRAMMING LANGUAGE.

— MECHANICAL DEVICE FOR PROGRAM EXECUTION.

— PROGRAM FOR TRANSLATING FROM ONE PROGRAMMING
LANGUAGE TO ANOTHER.

— PROGRAMMING LANGUAGE IN WHICH PROGRAMS ARE
SPECIFIED BY THE PROGRAMMER OR PROGRAMMING
LANGUAGE WHICH SERVES AS INPUT TO A COMPILER.

— PROGRAMMING LANGUAGE WHICH SERVES AS OUTPUT
FROM A COMPILER:

— SPECIAL CASE OF A COMPILER WHEN TRANSLATION C
FROM THE SOURCE LANGUAGE TO THE TARGET LANGUAGE
INVOLVED MAINLY TRANSLITERATION.

— A SET OF PROGRAMS FOR A COMPUTER WHICH ALLOWS
SEQUENCES OF USER PROGRAMS TO BE EXECUTED WITH—
OUT MANUAL INTERVENTION. THE TERM PROGRAMMING
SYSTEM SOMETIMES DENOTES THE HARDWARE OF THE
COMPUTER SYSTEM TOGETHER WITH THE SET OF PRO—
GRAMS THAT CONSTITUTE THE INTERFACE BETWEEN
THE HARDWARE AND THE USER.

16.2

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

CONCEPTS OF A FUNCTION

X ——> F

> ¥ = F(X)

MATHEMATICAL CONCEPT OF A FUNCTION

REPRESENTATION
OF F

REPRESENTATION
OF X

PROCESSOR

(INTERPRETER) REPRESENTATION C,
> WHICH APPLIES OF Y = F(X)

F TO X

COMPUTATIONAL CONCEPT OF A FUNCTION

16.3

5631

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

REPRESENTATIONS OF A FUNCTION

A REPRESENTATION OF A FUNCTION F TOGETHER WITH ITS DATA X
CONSTITUTES AN INFORMATION STRUCTURE. A FINITE COMPUTATION
CAN BE CHARACTERIZED BY AN INITIAL INFORMATION STRUCTURE Io:
AND BY THE SEQUENCE OF INFORMATION STRUCTURES Iy; I,. . . Iy
GENERATED FROM Ig BY THE EXECUTION OF INSTRUCTIONS. IO IS SAID
TO BE THE INITIAL REPRESENTATION AND IN IS SAID TO BE THE FINAL
REPRESENTATION. AN INFORMATION STRUCTURE Ij WHICH CAPTURES
THE COMPLETE STATE OF THE COMPUTATION AT A GIVEN POINT IN ITS
LIFETIME IS SAID TO BE AN INSTANTANEOUS DESCRIPTION.

5627

16.4

A BASIC CONCEPTS IN PROGRAMMING LANGUAGES
AUERBACH

FUNCTIONAL COMPONENTS OF A COMPUTER

PROCESSING
UNIT

INSTRUCTION
POINTER

0 1 K N—1

A SIMPLE COMPUTER

AUXILIARY
MEMORY

r C

INPUT MEMORY . OUTPUT
UNIT UNIT

l

PROCESSING
UNIT

FUNCTIONAL COMPONENTS OF A COMPUTER

5638

16.5

A BASIC CONCEPTS IN PROGRAMMING LANGUAGES

AUERBACH
®

TRANSLATION, COMPILATION AND LOADING

SOURCE
LANGUAGE

SOURCE
LANGUAGE
COMPONENTS

INTERMEDIATE
LANGUAGE
COMPONENTS

COMPILER

—_—.

COMPILER

———.,

LOADER

16.6

TARGET
LANGUAGE

INTERMEDIATE
LANGUAGE
COMPONENTS

MACHINE
LANGUAGE
PROGRAM

5637

AUAERBACH BASIC CONCEPTS IN PROGRAMMING LANGUAGES
®

REQUIRED PROPERTIES OF INTERMEDIATE LANGUAGE
(COMPILER)

e PROGRAM REPRESENTATION INDEPENDENT OF
MACHINE STORAGE LOCATIONS.

® PROVISION FOR CROSS—REFERENCING BETWEEN
PROGRAM COMPONENTS.

e TRANSLATION TO PURE MACHINE LANGUAGE
AS EFFICIENT AS POSSIBLE.

5628

16.7

A

AUERBACH
3

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

PROGRAM STRUCTURE FOR FORTRAN

¢ MAIN PROGRAM

e SUBROUTINES

- o« COMMON DATA BLOCKS

PROGRAM

WORKING
SPACE

DATA

PRINCIPAL COMPONENTS OF A FORTRAN PROGRAM UNIT

16.8

5635

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

FUNCTIONAL COMPONENTS OF A PROGRAM

A PROGRAM PART P WHICH SPECIFIES THE PROGRAM
TO BE EXECUTED.

A DATA PART D WHICH SPECIFIES THE DATA FOR
THE PROGRAM,

A STATEWORD W WHICH CONTAINS INFORMATION

IN THE PROCESSING UNIT OF AN ACTUAL COMPUTER,
INCLUDING AN INSTRUCTION POINTER WHICH POINTS
TO THE NEXT STATEMENT OR SUBEXPRESSION TO
BE EXECUTED.

LOGICAL PROGRAM STRUCTURE

5634

16.9

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

DEFINITIONS OF FUNCTIONS

e ACTIVATION RECORD

e REENTRANT FUNCTIONS

e RECURSIVE FUNCTIONS

5630

16,10

A

AUERBACH BASIC CONCEPTS IN PROGRAMMING LANGUAGES
®

=

SEQUENCE OF FUNCTIONAL COMPONENTS

A
B[D
CI:DE
L Cc
E
B E
- A A
PROGRAM STACK WHEN STACK WHEN
STRUCTURE EXECUTION EXECUTION

ISIND . ISINE Q

PROGRAM STRUCTURE AND ACTIVATION RECORD STACK

5633

16.11

A

UERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

PROGRAM EXECUTION

e [OGICAL STRUCTURE

e PHYSICAL STRUCTURE

e MACHINE ORGANIZATION

16.12

5629

A\

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGE

COMMUNICATION BETWEEN FUNCTION MODULES

e SYMBOLIC CROSS REFERENCES

e TRANSFER VECTORS

o LOAD TIME LINKAGE

e ONE AND TWO-STAGE INDIRECT ADDRESSING

e INCREMENTAL LINKAGE

16.13

A BASIC CONCEPTS IN PROGRAMMING LANGUAGE

AUERBACH
®

ONE AND TWO-STAGE INDIRECT ADDRESSING

USE AND DEFINITION TABLES FOR PROGRAMS IN THE INTERMEDIATE LANAGUAGE.

EXTERNALLY DEFINED SYMBOL SYMBOL BEING DEFINED
USE 1 USE 2 SYMBOL DEFINITION
USE-TABLE ENTRY DEFINITION-TABLE ENTRY
USE TABLE

DEFINITION TABLE

BODY OF
PROGRAM UNIT

INDIRECT ADDRESSING OF STORAGE-MAPPING TABLE

SYMBOLIC ENTRY

E PRIOR TO LOADING.
TRANSFER VECTOR ENTRY FOR X LINK TO EXTERNAL
VALUE DURING
EXECUTION
FIRST USE OF X POINTERS
SECOND USE OF X | ESTABLISHED
DURING
THIRD USE OF X TRANSLATION
P1 % USES IN P1
EXECUTION-TIME P2
STORAGE-MAPPING - - -<:Z:.$ USES IN P2
TABLE ENTRY P3
% USES IN P3
USE-TABLE ENTRIES ‘
IN THREE PROGRAM USES OF EXTERNALLY
UNITS DEFINED SYMBOL

16.14

A BASIC CONCEPTS IN PROGRAMMING LANGUAGE

AUERBACH
®

STARTING POINT FOR THE STUDY OF PROGRAMMING

ALGORITHMS
COMPUTERS
INFORMATION STRUCTURES

COMPUTER SCIENCE CAN BE DEFINED AS THE STUDY OF REPRESENTATION
AND TRANSFORMATION OF INFORMATION STRUCTURES.

16.15

A BASIC CONCEPTS IN PROGRAMMING LANGUAGE

AUERBACH
®

INFORMATION STRUCTURES

ALPHABET T
INFORMATION STRUCTURE OVER | IS A SYMBOL STRING OVER T
SUBSTRUCTURE IMPO SED ON STRINGS BY A GRAMMAR

BEGIN REAL X; X: = 3+ 4x 5 END
| I— —
DECLARATION EXPRESSION

STATEMENT
|]

BLOCK

PROGRAMMING LANGUAGE - SET OF INFORMATION STRUCTURES
SYNTAX - SPECIFIES REPRESENTATION
SEMANTICS - SPECIFIES TRANSFORMATION

16.16

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGE

INFORMATION STRUCTURE MODELS

(1,F) 1 is set of information structures
F is set of transformations
| - syntactic component - specified by syntax

F - semantic component - specified by semantics

computation lo—f->l]—f—>|2 ce -f->|n

I, €1 initial representation

li intermediate representations - instantaneous descriptions

I final representation - no elements of f are applicable

Closure of | - set of all information structures which can be generated
from | by finite sequences of f.

16.17

A BASIC CONCEPTS IN PROGRAMMING LANGUAGE

AUERBACH
®

INFORMATION STRUCTURE MODEL FOR COMPUTERS

STORAGE STRUCTURES

PRIMITIVE INSTRUCTIONS

PU
& |
H 2 fn
1 2 N
Principal information components C:)
Processing unit component PU
Memory component M

Instruction pointer component PTR
Syntax: |—=PU M PTR
PU=AC MQ BITS
efc
Semantics: Specify instructions in terms of which information fields they transform.
Recognition Phase

Transformation Phase

Interpretation step: if py then A; else if pp then Ay . .. elseif p, then A .

16.18

A | BASIC CONCEPTS IN PROGRAMMING LANGUAGE

AUERBACH
®

INFORMATION STRUCTURE MODEL FOR PROGRAMMING LANGUAGES

Stateword Component w
Program Component P

Data Component D

W component is usually of fixed size Q
P consists of interacting function modules

reentrant function modules

Activation
e Record 1
ix
program
part Activation
Record 2

Programming languages may be characterized by the structure of their D component.
FORTRAN - All information fields of the D component are determined prior to execution.

ALGOL - The D component is a stack with respect to creation and deletion of
information structures.

List Processing Languages - More flexible creation and deletion.

16.19

A ‘ BASIC CONCEPTS IN PROGRAMMING LANGUAGE

AUERBACH
®

FORTRAN

Function module - subroutine or main program

Program
Part

Working
Space

Data
Part

One-to-one correspondence between program and data components of function module.

Complete program - set of interacting function modules and COMMON data blocks.

PUT \
1 | // COMMON
PU2

Program with two function modules and a COMMON data block.

16.20

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

COMMUNICATION BETWEEN FUNCTION MODULES

SIZE OF FUNCTION MODULES KNOWN AT TRANSLATION TIME
RELATIVE ADDRESSING WITHIN FUNCTION MODULE
RELATIVE ADDRESS FOR COMMON DATA BLOCKS

SYMBOLIC SUBROUTINE REFERENCES

PARAMETERS — RELATIVE ADDRESSING WITH RESPECT TO
POINT OF CALL

TSR S, 4
A1l
A2
A3
A1, A2, A3 ARE ADDRESSES OF PARAMETER VALUES

ACTUAL PARAMETER EXPRESSION IS EVALUATED PRIOR TO
SUBROUTINE ENTRY

CALL BY REFERENCE

16.21

AUERBACH , BASIC CONCEPTS IN PROGRAMMING LANGUAGES
®

ALGOL

A PROGRAM CONSISTS OF A SINGLE FUNCTION MODULE CALLED A
BLOCK WHICH MAY HAVE NESTED FUNCTION MODULES.

BEGIN

DECLARATIONS [REAL x;] I:PROCEDURE P(X)BODY]
STATEMENTS [X:=X+1; | [NESTED BLOCK |
END

DECLARED INFORMATION STRUCTURES ARE CREATED ON
ENTRY TO BLOCK AND DELLETED ON EXIT FROM BLOCK+

NESTED FUNCTION MODULES — ACTIVATION RECORD STACK

B [~
B1| B2
- P
- B2
B3 «—Q B1 B3
- B B
FIXED PROGRAM PART EXECUTION AT P EXECUTION AT Q

STATIC AND DYNAMIC NESTING OF FUNCTION MODULES
PROCEDURE CALLS ARE IMPLICITLY NESTED

OWN VARIABLES — ENDURE BETWEEN ACTIVATIONS

16.22

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

INFORMATION STRUCTURE MODEL FOR ALGOL

FIXED PROGRAM COMPONENT P
STATEWORD COMPONENT w
STACK COMPONENT S
INPUT COMPONENT IN
OUTPUT COMPONENT ouT
OWN VARIABLE COMPONENT X

1= (P, W, S, IN, OUT, X)

SPECIFY TRANSFORMATION F IN TERMS OF HOW THEY AFFECT

INFORMATION COMPONENTS

EMPHASIZE CREATION AND DELETION OF INFORMATION FIELDS

CREATION OF ACTIVATION RECORDS ON ENTRY TO FUNCTION
MODULES — DELETION ON EXIT FROM FUNCTION MODULES.

CREATION OF TEMPORILY INFORMATION FIELDS DURING
EXPRESSION EVALUATION. '

ASSIGNMENT STATEMENT MAY MODIFY AN INFORMATION
FIELD IN THE INTERIOR OF THE STACK,

16.23

A

AUERBACH
®

BASIC CONCEPTS IN PROGRAMMING LANGUAGES

INTERPRETATION VERSUS COMPILATION

COMPILATION IS A TRANSFORMATION FROM ONE INITIAL REPRE—
SENTATION TO ANOTHER

INTERPRETATION

2\
I, — 1 —>l2...~—->l

O 1

N
COMPILATION

!

Io

1 ’ 1/
_—’Il 'lz... |M

~
INTERPRETATION

INTERPRETATION PROCESS IS INSENSITIVE TO COMPILATIONS
WHICH PRESERVE THE IDENTITY OF OPERATORS AND OPERANDS

AND THE ORDER IN WHICH OPERATORS ARE APPLIED TO OPERANDS.

INTERPRETATION IS MORE RELEVANT TO MACHINE ORGAN—
IZATION THAN COMPILATION.

COMPILERS CONSTITUTE AN INTERESTING CLASS OF

COMPUTATIONS TO STUDY BUT TELL US LITTLE ABOUT THE
SEMANTICS OF PROGRAMMING LANGUAGES BEING COMPILED.

16.24

AUER!!B!A'CH . BASIC CONCEPTS IN PROGRAMMING LANGUAGES
®

MODELLING LANGUAGES

A LANGUAGE FOR SPECIFYING INFORMATION STRUCTURE
MODELS IS CALLED A MODELLING LANGUAGE.

A MODELLING LANGUAGE MUST CONTAIN SYNTACTIC SPEC-
IFICATION FACILITIES FOR SPECIFYING THE I COMPONENT
OF INFORMATION STRUCTURE MODELS, AND FLEXIBLE
FACILITIES FOR SPECIFYING CREATIONS, DELETION AND
MODIFICATION OF INFORMATION STRUCTURES.

THERE ARE SIMILARITIES BETWEEN MODELLING LANGUAGES
AND COMPILER—COMPILER LANGUAGES, BUT MODELLING
LANGUAGES ARE CONCERNED WITH INTERPRETATION RATHER
THAN WITH COMPILATION.

A SPECIFICATION OF AN INFORMATION STRUCTURE MODEL IN
A MODELLING LANGUAGE WILL BE CALLED A SYNTAX DIRECTED
INTERPRETER. O

AN IMPLEMENTATION OF A MODELLING LANGUAGE WILL BE
CALLED AN INTERPRETER—-INTERPRETER SINCE IT IS AN
INTERPRETER WHICH EXECUTES INTERPRETERS.

16.25

A\

AUERBACH
®

BASIC COMPONENTS IN PROGRAMMING LANGUAGES

BINDING TIME

DECLARATIVE ACTION — REAL N;
IMPERATIVE ACTION — X: = 5;

DECLARATIVE ATTRIBUTES REMAIN INVARIANT DURING LIFETIME
OF STRUCTURE.

IMPERATIVE ATTRIBUTES MAY BE MODIFIED DURING EXECUTION.
BINDING TIME OF AN ATTRIBUTE

TYPE IS BOUND AT DECLARATION TIME

VALUE IS BOUND AT ASSIGNMENT TIME

FORTRAN — ALL DATA STRUCTURES ARE CREATED (BOUND)
PRIOR TO EXECUTION,

ALGOL — DATA STRUCTURES MAY BE NESTED ON BLOCK ENTRY. C

PL/I — TEMPLATES FOR NEW DATA STRUCTURES MAY BE DECLARED.

16. 26

A

AUERBACH
®

BASIC COMPONENTS IN PROGRAMMING LANGUAGES

EXAMPLES OF BINDING

Compilation - early binding of target language

Interpretation - late binding of target language

Macros - binding of users body by substitution

Procedures - no binding by physical substitution

Parameter call by value - bind pcrémeter at time of entry to procedure

Parameter call by name - bind parameter value when it is used in the body of the
procedure.

Parameter call by reference - bind parameter address at the time of entry to the
procedure

Early binding - greater efficiency

Late binding - greater flexibility

16.27

A

AUERBACH
®

BASIC COMPONENTS IN PROGRAMMING LANGUAGES

SIDE EFFECTS

When does difference in binding strategy yield different results
Strategy A - bind value V at time T
Strategy B - bind value V at time Tp

Different result if value of V changes between T, and Ty

Example - call by value - Ty is procedure entry time - call by name - Tp is parameter
use time

Difference in result if parameter value can be changed between procedure entry
and parameter use

Procedures which may change values of external parameters during execution are
said to have side effects.

O

16.28

A

AUERBACH STRUCTURE OF ALGOL
[}

OBJECTIVES

® OBJECTIVES — TO DEVELOP INSIGHT AND UNDERSTANDING OF THE
STRUCTURE OF THE PROGRAMMING LANGUAGES.

® START WITH A DISCUSSION OF ALGOL 60 — COMMUNICATIONS OF THE
ACM JANUARY 1963.

® DEVELOPED AS AN INTERNATIONAL ALGEBRAIC LANGUAGE.

® USED AS A LANGUAGE FOR THE COMMUNICATION OF ALGORITHMS —
ALGORITHMS SECTION OF THE COMMUNICATIONS OF THE ACM,

® NOT AS WIDELY USED FOR PRACTICAL PROGRAMMING AS FORTRAN.
® BUT HAS A MORE INTERESTING STRUCTURE THAN FORTRAN.

® PRIME PURPOSE IS NOT TO TEACH ALGOL PROGRAMMING BUT TO DEVELOP
A MODEL FOR THE STUDY OF PROGRAMMING LANGUAGES.

® THE CONCEPTS DEVELOPED FOR ALGOL WILL SERVE AS A STARTING POINT
FOR THE DISCUSSION OF OTHER PROGRAMMING LANGUAGES.

® DISCUSSION OF ALGOL IMPLEMENTATION WILL SERVE AS A STARTING
POINT FOR A DISCUSSION OF MACHINE ORGANIZATION AND FOR THE BUILDING
OF MODELS OF IMPLEMENTATION.

r17.17

A

AUERBACH STRUCTURE OF ALGOL
®

BASIC CONSTITUENTS OF A PROGRAMMING LANGUAGE

® CONSTANTS OF A NUMBER OF DIFFERENT TYPES SUCH AS INTEGERS,
FLOATING POINT NUMBERS, LOGICAL CONSTANTS.

® VARIABLES (IDENTIFIERS) WHOSE VALUES MAY BE ELEMENTS OF A
GIVEN CLASS OF CONSTANTS.

® OPERATORS — EACH OPERATOR HAS A DEGREE WHICH SPECIFIES THE
NUMBER OF ARGUMENTS — THE TYPE PERMITTED FOR EACH ARGUMENT
AND THE TYPE PERMITTED FOR THE RESULT MUST BE SPECIFIED.

® EXPRESSIONS — WHICH SPECIFY OPERATORS WITH THEIR ARGUMENTS AND
YIELD A VALUE ON EVALUATION. AN EXPRESSION MAY HAVE SUBEXPRES—
SIONS WHOSE VALUES ARE ARGUMENTS OF HIGHER LEVEL EXPRESSIONS.

_ASSIGNMENT STATEMENTS WHOSE PRINCIPAL EFFECT IS TO CHANGE
THE VALUE OF A VARIABLE.

® BRANCHING STATEMENTS, CONDITIONAL STATEMENTS AND ITERATION
STATEMENTS WHICH DETERMINE THE FLLOW OF CONTROL. IN A PROGRAM.

® DECLARATIONS WHICH SPECIFY THE TYPE AND ATTRIBUTES OF VARIABLES.

17.1.1

AUERBACH STRUCTURE OF AL.GOL

CONSTITUENTS OF ALGOL

COMPLETE ALGOL PROGRAM — CONSISTS OF AN ALGOL BLOCK

BEGIN
DECLARATIONS
STATEMENTS

END

DATA DECLARATIONS

INTEGER X; X IS AN INTEGER

REAL Y, Z; Y AND Z ARE FLOATING POINT NUMBERS
BOOLEAN X; X IS A FLOATING POINT VARIABLE

ARRAYS OF DATA ELEMENTS
REAL ARRAY A[i:N] ; A IS AN N—ELEMENT VECTOR OF FLOATING POINT
NUMBERS

PROCEDURE DECLARATION
INTEGER PROCEDURE P(X,Y) SPECIFICATIONS BODY DECLARATION OF A

TWO—-PARAMETER
PROCEDURE P WHICH PRODUCES A VALUE
OF THE TYPE INTEGER. THE SPECIFICA—
TIONS SPECIFY PARAMETER TYPES. THE
BODY IS A PROGRAM WHICH SPECIFIES THE
ACTION TO BE PERFORMED WHEN THE
PROCEDURE IS CALLED.

LABEL AND SWITCH DECLARATIONS

LABEL L; (IMPLICIT DECLARATION)

SWITCH S: = L1,L.2;L3;L4; S IS INITIALIZED TO A 4—ELEMENT ARRAY OF
LABELS

STATEMENTS INCLUDE ASSIGNMENT STATEMENTS (X : = X+ 1;), BRANCHING
STATEMENTS, CONDITIONAL STATEMENTS AND ITERATION STATEMENTS.

A BLOCK IS CONSIDERED TO BE A STATEMENT SO THAT STATEMENTS MAY
HAVE BLOCKS NESTED INSIDE THEM,

C

I 173_2

A

AUERBACH
®

STRUCTURE OF ALGOL

CONSTANTS, VARIABLES AND EXPRESSIONS

CONSTANTS
CONSTANTS OF THE TYPE INTEGER 3; 4, 536

- CONSTANTS OF THE TYPE REAL 3.5, 4,372

CONSTANTS OF THE TYPE BOOLEAN TRUE, FALSE

OPERATORS WITH OPERANDS

INTEGER ADDITION 3+ 4
FLOATING POINT ADDITION 3.5+ 5.3
COMPOSITION OF OPERATIONS 3+4X5
PRECEDENCE OF X OVER + (3+4) X5
VARIABLES X + Y X Z
STATEMENTS Z:= X+Y;

TYPE SPECIFICATION
REAL X, Y, Z; INTEGER I, J;
Z:=X+Y,;

MIXED EXPRESSIONS
Z: =X+ 1;
IMPLICIT CONVERSION FUNCTION
X+ F CONVERT (I, REAL) FIRST CONVERT | TO REAL THEN USE
FLOATING POINT ADDITION
RELATIONAL OPERATORS < £ = # 2 >
RELATION EXPRESSION, X > Y; NUMERICAL ARGUMENTS,
BOOLLEAN RESULT

BOOLEAN OPERATORS T'AV > &
BOOLEAN EXPRESSIONS; A A B, BOOLEAN ARGUMENTS,
BOOLEAN RESULTS

17.2.2

A STRUCTURE OF ALGOL

AUERBACH
®

STATEMENTS

Vi = E;
LABELLED STATEMENT
L: x: = 1;

L:M: x:=1;
MULTIPLE ASSIGNMENT
x: =y = 1;

VALUE OF ASSIGNMENT STATEMENT IS VALUE OF ASSIGNED
EXPRESSION

GO TO STATEMENT
GO TO L;

17.3

A STRUCTURE OF ALGOL

AUERBACH
®

CONDITIONAL STATEMENTS AND CONDITIONAL EXPRESSIONS

STATEMENT
IF B THEN S, ELSE S

IF x=0THEN y: =y + I;ELSE y: =y = 1;
IF B THEN S
EQUIVALENT TO IF B THEN S ELSE (NOTHING)

EXPRESSION

IF B THEN E1 ELE E2
IF x=0 THEN y + 1 ELE y - 1;
y + (F x = 0 THEN 1 ELSE -1);

y:

y:

DESIGNATIONAL EXPRESSION
GO TO IF x = 0 THEN L1 ELSE L2;

17 .4

A ~ STRUCTURE OF ALGOL

AUERBACH
®

BLOCKS

COMPOUND STATEMENTS

BEGIN
x: = 5;
y: = 4
END
BLOCKS
BEGIN REAL K;
K: = X;
X:=Y;
Y: = K
END

K 1S A LOCAL VARIABLE

IT IS NESTED ON ENTRY TO THE BLOCK, AND DESTROYED ON EXIT
FROM THE BLOCK

17.5

A STRUCTURE OF ALGOL

AUERBACH
®

SCOPE RULES

Example: Nomenclature rules for nested blocks are as follows:

B: begin real x,y; This sequence of ALGOL statements consists
— xi = 3; of a block B1 nested in a block B. The identi-
y: = 4; fier y of the outer block can be used throughout
B1: begin real x,z; the block B. However, the identifier x declared
T =5 in the outer block cannot be used in the inner
y: = 6; block because an identifier of the same name is
z: = 7; declared in the inner block. The identifier x is
end; bound in the inner block in the sense that if
prirﬂx,y,z) the two occurrences of the name x in the inner
end block were changed to another name, say u,

then the computation defined by this program
would be unaltered. The identifiers x, z of the inner block have meaning only in
the inner block. In the print statement "print (x,y,z);" the identifiers x and y are
associated with the declarations of x, y in the outer block and have the values x = 3,
y = 6. The identifier z is undefined, so that this print statement would result in a
diagnostic unless this program fragment were embedded in a block containing a
declaration for the identifier z in its blockhead. 0

17 .6

A STRUCTURE OF ALGOL

AUERBACH
®

ITERATION STATEMENTS

lteration statements have the following form:

for V: = for list do S Execute the statement S for values of the variable V
specified in the for list. It will be seen below that

statements S may consist of arbitrarily complex nests of other statements, so that

the restriction that the range of iteration be restricted to a single statement is

not so severe as it appears.

The for-list elements may have one or more of the following three forms:

1. Individual expressions E.

2. Expressions of the form "Ej step Ep until E3" indicating execution of §
for values of V starting with E1 and moving by increments of Eo until E3
is exceeded. Modification of E9 and E3 during execution of the
statement S is permitted but not advised, since it may lead to trouble.

3. Expressions of the form "E while B", which specify execution of S with
V =E as long as the value of B is true. In this case the statement S
must be such that it can change the value of B to accomplish loop termi-
nation. S will normally also modify E when necessary.

The following example illustrates the use of a for statement to scan an N-element

vector:
SUM: = (; .
for I: = 1 step 1 until N do
SUM: = SUM + AlTT;

- 17.7

A STRUCTURE OF ALGOL

AUERBACH
®

FUNCTION AND STATEMENT TYPE PROCEDURES

procedure ADD(A,N,SUM);

real array A; integer N; real SUM;

begin infe erl

SUM: = 0

fggl =1s _i_'ggl until N do
SUM: = SUM + Alll;

end

This declaration is a statement-type
procedure. The first line specifies

the name and formal parameters of the
procedure. The second line specifies
the types of formal parameters. The
first two lines together are said to con-
stitute the procedure heading. The
remaining lines of the procedure

constitute the procedure body, which in this case consists of a single block.
The effect of the procedure is to SUM N elements of the array which constitutes
the first parameter and store the result as the value of the third parameter.

Procedure Statement: ADD(X,IS,S)

real procedure SUM(A,N);
real array A; integer N;
begin mi'eger I; real X;
X: = 0;

forl =lsi'e 1 until N do
X:=X+ A[I]
SUM: = X;

end

Call of Function Type Procedure

X: = SUM (A,]5)t 2 x SUM(B, 20);

17.8

This function-type procedure has one
parameter less than the corresponding
statement-type procedure, since the
value is identified with the name and
does not have to be explicitly specified
by a parameter. The quantity X is used
in the procedure body for accumulating
the sum since an occurrence of SUM on
the right-hand side of an assignment
statement would be interpreted as a
reentrant call of the procedure.

A STRUCTURE OF ALGOL

AUERBACH
®

PARAMETER CALLING

CALL BY VALUE - EVALUATE ON ENTRY TO PROCEDURE
CALL BY NAME - EVALUATE WHEN USED DURING PROCEDURE EXECUTION

REAL PROCEDURE P(A);

REAL A;
BEGIN
K: =5
P: = A
END

IF A1SCALLED BY NAME, P(K) IS ALWAYS 5

IF A IS CALLED BY VALUE, P(K) IS GIVEN BY THE VALUE OF K ON ENTRY
TO THE PROCEDURE.

17.9

A

AUERBACH
®

STRUCTURE OF ALGOL

ACTIVATION RECORD S

REPRESENTATION OF FUNCTION MODULES

' ACTIVATION

W1 RECORD 1
FUNCTION
MODULE

‘ ACTIVATION

> RECORD 2

THE STRUCTURE OF A COMPLETE PROGRAM CAN BE DESCRIBED IN TERMS OF
THE STRUCTURE OF ITS FUNCTION MODULES.

ENTRY TO AND EXIT FROM FUNCTION MODULES IS IN LAST-IN-FIRST-OUT
ORDER.

FUNCTION MODULES CAN BE STORED IN A STACK.

17.10

A

AUERBACH
®

STRUCTURE OF ALGOL

STATIC AND DYNAMIC NESTING

STATIC NESTING
DYNAMIC NESTING

— _ yh

P P2 § Z
< X o B2 é
| v v
s P S)
B1 [< T
Z B1 —
CALLP > n

- B

EXECUTION AT X

AT X, STATIC NESTING LEVEL IS 3, DYNAMIC NESTING LEVEL IS 4.
STATIC NESTING LEVEL IS A PROGRAM INVARIANT.

DYNAMIC NESTING LEVEL MAY BE ARBITRARILY DEEP WHEN CELLS ARE
RECURSIVE.

17.11

A

AUERBACH
®

~ STRUCTURE OF ALGOL

REPRESENTATION OF IDENTIFIERS BY INTEGER PAIRS

(L,J) REPRESENTATION OF IDENTIFIERS
L - LEVEL OF STATIC NESTING

J - RELATIVE ADDRESS WITHIN ACTIVATION RECORD

(L,J) ADDRESS CAN BE USED FOR ACCESSING

CURRENT ENVIRONMENT VECTOR MODEL

STATIC CHAIN MODEL

WITH STATIC CHAIN MODEL USE ADDRESS (R,J) WHERE R IS THE DIFFERENCE
IN THE STATIC LEVEL OF NESTING BETWEEN THE POINT OF REFERENCE AND
POINT OF USE OF THE IDENTIFIER. |

R IS THE NUMBER OF STATIC CHAIN LINKS WHICH MUST BE FOLLOWED TO
REACH THE ACTIVATION RECORD WHICH CONTAINS THE VALUE OF THE

IDENTIFIER.

17.12

A STRUCTURE OF ALGOL

WWERBACH
®

RELATIVE ADDRESSING WITHIN PROCEDURE.
STORAGE FOR DECLARED QUANTITIES

BEGIN REAL x; REAL ARRAY A[1:10], B[m,:n]; REAL y; ... END

VALUE OF x

POINTER AND MAPPING
INFORMATION FOR A

POINTER AND MAPPING
INFORMATION FOR B

VALUE OF y

10 VALUES OF THE

ARRAY ELEMENTS \
A, ... ,ADoO] c

n-m+1 VALUES OF
THE ELEMENTS

B[m], ey, B[n]

ACTIVATION-RECORD DATA STRUCTURE
CORRESPONDING TO THE BLOCKHEAD BEGIN
REAL x; REAL ARRAY A[1:10], B[m:n]; REAL y;.

DECLARED
QUANTITIES

INSTRUCTION POINTER
STATIC CHAIN
DYNAMIC CHAIN

STORAGE FOR ORGANIZATIONAL QUANTITIES

17.13

A STRUCTURE OF ALGOL

AUERBACH
®

PROCEDURE ACTIVATION RECORD S

PARAMETERS CALLED BY VALUE - STORE VALUES
PARAMETERS CALLED BY NAME - STORE PROCEDURE CALLS
STORE VALUE OF FUNCTION TYPE PROCEDURES ON COMPLETION.

PARAMETERS CALLED
BY NAME

PARAMETERS CALLED
BY VALUE

INSTRUCTION POINTER

STATIC CHAIN 0

DYNAMIC CHAIN

| FUNCTION VALUE J

17 .14

A STRUCTURE OF ALGOL

AUERBACH
®

ENVIRONMENT MODIFICATION

ON ENTRY TO AND EXIT FROM A BLOCK

ON ENTRY TO AND EXIT FROM A PROCEDURE

ON EVALUATION OF A PARAMETER CALLED BY NAME WITHIN A PROCEDURE
ON JUMP TO A LABEL

17.15

A

AUERBACH
®

" STRUCTURE OF ALGOL

MODE OF ACCESS TO INFORMATION

SYSTEM SYMBOLS - DENOTE FIXED INFORMATION STRUCTURES DEFINED
BY THE SYSTEMS

BEGIN, FOR, +, 11.63
LOCAL IDENTIFIERS - LOCAL TO THE BLOCK CURRENTLY BEING EXECUTED.

NON LOCAL IDENTIFIERS - IN ENCLO SING BLOCKS

PROCEDURE PARAMETERS - ACCESS INFORMATION THROUGH POINT OF CALL.
- BY VALUE
- BY NAME

17.16

A

AUERBACH
®

STRUCTURE OF ALGOL

COMPILATION OF ALGOL PROGRAMS

EDIT FOR MORE CONVENIENT EXECUTION
EXPLICIT LABEL. DECLARATIONS IN BLOCKHEADS
REPRESENT INTEGERS BY IDENTIFIER PAIRS

FUNCTION HEADING REPLACED BY STORAGE ALLOCATION
INSTRUCTIONS

EXECUTABLE STRINGS ARE CONVERTED EITHER TO POSTFED
NOTATION OR TO MACHINE LANGUAGE.

17.17

A\

AUERBACH
®

STRUCTURE OF ALGOL

INFORMATION STRUCTURE MODEL FOR ALGO L

FIXED PROGRAM COMPONENT P
STATEWORD COMPONENT w
STACK COMPONENT S
INPUT COMPONENT | IN
OUTPUT COMPONENT ourt
OWN VARIABLE COMPONENT X

Il = (P,W,S,IN,OUT, X)

SPECIFY TRANSFORMATION F IN TERMS OF HOW THEY AFFECT

INFORMATION COMPONENTS.

EMPHASIZE CREATION AND DELETION OF INFORMATION FIELDS.

CREATION OF ACTIVATION RECORDS ON ENTRY TO FUNCTION
MODULES - DELETION ON EXIT FROM FUNCTION MODULES.

CREATION OF TEMPORARY INFORMATION FIELDS DURING EXPRESSION

EVALUATION.

ASSIGNMENT STATEMENT MAY MODIFY AN INFORMATION FIELD IN

THE INTERIOR OF THE STACK.

17.18

A DATA MANAGEMENT
AUERBACH '

OUTLINE

1. THE STRUCTURE OF THE DATA MANAGEMENT ENVIRONMENT
2. THE JOB MANAGEMENT FUNCTION

3. THE EXTERNAL FILE SYSTEM

4. THE INTERNAL FILE éYSTEM

5. REVIEW OF DATA MANAGEMENT TECHNOLOGY

18.0

A THE DATA MANAGEMENT ENVIRONMENT
AUERBACH

OBJECTIVES OF THE SESSIONS ON DATA MANAGEMENT

- TO PRESENT DATA MANAGEMENT CONCEPTS

-~ TO CONSTRUCT A FRAMEWORK FOR THE STUDY OF
DATA MANAGEMENT PROBLEMS

-~ TO PROJECT AN APPROACH TO A MULTI-USER
COMMON DATA BASE SYSTEM

TO EXAMINE SOME CURRENT AND PROPOSED
DESIGNS FOR DATA MANAGEMENT SYSTEMS

18.1

A

AUERBACH
®

THE DATA MANAGEMENT ENVIRONMENT

THE DATA BASE

- THE ON-GOING DATA BASE

- THE PROBLEM OF SCALE

- SYSTEM RESPONSIBILITIES
MULTI—LEVEL STORAGE MANAGEMENT
ARCHIVING AND RECOVERY

DATA INTEGRITY

18.2

A THE DATA MANAGEMENT ENVIRONMENT
AUERBACH

PROGRAM STRUCTURES AND THE DATA BASE

— THE PROGRAM DATA DECLARATION AS A
TEMPLATE

— THE COMMON DATA BASE

— PROGRAM/DATA INDEPENDENCE

18.3

A THE DATA MANAGEMENT ENVIRONMENT
AUERBACH

THE DATA MANAGEMENT SYSTEM

- A DEFINITION
THE STORAGE, ASSOCIATION, AND RETRIEVAL OF

DIVERSE DATA ELEMENTS IN RESPONSE TO A VARIETY

OF PROCESSING DEMANDS

SOFTWARE TO DEFINE DATA
AUSE IT
MAINTAIN IT
LINK IT TO PROGRAMS

LINK IT TO PEOPLE

5626

18.4

A

AUERBACH THE DATA MANAGEMENT ENVIRONMENT

THE DATA MANAGEMENT SYSTEM

— OBJECTIVES

® CENTRAL RESPONSIBILITY FOR STORAGE.
RETRIEVAL.; AND REPORTING SERVICES TO THE
USER.

® CENTRAL RESPONSIBILITY FOR DATA INTEGRITY

® SERVICES TO THE APPLICATION PROGRAMMER

® REDUCTION OF PROGRAM DEVELOPMENT COSTS

® INCREASE IN PROGRAM LIFE

® ADAPTABILITY OF DATA STRUCTURES

® OPTIMIZATION OF DATA UTILIZATION

® "OVERHEAD"
® SURRENDER OF TACTICAL DECISIONS

® REDUCTION OF PROGRAMMER OPTIONS

18.5

A

AUERBACH

THE DATA MANAGEMENT ENVIRONMENT

PROGRAMMING COSTS

DEVELOP
ANALYZE RECORD FORMAT DESIGN DESIGN
DATA FOR INPUT INPUT
R ATIO
ORGANIZATION PROCESSING LOGIC VALIDATION
DESIGN R \
N \ DEVELOP
ACCESS DESIGN \ OUTPUT DESIGN
AND N APPLICATION RECORD OUTPUT
\
RETRIEVAL \ FUNCTION \ FORMAT LOGIC
N

18.6

5545

A THE DATA MANAGEMENT ENVIRONMENT
AUERBACI; .

ECONOMIC TRENDS

EDP EQUIPMENT $ PER THROUGHPUT
COSTS CAPACITY
TIME) TIME
SYSTEMS DESIGN/ DATA
PROGRAMMING COMMUNICATION
COSTS COSTS
TIME TIME

18.7

5543

A\

AUERBACH
®

THE DATA MANAGEMENT ENVIRONMENT

APPLICATIONS

— BUSINESS DATA PROCESSING

— MANAGEMENT lNF‘ORMATION SYSTEMS
— COMMAND AND CONTROL

— INTERACTIVE SYSTEMS

— INFORMATION RETRIEVAL SYSTEMS

— MULTI-USER SYSTEMS

18.8

A

AUERBACH
®

THE DATA MANAGEMENT ENVIRONMENT

ENVIRONMENT

— DATA CENTERS

- CENTRALIZED COMPUTATION SERVICES
— THE COMPUTING UTILITY

— THE OPERATIONS CONTROL CENTER

— THE CORPORATE DATA PROCESSING CENTER

18.9

A

UERBACH
®

THE DATA MANAGEMENT ENVIRONMENT

TYPICAL HARDWARE

— LARGE SCALE COMPUTER

— MASS RANDOM ACCESS STORES

— REMOTE ACCESS TERMINALS

18. 10

A

THE DATA MANAGEMENT ENVIRONMENT
UERBACH

COMPONENTS OF A FULL—SERVICE GENERALIZED
DATA MANAGEMENT SYSTEM

® INTERNAL FILE SYSTEM
@ EXTERNAL FILE SYSTEM
® JOB MANAGEMENT SYSTEM

® THE USERS

® SYSTEM SUPPORT FUNCTIONS w

18. 11 5630

A

AUERBACH

THE DATA MANAGEMENT ENVIRONMENT

A FULL—SERVICE GENERALIZED DATA MANAGEMENT SYSTEM

USERS

JOB MANAGEMENT

- —] INTERNAL FILE SYSTEM

ON LINE
CONSOLE

EXTERNAL FILE SYSTEM

5631

18.12

A THE DATA MANAGEMENT ENVIRONMENT
UERBACH

THE JOB MANAGEMENT SYSTEM

JoB
TASKS

JOB
MANAGEMENT
SERVICES

7 C
%

N\

18.13

RRRA

A

AUERBAC: LISTAR

USER COMMANDS

— CONTROL

— FILE MANIPULATION

— RELATION MANIPULATION

— FIELD MANIPULATION

— BLOCK TRANSFER

18. 14

A

AUERBACH
®

LISTAR

EXAMPLE OF RESPONSE TO *DEFINE FILE,

*DEFINE FILE

FILE DEFINITION. DO YOU WANT INSTRUCTIONS: YES
PROVIDE THE FOLLOWING (12 CHARACTER MAXIMUM FOR EACH) :

NAME OF FILE

TYPE OF FILE (NAMED OR NUMBERED)
THE NAME OF EACH DATA FIELD FOLLOWED BY ITS CODING

ACCEPTABLE CODINGS ARE THE FOLLOWING:

BCD, INTEGER, FLT. POINT, BCD LIST, INTEGER LIST, FLT. PT. LIST

A CARRIAGE RETURN MUST FOLLOW EACH INPUT TERM.
THE WORD™ DONE TERMINATES INPUT.

COMPUTER
NAMED
RENTAL
INTEGER

ADD TIME

FLT. POINT
CYCLE TIME
FLT. POINT
CORE STORAGE
INTEGER

DRUM STORE
INTEGER

WORD SIZE
BCD

SPEC FEATURE
BCD LIST
*DONE

18.15

A LISTAR

AUERBACH
®

EXAMPLE (CONTD)

THE INPUT TABLE FOLLOWS:

COMPUTER NAMED
RENTAL INTEGER
ADD TIME FLT. POINT
CYCLE TIME FLT. POINT
CORE STORAGE INTEGER
DRUM STORAGE INTEGER
WORD SIZE BCD

SPEC FEATURE BCD LIST
IS THIS WHAT YOU WANT., IFF NOT, TYPE '"NO" AND START AGAIN.

YES
FILE SET—UP COMPLETED.

COMMAND EXECUTED.

GIVE COMMAND OR TYPE *CHOICES. m

18.15. 1

A LISTAR

AUERBACH
®

EXAMPLE OF RESPONSE TO *INPUT ENTRIES.

*INPUT ENTRIES

TYPE:
FILE NAME
*INSTRUCTIONS OR *NO

COMPUTER
* INSTRUCTIONS

FOR EACH ENTRY TO BE ADDED:
1. WAIT UNTIL "READY" IS TYPED
2. LIST CONTENTS OF THE DATA FIELDS
A. IF SOME FIELD IS ITSELF A LIST,
A BLANK LINE SIGNIFIES THE END OF THE LIST
B. FORMATS ARE:
FOR BCD : FIELD LENGTH=6, LEFT JUSTIFY DATA
FOR INTEGERS : FIELD LENGTH=12, RIGHT JUSTIFY DATA
FOR FLT. PT. : FIELD LENGTH=16; PROVIDE DECIMAL PT, _
3. TYPE THE PARENT OF THIS ENTRY FOR EACH RELATION LISTED
4. TO TERMINATE INPUT OF ENTRIES, PRESS CR AFTER "READY" IS TYPED

18.16

A

AUERBACH
®

LISTAR

EXAMPLE (CONTD.)

DATA FIELDS

NAME CODING
NAME BCD
ADD TIME FLOATING POINT
CORE STORAGE INTEGER
CYCLE TIME FLOATING POINT
DRUM STORE INTEGER
RENTAL INTEGER
SPEC FEATURE BCD LIST
WORD SIZE BCD
RELATIONS

THERE ARE NO RELATIONS
READY

IBM 7094 11
1.4

|oa
n

1.4

it
[o2}

8
6

—
o

IN 'RUP
16XR'S
FLT.PT
IN_ ADD

648

18.16. 1

A

AUERBACP; LISTAR

EXAMPLE OF RESPONSE TO *SEARCH FILE.

*SEARCH FILE
THE ACTIVE FILES ARE :

COMPUTER

HOME ADDRESS

STREET

PROVIDE FILE NAME: COMPUTER
(FILE DESCRIPTION)

COMPUTER IS A FILE WITH NAMED ENTRIES.
NO. OF DATA FIELDS PER ENTRY =7

SAMPLE ENTRY FOLLOWS:

ENTRY: CDC 3600
ADD TIME : 2.00
CORE STORAGE : 262
CYCLE TIME 1. 50
DRUM STORE 0
RENTAL : 55
SPEC FEATURE : IN'RUP

6XR'S

FLT.PT

IN'ADD
WORD SIZE . 488

18.17

A

AUERBACH
®

LISTAR

EXAMPLE (CONTD)

(START OF SEARCH)

PROVIDE FIELD NAME: CYCLE TIME

PROVIDE CONDITION (EQ,LT,GT,LTOREQ, GTOREQ) :
PROVIDE TEST VALUE (FLTG. POINT NUMBER):
DO YOU WNT FULL ENTRIES PRINTED: YES

(START OF SUBFILE)
ENTRY: CDC 3600

ADD TIME : 2.00
CORE STORAGE : 262
CYCLE TIME : 1.50
DRUM STORE : 0
RENTAL : 55
SPEC FEATURE : IN'RUP
6XR'S
FLT.PT
IN' ADD
WORD SIZE . 488 ’

18.17.1

LT

4.0

A LISTAR

AUERBACH
®

FILE MANIPULATION COMMANDS 9

— DEFINE FILE

— INPUT ENTRIES
— SEARCH FILE
— LIST FILES

— PRINT FILE

— FIND VALUE |

— DELETE FILE

18.18

A

AUERBACH
®

LISTAR

&
EXAMPLE (CONTD)

MANUAL MODE

LIST THE NAMES OF THE PARENT ENTRIES FOLLOWED BY THE NAMES OF
THEIR RELATED SUBFILE ENTRIES. TO TERMINATE THE LIST OF SUBFILE
ENTRIES LEAVE A LINE BLANK. TO TERMINATE INPUT LEAVE ANOTHER LINE
BLANK. WAIT FOR THE WORK "READY" BEFORE TYPING IN EACH GROUP OF
PARENT AND LINKEES.

WHICH MODE DO YOU WANT* MANUAL

READY

WOBURN

ALLEN MARGAR
ATHANS MICHAEL
CORR DAVID F

READY

CAMBRIDGE 0
ANDERSON ALL

COHEN MITCHE

CURTISS ARTHUR

FALB PETER L

18.18.1

A

AUERBACH

THE DATA MANAGEMENT ENVIRONMENT

THE USERS OF THE DATA MANAGEMENT SYSTEM

MANAGERS
® AD HOC REPORTS

® QUERIES
@ ADMINISTRATION

PROGRAMMERS

O®LOGICAL DATA
SERVICES

® DATA—INDEPENDENT
PROGRAMS

ANALYSTS

®BUILD SYSTEM
JOBS

®GENERAL—-PURPOSE
MODULARITY

DATA ADMINISTRATOR

®DATA BASE CONTROL
® MONITOR USE
® CONTROL. ACCESS

N

18.19

A LISTAR

AUERBACH
®

RELATION MANIPULATION COMMANDS

— DEFINE RELATION

— SEARCH RELATION

— LIST RELATIONS

— DESCRIBE RELATIONS

— FIND PARENT

— FIND LINKEE

— RELATE ENTRY

— DELETE RELATION

18.20

A\

AUERBACg LISTAR

FIELD MANIPULATION COMMANDS

— DEFINE DATA FIELD

— DELETE DATA FIELD

— DEFINE FIELD VALUE

18. 21

A

AUERBACH
®

LISTAR

BLOCK DATA TRANSFER COMMANDS

— READ CARDS

— WRITE TAPE

18,22

A

AUERBAC#; LISTAR

CELL STRUCTURE OF SAMPLE FILE

A CELLS B CELLS
Al LI! ﬂ F_,
— A 4]A 3 B10{ o0 la 150
DATA DATA
DATA 6___________
DATA 00 [& 25—
B 15
DATA DATA
BIQIIO 0
DATA &
oolAa1
DATA B 25
DATA

Aa®o0loo0

DATA
DATA
DATA
EMPTY

EMPTY

EMPTY
EMPTY

A30l.‘g A sst B21] 0 0 |B 12} Q

DATA DATA

DATA ‘

DATA l; lB 2 —
B 120122 2

DATA
B 210 0 ,
DATA
DATA l:oolssa—

B 22

DATA

A 2590 0O [oo

DATA [: 00 |as0

DATA B 38

DATA

DATA
EMPTY

+cELL LINK
$EXTENDED FIELD

EMPTY
EMPTY
EMPTY '

NEXT ENTRY

18.23

A\

\UERBAC: LISTAR
BASIC FILES
L » STARTING ENTRY
ACTIVE ———» SIZE OF ENTRY
FILE NAME ——® FILE —— TYPE

FIELD NAME ———» FIELD

/

DATA

FILE

_/

RELATION
NAME

\/

18,24

"

RELATIONS >
FILE -
e]

EMPTY SPACE

POSITION IN ENTRY

CODING

RELATION TYPE

ORDERING RULE
ORDER FIELD
RELATION LINKS

A LISTAR

AUERBACH
®

LINK TYPES
LINK FIELD
N
/ N
KEY ADDRESS
KEY MEANING OF ADDRESS
P POINTER FO FILE ENTRY
B BRANCH TO SUBFILE
D DESCEND TO NEXT FILE ENTRY LASSOCIATIVE
: LINKS
A ASCEND TO PRECEDING ENTRY
R RETURN FROM SUBFILE TO PARENT FILE/
U UNUSED LINK FIELD
C CELL LINK
E EMPTY SUBLIST INDICATOR

18. 25

A

AUERBACH
®

LISTAR

ONE—WAY LIST

TWO—-WAY LIST

U

[X N]

f
Lo

]

18. 26

/’
—{ rR| D |

LISTAR

®

A

AUERBACH

LB, | P

< o . eee

1 J

ONE—WAY RING

TWO—-WAY RING

18. 27

A STRUCTURE OF PLI

\UERBACH
®

STATEMENT GROUPING

DO; DO STATEMENT

X =5

Y = 3;

END; END STATEMENT

DO I =1 BY 1 TO N;

SUM = SUM A[l]

END;

DO | = El BY E2TO E3; EI, E2, E3 ARE INITIALIZED
BY VALUE

FOR | = El1 STEP E2 UNTIL E3 DO §;

E1, E2, E3 ARE INITIALIZED BY NAME

19.1

A

AUERBACH
®

STRUCTURE OF PLI

BLOCKS

BEGIN

STATEMENTS
AND DECLARATIONS

END

DECLARATIONS NEED NOT OCCUR AT THE BEGINNING OF THE BLOCK BUT
ARE ASSUMED EXECUTED AS THOUGH THEY WERE AT THE BEGINNING OF THE
BLOCK.

SIMULTANEOUS DECLARATIONS

LAYERS OF DECLARATION AS IN CPL

DYNAMIC DECLARATIONS - NEW DECLARATION EVERY TIME IT IS

ENCOUNTERED DURING EXECUTION - LIKE A PROCEDURE CALL WHO SE
EFFECT IS TO DECLARE RATHER THAN TO EXECUTE.

19.2

/A\ STRUCTURE OF PLI \

AUERBACH
®

PROCEDURES

NAME: PROCEDURE(P) SPECIFICATIONS

DECLARATIONS AND STATEMENTS
END;

NAME IS LIKE A LABEL

PARAMETERS ARE CALLED BY REFERENCE

RETURN STATEMENT

RETURN (EXP) VALUE OF EXP IS RETAINED TO POINT OF CALL

19.3

A STRUCTURE OF PLI

AUERBACH
®

DECLARATIONS

DECLARE NAME ATTRIBUTES
DECLARE (N1,N2) A
DECLARE (NT A1, N2 A2) A3

CLASSIFICATION OF ATTRIBUTES

TYPE ATTRIBUTES - LIKE DATA TYPES OF ALGOL - SPECIFY THE RANGE
OF VALUES AND SET OF OPERATIONS APPLICABLE TO THE IDENTIFIER.

STRUCTURE ATTRIBUTES - SPECIFY SUBSTRUCTURE OF THE INFORMATION
STRUCTURE DENOTED BY THE IDENTIFIER.

SCOPE ATTRIBUTES - SPECIFY THE RANGE OF STATEMENTS OF THE STATIC |
SOURCE PROGRAM OVER WHICH THE IDENTIFIER HAS MEANING .

STORAGE ATTRIBUTES - SPECIFY THE LIFETIME OF THE INFORMATION %
STRUCTURE . . ‘

19.4

A

AUERBACH
®

STRUCTURE OF PLI

DATA ATTRIBUTES

BASE ATTRIBUTES - DECIMAL, BINARY

SCALE ATTRIBUTES - FIXED, FLOAT

MODE ATTRIBUTES - REAL, COMPLEX

PRECISION ATTRIBUTES - (N, M)

DECLARE A DECIMAL FIXED REAL (3, 2);

DEFAULT ATTRIBUTES

BINARY FIXED REAL

DEFAULT PRECISION IS IMPLEMENTATION-DEFINED

19.5

A STRUCTURE OF PLI

AUERBACH
®

CHARACTERS, LOGICALS AND POINTERS

NON-ARITHMETIC DATA TYPES

CHARACTERS AND CHARACTER STRINGS

DECLARE A

BITS AND BIT - STRINGS

STRING CONSTANTS 'ABC', '0100'B

STRING VARIABLES X ‘ABC'; Y '0100'B
POINTERS AND POINTER VALUED VARIABLES
POINTER P, Q;

FUNCTION ADDR(X) - -RETURNS POINTER TO X

P = ADDR(A)
P=>A =5

19.6

A

AUERBACH
®

STRUCTURE OF PLI

ARRAYS AND STRUCTURES

VARIABLE DIMENSIONS - LOWER AND UPPER BOUNDS
DECLARE A(l, 5:10);

ARRAYS ARE RESTRICTED TO BE RECTANGULAR, AND TO HAVE ALL
ELEMENTS BE OF THE SAME TYPE

STRUCTURES - DATA ELEMENTS MAY BE OF DIFFERENT TYPES -
NOT RESTRICTED TO BE RECTANGULAR

DATA ELEMENTS OF A STRUCTURE ARE TERMINAL VERTICES OF A TREE

LEVEL NUMBERS

DECLARE

2 NAME
2 HOURS

3 OVERTIME

19.7

A STRUCTURE OF PLI

AUERBACH
®

ATTRIBUTES AND NAMES OF STRUCTURE COMPONENTS

ASSOCIATE ATTRIBUTES WITH DATA ITEMS

DECLARE 1 PAYROLL,
2 NAME CHARACTER (50) VARYING,

2 HOURS,
3 REGULAR FIXED,
3 OVERTIME FIXED,
- 2RATE FLOAT;

TREE NAMES
PAYROLL. HOURS. REGULAR

DEFAULT NAMES IF UNAMBIGUOUS

PAYROLL. REGULAR
HOURS. REGULAR
REGULAR

19.8

A

AUERBACH
®

STRUCTURE OF PLI

SCOPE_ATTRIBUTES

SCOPE - INTERNAL OR EXTERNAL

INTERNAL - KNOWN ONLY WITHIN THE BLOCK IT IS
DECLARED

EXTERNAL - GLOBALLY KNOWN

EXTERNAL PROCEDURE NAME - LIKE FORTRAN SUBROUTINE
NAME

A PL/I PROGRAM CONSISTS OF A GROUP OF EXTERNAL
PROCEDURES

EXTERNAL DATA NAME - LIKE COMMON IN FORTRAN

19.9

A

AUERBACH
®

STRUCTURE OF PLI

STORAGE ALLOCATION ATTRIBUTES

PL/l1 HAS FORTRAN, ALGOL AND LIST PROCESSING MODES OF STORAGE
ALLOCATION.

FORTRAN MODE - STATIC
LIFETIME OF STATIC STRUCTURES IS THE WHOLE COMPUTATION
ALGOL MODE - AUTOMATIC

LIFETIME OF AUTOMATIC STRUCTURES IS THE BLOCK ON WHICH THEY
ARE DECLARED .

LIST PROCESSING MODE - CONTROLLED
A CONTROLLED STORAGE ALLOCATION DECLARATION CREATES A"

TEMPLATE FOR THE DECLARED STRUCTURE.

INSTANCES OF A STRUCTURE CREATED BY A CONTROLLED STORAGE
ALLOCATION DECLARATION ARE CREATED BY ON ALLOCATE COMMAND
AND DELETED BY A FREE COMMAND.

19.10

A

AUERBACH
®

STRUCTURE OF PLI

CONTROLLED STORAGE ALLOCATION

DECLARE 1 A CONTROLLED

2 X FIXED
2 Y POINTER
X: | FIXED
TEMPLATE: Y: | POINTER
ALLOCATE A
A-X =5
X =X+1
A-Y = ADDR(Z)
ALLOCATE A
FREE A
FREE A

MULTIPLE ALLOCATION CAUSES AUTOMATIC STACKING OF
INSTANCES.

ACCESS TO INSTANCES THROUGH POINTERS

ALLOCATE A SET P
ALLOCATE A SET Q
P—A-X 5
Q—X 6

19.11

A

AUERBACH
®

STRUCTURE OF PLI

BASED STORAGE ALLOCATION

DECLARE 1 A BASED (P)
2 X FIXED
28 Y POINTER
ALLOCATE A
ALLOCATE A

WHEN SECOND COPY IS NESTED, FIRST COPY IS DESTROYED.
CREATE THE FOLLOWING THREE-ELEMENT LIST.

HEAD (— A: EMPTY

B: POINTER

A: EMPTY Va A: EMPTY
B: POINTER B: NULL

DECLARE (Q, HEAD) POINTER;
DECLARE 1 ELEMENT BASED (P),
2 A FIXED,
2 B POINTER;
ALLOCATE ELEMENT;
HEAD = P;
Q=P;
ALLOCATE ELEMENT;
Q—>B=FP;
Q=P;
ALLOCATE ELEMENT;
Q—>B=PF
B = NULL;

This program declares Q and HEAD to be of
type POINTER and ELEMENT to be a structure
based on P. The instruction "ALLOCATE
ELEMENT" automatically sets P to the most
recent instance of ELEMENT. The assignment
statements "HEAD = P; Q = P;" assign the value
of the pointer P to the pointers Q, HEAD.
When the second instance of ELEMENT has
been created, Q points to the first instance,
and "Q—B = P" sets the pointer B of the
first instance to point to the second instance.
Similarly after creation of the third instance
of ELEMENT, "Q—>=B = P" sets the pointer
B in the second instance to point to the third

instance. Finally "B = NULL", which is equivalent to "P—>B = NULL" sets the
current instance of B to the special pointer value NULL, which indicates the end

of the list.

19.12

A

AUERBACH
®

STRUCTURE OF PLI

LISP LIST PROCESSING OPERATIONS IN PL/I

STRUCTURE DECLARATION FOR LIST ELEMENT

DECLARE 1 LISPCELL BASED(P),
2 CAR POINTER,
2 CDR POINTER,
2 MODE BIT(6);

HEAD AND TAIL OPERATIONS

HEAD: PROCEDURE(P) POINTER;
DECLARE 1 ELEMENT
BASED(P),
2 CAR
POINTER,
2 CDR
POINTER;
RETURN(CAR);
ENTRY(P);
RETURN(CDR);
END HEAD;

TAIL:

CONS OPERATOR

CONS: PROCEDURE(P, Q) POINTER;
DECLARE 1 ELEMENT
BASED(X),
2 LEFT
POINTER,
2 RIGHT
POINTER;
ALLOCATE ELEMENT;
LEFT = P;
RIGHT = Q;
RETURN(X);
END CONS;

19.13

This declaration specifies the basic format
of a list cell in LISP to consist of two
pointer fields named CAR and CDR and a
6-bit mode field.

This pointer-valued procedure has two entry
points, HEAD and TAIL. The declaration of
ELEMENT specifies the structure pointed to
by the procedure parameter P. The structure
itself is assumed to have been created outside
the procedure and to be an element of a list
of structures of the kind arising in LISP. The
call HEAD(P) returns with a value given by
the pointer in the first field of the structure
pointed to by P while the call TAIL(P)

returns with a value given by the second field
of the structure pointed to be P.

This pointer-valued procedure has two
pointer-valued parameters, P and Q.

It allocates an instance of the structure
ELEMENT, stores the pointers P and Q in
the first and second registers of the newly
created structure, and delivers a pointer to
the newly created structure as its value.

A

AUERBACH
®

STRUCTURE OF PLI

FEATURES WHICH FACILITATE LIST PROCESSING

VARIABLES OF TYPE POINTER WHICH ALLOW LINKS BETWEEN INFOR-
MATION STRUCTURES TO BE EXPLICITLY SPECIFIED AND MANIPULATED

STRUCTURE DECLARATIONS WHICH ALLOW LIST ELEMENTS CONTAINING
SEVERAL POINTER AND VALUE FIELDS OF DIFFERENT TYPES TO BE
EXPLICITLY DECLARED

CONTROLLED STORAGE ALLOCATION, WHICH ALLOWS STRUCTURES
TO BE DYNAMICALLY CREATED AND DELETED AS THEY ARE REQUIRED.

IN A GIVEN LIST PROCESSING LANGUAGES ALL LIST STRUCTURES
ARE FORMED OUT OF LIST ELEMENTS OF A LIMITED NUMBER OF
PRIMITIVE TYPES

IN PL/I NEW PRIMITIVE TYPES OF LIST ELEMENTS MAY BE DEFINED
BY STRUCTURE DECLARATIONS

19.14

A

AUERBACH
®

STRUCTURE OF PLI

IMPLEMENTATION OF CONTROLLED STORAGE ALLOCATION

CREATION AND DELETION IN UNPREDICTABLE ORDER
INSTANCES CANNOT BE STORED IN A STACK

FREE STORAGE AREA IS REQUIRED

ALLOCATE AND RETURN BLOCKS AS REQUIRED
FRAGMENTATION OF MEMORY

GARBAGE COLLECTION IS SOMETIMES NECESSARY

19.15

A\

AUERBACH
®

STRUCTURE OF PLI

STATEMENT GROUPING IN FORTRAN, ALGOL AND PL/I

PURPOSES OF STATEMENT GROUPING

1. TO DELIMIT A PROCEDURE WHICH MAY BE CALLED IN
SEVERAL PLACES

2. TO DELIMIT THE SCOPE OF NAMES
3. TO GROUP STATEMENTS FOR CONTROL PURPOSES
4. TO SPECIFY THE LIFETIME OF INFORMATION ITEMS
Purpose FORTRAN ALGOL PL/I
. Delimit Program unit | begin-end PROCEDURE-END
procedures (procedure heading)
. Scope of Program unit | begin-end PROCEDURE-END
nomenclature BEGIN-END
(INTERNAL EXTERNAL)
. Unit for DO-loop begin-end BEGIN-END
control (for clause) DO-END
purposes (DO-statement)
. Lifetime of not needed begin-end BEGIN-END for
information (own) AUTOMATIC
(STATIC AUTOMATIC
CONTROLLED)

19.16

A

AUERBACH
®

STRUCTURE OF PLI

INTERRUPT FUNCTION MODULES

CONDITION PREFIXES
(ZERODIVIDE):L:X = A/B;

ON STATEMENT

ON CONDITION ACTION

LIKE A PROCEDURE DEC LARATION

ENTRY WHEN (INTERRUPT) CONDITION OCCURS RATHER
THAN BY EXPLICIT CALL - INTERRUPT FUNCTION MODULE

BEGIN BLOCKS - ENTRY AND EXIT IN LINE
PROCEDURE BLOCKS - CALL AND RETURN
ON MODULES - INTERRUPT AND RETURN

ENTRY AND EXIT FOR ALL THREE TYPES IS MUTUALLY
IN A LAST IN FIRST OUT ORDER

ACTIVATION RECORDS MAY BE STORED IN A STACK

19.17

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

CHARACTERISTICS OF THE SYSTEM

- MULTI-USE
- ON-GOING DATA BASE
- COMMON DATA BASE

- JOB LIBRARY
- PREREQUISITE SCHEDULING
- REAL-TIME SCHEDULING

20. 1

A

AUERBACH
®

THE JOB MANAGEMENT FUNCTION

THE COHERENT SYSTEM CONCEPT

COHERENCE OF PROGRAMS

COHERENCE OF DATA

COHERENCE OF CONTROL

RESPONSIBILITY FOR COHERENCE:
PROGRAMMER

PROGRAM TRANSLATORS
SYSTEM

20.2

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

DATA TRANSFORMATION FUNCTIONS

BY PROGRAM

BASIS—— 1 OPERATOR

——»RESULT

BY TABLE

[BASIS, RESULT] :
»| OPERATOR

(BASIS) = RESULT
=

/

FUNCTIONAL NOTATION

OPERATOR (BASIS) = RESULT

FX) =Y

SQRT (4) =2

20.2.1

A

THE JOB MANAGEMENT FUNCTION

AUERBACI‘(;
INTERFACE BETWEEN TASK, JOB MANAGEMENT SYSTEM, AND FILE SYSTEM
JOB PROGRAM
DEFINITION DEFINITION
VIRTUAL
ITEM STORE
OR
JOB CELL |
REQUEST JOB FILE ‘
MANAGEMENT F——-3 TASK = F——- SYS%EM
SYSTEM
S 1 DATA
- i BASE
TASK BINDING
LIST LIST

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

JOB DEFINITION EXAMPLE

FILE NAME _____|
FIELDS »| EXTRACT

‘ SORT
CONDITION . KEY —»

PRINT

ITEM NAME —»-

SAVE

DEFINE JOB : PERSONNEL LIST (CONDITION, ITEM NAME)

DATA
BASE

EXTRACT (PERSONNEL FILE, (NAME, EMPL. NO, POS), CONDITION) = *1

SORT (*1, NAME) = *2
SAVE (+2, ITEM NAME)

PRINT (*2).

20.3.1

A

THE JOB MANAGEMENT FUNCTION

AUERBACg
JOB MANAGEMENT SYSTEM S GRAT
DEFINITION
v LIST
F—————- 9
USER COMMAND JOB TASK ! |
LISt LANGUAGE DEFINITION |l ——{ MANAGER F—————— —| TAK |
INTERPRETER LIST | |
L e e —
| o b
|
| | e
| | BINDING FILE |
| | LIST SYSTEM |
~ | | T
COMMAND
» JOBREQUEST | __ _ _ _
USER CONSOLE PROCESSOR SCHEDULER
: TASK
JOB ? I____. QUEUE
QUEUE |
INTERVAL [|
= overRrLow [|7 |
PROCESSOR]
TIMER T
——————— —» Transfer of Control
JOB
wRIGGER | —mm=—— - <= Call and Return
- LIST > Information Flow

\/—\

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

USER INTERFACE AND SYSTEM LANGUAGES

DATA
PROGRAMMER ADMINISTRATOR
Jos
DEFINE/RUN
COMMAND PROGRAM DATA/DIRECTORY
(JOB REQUESSTS) ENTRY CHANGE
COHERENT
SYSTEM
PROGRAM DATA
LIBRARY BASE
DIRECTORY
PROCEDURAL DECLARATIVE
DESCRIPTIVE

20.5

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

USER LANGUAGES

- JOB REQUEST (COMMAND) LANGUAGE

- DATA ITEM DEFINITION LANGUAGE

- DATA ITEM INPUT LANGUAGE

- JOBDESCRIPTION LANGUAGE

- DATA SERVICE REQUE ST LANGUAGE |

- ON-LINE (INTERPRETIVE) COMPUTATIONAL LANGUAGES
- COMPILER LANGUAGE

- MACRO ASSEMBLER LANGUAGE

20.6

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

THE NEED FOR LANGUAGE ADAPTABILITY

- CHANGES IN CAPABILITY
- CHANGES IN USERS
- HUMAN FACTORS EXPERIMENTS

20.7

A THE JOB MANAGEMENT FUNCTION

IERBACH
®

SYNTAX DIRECTED PROCESSING

- SYNTAX
- SEMANTICS
- SCANNER/ANALYZER

20.8

A - \

THE JOB MANAGEMENT FUNCTION

AUERBACH
®

INSCAN: TRANSLATION MODE

ACTION
GRAPH
INPUT OUTPUT
= e
STREAM INSCAN STREAM

[}

INPUT
POINTER

OUTPUT
POINTER

20.9

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

INSCAN: INTERPRETIVE MODE

ACTION
GRAPH
INPUT
STREAM [———* [NSCAN
|
<|5
INPUT ACTORS @
POINTER

L

20. 10

A

AuERBACH THE JOB MANAGEMENT FUNCTION

GENERAL INSCAN CONFIGURATION

ACTION
GRAPH
INPUT »| OUTPUT
STREAM INSCAN STREAM

INPUT
POINTER

OUTPUT
POINTER

WORKING
STORAGE

20. 11

A

AUERBACH
®

THE JOB MANAGEMENT FUNCTION

PHASES OF USER LANGUAGE PROCESSING

STRING ACTION GRAPH
(STAG)

USER—-LANGUAGE
INPUT STRING

STAG
TRANSLATOR
AGT

ABSOLUTE ACTION GRAPH
TABLE (AGT)

INSCAN

(A) "ASSEMBLY"TIME

USER—-
LANGUAGE
AGT

USER—-LANGUAGE

INSCAN OUTPUT STRING

(8) "EXECUTION" TIME

20. 12

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

EXAMPLES OF SYNTAX SPECIFICATIONS

JM PAREN

PARENS :: = (| ({PAREN STRING))
{JIM}:: = JOHN MARSHA | < %)

{PAREN STRING)::={PAREN) |

JOHN {JM)> MARSHA
< {PAREN>{PAREN STRING)>

(A) BNF
<M> O—JOHN__ 5 MARSHA CPAREN>O- (~) o
M) O
MARSHA CPARENS
(B) TRANSITION DIAGRAM | C
M

QT T, BT

(C) SYNTAX CHART

@ JOHN |—={ MARSHA (—=)

</k (D) ACTION GRAPH

[PAREN] [PAREN}—={PARER

20.13

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

ACTION GRAPH SYMBOLS

GRAPH NAME: T IS DEFINED BY PATH 3§

@)—8——1
ﬂ

a F—» SCAN: READ INPUT SYMBOL AND MATCH a

—’(f—'—‘ CHOICE: TRY ALTERNATIVES 1 AND 2
2

SUBGRAPH: EXECUTE GRAPH a AND RETURN

‘—’@“—’ RECURSE: EXECUTE THIS GRAPH RECURSIVELY

AND RETURN

—AE_» EXTERNAL ACTION: DO SUBROUTINE 7

AND RETURN

() INTERNAL ACTION: DO OPERATIONS w

" < l END: RETURN TO PARENT GRAPH

20. 14

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

INFIX RECOGNIZER

—Q

20. 15

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

SAMPLE INPUT STRING FOR THE INFIX RECOGNIZER

1 2 3 4 5 6 7 8 9 10 11

20. 16

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

OPERATION OF THE INFIX RECOGNIZER

PORTION OF STRING RECOGNIZED

RECOGNIZED BY

A+ B

(A + B)

A-B
(A—B)

(A+B) — (A—B)

20.17

TERM

TERM

NEST

TERM

TERM

TERM

NEST

TERM

NEST

A THE JOB MANAGEMENT FUNCTION

AUERBACH
®

INFIX-TO -SUFFIX TRANSLATOR

€ NEST >

3
TERM o— + TERM "",FB:E

- TERM WRITE

| o
SAVE INPUT 2 g() <]
POINTER / h A coPY
3
B
5 /'_—\
({ NEST)) q

1 20.18

A

AUERBACH
®

THE JOB MANAGEMENT FUNCTION

OPERATION OF THE INFIX-TO -SUFFIX TRANSLATOR

PORTION OF STRING RECOGNIZED SYMBOL ADDED
RECOGNIZED BY TO OUTPUT STRING
A TERM A
B TERM B
A+B NEST +
(A+ B) TERM
A TERM A
B TERM B
A—B NEST -
(A — B) TERM
(A+B) — (A—B) NEST —

20,19

A THE JOB MANAGEMENT FUNCTION

AUERBACH
L]

STAG _SYNTAX

ACTION
GRAPH
NAME : CLAUSE .- < I

(P—-—-<TAG> : J G EXECUTE—-< NAME>———4

— RECURSE

— LITERAL)—
CHOICE
CHOICE SPEC
— GOOD

— CALL

GOTO —-—< TAG

— WRITE LITERAL

— COPY

— SAVE INPUT POINTER |—

20. 20

A\

AUERBACH
®

THE JOB MANAGEMENT FUNCTION

STAG - LANGUAGE ACTION GRAPHS FOR THE INFIX-TO -SUFFIX TRANSLATOR

NEST: EXECUTE TERM; CHOICE (3, 5, 9);

3."+". EXECUTE TERM; WRITE "+"'; GOOD;

5." . EXECUTE TERM; WRITE "-";

-3

9: GOOD.

TERM: SAVE INPUT POINTER; CHOICE (2, 3, 5);
2. "A": 9;: COPY; GOOD;
3: "B"; GOTO 9;

5. "("; EXECUTE NEST;")" ; GOOD.

20. 21

