
USPEXA

ClassName ▲ 1-1
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

1 Filesystem Setup and
Maintenance

Introduction
This module discusses the LFS filesystem, in particular how to create,
check, and mount such filesystems. NFS exporting of LFS filesystems is
then covered.

Objectives
By the end of this lesson, you will be able to:

▲ Create LFS filesystems

▲ Check LFS filesystems for consistency

▲ Mount LFS filesystems

▲ Share filesystems via NFS

▲ Set appropriate restrictions on shared filesystems

▲ Handle degraded filesystems

1-2 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Filesystem Overview

Filesystem Overview
LFS filesystems implement the High Throughput
Filesystem (HTFS)

mkfs and fsck now both run entirely on the FSP

Filesystem consistency problems are handled by
filesystem degradation, which renders a filesystem
(or a single file) read-only

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-3
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Filesystem Overview
The M2000 utilizes LFS filesystems on the FSP for optimized filesystem
performance. LFS is actually an implementation of the High Throughput
Filesystem (HTFS), which provides performance superior to the standard
BSD UFS filesystem.

Filesystems are created with mkfs, which runs on the FSP. Filesystem
consistency checks, fsck’s, are also run on the FSP. Filesystems are
mounted to an FSP, and then shared for NFS access.

In order to handle file system consistency problems, LFS filesystems can
enter a degraded state. This is similar to the filesystem isolation
functionality of the NetServer product, but degradation may occur on
individual files rather than entire filesystems, and renders the filesystem
read-only rather than completely inaccessible.

1-4 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

HTFS Journaling

HTFS Journaling
Filesystem journaling allows shorter fsck times after
an abnormal system halt

Journaling groups filesystem operations for
efficiency and writes these operations to an intent log
before committing them to disk

This log can be replayed during crash recovery, and
only data being acted upon need be checked (fast
fsck)

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-5
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

High Throughput Filesystem
LFS filesystems are actually implemented as a High Throughput
Filesystem (HTFS). This new filesystem offers greater performance as
well as advanced features including filesystem journaling and filesystem
degradation. HTFS is also extensible, meaning that functionality can be
added to it without requiring a complete overhaul.

Journaled Filesystem

The HTFS filesystem implementation creates transaction groups of
filesystem operations which maximize disk access efficiency. As these
are committed to disk an “intent log” is updated to identify the intent of
the operations to follow. If the system is halted abnormally, this log can
be "replayed" and transactions are either completed or aborted. As will be
detailed later, fsck takes advantage of this functionality to greatly
decrease the time required for filesystem checks.

Filesystem Degradation

In order to handle filesystem consistency errors which might lead to
corrupted data, HTFS supports filesystem degradation, which is similar
to the isolation feature of the Auspex NetServer, but is less obstructive.

When a filesystem inconsistency is detected, the extent of the
inconsistency determines whether a file or the entire directory is
degraded. If the data which appears inconsistent only affects a single file,
then that file will become read-only and a message will be logged to the
system logs and the console (assuming syslog.conf is set to do so; see
syslogd discussion in the Performance module).

If the data inconsistency deals with directory-level metadata (anything
beyond a single file), the entire filesystem will be rendered read-only.
Again, a message will be sent to the system logs and the console.

Regardless of the severity of the failure, the filesystem will need to be
manually fscked to resolve the problem. Note also that if there is a disk
error which prevents filesystem data access, as in the case of a RAID7

1-6 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

HTFS Filesystem Degradation

HTFS Filesystem Degradation
Filesystem degradation replaces isolation

Degradation may occur on a single file (if a single file
is affected) or the entire filesystem

As with isolations, disk failure affecting filesystem
accesses will cause degradation

An error message regarding the filesystem
degradation will be logged via syslogd

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-7
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

array which loses a member, the filesystem will also degrade; this is
similar to the isolation functionality of the current NetServer product,
which also isolates filesystems which experience disk problems.
Filesystem degradation due to disk errors implies that there are no
redundant disks, so the error must either be resolved on that disk (for
instance, reassigning sectors) or the disk will have to be replaced and the
filesystem restored from tape.

1-8 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Slidetitle

Filesystem Creation
“mkfs -F lfs” will trigger a process to create a
filesystem on the FSP

mkfs will report the required size of the fsck scratch
partition for the newly created filesystem

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-9
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Creating a Filesystem
LFS filesystems are created with mkfs, which initiates a process on the
FSP to create a filesystem on the indicated logical volume. The mkfs
command has the following syntax:

mkfs -F <fstype> [<options>] <device>

fstype should be lfs for all filesystems which will be shared over NFS.
device refers to either a raw RAID device (such as /dev/raxrd/fsp0m0rd1)
or a raw virtual partition (such as /dev/raxvp/fsp0vp1). No options need
be specified at this point in time (refer to the generic mkfs(1) manpage
for possible options). The system will respond as follows:

piaget# mkfs -F lfs /dev/raxvp/fsp0vp0
fsp0vp0:

Size: 17365MB (35565552 sectors)
Layout: 136 group(s) (128MB per group)
Blocks available: 35555455
Maximum files available: 127999584

You will need a scratch device of size 18 MB for full fsck of fsp0vp0

The scratch device mentioned will be covered below.

1-10 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Filesystem Consistency Checking

Filesystem Consistency Checking
The fsck process runs entirely on the FSP once
initiated from the command line on the host

fsck requires a fsck scratch partition for metadata it
is checking

FSP-based fscks only work with LFS filesystems

Host-mounted UFS filesystems are checked with the
standard Solaris fsck

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-11
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Checking Filesystem Consistency
Filesystem checking, performed with the fsck command, is implemented
entirely on the FSP in the M2000. As such, the FSP must have space for
temporary storage of metadata on which it performs consistency
calculations, and this is provided with a scratch partition. The FSP-based
fsck is usually able to utilize the intent log to achieve short fsck times.
Note that FSP-based fsck’s only work with LFS filesystems. Filesystems
mounted on the host will be checked with standard Solaris utilities.

Creating Scratch Partitions for fsck

Scratch partitions are RAID array partitions or virtual partitions, assigned
per FSP. When a filesystem is created with mkfs, mkfs will report the
required scratch partition size for fsck’ing the new filesystem.

Each FSP must have one, and only one, scratch device. If multiple
partitions are specified, the first will be used and the rest ignored.

Scratch partitions are specified in /usr/AXbase/etc/fscktab, which is
simply a listing of partitions which can be used by fsck:

/dev/raxmrd/fsp0m0rd0s1 # fsck scratch for FSP0
/dev/raxvp/fsp1vp2 # fsck scratch for FSP1

Note that these are the raw (character) devices rather than the cooked
(block) devices (hence raxmrd and raxvp rather than axmrd or axvp).

Note: Scratch partitions must not be mounted or part of a virtual
partition. They do not and will not contain a filesystem, so it is not
necessary to run mkfs.

fscktab is read by ax_fsck_scratch, which runs at boot-time, but should
also be run by hand whenever you change scratch partitions. It has the
following syntax:

▲ ax_fsck_scratch -s
Set the scratch devices listed in /usr/AXbase/etc/fscktab

▲ ax_fsck_scratch -r
Release the scratch devices set on all FSPs

1-12 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

fsck Scratch Partitions

fsck Scratch Partitions

Used to contain metadata for consistency checking
calculations

May be a virtual partition or RAID slice

Must not be mounted or be part of another virtual
partition

Will not contain a filesystem, so running mkfs is
unnecessary

Must be a raw device (raxmrd or raxvp)

Exactly one scratch device must be defined per FSP,
and it must be large enough to handle the largest
filesystem on that FSP

The ax_fsck_scratch command, in conjunction with
the file /usr/AXbase/etc/fscktab, sets (-s), lists (-l),
and removes (-r) fsck scratch partitions

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-13
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

▲ ax_fsck_scratch -l
List the scratch devices set on all FSPs

After running ax_fsck_scratch with the -s flag to read in fscktab, use the
-l argument to verify that the devices are set as you intended:

ax_fsck_scratch -l
FSP0 - fsp0m0rd0s1
FSP1 - fsp1vp2

Executing fsck

Filesystem consistency checking is performed by the fsck utility, which
initiates a fsck process on the FSP for LFS filesystems. Only one
filesystem per FSP may be fscked. If multiple fsck’s for one FSP are
issued by the operator, they will be queued by the FSP for sequential
execution. The standard fsck command is used to initiate these FSP-
based fsck’s:

piaget# fsck /dev/raxvp/fsp0vp0
** fsp0vp0
** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Synchronous Log
** Phase 6 - Check Cyl groups
Files: used 1, avail 33554432
Blocks: used 201, avail 35555455
Fragmentation: blocks 4444431, frags 7, Fragmentation % 0

***** FILE SYSTEM WAS MODIFIED *****

There are two types of fsck’s for LFS filesystems, fast fsck’s and full
fsck’s.

Fast Fsck

Fast fsck’s utilize the journaling functionality of the HTFS filesystem to
check only those files which have been recently modified; files which are
not present in the intent log can be assumed to be stable. Fast fsck is the
default mode for fsck.

1-14 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Executing fsck

Executing fsck
fscks on LFS filesystems are initiated with the
standard fsck command

Fast fscks (utilizing the intent log) are the default

Full fscks are done if the intent log has been
invalidated or if the -of option is specified

If multiple fsck jobs are issued to a single FSP, the
FSP will queue them for sequential execution

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-15
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Full Fsck

Performing a full fsck checks the filesystem inode by inode, ignoring the
intent log. Note that if the intent log has been invalidated, as occurs when
a filesystem is degraded, a fsck will automatically be a full fsck. Full
fsck’s are initiated with the -of option.

1-16 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Mounting LFS Filesystems

Mounting LFS Filesystems
Filesystems to be NFS shared should always be
mounted as LFS filesystems

It is no longer necessary to mount a filesystem to a
specified file processor, as the system automatically
mounts the filesystem on the FSP where the logical
volume is attached

Filesystems to be mounted at boot-time are
specified in /usr/AXbase/etc/lfstab, which has a
format identical to the Solaris vfstab

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-17
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Mounting LFS filesystems
Filesystems intended to be exported for NFS should always be mounted
as LFS filesystems, rather than UFS filesystems mounted on the host
processor. Specifying LFS causes the filesystems to be mounted on an
FSP, so that NFS operations are performed exclusively on the FSP and
NP components. While exporting host-mounted UFS filesystems is
supported (note that at the time of this writing there are some problems
exporting host filesystems through NP network interfaces; bugs are open
on the problem), it defeats the purpose of the Auspex hardware and
software.

Note: As the functionality of the NetServer File Processor and Storage
Processor has been merged into a single File-Storage Processor (FSP),
the concept of mapping filesystems to a particular processor is no longer
valid. A filesystem will always be managed by the FSP which is
attached to the disks the filesystem is stored on.

Specifying filesystems in lfstab

The file /usr/AXbase/etc/lfstab contains a list of filesystems which
should be mounted at boot-time. It’s format is identical to the standard
Solaris vfstab:

▲ mount device: the block (cooked) device containing the filesystem

▲ fsck device: the character (raw) device specified for filesystem
consistency checks (fscks)

▲ mount point: directory entry where the filesystem is mounted

/dev/axvp/fsp0vp0 /dev/raxvp/fsp0vp0 /export/coffee lfs 1 yes -

other mount options

mount at boot?

fsck pass

FS type

mount point

mount device

fsck device

1-18 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

LFS Mount Options

LFS Mount Options
rw or ro: Specifies whether the filesystem is
mounted read/write (default) or read-only

suid or nosuid: nosuid will cause the setuid flag to
be ignored during execution (default is to respect
suid)

nolog: Turns off filesystem journaling; this option
offers no significant performance improvement and
will result in longer fsck times.

nochkpt: Turns of filesystem checkpointing, which
may slightly improve overall system performance,
but may not be appropriate for filesystems
characterized by bursty data. Note that this
checkpointing is unrelated to checkpointing for the
purposes of freezing a filesystem for backups or
revision control (snapshots).

tmp: This flag is not useful in the context of NFS

fastsync: Improves performance of synchronous
write operations by increasing the size of the
metadata cache. As with nockhpt, the benefits of
this option depend on the nature of the filesystem; in
this case it may reduce performance on filesystems
with very large files.

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-19
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

▲ FS type: always lfs in the lfstab file

▲ fsck pass: determines when the filesystem is automatically checked

▲ mount at boot: specify yes to have the filesystem mounted
automatically at boot time

▲ mount options: options specified to optimize filesystem performance,
see below:

Mount Options

▲ rw or ro: The filesystem is mounted read/write by default; specifying
ro will mount the filesystem read-only.

▲ suid or nosuid: Setuid is honored by default; nosuid will cause the
setuid flag to be ignored during execution.

▲ nolog: Turns off filesystem journaling; this option offers no
significant performance improvement and will result in longer fsck
times.

▲ nochkpt: Turns of filesystem checkpointing, which is used to reduce
the chances that a fsck will be needed after an unexpected system
reboot; this option may slightly improve overall system performance,
but situations have been seen where bursty data will suffer due to
timing problems (see Performance module). Note that this
checkpointing is unrelated to checkpointing for the purposes of
freezing a filesystem for backups or revision control (snapshots).

▲ tmp: This flag is not useful in the context of NFS; the gains which
arise from its use are masked by network latency, and it introduces
the risk of data loss during an unplanned system shutdown. In short,
temporary space should always be local, not NFS mounted.

▲ fastsync: Improves performance of synchronous write operations by
increasing the size of the metadata cache. While this can greatly
benefit filesystems which see a large number of metadata operations
(getattr, setattr, etc.), filesystems which house larger files are better
served by a larger user data cache. See the Performance module for
more discussion.

1-20 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Manually Mounting LFS Filesystems

Manually Mounting LFS Filesystems
ax_fsck_mount will mount filesystems specified in
lfstab, fsck’ing the filesystem first if it is dirty

If mounting with a mount command on the command
line, specify “-f LFS”

FSP-attached disks cannot be mounted as standard
UFS filesystems

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-21
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Mounting filesystems manually

ax_fsck_mount will mount filesystems specified in lfstab, fsck’ing them
beforehand if the filesystem is dirty. Filesystems which are already
mounted will not be affected by this command.

To mount an LFS filesystem not specified in lfstab, it is neccesary to use
the -f LFS option of the mount command. For example:

piaget# mount -F lfs /dev/axvp/fsp0vp0 /export/coffee
piaget# mount
/ on /dev/dsk/c0t3d0s0 read/write/setuid/largefiles on Mon Nov 23 14:42:24 1998
/usr on /dev/dsk/c0t3d0s6 read/write/setuid/largefiles on Mon Nov 23 14:42:24 1998
/proc on /proc read/write/setuid on Mon Nov 23 14:42:24 1998
/dev/fd on fd read/write/setuid on Mon Nov 23 14:42:24 1998
/var on /dev/dsk/c0t3d0s3 read/write/setuid/largefiles on Mon Nov 23 14:42:24 1998
/opt on /dev/dsk/c0t3d0s5 setuid/read/write/largefiles on Mon Nov 23 14:46:56 1998
/usr/openwin on /dev/dsk/c0t3d0s1 setuid/read/write/largefiles on Mon Nov 23 14:46:56 1998
/tmp on swap read/write on Mon Nov 23 14:46:56 1998
/export/coffee on /dev/axvp/fsp0vp0 read/write on Mon Nov 23 14:59:05 1998

Note that filesystems on FSP-attached disks cannot be mounted as
standard UFS filesystems, and attempting to do so will result in an error.

1-22 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Sharing NFS Filesystems

Sharing NFS Filesystems
The share command is used to export NFS
filesystems

/etc/dfs/dfstab contains share commands to be run
at boot-time

The shareall command will run all the share
commands in /etc/dfs/dfstab

Options may be specified to restrict access (see next
slide)

Access Lists
Several options accept an access-list argument
which restricts the option to specified hosts

The access list is a colon-separated list containing
hostnames and netgroups

If DNS is being used for name resolution, all
hostnames must be fully qualified, including those in
netgroups

A minus (-) sign preceeding a hostname or netgroup
will deny the access specified by the associated
option

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-23
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Sharing NFS Filesystems

Sharing filesystems with the share command

Solaris uses the share command to export mounted filesystems to clients
on the network. This is analogous to the exportfs command of SunOS on
the current NetServer product. The syntax of the share command is:

share [-F fstype] [-o options] [-d
description] pathname

▲ fstype: this must be nfs for all filesystems in the current release

▲ options: this is a comma separated list which is used to set access
permissions to the filesystem as a whole (not to be confused with per
file UNIX permissions)
rw - Makes filesystem read/write accessible for all; this is the default
if no options are specified.
rw=access-list - Allows read/write access to clients specified in the
access-list; all others cannot access filesystem at all.
ro - Makes filesystem read-only for all clients.
ro=access-list - Allows read-only access to clients specified in the
access-list; all others cannot access filesystem at all.
root=access-list - Allows only the root users of the hosts specified in
the access list. Root accesses on all other hosts are mapped to the
anonymous user ID (detailed below). By default, no hosts have root
access. Netgroups may be used in the access list if the filesystem is
being shared with UNIX authentication (AUTH_SYS, see below).
anon=uid - Sets uid to be the effective user ID of unknown users.
This defaults to user ID UID_NOBODY (which is set to the nobody
entry in /etc/passwd). If this is set to -1, access is denied to unknown
users.
nosuid - By default, clients are able to set setuid and setgid mode. If
this flag is set, the server will silently ignore attempts to set setuid
and setgid modes on the shared filesystem.
sec=mode - Specifies the security mode to be used for the shared
filesystem. This defaults to AUTH_SYS, specified as sys. If the
mode is set to AUTH_NONE (specified as none) and a client also

1-24 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Slidetitle

NFS Access Options
rw or ro - read/write (default) or read-only access for
all clients

rw=access-list - Allows read/write access to clients
specified in the access-list; all others cannot access
filesystem at all

ro=access-list - Allows read-only access to clients
specified in the access-list; all others cannot access
filesystem at all

root=access-list - Allows only the root users of the
hosts specified in the access list; by default, no hosts
have root access

anon=uid - Sets uid to be the effective user ID of
unknown users (defaults to user ID UID_NOBODY,
defined by the nobody entry in /etc/passwd; set to -
1, access is denied to unknown users)

nosuid - The server will silently ignore attempts to
set setuid and setgid modes on the shared
filesystem (default is to allow setuid and setgid)

sec=mode - Specifies the security mode to be used
for the shared filesystem (defaults to AUTH_SYS,
specified as sys)

1 ▲ Filesystem Setup and Maintenance

ClassName ▲ 1-25
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

uses AUTH_NONE, each NFS request from that client will be
treated as unauthenticated, resulting in the anon value specified
above to be utilized. Note that if the client uses a security mode
which is not specified for the filesystem, that clients NFS requests
will also be treated as unauthenticated. Note also that neither Diffie-
Hellman (dh) nor Kerberos (krb4) are supported.

▲ access-list: This is a colon-separated list which follows an equals-
sign (=) in some of the options. It may contain any number of
hostnames and netgroups. If DNS hostname resolution is specified in
nsswitch.conf, all hostnames must be fully qualified (including those
in a netgroup). A minus sign (-) preceding a component will deny
access to that component. Please see the share_nfs manpage for
details on using this option.
Note that neither DNS suffixes nor network names are supported in
access lists.

▲ description: Clients will see this description when they request a list
of shared filesystems from the server

▲ pathname: Specifies path to be shared; files in this directory and
below will be shared

To share /export/coffee read/write to everyone, issue the following
command:

share -F nfs -o rw -d "caffiene" /export/coffee

Specifying shared filesystems in dfstab

To automatically share filesystems at boot time, share commands should
be placed in /etc/dfs/dfstab. The share commands in dfstab have the same
format as when they are specified on the command line. Here is a sample
dfstab file:

home dirs: only engineering can access
share -F nfs -o rw=engineering -d "home dirs" /export/home2
library documents: read only for everyone
share -F nfs -o ro -d "library" /export/library
shared storage: read/write for all
share -F nfs -d "shared storage" /export/storage

To share all filesystems specified in the dfstab, invoke the shareall
command.

1-26 ▲ ManualTitle
G:\M2Kalpha\filesystem.fm December 8, 1998 4:18 pm

USPEXA

Student notes

	Introduction
	Objectives

	Filesystem Overview
	High Throughput Filesystem
	Journaled Filesystem
	Filesystem Degradation

	Creating a Filesystem
	Checking Filesystem Consistency
	Creating Scratch Partitions for fsck
	Executing fsck
	Fast Fsck
	Full Fsck

	Mounting LFS filesystems
	Specifying filesystems in lfstab
	Mount Options

	Mounting filesystems manually

	Sharing NFS Filesystems
	Sharing filesystems with the share command
	Specifying shared filesystems in dfstab

