=== Tt Acs- 50

MICROPROCESSOR

ASSEMBLER
REFERENCE
MANUAL

AUTOMATIC ELECTKONIC SYSTEMS INC., 5455 PARE ST, MONTREAL 303 CANADA, TEL. (5/4) 735-658/
AES DATA INC., P.O. BOX |43 ST ALBANS, VERMONT 05478, TEL. (802) 524-3660

=
8¢
MICROPROCESSOR
ASSEMBLER

REFERENCE MANUAL

PROPRIETARY NOTICE: This publication contains proprietary
information of Automatic Electronic Systems Inc. and shall
not be reproduced, copied, or used for any purpose other
than the consideration of technical content without the
express written permission of a duly authorized represen-
tative of Automatic Electronic Systems Inc.

AUTOMATIC ELECTRONIC SYSTEMS INC.,
5455 Pare Street
Montreal 309

TEL.: (514) 735-6581

II.

III.

v

TABLE OF CONTENTS

Program Location Counter
Instruction and Pseudo Instructions

Common Rules for All Operands
Numeric Operands

Symbolic Operands

Symbolic Operands Modified by
a Numeric Displacement
Special Rules for Pseudo
Instruction Operands

Comment Statement
Comment Field
Corment Sizes

Data Memory Reference Instructions

Instruction Memory Reference Instruction

Unconditional Jump

Jump To and Return From
Subroutine

Conditional Jump Instructions
Instruction Memory Pages
Logic Unit Instructions
Loading Instructions

Logic Instructions
Arithmetic Instructions
Combined Logic and Arithmetic
Instructions

Shift Rotate Instructions

Introduction
Description
2.1 Assembly Passes
2.2 Symbolic Addressing
2.3
2.4
Formats
3.1 Statement Formats
3.2 Labels
3.3 Mnemonics
3.4 Operands
3.4.3
3.4.3.1.1
3.4.3.1.2
3.4.3.1.3
3.4.4
3.5 Commrents
3.5.1
3.5.2
3.5.3
Machine Instructions
4.1
4.2 Data Bus Instructions
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4 Arithmetic -
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6

B-Register Instructions

Page

3-1
3-1
3-2
3-3
3-4
3-4
3-4

3-5
3-5
3-5
3-6

'llk»bnllk;bnb-
NN =

TETYTEY
AU WN

T
~N

4.5

4.6

Literal and Universal Register
Instructions

Input/Output Instructions

4.6.1 Serial I/0 - Control Lines
4.6.1 Channel Selection
4.6.1 Register Selection
4.6.2 Parallel 1/0

4.6.3 Interrupt Instructions
4.6.4 Other I/0 Instructions
4.6.5 Halt Instructions
4.6.6 Master Reset

Pseudo-Instructions

Program Origin
Data Memory Addresses

- External Labels

Enc¢ of Program

Assembler Input/Cutput

6.6

Source Program
Binary Tape Format
Listing Format
Error Messages
Operating Instructions
6.5.1 Loading
6.5.1 PASS 1
1 PASS 2
Object Program Loading
1 Teletype Loading
2 Reader Loading

5-1
5-1
5-2
5-3

T
-

O\Ol'\O\O\

TIRTIR0S
QU & DWWWN

1.9

CHAPTER 1

INTRODUCTION

The A.E.S. Standard Assembler allows
programmers to write their microprocessor programs
in a symbolic language rather than in machine language,
the translation being performed by the Assembler.

The Assembler input is usually a paper tape,
punched in ASCII code on an off line teleprinter.

The output consists of:

- another paper tape called the object program
punched in the appropriate binary code required by
the microprocessor program loader.

- a source program listing which displays pertinent
information about the program such as: Line count,
instruction addresses, memory content, error messages,
etc.

A program can be broken down into several
smaller programs which can be assembled separately.

This Assembler manual will be more profitakle
to the reader already familiar with the general
architecture of the microprocessor as described in
the hardware manual.

CHAPTER 2

DESCRIPTION

ASSEMBLY PASSES

The Assembler is a 2 or 3 pass system depending
on the types of peripheral devicegavailable: if
a KSR-33 Teletype is the only output device, 3 passes
are required; if the computer system includes a printer
and an independent paper perforator, then only 2
passes are required since the listing and the binary
tape can be produced simultaneously.

A pass is defined as one complete reading of
the source tape (s).

During pass !, the Assembler builds a label
table with the label (or names) found in some of the
source statements.

During pass 2/3 the Assembler decodes the
instruction mnemonic, searches in the label table
the actual address associated with a label used as
an operand, prints the listing and/or punches the
binary tape and prints the eventual error messages.

SYMBOLIC ADDRESSING

There are several advantages to writing a
program in Assembler rather than in machine language:

One obvious one is the use of mnemonics. (E.g:
F=D-B) instead of a hard-to remember binary code such as
L&(or 1446 Octal). Another one is the inherent

redundancy of an Assembler statement which allows
error detection and yet another one is the automatic
documentation of a program.

By far the most important advantage, however,
is due to the use of symbolic addresses instead of
explicitely defined absolute addresses. For descriptive
purposes, assume a program is written in machine
language and that a single instruction must be inserted
(or deletedy into this program. Lvery instruction
following the insertion (or deletion) point will be
moved by one location, which means that all the

instructions referring to any moved instruction have
to be modified if the original flow chart is to

be respected. This task can be time consuming and 1is
Prone to numerous errors.

Consider the same program written in Assembly
language. The source tape is edited instead of the
binary tape. Once edited, this new source tape is
processed by the assembler and all the memory reference
instructions will be automatically updated when necessary.

The same procedure applies if a complete program
is moved from one place in memory to another.

A symbolic address is defined by a label (or
name) placed in the label field of a statement. To
refer to this address the same label is used in the operand field
of the referring instruction.

Labels appearing more than once in the label
field of a program are considered in error. (Double
Defined). Labels appearing in the operand field and
never appearing in the label field are also considered
in error (Undefined).

PROGRAM LOCATION COUNTER

For symbolic addressing and documentation purposes

o~ e S

the Assembler maintains a program location counter.

This counter is initiated or reinitiated only by
an ORIGIN Pseudo-Instruction (ORG) which defines the
absolute address of the first instruction of a program
Oor a section of program.

From there on the assembler will assign consecutive
locations to every instruction it encounters. During
the first pass the Assembler uses this counter to
assign absolute addresses to every label it finds in
the label field of an instruction and stores both,
label and address, into the Label Table.

INSTRUCTIONS AND PSEUDO-INSTRUCTIONS

Instructions are defined as actual commands to
the microprocessor to be executed at program run time.
The Assembler always converts them into machine instruc-
tions punched on the object tape.

Pseudo-instructions are defined as commands to
the Assembler itself. They are not punched on the

object tape and they are executed by the Assembler
at assembly time.

3.1

CHAPTER 3
FORMATS

STATEMENT FORMATS

There are three types of statements in the A.E.S.
Microprocessor Assembler:

~Comment statements
-Instruction statements
-Pseudo-Instruction statements

A statement is always contained in an ASCII
line, i.e., a string of no more than 72 ASCIT characters
terminated by a RETURN CARRIAGE and a LINE-FEED character.

A statement is divided into several fields in

order to distinguish between the different types of
symbols,

For descriptive purposes, the characters within
a line are numbered from 1 to 72 from left to right and
designated by Ch x and the space character will be marked
as ~ whenever it is necessary to show its place.

LABELS

A label is a word of 1 to 5 characters whose

first one must be alphabetic or one of the following
characters: @[J«*

The remaining characters can be any character
éxcept a space, a line-feed, at+, a-, a return carriage or a
rubout. Non-printing characters will be accepted al-
though it is not recommended to use them.

NOTE:

Since valid operands can be either octal numbers,
decimal numbers or symbolic (labels) and a decimal
number is of the form DXXXX e.g., D1 or D38g, labels
shall not be of the form D followed by a number.

Examples of valid labels:

START
AlgQ
END
[#2

V/

3.3

Examples of invalid labels:

D2

128
#SUB
READER

LABEL FIEID

The label field exists in the instruction and in the pseudo-instruc-
tion statements. It always begins with Ch. 1 and ends with Ch. 5.

Ch. 6 must always be a space and acts as a separator between the
label field and the memonic field. If the label has less than 5
characters, the remaining positions must be filled up with spaces.

If no label is used, then the label field must be filled up with
spaces.

Examples:

START "D=M
R 3= »)
Z"""""RET

NOP

MNEMONICS

A mnemonic is a conventional word identifying one instruction
or pseudo instruction.

The list of valid mnemonics is given in chapter 4.
Their length can be from 3 characters up to 12 characters but
they must always begin in Ch. 7. No space is allowed within a mmemonic.

The first space, retumn carriage, or line feed encountered by the Assembler
while reading a memonic is interpreted as an "end of mnemonic" mark.

LP1™""F=D-B+1

3.4 OPERANDS
3.4.1 There are two types of instruction operands:

3.4.1.1 — Those used in Instruction Memory Reference
Instruction (Jump, Jump subroutine, Jump if)
For these instructions the Operand field is separated
by one (and only one) space from the Mnemonic field.

Examples:
““““ JMP 2300
JSR™SUBRO
JIS,RTC NEXT
3.4.1.2 - Those used in Data Memory Reference Instructions, Literal

Register Instructions and Channel Reference Instructions. In
this case the operand field follows immediately the last character
of the Mnemonic (which is always an "=" character)

Examples:

STttt L=D1g
I=RAMAD
A=400
CHL=TTY

3.4.2 There are also two types of pseudo-instruction operands:

3.4.2.1 The first one is used with the original definition and
follows the same rules as the first-type of instruction operand
(3.4.1.1)

Exa_ngles
. ORG™100

3.4.3.2 The second type is used in the label definition statements
following a RAM or an EXT pseudo-instruction. These two pseudos
are used to define data memory labels RAM) or instruction memory
labels external to the program (EXT).

In both cases the label definition operand begins at Ch. 7.

3.4.3

3.4.3.1

3.4.3.1.1

3.4.3.1.2

3.4.3.1.3

WORD1"74
LABEL WORD1+1

SUBL™"209¢
SZAAAASUBl‘fD2IZ

ORGXXX

COMMON RULES FOR ALL OPERANDS:

No space allowed within an operand.
Operands can be either numeric or symbolic or a combination of both:

Numeric operands:

-~ A single numeric term:

- Octal term: a number of no more than 4 octal digits preceded,
optionally by a sign (+,-)

- Decimal term: a number of no more than 4 decimal digits preceded
by the letter D itself preceded, optionally, by a sign (+,-)

Examples 377
+377
-1
D1g8
+D1@8
-D108

Symbolic operands:

A label which must be defined elsewhere in the program, i.e., it
must appear once and only once in the label field of the program
(ch. 1 to ch. 5).

Symbolic operands modified by a numeric displacement:

A defined label immediately followed by a numeric term. The
resulting address is the address assigned to the label displaced
by an amount equal to the numeric term.

3-4

Let's assume that BUFF has been defined as data memory address
109, then the A - register will point to address 102 after ex-
ecution of this instruction.

NOTE:

Since A=A+l is a special instruction to increment the A -
Register, A can be used as a label as long as it is not used with
a displacement of + 1.

3.4. 4 SPECIAL RULES FOR PSEUDO INSTRUCTION OPERANDS

Since instruction operands are evaluated during the second
pass they can refer to labels defined anywhere in the program.

However pseudo instructions operands are always evaluated
during the first pass and therefore, if they are symbolic, they must
refer to a label defined BEFORE this pseudo is enocountered.

Examples: Valid pseudo instruction operands
LASTW NOP
RAM
DATA1"104
DATA2 "DATALl+1(
DATA3 DATAl+20
ORG"LASTW+1
Illegal pseudo-instruction operands
RAM
DATA2 “DATA1 +1¢
DATA3"DATA1 +2¢
DATA1"104
ORG LASTW+]

LASTW NOP

3.5 COMMENTS

3.5.1 Comment Statement

An entire line can be devoted to comments, i.e.,

3.5.3

information useful to programmers but ignored by the assembler.
To do this an asterisk (*) must be the first character of the line.

Pywarmm1

wlz*e:
*“"THIS IS A COMMENT LINE

COMMENT FIELID

The right hand part of an instruction or pseudo-instruction
statement can be used for additional comments: in both cases the
comrent must be separated from the operand, or from the mnemonic
if there is no operand, by at least cne Space.

Examples:
PRGL™"F=D"COMMENT

JSR™SUBRO“COMMENT
RET COMMENT

COMMENT SIZES

Since the printed listing includes information not originally
punched in the source tape the number of characters allowed for
a comment is limited accordingly:

- A comment statement cannot exceed 67 characters.

- An instruction statement cannot exceed 54 characters.

= A pseudo-instruction statement cannot exceed 67 characters.

Otherwise the comment characters in excess won't appear on
the listing.

3-6

4.1

CHAPTER 4

MACHINE INSTRUCTIONS

DATA MEMORY REFERENCE INSTRUCTIONS

A single instruction can set a 1¢ bit address in the 12 bit
address register ().

A=xxx

The two most significant bits (bit 1, 11) of the A register
are left unmodified by the A= instruction. Thus one can directly
address any one location of a 1024 word data memory page.

The quantity xxx can be either Octal, Decimal or Symbolic.
In any case it cannot exceed 1777 (g) -

Examples: A=77
A=D108
A=FLAG+3

In order to reach the other 1§24 word pages and also to load
the A register with a computed address, two other instructions are
provided.

Al=D The data bus is loaded into the 8 LEAST significant
bits of the A-register

AH=D Bits 8, 9, 10, 11 of the A-register are loaded with
bits @, 1, 2, 3 of the data bus.

Examples: 1) Retrieval of one element of an array

A=PTR Pointer address

D=M Pointer on data bus

AL=D Pointer in A-Register
At this point, retrieved data is on the
data bus.

2) Same requirement but the pointer is now in page
and the array in page 2 (256 Wd pages).

A=PTR Pointer address

D=M Pointer on data bus
F=D Set ALU for direct load
B=F Pointer in B-register
I=2 Literal @2

D=L On data bus

4-1

All=D Load bit 11, 18, 9, 8 of the A-Register with

@2
D=B Pointer on data bus
AL=D Load the 8 ISB of A-register with the pointer.

The A-Register can be incremented

A=At]1 Thus permitting easy scanning of an array:

Example: Find the first even element of an array

“““““ A=AR(@)-1 first element address minus 1
D=M Address on data bus
I00P™"AzA+1 element on data bus

AAAAAA JIS,DBf LOOP Test least significant bit

4.2 DATA BUS INSTRUCTIONS

Four mutually exclusive latching instructions are available which
enable programmers to choose the source of the data present on the bus.

D=L Literal Register (L) on data bus

D=M Data Memory location pointed by A on data bus
D=U Universal Register (U) on data bus

D=B ALU Register (B) on data bus

4.3 INSTRUCTION MEMORY REFERENCE INSTRUCTION

They are divided into 3 groups. All of them require two memory
locations and are executed in two machine cycles.

4.3.1 UNCONDITIONAL JUMP

JMP xxx The program flow is altered:
The operand defines the address of the
next instruction to be executed.

4.3.2 JUMP TO AND RETURN FROM SUBROUTINE

JSR xxx The operand defines the address of the

first instruction of the subroutine.

The return address is automatically stored
in the upper location of the push down stack.

4-2

Note: Subroutines can be nested up to 16 levels

" : . .
! FFT The next instruction to be executed is the one
. Prore’e following immediately the RET instruction. Then

the program flow is altered: the last address
stored in the push down-down stack defines the
address of the next instruction to be executed.
The push down stack is pushed-up.

Exanple: Increment a word in data memory
A=WORD Address of word

AAAAAA JSR™INC Increment it

* INCREMENT SUBROUTINE

INC™""D=M Word on bus
F=D+#1 Set ALU for increment operation

B=F LOAD B-Register with incremented value

D=B Incremented word on bus

RET Initiate the return from subroutine

M=D Store incremented word in original address.

4.3.3 CONDITIONAL JUMP INSTRUCTIONS

They are of the form:

JIS,yyy xxx or JIC,yyy xxx
where yyy is a mnemonic defining the condition to be tested
and xxx the address of the next instruction to be executed
if the condition is met.
JIS stands for Jump If Set (logical 1)
JIC stands for Jump If Clear (logical §)

JIS,BR7 xxx or JIC,BR7 xxx Jump if B-Register bit-7
is Set/Clear.

Note: This bit can be considered as the sign of a 7 bit word in
two's complement form.

JIS,CRY xox or JIC,CRY xxx Jump if ALU carry output flag

is Set/Clear.

This flag is set whenever the result
of an ALU arithmetic operation produces
an overflow.

4-3

Example: Check if the quantity X present on the data bus is g.

F=D-1 Set ALU for X-1
JIS,CRY ZERO If X was @, then X -1 = -1 and
the carry flag is set.

JIS,D=E xxx or JIC,D=B xxx J Junp if data bus and
B-Register are equal/

different. ALU must

be in the F = D-B~1 mode

Example: Check if 2 quantities in memory are equal

ST A=WORDL Address of first word
D=M Word 1 on data bus
F=D Set ALU for a direct load
=F Load word 1 into B-register
A=WORD?2 Word 2 on data bus
F=D~B-1 Set ALU for compare

JIS,D=B EQUAL If equal, the compare flag is
set and the jump is executed

JIS,DBn xxx or JIC,DBn xxx Jurp if bit n of the
data bus is set/clear
where n is @ to 7

(@ for the least
significant bit)

Example: Test an internal flag in position 4 of the data
memory word FLAGS

A=FLAGS
D=M
JIS,DB4 FLSET If bit 4 of the word FLAGS
is set, then jump is executed

JIS,PDS xxx or JIC,PDS xxx Jurmp if push down stack
overflow flag is set/clear.

The remaining conditional jumps will be described in the
Input/Output instruction section.

4.3.4 INSTRUCTION MEMORY PAGES

Since 11 bits are used to specify an instruction memory address,
we can address directly any location in a 2048 word page. To jump
across a page boundary, a page instruction is provided.

4-4

PG=@ The next jump (any type) instruction will be
made to the location defined
PG=1 by the jump operand but within the specified

— page (¥ or 1)
Exanmple: Let's assume we are in page §
PG =1

JSR 31¢ Jump subroutine to address 431§

4.4 ARITHMETIC - LOGIC UNIT INSTRUCTIONS

Generally an arithmetic or logic operation will be performed
in two steps:

1) Set the ALU to the selected operation
2) Save the ALU output (called F) in the B-register.

Note: The ALU will remain set for an operation until it is changed
by another ALU instruction.

Special characters used in the ALU instruction mnemonics

logical OR operation
logical AND operation
t logical EXCLUSIVE OR operation
' logical COMPLEMENT of preceeding quantity: B' or (D#B)'
+ arithmetic ADDITION (2's ocomplement)
- arithmetic SUBTRACTION (2's complement)

Expressed with these symbols the De Morgan's theorem becomes:

(A#B) '=A'.B'
(A.B)=A"#B'

Knowing these symbols, the ALU mnemonics are self explanatory.

4.4.1 IOADING INSTRUCTIONS

The output F of the ALU is equal to the :
F=D Data bus
F=D' Data bus complement
F=B B-register
F=R' B-register complement
F=-1 Octal 377
F=g Octal gpQ@

4.4.2

4.4.3

LOGIC INSTRUCTIONS

Logical OR

—
F=D#B or F=B#D

F=D#B' or F=B'#D
F=D'#B or F=B#D'

F=D'#B' or F=B'#D'

Logical AND

F=D.B or F=B.D
F=D.B' or F=RBR'.D
F=D'.B or F=B.D'

F=D'.B' or F=B'.D'

Exclusive OR

F=DtB or F=B1D

F=DTB' or F=(D?B)"’

ARTTHMETIC INSTRUCTIONS

Addition

F=D+D or F=2D
F=D+B or F-=B;D
F=D+D+]1l or F=2D+1

F=D+B+1 or F=B+D+1

=D+1
F=D+B'
F=D+E'+1
Subtraction
F=D-B F=D-B'
F=D-B-1 F=D-B'~1
P=D-1 ”J

Equivalent to

(Dl.Bl)'
(D'.B)'
(D.B")'

(D.B) "'

(D'#B')]
(DI#B) !
(D#B'") '

(D#B) '

4.4.4 COMBINED LOGIC AND ARITHMETIC INSTRUCTIONS

The logical operation is executed before the arithmetic one.

F=D#B+D F=D#B' +D
F-D#B+1 F=D#B'* 1
F=D#B+D+1 F=D#R'*D A
F=D.B*D F=D.B'*D
F=D.B*D*1 F=D.B'*D 1l
F=D.B-1 F=D.B'-1
F=D#B*D.R' F=D#B'+D.B
F=D§B*D.B'+1 F=D#B'+D.B*1

4.4.5 SHIFT ROTATE INSTRUCTIONS

F=BSL F

B-register shifted left by one bit.
ISB of F is set to f.

F=BRL F = B-register rotated left by one bit.
Thus the MSB of B becomes the ISB

of F. Both instructions require
that the B-register output is enabled
onto the data bus (D=B).

B=BRR B is ready for a one bit right rotation
independently of the ALU output F.

4.4.6 B-REGISTER INSTRUCTIONS

B=(Clear B-register
B=F Load B-register with ALU output
B=FH Load B-register with ALU output 4 most
significant bits.
B=FL, Load B-register with ALU output 4 least
| I significant bits.

Note: For B=FH and B=FL the remaining bits of the B-register are
left unchanged.

Example: Convert one ASCII digit to binary

A=DIGIT Digit address

D=M Digit on data bus

=D Set ALU for direct load
B=g Clear the B-register

=FL Load the 4 ISB in the B-register

Or, if the digit is already present in the B-register
F=@
B=FH Ioad @'s into the 4 MSB of the
B-register.

Note: If the ALU was set in the B=BRR mode then a B=F (or

B=FL. or B=FH) instruction will actually rotate the B-register
one bit right.

4.5 LITERAL AND UNIVERSAL REGISTER INSTRUCTIONS

Lesxooox Set the literal register to the value
of the operand. Since the I~Register
has 8 bits, the operand, once evaluated
by the Assembler, should not be greater
than 377 (8)- If it is, the 8 LSB will
be used as Operand. No diagnostic will

be given.
Examples: I=-1
L=D255
1=377 All result in the loading of
1=1777 Octal 377
I=1LABFI,
U= Clear the universal register.
U=U#D Load the logical OR of the data bus

and the present U-register content.

4.6 INPUT /OUTPUT INSTRUCTIONS

4.6.1 SERIAL I/0

" CONTROL LINES:
CLR=ff CIK=1 | Clock line low or high
1D=g ID=1] Ioad line low or high
R/MVI=R R/MW=W R/M Line low (read) or high (write)

For serial I/0 all 8-bit data words pass through the Universal
Register.

CHANNEL SELECTION

CCHI;:)&: ®x = any operand (octal,decimal or symbolic)
77 Its value must not crcend 31.

FEGISTER SELECTION (One at a time)

RG=x x = one octal digit (¢ to 7)
RG=B In this case the register is selected by the 3 least
significant bits of the B-register.
TIMING
—— . :
L SI0 Stand for Start Input-Output automatic transfer between
— the U-Register and the addressed I/0 device register.
This is a strcbe function.
JIS,TOR xxx or JIC,TOR xxx ! Test the 1/0 Ready flag. IOR

flag is normally set. The SIO
instruction clears it. When

the transfer is completed the IOR
flag is set again.

Examples: Input one 8 bit word from channel 19, register ¢

CHL=1¢ Select channel

RG=¢ Select register

RM=W

LD=1

CLK=1 Load data into I/0 register

CLK=

LD=gf

RM=R Initiate serial transfer between 1/0

SI0 Register and U-Register
WATT""JIC,IOR WAIT Finished? No loop

D=U Yes, data on bus

Output 8 8-bit words to channel g, registers # to 7 from
8 consecutive locations in data memory

CHL= Select channel

A=2AR(() Address of first word

B=g Clear B-register

F=D+1 Set ALU for increment
LOOP™"D=M Data on data bus

U=

U=U#D Data in U-Register

RG=B Select I/0 register

R/MW=W Initiate

STIO Serial transfer
WFLAG"JIC,IOR WFLAG Wait if I/0 Ready flag not set

R/MW=R

A=A+] Increment array pointer

D=B

4.6.2

4.6.3

B=F Increment B-register
JIC,DB3 10OOP Done it 8 times ? No, loop
... Yes, exit

PARALIEL I,/0

No special instruction is devoted to parallel I/O since the
1/0 registers are considered as data memory locations and, therefore,
are operated by the M=D or D=M instructions.

Example:

For descriptive purposes, assume the micro-
processor is used with the Bose-Chaudhury

Error code generator option. This option uses

one input register (new data) and one output
register (new Bose-Chaudhuri Error code) and

their addresses are respectively 6ﬁﬁl(8) and 6QQ¢(8).
New data is supposed to be initially in the
U-Register and we want to get the result (new

Error Code) in the B-register.

L=14

A=1

D=L

AH=D Set A-register to 6gg1

D=U New data on data bus

M=D Compute new Error Code

A=(Set A-Register to 6@0@Q

D=M Error code on bus

F=D

B=F New Error code in B-register

INTERRUPT INSTRUCTIONS

SO

JIS,SIN xxx or JIC,SIN xxx Jump 1f the Serial Interrupt

flag is Set/Clear.

JIS,PIN xcot or JIC,PIN xxx Jump If the Parallel Interrupt

flag is Set/Clear.

JIS,INT xxx or JIC,INT xxx Jump If the Master Interrupt

—= - flag is Set/Clear.

Note: This flag is set whenever any one of the decision flags,

strapped into the interrupt structure, is set. These
decision flags are usually chosen from the following.

Push Down Stack flag
Console Alarm flag

Power Fail flag

Relinquish Bus flag
Parallel I/0 Interrupt flag
Serial I/0 Interrupt flag
Real Time Clock flag

4-19

IAK=1 Intermupt Acknowledge. Used to clear the device status
TAK=(flag if it is an interrupting device. Tf the device was the
e only interrupting device IAK will also clear the serial

or parallel interrupt flag. To clear a serial 1/0 interrupt
and status flag:

CHL=x

RG=y

RW=W

IAK=1

IAK=f

To clear a parallel I,0 interrupt and status flag

A=2Z

D=M

IAK=1
IAK=(

In both cases, if the status flag is not connected to the interrupt
Structure, only the device status flag will be cleared.

JIS,SFL xxx or JIC,SFL xxx ,J Jump If Serial I/0 Status

Flag Is Set/Clear.

JIS,PFL xxx or JIC,PPI, xxx [Jump If Parallel I/O Status

Flag is Set/Clear.

Prior to testing a status flag, the proper device must be addressed:
channel and Register selection for serial I/0 Data memory Address
Register (A) for parallel 1,0.

Example: For descriptive purposes, assume a configuration of
3 devices connected to the serial I/0 and 2 devices
connected to the parallel I/0. All have status flags
and are connected to their respective interrupt systems.
They are called SDV1, SDV2, SDV3 and PDV1, PDV2 respectively.
SDV1, SbV3 and PDV1 are for input, SIV2 and PDV2 are
for output. The software system will consist of a
background program called "PROCESS" and a foreground
program called "ACQUISITION". PROCESS will initiate
1/0 operations and AQQUISITION will service these I/0
operations once they have been initiated. Every device
handler is composed of two parts:

1) the Initiator, which will be part of PROCESS
2) the Continuator, which wiil be part of ACQUISITION

For example simplicity we will assume that ACQUISITION

is non-interruptable and thus a reentrant Interrupt
Handler is not needed. Communication between PROCESS

and ACQUISITION will be accomplished through data buffers
and software flags: one BUSY flag for every device
handler. This flag will be automatically set by the
Initiator and cleared

4-11

by the continuator when the I/0 operation

is completed.

Thus PROCESS is given the ability to know

the state of

+ha T/0 over

=Y o
_xxc J-/ A4 \Jk/c QL-LUII

ns.

Devices will be serviced according to the
following priority:

CONTINUATOR

CONTINUATOR

CONTINUATOR

1 PDV1 input
2 PDV2 output
3 SDV1 input
4 SDV2 input
5 SDV3 output
INTERRUPT
HANDLER
NrerrupT, N
‘ "RET"
SERIAL INTERRUPT POV
’ STRTUS , Al
POV
POV? POV
ONTINUATOR CONTINUATOR
SDV?3 SOV SBVv\

To allow an interrupt to take place all subroutines used by PROCESS
return to the calling program by making a direct jump to the inter-
rupt handler entry point subroutine example:

SUBRO™...

JMP~INTH

Thus the maximum time an interrupt request is kept waiting will

be determined by the longest instruction sequence without a jump
to the interrupt handler. Our experience shows that the average
sequence will be around 1§ instructions and, without any special
attention it has never exceeded 4§ instructions in any of our vast
program apolications. To limit the waiting time to a given value,
calls to a dummy subrdutine may be inserted in all sequences ex-

ceeding the limit.

The Interrupt handler for the previous example would be:

INTH™"JIS,INT L1 Test master Interrupt
RET Not set, return
NOP
L17"""J1S,PIN"L2 Test parallel interrupt
R/W=W Not set: serial I/O is interrupting
CHL=
RG= Address SDV1
JIS,SFL L3 Test SDV1 status flag
CHLm Not set
RG= Address SDV2
JIS,SFL 14 Test SDVZ2 status flag
CHL= Not set
RG= Address SDV3
IAK=1 Clear SDV3 status flag
IAK=0
JMP CONS3 Jump to SDV3 continuator
*
127" A= Address PDV1
D=M
JIS,PFL L5 Test PDV1 status flag
A= Not set, Address PDV2
IAK=1 Clear PDV2 status flag
TAK=Q
JMP CONP2 Junp to PDV2 continuator
*
L3""""IAK=1 Clear SDV1 status flag
TAR=(
JMP CONS1 Junp to SDV1 continuator
*
L4777 IAR=1 Clear SDV2 status flag
IAKR=Q
JMP CONS2 Junp to SDV2 continuator
*
L5777 " TIAK=1 Clear PDV1 status flag
IAKR=(Q
JMP CONP1 Junp to PDV1 continuator

4-13

4.6.4 OTHER I,/0 INSTRUCTIONS

JIS,IOC xxx or JIC,IOD xxx

' JIS,ALM xxx or JIC,NLM xxx

£ ———— -

JIS,PWR xxx or JIC,PWR xxx

JIS,PIC xxx or JIC,RIC xxxj

1
JIS,RBF xxx or JIC,RBF xXxx l

. RBC or EBC J
4.6.5 HALT INSTRUCTIONS
l HLT=xx

4.6.6 MASTER RESET
i RST

[——

Jump If serial I/0 bus data line is Set/Clear.
The following instructions are independent

of the standard I/0 structure.

Jurp If external ALARM flag is Set/Clear
Jump If POWER fail interrupt flag is Set/Clear
Jump If Real Time Clock flag is Set/Clear
Jump If Relinquish Bus Flag is Set/Clear
Disable or Enable all serial and parallel

I/0 line drivers and receivers (Relinquish
or Enable Bus Control)

xx=octal number between § and 17.

The halt instruction is available

only with the maintenance and control
chassis connected to the micro-processor.
Otherwise it is treated as a NOP instruction.

Strobe the micro-processor into the PORC
condition.

4-14

CHAPTER 5

PSEUDO-INSTRUCTIONS

PROGRAM ORIGIN

During the first pass if the assembler encounters
no origin statement before the first non-comment
statement, it will request an origin on the teletype.
The answer to be keyed-in must be an octal or a decimal
number in the range @-7777(8).

This feature allows programmers to decide the
program location at Assembly time if they choose to
do so.

An origin statement has the form:

ORG xxoxXx] where xoox

can be either octal, decimal or symbolic.
In any case, when this operand is evaluated it
must yield a result within the range @-7777(8)

Any number of ORG statements can be inserted in
a program.

Examples.

ORG 199
. e Program part I

RET
LSTWD NOP
ORG D1¢

Program part II

ORG LSTWD*1

Program Part III consecutive
to Part I,

DATA MEMORY ADDRESSES RAM

Since the data memory is usually built with
read/write Random Access Memory a "RAM" pseudo-instruc-
tion has been created:

The Assembler will consider all non-comment statements following
a "RAM" as pseudo-instructions defining the address associated with
a label.

The operand XXXXXof a Label definition pseudo-instruction
can be either octal, decimal or symbolic.

The Assembler will stay in the mode where it treats non-camment
statements as Label definitions until it encounters an ORG, an EXT
or an END statement.

Example
LSTWD NOP
*

RAM
LAB1~"144
LAB2~“IABl-1¢
FLAGS™D3

*

*

ORG ISTWD+1

EXTERNAL LABELS EXT

When a label is not declared anywhere in the program as an operand
(Example: the entry point of a subroutine not included in the
program) , an "EXT" pseudo-instruction is used to define it.

The assembler will consider non-comment statement following
an "EXT" as pseudo-instructions defining the address associated
with a label.

The operand XXXXX of a Label definition pseudo-instruction can
be either octal, decimal or symbolic.

The Assenbler will stay in the mode where it treats non-comment
statements as Label definitions until it encounters an ORG, a RAM, or an

END statement.

E}@ggle

JSR SUBRO
CHL=TTY
*

EXT
*
SUBRO™277
SUB2”"SUBRO-1
TTY "7 30

RAM

END OF PROGRAM END l

A source program can be made of several pieces of tape.
Each of them with a leader and a trailer (at least 5 inches of
null characters).

As long as the Assenbler does not encounter an "END"
statement it will assume that there are additional source
tapes to come.

As soon as it finds the "END" statement the Assenbler
stops reading and considers the pass as finished. Anything
after an END statement is ignored.

CHAPTER 6

ASSEMBLER INPUT/OUTPUT

6.1 SOURCE PROGRAM

A source program can contain up to 9999 statements.

When a source program is divided into several
pieces of tape, the last (non-null) character of any
tape must be a return-carriage or a Line feed.

On reader input, a rub-out character is ignored.

On keyboard input (Origin request), The Assembler
ignores the line which contains a rub-out.

6.2 BINARY TAPE FORMAT

The binary tape is built with consecutive blocks
and, of course, a leader and a trailer (null characters).
Each block has the following format:

nd
3rd
4Th

0 |

Loe a2
TaPE | 0| wo o F2
Soron | E| B8 [E| B8
MOTION

Z| 03 |z| -3

(o} < o 5

J ol -~

LAST INSTRUC
WOROD

NOTE: There is a block for every ORG in the
source program

The trailer has the following format

"

NULL

CONTROL-C
CONTROL-B

Every character is provided with even parity
(i.e: the sum of all 8 bits must be even) .

The address word and the instruction words have
the following format:

FIRST CHARACTER SECOND CHARACTER
8l7]l6e 5 4 3 2 1 8{7]6 5 432 1]
WORD BIT 1119 9 8 7 6 54321 ¢

Character BIT 7 is always the complement of BIT 6

in order to have a pPrinting character rather than a
non-printing one.

See Appendix A for the binary tape character
set.

6.3 LISTING FORMAT
Pages are numbered from 1 to 99. The line
number is reset to 1 at the beginning of a source
tape.
& & | &
H ~ (=l
B EH £
4 B4 2&‘@ Aol A ORIGINAL SOURCE INSTRUCTION STATE-
Z A B0 EHO | BHH MENTS
HS 0EQ jnnlrno
S gggg Za | 20
= = -~ [e
—t
;123456789F4111213141516171819 72
|
0001 glggi Fal 9691 D=M MEMORY oa DATA BUS
M
Z
3 £ [IORIGINAL SOURCE PSEUDO-INSTRUCTION
: B OR COMMENT STATEMENTS
a1y ORG 49
P gO11j) * PROGRAM

At the end of the listing the total number of locations

used by the program is printed. (in decimal).

6.4 ERROR MESSAGES

The Assembler will print error messages when it fmds syntax

QCrror: QY 1*’ cannot mm‘j""‘ Ze a 1:‘&1 CY a2 momonic or .Ll_ cannot

evaluate an operand:
These messages are:

ILLEGAL (format error, RAM or EXT block error, literal, channel,
or halt, overflow, mnemonic error.

UNDEFINED (an operand cannot be evaluated).

ADDRESS ERROR (address above 3777 for instruction
memory or above 1777 for data memory)

LABEL ERROR (label format).

DOUBLE DEFINED (label)

SYMBOL TABLE OVERFLOW

The faulty statement follows the error message.

The total error count for a program is given at the end of every pass
(in decimal).

6.5 OPERATING INSTRUCTICONS

6.5.1 Data General Nova Computer: PAPER TAPE SYSTEM Minimum
Configuration: 1 NOVA computer with 4K of Memory
1 Teletype ASR-33

IOADING 1-Turn computer ON, and, if available, set the fast
tape punch and/or line printer to on.

2-Turn teletype ON-LINE.
3-Set switch Register to 7777 for a 4K Nova computer
or 17777 for a 8K Nova computer
or 27777 for a 12K Nova computer
or 37777 for a 16K Nova computer
4-Put the configured "CROSS-ASSEMBLER" binary tape
into the tape reader (teletype reader or, if available,
fast tape reader).
5-Press "Reset"

6-Press "Start", the Computer should load the cross Assembler

6-3

PASS 1

PASS 2

7-Set Switch Register to 40¢
8-Place the source tape into the tape reader
9-Press "Reset"

1@-Press "Start"-Computer should read the first

tape.

11-If more than 1 tape is to be input (for 1 given

program), repeat step 8 and press "Continue"
for every tape.

After the last tape, which must contain an
"END" statement, the computer will print
"N" ERRORS.

12-choose your options:

sw @ sw 1

1 ") Listing
a 1 Binary tape
1 1 Listing & Binary tape simul-

taneously providing they come
from 2 independent devices.

g g No listing, no binary type:
only the error messages.

13-Place the source tape into the tape reader.
l4-Press "Continue"
15-If more than 1 tape, repeat steps 13 and 14

16-After the last tape, the computer is ready

to execute another Pass 2 (Steps 12 to 16)

NOTE: During Pass 2, if the Listing option

has been chosen, one can bypass unwanted
sections of the listing by setting SW 14
to 1, thus only the line number and the
page number are printed. By setting

SW 15 to 1, only the page number is printed.
As soon as these switches are reset to

the printing reverts to complete listing.

OBJECT PROGRAM LOADING

Set "PARITY" switch to parity or NO parity check.

TELETYPE LOADING

1. Set teletype/reader switch to "TTY".
2. Place binary tape into teletype tape reader.
3. Press "LOAD PROGRAM",

READER LOADING

l. Set reader switch to "RDR".
2. Place binary tape into tape reader.
3. Press "LOAD PROGRAM".

Note: It will automatically load until one of the
following conditions occurs:

-It reads a control-B character (Valid end of loading).

-There is a parity error (if parity switch was set).

-There is a Teletype transmission error.

-The Operator pressed "HALT".

6-5

	001
	002
	003
	004
	1-01
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	6-04
	6-05

