RECOMP 111

GENERAL PURPOSE DIGITAL COMPUTER

PROGRAMMING MANUAL

First Printing - August, 1961
Reissued - April, 1963

Revised and Reissued - December, 1964

11,

III.

Iv.

CONTENTS

Page

INTRODUCTION 1
BASIC COMPUTER DESCRIPTION 2
Memory 2
Main Memory 3
High-Speed Memory 3
Control Console 3
Switches 4
Registers 4
A-Register 5
R-Register 5
B-Register 5
C-Register 5
G-Register 5
Index Register 6
Optional Floating Point Hardware 6
INPUT/OUTPUT 7
Flexowriter 7
Facitape 7
Facitape High-Speed Tape Reader 10
Facitape High-Speed Tape Punch 10
Other Input/Output 10
PROGRAMMING 11
Command Structure 11
Data Structure 11
Data Word 12
Command Format 13
List of Commands 13
Use of Index Register 22
Programming Examples 22
Floating Point 24
Floating Point Commands 25
PROGRAMMING SYSTEMS 26
RECOMP III Interpretive Program 26
RECOMP III Compiler 27
APPENDIX I - List of Commands 28

APPENDIX II - Character Codes

- -

30

CONTENTS -~ Continued

ILLUSTRATIONS:

Figure 1. RECOMP III Computer Components

Figure 2. Control Console

Figure 3. Flexowriter

Figure 4. Flexowriter Tape Punch and Tape Reader
FACITAPE Console

Figure 5.

- i -

o

o

I. INTRODUCTION

RECOMP III is a solid-state, general purpose, digital computer
designed for scientific and industrial use. It has a 4096 - word
memory with a 40-bit word length. Each word contains two pro-
gram instructions, therefore, the memory can hold a program
with over 8000 instructions. RECOMP III offers a large command
list of 49 commands, or, when optional floating point hardware is
used, 53 commands. Its Index Register makes machine language
programming a simple task for any engineer or technical person.

RECOMP III will accommodate up to four inputs and four outputs,
and will handle 5 through 8 channel tape. Its equipment is easily
accessible for servicing, and printed circuitry reduces mainten-
ance to a minimum. The computer operates from any standard
outlet.

Operational capabilities and built-in reliability of RECOMP III
have proven its value in any engineering or scientific office where
results have to be computed and obtained quickly.

II. BASIC COMPUTER DESCRIPTION

The basic computer (Figure 1) consists of three assemblies: memory,
Flexowriter, and control console. The operator is concerned only with
the Flexowriter and control console.

MEMORY

The memory is a magnetic disk containing basic timing channels,
arithmetic registers, rapid access loops, and area for information
storage. It will hold 4096 40-bit words, with two instructions per
word, or a total of 8192 internally stored instructions -- a capacity
comparable to that of many large-scale computing systems.

In operation, the memory rotates at 3450 rpm. The disk is coated
with ferrous oxide similar to that on conventional magnetic record-
ing tape. As the disk rotates past each stationary recording (write)
head, a magnetic signal is recorded into the oxide coating, and
remains until replaced by new information. To extract information
from the disk, a reproducing (read) head similar to the recording
head is used. Extraction of information from the memory does not
change its contents.

FLEXOWRITER
CONTROL
CONSOLE

PAPER TAPE READER

PAPER TAPE PUNCH !
_‘ COMPUTER

Figure 1. RECOMP III Computer Components

The disk memory is divided into two portions: the main memory
and the high-speed memory.

Main-Memory

The main memory holds 4080 40-bit words. It is nonvolatile, pro-
tecting stored data from erasure unless erasure is desired. In-
formation in the main memory will not be destroyed during power
interruption or power -off condition.

Words in the main memory are addressed by four octal digits from
0000 to 7757. Average access time is 9. 3 milliseconds.

The sector tract, an inaccessible portion of the main memory,
contains permanently recorded bootstrap and diagnostic routines.
These built-in programs facilitate program loading and easy, fast
computer checkout.

High-Speed Memory

Rapid access to stored information is provided by two high-speed
recirculating loops, L and V, of eight words each. Available in
programming, the L and V loop addresses are indicated by octal
7760 to 7767, and by 7770 to 7777, respectively. One to eight
words can be transferred by option to the L and V loops, and by
option from the L loop. Information contained in the loops is
volatile,

Average access time to the high-speed memory is 1. 8 milliseconds.

CONTROL CONSOLE

The control console provides fast, simple communication between
the operator and computer equipment. (See Figure 2.) Its few
switches and compact design permit operation after a brief in-
struction period. Rt

Figure 2. Control Console

-3 -

Switches on the console are: POWER ON-OFF, COMPUTE,
INPUT SELECT, OUTPUT SELECT, and LOCATION RESET,
Indicator lights on the console are: ON, READY, COMPUTE,
OVERFLOW, and 13 location indicators.

The ON light appears when the power switch is turned ON, The
READY light appears approximately 45 seconds after the power
is turned on. At this time, the computer is ready for operation.

The COMPUTE switch has 3 positions: CONTINUOUS, to start
the computer in continuous operation under program control;
HALT, to stop computation; and SINGLE COMMAND, to execute
one command at a time,

The COMPUTE light is on during all computations.
The OVERFLOW light appears when an overflow condition is

detected. It does not halt computation. The OVERFLOW light
must be turned off by program control.

The 13 location indicator lights display the octal location of the
next instruction to be executed.

The LOCATION RESET switch sets the location counter to 0000. 0;
i.e., when computation is started, the next instruction will be
taken from 0000, 0. '

The INPUT SELECT switch provides a means for operator select-
ion of one of four input devices. When this switch is placedon
"automatic', the program has control of the input. The operator
may override programmed input control by selecting some alternate
device, such as the Flexowriter keyboard or tape reader, a FACI-
TAPE reader, or a card reader, etc.

The OUTPUT SELECT switch provides a means for operator
selection of one of four output devices. When this switch is
placed on "automatic'', the program has control of the output.
The operator may override programmed output control by select-
ing some alternate device, such as the Flexowriter typewriter,
or tape punch, a FACITAPE punch, or a card punch, etc.

REGISTERS

In addition to the main memory and the high-speed memory, the
RECOMP III computer unit includes five recirculating registers:
A-register, R-register, G-register, B-register, and the C-
register., In conjunction with appropriate switching and control

elements, these registers are devices for retaining information
and carrying out basic arithmetic and logical operations.

The five registers each contain one word. The action and pro-
cessing of information within them controls and processes all
data. Contents of the various recirculating registers are not
retained when power to the computer is off.

A-Regi ster:

The most important register is the A (or Accumulator) register,
used in all arithmetic operations. This register holds the results
of arithmetic and logical operations and input/output instructions.

R-Regi ster:

The R-register, often termed the lower accumulator or remainder
register, acts as temporary storage for the remainder in a division,
or for the least significant half of a product obtained in multiplication.
It may be considered in this way an extension of the A-register. It

is also used to extend the range of the divident in the DIVIDE
command, and permits the accumulation of a double length product
resulting from the MULTIPLY command.

B -Regi ster:

The B-register, often referred to as the number register, is an
intermediate storage register which is not directly addressable by
the programmer. It holds the number or operand whose address
is found in the command.

C-Register:

This is the command register from which all instructions are
executed. Address modification directly affects the operand add-
ress of the current instruction under execution within the C or
command register.

G-Register:

The left-half of the G-register contains the location counter (the
current memory address for input control or instruction execution);
and the right-half of the G-register contains the index register.

INDEX REGISTER

One of the major advantages of the RECOMP III over other low-
cost computers is its built-in index register. This register,
under programmed control, modifies addresses and controls

the number of times a given set of instructions will be executed.
It allows a set of instructions to be repeated at very high speeds,
using new data each time. This register can cut programming

time by 35 to 50 per cent, thus substantially lowering operating
costs.

OPTIONAL FLOATING POINT HARDWARE

One of the most tedious tasks encountered by a programmer is

the problem of scaling. Scaling problems can be reduced sub-
stantially by the use of floating point. Two approaches are avail-
able for obtaining floating point capabilities in RECOMP III:

(1) Floating point logic can be simulated by the use of programs
designed for this purpose. Because of the machine time and space
required for this technique, it is considered to have limited use.
(2) The RECOMP III optional floating point hardware can be, and
should be, obtained when the application of floating point programs
is to be at all extensive.

III. INPUT - OUTPUT

A Flexowriter is used for input/output operations with the basic
RECOMP III computing unit. (See Figure 3.) For increased input/
output capacity, a FACITAPE reader/punch console may be attached
to the computer as an optional device.

FLEXOWRITER

Information can be entered into the computer either by typing in
commands and data on the Flexowriter keyboard, or by entering
through the reader commands and data which were prepared pre-
viously on punched paper tape. (See Figures 3 and 4.) Results

can be either typed out or punched. The speed of input and output
is 10 characters per second.

FACITAPE

The FACITAPE console, housed in a handsome cabinet, offers
input/output facilities which are considerably faster than the
standard Flexowriter on RECOMP III. (See Figure 5.) Whenever

special data handling is required, the use of FACITAPE punch and
reader accessories is recommended.

STOP NON {GNORE . PUNCH . TAPE . CODE i S§TOP
READ PRINT §T0P ON

FEED DELETE CODE

Figure 3. Flexowriter Keyboard

iter Tape Punch and Tape Reader

Flexowr

4

igure

F

T

Figure 5. Facitape Console

FACITAPE High-Speed Tape Reader

This nigh-speed tape reader has a read rate of 600 characters per
second. Its positive braking method stops tape within a character.
It is a capacitance reader 1light.

The FACITAPE reader will handle any color and all types of paper tape.
It is inserted or removed simply by lifting the hinged cover.

FACTTAPE Hign - Speed Tape Punch

This highespeed heavy-duty punch can operate at the rate of 150 characters
per second,

OTHER INPUT/OUTPUT

Up to four input and output devices can be attached to the FCOMP IIT
computer, including plotters, A-D converters, D-A converters and other
devices.

- 10 =

Iv, PROGRAMMING

COMMAND STRUCTURE

The computer executes commands sequentially unless a transfer
command is encountered. There are two commands per word as
shown below.

$ 40273 14,6 ,617 (8910 11121314 ,15,16,17,18 119 120,21 22 23 |24,25 26 ,27,28,29,50,31 ,52 33 34,53,36 37 ,38,39
.o'olo'o'o]l "".',ll'l 'll'll|l|l|°) "ol""lr' oloro"l'lo o’olollrilol
PERATION —{~=-CHANNEL —»{<— - SECTOR =1~ | _ |-=+OPERATION #|~=--CHANNEL - ™|~ -SECTOR-] -

E \———— apoRESS ——— & N\————aporeESs —— =
] Ja
g

T3

FIRST COMMAND SECOND COMMAND —————=1

In general, a command pair (word) is copied into the command
C-register; the left command is executed; then the right command
is executed; and then the next command pair is copied into the
command C-register, etc. (The Location Counter is increased
by one-half word for each command.)

The sign of a left-half command is the actual sign of the word.
This sign is ignored by the computer. The effective sign of a
right-half command is the 20th bit. (See diagram above.) If the
sign of a right-half command is minus (a 0 bit), the contents of
the Index Register will be subtracted from the address portion of
the command as the command pair is being copied into the
command register.

The 6 bits of the operation tell the computer what to do, and the
channel and sector portions of the command tell the computer
where to get the data or operand. The half-word bit tells the com-
puter which half-word to refer to (0 for left-half---1 for right-half)
in transfer commands and a few others. The half-word bit is
ignored in most commands.

DATA STRUCTURE

Data words are identical to command pairs in that they consist of
39 bits plus a sign bit, but they are interpreted by the computer
as shown in the following diagram.

-11 -

DATA WORD

19,10, 11, 12,13 ,14 ,i5 16,1718 ;19 ;20,21 22,25 24 128 26,27 28,29,30,31 32 ;33 ;34,35 ,36,37)38,39

—

SIGN-|*

¢,7,0,9
°=°;°l°l°ITT°I°l°l°l°l°l°l°l°F°l°1°l°1°I°l°l°l°lolol°lololololololo

- ABSOLUTE VALUE OF NUMERICAL QUANTITY

The binary point (analogous to decimal point) may be thought of

as lying between the sign and first bit (b = 0) such that all numbers
are fractions less than 1; or it may be thought of as lying after
the 39th bit, such that all numbers are integers; or (preferably)
as lying in the position which would give the number its true
(unscaled) value (analogous to a desk calculator).

(The programmer usually keeps track of the binary points of his
data and results in the '""'remarks' column of his coding sheet.)

'If the binary point is numbered from 0 (left end of word) to 39

(right end of word), some simple rules suffice to determine the
binary point of the result of arithmetic operations. (Note that
binary points less than 0 and greater than 39 are permissible.)
A small number such as . 0000010110 would "fit" at b = ~5 since
it has no integral part and has 5 leading zeros in the fractional
part. (The absolute value of a number at a binary point of b is
less than 2b,)

These rules are as follows:

(1) In addition and subtraction, the binary points of the two
operands must be the same. Shift commands are pro-
vided to allow the binary points to be lined up.

(2) In multiplication, the binary point of the product is equal
to the sum of the binary points of the two operands; e. g.,
Ab=20xBb=10=ABb=30; Ab=-5xBb=>50-=
AB b = 45 (six bits to the right of the "A' register in the
"R'" register).

(3) In division, the binary point of the quotient is equal to
the binary point of the dividend minus the binary point
of the divisor; e.g., Ab=30/Bb=2A}p =20,

B

The binary point of the remainder (in the "R' register) is equal
to the binary point of the dividend minus 39 (or to the original
binary point of the dividend counted from the left end of the "A"
register).

-12 -

COMMAND FORMAT

Commands are usually written in a form which uses octal (three
bits at a time) for the operation and address and binary for the
half-word bit. For example: +7312340+7243210 means,

ADD the word in channel 12 word 34 (half-word bit zero)
SUB the word in channel 43 word 21 (half-word bit zero)

A program exists which will accept this form of coding and convert
it to binary for storage in memory. (R3P=l, see Appendix IV)

LIST OF COMMANDS

The operation codes usually consist of two octal digits each.
However, some operation codes must have a one in the highest,
next to highest, or half-word bit, of the address. These will be
listed as XX, 4, XX.2, or XX. 1, respectively.

Registers not mentioned are not affected. No source is ever
affected (non-destructive readout). The half-word bit is ignored
unless mentioned. The A, R, and Index Registers will be referred
toas A, R, and I.

Mnemonic Octal Description
CLA 37 Clear and add. Replace the contents of

A with the contents of the word addressed.

‘CLS 36 Clear and subtract. Replace the contents
of A with the negative of the contents of
the word addressed.

RCA 77 Replace the contents of R with the contents
of A. Then replace the contents of A with
the contents of the word addressed.

RCS 76 Replace the contents of R with the contents
of A. Then replace the contents of A with
the negative of the contents of the word
addressed.

ADD 73 Add arithmetically the contents of the word
addressed to the contents of A and put the
sum in A, If overflow occurs, the overflow
indicator will be turned ON, and the sign of
A will be reversed.

-13 -

Mnemonic

Octal

SUB

MPY

DIV

ALS

72

63

66

02

De scriEtion

Subtract arithmetically the contents of
the word addressed from the contents

of A and put the difference in A. If over-
flow occurs, the overflow indicator will
be turned ON, and the sign of A will be
reversed,

Multiply the contents of A by the contents
of the word addressed, and replace the
contents of A and R with the product.
Both A and R will have the sign of the
product.

Divide the contents of A and R (dividend
has sign of A) by the contents of the word
addressed and replace the contents of A
by the quotient and the contents of R by
the remainder (with original sign of A).

If overflow occurs, the overflow indicator
will be turned ON,

Shift the contents of A left the number of
places in the least significant bit of the
channel portion and the 6 bits of the sector
portion of the address (0 to 127 decimal).
Bits leaving the left end of A are lost.

Bits entering the right end of A will be
zeros. The sign position of A is neither
shifted nor affected.

NOTE: All shift commands utilize the same seven bits to indicate
the amount of shift, either 12-18 for a left-half command
or 32-38 for a right-half command.

ASC

ASV

02.4

02.2

Shift the contents of A left the amount of
shift specified or until A is normalized
(the left-most bit of A is a one), whichever
occurs first. Decrement I by the number
of places actually shifted.

Shift the contents of A left the amount of
shift specified. Turn the overflow indica-
tor on if any of the bits lost from the left
end of A was a one. :

- 14 -

NOTE that the command 02. 6, which has ones in both of the two
high positions of the address, acts as an 02.4 command since no
overflow can occur.

Mnemonic Octal
ARS 03
XAR 56
EXT 70
TRA 51
TPL 55
TMI 53
TOV 52
HTR 71

Desc riRti on

Shift the contents of A right the amount
of shift specified. Bits leaving the right
end of A are lost. Bits entering the

left end of A will be zeros.

Exchange the contents of A with the
contents of R.

Extract (bitwise logical and). Compare
the contents of A with the contents of the
word addressed bit by bit, including the
sign position. Whenever the correspond
ing bits of A and the word addressed are
both 1's, leave the 1 in A, Whenever
either of the corresponding bits of A and
the word addressed is a zero, put a zero
into that position of A. (A plus signis a
one; a minus sign is a zero.)

Transfer. Take the next command from
the half-word specified by the address
instead of sequentially. A half-word bit
of 1 indicates the right-half command.

If the sign of A is positive, take the next
command from the half-word specified
in the address.

If the sign of A is negative, take the next
command from the half-word specified in
the address.

If the overflow indicator is on, turn it
off and take the next command from the
half-word specified in the address.

HALT., When computing is resumed, take

the next command from the half-word
specified in the address.

- 15 -

Mnemonic Octal Description

TZE 50 If the contents of A are equal to zero
(plus or minus), take the next command
from the half-word specified in the
address.

TNZ 11 If the éontents of A are not equal to zero,
‘ take the next command from the half-
word specified in the address.

TLB 15 If'the lowest order (rightmost) bit of A
is 1, take the next command from the
half-word specified in the address.

STO 45 Replace the contents of the word addressed
by the contents of ‘A.

STR 05 Replace the contents of the word addressed
by the contents of R.

STA 65 Replace the address portion of the half
word addressed by the corresponding
address portion of A.

LLS 42 Shift the contents of A and the contents of
R left the amount of shift specified. Make
the sign of A the same as the sign of R.
Bits leaving the left end of A are lost.
Bits entering the right end of R will be
zeros. Bits leaving the left end of R
enter the right end of A.

LCS 42. 4 Shift the contents of A and the contents of
R left the amount of shift specified or
until A is normalized (the leftmost bit of
A is a 1), whichever occurs first. Decre-
ment I by the number of places actually
shifted. Make the sign of A the same as
the sign of R.

LSV 42,2 Shift the contents of A and the contents
of R left the amount of shift specified.
Turn the overflow indicator ON if any of
the bits lost from the left end of A was a
1. Make the sign of A the same as the
sign of R.

- 16 -

Mnemonic Octal Description

CTL 40 Replace the words in the L loop, start-
ing with the word whose least significant
address digit is the same as that of the
address, with consecutive words starting
with the word addressed, until 7767 is
filled. For example:

CTL 12300 will replace words 7760-
7767 with words 1230-1237.

CTL 12360 will replace words 7766
and 7767 with words 1236
and 1237.

CTL 12370 will replace word 7767
with word 1237.

CTV 41 Replace words in the V loop until word
7777 is filled. This command is com-
pletely analogous to CTL 40 (above).

CFL 44 Replace words in memory from the L
loop. Analogous to CTL 40.

NOTE: Copy to or from L commands with loop addresses
(7760-7777) will refer to the so-called ''gray' area
which is the last 16 words of channel 77. The CTV
command may not be used with a loop address., It
copies into V, but from main memory.

-17 -

Mnemonic

Octal

ICH

00

De scriEtion

Input from 1 to 128 8-bit characters

(all but the last 5 are lost) into A from
the input device named in the address
(or set into the input switch on the con-
sole)., The console switch overrides
the device selected in the address, so
it should be set to AUTO.to allow the
program to specify its input device(s).
The form of the address is as follows:

000 XXX XXX XXX X
P ———_

Ignored

I — 3 Number of characters
to be input. (Exception:
64 calls for 128 charac-
ters; 0 calls for 64
characters.)

® Device:

000 Flexowriter keyboard
001 Flexowriter reader
010 FACITAPE reader

As each character is input into the
right-most 8 bits of A, A is shifted
left 8 bits through (including) the

sign position. Since the typewriter
keyboard uses a 6 bit code, the high

2 bits of each character input from

it will be zeros. Either of the tape
readers will read 8 bits per character
with a hole entering as a cne and no-
hole as a zero.

(If the first 2 bits of the address are not
zeros, the first character input will
have its low 2 bit(s) forced to ones
corresponding to the one(s) in the
address.)

- 18 -

Mnemonic Octal
OCH 01
LRS 43

Desc riEti on

Output from 1 to 128 characters from A
to the output device named in the address
(or set into the output switch on the con-
sole). The console switch overrides the
device selected in the address, so it
should be set to AUTO, to allow the pro-
gram to specify its output device(s).

The form of the address is as follows:

XXLXX XXX XXX,

Ignored

fe———PNumber of characters
to be output. (Excep-
tion: 64 calls for 128

characters; 0 calls for
64 characters.)

» Device:

000 Flexowriter keyboard
001 Flexowriter punch
010 FACITAPE punch

As each character is output from the

sign and left-most 7 bits of A, Ais
shifted left 8 bits and the 8 bits of the
last (not the current) character output
enter the right end of A. After output

of the first character, these bits will

be 001001XX, where XX are the first 2
bits of the address. In general, any
output of over 5 characters will be mean-
ingless, although 5 out of every 6 charac-
ters will be the original A register contents.

In output to the Flexowriter keyboard, the
2 high bits of each character are ignored.
Characters with no key to represent them
will type as blanks.

Shift the contents of A and the contents of

R right the amount of shift specified. Make
the sign of R the same as the sign of A.
Bits leaving the right end of R are lost.
Bits entering the left end of A are zero.
Bits leaving the right end of A enter the
left end of R.

-19 -

Mnemonic = Octal
NOP 54
CAZ 16
CMZ 16. 4
CSA - 13
OVN 13. 4
SAP 12
SAN 12. 4
CAR 57
CMP 17
RND 17. 4
CMG 35

De scriRtion

No operation. This command has no
effect.

Replace the contents of A with a positive
zero,

Replace the contents of A with a negative
zero.

Reverse the sign of A,

Turn overflow ON,

Make the sign of A positive.
Make the sign of A negative.

Replace the contents of R with the contents
of A.

Complement A. (Reverse every bit of
A including the sign.)

If the highest order bit of R is 1, increase
the magnitude of A by 1 in the least signi-
ficant position. If overflow occurs, the
overflow indicator will be turned ON,

Compare the contents of A with the con-
tents of the word addressed. Turn the
overflow indicator ON if the word addressed
is arithmetically greater than the contents
of A. Turn the overflow indicator OFF if
the word addressed is arithmetically less
than the contents of A. If the word addressed
and the contents of A are both positive and
equal, do nothing. If the word addressed
and the contents of A are both negative and
equal, reverse the overflow indicator. For
the purpose of this command, plus zero is
considered to be greater than minus zero.

- 20 -

Mnemonic Octal Description

CME 35.1 If the contents of A are not equal to
the word addressed, turn the overflow
indicator ON. For the purpose of this
command, plus zero does not equal
minus zero. Note that, although the
half -word bit of the address is 1, this
command refers to a full word.

LDI 31.1 Replace the contents of the index register
with the right-hand address portion of
the word addressed. Note that if the
half-word bit of the address of this com-
mand is a zero, the command acts as a
NOP.

SLC 25 R Replace the left-hand address portion
of the word addressed with the comple-
ment of the location counter (which will
contain the location of this command).

STI 25.1 Replace the right-hand address portion
of the word addressed with the contents
of the index register.

TIX 10 Subtract 1 at b = 38 from the index
register. If the index register is not
now zero, take the next command from
the half-word specified in the address.
This command (the TIX) must be in a
left-half word itself, but it can transfer
to either half word.

-21 -

UST OF TNDEX REGISTER

When the sign of a right~half command is negative, the indes regis=-
ter will be subtracted from the address of the command as the

command pair is being copied into the command register. For

example, if the index register contained a 5 and a right half command
of -ADD 12,60 were to be executed, the command would enter the
command register as -ADD 12,10,

In the TIX command, a one is subtracted from the index register. The
TIX command does not transfer whenever the index is zcro, either before
or after ths subtraction on the one., The test is done hefore the
subtraction of the one and no transfer will occur when the first 11
bits are zeros. This cccurs hoth when the index is 0O00LO or 00000,

An address with a half-word bit of one will be loaded into the index
register as if its half-word bit were zero,

PROGRAIMMING EXAMPLES

Note that éommands can be operated upon just as though they were
data. For example, if the command pair + CIA 123L0 + SUB 54320
is in location 1000, the following coding would change it to
+ CLA 12340 + SUB 5L330:

+ CIA 10000

+ ADD 20000 (where 2000 contains + 0000000 - 0000010)

+ STA 10001

- 22 -

However, this address modification is usually done by tagging
the command with a minus sign. For example, suppose 64
numbers are stored from location 0123 through location 0222,
and that these 64 numbers are to be totaled. One code todo this
would be:

-+ CLA 01230
-+ ADD 01240

-~ ADD 02220,

but this requires 32 words of coding and is tedious. (If only 3
numbers were to be added, this would be the way to do it.)

Another code is as follows:

COM <+ CLA SUM (previously set to zero)
<+ ADD 01230 (previously set to 01230)
-+ STO SUM
+ CLA COM
- ADD 1 Increase the address of the ADD command by 1
+ STO COM
< CLA COUNT (count previously set to 64)
-+ SUB 1 Decrement count by 1 and test to see if finished
-+ STO COUNT
-+ TNZ COM

This saves space, but takes more time, since 64 ADD's are still
executed plus all the other coding 64 times.

The same program, with the index register, is coded as follows:

-+ LDI COUNT (COUNT equals 64. Any unused right
address can be used for the 64)
+ CAZ Make A zero
COM - ADD 02230
TIX COM

Note that this coding could just as well be used to add up 4000
numbers, or n numbers up to and including the contents of 0222.

Since commands are picked up 2 at a time, it is impossible for a
left-half command to modify the right-half command in the same
word so that it can be executed in its modified condition. Thus,
1000 + STO 10000 + ANY THING will change word 1000 but not the

-23 -

S

command register. Similarly, 1000 + STA 10001 ++ ANYTHING
and 1000 + LDI COUNT - ANYTHING. The ~ ANYTHING is
modified as the command pair enters the command register
(before the index is loaded with the new count).

FLOATING POINT

Floating Point Format

A floating point word is a word with its binary point carried as
part of the word. The programmer need not be concerned with
scaling, overflow, etc., because the arithmetic operations auto-
matically scale the numbers correctly, The format is as follows:

1!2' 3l4|5161?l8|9110'llll?| l3ll4|15116l17118119|ZOIZII22|Z3,24'25126127128|29]30'31132'33134135‘36’37|38,39

4
)
%)

BINARY
POINT

P LUS =3 - " NUMBER -
128 :

where the number (unless it is zero) is normalized; i.e., bit 9

is a one. The binary point is counted from bit 9 instead of bit one.
The binary point plus 128 is used instead of a signed binary point
(this is known as '"excess 128'), Thus -1 would look as follows:

- 10000001 1, 00000000000000000000000000000

A
Assumed binary point One
129 meaning b = 1

Sign of number

The maximum number would thus be 31 one's (approximately 1
times 2127)01' about 1038 The smallest number would be 1/2
times 2-128 or about 10-38, Floating point numbers are also
commonly thought of as fractions times a power of 2 (the exponent).

- 24 -

Floating Point Commands (Optional)

Mnemonic Octal Description
FAD 75 Add arithmetically the floating point

word addressed to A. R is destroyed.
If the sum lies outside the permissible
range, turn the overflow indicator ON.

FSB 74 Subtract arithmetically the floating
point word addressed from A. R is
destroyed. If the difference lies outside
the permissible range, turn the overflow
indicator ON.

FMP 23 Multiply A by the floating point word
addressed. R is destroyed. If the
product lies outside the permissible
range, turn the overflow indicator ON.

FDV 26 Divide A by the floating point word
addressed. R is destroyed. If the
quotient lies outside the permissible
range, turn the overflow indicator ON.

All floating point numbers must be normalized. If they are not,

the computer assumes they are zeros. A floating point zero must
consist of 39 zeros plus sign, (The computer will normalize floating
point results automatically as well as insure that a zero result gets
a zero exponent.)

To convert a floating point integer to a fixed point integer:

ClA n
FAD k
SUB k
STO n

To convert a fixed point integer to a floating point integer:

CIA n n = number to be converted
ADD k k = + }4774000~-0000000

FSB k

STO n

-25 -

V. PROGRAMMING SYSTEMS

RECOMP III INTERPRETIVE PROGRAM

There is a need for a program which will allow relatively un-
trained scientists and engineers to run their problems on an open
shop basis.

There exists such a program, RIP, which allows the RECOMP III
computer to be programmed as though it were a 9-index register,
floating decimal point computer with built-in input/output and
elementary functions (such as square root, sine-cosine, etc.).

This program utilizes a l-character operation code (such as

for addition, i for input, etc.) and a 4-digit decimal address, which
can range from 0 to 3000, plus a 1l-digit index register tag.

An example of the simple coding for a program which will input
10 numbers, add them up, and output their sum, is as follows:

Loc, Op. Addr. Index

0000 1 10 1 Load index number 1 with 10,

0001 i 20 1 Input numbers to locations
10 through 19.

0002 x 1 1 Transfer on index 1 to
location 1.

0003 1 10 1 Load index 1 with 10.

0004 z Clear pseudo-accumulator to
zero.

0005 + 20 1 Add locations 10 through 19.

0006 x 5 1 Transfer on index 1 to
location 5,

0007 o a Output accumulator (which
contains sum).

0008 f 3 1 Output 1 carriage return
{code 3).

0009 t 0 Transfer to location 0 (and

call for 10 more inputs).

For further details, please refer to the write-up of R3P-16.
For fixed point machines and R3P-39 for floating point machines,

-26 -

RECOMP III COMPILER

The RECOMP III Compiler is a FORTRAN -like automatic coding
system which accepts a source program written in a language
clogely resembling the ordinary language of mathematics, and
produces, in one pass, a ready-to-be-run object program in
RECOMP III machine language.

Although this compiler is designed to be run on a basic RECOMP
III, it will efficiently utilize such additional peripheral equipment
as the user may have.

The RECOMP IIl Compiler in effect transforms the RECOMP III
into @ machine with which communication can be made in a
language more concise and more familiar than the RECOMP III
language itself. The result is a considerable reduction in the
training required to program, as well as in the time consumed
in writing programs and eliminating their errors. '

The object programs producved by‘this compiler minimize the

access time to both data and instructions and are nearly as effi-
cient as those written by experienced programmers.

- 27 -

APPENDIX I LIST OF COMMANDS
Mnemonic Octal Description

CLA 37 Clear and Add

CLS 36 Clear and Subtract
RCA 77 R Clear and Add

RCS 76 R Clear and Subtract
ADD 73 Add

SUB 72 Subtract

MPY 63 Multiply

DIV 66 Divide

ALS 02 A Left Shift

ASC 02.4 A Shift and Count
ASV 02.2 A Shift and Overflow
ARS 03 A Right Shift

XAR 56 Exchange A and R
EXT 70 Extract

TRA 51 Transfer

TPL 55 Transfer on Plus
TMI 53 Transfer on Minus
TOV 52 Transfer on Overflow
HTR 71 Halt and Transfer
TZE 50 Transfer on Zero
TNZ 11 Transfer on Non-Zero
TLB 15 Transfer on Low Bit
STO 45 Store

STR 05 Store R

STA 65 Store Address

LLS 42 Long Left Shift

LSC . 42. 4 Long Shift and Count
LSV 42.2 Long Shift and Overflow
CTL 40 Copy to LL

CTV 41 Copy to V

CFL 44 Copy from L

ICH 00 Input Character

OCH 01 Output Character
LRS 43 Long Right Shift

NOP 54 No Operation

CAZ 16 Clear A to Zero
CMZ 16. 4 Clear A to Minus Zero
CSA 13 Change Sign of A
OVN 13. 4 Turn Overflow On
SAP 12 Set A Postive

SAN 12. 4 Set A Negative

CAR 57 Copy Ato R

CMP 17 Complement

RND 17. 4 Round

CMG 35 Compare for Greater
CME 35.1 Compare for Equal

- 28 -

APPENDIX I

__LIST OF COMMANDS (continued)

Mnemonic Qctal

Description

LDI 31.
SL.C 25
STI 25,
TIX 10
Optional

FAD 75
FSB 74
FMP 23
FDV 26

1

1

Load Index

Store Location Complement
Store Index

Transfer on Index

Floating Add
Floating Subtract
Floating Multiply
Floating Divide

-29 -

pogeey
ujfifi]

ESESRONISRS RN SRS

APPENDIX 1I

CHARACTER CODES

Blank \ OB BD
Upper Case 1 2331
Lower Case \ @32 &
Back Space 1 @331 1

1001 8@

1231 @1
a A g @
b B 147111
cC 121 2@
d D 191 @31
e E g g
f F 181811
g G 121108
h H 1811a
i 1grig
jJ g1
k K 11 0@3%
1 L 118831
m M 119881 @
n N 118311
00 1181308
p P 11@1 0
q Q 1g11g
r R g
s S 11108273
t T 111
u U Mg g
vV 111dgn
w W 11118
x X 11111
y Y 1111149
z 7z 111111

- 30 -

ode Delete

ty

O B DO

16
32
64
128

256
512
1024
2 048

4 096
8 192
16 384
32 768

65 536
131 072
262 144
524 288

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1 073 741 824
2 147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

WO

ES - WIS

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
217

28
29
30
31

32
33

35

36
31
38
39

APPENDIX III

POWERS OF TWO

[RS]
|

coor
- N NoO

.25
125
0.062 5
0.031 25
0.015 625
0.007 812 5

0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

- 31 -

APPENDIX 1V

v

PRSERALT TWWLE: RECOMP 1II, LOAD/START

1. PURPOSE

To provide means for starting a program, for loading of
command format, alphanumeric format, or relocatable format
program tapes, for output of command format, for alphanumeric
information on tapes, and for basic debugging aids.

2. PROCEDURE
2.1 Lioading procedure:

(1) The beginning of this program tape contains a bootstrap,
self-loading, routine that requires a special loading
procedure.

a. Place the tape in the reader, Flexowriter, or

Facit, and turn the input switch on the console
to the selected device.

b. Note: The operator must hold the reset button
down while loading the bootstrap routine. While
holding the reset button down, place the operzation
switch on continuous. When reading stops, take
the operating switch out of continuous first, and
release the reset switch.

(2) Now place the operation switch or continuous and the
bootstrap routine will load the program.

2.2 Initial entry to the program is by a transier to location 0000.0
or by depressing the ''reset'" button on the computer. (Beiore
depressing the ''reset" button, the operation switch should be
in its off position.) After releasing the ''reset' button, set the
operation switch to the '"continuous' position.

2.3 To perform a particular function, follow the instructions given
in paragraph #3 for the desired function. The input and output
control switches are presumed to be in the "‘automatic'' position
unless stated otherwise in the function description.

- 32 -

TITLE:

2.4

301

3.2

3.3

APPENDIX 1V

1OAD/START

In all except the HALT, START, or ALPHA functiohs,v return
is made to step 2. 3 for additional function selection.

FUNCTIONS

Alrhanumeric Program Input:

Place any alphanumeric program tape (that was prepared by

the Dump function of this program or any program that produces
similar format) in the desired reading device and set the input
control switch to the device chosen. After the tape is read, a
check sum will be compared and if in agreement with the data
just read, will continue reading until a stop code (visual E on
tape) is read. If check sum did not agree, a slash (/) will be
typed, but reading will continue. When all alphanumeric loading
is completed, reset the input control switch to "automatic''.

Manual Alphanumeric Input:

Type axxxx{CR) where xxxxx is the first location to be filled
with alphanumeric data. Xollow the carriage return by the
cesired alphanumervric characters. These characters will be
loaded 5 to a word in sequential locations starting at the address
initizlly entered in this function. As each computer wordis
filled, the "input" light on the typewriter will biink .
The last computer word should be padded {if necessary) with
blanks. Exit from this mode with the ''reset'’ button as des-
cribed in 2. 2. A rougn check of the data entered can be made
by setting the output control swiich to the typewriter position
(position 1) and performing an alphanumeric dump (3. 7) of the
area affected. The first and last 5 output characters will be
meaningless.

Command Format Input:

Type cxxxxx{CR) where xxxxx is the first location to be filled
with command format data. Follow the carriage return with
the command format data of form +xxxxxxx+xxxxxxx(CR) where
xis ar octal digit. * The inside sign may be 1 or .

- 33 -

3.5

3.6

3.7

APPENDIX 1V

LOAD/START

{continued):

If at any time an error is detected by the operator, type a
slash and re-enter that word. (See 3.18 for error correction.)
The command format data is stored seguentially starting from
the address given until another C function is received. Aiter
any carriage return, a new function may be initiated. If this
data is on tape, load the tape and set the input selector switch
to the input device chosen.

Repeat Previous Command Format Input:

By typing a decimal point (.), the last command format word
entered will be entered again and the command format input
location counter will be stepped to the next location. This
function must be preceded by either functions 3. 3, 3.4, or 3.17.
This function is most useful when a large amount of identical
command format data is to be entered sequentially.

Commandé Format Print:

Type pxxxxyyyy(CR) where xxxx is the first location to be typed
and yyyy is the last location to be typed. Each word is followed
by a carriage return. If this area is to be punched instead of
typed, set the output selector switch to the desired device. After
the output is completed, a new function may be performed.
{See note 4. 5.)

Register List:

Since the original con:ents of ali the registers and loops are
saved when entering the Load/Start routine and restored just
before exit, the original contents of A, R, and Index Registers
may be typed in command format in that order by typing the
Character .

Memory Dummp:

Type dxxxxyyyy(CR) where xxxx is the first location to be
punched in alphanumeric format and yyyy is the last location
to be punched. This information is preceded by an assignment

-3 -

APPENDIX 1V

TITLE: LOAD/START

3.7 {continued):

word and followed by a checksum word. These memory dumps
may be read back into memory by using function 3.1 or any
similar program. If the information is to be dumped on any
device other than the Flexowriter punch, set the output selector
switch to the desired device.

.

3.8 Tape Feed:

By typing the characterr’, approximately five inches of blank
tape will be punched. This function would be used before any
memory aump and perhaps between sections of a tape containing
more than one dumped area.

3.9 Tave Trailer:

By typing the character e, a stop code will be punched on tape
ioillowed by a visual E (in order to recognize the end of the tape)
and ioilowed again by approximately five inches of blank tape.
This function would normally be used to end all memory dump
tapes.

3.10 Veriiy Memory Dumnp:

Load a memory dump tape {one which was punched by the Memoxry
Dump function (3. 7) or similar program) on the Flexowriter tape
reader and type the letter v. The data will be read (not into
memozry) and the sum of this data will be compared with the

last word on tape. (No memory compariscn is made.) If in
agreement, 2 new function code will be called for. If notin
agreement, a slash will be iyped before asking for a new iunction
ccde. If a memory dump tape contains more than one area, ic
will be necessary to type a2 v as each new area is reached, II

a cevicd other than the Flexowriter reader is to be used, set tae
input selector switch to the desired device.

-

Relocatable Input:

w
.

fees)
ot

'?“1» -

or a similar program) in the Flexowriter tape reader and type
;xym\C’?.) wnere xxxxx is the desired first word location of
the program being read, Aiter reading is completed, if the

- 35 -

APPENDIX |V

TITLE: LOAD/START

3.11 (continued):

checksum is in agreement with the data read, a new function
code will be called for. If not, a slash will be typed before a
new function code is called for. If the tape is to be read by
other than the Flexowriter tape reader, set the input selector
switch to the desired device. NOTE: If the program being
relocated contains loop instructions (40, 41, 44), the program
should start with an address that is a multiple of 8 (last octal
digit zero).

3.12 Start:
Type sxxxxx(CR) where xxxxx is the location to be transferred
to. Before the transfer is made, the A, R, Index, and L and
V loops are restored to the exact conditions they were when

the Load/Start program was last entered. (See note 4.5 and 4.56.)

3.13 Halt and Transfer:

Type nxxxxx(CR) where xxxxx is the desired address for the
HTR instruction at the end of this function. Before periorming
this HTR instruction, the A, R, Index, and L and V loops are
restored to the exact conditions they were when the Load/Star
program was last entered. (See note 4.5 and 4.50.)

3.14 Overflow Reverse:

Since while entering the Load/Start program, the overflow
alarm was turned off, it may be desirable to turn the overilow
on (or off) before performing a transfer function (see 3. 12 or
3.13). To reverse the present state of the overflow alarm,
type the letter o.

3.15 uick Check of Load/Start Program:

As a check to see if the Load/Start program is in memozy
correctly, type the letter g. If correct, a new function code
will be called for., If incorrect, a slash will be typed before
calling for a new function code.

- 36 -

3.17

3.18

4.4

APPENDIX 1V

LOAD /START

Stop:

Whenever a stop code (52) is detected while the Load/Start
program is looking for a function code, a HTR 0002. 0 in-
struction will be executed. Put the compute switch to its
center position and back to compute in order to continue.

Ignore:

At any time in all functions, except alphanumeric inputs
(3.1, 3.2, 3.10, 3.11), a delete code (77) is ignored.

When the Load/Start program is looking for a function code,
it also ignores blank (00), lower case (02), space (53),
carriage return (54), and tab (55).

Error:

Ii at eny time an error is detected by the operator while
entering data for a function, the slash character {/) will cause
another slash to ce typed followed by a carriage return before
calling for a new function code. If at any time, the Load/Start
program detects an errgr, a siash and carriage return will
also be typed before calling for a new function code.

NOTE
AL

All functions that end with a carriage return could just as well
be terminated with a space or tab.

Many errors on input will be detected, but not ail.

Although this program occupies channels 0 and 1, channei |
may be used for other purposes if cnly the following functions
are needed: Alphanumeric Program Input, Command Format
Input, Repeat Previous Command Format Input, Star:, Halt
and Transfer, Stop, Ignore, and Error.

During the input of a five digit address, an 8 digit limit, or all

but the first sign position of command format inputs, the leiter
L is accepted as the number one (1).

- 37 -

TITLE:

APPENDIX 1V

LOAD/START

The L and V loops may be listed if desired by the function
p77607777(CR). Note, however, that the memory dump function
{3.7) and relocatable input function (3. 11) modify the V loop.

The L gray area is not modified; however, the V gray area will
contain the original contents of the L loop when exit is made
from this program.

None of the data inputs allow entry into the L loop. V loop
efitry is permissible.

LOCATION

This program is not relocatable and must occupy locations 0000
to 0177. (See note 4.3.) Load this program using the Bootstrap
Loading Procedure as outlined in RECOMP III Technical Bulietin

No. 1.

PROGRAM PREPARATION FCRMAT

The following examples show several acceptable formats for
typing a program the first time for entry through the Load/Start
program.

c10000(CR)
+1234560-1615141(CR)
+5177600+3700340(CR)
-4220240+5200130(CR)
+1200000+5100130{CR)
+4000600+5101260(CR)
-0000000-0000000(CR)
...{CR)
+4500340+4200240(CR)
+4000050+5100731{CR)
+4077600+7200020{CRY}
+3100171+0000010(CR)
+4300030+1500170(CR)
(ETC)

- 38 -

APPENDIX

LOAD/START

v

c10000(CR}
+1234560-1615141(CR)
+5177600+3700340{CR)
-4220240+5200130{CR)
+1200000+5100130(CR)
+4000600+5101260(CR)
-0000000-0000000(CR)
.. (CR)
(CR)
c10100(CR)
+4500340+4200240(CR)
+4000050+5100731{CR)
+4077600+7100200(CR)
(ETC)

+1234560-1615141(sp)+5177600+3700340{sp)-4220240+5200130(CR)
+1200000+5100130(sp)+4000600+5101260(sp)-0000606-000000G{CR)
(sp)..{CR)

(CR)

c10100(CR)

. +4500340+4200240(sp)+4000050+5100731{sp)+4077600+7100200(CR)
(ETC)

MEMORY DUMP FORMAT

All data punched by the memory dump function and read by

the verify or alphanumeric input function will be in the following
£

format,

First word (5 characters) will be negative, contain a 4 at binary
7, contain the number of words in the memocry dump at binary 19,
and contain the last word location +1 of the data in the right

o
address portion.

Following the first word is the data itself, punched 5 characters
per word with the first data word also first on tape.

The last data word (5 characters) will be a checksum derived

by the addition of all the data on tape (not counting the first
assignment word) and ignoring overiiow.

-39 -

TITLE:

8.2

8.3

8.4

APPENDIX 1V

LOAD/START

In most cases, the end of the tape will contain a stop code
and a visual E following the checksum wozrd.

RELOCATABLE INPUT FORMAT

All programs read by the relocatable input function must be
in the following format:

The first non-blank character on tape is a code character,
the next 5 characters form the first program word with all
relative addresses in this word relative to zero.

The code character has 5 states. State 1 (10601000

that the word that follows has no relative addresses. State 2
(01110110) incicates that the word that folilows has a relative
right address only. State 3 (00100110) indicates that the
word that follows has a relative left adéress only. State 4
(01001110) indicates that the word that follows has a relative
left and right address.

Foilowing the last data word is a code character that contains
a iow bit such as 00000001, -

Following this low bit character is a checksum word (5 char-
acters) which is derived by the addition of all the cata words
on tape {not counting code characters and all relative
adGresses relative to zero) and ignoring overfiow.

In most cases, the end of the tape contains a stop code and
a visual E following the checksum wozrd.

- 40 =

APPENDIX 1V

TITLE: LOAD/START
9. FUNCTION SUMMARY
(1) Alphanumeric Program Input set input selector switch
to desired tape reading
v . cevice,
{2) Manual Alphanumeficlinpu’cv axxxxx{CR)
{(3) Command Format Input cxxxxx{CR)

+xexeseesesext xxxxxxw{CR) - -

{£) Repeat Previous Command type decimeal point (.)

{5) Command Format Print pxxxxyyyvy(CR)

{6) Register List ' type letter r

{7) ‘Memory Dump dxxxxyyyy(CR)

(8) Tape Feed ' type character

{9 Tape Trailer type letter e

{10) Verify Memory Dump type letter v

{11) ‘Relocatable Input o ixxxxx(CR)

{12) Start - sxxxxx{CR)

{13) Halt and Transfer hxxxxx{CR)

(14) Overflow Reverse tyve letter o

{15) Quick Check of Load/Start

‘ Program type letier g

(16) Stop when stop ccée is read

(17) Ignore Always code delete (77),
usually biark (00), iower
case (02), space (53),
carriage return (54), and
.55

(18) Error if recognized by operator,

type a slash (/). If computer
recognized, a slash will be
tyoed.

