
RECOMP III

GENERAL PURPOSE DIGITAL COMPUTER

PROGRAMMING MANUAL

First Printing - August, 1961
Rei s sued - April, 1963

Revised and Reissued - December, 1964

CONTENTS

Page

1. INTRODUCTION 1

II. BASIC COMPUTER DESCRIPTION 2
Memory 2

Main Memory 3
High -Speed Memory 3

Control Console 3
Switche s 4

Registers 4
A-Register 5
R-Register 5
B-Register 5
C -Register 5
G-Register 5

Index Re gi ste r 6
Optional Floating Point Hardware 6

III. INPUT / OUTPUT 7
Flexowri te r 7
Facitape 7

Facitape High-Speed Tape Reader 10
Facitape High-Speed Tape Punch 10

Other Input/Output 10

IV. PROGRAMMING 11
Command Structure 11
Data Structure 11

Data Word 12
Command Format 13
List of Commands 13
Use of Index Register 22
Programming Example s 22
Floating Point 24

Floating Point Commands 25

V. PROGRAMMING SYSTEMS 26
RECOMP III Interpretive Program 26
RECOMP III Compiler 27

APPENDIX I - Li st of Commands 28
APPENDIX II - Character Code s 30

- i -

CONTENTS - Continued

ILLUSTRATIONS:

Figure l.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

RECOMP III Computer Components -------Control Console ---------------------------Flexowri te r --------------------------------Flexowriter Tape Punch and Tape Reader ----FACITAPE Console --------------------------

- ii -

2
3
7
8

9

iii

1. INTRODUCTION

RECOMP III is a solid-state, general purpose, digital computer
de signed for scientific and industrial use. It has a 4096 - word
memory with a 40-bit word length. Each word contains two pro­
gram instructions, therefore, the memory can hold a program
with over 8000 instructions. RECOMP III offers a large command
list of 49 commands, or, when optional floating point hardware is
used, 53 commands. Its Index Register makes machine language
programming a simple task for any engineer or technical person.

RECOMP III will accommodate up to four inputs and four outputs,
and will handle 5 through 8 channel tape. Its equipment is easily
accessible for servicing, and printed circuitry reduces mainten­
ance to a minimum. The computer operates from any standard
outlet.

Operational capabilitie s and built-in reliability of RECOMP III
have proven its value in any engineering or scientific office where
results have to be computed and obtained quickly.

- 1 -

II. BASIC COMPUTER DESCRIPTION

The basic computer (Figure 1) consists of three assemblies: memory,
Flexowriter, and control console, The operator is concerned only with
the Flexowriter and control console.

MEMORY

The mem.ory is a magnetic disk containing basic timing channels,
arithmetic registers, rapid access loops, and area for information
storage. It will hold 4096 40-bit words, with two instructions per
word, or a total of 8192 internally stored instructions - - a capacity
comparable to that of many large -scale computing system.s.

In operation, the memory rotates at 3450 rpm. The disk is coated
with ferrous oxide similar to that on conventional magnetic record­
ing tape. As the disk rotates past each stationary recording (write)
head, a magnetic signal is recorded into the oxide coating, and
remains until replaced by new information. To extract information
from the di sk, a reproducing (read) head similar to the recording
head is used. Extraction of information from the memory doe s not
change its contents.

FLEXOWRITER

PAPER TAPE READER
PAPER TAPE PUNCH 1

Figure 1. RECOMP III Computer Components

- 2 -

The disk memory is divided into two portions: the main memory
and the high-speed memory.

Main-Memory

The main memory holds 4080 40-bit words. It is nonvolatile, pro­
tecting stored data from erasure unless erasure is desired. In­
formation in the main memory will not be destroyed during power
interruption or power -off condition.

Words in the main memory are addressed by four octal digits from
0000 to 7757. Average access time is 9.3 milliseconds.

The sector tract, an inaccessible portion of the main memory,
contains permanently recorded bootstrap and diagnostic routines.
These built-in programs facilitate program loading and easy, fast
computer checkout.

High-Speed Memory

Rapid access to stored information is provided by two high-speed
recirculating loops, L and V, of eight words each. Available in
programming, the L and V loop addre sse s are indicated by octal
7760 to 7767, and by 7770 to 7777, respectively. One to eight
words can be transferred by option to the L and V loops, and by
option from the L loop. Information contained in the loops is
volatile.

Average access time to the high-speed memory is 1. 8 milliseconds.

CONTROL CONSOLE

The control console provide s fast, simple communication between
the operator and computer equipment. (See Figure 2.) Its few
switches and compact design permit operation after a brief in­
struction period.

Figure 2. Control Console

- 3 -

Switches on the console are: POWER ON-OFF, COMPUTE,
INPUT SELECT, OUTPUT SELECT, and LOCATION RESET.
Indicator lights on the console are: ON, READY, COMPUTE,
OVERFLOW, and 13 location indicators.

The ON light appears when the power switch is turned ON. The
READY light appear s approxim.ately 45 seconds after the power
is turned on. At this time, the com.puter is ready for operation.

The COMPUTE switch has 3 positions: CONTINUOUS, to start
the com.puter in continuous operation under program. control;
HALT, to stop cOITlputation; and SINGLE COMMAND, to execute
one com.m.and at a tiITle.

The COM.PUTE light is on during all com.putations.

The OVERFLOW light appears when an overflow condition is
detected. It does not halt com.putation. The OVERFLOW light
ITlust be turned off by prograITl control.

The 13 location indicator lights di splay the octal location of the
next instruction to be executed.

The LOCATION RESET switch sets the location counter to 0000.0;
i. e., when com.putation is started, the next instruction will be
taken from. 0000. O.

The INPUT SELECT switch provides a m.eans for operator select­
ion of one of four input device s. When thi s switch is placed on
"autom.atic", the program. has control of the input. The operator
m.ay override program.m.ed input control by selecting som.e alternate
device, such as the Flexowriter keyboard or tape reader, a FACI­
TAPE reader, or a card reader, etc.

The OUTPUT SELECT switch provides a means for operator
selection of one of four output devices. When this switch is
placed on "autom.atic", the program. has control of the output.
The operator m.ay override program.m.ed output control by select­
~ng SOITle alternate device, such as the Flexowriter typewriter,
or tape punch, a FACITAPE punch, or a card punch, etc.

REGISTERS

In addition to the m.ain ITlem.ory and the high - speed m.eITlory, the
RECOMP III cOITlputer unit includes five recirculating registers:
A-register, R-register, G-register, B-register, and the C­
regi ster. In conjunction with 'appropriate swi.tching and control

- 4 -

elements, these registers are devices for retaining information
and carrying out basic arithmetic and logical operations.

The five registers each contain one word. The action and pro­
ce s sing of information within them controls and proce s se saIl
data. Contents of the various recirculating registers are not
retained when power to the computer is off.

A-Regi ster:

The most important regi ster is the A (or Accumulator) regi ster,
used in all arithmetic operations. Thi s regi ster holds .the re suits
of arithmetic and logical operations and input/ output instructions.

R-Register:

The R-regi ster, often termed the lower accumulator or remainder
register, acts as temporary storage for the remainder in a division,
or for the least significant half of a product obtained in multiplication.
It may be considered in this wayan extension of the A-register. It
is also used to extend the range of the divident in the DIVIDE
command, and permits the accumulation of a double length product
resulting from the MU.LTIPLY command.

B -Register:

The B-register, often referred to as the number register, is an
intermediate storage register which is not directly addressable by
the programmer. It holds the number or operand whose address
is found in the command.

C-Register:

This is the command register from which all instructions are
executed. Addres s modification directly affects the operand add­
ress of the current instruction under execution within the C or
command register.

G-Register:

The left-half of the G-register contains the location counter (the
current memory addre ss for input control or instruction execution);
and the right-half of the G-register contains the index register.

- 5 -

INDEX REGISTER

One of the major advantages of the RECOMP III over other low­
cost computers is its built-in index register. This register,
under programmed control, modifies addresses and controls
the number of time s a given set of instructions will be executed.
It allows a set of instructions to be repeated at very high speeds,
using new data each time. Thi s regi ster can cut programming
time by 35 to 50 per cent, thus substantially lowering operating
costs.

OPTIONAL FLOATING POINT HARDWARE

One of the most tedious tasks encountered by a programmer is
the problem of scaling. Scaling problems can be reduced sub­
stantially by the use of floating point. Two approaches are avail­
able for obtaining floating point capabilitie s in RE COMP III:
(l) Floating point logic can be simulated by the use of programs
designed for this purpose. Because of the machine time and space
required for this technique, it is considered to have limited use.
(2) The RECOMP III optional floating point hardware can be, and
should be, obtained when the application of floating point programs
is to be at all extensive.

- 6 -

III. INPUT - OUTPUT

A Flexowriter is used for input/ output operations with the basic
RECOMP III computing unit. (See Figure 3.) For increased input/
output capacity, a FACITAPE reader/punch console may be attached
to the comput~r as an optional device.

FLEXOWRITER

Information can be entered into, the computer either by typing in
commands and data on the Flexowriter keyboard, or by entering
through the reader commands and data which were prepared pre­
viously on punched paper tape. (See Figures 3 and 4.) Results
can be either typed out or punched. The speed of input and output
is 10 characters per second.

FACITAPE

The FACITAPE console, housed in a handsome cabinet, offers
input/ output facilities which are considerably faster than the
standard Flexowriter on RECOMP III. (See Figure 5.) Whenever
special data handling is requi red, the use of F ACIT APE punch and
reader acce s sorie sis recommended.

Figure 3. Flexowrite r Keyboard

- 7 -

Figure 4. Flexowriter Tape Punch and Tape Reader

Figure 5. Facitape Console

- 9 -

FACITAPE High-Speed Tape Reader

This high-speed tape reader has a read ra,te of 600 characters per
second. Its positive braking method stops tape wi thin a character.
It is a capacitance reader light.

The FACITAI~ reader will handle any color and all types of paper tape.
It is inserted or removed simply by lifting the hinged cover.

FACITAPE Hign - Speed Tape Punch

This high-speed heavy-duty punch can operate at the rate of 1.50 characters
per second.

OTHER INPUT/OUTPUT

Up to four input and output devices can be attached to the HE.:COMP III
computer, including plotters, A-D converters, D-A converters and other
devices.

- 10 -

I V. PROGRAMMING

COMMAND STRUCTURE

The computer executes commands sequentially unless a transfer
command is encountered. There are two commands per word as
shown below.

'----- ADDRESS __ -..J

...... ----- FIRST COMMAND -----... .;-1------

In general, a command pair (word) is copied into the command
C-register; the left command is executed; then the right command
is executed; and then the next command pair is copied into the
command C-register, etc. (The Location Counter is increased
by one -half word for each command.)

The sign of a left -half command is the actual sign of the word.
Thi s sign is ignored by the computer. The effective sign of a
right-half command is the 20th bit. (See diagram above.) If the
sign of a right-half command is minus (a 0 bit), the contents of
the Index Register will be subtracted from the address portion of
the command as the command pair is being copied into the
command register.

The 6 bits of the operation tell the computer what to do, and the
channel and sector portions of the command tell the computer
where to get the data or operand. The half-word bit tells the com­
puter which half-word to refer to (0 for left-half---l for right-half)
in transfer commands and a few others. The half-word bit is
ignored in most commands.

DATA STRUCTURE

Data words are identical to command pairs in that they consist of
39 bits plus a sign bit, but they are interpreted by the computer
as shown in the following diagram.

- 11 -

DATA WORD

The binary point (analogous to decimal point) may be 'thought of
as lying between the sign and first bit (b = 0) such that all numbers
are fractions Ie s s than 1; or it may be thought of a's lying after
the 39th bit, such that all numbers are integers; or (preferably)
as lying in the position which would give the number its true
(unsealed) value (analogous to a desk calculator).

(The programmer usually keeps track of the binary points of hi s
data and results in the "remarks" column of his coding sheet.)

. If the binary point is numbered from 0 (left end of word) to 39
(right end of word), some simple rules suffice to determine the
binary point of the result of arithmetic operations. (Note that
binary points less than 0 and greater than 39 are permissible.)
A small number such as .0000010110 would "-fit" at b = -5 since
it has no integral part and has 5 leading zeros in the fractional
part. (The absolute value of a number at a binary point of b is
less than 2b.)

These rules are as follows:

(1) In addition and subtraction, the binary points of the two
operands must be the same. Shift commands are pro­
vided to allow the binary points to be lined up.

(2) In multiplication, the binary point of the product is equal
to the sum of the binary points of the two operands; e. g. ,
A b = 20 x B b = 10 = AB b = 30; A b = - 5 x B b = 50 =
AB b = 45 (six bits to the right of the "A" regi ster in the
"R" register).

(3) In division, the binary point of the quotient is equal to
the binary point of the dividend minus the binary point
of the divisor; e. g., A b = 30 / B b = A b = 20.

B

The binary point of the remainder (in the "R" register) is equal
to the binary point of the dividend minus 39 (or to the original
binary point of the dividend counted from the left end of the "A"
register).

- 12 -

COMMAND FORMAT

Commands are usually written in a form which uses octal (three
bits at a time) for the operation and address and binary for the
half-word bit. For example: +7312340+7243210 means,

ADD the word in channel 12 word 34 (half-word bit zero)
SUB the word in channel 43 word 21 (half -word bit zero)

A program exists which will accept thi s form of coding and convert
it to binary for storage in memory. (R3P-l, see Appendix IV)

LIST OF COMMANDS

The operation codes usually consist of two octal digits each.
However, some operation codes must have a one in the highest,
next to highest, or half-word bit, of the address. These will be
listed as XX. 4, XX.2, or XX. 1, respectively.

Registers not mentioned are not affected. No source is ever
affected (non-de structi ve readout). The half -word bit is ignored
unless mentioned. The A, R, and Index Registers will be referred
to as A, R, and I.

Mnemonic Octal

CLA 37

36

RCA 77

RCS 76

ADD 73

De scription

Clear and add. Replace the contents of
A with the contents of the word addre s sed.

Clear and subtract. Replace the contents
of A with the negative of the contents of
the word addre s sed.

Replace the contents of R with the contents
of A. Then replace the contents of A with
the contents of the word addre s sed.

Replace the contents of R with the contents
of A. Then replace the contents of A with
the negative of the contents of the word
addressed.

Add arithmetically the contents of the word
addressed to the contents of A and put the
sum in A. If overflow occurs, the overflow
indicator will be turned ON, and the sign of
A will be reversed.

- 1 3 -

Mnemonic Octal De scription

SUB

MPY

DIV

ALS

NOTE:

ASC

ASV

72

63

66

02

Subtract arithmetically the contents of
the word addressed from the contents
of A and put the difference in A .. If over­
flow occurs, the overflow indicator will
be turned ON, and the sign of A will be
reversed.

Multiply the contents of A by the contents
of the word addressed, and replace the
contents of A and R with the product.
Both A and R will have the sign of the
product.

Divide the contents of A and R (dividend
has sign· of A) by the contents of the word
addre s sed and replace the contents of A
by the quotient and the content s of R by
the remainder (with original sign of A).
If overflow occurs, the overflow indicator
will be turned ON.

Shift the content s of A left the number of
places in the least significant bit of the
channel portion and the 6 bits of the sector
portion of the address (0 to 127 decimal).
Bits leaving the left end of A are lost.
Bits entering the right end of A will be
zeros. The sign position of A is neither
shifted nor affected.

All shift commands utilize the same seven bits to indicate -the amount of shift, either 12-18 for a left-half command
or 32 ~38 for a right-half command.

02.4

02.2

Shift the contents of A left the aITlount of
shift specified or until A is normalized
(the left-ITlost bit of A is a one), whichever
occurs first. Decrement I by the number
of places actually shifted.

Shift the contents of A left the amount of
shift specified. Turn the overflow indica­
tor on if any of the bits lost from the left
end of A was a one.

- 14 -

NOTE that the command 02. 6, which has one s in both of the two
high positions of the address, acts as an 02.4 command since no
overflow can occur.

Mnemonic Octal

ARS 03

XAR 56

EXT 70

TRA 51

TPL 55

TMI 53

TOV 52

HTR 71

Description

Shift the contents of A right the amount
of shift specified. Bits leaving the right
end of A are lost. Bits entering the
left end of A will be zeros.

Exchange the contents of A with the
contents of R.

Extract (bitwi se logical and). Compare
the contents of A with the contents of the
word addressed bit by bit, including the
sign position. Whenever the correspond­
ing bits of A and the word addressed are
both l' s, leave the 1 in A. Whenever
either of the corresponding bits of A and
the word addressed is a zero, put a zero
into that position of A. (A plus sign is a
one; a minus sign is a zero.)

Transfer. Take the next command from
the half-word specified by the address
instead of sequentially. A half -word bit
of I indicate s the right -half command.

If the sign of A is positive, take the next
command from the half -word specified
in the address.

If the sign of A is negative, take the next
command from the half -word specified in
the addre s s.

If the overflow indicator is on, turn it
off and take the next command from the
half -word specified in the addre s s.

HALT. When computing is resumed, take
the next command from the half -word
specified in the address.

- 15 -

Mnem.onic Octal

TZE 50

TNZ 11

TLB 15

STO 45

STR 05

STA 65

LLS 42

LCS 42.4

LSV 42.2

De scription

If the contents of A are equal to zero
(plus or m.inus), take the next comm.and
from. the half-word specified in the
address.

If the contents of A are not equal to zero,
take the next command from the half­
word specified in the address.

If'the lowest. order (rightmost) bit of A
is 1, take the next command from the
half -word specified in the addre s s.

Replace the contents of the word addressed
by the contents ofA.

Replace the contents of the word addressed
by the contents of R.

Replace the addre s s portion of'the half
word addressed by the corresponding
addre s s portion of A.

Shift the contents of A and the contents of
R left the amount of shift specified. Make
the sign of A the same as the sign of R.
Bits leaving the left end of A are lost.
Bits entering the right end of R will be
zeros. Bits leaving the left end of R
enter the right end of A.

Shift the content s of A and the content s of
R left the amount of shift specified or
until A is normalized (the leftmost bit of
A is a 1), whichever occurs first. Decre­
ment I by the number of places actually
shifted. Make the sign of A the same as
the sign of R.

Shift the contents of A and the contents
of R left the amount of shift specified.
Turn the overflow indicator ON if any of
the bits lost fro.m the left end of "A was a
1. Make the sign of A the same a s the
sign of R.

- 16 -

Mnemonic Octal De scription

CTL

CTV

CFL

NOTE:

40

41

44

Replace the words in the L loop, start­
ing with the word whose least significant
address digit is the same as that of the
address, with consecutive words starting
with the word addressed, until 7767 is
filled. For example:

CTL 12300

CTL 12360

CTL 12370

will replace words 7760-
7767 with words 1230-1237.

will replace words 7766
and 7767 with words 1236
and 1237.

will replace word 7767
with word 1237.

Replace words in the V loop until word
7777 is filled. This command is com­
pletely analogous to CTL 40 (above).

Replace words in memory from the L
loop. Analogous to CTL 40.

Copy to or from L commands with loop addre s se s
(7760-7777) will refer to the so-called "gray" area
which is the last 16 words of channel 77. The CTV
command may not be used with a loop address. It
copies into V, but from main memory.

- 17 -

Mnemonic Octal

ICH 00

Description

Input from. 1 to 128 8-bit characters
(all but the last 5 are lost) into A from
the input device named in the addre s s
,(or set into the input switch on the con-
sole). The console switch overrides
the device selected. in the addre s s, so
it should be set to AUTO.to allow the
program to specify its input device(s).
The form of the address is as follows:

OO<L XX X XXX XXX, X

. LrgnOred

L---~ __ ~Number of character s
to be input. (Exception:
64 call$ for 128 charac­
ters; 0 calls for 64
characters.)

...-.------~~~ Devi ce:

000 Flexowriter keyboard
001 Flexowriter reader
010 FACITAPE reader

As each character is input into the
right-most 8 bits of A, Ais shifted
left 8 bits through (including) the
sign position. Since the typewriter
keyboard uses a 6 bit code, the high
2 bits of each character input from
it will be zeros. Either of the tape
readers will 'read 8 bits per character
wi th a hole ente ring a s a one and no­
hole as a zero.

(If the first 2 bits of the address are not
zeros, ,the first character input will
have its low 2 bit(s) forced to one s
corresponding to the one(s) in the
address.)

~ 18 -

Mnemonic Octal

OCH 01

LRS 43

De scription

Output from 1 to 128 characters from A
to the output device named in the addre s s
(or set into the output switch on the con­
sole). The console switch overrides the
device selected in the address, so it
should be set to AUTO. to allow the pro­
gram to specify its output device(s).
The form of the address is as follows:

XXO XXp: XXX XXX~t

Ignored

---"'~.Number of characters
to be output. (Excep­
tion: 64 calls for 128
characters; 0 calls for
64 characters.)

L-____________ ~~ Device:

000 Flexowri te r keyboard
001 Flexowriter punch
010 FACITAPE punch

As each character is output from the
sign and left-most 7 bits of A, A is
shifted left 8 bits and the 8 bits of the
last (not the current) character output
enter the right end of A. After output
of the first character, these bits will
be OOlOOlXX, where XX are the first 2
bits of the address. In general, any
output of over 5 characters will be mean­
ingless, although 5 out of every 6 charac­
ters will be the original A register contents.

In output to the Flexowriter keyboard, the
2 high bits of each character are ignored.
Character s with no key to repre sent them
will type as blanks.

Shift the contents of A and the contents of
R right the amount of shift specified. Make
the sign of R the same as the sign of A.
Bits leaving the right end of R are lost.
Bits entering the left end of A are zero.
Bits leaving the right end of A enter the
left end of R.

- 19 -

Mnemonic Octal

Nap 54

CAZ 16

CMZ 16.4

CSA' 13

OVN 13.4

SAP 12

SAN 12.4

CAR 57

CMP 17

l\ND 17.4

CMG 35

Description

No operation. This command has no
effect.

Replace the contents of A with a positive
zero.

Replace the contents of A with a negative
zero.

Reverse the sign of A.

Turn overflow ON.

Make the sign of A positive.

Make the sign of A negative.

Replac;:e the contents of R with the contents
of A,.

Complement A. (Reverse every bit of
A including the sign.)

If the highest orde! bit of R is 1, increase
the magnitude of A by 1 in the lea st si~ni­
ficantposition. If overflow occur s, the
overflow indicator will be turned ON 0

Compare the contents of A with the con-
tents of the word addressed. Turn the
overflow indicator ON if the word addressed
is arithmetically greater than the contents
of A. Turn the overflow indicator OFF if
the word addl;'essed is arithmetically less
than the contents of A. If the word addressed
and the contents of A are both positive and
equal, do nothing. If the word addressed
and the contents of A are both negative and
equal, reverf3e the overflow indicator. For
the purpo se of thi s command, plu s ze ro is
considered to be greater than minus zero.

- 20 ...

Mnemonic Octal

CME 35. 1

LDI 31. 1

SLC 25

STI 25. 1

TIX 10

R

Description

If the contents of A are not equal to
the word addre s sed, turn the ove rflow
indicator ON. For the purpose of this
command, plus zero does not equal
minus zero. Note that, although the
half -word bit of the addre s sis 1, thi s
command refers to a full word.

Replace the contents of the index regi ster
with the right-hand address portion of
the word addre s sed. Note that if the
half-word bit of the address of this com­
mand is a zero, the command acts as a
Nap.

Replace the left -hand addre s s portion
of the word addressed with the comple­
ment of the location counter (which will
contain the location of thi s command).

Replace the right -hand addre s s portion
of the word addressed with the contents
of the index register.

Subtract 1 at b = 38 from the index
register. If the index register is not
now zero, take the next command from
the half-word specified in the address.
Thi s command (the TIX) must be in a
left-half word itself, but it can transfer
to either half word.

- 21 -

USE Oli' ThrnEX REGISTER.

\fuen the sign of a right,..half command is negative, the indes resis­
ter will be subtra,cted from the address of the conunand as the
command pair is beine copied into tnecommand register. For
example, if the index register Qontained a 5 and a right half command
of -ADD 12460 were to be executed, the command would enter the
command register as -ADD 12ulO.

In the Til cOnD'lland, a one is subtracted froIn the index ree;ister. The
TIX comwand does not transfer whenever the index is zero, either before
or after the subtraction on the one. The test is done before the
subtraction of the one and no transfer will occur when the first 11
bits are zeros. Thd.s occurs both when the index is 00010 or 00000.

An address with a half-word bit of one will be loaded into the index
register as if its half-word bit were zero.

PRCG RAJ1NING EXAlIPLES

Note that commands can be operated upon just as though they were
da ta. For example, if t,he command pair + eLA. 12340 + SUB .54320
is in location 1000, the following coding would change it to
+ etA 12340 + SUB 54330:

+ eLA 10000

+ ADD 20000 (where 2000 contains + 0000000 - 0000010)

+ STA 10001

- 22 -

However, this address modification is usually done by tagging
the command with a minus sign. For example, suppose 64
numbers are stored from location 0123 through location 0222,
and that these 64 numbers are to be totaled. One code to do this
would be:

-I- CLA 01230
-I- ADD 01240

-I- ADD 02220,

but this requires 32 words of coding and is tedious. (If only 3
numbers were to be added, this would be the way to do it.)

Another code is as follows:

COM -I- CLA SUM (previously set to zero)
-I- ADD 01230 (previously set to 01230)
-I- STO SUM
-I- CLA COM
-I- ADD 1 Increase the addre s s of the ADD command by
-I- STO COM
-I- CLA COUNT (count previously set to 64)

1

-I- SUB 1 Decrement count by 1 and te st to see if fini shed
-I- STO COUNT
-I- TNZ COM

This saves space, but takes more time, since 64 ADD's are still
executed plus all the other coding 64 times.

The same program, with the index register, is coded as follows:

-f LDI COUNT (COUNT equals 64. Any unused right
address can be used for the 64)

+ CAZ Make A zero
COM - ADD 02230

TIX COM

Note that this coding could just as well be used to add up 4000
numbers, or n numbers up to and including the contents of 0222.

Since commands are picked up 2 at a ~ime, it is impossible for a
left-half command to modify the right-half command in the same
word so that it can be executed in its modified condition. Thus,
1000 -f STO 10000 -f ANY THING will change word 1000 but not the

- 23 -

command register. Similarly, 1000 ~ STA 10001 ~ ANYTillNG
and 1000 -f LDI COUNT - ANY TflING. The ... ANYTHING is
modified as the command pair enter s the command regi ster
(before the index is loaded with the new count).

FLOATING POlNT

Floating Ppint Format

A floating point word is a word with its binary point carried as
part of the wprd. The programmer need not be concerned with
scaling, overflow, f3tc., b~cause the ilrithrnetic operations auto­
matically scale the numbers correctly. The format is as follows:

where the number (unless it is zero) is nor1TIalized; i. e., bit 9
is a one. The binary point is counted from bit 9 instead of bit one.
The binary point plus 128 is used instead of a signed binary point
(this is knpwn as "excess 128"). Thus -1 would look as follows:

- ~~O~OOOj l~OOOOOoooooooooooooooooooooooo

1 t. A.S sum. ed binarY .P9int One .
_ 129 meanIng b = 1

Sign of number

The m.aximum number would thu~ be 31 one I s (approximately 1
tiqles 2l27)or about 10 38 The smallest number would be 1/2
t~mes 2- 128 or about 10-38 . Floati;ng point numbers are also
commonly thpught of as fractions times a power of 2 (the exponent).

~ 24 -

Floating Point Commands (Optional)

Mnemonic Octal

FAD 75

FSB 74

FMP 23

FDV 26

Description

Add arithmetically the floating point
word addre s sed to A. R is de stroyed.
If the sum lie s out side the pe rmi s sible
range, turn the overflow indicator ON.

Subtract arithmetically the floating
point word addre s sed from A. R is
de stroyed. If the difference lie s outside
the permi ssible range, turn the overflow
indicator ON.

Multiply A by the floating point word
addre s sed. R is de stroyed. If the
product lies outside the permissible
range, turn the overflow indicator ON.

Di vide A by the floating point word
addressed. R is destroyed. If the
quotient lie s outside the permi s sible
range, turn the ove rflow indicator ON.

All floating point number s must be normalized. If they are not,
the computer assumes they are zeros. A floating point zero must
consist of 39 zeros plus sign. (The computer will normalize floating
point results automatically as well as insure that a zero result gets
a zero exponent.)

To convert a floating point integer to a fixed point integer:

CLA n

FAD k

SUB k

3TO n

To convert a fixed point integer to a floating point integer.

CLA n n = number to be converted

ADD k k = + 4774000-0000000

FSB k

STO n

- 25 -

V. PROGRAMMING SYSTEMS

RECOMP III INTERPRETIVE PROGRAM

There is a need for a program which will allow relatively un­
trained scientists and engineers to run their problems on an open
shop basis.

There exists such a program, RIP, which allows the RECOMP III
computer to be programmed as though it were a 9-index register,
floating decimal point computer with built-in input/ output and
elementary functions (such as square root, sine -cosine, etc.).
This program utilizes a I-character operation code (such as -f
for addition, i for input, etc.) and a 4-digit decimal addre ss, which
can range from 0 to 3000, plus a l.,.digit index register tag.

An example of the simple coding for a program which will input
10 numbers, add them up, and output their sum, is as follows:

Loc.

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

I

i

x

1

z

+
x

o

f

t

Addr.

10

20

1

10

20

5

a

3

o

Index

1

1

1

1

1

I

1

Load index number 1 with 10.

Input number s to 10cation.J
10 through 19.

Transfer on index 1 to
location 1.

Load index 1 with 10.

Clear pseudo-accumulator to
zero.

Add locations 10 through 19.

Transfer on index 1 to
location 5.

Output accumulator (which
contains sum).

Output 1 carriage return
(code 3).

Transfer to location 0 (and
call for 10 more input s) .

For further details, please refer to the write-up of R3P-16.
For fixed point machines and R3P-39 for floating point machines.

- 26 -

RECOMP III COMPILER
i

TheRECqMP III Compil~r is a FOaTRAN -like automatic coding
systelll which accepts a sourc~ program written in a language
cl(>~ely re sembling the ordinary langUCl-ge of mathematic s, and
produces, in one pass, 'a reac;:ly-to-be .. runobject program in
RECOMP III machine language. '

Although thi s comp~ler is d'e signed to be run on a basic RECOMP
III, it Will ~fficiently utilize su~p additional peripheral equipment
as the \tser may, have.

The RECO~P In CQmpiler ipeff,ct tr&nsiQrms the RECOMP III
into 4 machine with which comm1J,nicatiqncan be made in a
language more conci se and more familiar than the RECOMP III
language itself. The result is a considerable reduction in the
tl,"aining required to program, as well as in the time consumed
in writin~ progra~s and eliminating their errors.

The object p;rograms produ~ed by thi s compiler minimize the
'it~ces~ tiflle to both data and instructions and are nearly as effi­
cient as those written by experien~eq pro~rammer s.

- 27 -

APPENDIX I LIST OF COMMANDS

Mnemonic Octal Description

CLA 37 Clear and Add
CLS 36 Clear and Subtract
RCA 77 R Clear and Add
RCS 76 R Clear and Subtract
ADD 73 Add
SUB 72 Subtract
MPY 63 Multiply
DIV 66 Divide
ALS 02 A Left Shift
ASC 02.4 A Shift and Count
ASV 02.2 A Shift and Ove rflow
ARS 03 A Right Shift
XAR 56 Exchange A and R
EXT 70 Extract
TRA 51 Transfer
TP~ 55 Tranf?fer on Plus
TMI 53 Transfer on Minus
TOV 52 Transfer on Overflow
HTR 71 Halt and Transfer
TZE 50 Transfer on Zero
TNZ 11 Transfer on Non-Zero
TLB 15 Trapsfer on Low Bit
STO 45 Store
STR 05 Store R
STA 65 Store Address
LLS 42 Long Left Shift
LSC, 42.4 Long Shift and Count
LSV 42.2 Long Shift and Overflow
CTL 40 Copy to L
CTV 41 Copy to V
CFL 44 Copy from L
ICH 00 Input Character
OCH 01 Output Characte r
LRS 43 Long Right Shift
NOP 54 N a Operation
CAZ 16 Clear A to Zero
CMZ 16.4 Clear A to Minus Zero
CSA 13 Change Sign of A
OVN 13.4 Turn Overflow On
SAP 12 Set A Po sti ve
SAN 12.4 Set A Negative
CAR 57 Copy A to R
CMP 17 Complement
RND 17.4 RQund
CMG 35 Compare for Greater
CME 35.1 Compare for Equal

- 28 -

APP~NDIX I

Mnemonic

LDI
SLC
STI
TIX

Optional

FAD
FSB
FMP
FDV

Octal

11. 1
25
Z5. 1
10

75
74
23
26

LIST OF COM1-1ANDS (~ontinued)

Des~ription

Load Index
Store Location Complemept
Store Index
Transfer on Index

Floating Add
Floating ~ul?tract
Floating Mt+ltiply
Floating Divide

-29 -

APPENDIX II

CHARACTER CODES

¢¢¢¢¢¢ Blank 1¢¢¢¢¢
¢¢¢¢¢1 Upper Case 1¢¢¢¢1
¢¢¢¢1¢ Lower Ca'se 1¢¢¢1¢
¢¢¢¢11 Back Space 1 ¢¢¢11
¢¢¢llfJ)D 1¢¢1¢¢
00¢101 1 ¢0H~1
f2>0¢ 11 ¢ a A 1 ¢011 ¢
¢¢¢111 b B 1 ¢¢ 1 1 1
~¢1¢¢¢ c C 1¢1¢¢¢
¢¢1¢¢1 d D 1¢1¢¢1
¢¢1¢10 e E 1¢101¢ Stop
001 ¢11 f F 1¢1¢11 Space
¢¢11 ¢¢ 9 G 1011¢¢ C. Ret.
0¢11¢1 h H 1 ¢11 ¢1 Tab
0¢111¢ i I 1¢111 ¢ , >
¢¢1111 j J 1 ¢ 1 1 1 1 . <
¢1¢¢¢¢ k K 11 ¢¢¢¢ ¢)
010¢¢1 1 L 11 ¢¢¢1 1 I

¢1¢¢1¢ m M 1 1 ¢¢1 ¢ 2 *
010011 n N 1 1 ¢¢ 1 1 ~1 ¢1¢1¢¢ o 0 11 ¢1 ¢¢
01¢101 P P 110101 ~ ; ¢If£111¢ q Q 110110
01¢111 r R 11 ¢ 1 1 1 e: ¢11¢¢¢ s S 111 ¢¢¢
0111£101 t T 111 ¢¢1 9 (
¢11¢1¢ u U 111¢1¢ - ¢
¢11¢11 v V 111011 + =
¢111 ¢0 w W 1111 ¢¢ /J
¢111¢1 x X 1 1 1 1 ¢1] [
¢11110 Y Y 11111¢ i J,
¢1111 1 z Z 111111 Code Delete

- 30 -

APPENDIX III

POWERS OF TWO

?II 1/
)-11

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 579 125

65 536 16 0.000 015 258 789 062 5
131 072 17 O. 000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000001 907 348 632 812 5

1 048 376 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
-4 194 304 22 0.000000 238418 579 101 562 5
8 388 608 :l3 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0,000 000 014 901 161 193 847 656 25

134 217 728 27 O. 000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0,000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000000 000 116415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 416 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0,000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

- 31 -

1.

2.

2.1

2.2

2.3

"""~ •. " i~.
j I if i._a

APPENDIX IV

RECOMP III, LOAD/START

PURPOSE

To provide ITleans for starting a program., for loading of
command forITlat, alphanumeric format, or relocatable form.at
prograITl tapes, for output of comrnand format, for alphanumeric
information on tapes, and for basic deb-~gging aids.

PROCEDURE

Loading procedure:

(1) The beginning of this program tape contains a bootstrap,
self-loading, routine that require s a special loading
procedure.

a. Place the tape in the reader, Flexowriter, or
Facit, and turn the input switch on the console
to the selected device.

b. Note: The operator .must hold the re set button
down while loading the bootstrap routine. While
holding the re set button down, place t1:e operat~on
switch on continuous. When reading stops, ta::.-ce
the operating switch out of continuous fir st, and
release the reset switch.

(2) Now place the operation switch on cO::ltinuous and the
bootstrap routine will load the program.

Initial entry to the program is by a transfer to location 0000.0
or by depressing the "reset" button on the computer. (Before
depre s sing the lire set" button, the operation switch should be
in its off position.) After releasing the "reset" button, set the
operation switch to the "continuous ll position.

To perforITl a particular function, follow the instructions given
in paragraph #3 for the d~$ired function. The input and output
control switches are presum.ed to be in the "autoITlatic" position
unless stated otherwise in the function description.

- 32 -

TITLE:

2.4

3.

3. 1

3. 2

3. 3

APPENDIX IV

LOAD/START

In all except th<.7 HALT, ST.f\R T, or ALPHA functions, return
is made to step 2. 3 for additional function selection.

FUNCTIONS

Alfhanumeric Program Input:

Place any alphanumeric program. tape (that was prepared by
the Dum.p function of this pr~gram. or any program that produces
similar £o~mat) in the desired J;eading device and set the input
control switch to the device chosen. After the tape is read, a
check sum will be compared altd if in agreem.ent with the data
just read, will continue reading until a stop code (vi sual E on
tape) is read. If check surn did not agree, a slash (/) will be
typed, but reading will continue. Vrhen all alphanumeric loading
is completed, reset the i;nput control switch to "automatic ' !.

Manual Alphanumeric Input:
J I

Type axxxx(CR) where x>p<~x is the fir st location to be filled
with alphanumeric data. Follow the carriage :return by t: .. e
desired alphanumeric characters. These characters will be
loadeq. 5 to a word in sequential locations starting at the add.re s s
initially entered in this function. As each computer word is
fi~led, the "input" ligh,t qn the typewriter will blink slightly.
The last computer warP. shoulq. be padded (if necessary) ,with
blanks. Exit from this mode with the "reset" button as des­
cribed in 2. 2. A rougfi check of the data entered can be made
by setting the output control switch to the typewriter position
(position 1) and per~ol;"ming an alphanumeric dum.p (3. 7) 01 the
area q.ffected. Tp.~ fir st and last 5 output characte14 s will be
meaningle s s.

CommCj..ud Format JP:Pllt:

Type CX;KX>Qs:\ CR) wher~ ~x:x i$ the ii::-st location to be filled
with command io~mat data. Follow the carriage return with
the command format data of form +:xxxxxxx+xxxxxxx(CR) vvhe::e
x is a~ .;)ctal digit. 'The inside sign may be 1 or 0.

- 33 -

TITLE:

3. 3

3.4

3.5

3.6

3. 7

APPENDIX IV

LOAD/START

(continued) :

If at any time an error is detected by the operator, type a
slash and re-enter that word. (See 3. 18 ror error cOTrection.)
The comITland format data is stored sequentially starting from
the address given until another C function is received. After
any carriage return, a new function may be initiated. If thi s
data is on tape, load the tape and set the input selector switch
to the input device chosen.

Repeat Previous Command Forl'nat Input:

By typing a decimal point (.), the last command format word
entered will be entered again and the cornrnand fo::mat input
location counter w~ll be stepped to the next location. Thi s
function must be preceded by either functions 3. 3, 3. 4, or 3. 17.
Thi s function is most useful when a large amount of identical
command format data is to be entered sequentially.

Command Format Print:

Type pxxxxyyyy(CR) where xxxx is the first location to be typed
and yyyy is the last location to be typed. Each word is followed
by a carriage return. If this area is to be punched instead of
typed, set the output selector switch to the desired device. Afte::­
the outpu.t is completed, a new function may be performed.
(See note 4. 5.)

Registe::- List:

Since the original cor.:.:;cnts of all the reglsters and. loops are
saved when entering the Load/Start routine and restored just
before exit; the original contents of A, R, and Index Registers
may be typed in comITland format in that o:rder by typing the
character J:.

Memory Dump:

Type d:xxxxyyyy(CR) where xxxx is the fir st location to be
punched in alphanumeric format and .yyyy is the last location
to be punched. This information is preceded by an assignment

- 34 -

TITLE:

3.7

3.8

3.9

3. 10

3. 11

APPENDIX IV

LOAD/START

(continued) :

word and fQllowed by a checl~surn word. These m.em.ory dumps
may be read back into memory by using function 3. 1 or any
similar program. If the information is to be dumped on any
device ot her than the Flexowriter punch, set the output selector
switch to the desired device.

Tape Feed:

By typing the chal"acterI"J', approximately five inches oi blank
tape will be puncn-ed. This function would be used before any
memQry dump and perhaps between sections of a tape containing
more than one dumped area.

'rave Trailer:

By typing the character e, a ptop code will be punched on tape
followed by a visual E (in order to recognize the end of the tape)
and followed again byapproxirnately five inches of blank tape.
Thi s function would normally be used to end all memory dump
tapes.

Load a memory dur:'lp tape (one \vhich was punched by the Merno:cy
Dur4P function (~. 7) or sim.ilar prograrn) 0:1 the Flexowriter tape
reader and type the letter v. The da"ta will be read (not into
rr..erpory) and th;e sun'} of this data will be compared with the
last \vord on tape. (No memory con'lpariscn is mad.e.) Ii in
agreement, a new iunctiop. code will be cal~ed for. If not in
agreement~ a slash will be typed before asking for a new iunction
cede. If a rnej.no:i:Y dum? tape contains m.ore than one area, it
will he necessary to typa a v a$ each new area is reached. 1.£
a ci.evice other than the Flexowriter reader is to be used., se-c rne
input selector switch to the desired device.

Relocatable II1Put:

Load a relocatable progxam tape (prepared by ::>rog::an'l R3? _L.l:
or a simila;r p=og.ran'l) in th~ Flexowriter tape read.er and. type
ixy-xxx(CR) weere .xx..xxx is the desired first word location of.
the pr0gram oeing rea.d, A.iter reading is completea., if -che

- 35-

TITLE:

3. 11

3. 12

3.13

3. 14

3. 15

APPENDIX IV

LOAD/START

(continued) :

checksum is in agreemeJ:?t with the data read, a new function
code will be called for. If not, a slash will be typed before a
new function code is called for. If the tape is to be read by
other than the Flexowriter tape reader, set the input selector
switch to the desired device. NOTE: If the program being
relocated contains loop instructions (40, 41, 44), the program
should start with an address that is a multiple of 8 (last octal
digit zero).

Start:

Type sxx.xxx(CR) where xxxxx is the location to be transferred
to. Before the transfer is made, the A, R, Index, and Land
V loops are restored to the exact conditions they were when
the Load/ Start program was last entered. (See note 4. 5 and 4. 6.)

Halt and Transfer:

Type hx..'(xxx(CR) where xxxxx is the desired address fOT the
HTR instruction at the end of this -function. Before performing
thi s HTR instruction, the A, R, Index, and L and V loop s are
re stored to the exact conditions they were vvhen the Load/ Start
program was last entered. (See note 4. 5 and 4. 6.)

Overflow Reverse:

Since while entering the Load/ Start program, the overflow
alarm was turned off, it may be desirable to turn the overflow
on (or off) before performing a transfer function (see 3. 12 or
3.13). To reverse the present state of the overflow alarm,
type the letter o.

Quick Check of Load/Start Progra::n:

As a check to see if the Load/ Start program is in memory
correctly, type the letter q. If correct, a new function code
will be called fOl·. If incorrect, a slash will be typed before
calling for a new function code.

- 36 -

TITLE:

3. 16

3. 17

3. 18

~.

4. 1

4.2

/. 'l
"'::I:.J

4.4

APPENDIX IV

LOAP/START

Whenever a stop code (52) is detected while the Load/ Start
program is looking for a function code, a HTR 0002. 0 in­
struction wi~l be execut~d. Put the <;ompute switch to its
center position and back to compute in order to continue.

Ignore:

At any time in all functions, except alphanumeric inputs
(3.1, 3.2, 3.10, 3.11), a delet~ code (77) is ignored.
'Vhen the Load/ Start prograr.(1. is looking for a function code,
it also ignores blanl.< (00), lower case (02), space (53),
carriage return (54), and tab (55).

Error:

If at any time an error is detected. by the operator while
entering data for a function, l::1.e slash character (() \villcause
another slash to 'oe typed f9110wed by a carriage return before
callip.g fo:::; a new function code. If at any tim.e, the Load./ Start
prog:"am detects an errqr, a slash and carriage return will
also be typed before calling for a new function code.

NOTES
i

A.ll functions that end with a carriage return could just as well
be terminated with a space or tab.

Many error s on input will be detected, but not all.

Although thi s prog:-al'rl occupie s channels 0 and 1, channel .I.

may be used for other purpose s if only the follow:'ng i"li.D.ctio:1.s
are needed: Alphanumeric Program. Input, Cor.arna:::ld Format
Input, Repeat Previous ComrnarJ.d Format Input, Star·~, I-Ialt
and Transfer, Stop, ~gnore, and Er:-or.

Du.ring the input of a five d.igit address, an 8 digit li:rr ... it, or aL
but the first sign position of command io:::nat inputs, the le~''::6::

L is accepted as the nur.aber on~ {l).

- 37 •

TITLE:

4.5

4.6

4.7

5.

6.

6. 1

APPENDIX IV

LOAD/START

The L and V loops may be listed if desired by the function
p77607777(CR). Note, however, that the memory dump function
(3.7) and relocatable input function (3. 11) modify the V loop.

The L. gray area is not modified; however, the V gray area will
contaip. the original contents of the L loop when exit is made
from thi s program.

N one of the data inputs allow entry into the L loop. V loop
e'ntry is permissible.

LOCATION

This program is not relocatable and must occupy locations 0000
to 0177. (See note 4.3.) Load this program using the Bootstrap
Loading Procedure as outlined in RECOMP III Technical Bulletin
No. 1.

PROGR.AM PREPARATION FORMAT

The following examples show several acceptable formats for
typing a program the fir st time for entry through the Load/ Start
program.

cIOOOO(CR)
+ 1234560-1615141(CR)
+ 5177600+ 3700340(CR)
-4220240+ 5200 130(CR)
+ 1200000+ 51 00 130(CR)
+4000600+51 01260(CR)
-0000000 -OOOOOOO(CR)
... (CR)
+4500340+4200240{ CR)
+4000050+ 51 00731{ CR)
+4077600+7200020(CRj
+ 3100171+ 00000 1 O(CR)
+4300030+ 1500 170(CR)

(ETC)

- 38 -

TITLE:

6.2

6.3

7.

7. I

APPENDIX IV

LOAD/START

clOOOO(CR}
+ 1234560-1615141(CR)
+ 51 77600+ 3 700340(CR)
-4220240+ 5200 130{ CR)
+ 1200000+ 5 1 00 1 30 (C R)
+4000600+5101260(CR)
-OOOOOOO-OOOOOOO(CR)
.. (CR)
(CR)
clOlOO(CR)
+4500 340+4200240(CR)
+4000050+ 51 0073l (CR)
+4077600+7100200(CR)

(ETC)

+ 1234560-1615141 (sp)+ 5177600+ 3 700340(sp) -4220240+ 5200 130(CR)
+ 1200000+5100 130(sp)+4000600+ 51 0 1260(sp) -OOOOOOO-OOOOOOO(CR)
{sp) .. {CR)
(CR)
clOlOO(CR)
. +4500340+4200240(sp)+4000050+ 51 00731(sp)+4077600+ 71 00200(CR)
(ETC)

MEMORY DUMP FORMAT

All data punched by the memory dump function and r-ead by
the verify or alphanuITleric input function will be in the following
forITlat.

First word (5 characters) will be negative, contain a 4 at binary
7, contain the num.ber of words in the lTIen~o:ry d\.l:;:np at binary 19,
and contain the last word location + 1 of the data in the right
addre s s portion.

7.,2 Following the fir st word is the data itself, punched 5 characte:: s
per word with the first data word also first on tape.

7. 3 The last data word (5 character s) will be a checksum derived
by the addition of all the data on tape (not counting the first
assignment word) and ignoring overflow.

- 39 "'"

TITLE:

7 Ii .ox

8.

8. 1

8.2

8.3

8.4

8. 5

APPENDIX IV

LOAD/START

In most cases, the end of the tape will con-caln a stop code
and a visual E following the checksum word.

RELOCATABLE INPUT FORlVIAT

All programs read by the relocatable input function must be
in the following format:

The first non-blank character on tape is a code character,
the next 5 character s form the fir st program word with all
relative addresses in this word relative to zero.

The code character has 5 states. State 1 (1001000
that the word that follows has no relative addre s se s. State 2
(01110110) indicates that the word that follows nas a relative
right address only. State 3 (OOIOOliO) indicates that the
word that follows has a relative left address only. State 4
(01001110) indicates that the word that follows has a relative
left and right addre s s.

Following the last data word is a code character that contains
a low bit such as OOOOOOOl~

Following this low bit character is a checksum v/ora (5 char­
acters) which is derived by the addition of all the G.a.ta words
on tape (not counting code character s and all re:a:ti ve
addresses relative to zero) and ignoring overf~ow.

In most case s, the end of the tape contains a stop code and
a visual E following the checksum word.

- 40 ,-

TITLE:

9.

(1)

(2)
(3)

(4)
(5)
(6)
{7)
(8)
(9)
(! 0)
(i 1)
(12)
(13)
(l.f..:)
(15)

(16)
(17)

APPENDIX IV

LOAP/START

FUNCTION SU~1M.t\RY

Alphanumeric Progl'"am. Input

Manual_~ll?hanum~~n:~ic _ Input
CommC1.lld Format Input

Repeat Pr¢vious CCi.-:lmand
Command Forma~ Print i

Recrister List ;-, "

-Me:iTIory Durpp
Tape Feed
Tape Trailer

,Verify Memory Dump
Relocatable Input

;, ;

Start
Halt and Transfe~
Overilo\v Reverse
Quick -Check of Load/Start
Program
Stop
IgJ;lore

set input selector switch
to de sired tape reading
device.
axxxxx(CR)
c:xxxxx{ CR)
:: X}Q{X..x'Xx:: xxxxx..xx (CR) - -

type d.e cirnal point (.)
pxxxxyyyy(CR)
type letter r
dXY.xxyyyX{ CR)
type character .• -
type letter e

. type lette r v
ixx..y ~(CR)
sxxxx:x(CR)
hxxxxx{CR)
ty:~e lette r 0

type lette r q
\vhen stop ccG.e is read
Always code delete (77),
usually blank (00), lower
case (02), space (53),
carriage return (54), and
•. - ~ 5 5)

------------------~~----~-------------------(18)

- 41 ..

