
Reoo",p II computer system

(

~~SCOPAC"

"S COP A C"

A COMPILER FOR THE· RECOMP II

by

H. D. Goddard

Copyright 1962
Autonetic$ Industrial Products

A Division of North Am.erican Aviation, Inc ..

~~SCOPAC".

INTRODUCTION

The present trend in computer applications in the scientific'and engi­
neering fields is to issue compiler programs whic~ are used to generate
computer instructions from source programs definibg problem solving pro­
cedures. The compiler program produces the instructions (object programs)
in a language understandable to the computer, enabling it to perform the
neoessary operations to solve the problem.

SCOPAC*is a compiler program for the RECOMP II computer. Mathematical
expressions and all other pertinent information for a problem are writ­
ten as SCOPAC statements. In one pass SCOPAC accepts the statements and
prepares a program for solving the problem. The statements constitute a
source program. As each statement is entered in to the <?om!>Ut~r, SCOPAC
generates and punches on paper tape all necessary computer.).nstructions
of the object program. It is the object program whi~ is/.'ntered into
the computer to solve the problem .•

In this way the SCOPAC progr~ serves as the intermediary between a
computer user and the solutions to a wide range of problems. Once the
SCOPAC program is in the computer any number of source programs may be
entered for compiling.

* Acknowledgement is gratefully made to ~~. T. J. Tobias for the develop­
ment and completion of the r.lajor portion of the SCOPAC pro~aI!l.

Additions- and RevisionS

Additions were made- to the following sections:

Section 8.1, page 17

A GO TO statement is also used to transfer to a ROUTINE

GO TO routine names

Section 8.3, page 19, the last sentence

However, the DO, GOT ° , or the IF statement must not be the last
statement of the DO loop.

Section 8.3.3, page 23

(c)

(d)

(e)

The maximum number or DO loops that may be nested
is seven.
A DO, GO TO, or IF statement cannot be the last
statement of a DO loop.
The last statement in a DO loop cannot lilrtedlktely
precede the END statement.

The program in Appendix G, page 81, has been revised as follows:

Statements:

October 8, 1962

ARRAY B(lOO) s
READY ITEMS s
READY A s
DO INPUT N l(l)ITEMS s
READY B(N) s
INPUT, CONTINUE s
DO OUTPUT N 1 (1) ITEMS s
Z: (A+B(N» '2 s
eRR s
PRINT B(N) s
TAB s
OUTPUT, PRINT Z s
HALT 8

END s

TABLE OF CONTENTS

INTRODUCTION

1. DESCRIPTION OF THE USE OF SCOPAC

2. THE SCOPAC STATEMEtlTS
2.1 Kinds of Statements
2.2 Location Tags

3 • VARIABLES AND SUBSCRIPTED V.A..TtIABLES
3.1 Variables
3.2 Subscripted Variables
3.3 Restrictions

4. ARRAY STATEMENTS

5 • ARITHMETIC STATEMENTS
5.1 Expressions

5.1.1 Operation Symbols
5.1.2 Numbers
5.1.3 Functions

6. INPUTSTATEMEtlTS
6.1 READY Statements
6.2 READZ Statements
6.3 ANGLIN Statements

7. OUTPUT STATEMENTS-
7 .-1 PRINT Statements
7.2 TYPE Statements
1.3 CRR (carriage return) Sta temen ts
7.4 TAB Statements
-7.5 ANGLOUT Statements

8-. CONTROL STATEMENTS
8.1 GO TO Statements
8.2 IF Statements
8.3 DO Statements

8.3.1 DO Loops Contained Within
the Range of Another DO Loop

8.3.2 Use of DO Loops with READY Statement
to Input Elements of an Array

8.3.3 Restrictions -
8.4 CONTINUE Statements
8.5 ROUTINE Statements
8.6 RETURN Statements
,8.7 HALT Statements
8.8 END Statements

Page No.

1

2
2
3

4
4
4
5

6

7
8
8
8
9

10
10
11
12

13
13
14
15
15
16

17
17
18
19
21

22

23
24
24
25
25
26

TABLE OF CONTENTS (Continued)

Page No.

9. SYMBOLIC STATEMENTS 27
'9.1 SYMBOLIC Statements 27
9.2 COMPILE 27
9.3 Symbolic Coqing Entered With the SYMBOLIC Statement 27
9.4 Writing Instructions in Symbolic Coding , 29

9.4.1 Writing the Special Operations in'Symbolic 3,
Coding

10. PREPARATION OF SOURCE PROGRAM ON PAPER TAPE

11 • CORRECTION OF ERRORS WHILE PREPARING SOURCE PROGRAM ON
TAPE
11.1 If Error is Discovered Before Termination of a

Statement or Symbolic Instruction
11.2 If Error is 'Disoovered After Termination of a

Statement or Symbolio Instruotion

,12. INPUT OF SOURCE PRO\JRAM FROM THE TYPEWRITER

~~:~\General Instructions

12.~ Typing a 'Statement
12.7 Entering TYPE Statements
12.8 Typing Symbol~c Instructions '

37

39

39

39

40
40

40
41
42

13. CHECKOUT OF RECOMP II READINESS' 45

14. OPERATING INSTRUCTIONS FOR COMPILING 46
14.1 Preliminary Procedure for Compiling One or More Source 46

Programs
14.2 Input of Source Program 46
14.3 To Initialize the SCOPAC Program 47
14.4 To Interrupt Compiling 47
14.5 Check of Source Program on Tape Without Compiling 48
14.6 Correction of Errors While Compiling a Source 49

Program (typewriter or tape input)
14.7 Procedure When the Type-out ASSIGNMENT TABLE IS FULL or 51

NO STORAGE LEFT FOR YOUR PROGRAM 'Occurs During
Compiling

15. DESCRIPTION OF THE EXECUTION OF THE OBJECT PROGRAM 53

16. PREPARATION OF DATA TAPE 54
16.1 Input 'via Rlt~ADZ Statements 54
16.2 Preparation of Input on VERSATAPE 54
16.3 Input via READY Statements 55

17. OPERATING INSTRUCTIONS FOR EXECUTION OF THE' OBJECT PROGRAM 56

18. INPUT OF DATA VIA TYPEWRITERDURmG EXECUTION OF THE
OBJECT PROGRAM

57

TABLE, OF" CONTENTS (Continued)""

Page No.

APPENDIX A - SUMMARY OF SCOPAC STATEMENTS 58

APPENDIX B - RECOMP II OPERATIONS BY ALPFI.ABETIC CODES 61

APPENDIx C ~ ASSIGNMENT TABLE 64

APPENDIX D - DESCRIPl'ION OF THE SCOPAC' LISTING 66

APPENDIX E - PROGRAMMING OF SUBSCRIPTED VARIABLES 68

,APPENDIX F - USE OF THE SAME MEMORY AREA FOR STORING SEVERAL 69
ARRAYS

-If Input or Source Program fa Via the Typewriter 70
-If Input of Source 'Program ~s From Paper Tape 71

APPENDIX G - EXAMPLES OF SOURCE PROGRAMS 75

GLOSSARY 80

1. DESCRIPTION OF ~. USE OF SCOPAC.

The purpose of SCOPAC is to prepare on tape a program, the object program,
whioh will solve a given problem. While SCOPAC is oompiling and punohing
the objeot program; a listing of that program may be simultaneously typed
out if desired. (See Appendix D for type-out of a program oompiled by
SCOPAC.) .

1.1 The SCOPAC tape is placed in the photoreader by the operator and
read into m~mory. A short p~gram at the beginning of the tape' will
clear the memory to minus zero.

1.2 A SCOPAC statement is then entered either from the typewriter by the
operator or from a previously prepared paper tape.

1., Computer instruotions to execute the statement are generated by
SCOPAC and punohed on tape. Simultaneously, a listing of the com­
puter instruotions is made on the typewriter if desired.

1 .4 When the lastSCOPAC statement is encountered, the A~~' ;.;.u.ment Table
is typed out by SCOPAC. (For detailed description of the Assignment
Table, see Appendix C.)

1.5 Following the Assignment Table the words, END OF ASSEMBLY, are typed
out and the computer will halt.

1.6 If it is desired to prepare more object programs, the SCOPAC Initial­
izer tape may be read into memory. Its funotion is to re-establish
the SCOPAC program in memory, ready to aooept another set of SCOPAC
s ta temen ts.

1.7 A source program on paper tape may be checked for errors without com­
piling by reading the Check SCOPAC Source Program tape into memory.
The tape containing the source program is then placed in the photo­
reader ready to be checked for errors.

- 1 -

2. THE SCOPAC STATEMENTS

2.1 ~nds of Statements

The SCOPAC statement is a written directive of operations· which will
be translated into computer instructions and punched on tape by
SCOPAC. A series of SCOPAC statements written for a problem consti­
tute a source program. The basic SCOPAC statement is the Arithmetic
statement. Each mathematical expression is written as an Arithmetic
statement. The rest of the statements provide the means to reserve
storage in the computer memory, to input information, to output in­
formation, to transfer program control andVto enter special instruc-,
tions.

There are six kinds of statements.

(1) ARRAY STATEMENTS reserve storage space in the computer memory
for subsoripted variables. which are to be used in the program.
These statements must precede all other statements in the
SCOPAC program.

(2) ARITHMETIC STATEMENTS are the mathematical expressions used to
solve the problem. These are the fundamental statements of the
program.

(3) INPUT STATEMENTS provide for input of information from the type­
writer or photoreader.

(4) OUTPUT STATEMENTS provide for the output of information from the
typewri ter.

(5) CONTROL STATEMENTS are used for the transfer of control from one
SCOPAC statement to another.

(.6) S'YMBOLIC STATEMENTS permit the input of symbolic and absolute
instructions.

Although the statements are written in varying forms, all statements
are terminated with a figure shift (F/s) and s. (The FIGURE SHIFT
key on the typewriter is depressed before pressing the s key.)

- 2 -

2.2' Location Tap

. A loca tioD tag i8 an alphabetic or nUmeric label assigned by the
programmer to a statement as a marker. This enables certain pro­
gram control statements in another part of the program to refer
to this statement by its location tag. Location· tags mq ,be used
wi th most statements. In Appendix A, SU1111D&r7 of SCOPAC Statements,
there is a tabulation indicating whioh statements 'can or cannot
have a looation tag.

A location tag has either eight (8) or les8 alphabetic oharaoters
or two (2) or les8 digits. It is to be noted that 00 is a differ­
ent tag trom 0, and 01 isa difterent tag from 1.

A location tag precedes the statement. It is separated from the
statement b7 a oomma.

Example I

PAR, XI A + B 8

PAR i8 a looation tag •

. XI A + B 8 18 an Arithmetic statement.

Example.

23, VI D/E 8

23 is a location tag.

V: D/E 8 . is an Arithmetic statement.

Restrictions:

A location tag should not have the same name as the name of
an arrq prefixed by a K or R. For example, it .ARRAY PART
is defined in the program, a location tag should not be named
KPAR'l or RPART.

A location tag should not have the same name as the name of
a routine prefixed by R. For example, if ROUTINE MAXZ is
defined in the program, a looation tag should not be named
RlIAXZ.

- 3.-

3 • VARIABLES AND StrnSC~IPTED Y ARIABLES

Two basic components of the SCOPAC statement are veri'ables and subscripted
variables.

3.1 Variables

A variable is any quantity that is referred to, by a name, and which is
able to take on a number of values. In SCOPAC the variable is an
alphabetic word consisting of from one to eight letters.

Examples:

B
SUM

CURVE
QUOTIENT

Subscripted Variables (See Appendix E, Programming of Subscripted
Variables)

A variable may be subscripted. The name of the subscripte.cL.-variable
may not consist of more than seven letters. A subscripted variable
has the form V(K) or V(K,J) where V is the name of the variable, and
K and J are either numbers or variables.

A subscripted variable may refer to elements in a one dimensional or
two dimensional array. The subscript of 'the ~' element in a one
or two dimensional array must not be zero, it rnustbe one.

Examples:

A(1) ~ A(O) one dimensional array

A(1,1) not A(O,O) two dimensional array.

A two dimensional array is composed of rows and columns. The first
subscript refers to the number of rows; the second subscript refers
to the number of columns.

Examples of Kinds of Arrays:

LEO (10) - a one dimensional array containing 10 elements.

MATRIX (5,7) - a two dimensional array containing 35 elements
arranged in 5 rows and 1 columns.

It is necessary to allocate storage for subscripted variables. This
is done by an ARRAY statement.

- 4-

The use of subscript notation is a valuable technique. A large
number of values may be designated by subscripts~',This means tha'l;
in a program a basic caloulation can be set uP' which can'be performed
wi th ea.ch of these values simply' by changing the value of th~ sub­
scrj.pt.· (See Exa.Mple III in Appendix G.)

3.3 Restrictions

The following letter combinations should not be used as names of
variables or subscripts.

(a) any Function name defined in SCOPAC.
for Function names.)

(See Subsection 5.1.3

(b) the name or any a.tta.Ypr8.f'ixed by a K or an R. For example,
if VECTOR is the name of an array, do not use RVECTOR or

. KVECTOR.

(c) the name of any subroutine prefixed by an R. For example,
if RO~NE SORT is defined, in the program, do not use RSORT.

(d) any location tag.

- 5 -

4. ARRAY' STATEMENTS

ARRAY statements allocate storage for subscripted variables. rt is mandatory
to make all ARRAY statements the first statements ina SCOPAC program.'*" 'The
purpose is to insure that sufficient consecutive locations in memory will be
reserved. Each element of the A..r.mAY is handled as a floating point value.
ARRAY statements always reserve locations for the total number of elements of
the array plus one more floating point value. Only one·or two-dimensional
arrays are permi tted.

ARRAY statements have the form:

ARRAY subscripted variable (items) s

or

ARRAY subscripted variable (rows, columns) s

ARRAY statements must not have location tags.

Examples:

ARRAY LIST (23) s

ARRAY TABLE (5,6) s

Storage is reserved for 24 (23+1) floating point
values (48 locations)** in a region called LIST.

Storage is reserved for 31 (5x6+1) floating'
point values (62 locations)** in a region iden­
tified by the name, TABLE.

* OnlY' the ORG and BLA instructions (entered with a SYMBOLIC statement) may .
precede the ARRAY statement. For description of the use of these instruc­
tions see Subsection 9.4.1.

** Each floating point value will occupy two locations in memory.

- 6. -

5 • ARITHMETIC STATEMENTS

Arithmetic statements are the ~thematical expressions of the problem to be
solved. These statements may have location tags.

The form of the Arithmetic statement is:

Variable (or subscripted variable): expression s

Example:

D: A + B s

Example:

D is a variable

: is the symbol for equal (=-)

A + B is an expression

s terminates the statement

BOB, II R/E s

BOB is a looation tag

I is. a variable

: is the symbol for equal (-)

R/E is an expression

s terminates the statement

The·· equal symbol (:) of an Ari thmetio statement does not have the same mean­
ing as the equal Sign (=) of ordinary mathematioal notation. The equal
symbol has the meaning "replaoe the value of the variable to the left of the
equal symbo1wfththe value of the expressio~to the right of the equal
symbol."

Only a single or subscripted variable may be written on the left side of the
equal symbol.

The expression is written on the right side of the equal symbol.

- 1 -

5.1 Expressions

An expression is ~. math&matically meaningful sequence of constants,
variables, subscripted variables and functions related by operation
symbols.

5.1.1 Operation symbols ee defined as follows:

5.1.2

equality Sign, replaced by

+ addition

subtraotion

& multiplication

/ division

exponentiation

() parentheses

The use or two signs in juxtapoa.1tian is not permitted, e.g. +-E.
When parentheses are used, the number of left parentheses must equal
the number of right parentheses.

The following are examples of expressions and the way they should be
written in order to be acceptable to the SCOPACprogram.

Expression E~ression is written as
X+y X+y

X-y X-y
xy X&y

X/y X/Y

X/-y X/(-Y)
XE+2 X' (E+2)
XE+2y X' (E+2)&Y
xy/vw (X&Y)/(V&V1)

Numbers

Numbers used in· the expres8ion& are entered as decimal· numbers. They
are restricted to no more than fifteen (15) characters including the
sign and the decimal point. Plus signs may be omitted. Neither the
integral part nor the fractional part of a number may contain more
than eleven (11) characters.

Examples:

X:(J&Y)/(P&4.231) s

A:X + .1415 s

G: 425-Y s
- 8 -

5.1.3 Functions

functions have the form F(E), where F is the alphabetic name of a
function, and E is an expression. The following functions are de­
fined in SCOPAC.

SQJlT(E) - Square root of E

SIN(E) - Sine of E

COS(E) - Cosine of E

TAN(E) - Tangent of E

ARCTAN(E) - Arctangent of E

ARCSIN(E) - Arcsine of E

ARCCOS(E) - Arccosine of E

LOGTWO(E) :.. Lo~E

LOGo(E) -" Log10E

LN(E) - LogeE

EXP(E) - eE

EXPTWO(E) - 2E

EXPTEN(E) - 10E

ANRED(E) - E modulo TT, in radians.

Arguments of trigonometric functions must be in radians. There is
automatic angle reduction for SIN, COS, and TAN.

Examples:

M: 1.53 & SIN(F-G) s

D(J,K): 2.667 & SQRT(A(J,K» s

- 9 -

6. INPUT STATEMENTS

Input statements provide the means for the input of data from the typewriter
or from paper tape.

The input statements are:

READY

READZ

ANGLIN

(for typewriter or paper tape input)

(for paper tape input)

(for t~ewriter input)

6.1 READY Statementf:1

READY statements permit the entry of one value. Normally, READY
statements are used to input information from the tyPewriter. READY
statements may have a location tag.

These statements have the form:'

READY variable s

or

READY subscripted variable s

Example:

READY X s

This statement is entered in the source program. The value
of X is entered via the typewriter or from data tape, when
the READY statement is executed in ,the object program.

Examples:

READY MATRIX(I,J) s

READY RHO(12,K) s

READY TABLE(ITEM,6) s

READY DATA s

READY PHI(J) s

READY THETA(3) s

The READY sta.tement used with DO loops is a convenient way to enter
elements of arrays. A READY statement with one DO loop will enter
elements of a one dimensional array. A READY statement with ,two DO
loops provides a choioe of reading in a two dimensional array by rows
or by oolumns. Examples of this programming are in Subseotion 8.3.2.

- 10 -

The READY statements may be used to read a data tape. Three condi­
tions, however, must be met: (1) The data tape must have .at least

\~eigh~ blanks between each character. (2) Program Preparation Package
No. 2 (P~-2) must be read into memory before the object program is
read in. (3) Before the execution of the object program two commands
in p3-2 must be changed. (See footnote in Section 17)

6.2 READZ Statement~

READZ statements permit the input of an off-line prepared data tape.
READZ statements must not have a location tav.

READZ statements have the form:

READZ variable s

When a READZ statement is executed in the object program one block of
data will be read from paper tape. An ARRAY statement, allocating
storage for the block of data, must have been eG,ven prior to the READZ
statement. It is not necessary for the READZ statement to immediately
follow the ARRAY statement. There may be any number of statements be­
tween ARRAY and READZ.

Example:

ARRAY OPTIC (11) s

READZ OPTIC s

Example:

Seventeen elp,ments of a one dimensional array named OPTIC
will be read into memory from tape when the READZ statement
is executed in the objp,ct program.

ARRAY V(~,4) s

READZ V s

The elements of Array V, 1,2,3,4,5,6,1,8,9,10,11,12, and
a -0, are in sequence on tape. When the READZ statement
is executed in the object program this data will be stored
in memory as follows:

4 Columns

1 4 7 10

~ rows 2 5 8 11

3 6 9 12

- 11 -

A minus zero must follow the data.in each block of informa­
tion. The reason is that the data is converted to floating
point form in the sequence in which it is entered, and the
conversion continues until a minus zero is encounter~d.
There is a further restriction that nOTlP of the data should
~~!!!2, sinoe the data fol1ow~t~ minu;-;;ro would
not be oonverted to floating pOint form.

6.3 ANGLIN Statements

ANGLIN statements permit the entr,yof one angle from. the tynewriter.

ANGLIN statenents have the form:

ANGLIN variable s

or

ANGLIN subscripted variable s

ANGLIN statements may have a location tag.

Example:

INANG, ANGLIN A s

Example:

This statement is entered in the source program. The value
of A is entered in degrees, minutes, and seconds via the tyne­
writer when called for at the time the ANGLIN statement is
executed in the object program.. The angle is then converted
to radians by a subroutine in P3-2.

ANGLIN PAR(K,J) s

N~y angles may be input with one ANGLIN statement when the
statement is part of a DO loop. (See Subsection 8.3.1 for an
example.)

- 12 -

7 • OUTPUT STATEMENTS

Output statements provide for output of information via the, ,typewri ter.
The output will occur at the time the object program is executed.

These statements are:

PRINT
TYPE

ORR .(carriage return)

TAB

ANGLOUT

7.1 PRINT Statements

PRINT statements provide for the output of one value.

The statements have the form:

PRINT variable 8

or

PRINT subscripted variable s

PRINT statements may have a location tag.

Examples:

PRINT ANSWER s

02, PRINT VECTOR (M) s

PRINT . MATRIX (K,J) s

The PRINT statement does not provide for a carriage return or tab.
The statements eRR or TAB are used for this purpose.

For Example:

PRINT A s

TAB s

PRINT B s

TAB s

PRINT e s

eRR s

- 13 -

PRINT statements do not include the format of the type-out. A value will
be typed in fixed point format if it·is grea::terthan 1.61036 x 10-41 and
less than 1.54975 x 1012 I. Otherwise it is typed in floating point for­
mat.

Examples:

+.61035998459-5 (floating point format for +.61035998459x10-5)
61.036000000 (fixed point format)

+.20675703017+14 (floating point format· for +.20675703017x1014)

1.2 TYPE Statements

TYPE statements output alpha-numeric characters. A maximum of 150
characters ma, be typed using one TYPE statement.

TYPE statements must not have a location tag.

The TYPE statement has the form:

TYPE sp Lis or Fls alphanumeric characters Fls s

The first five characters must be TYPE sp.

sp means space bar on the typewriter.

Lis means the LETTER SHIFT key on the keyboard.

Fls means the FIGURE SHIFT key on the keyboard.

Example:

TYPE sp tis ABSCISSA sp A! sp Ysp MAX F/s: Fls s

This entry would be typed out as follows:

ABSCISSA AT Y MAX:

If a tab or carriage return is used in a TYPE statement the format of
the assembly listing will be destroyed. This can be averted by turn­
ing Switch B OFF While SCOPAC compiles a TYPE statement containing a
tab or carriage re turn.

For example to type:*

MAX X MAX Y

as one TYPE statement the following could be done:

TYPE sp LiS MAX sp X Fls tab L/S MAX sp Y L/S CjR Fls s

where c/R means carriage return.

* with Switch B turned OFF
- 14 -

8. CONTROL STATEMENTS

Control statements are used to transfer control from one statement to another.

They are:

GO TO

IF

DO

CONTINUE

ROUTINE

RETURN

HALT

Elm

(Transfers control unconditionally)

(Transfers control conditionally)

(Controls repetition of operations)

(Dummy statement)

(Provides the means to write subroutines
using SCOPAC statements)

(Transfers control to the main program from
subroutines written.~ith the ROTJTINE state­
ment)

(Causes object program to halt)

(Terminates compiling by the SCOPAC program.)

A location tag may be referred to in a control statement. This use of a tag
will be included in the following descriptions of the control statements.

8.1 GO TO-Statements

The GO TO statement unconditionally transfers program control to a
specified tagged statement. This tagged statement may be either be­
fore or after the GO TO statement. After control is transferred,
another sequence of statements is executed beginning with the tagged
statement.

GO TO statements have the form:

GO TO tag s

or

COTO tag s

A GO TO statement is also used to transfer to a ROUTINE.

GO TO routine name s

GO TO statements may have a location tag.

- 11 -

Example:

GO TO DEANE s
I

DEANE is the tag of the statement to which control is un­
conditionally transferred. A transfer to the location
assigned to the tag, DEANE, will occur when this statement
is executed in the object program. (See example in Subsection
8.6)

8.2 IF Statements

IF statements are used. to transfer program control conditionally. IF
statements have two forma:

(a) IF (expression) ~inus, zero, plus s

(b) IF (SENSE N) ON, OFF s

These statements may have location tags. In form (a) three location
tags follow the expression. They need not be different tags·. Control
is transferred to one of the tagged statements according to whether ..
the value of the expression is minus, zero, or plus.

Example:

REDO, M:M+.333 s

X: .5&M s

IF (X-3.4) REDO, REDO, OUT s

OUT, PRINT X s

If the expression, (X-3.4), is minus or zero, the object pro­
gram transfers control to the statement tagged REDO.
If (X-3.4) is plus, the object program transfers control to
the eta temen t tagged OUT.

In form (b) N stands for Sense Switch B, C, or D. Two location tags
follow the Sense Switch. Control is transferred to one of these
tagged statements according to the position of the sense switch when
the IF statement is executed in the object program.

- 18 -

Example:

IF (SENSE D) OUTPUT, ITERATEs

If Sense Switch 1> is ON, control i.s transferred to the
statement tagged OtTTPUT when the IF statement is executed
during the object pro~~m.

If Sense Switch D is OFF, control is tl'anRferred to thp
statement tagged ITERATE when the IF state~p.nt is executed
during the object program.

8.3 DO Statements

no statements control iteration 100'Os, which are called "DO loops".
Basically, a DO loop is a set of SCOPAC statements which are performed
several times with nhanging values or conditions.

DO statements have the form:

DO tag variable I.V. (mod.)F.V. s

DO statements ma.y have a location tag.

The value of the variable is changed by the modifier (mod.) from the
initial value (I.V.) to a value not exceeding the final value (F.V.).
The modifier (mod.) may be either an increment OT' a. decrement and.
may be entered as a numeric value or an alphabetic name. If an in­
crement is entered as an alphabetic name, the name mIst not contain
the letter "A". (See Example III of Appendix G.) If a ~rement is
entered as an alphabetic name, the name DIU.a:t contain at least one·
letter "A". The initial value (I&V.) and final value (F.V.) ~
have the same sign.

The tag specifies the last staternentin the range of the DO loop.
Any statement that permits the use of a.loca~ion tag will terminate
a DO loop if used as the last statement of the loop. However, the DO,
GOTO or the IF statement must not be the last·staternent of the DO
loop.

- 19 -

Example:

TYPE K s

TAB s

TYPE FUNCTION s

DO ITERATE K 1(2)7 s

FUNCTION: THETA(K)!SIGMA(K) s

CRR s

PRINT K s

TAB s

ITERATE, PRINT FUNCTION s

The DO statement means "perform all statements, beginning
with the next statement after the DO statement, to and in­
cluding the statement tagged ITERATE". This DO loop would
perform all statements within its range four tiMes: K=1
the first time; K=3 the second tiMe; K=5 the third time;
K=7 the fourth time •.

The printout would be as follows:

K

1.00000000000

3.00000000000

5.00000000000

7.00000000000

FUNCTION

(numerical value of FUNCTION
will be printed)

9 1/ ()1

93/0-3

95/ (i5

Srr / (f7

Example: Decrementing a variable

DO GREG X 100(-10)10 s

MZ:1/SQRT (X'2 + K'4!X'2)
PRINT X s

TAB s

PRINT MZ s

GREG, CRR s

The DO loop will solve MZ for 10 values of X, beginning
with X=100 and decrementing X by 10 each time.

- 20 -

8.3.1 DO loops oontained within the range of another DO loop.

Example:

DO OUTPUT K 1 (1)3 s __ ~_. ___________ -t

DO OUTPUT J 1 (1)4 s _______ ---.

PRINT M(K,;r) s

OUTPUT, eRR s

"Range of
inner" loop

·Range of
outer loop

Example:

The DO loops will print the elements of the array M.

M is an array with 3 rows and 4 columns
K is the row number
J is the oolumn number

This would print

M11

lif12

M13

M14

M21

•
•
•

Note that the inner DO loop is oompleted before
oontrol is transferred to the outer DO loop_ The
DO .loops are said to be "nested".

ARRAY PAR(6,5) s

DO PAM K 1(1)6 s

DO PAM J 1(1)5 s

PAM, ANGLIN PAR(K,J) s

The DO loops provide for the entry of 30 angles via the
typewriter when these statements are executed in the object
program. There may be any number of statements between the
ARRAY statement and the DO statements.

- 21 -

8.3.2 Use of DO Loops With READY St~tement To Inin;ut Elements of An A:r-ray

The elements of a two dimensl,onal array may be input either row or
column wise. The subscript placed in the outer DO loop determines
the way the elements will be entered i.e. if the outer DO loop oon­
tains the row subsoript, input will be by rows; if the outer DO loop
oontains theoolumn subsoript, input will be by oolUmns. There may
be any number of statements between the ARRAY statements and DO state­
ments.

Example:' To Input by Rows

ARRAY MATRIX (2,4) s

DO TAG I 1(1)2 s

DO TAG J 1(1)4 s

TAG, READY MATRIX (I,J) s

The a.rray would be read in row wise because J would 'be the
most rapidly changing subscript.

Example: To, Input by Columns

ARRAY MATRIX (2,4) s

DO TAG J 1(1)4 s

DO TAG I 1(1)2 s

TAG, READY MATRIX (r,J) s

The array would be read in column wise because I would be
the most rapidly changing subscript.

Example: To Input a One Dimens:i.onal Array

ARRAY PHI (4) s

DO TAG J 1(1)4 s

TAG, READY PHI (J) s

The four elements of ARRAY PHI will be read in during the
execution of this DO loop in the object program.

- 22 -

8.3.3 Restrictions

The following restrictions apply to the use of DO loops. In the
diagrams, the brackets represent. the range of statements under con­
trol of· a DO statement.

(a) If the range of a DO statement includes another DO state­
ment, all statements in the range of this second statement
must also be in the range of the first DO statement.

Permitted Not Permitted

(b) No transfer of control by IF or GOTO statements is permit­
ted ~ the range of any DO statement from outside its
range, since such tra.nsfers would not permit the DO loop
to be properly indexed. However, an IF statement m~be
used to transfer out of a DO loop.

Permitted Not Permitted

(c) The maximum number of DO loops that may be nested is seven.

(d) A DO, GO TO, or IF statement cannot be the last statement of
a DO loop.

(e) The last statement in a DO loop cannot immediately precede
the END statement.

- 23 -

8.4 CONTnrr~ Statements

cONTtNtm sta.tements are dumr.ty sta.tements.

CONTINUE sta.tements 'Usually have the form:

tag, CONTIlmE s

A CONTTh'1JE statement wi th a tag may be the laststater.Jent in a. DO
loop. When used in this way control -passes to' thestA.teT!lp.nt following
the CONTINUE statement after the operations. of the DO loop 8,re com­
pleted.

A CONTINUE statement with a tag, may be used to provide a means of
transferring control to a statement that cannot have a location tag,
e.g. TYPE or SYMBOLIC. The statement that cannot be directly tap-ged
should immediately follow the tagged. CONTINUE statement.

Example:

LARRY, CONT:rNUE s

TYPE Y .EQUALS s

A statement such as GO. TO LARRY 6 elsewhere in the pro~am
would transfer control to the statement LARRY, CONTINUE s.
This would be followed by the execution of the statement
TYPE Y EQUALS s.

8.5 ROUTINE Statements

ROUTINE statements provide the means to write subroutines with SCOPAC
s ta tetnell ts •

ROUTINE statements have the form:

ROUTINE name s

ROUTINE statements ~ not have a location tag.

The name identifies the subroutine.
The name may consist of not more than seven (7) aJ..nha characters.

Example:.

ROTJT~SYSTEM s

A transfer statement to the subroutine should not be the statement
immed.iately preceding the ROUTINE stater.lent. The HOUTINE statement
is followed by one or more SCOPAC statements which constitute the sub­
routine. These statements must be followed by a RETURN stateMent.

- 24·-

8.6 RETUR.N Statements

RETITRN statements transfer control to the main pro~am after the
execution of a subroutinp.. Control returns to the statenent which
follows the transfer statpMent to th~ subroutine.

RETURN stateMents have the form:

RETTfRN nanre s

RETURNstatement~ ~ !l2.!.. have a lOCFtt:l"" tag.

EXMple:

GO TO GUSS s

GO TO RON s

ROUTINE GUSS s

Y:X',+SIN(M) s

RETURN GUSS s

RON, PRINT Y s

In this examr-lp Y:X '3+STII(M) is the subroutjne named GUSS.
Note thf.1.t. when the sta.t~ment RETtffiN GTTSS s is executAd.,
the return from the subroutine to the main nrOp,TRf!l will be
made to the statement r~ TO RON s. '

To avoid transferring control around subroutines in the main body of
the program, subroutines may b9 nlacE:'d after th~ main body of the
program.

A.7 lIAIJT Statements

HALT statements cause a halt and transfer to location)()OOS to be
executed in the object program.

HALT stat~ments have 'the 'form:

HALT s·

HALT statements may have a location ta.g.

- 2'5 -

8.8 END Statemen~s

An END statement indicates to the SCOPAC program that there is no more
information. This is the 2-~Z purpose of the END statement. Since
the EN~ statement does not generate a halt instr11ction it iR advisRble
to use a HAI1f statement just prior to the END stR,tAment.

END ~~, the very last SCOPAC statement.

END statements have the form:

EN"D s

END statements ~ not have a location tag.

,,..' .'

- 26-

9. SYMBOLIC STATEMENTS

9.1 SYMBOLIC Statements

The SYMBOLIC statements permit input of sYmbolic coding.

SYMBOLIC statements have the form:

SYMBOLIC s

SYMBOLIC statements ~ ~ have a location tag.

The symbolic coding is entered immediately following the SYMBOLIC
statements. (See Subsection 12.8 for ~xamp~es.)

9.2 COMPILE

COMPILE is used. with the SYMBOLIC statement to notify the SCOPAC
program that no further symbolic coding is to be entered. Each time
symbolic coding is entered in thesouroe program it is preceded by
the SYMBOLIC statement and terminated with th~ word, COMPILE.

9.3 Symbolic Coding Entered With The SYMBOLIC ~tatement

The SYMBOLIC statement permits the use of RECOMP II operations* and
certain special operati_OIlS. Al though the RECOMP II magni tude in~
structions cannot be entered directly, magnitude operations can be
coded with the SYMBOLIC statement as described in Subsection 9.4.
In turn, these operations are used to enter decimal and octal numbers,
addresses, alpha-numeric information, and instructions in command
format.

Functions may be entered as symbolio coding provided the arguments of
the Functions are in the A and R registers. just preceding the execu­
tion of the Functions. Normally, Functions are entered in the Arith­
metic statements.

READY, ANGLIN, PRINT, ANGLOUT, CRR, TAB may also be entered with a
SYMBOLIC statement. If READY or ANGLIN are entered as symbolic coding,
the input must be stored just after the execution of READY or ANGLIN.
If PRINT or ANGLOUT are entered as s~bolic coding, the output must be
in the A and R registers just prior to the execution of PRINT or
ANGLOUT. .

* See Appendix B for list of acceptable operations.

- 21 -

The special operations are:

ORG (origin)

BLA (block alloca+,ion)

DEF (definition)

EQU (equal)

The first word of the object proeram
is assigned the ~.bsolute address spec­
ified in the ORG instruction. This
operation is used onl:y if an origin
other than ;0008 is desired. The SCOPAC
progr~ automatically assigns an origin
of ;0008.

In th~ BLA operati0n the total number
of locatjons for the o~ject program
is specified. This operation is used

, only if the storage allocated for the
object program is to be restricted be­
tween the origin and 8. location other
than 11578.

In the DEF ~peration a symbolic location
is assigned an absolute address.

'In the EQU operation two symbolic ad­
dresses are assigned the same absolute
address,.

Special operations used with the SYMBOLIC statement for 9utput of words
in decimal number format are:

DISD (display decimal)

TYVID (type word decimal)

PNWD (punch word decimal)

PTWD (punch and type
word decimal)

The specified word is di~played as a
decimal number in the display register.

, The specified word is typed as a deci-
mal number.

The specified word is punched in deci-
mal number format.

The specified word is typed and punched
in decimal number format.

NOTE: The above four operations require that the specified word
be in binary coded decimal (BCD) format 12rior to execution
of the operation.

- 28 -

9.4 Writing Instructions In Symbolic Coding

There are four fields used when writing instr~otions in sj~bolio
coding. They are Looation, COr.lI!land, Type and Address.

The format is:

SYllBOLIC s

LOCATION
field

COMPILE

LOCATION Field

COMMAND
field

TYPE
field

ADDRESS
field

The Location field may contain a location tag. This tag may be from
one to eight alphabetic characters. A numeric tag cannot be used.
The Location field may be left blank.

COMMAND Field

The Comm&"1d field may oontain RECOMP II operations, special opera­
tions,- Funotions, or READY~ ANGLIN. PRINT, ANGLOUT, CRR, and TAB.

TYPE Field

The Type field snccifies the type of entry which will follow in the
Address field. A single letter code is used to designate the type
of eri.try.

S Symbolic (or if the Type field is left blank, it is inter­
preted a.s symbolic.)

N Uump.ri.c

A Al phanumeric

14' Fl O~l ting poi,nt decimal number

D Fiyed.point decimal number

ADDRESS Field

The Address field may contain one of the tY"Df'S of entries specified
in the Type field 7 0r is left blank.

Symbolic. (Address fiel d)

A symbolic address containing from one to eiGht alphabetic
characters may be entered.

- 29 -

Example:

DATA

Addresses rela.tive to the symbolic address may be written:

Examples: .

DNfA-0001

DATA+0001

DATA+27

one word before DATA

one word after DATA

27 words after DATA

To insure that SCOPAC will not assign these locations for" ether
purposes, it is advisable to reserve these location~ with an ARRAY
stat~mentJ i.e. ARRAY DATA .(27) s.

Example:

LOCATION COMMAND

FC!
FST

Magnitude Operations

S

ADDRESS

ABC
DATA

Al though the RECOMP II codes for magni tude operations cannot
,be entered4 the use of a symbolic addrese +00001 is a way of
specifJ~ng the magnitude operatio~s.

Example:

LOCATION ~ND

FCA
FST s

ADDRESS

ABC+00001
DATA

The absolute value of the contents of ABC will be
stored in DATA.

Numeric (Address.fte1dL

The numeric entry in the, Address field may be from one to five
numerals t If five numerals are in this field, they are inter­
preted as the usual RECOMP II address, with 4 octal digits for
channel and sector plus a half-word bit. If there are fewer tha.!1
five numerals, the address is interpreted as a full word ~ddress
with a half-word bit of zero. Enough leading zeros are automat­
ically inserted to right justify the numerals.

- 30 -

Examples.

ENTERED AS.

Example:

7737

525

17
23451

1

00001

o

LOCATION COMMAND

CLA
STO

Al~hanumeric (Address. fielll

INTERPRETED AS.

7731.0

0525.0

0017~0

2345.1

0001.0

0000.1

0000.0

~

N
N

ADDRESS

6032
5004

The a.lphanumerio entry ma.y contain eight or less characters.

Examples:

MAXZ

SPAN1

CURVE 4

Example.

LOCATION COMMAND

CLA
TYA

~

A
N

ADDRESS

CURVE 4
7760

The alphanumeric entry, CURVE 4, will be typed during the
execution of the object program.

Command (Address-field)

A word in oommand formR.t may: be entered in the Address field •.

An example of the oommand fonnat is:

-31 -

Example:

LOCATION COMMAND

CLA
STO

~

C
N

ADDRESS

+0050320+6030300
6010

The wQrd, +0050320+6030300 will be stored in 6010
during the exo.cution of the object program.

Floating P9int Dec:Lr.1al • .i.Add!"~ss £j e1gj_

A floating point decimal number in the Address field may oontain
a maximum of sixteen (16) characters including the sign and the
decimal pOint. .

Neither the integer nor the fraction may oontain more than elev~n
(11) oharacters. The sien will be interpreted as plus if no sign
is given.

Example.

-142857

642.31

.0513

Example:

LOCATION COMMAND

FeA
FMP

Fixed Point Decimal (A<Idress field)

ADDRESS

If a deoim~l number is entered as a fixed point number the
position of the binary point must be specified.

A fixed point decimal number in the Address field may contain a
maximum of sixteen (16) characters including the sign, decimal
point and position of the binary point (two or thre:echaracters
are needed to designate the binary point). Neither the integral.
part nor the fractional part may contain more than eleven (11)
digits. If there is no sign, the number is assumed to be pos-
i tive.

Either the integral part or the fractional ·part may be omitted
if it is not needed. If the position of the binary point is
omitted, the number will be converted incorrectly to a floating
point number without an exponent. There will be no error halt
for this condition.

- 32 -

If the magnitude of the mIIDber is such that it cannot be converted
at the speciri~d binary point the number will be inco:rrectly con­
verted. There will be no error hal t for this condi.tion.

Examples of fixed point decimal entries are:

-142851+18

642.31.+10

.0513-4

Example:

LCCATION

for -142,851 at binary point 18

for 642.31 at binary' point 10

for .0513 at binary point -4

CCMMA:rm ADD~SS

642.31+10
Z

eLA
STO

9.4.1 Writing the Special Operations in S~bPJic Coding

Certain special operations, if used, must be plaoed at the beginning
of the source program. The order of entry is I

1. ORG

2. BLA

}. ARRAY Statements (These are !lot entered b,Y sYI!lbolic codin~.)

4. DEF and/or EQU

CRG (origin) This operation is u~ed only if an orl.gl.n
other than 300'08 is desired. The SCaPAC
program automatically assigns an origin
of 3aOOa- If used, this operation must
be the first entry in the source program.

The first word of the objeot program is
assigned the looation specified in the
Address field. All other words in the
object program will be assigned locations
greater than the origin. (Origin must be
an even number Z 0004. The Type field.
ruust contain N.

Generalll' Program Preparation Package
No.2 (P'-2) is used in conjunotion with
the object program. P)-2 oooupies 10-­
cations 0'00'38 and-Oa10a through 21110.
Therefore, if an origin < 3000'8 is speoi­
fied, part of P3-2 will be destroyed.

- 33 -

Examples

LOCATION COMMAND ADDRESS

ORG 5000

An origin of 5000a is ass±gned to the objeot program.

BLA (blook allooation)

Examples

LOC.ATION COMMAND

BLA

This operation is used only if the storage
allocated for the objeot program is to be
restrioted between the origin and a looa­
tion other than 77578'

The total number of locations nllocated
for the object program is specified in
the Address field. These locations are
consecutive. The BLA oper~tion must pre­
oede all ARP~Y statements in a source pro­
gram.

The number of loca.tions is wri tt,en as an
octal number.

The Type field must contain an N.

ADDRESS

100

100a locations will be reserved for the object program. Assum­
ing an origin of 3000a the storage allocated extends from }OOOa
to 3071a.

- 34.-

DEF* (definition)

Examples

LOCATION CQW,WID

ABC DEF

The symboll.o address in the Looation
field is assigned the absolute address
in the Address field.

The Type field must oontain N.

This operation enables the programmer to
assign an absolute address to a symbolio
address.

!D1! ADDRESS·

N 3200

ABC is the symbolic address.

DEF is the operation.

N signifies a numeric address follows.

32008 is the absolute address assigned to the symbolic address, ABC.

EQU* (equal)

Example:

LOCATION

DOG

COMMAND

EQU

The sJ~bolio address in the Location
field is aSSigned the s~e absolute ad­
dress as the symbolir. address in the
Address field.

~

S

DOG is a symbolio address.

EQU is the operation.

S means a symbolic address will follow.

PUP is the symbolio address whioh will have the same absolute
address as DOG.

* It is advisable that DEF and EQU operations i~oediately

follow the ARRAY statements to insure that all symbols with de­
fined locations and all equivalences are l'Jlown before reference
is made to them.

- 35 -

The following four 0pi:rations require that the. word be in BCD (Binar.Y
Coded Decimal) format prior to execution. BCD format ~ ~ arranged
by programming. (See the description of the Display operation in the
RECOMP II Operating Manual for details regarding BCD format).

DISD (Display Decimal)

TYWD (Type Word Decimal)

PNWD (Punch Word Decimal)

PTWD (pUnch and Type
Word Decimal)

The word specified in the Addre~s field
is displayed as a decimal n~ber. The
Type field must be either N or blank -de­
pending on whether the Address f:!'cld
contains a numeric or symbolic entry.

The word specified in the Address field
is typed as a decimal number.

The Type field must be either N or blank
depending on whether the Address field
contains a numeric or symbolic entry.

~le word specified in the Address field
is punched in decimal number format.

The Type field must be either Ii. op'blarik
depending on whether the Address·field
contains a nu:neric or symbolic entry.

The word s,ecified in the Address field
is typed and punched in deoimal number
format. The Type field must be either N
or blank depending on whether the Address
field contains a numeric or 9vrrboli.c
entry.

- 36 -

10. PREP A.."qATION OF SOURCE PROGRAHON PAPER TAPE

SCOPAC statements and/or symbolic coding may be prepared on paper tape.

[ror Flexowri tar offline tape preparation of SCOPAC source language and data)
see RECOMP Technical Bulletin No. 21. The bulletin was written for tape prep­

, sration of source programs for SALT (Program No. 1034) but a~plies as well to
SCOPAC_~

10.1 SCOPAC statemen~s and/or symbolic coding ~~ prepared on paper
tape in exactly' the sarne format that is used for typewriter in,1')u t •
There must be at least ei~ht (8) blanks between ~ character, in­
cluding figure shift (F/S), letter shift (L/S), space (sp), etc.*

10.2 vVhen preparing a statement on paper tape, each name or number MUst be
terminated by a space, figure shift, or letter shift.

10.3 Terminate each statement by a figure shift followed by an s.

10.4 When preparing symbolic instructions on paper ta~e terminate the
Location l Command, and TYpe fields by a tab. Terminate the Address
field bY' a carriage return.

10.5 In the following examples at least 8 blanks must be inserted between
~ character~*

b means 8 blanks

t means a tab

Example:

X:3 s

This would be entered on paper tape as:

XbF/Sb:b3bF/Sbspbs

Example:

This would be entered on paper tape as:

F/Sb3b2bF/Sb,bL/SbCbRbRbF/Sbs

* The requirement that at least eight blanks be between each character applies
only if the tape is to be read in via the photoreader.

- 37 -

Example:

SYMBOLICs

ORG N 3400

COMPILE

This would. be entered on pFLp~r tape as:

IJ/SbSbYbMbBbObLblbCbF/SbSbtbL/SbObRbGbF/SbtbL/Sb~TbF/Sbtb3b4bObObJ/SbC /R

L/SbCbObT'.''bPblbLbF.bF/SbtbtbtbL/SbC /R

10.6 A source program may be on more than one tape. In thls c~se the fol­
lowing precautions must be tak~n: (1) Each tape rust have a cOMplete
statement at the end (i.e. a statement may not be continued on 8nother
tape); (2) All symbolic instnlctions to be entered by a SYMB0LIC
statement must be punched on one tape together with the STI,rnOLIC state­
ment and the word, C01~ILE.

- 38 -

11. CORRECTION OF ERRORS WHILE PREPARING SOURCE PROGRAM"ION TAPE

11.1 If an error is disoovered before termination of a statement or symbolio
instruct10n, depress LINE FEED key and re-type the statement or in­
struotion. If an error occurs, such as an incorrect character, it is
possible to correct without depressing the LINE FEED key by manually
moving the tape back to a point one space ahead of the incorrect char­
acter and entering "the oorrect character. The tape is moved so that
the correot character is just ahead of the incorrect character.

11.2 If an error is discovered after termination of a statement or symbolic
instruct10n, it may be corrected by manually moving the ta~e back to a
point one space ahead of the termination character s or C/Rand depress­
ing the LINE FEED key. The statement or symbolic instruction rnaythen

be re-typed.

- 39 -

12.1

12.2

12. INPUT OF SOURCE PROGRAM FROM THE TYPEWRITER

For operations prior to entering the SCOPAC statements see Com~iling
under Operating Instructions, Section 14.

A statement may be entered only when the ALPHA light is Q! and the
COMPUTE light is Q£!.

No statement m~ consist of more than 150 characters. This includes
letter shift (L/S), figure shift (F/s), space Csp), carriage return
(aiR), etc.

The expression in an Arithmetic statement may contain a maximum of 70 '
charaoters of the following type: All narentheses, operators (+, -,
&, I, '), Funotions, variables and numbers.

The entire Arithmetio statement may oontain a maximum of 150 charaoters
inoluding letter shifts, figure shifts, and all other oharacters.

12.5 A blank i$ a oharaoter in typewriter input.

12.6 TyPing A Statement*

All looation tags, variables, subsoripts, numbers and names in a state­
ment cust be terminated. The termination may be done by a letter shift
~~/S), figure shift (F/s) or a space (sp).

Each statement must be terminated by a figure shift (F/s) followed by
an s.

At the beginning of any statement the tynewriter is in L/S mode.
Therefore, if the first character requires Lis mode it is not necessary
to depress the LETTER SHIFT key.

* ,NOTE: ,1. If an error is 'discovered before termination of a state­
!!l!m1 (prior to entering the s, or prior to depressing the '
CARRIAGE RETURN key if symbolic coding), depress, the lJINE
FEED key and retype the statement or the line of sy~bolic
coding.

2. If an error is discovered after termination of a state­
~(after entering the s, or after depressing the CARRIAGE
RETURN key if symbolic coding) depress the STOP key'as soon
as possible. For following steps see Correction of Errors
While Compiling a Source Program, Subsect:ton 14.6.

- 40 -'

Example:

DLD,TAB s

This is typed as:

DLD Fls, L/S TAB sp Fls s ~e space (spl before Fls is
. . not necessary]

Example:.

01,CRR s

This is typed as:

Fls 01 Fls, Lis CRR sp F/s s

Example:

READY V(2,3) s

This is typed as:

READY sp V Fls (2 F/S , 3 F/s) sp s

Example:

ABC,Z(Q,J):2&X'3+w/2 s

This is typed as:

ABC Fls, L/S Z F/S (L/S Q F/S , L/S J F/S):2 Fls &

L/S X Fls ' 3 F/s + L/S W Fls I 2 F/S sp s

12.7 Entering TYPE Statements

The five characters, TYPE sp, ~st precede information to be entered
with a TYPE state~ent.

If a tab or carriage return is to be part of the TYPE state~ent, turn
Switch B QEE while SCOPAC compiles the TYPE statement. (Otherwise,
the format of the asse~bly listing will be destroyed.) The alterna­
tive would be to use the statements TAB and eRR separately from the
TYPE statecent.

The TYPE statement may be corrected by either depressing the LINE
FEED key and re-entering the stateP.lent or· by using the h character-in
figure shift (F/s) mode. Vfuen the latter method is used, characters
may be removed in the reverse order of theirin~ut, a character at a
title, by depressing the FIGURE SHIFT key once and then by denl~es.-

- 41 -

·ing the h key for each of the ch~~acters to be re~oved. Thus, if three
characters in succession were incorrectly entered, ~/s hhh followed by
the three correct characters would be t~ed.

12.8 !Y]ing SYmbolic Instructions

When typing symbolic instructions, terminate the LOc8,tion. r,ornmand ~tniJ

~e fields by a tab. Terminate the Address field by a ~arriage· r~­
turn (ejR). The last chR.racter in the Address field shouliJ bp follow'ed
by a. carriage re turn .2!llI.. .

- 42 -

The formats are: ..
SYMBOLIC s

LOCATION CO:MMAND ~ ADDRESS

1-8 3-7 1
Alpha tab Alpha tab char- tab

characters characters acter
or

left S Symbolic C/R
blank or left 1-8 characters

blank

N Numeric C/R
1-5 numerals

A Al12habetic C/R
1-8 alpha-

numeric
oharacters

C Command C/R
Format

such as:
+3030620+5736700

F Floating C/R
Point

Decimal
1-16 characters
including sign

and decimal point

D Fixed Point C/R
Decimal

1-16 characters
including sign,
decimal point &

location of
binA.ry point

- 43 -

Although READY, AH~T,IN, PRIN'.P, ANGLOUT, C-qR, and TAB Rrp llsua1Jy
entered as statements, and the FUnctions are usu~lly erlter~d in
Ari thmetic statements, they may be entered as symbolic coding_

LOCATION COMMAND ~ ADDRESS

1-8 Functions left left

characters READY blank . blank

or ANGLIN

lett PRINT

blank ANGLOUT

CRR

TAB

Example:

SYI~mOLIC s

ABC tab FCA tab S tab X c/R
tab COS tab tab c/R
tab FST tab tab Y C/R

tab FMP tab F 3 cIR
BEC tab PRINT tab tab c/R
tab CRR tab tab c/R
COMPILE tab tab tab clR

Example:

SYMBOLIC s

CCD tab CLA tab C tab +3030620+5736700 C/R

tab STO tab N tab 2142 C1R

tab ADD tab D tab +2+18 cjR

tab STO tab N tab 2110 c/R
COMPILE tab tab tab c/R

- 44 -

13 • cm~C},"()UT OF RECOMP II RBA nnmss

13.1 Turn computer POW2H Swi tch ON ,q.nd wai t for TI'R <lDY light a.bove sv:i t('h
to p:o ON.

13.2 Turn Input-OutPllt POVi'ER Switch ON (on the front contr01 nanel).

1 ~.4 If ta.pe is to be reA.d into nemory:

a. Turn Tare Reader POV1.t;R Switch ON.

b. Turn T8P~ Reader UOTOR Swi tch ON.

c. Tu.rn th~ TAPF. ADVANC"E Switch to O"FF.

1 ~. 5 If ta,pe is to be T-l'IDched:

a. Turn TBpe PUnch POVf}~1 Switch ON.

b. Turn the PUf\fr;p-EXTERNATJ Switch tf" PUNCH.

13.6 Tu..m typewriter ON-OFF Switch (under lower right cornElr) to ON.

13.7 Turn the OPERJ'TION Switch '(on the Console) to CONTnnrous.

13.8 Turn the PRE-SET STOP Switch to OFF.

13.9 Turn rr.RAJ'I3F'L~·H STOP Switch OF'F (down).

The compute~ is now reR-dy to use.

- 45 -

14. OPERATING INSTRUCTIOnS FOR COMPILING

14.1 Preliminary Prooedure for Compiling One or More Souroe Programs

a. Load the SCOPAC tape. (A short program at the beginning of the
tape will'olear memory to minus zero.) SCOPAC'will use all
memory looations.

To verify the SCOPAC tape:

(1) Pla~e the tape in the photoreader past the short "zero r.Ier.I­
ory" program.

(2) Press the VERIFY button.

b. Set typewriter margins and tabs.

(1) Set typewriter margins at 6 and 97.
(2) Set tab stops at 23, 33, 53, and 60.
(3) Set tab override switoh in the OFF position.

,14.2 Input of Souroe Program

a. Advance at least two folds 'of blank tape.

b. If the object program is to be listed, turn Sense Switch ~ ON.

o. If input is via the typewriter:

(See Seotion 1 2, Input 0 f Source Prograrn From the Typewri ter and
Subsection 14.6, Correction of Errors While Compiling a SoUrce
Program.)

(1) Depress START 1 button.

(2) After entering a statement or symbolic instruction wait for
the computer to halt with the ALPHA light on.

(3) Type the next statement or symbolic instruction.

(4) After all of the source program has been entered "roceed to
Step e.

d. If input is to be entered from paper tape:

(See Section 10, Preparation of a Source Program on Paper Tape
and Subsection 14.6, Correction of Errors While Compiling a Source
Program)

(1)
, (2)

Place input tape in photoreader.

Depress START 2 button if !!! input statements are ,to be
tyPed.

- 46 -

(3) Depress START 3 button if only those input statements
in error are to be tyPed.

(4) After the source program is processed, proceed to Step e (1).

(5) If the source program is on more than one tape:

(a) Place each tape in the photoreader.

(b) Press the desired START button (START 2 or 3) and com­
~iling will continue.

e. After the END statement is entered:

(1) Wait for the Assignment Table to be typed.

(2) Wait for END OF ASSEMBLY to be typed.

f. Remove the object program from the punch canister.

14.3 To Initialize the SCOPAC Program

a. Instead of reloading the SCOPAC program, it may be initialized
(re-establish SCOPAC in memory without reloading it) at any time
during compiling by the SCOPAC Initializer tape.

(1) Press FILL button on the Console •.

(2) Load SCOPAC Initializer tape. The SCOPAC program will be
re-established in memory and the computer will halt at
1413.1.

(3) Return to Step 14.2.

14.4 To Interrupt Compiling

To interrupt compiling while entering SCOPAC statements via the type­
writer:

a. When the typewriter is ready for input of the next statement
(ALPHA light on), turn the computer OFF.

b. To resume compiling with typewriter input:

(1) Turn the computer ON.

(2) Turn POWER switch ON for the tape punch unit.

(3) Check Switch B to be sure it is in the sane position as it
was at the time compiling was interrupted.

(4) Press START 1 button.

(5) When the ALPHA light comes on, resume compiling.

- 41 -

To interrupt compiling while SCOPA9 statements are being entered via
paper tape:

a. Wait for a time when the tape is not being read bv the photoread­
~; then press STOP key on the Console.

b. Set Channel and 5ef'tor dials to 4720.

c. Turn PRE-SET STOP Switch to 1st.

d. Press START key.

e. After the program halts at location 4720, turn the PRE-SET STOP
switch OFF. '

f. Turn the computer OFF.

g. Either leave tape in photoreader or mark tape and recove it.
(Mark tape so that it may be placed in the same position on photo

"reader when compiling is resumed.)

h. To resume compiling with input from paper tape:

(1) Turn the computer ON.

(2) Turn the POWER switch ON for the tape uni t.

(3) Check Switch B to be sure it is in the same position as it
was at the time compiling was interrupted.

(6)

If necessary, place input tape in photoreader in the same
position it was at the time compiling was interrupted.

Turn on photoreader (by turning the POWER switch and the
MOTOR switch ON).

Set Location Counter to 4720.0 by pressing L key, typing the
location, and depressing the ENT1~ key.

Press START key. (The type-out specified ori~inally by START 2
or STk~T 3 will be resumed autoMatically.)

14.5 Check of Source Program on Tape Without Compiling

The Check SCOPAC Source Program tape is used to run a check of the
statements in a source program on tape without compiling.

a. Load the SCOPAC tape.

b. Load the Check SCOPAC Source Program tape.

c. Place the source program in the photoreader.

- 48 ~

d. Press either STA..'RT 2 or START 3 button.

(1) START 2 - every statement on the tape will be listed. If
an error is detected, ERROR or EQ'UATICN F.R?OR
will be typed.

(2) START 3 - only those statements in error will be listed.
If an error is detected, ERROR or EQUATION ERROR
will be typed followed by a type-out of the state­
ment in error.

e. If errors in symbolic coding are detected, SYMBOLIC CODE ERROR
will be typed. If the error was such that SCOPAC fails to inter­
pret the word COMPILE as the termina.tion of the symbolic coding,
statements tha.t fOllow will be processed a.ssymbolic coding, and
SYMBOLIC CODE ERROR will be typed.

f. Any number of off-line prepared tapes containing source provrams
may be checked without reloading SCOPAC and the Check SCOPAC
Source Program tapes. Just place the tape in the photoreader and
depress START 2 or START 3.

g. After checking all t~;pes for errors, it is only necessary to lOFl.d
the SCOPAC Initializer tape and a source program tape in order
to begin compi 1 ing.

Correction of Errors While Compiling a Source Progra.m (typewriter or
tape input)

a. If an error is discovered by the nrogramMer before termination of
a statement or syMbolic instruction (prior ~n~ering the s, .
or prior to depressing the CARRIAGE RETURN key if symbolic coding),
depress the LINE FEED key and retype the statement or the symbolic
instruction (this applies only to input via the typewrite~).

b. If an error is discovered by the programmer after termination of
a statement or symbolic instruction:

(1) Depress the STOP button as soon as possible.

(2) Set Channel and Sector dials at 5000.

(3) Set PRE-SET STOP switch on 1st.

(4) Turn Switch BON.

(5) Depress the START key.

(6) Wait until the halt at 5000 occurs.

(7) Turn PRE-SET switch OFF.

(8) (a) For all statements except the STh'lBOLIC statement:
- Depress START 1 button, and wait for the AI,PHA lipht

to come on.
- Type the correct statement.

- 49 -

(b) For a line of symbolic coding:
- Set the Location Counter at 2665.1.
- Press the START key and wait for the ALPHA light to

come on.
- Type the correct symbolic instruction.

An examination of the incorrect statement or symbolic in­
struotion may indicate that even if all or"part of it should
be executed by the object program, it would not affect the
program. If this is so, continue with the compilin~. If it
is not so, either continue with the compiling, noting where
a transfer can be made around the incorrect instructions
when executing the object program, or initialize the SCOPAC
program and begin compiling again starting at Step 14.2 of
Operating Instruotions.

If an error is discovered while a source program on tane is
being compiledt follow the instructions in Step b(1)-(7).
In Step b(e)(a) and (b) "the instructions are the same, but
another START button is used.

- Depress START 2 button if all the statements are to
be typed out.

- Depress START 3 button if only the statements in
which the SCOPAC program finds errors are to be tyned
out.

c. Errors detected by the SCOPAC program:

(1) ERROR
If the SCOPAC program finds an error in any statement ex­
cept the Arithmetic statement such as an illegal word or an
incorrect format, the word ERROR will be.printed and the
ALPHA light will come on ready for a statement to be entered.
T~e the correct statement.

(2) EQUATION ERROR
If the SCOPAC program detects an error in an Arithmetic
statement the word EQUATION ERROR will be printed. This
indicates that parentheses have been improperly used, that
termination of names or numbers is incorrect, or illegal
entries have been made. When the ALPHA light comes on, type
the correct statement.

(3) SYMBOLIC CODE ERROR
If an error occurs while typing in symbolic coding, the
words SYMBOLIC CODE ERROR will be typed. When the ALPHA
light comes on, type the correct line of symbolic coding.

(4) Incorrect Entry of ARRAY Statement
If an ARRAY statement is not entered at the beginning of the
source program as specified in the SCOPAC manual, the follow­
ing statement will be typed:

TOO LATE TO ENTER ARRAYS

The computer will halt at 2610.0. Depr~ss the STktT key to
continue with the next statement.

- 50 ~

(5) Assembly Error
If ASM ER is printed as a result of an illegal operation
(such as COW instead of CLA being input in symbolic coding)
it cannot be corrected by any means other than to start the
entire operation ~ again, beginning wi th initializing·
the SCOPAC program.

14.1 Procedure When the TyPe-out "ASSIGNMENT TABLE IS FtTLL" or "NO STORAGE
LEFI' FOR YOUR PROGRAM" Occurs During Compiling

a. ASSIGNMENT TABLE IS FULL

During co~piling if all storage in the Assignment Table is used,
the following is typed:

ASSIGNMENT TABLE IS FULL

and the computer will halt at 2610.0. When this occurs, the
SCOPAC Assignment Table Full tape and Sense Switch C may be used
to eliminate certain types of entries from the Assignment Table.
In this way storage is provided for additional entries into the
Table. The position of Sense Switch C will determine the type
of entries to be eliminated from the Table. With Sense Switch C
ON fewer types of entries are removed than with Sense Switch C
OFF.

(1) Set Sense Switch C.

(a)

(b)

If Sense Switch C is O1J, Alpha literals and location
tags of the fo~ TAG NN (except those needed in DO
loops) will be eliminated from the Assignment Table.

If Sense Switch C is OFF, Alpha literals, Floating
literals, Fixed Point literals, Command literals, and
location t~s of the forn TAG NN (except those needed
in DO loops) will be eliminated from the Assignment
Table.

(2) Load the Assignment Table Full tape.

Computing will begin (at location 141.2.0), and those words
and their assigned locations that are eliminated from the
Assignment Table will be typed out. When the operation is
completec,a word in command format will be typed. The com­
puter will halt at location 6441.1. This last word indi­
cates the number of locations now available in the Assign­
ment Table. For example, if the last word was:

+0001240+0001120

all locations fron 0124.0 to 0112.0 inclusive are now
available for use in the AssignI!1ent Table. (Rernenber that
each word of eight or less characters will require two lo­
cations in the Assignment Table. Those with more than
eight require three locations.)

- 51 -

(3) Press START key to resume compiling atter the halt at 6447.1.
Compiling will resume at the point where it was interrupted
when the Assignment Table became full.

(a) NO STORAGE LEFl' FOR YOUR PROGR .. 4M
If the program being compiled by SCOPAC has used all
the storage available, the following .statement will be
typed:

NO STORAGE LEFl' FOR YOUR PROGRAM

The computer will halt at looation2610.0. It may be
.possible to initialize SCOPAC, change the origin to
allocate ~ore storage, and recompile the enti~e program.

- 52 -

15. DESCRIPTION OF THE EXECUTION OF THE OBJECT PROGRAM

A summary of the operations during the exeoution of the objeot program are:

.15.1 Loading of Program Preparation Paokage No.2 (p3-2) into memory.*
(P3-2 is normally used in oonjunotion with the objeot program.)

15.2 Loading of objeot program tape into memory.

15.3 Plaoing data tape (if used) in photoreader.

15.4 Exeoution of the objeot program.

15.5 Entry of data (if used) via typewriter during the exeoution of the
program.

* It the statements READY, READZ, ANGLIN, PRINT, or ANGLOUT, or any
Funotion (exoept SQ;RT) were in the source program, P3-2 must be used.

P3-2 oooupies looations 00038, and 00108 through 21118-

- 53 -

16. PREPARATION OF DATA TAPE

16.1 Input Via READZ Statements

If the READZ statement is used to enter data, the following must be
entered .in the order shown for each block of data. -----
a. An N code (the letter N, at least 8 blanks ahead of the first

number).

b. The data, with each data word consisting of a sign, integer, a
decimal point code, a fraction, and an enter code.

c. Minus zero (-0.0) followed by an enter code.

d. A location of 11140 (11131 may also be used).

e. A start code.

As many blocks of data as desired may be on one tape. It is only nec­
essar,y that Steps a through e be followed and an AttRAY and READZ be
given in the program for ~ block of data. At least two inches of
blank tape ~ separate each block of data.

A minus zero must follow the data because the data is converted to
floating point form in the sequence in which it is entered and the
conversion continues until a minus zero is encountered. This means

. that none 2! !h! data should].! .m!!:!Y.! ~ since the data following
it would not be converted to floating point form.

16.2 Preparation of Input on VERSATAPE

All the information except the N code may be put on tape by the
VERSATAPE.

a. Plug in integer - fraction, (decimal), cartridge at rear of Punch
Unit.

b. Turn the Selector switch on keyboard unit to the N/c position.

c. Enter the integer, consisting of 10 digits or less, on the key­
board. Leading zeros need not be entered as they are automatically
supplied by the Punch.

d. Press the sign bar (plus or minus).

e. Enter the fraction and then enter the number of zeros needed for
a total of 10 digits. (Ten digits must always be entered to pre­
vent unwanted leading zeros from being punched.)

- 54 -

f. Press ENTER bar.

g. Repeat Steps c through f for remaining data and; the -0.

h. Turn the Selector switch to the S position.

i.Press the SET L bar.

j. Enter 17740 (17731 may also be used).

k. Press LOe bar, - location is punched, and a start code is auto­
matically punched.

1. Via either the oomputer typewriter or a Flexowriter, the N oode
is entered at least 8 blanks ahead of the first number of eaoh
~ of ~ on tape. *

16.3 Input Via READY Statements

The READY statement may be used to input the data. The order in
whioh the variables are listed on tape must be the sarne as the order
in which the corresponding variables appear in the READY statements.
The data may be prepared on the Flexowriter. There rust be at least
eight .uu. blanks between each chara.cter. * (The Flexowriter may be .
wired to automatioal1y enter at least 8 blanks between each ohara.cter
as desoribed in Teohnica1 Bulletin No. 21, Flexowriter Offline Ta'Pe
Preparation of SALT Source Language and Data.) Numbers are entered
in the format described in Section 18.

* The requirement that at least ei~ht blanks be between each character applies
only if the tape is to be read in via the photoreader.

- 55 -

17 • OPERATING INSTRUCTIONS FOR EXECUTION' OF THE OBJECT PROGRAM

17.1 Load P3-2.*

,17.2 Load object program.

17.3 Set typewriter margins and tabs to desired settings.

17.4 If sense switches are used, set to desired settings.

17.5 If' data is to be entered by tape*, 'place the data tape in the photo­
reader. (See Section 18 for preparation of data tape.)

a. Set Location Counter to origin.** This will be 3000.08 unless
an ORG command was used in the source program to change the
origin.

b. Press the START key (not START 1, 2, or 3 buttons) to begin ex­
ecution of the object program.

17.6 If'i~~ut of data is from the typewriter:'

a. Set Location Counter to origin (see Step 17.5 a).

b. Press the START key (not START 1, 2, or 3 buttons) to begin ex­
ecution of' the object program.

c. When the, ALPHA light comes on, type one word of data. (See
Section 18, Input of Data Via Typewriter During the Execution of
the Object Program.)

* It is essential' to read in P3-2 prior to the obje'ct program if a
READZ statement is used in the source program. Normally data is
read from tape by using a READZ statement in the source program.
However, it is possible to use a READY statement in the source pro­
gram for-this purpose. If a READY statement is used to read data
from tape, the following command changes are made in P3-2:

LOCATION

2315.0

2360.0

** To change a location:

To change commands:

COMMAND

+3524450+4000000

+7371610+4100010

Press L key on the Console. Type in location
on Console keyboard. Press ENTER key.

Press C key on the Console. Type in com~ands
on Console keyboard. Press ENTER key.

- 56 -

18. INPUT OF DATA VIA TYPEWRITER· DURING EXECUTION OF THF: OBJECT PROGRAM

Vfhen the ALPHA light is on, one number may be entered via the typewriter.
The entry of a number may consist of several parts:

A.. The sign of the number

B. The integral part of the number

c. A decimal point followed by the fractional part of the number

D. The sign and (integral) value of the power of ten by which the
number is to be multiplied

E. One of the following termination characters: carriage return,
space, tab, or blank.

Not all of these parts are required for every input. /l.f\y one of t.h~ followi. rtg
combinations is acceptable.

BCE, BE, CE, ABE, ACE, ABCE, BDE, CDE, ABDE, ACDE, ABC DE , E (yields plus zero)
AE (yields signed zero).

Examples of proper formats are:

.959
-4
+3.9599
698.7634

Extremely large or small values may be entered in the following notation:

21+16 means 21 x 1016

14-10 means 14 x 10-10

1.6+6 means 1.6 x 106

The total number of decimal digits (integer and fraction) must be $ 12.
The absolute value must be 'S 2~9_1. The exponent Imlst be $ 511 in absolute
value.

If an error is made prior to entering the termination character, press the
LETTER SHIFT· key_ Type the correct number.

- 57 -

APPENDIX A

SUMMARY OF SCOPAC STATEMENTS .. ~ \

ARRAY (Allocates storage space)

ARRAY subscripted variable(items)s

ARRAY subscripted variable(rows, columns)s

ARITHMETIC (equations).

Variable, subscripted variable: expression s

INPUT STATEMENTS (Inputs data from typewriter
or tape)

READY (typewriter or tape input, reads one word
of data)

READY variable s

READY subscripted variable s '

READZ (tape input, reads one block of data)

READZ variable s

ANGLIN (Typewriter input, reads one angle in
degrees, minutes, seconds)

ANGLIN variable s

ANGLIN subscripted variable s

OUTPUT STATEMENTS (output via the typewriter)

PRINT (types one word)

PRINT variable s

PRINT subscripted variable s

TYPE (types alphanumeric characters)

TYPE sp LiS or Fls alphanumeric oharacters s

CRR (generates a letter shift and carriage
.return)

eRR s

- 58 -

Is
LO'Qa ti6n Tag

A).~owed?

NO

YES

YES

NO

YES

YES

NO

YES

6

7

10

10

11

12

13

13

14

15

APPENDIX A

OUTPUT STATEMENTS (oontinued)

TAB (generates a figure shift and tab)

TAl3 s

ANGLOUT (types one angle in degrees, minutes,
seconds)

CONTROL STATEMENTS (transfers control from one
statement to another in the
program)

GO TO (transfers control unconditionally)

00 TO tag s

IF (transfers control conditionally)

IF (expression) minus, zero, plus s

IF (SENSE N) on, off s

DO (controls repetition of operations)

DO tag variable i.v. (mod) f .v. s
i.v. = initial value
mod. :I modification
f.v. = final value

CONTINUE (dummy statement, no effective
operation is performed)

tag, CONTINUE s

ROUTINE (not a control statement but it is
used prior to a sequence of state­
ments that constitute a subroutine)

ROUTINE NAME s

RETURN (transfers control from a subroutine to
. main program)

RETURN name s

HALT (causes a halt in the object program)

HALTs

- 59-

Is
Location Tag

Allowed?

YES

YES

YES

YES

YES

YES

NO

NO

YES

Page
No.

15

16

17 .

17

18

19

24

2.1

25

25

APPENDIX A

CONTROL STATEMENTS (continued)

END (terminates the Source Program)

END s

SYMBOLIC (enters symbolic coding)

SYMBOLIC s

- 60 -

Is
Location Tag

Allowed?

NO

NO

Page
No.

26

27

APPENDIX B

R E COM P I I

OPE RAT ION'S B Y ALP H ABE TIC C 0' DES

a.nd list 'of a.dditiona.l operationa.l codes acceptable in SCOPAO programs

Alpha Code

ADD

ALS

ARS

OFL

OFV

CLA

CLS

CTL

CTV

DJ,:S

DIV

DSL

DSR

DVR

EXT

FAD

FCA

FCS

FDV

FMP

FNM

- 61-

Opera.tion

Add

Accumulator Left Shift

Accumulator Right Shift

Copy from L Loop

Copy from V Loop

Clear and Add

Clear and Subtra.ct

CoPY' to L Loop

Copy to V Loop

Dis'play

Divide

Divide Single Length

Divide Single Length and Round

Divide and Round

Extract

Floating Add

Floating Clear and ~dd

Floating Clear and Subtract

Floating Divide

Floating MUltiply

Floating Normalize

Alpha Code

FSB

FSQ

FST

HTR

MPR

MPY

PNA

PNC

PNW

PTA

PTe

P'lW

RDY

RDZ

SAX

STA

STO

SUB

TMI

TOV

.TPL

TRA

TS:B

TSC

APPIDrDIX :B

- 62 -

Operation

Floating Subtract

Floating Square Root

Floating Store

Hal.t and Transfer

MUltiply and Round

Multiply

Punch ~ Characters in Alphabetic
Mode --

Punch Character

Punch Word Command

Punch and Type N Characters in
Alphabetic Mode

Punch and Type Character

Punch and Type Word

Read N Characters from Typewriter

Read N Characters from Photoreader

Store A and Exchange A and X

Square Root

Store Address

Store

Subtract

Transfer on Minus

Transfer on Overflow

Transfer on Plus

Transfer

Transfer on Sense Switch B

Transfer on Sense Switch C

Alpha Code

TSD

TYA

TYO

TYW

TZE

XAR

ORG

BLA

DEF

EQU

ALF

COM

DISD

TYWD

PNWD

PTWD

APPENDIX B

Operation

Transfer on Sense Switch D

Type N Characters in Al~habetic
Mode

~Y'Pe Character

Type Word

Transfer on Zero

Exchange A and R

ADDITIONAL OPERATION CODES

- 63 -

Origin

Blook Allooation

Definition

Equal

Alphanumerio

Command

Display Decimal (BCD Format)

Type Word Decimal (BCD Format)

Punch Word Decimal (BCD Format)

Punch and Type Word Decimal
(BCD Format)

APPENDIX C

ASSIGNMENT TABLE

The Assignment Table is always printed after the END statement is recogniz.ed
by the SCOPAC program. The A.ssignment Table extends from 01008 through 07778
in the SCOPAC program. The Table oonsists of a pair of words for eaoh unique
tag, variable, subsoript, and literal oonstant (Floating, Fixed POint, Al~ha)
whioh has been entered in the source program or was generated by SeOPAC.
Three words o:f the Table are used if an entry of more than eight ohara.oters
is made suoh as a Command Literal.

The type-out of the Assignment Table oonsists of two oolumns. The £irAt
oolumn oontains the entries. The seoond oolumn oontains information related
to the entries in the first oolumn.

Following is an example of an Assignment Table:

START +0000000.0030000

MAX. X +1000000.0030640·

MAX. Y +1000000.0030220

+1.25 +4400000-0030460 .

+0053240+5742340 +2007770-0031220

+1+39 +4000000-0030320

+123.456189 +4401760-0030160

BACK +0000000-0030700

END OF ASSEMBLY

The first two dig! ts of eaoh word in the second column identify the type of
entry in the first column.

00 means symbolic

10 means alpha literal

20 means command literal

40 means fixed point literal

44 means floating literal

The next five digits are zero unless there are more than eight characters.
All the oharaoters in exoess of eight are stored in ~ Assignment Table at
the location specified by the five digits.

The next three characters are always -00.

- 64 -

APPENDIX C

The last five digits specify the absolute address in the object program
assigned to the entry. If the entry is a floating point number, this a.ddress
will be the first of two consecutive locations which will be required by the
number in the object program.

Example:

FIRST WORn

+123.456789

In the second word·:

SECOND WORD

+4407760-0030160

+44 identifies the first word as ~ floating point number.

07760 is the location in the Assignment Table where the characters
789 of the floating point number +123.456789 are stored.

30160 is the address of the first of two consecutive locations in the
object program assigned to the number +123.456789.

- 65 ...

APPENDIX D

DESCRIPTION OF THE SCOPAC LISTllIG

A listing of the object program is obtained if Sense Switch B is ON. The
listing consists of the symbolic and absolute coding of the object prOP,Tarn.

Each line of. the listing contains in this order:

1. one symbolic instruction or literal constant

2. the absolute address assigned to (1)

3. the contents of the looation specified by the absolute address
in (2).

The contents oonsist of a word in oommend format containing:

a. the instruotion and a transfer to the next instruotion
or

b. a literal oonstant.

- 66 -

I
()\
-.3

READY. FIRST s
. symbolic instruction
or literal constant

TRA· READY
READY I NC:R s

FST FIRST
TRA READY

REAOY LAST s
FST I NCR
TRA REAOY

DO OUTPUT X .FIRST (INCR) LAST s
LAST FST

FCA FIRST
Y:SQRT(X/3.S) s
TAG 01 FST X

FCA x·
FLOATING LITERAL ~+3.5~ FDV ·+3·5

FST STOREOl
FSQ STORE01

CRR s
FST Y
Tye +37

OUTPUT, PR I NT Y s

OUTPUT

H,ll.LT s

END s

FIRST
INCR
LAST
TAG 01
X
3

,-+. "J
STOREOl
Y
OUTPUT

Tye +10
FCA Y
TRA PR tNT
FCA X
FAD INCR
FST v

/\

FS::J LAST
T~.'11 TAG 01+0POnl

TZE TAG 01-!-00001·

HALT +3000

assignment table
+0000000-003 0)·~,70
+0000000-003 06J+ 0
+0000000-003°010
+0000000-003055°
+0000000-0°3°17°
+4 1+00000-0030270
+0000000-003'155 0
+9000000-0031000
t0009000-003 1 1 70

Ef\ID OF ASSE~L:L Y

absolute contents of the·absolute ~ddress address
3000 +572211+0+5730050 .

.3005 +353°1+70+.573°150-

.30 15 . +5722140+5730220

3022
3032

. +3530640+5730320
+5722 140+5730370

30~7 +3530010+5731470
31 7 +3030470+5730550

30t5 +3530170+5731650
31 5 +3030170+5730250
3027 .+7000000-0000000+0000000-0000010
3025 +0530270+5730 130
30 13 +J~31550+57302~0
3023 : +~431550+57303 0

30~6
30~6

+353 1000+5730460 .
+7200370+5730060

3006 ./."-+7200100+5731170 ..
311l ~3031 000+573 1 Ot<
310 +5722531+573113~
3113 +3930170+57312~O
312i. +01+ 30611-0+57300 0
300,-~ +g~30170+5732650
~261 + ~OOI0+5t~0210
.. 02 +51- °551+5 ·~o6oo
3060 +5030551+5731600

3.160 +7130000+5732010

APPENDIXD

APPENDIX E

PROGRAMMING OF SUBSCRIPTED VARIABLES

Subscripted Variables

If a reference is made to a subscripted variable, the number +65535 will be
generated by SCOPAC. The use of this number assumes that the subscript of the
first element is one, n21 zero. For example, the first element of A must be
written as A1 or A1,1 not Ao or Ao,o.

Example:

Correct

ARRAY
DO ABC
READY

A (9) s
z 1 (1) 9 s
A (Z) s

ABC, CRR s

Incorrect

ARRAY
DO ABC
READY

A (9) s
z 0 (1) 8 s
A (Z) s

ABC, CRR s

A reference to a subscripted variable requires that SCOPAC generate the coding
necessary to 'compute the address of the specified element. This increases
compiling time, causes location tags to be generated by SCOPAC and stored in

,the Assignment Table and increases the computing time of the object program.
Thus it is advantageous to minimize references to subscripted variables.

For example, consider the following three equations:

X:A(2,3)&B(4,5)/A(1,2) s

Y:A(1,2)'2+A(2,3)&B(4,5) s

Z:B(4,5)/(A(2,3)&A(1,2)) s

In the three equations there are nine references to subscripted variables.
This requires nine separate computations of the address of the snecified ele­
ments. Each of the nine computations will have a location tag generated by
SCOPAC and stored in the Assignment Table. To minimize the references to sub­
scripted variables, the three equations could be written in the following
manner:

U:A(2,3) s

V:B(4,5) s

W:A(1,2) s

X:U&Vjw s

Y:W'2+U&V s

Z:V/(U&W) s

In this way there are only three references to subscripted variables. The
compiling time will be les8; there will be only three separate computations
of the specified elements, and instead of nine, there will be only three loca­
tion tags generated by SCOPAC. The variables U, V, W will be in the Assignment
Table but the total number of words in the table will be less.

- 68 -

APPBNDIX F

TJSE OF THE SAME MEMORY AREA FOR STORlNG SEVERAL A.'RRAYS

The sarne memory area may be utilized several times durinp, the execution of
the object program for stori.ng the elements of different arrays.

There are two re~lirernents pertaininp, to the size of the arrays:

1. An ARRAY statement must reserve sufficient storage for the size of the
largest array that will be sharing the same memory space.

2. If both one and two d.imension~l arrays are to be stf)red in the same
memory area, the rnaxinn.un numbE'-r of el~ts to b.a entered should be
written in an A.RRAY sta.tement as 8ubscri l'ts of a two dir.lensionAI arrR.Y.
This means that even if a one di~ensional array is the largest array
whioh will be stored in a given me~ry sp~ce, the number of elements
must be expressed as subsoripts of A. two dimensjone.l Arra.y.

Example:

Given: Three arrays to share the sarne memory A.rea,

V (100), A (2,,), J (10,5)
The largest array nould be written as follows:

ARRAY V (10,10) s

If all the arrays that are to be stored in th~ SFl.:r.:ie ne.mOl:Y area Rre one
dimensional it will not be necessary for the numbe~ of elements of the

. largest array to be expressed as subscripts of a two dimenstona.l array.

- 69 -

APPENDIX F

If Input of Source Program is Via the TYpewriter

Only the SCOPAC statements needed for replacing in memory the ele~ents of
one array with those of another array are given in the following example:

Given: Arrays A(25,4), CC(20,3), DDD(40)*

During the execu~ion- of the object program the elements of these
arrays wi.ll occupy the same storage area. in memory in the order:

Array CC, A:rray- A, Array DDD

In the following statements, b signifies a blank.

Statements For
Source Program

ARRAY ROW(1) s

KbbbbbCC-: KbbbbbbA s

READZ CC s

This statement reserves storage £or 100 floating
point values (25 x 4) - the size of the largest
array.

SCOPAC will generate:

(1) a constant which contains the absolute ad­
dress assigned to the first eleme~t of Array A.

(2) a constant which is the value of the row sub­
script for ArrayA.

Reserves storage for the values of the row sub­
scripts of the two dimensional arrays that will
occupy thp. same mernor,y space.

This statement insures that the location assign­
ed to the first element of Array CC is the same
as the location assigned to the first element in
Array A. There mus t be e character posi tions in
these variables, typed in the order K, blanks,
and name of the array. (Blanks are entered by
depressing the Blank Key.)

The elements of Array CC will be read from tape
into the common storage area during the execu­
tion of the object program. The first element
of Array CC will be stored in the location as­
signed to the first element of Array A.

* In this example if all the arrays were one dimensional the statement
ARRAY ROW(1) -s and all READZ ROW s statements would not be used.

- 70 -

READZ ROW s

RbbbbbCC: ROW s

READZAs

KbbbbDDDa KbbbbbbA s

READZ DDD s

APPENDIX F

The row subscript (2.0) of Array CC will be read
from tape into memory during the execution of the
object program.

During the execution of the object program this
statement will cause RbbbbbCq to be the value,
20, the row subscript of Array CC.

The elements of Array A will be read from tape
into the common storage area during the execution
of the object program.

This statement insures that the location assigned
to the first element of Array DDD is the sarne as
the location assigned to the first element of Array
A.

The elements of Array DDD will be read from ta~e
into the common storage ares'during the execution
of the object program.

The elements of the arra.ys, and the row subscript of Array CC, r.lUst be on
a data tape in the order in which they will be cB,lled for in the ob,j~ct
program.

The order would be:

elements of Array CC

20 (row subscript of Array r,C)

elements of Array A

elements of Array DDD.

- 11 -

APPEnDIX F

If Innut of Source PrORTaIn i.s From Paper 'Pa.pe

The statements in a source program on paper tape t() input arrays in the same
storage, dj.ffer from .those statements in a source prof,Tarn entered via the
typewri ter.

A READZ statemAnt containing· only the arrR,y name of the Vir.rest a,:r.rayis llsf:?d
to enter the elements of each arr~ into the SR.rne storage area. (The stat~­
ments suches KbbbbbCC: KbbbbbbA which may be u~ed in source prOgTA.ms entered
via the typewriter ca.nnot be used in source pro~ams on tape as the blR.nks
would not be recognized as characters by the computer.)

The absolute location for the row subscript must be used. This location can­
not be punched as a symbolic address because blanks would be required between
the first character. R, and the name of the array. Blanks on paper tape are
not interpreted as characters when read :t.nto the oomputer.

In the following example one storage area is to be utilized for several
arrays. The ·general forrnula* for obtaining the absolute locatj.on of the row
subscript is:

where
ABLRS = (ORG+2)e + ~(N1+2)1.Q] 8

ABLRS is the· absolute loc~tion of row subscript

ORG. . is the origin of the object program

N1 is the total number of elements of the largest of the
arrays which will. occupy the same storage area.

* Formulas for determining the absolute location for the row subscript are
summarized·at the end of Appendix F.

- 72 -

APPENDIX F

Statements required for entering the elements of several arra.ys i.n the SRMe
memory area when the source prou,rarn is prepared on tape are as follows:

Examp1e:

Gi ven: Three arrays to share the SA,me storage area

ArrAY A(25,4), Array CC(20,3), Array DDD(40)*

During the execution of the object proeram the elel'!lents of these
arr~,ys wi 1 J occupy the same storage area in meMory in the order:

Array CC, Array A, Array DUn.

Statements For
Source Program

ARRAY A(25,4) s

ARRAY ROW(1) s

READZ A s

READZ ROW .. s

This statement reserves storage for 100 floating
point values (25x4) - the size of the largest
array.

SCOPAC will generate:

(1) a constant which contains the absolute ad­
dress assigned to the first element of Array A.

(2) a constant which is the value of the row
subscript for Array A.

Reserves storage for the values of the row sub­
scri~ts of the two dimensional arrays that will
occupy the same memory space.

The elements of Array CC will be read from tape
into the common storage area during the execution
of the object program. The first element of
Array CC will be stored in the location assigned
to the first element of the Array A.

The row subscript (20) of Array CC will be read
from tape into memory durin~ the execution of the
object program.

* In this example if all the arrays were one dimensional the state~ent
ARRAY ROW(1) s and all READZ ROW s statements would not be used.

- 73.-

SYMBOLIC s

FCA
FST

COMPILE

READZ A s

N
ROW
XXXX

APPENDIX F

The row subscript, 20, will be stored in the
absolute location XXXX during the execution of
the object program. If the origin is at 300°8'
XXXX would be 33168.

The elements of Array A will be read from tape
into the common storage area during the execution
of the object program.

READZ ROW s The row subscript, (25), of Array A will be read
from tape into memory during the execution of the
object program.

SYMBOLIC s

FCA
FST

COMPILE

. READZ A s'

N
ROW
XXXX

The row subscript, 25, will be stored. in the
absolute location XXXX, (33168), during the execu­
tion of the object ~rogram.

The elements of Array DDD will be read into the
common storage area during the execution of the
object program.'

All references in the source program to the arrays sharing a com~on storage
area must be made by using only the name of the largest array. Therefore s·
statement such as: .

Z:CC(1,2) s

would be written as

Z:A(1,2) s .

The elements of the arrays and the row subscript of each two dimensiona.l
array must be on a data tape in the order in which they will be called for
in the object program. The order would be:

elements of Array CC

20 (row subscript of Arr~ CC)

. elements of ArraY' A

25 (row subscri~t of Array A)

elements of Array DDD

- 14 -

APPENDIX F

The SCOPAC program reserves storage for arrays. according to certajn fOTIml­
las. It is possible for the programmer to use these forMulas to obtain the
absolute location where the value of the row subscript'will be stored.

If only one storage area is to be used for severa.l arrays, the general for­
Clula is:

ABLRS = (O!lG+2)8+e.(Nl+25;~ 8

'Phe specific formula with the standard origin of 300°8 and one storage area
is:

A13LRS = 3002a+ E(N1+2)1~a
If more than one storage area are to be used for several sets of arrays, the
general formula is:

where

Example:

ABLRS

ORG

N1

is absolute location of row subscript.

is the origin of the object program.

is the total number of elements of the largest of
the arrays that are to occupy the first storage area.

is the total number of elements of the largest of the
arrays that are to occupy the kth storage area. (k~2)

Assume the origin is 3000a.

Provision is to be made for three storage areas, each to be occupied
by more than one array. The largest arrays to be stored in each of the'
three storage areas are 200, 140 and 220 elements respectively. The
absolute locations of the row subscripts for these arrays would be
computed as follows:

First Storage Area

ABLRS = (ORG+2) 8+ [3(N1 +2) 1 Q) 8

ABLRS = 3000+2+ @(200+2)1Q]8=3002+ ~404) 1~ 8

= 3002+624=36268

- 75 -

APPENDIX F

Second Storage Area N" ""

ABLRS = (ORG+2)e+@(N1+2)1Q]a+L.. '2(Nk+3)10la
k=2L: ~

ABLRS "= 3000+2+@(200+2)10]a+ @(140+3)1~ a

:I 3002+624+ IT286)1Q]a

• 3626+436=4264a

Third Storage Area " N

ABLRS = (ORG+2)e+@.(lI1+2)1Q]e+ li@.(Nk+3)1~ e

ABLRS - 3000+2+ E(200+2)1Q]e+ @(1L10+3)1~e+~(220+3)1Q]a
:I 3002+624+436+676

- 4264+676-5162e

- 16 -

APPENDIX G

Following are examples of source programs.

EXAMPLE I

Solve: X-(A+B)6D

Flow Diagram:

Statements:

Input A, B, D
via typewriter

.. 1 Print X

READY A s

READY B s

READY D s

X: (A+B)&6&D s

eRR s

PRINT X s

HALT s

END s

- 77·-

EXAMPLE II

floW' Diagra.t!1:

No

APPENDIX G

.where D goes from Drnin to Dmax by increments
of ~D.

Input B, Dmin 6D,

Dmax via typewriter

- 18 -

Statements:

READY B s

READY DMIN s

READY DELT D s

READY DMAX s

eRR s

TYPE D s

TAB s

TYPE Z s

APPENDIX G

DO LOOP D DMIN (DELTD) DMAX s

Z:SQF.T(B'2+2&D) s

ORR s

PRINT D s

TAB s

LOOP, PRINT Z s

HALTs

END s

- 79 -

EXAMPLE III

Solve: Zn=(A+l3n)2

Flow Diagram:

APPENDIX G

Where 1 ~ n oS. 1 00 and maximum n • ITEMS

Input ITEMS, A

via typewriter

Input n values or
l3n via typewriter

- 80 -

Statements:

~1(RAY B(100) s

HEADY ITEMS s

READY A s

APPENDIX G

DO INPUT N l(l)ITEMS s

READY B(N) s

INPUT, CONTINUE s

DO OUTPUT N l(l)ITEMS s

Z:(A+B(N»)t2 s

eRR s

PRINT B(N) s

TAB s

OUTPUT, PRINT Z s

HALT s

END s

- 81 -

GLOSSARY

Address - A label which identifies a register. location, or device in which
information is stored.

Absolute Address - A numeric label permanently assigned to a specific lo­
cation in the m~rnory of the computer.

Symbolic Address - A label that identifies a particular word independent
of the location of the word in memory.

Binary Point - An implicit point separating the integral and fractional parts
of a binary number. The position of the binary point is described in
terms of the number of bit positions right or left of a point (defined as
binary point 0) between the sign bit and the first bit. Thus a binary
point +2 defines the point as being between bit positions 2 and 3. A
binary point -2 defines the point as being two bit positions to the left
of binary point 0, even though bit positions to the left of the sign po­
sition do not exist.

Block - An unspecified number of words consj.dered or transported as a unit.

Character - An elp.mentary symbol whicn a computer recognizes. The' symbols
usually include the decimal digits 0 through 9, the letters A through Z,
punctuation 'marks, operation symbols and any other single symbol which
the computer recognizes.

Fixed-Po.int Decimal Number - A deoimal number expressed in a system of arith­
metic that requires the position of the binary ~oint to be specified so .
that the number may be converted to a binary number.

Floating-Point Decimal Number - A decimal number expressed in a system of
arithmetic that does n21 require the position of the binary point to be
specified in order to be converted to a binary form. The decimal number
is converted to a binary form consisting of a fraction and an exponent.
In the RECOMP II the fraction and exponent occupy two consecutive lo­
cations.

Format - A specified method of arranging information.

Instruction - A set of characters which defines a com~uter operation and an
address. The address specifies the word or register(s) in I!lel!lory upon
which. the operation is. to be perforfled.

Symbolic In8truction - An instruction consisting of an operation ,written
in an alphabetic code, and a symbolic address.

- 82 -

GLOSSARY

Literal

Alpha Literal - A word to be interpreted as alphanumeric characters.

Command Litera! - A word expressed in the command word format of the
RECOMP II .

Fixed-Point Literal - A decimal number converted to a binary number at
a specified binary point.

Floating Literal - A decimal number converted to a binary form consist­
ing of a fraction and an exponent. In the RECOMP II the fraction
and exponent occupy two consecutive locations.

Location - One storage position in the computer.

Absolute Location - Same as absolute address.

Symbolic Location - Same as symbolic address.

Memory - A storage facility forming an integral physical ~art of the com­
puter. In the RECOMP II the memory consists of 409610 words.

Octal - Pertaining to the number base of eight; e.g. in octal notation
6038 is 6x82+0x81+3xSO=38710.

Off-Line Operation - Information is prepared or processed by equipment that
is n21 under the control of the com~uter.

Subroutine - A set of instructions which direct the computer to carry out
mathematical or logical operations. It is generally included as a
subunit of a program. SCOPAC statements may be used to write a sub­
routine.

,Word - A set of characters occupying one storage location and treated by
the computer as a unit.

- 83 -

