® © ® & © L 2060000 e e &
e ® 000000COGO o000 O L X X 8@]
© 000000 00000 00CCOE0000000000R000O00C00O0O0CO0CGOCOOE®

ee & ®e® © 0096 0000
L X 4 1 J e0® o L 2 ®

0060000 0600 000606

& @
L X & X X0 ¢
ee0o0veoe
®8
000
@f

® 00000009 90650020 900

o0 @ (X 2 X X X)
&e o0 00 60 ¢

computer system

“SCOPAC”

AUTONETICS

A DIVISION OF NORTH AMERICAN AVIATION. INC

Industrial Products

3400 E. 70TH STREET. LONG BEACH. CALIFORNIA

"S C O P A C"

A COMPILER FOR THE RECOMP II

by

H. D. Goddard

Copyright 1962
Autonetics Industrial Products
A Division of North American Aviation, Inc..

“SCOPAC”

INTRODUCTION

The present trend in computer applications in the scientific’and engi-
neering fields is to issue compiler programs which are used to generate
computer instructions from source programs definihg problem solving pro-
cedures. The compiler program produces the instructions (object programs)
in a language understandable to the computer, enabling it to perform the
necessary operations to solve the problem.

SCOPAC*is a compiler program for the RECOMP II computer. Mathematical
expressions and all other pertinent information for a problem are writ-
ten as SCOPAC statements. In one pass SCOPAC accepts the statements and
prepares a progranm for solving the problem. The statements constitute a
source program. As each statement is entered into the computer, SCOPAC
generates and punches on paper tape all necessary computerllnstructions
of the object program. It is the object progran whléh 1sfentered into
the computer to solve the prodblem.

In this way the SCOPAC program serves as the intermediary between a
computer user and the solutions to a wide range of problems. Once the
SCOPAC program is in the computer any number of source programs may be
entered for compiling.

* Acknowledgement is gratefully made to ¥r. T. J. Tobias for the develov-
ment and completion of the major portion of the SCOPAC program.

Additions- and Revisions

Additions were made to the following sections:
Section 8.1, page 17
A GO TO statement is also used to transfer to a ROUTINE

GO TO routine name s

Section 8.3, page 19, the last sentence

Howéver, the DO, GOTO, or the IF statement must not be the last
statement of the DO loop.

Section 8.3.3, page 23

(¢) The maximum number of DO loops that may be nested
is seven.

(d) 4 DO, GO TO, or IF statement cannot be the last
statement of a DO loop. ‘ v

(e) The last statement in a DO loop cannot ifmediétely
precede the END statément. ’

- The program in Appendix G, page 81, has been revised as follows:
Statements:

ARRAY B(100) s

READY ITEMS s

READY A 8

DO INPUT N 1(1)ITEMS s
READY B(N) s

INPUT, CONTINUE s

DO OUTPUT N 1(1)ITEMS s
Z:(A+B(N))'2 s

CRR s

PRINT B(N) s

TAB s

OUTPUT, PRINT Z s
HAIT 8

END s

October 8, 1962

TABLE OF CONTENTS

INTRODUCTION

4.
5.

6.

7.

oo a —d~4—4-4:4
. e []

DESCRIPTION OF THE USE OF SCOPAC

THE SCOPAC STATEMENTS
2.1 Kinds of Statements
2.2 Location Tags

VARTABLES AND SUBSCRIPTED VARIABLES
3.1 Variables

3.2 Subscripted Variables

3.3 Restrictions

ARRAY STATEMENTS

ARTTHMETIC STATEMENTS

5.1 Expressions
5.1.1 Operation Symbols
5¢1.2 Numbers
5.1.3 Functions

INPUT STATEMENTS

6.1 READY Statements

6.2 READZ Statements

6.3 ANGLIN Statements

OUTPUT STATEMENTS

1 PRINT Statements
«2 TYPE Statements
3

.4 TAB Statements
5 ANGLOUT Statements

ONTROL STATEMENTS
1 GO TO Statements
2 IF Statements
3 DO Statements

8.3.1 DO Loops Contained Within
the Range of Another DO Loop

8.3.2 Use of DO Loops with READY Statement
to Input Elements of an Array

8.3.3 Restrictions
8.4 CONTINUE Statements
8.5 ROUTINE Statements
8.6 RETURN Statements
8.7 HALT Statements
8.8 END Statements

CRR (carriage return) Statements

Page No,

O Do O Mbabsh W NN -

[P Gy
nN-20O0

- ad ed d wd
O\ AT B\ W

N = =2 ad
-0 DI

22

23
24
24

25
26

9.

10.

1.

120

13,
14.

15.
16.

17.

18.

TABLE OF CONTENTS (Continued) -~

SYMBOLIC STATEMENTS

9.1 SYMBOLIC Statements

9.2 COMPILE '

9.3 Symbolic Coding Entered With the SYMBOLIC Statement

9.4 Writing Instructions in Symbolic Coding

9.4.,1 Writing the Special Operations in Symbolic
Coding

PREPARATION OF SOURCE PROGRAM ON PAPER TAPE

CORRECTION OF ERRORS WHILE PREPARING SOURCE PROGRAM ON

TAPE

11.1 If Error is Discovered Before Termination of a
Statement or Symbolic Instruction

11.2 If Error is Discovered After Termination of &
Statement or Symbolic Instruction

INPUT OF SOURCE PROuRAM FROM THE TYPEWRITER
:g é}ﬁenoral Instructions

12.6 Typing a Statement

12,7 Entering TYPE Statements

12.8 Typing Symbolic Instructions

CHECKOUT' OF RECOMP II READINESS-

OPERATING INSTRUCTIONS FOR COMPILING

14 1 Prellmlnary Procedure for Compiling One or More Source
Progranms

14.2 Input of Source Program

14.3 To Initialize the SCOPAC Program

14.4 To Interrupt Compiling

14.5 Check of Source Program on Tape Without Compiling

14.6 Correction of Errors While Compiling a Source
Program (typewriter or tape input)

14.7 Procedure When the Tyve-out ASSIGNMENT TABLE IS FULL or
-NO STORAGE LEFT FOR YOUR PROGRAM Occurs During
Compiling '

DESCRIPTION OF THE EXECUTION OF THE OBJECT PROGRAM
PREPARATION OF DATA TAPE

16.1 Input via READZ Statements

16.2 Preparation of Input on VERSATAPE

16.3 Input via READY Statements

OPERATING INSTRUCTIONS FOR EXECUTION OF THE OBJECT PROGRAM

INPUT OF DATA VIA TYPEWRITER DURING EXECUTION OF THE

- OBJECT PROGRAM

Page No,
27
27
27
27
29
33

57
39

59
39

APPENDIX A
APPENDIX B
APPENDIX C
APPENDTX D
APPENDIX E
. APPENDIX F

APPENDIX G
GLOSSARY

TABLE OF CONTENTS (Continued)

SUMMARY OF SCOPAC STATEMENTS

RECOMP IT OPERATIONS BY ALPHABETIC CODES
ASSIGNMENT TABLE

DESCRIPTION OF THE SCOPAC' LISTING
PROGRAMMING OF SUBSCRIPTED VARIABLES

USE OF THE SAME MEMORY AREA FOR STORING SEVERAL
ARRAYS

-If Input of Source Program is Via the Typewriter
-If Input of Source Program is From Paper Tape

EXAMPLES OF SOURCE PROGRAMS

Page No,
58
61
64
66
68
69
-
71
5
80

1. DESCRIPTION OF THE USE OF SCOPAC

The purpose of SCOPAC is to prepare on tape a program, the object program,
which will solve a given problem. While SCOPAC is compiling and punching
the object program, a listing of that program may be simultaneously typed
out if %esired. (See Appendix D for type-out of & program compiled by
SCOPAC.

1.1

1.2

103

1-5

1.6

The SCOPAC tape is placed in the photoreader by the operator and
read into memory. A short program at the beginning of the tape will
clear the memory to minus zero.

A SCOPAC statement is then entered either from the typewriter by the
operator or from a previously prepared paper tape.

Computer instructions to execute the statement are generated by
SCOPAC and punched on tape. Simultaneously, a listing of the com-
puter instructions is made on the typewriter if desired.

When the last SCOPAC statement is encounteréd, the As zunent Table
is typed out by SCOPAC. (For detailed description of the Assignment
Table, see Appendix C.)

Following the Assignment Table the words, END OF ASSEMBLY, are typed
out and the computer will halt.

If it is desired to prepare more object programs, the SCOPAC Initisal-
izer tape may be read into memory. Its function is to re-establish
the SCOPAC program in memory, ready to accept another set of SCOPAC
statements.

A source progran on paper tape may be checked for errors without com-
piling by reading the Check SCOPAC Source Program tape into memory.
The tape containing the source program is then placed in the photo-
reader ready to be checked for errors.

2.1

-

2. THE SCOPAC STATEMENTS

Kinds of Statements

The SCOPAC statement is a written directive of operations which will
be translated into computer instructions and punched on tape by
SCOPAC. A series of SCOPAC statements written for a problem consti-

tute a source program. The basic SCOPAC statement is the Arithmetic

statement. Each mathematical expression is written as an Arithmetic
statement. The rest of the statements provide the means to reserve
storage in the computer memory, to input information, to output in-
formation, to transfer program control and-to enter special instruc-.
tions. ’

There are six kinds of statements.,

(1) ARRAY STATEMENTS reserve storage space in the computer memory

for subscripted variables which are to be used in the program,
These statements must precede all other statements in the
SCOPAC program.

(2) ARITHMETIC STATEMENTS are the mathematical expressions uséd to
solve the problem. These are the fundamental statements of the
program. ’

(3) INPUT STATEMENTS provide for input of information from the type-
writer or photoreader.

(4) OUTPUT STATEMENTS provide for the output of information from the
typewriter. ‘

(5) CONTROL STATEMENTS are used for the transfer of control from one

SCOPAC statement to another.

(6) SYMBOLIC STATEMENTS permit the input of symbolic and absolute
instructions.

Although the statements are written in varying forms, all statements
are terminated with a figure shift (F/S) and s. (The FIGURE SHIFT
key on the typewriter is depressed before pressing the s key.)

2.2

Location T '

'A location tag is an alphabetic or numeric label assigned by the

programmer to a statement as a marker. This enables certain pro-
gram control statements in another part of the program to refer

to this statement by its location tag. Location tags may be used
with most statements. In Appendix A, Summary of SCOPAC Statements,
there is a tabulation indicating which statements can or cannot
have a location tag.

A location tag has either eight (8) or less alphabetic characters
or two (2) or less digits. It is to be noted that 00 is a differ-
ent tag from O, and 01 is a different tag from 1.

A location tag precedes the statement. It is separated from the
statement by a comma,

Example:
 PAR, X: A+ B s
PAR is a location tag.

'Xs A+ Bs is an Arithmetic statement.

Examples
23, Vi1 D/E s
23 is a location tag.
V: D/E s is an Arithmetic statement.
Resfrictions H |

A location tag should not have the same name as the name of
an array prefixed by a K or R. For example, if ARRAY PART

is defined in the program, a location tag should not be named
KPART or RPART. '

A location tag should not have the same name as the name of

a routine prefixed by R. For example, if ROUTINE MAXZ is

defined in the program, a location tag should not be named
~ RMAXZ, ‘

3. VARIABLES AND SUBSCRIPTED VARIABLES

Two basic components of the SCOPAC statement are variables and subscripted
variables. '

3.1 Variables
A variable is any quantity that is referred to by a name, and which is
able to take on a number of wvalues. In SCOPAC the variable is an
‘alphabetic word consisting of from one to eight letters.

Examples:

B

SUM
CURVE
QUOTIENT

3,2 Subscripted Variables (See Appendix E, Programming of Subscripted
' Variables) :

A variable may be subscripted. The name of the subscripted.variable
may not consist of more than seven letters. A subscripted variable
has the form V(K) or V(K,J) where V is the name of the variable, and
K and J are either numbers or variables.
A subscripted variable may refer to elements in a one dimensional or
two dimensional array. The subscript of the first element in a one
or two dimensional array must not be zero, it rmust be one.
Examples:

A(1) not A(O) one dimensional array

A(1,1) not A(0,0) two dimensional array.

A fwo dimensional array is composed of rows and columns. The first
subscript refers to the number of rows; the second subscript refers
to the number of columns.

Examples of Kinds of Arrays:

LEO (10) - a one dimensional array containing 10 elements.

MATRIX (5,7) - a two dimensional array containing 35 elements
’ arranged in 5 rows and 7 columns.

It is necessary to allocate storage for subscripted variables., This
is done by an ARRAY statement. »

-4 -

3e3

The use of subscript notation is a valuable technique. A large
number of values may be designated by subscripts. This means that
in a program a basic calculation can be set up which can be performed
with each of these values simply by chenging the value of the sub-
script. (See Example IIT in Appendix G.)

Restrictions

The following letter combinations should not be used as names of
veriables or subscripts.

(a) any Function name defined in SCOPAC. (See Subsection 5.1.3
for Function names.)

(b) the name of any array prefixed by a K or an R. For example,
if VECTOR is the name of an array, do not use RVECTOR or
" KVECTOR. ' »

(c) the name of any subroutine prefixed by an R. For examplé;' ‘
if ROUTINE SORT is defined in the program, do not use RSORT.

(d) any location tag.

4. ARRAY'STATEMENTS

ARRAY statements allocate storage for subscripted variables. It is mandatory
to make all ARRAY statements the first statements in a SCOPAC program.* The
purpose is to insure that sufficient consecutive locations in memory will be
reserved. Each element of the ARRAY is handled as a floating point value.
ARRAY statements always reserve locations for the total number of elements of
the array plus one more floating point value. Only one-or two-dimensional
arrays are permitted.

ARRAY statements have the form:

ARRAY subscripted variable (items) s
or '

ARRAY subscripted varisble (rows, columns) s
ARRAY statements must not have location tags.
Examples:

ARRAY LIST (23) s Storage is reserved for 24 (23+1) floating point
, ' values (48 locations)** in a region called LIST.

ARRAY TABLE (5,6) s Storage is reserved for 31(5x6+1) floating -
' point values (62 locations)** in a region iden-
tified by the name, TABLE,

* Only the ORG and BLA instructions (entered with a SYMBOLIC statement) may .
precede the ARRAY statement. For description of the use of these instruc-
tions see Subsection 9.4.1. ' :

** Each floating point value will occupy two locations in memory.

5., ARITHMETIC STATEMENTS

Arithmetic statements are the mathematical expressions of the proilem to be
solved. These statements may have location tags.,
The form of the Arithmetic statement is:

Variable (or subscripted variable): expression s

Example:
D: A+ Bs
D is a variable
: is the symbol for equal (=)
A + B is an expression
8 terminates the statement
Example:

BOB, I: R/E s

BOB is a location tag

I is a variable

: is the symbol for equal (=)

R/E is an expression

8 terminates the statement
The equal symbol (:) of an Arithmetic statement does not have the same mean-
ing as the equal sign (=) of ordinary mathematical notation. The equal
symbol has the meaning "replace the value of the variable to the left of the

equal symbol with the value of the expression to the right of the equal
symbol." ‘

Only a single or subscripted variable may be written on the left side of the
equal symbol.

The expression is written on the right side of the equal symbol.

5.1 Expressions

An expression is any mathematically ﬁeaningful sequence of constants,
variables, subscripted variables and functions related by operation
symbols.

54141 Operation gymbols ere defined as follows:

¢ equality sign, replaced by
+ addition |
- subtraction
& multiplication
/ division
! exponentiation
() parentheses
The use of two signs in juxtaposition is not permitted, e.g. +-E.

When parentheses are used, the number of left parentheses must equal
the number of right parentheses.

The following are examples of expressions and the way they should be
written in order to be acceptable to the SCOPAC program.

Expression A Expression is written as
X+Y X+Y
X-Y ' X-Y
XY , o X&Y
X/Y ' X/Y
X/-Y ' x/(-Y)
XE+2 X' (E+2)
B2y X' (E+2)&Y
XY/w (x&Y)/(vaw)

5.1.2 Numbers

Numbers used in the expressions are entered as decimal numbers. They
are restricted to no more than fifteen (15) characters including the

. sign and the decimal point. Plus signs may be omitted. Neither the
intégral part nor the fractional part of a number may contain more
than eleven (11) characters.

Examples:

X:(J&Y)/(P&4.231) s
AtX + 1415 8
G: 425-Y s

5.1¢3 Functions

Functions have the form F(E), where F is the alphdbetic name of a
function, and E is an expression. The following functions are de-
fined in SCOPAC. :

SQRT(E) - Square root of E

SIN(E) - Sine of E

COS(E) - Cosine of E

TAN(E) - Tangent of E

ARCTAN(E) - Arctangent of E

ARCSIN(E) - Arcsine of E

ARCCOS(E) - Arccosine of E

LOGTWO(E) - Log,E

0
LN(E) - Log E

LOG(E) - log, ,E

EXP(E) - e®

EXPTWO(E) - 28

EXPTEN(E) - 10B

ANRED(E) - E modulo 1T, in radians.

Arguments of trigonometric functions must be in radians. There is
automatic angle reduction for SIN, COS, and TAN.

Examples:

M: 1.53 & SIN(F-G) s
D(J,K): 2.667 & SQRT(A(J,K)) s

6. INPUT STATEMENTS

Input statements provide the means for the input of data from the typewriter
or from paper tape.

The input statements are:

6.1

READY (for typewriter or paper tape input)
READZ (for paper tape input)
ANGLIN (for typewriter input)

READY Statements

READY statements permit the entry of one value. Normally, READY
statements are used to input information from the typewriter. READY
statements may have a location tag. S '

These statements have the forms

READY variable s
or

READY subscripted variable s

Example:

READY X s

This statement is entered in the source program. The value
of X is entered via the typewriter or from data tape, when
the READY statement is executed in the object program.

Examples:

READY MATRIX(I,J) s

READY RHO(12,K) s

READY TABLE(ITEM,6) s

READY DATA s

READY PHI(J) s

READY THETA(3) s
The READY statement used with DO loops is a convenient way to enter
elements of arrays. A READY statement with one DO loop will enter
elements of a one dimensional array. A READY statement with two DO

loops provides a choice of reading in a two dimensional array by rows
or by columns. Examples of this programming are in Subsection 8.3.2,

- 10 -

6.2

The READY statements may be used to read a data tape. Three condi-
tions, however, rmust be met: (1) The data tape must have at least

\Jwa;ght'blanks between each character. -(2) Program Preparation Package

No. 2 (P5-2) must be read into memory before the object program is
read in. (3) Before the execution of the object program two commands
in P3-2 must be changed. (See footnote in Section 17)

READZ Statements

READZ statements permit the input of an off-line prepared data tape.
READZ statements must not have a location tag.

READZ statements have the form:

READZ variable s

When a READZ statement is executed in the object program one block of
data will be read from paper tape. An ARRAY statement, allocating
storage for the block of data, must have been given prior to the READZ
statement. It is not necessary for the READZ statement to immediately
follow the ARRAY statement. There may be any number of statements be-
tween ARRAY and READZ.

Example:

ARRAY OPTIC (17) s
READZ OPTIC s
Seventeen elements of a one dimensional array named OPTIC

will be read into memory from tape when the READZ statement
is executed in the object program.,

Example:

ARRAY V(3,4) s
- READZ V s
The elements of Array V, 1,2,3,4,5,6,7,8,9,10,11,12, and
a -0, are in sequence on tape. When the READZ statement

is executed in the object program this data will be stored
in memory as follows:

4 Columms

1 4 7 10

3 rows 2 5 8 11

3 6 9 12

-1 -

a%

6.3

A minus zero must follow the data.in each block of informa-
tion. The reason is that the data is converted to floating
point form in the sequence in which it is entered, and the
conversion continues until a minus zero is encountered,
There is a further restriction that pore of the data should
be minus zero, since the data following the minus zero would
not be converted to floating point form.

ANGLIN Statements

ANGLIN statements permit the entry of one angle from the tyvewriter.

ANGLIN statements have the form:

ANGLIN wvariable s

or

ANGLIN subscripted variable s

ANGLIN statements may have a location tag.

Example:

INANG, ANGLIN A s

Example:

This statement is entered in the source program. The value
of A is entered in degrees, minutes, and seconds via the tyve-
writer when called for at the time the ANGLIN statement is
executed in the object program. The angle is then converted
to radians by a subroutine in P3-2, '

ANGLIN PAR(K,J) s

Many angles may be input with one ANGLIN statement when the
statement is part of a DO loop. (See Subsection 8.3.1 for an
example.) '

- 12 -

7. OUTPUT STATEMENTS

Output statements provide for output of information via the| typewriter.
The output will occur at the time the object program is executed.

These statements are:

PRINT

TYPE

CRR (carriage return)
TAB

ANGLOUT

T.1 PRINT Statements

PRINT statements provide for the output of one value.
The statements have the form:

PRINT variable s
or
- PRINT subscripted variable s

PRINT statements may have a location tag.
Examples:
PRINT ANSWER s

02, PRINT VECTOR (M) s
PRINT MATRIX (K,J) s

The PRINT statement does not provide for a carriage return or tab.
The statements CRR or TAB are used for this purpose.

For Example:

PRINT A s
TAB s
PRINT B s
TAB s
PRINT C s
CRR s

- 13 -

T.2

PRINT statements do not include the format of the type-out. A value will
be typed in fixed point format if it is greater than |.61036 x 10-4| and
less than |.54975 x 1072, Otherwise it is typed in floating point for-
mat,

.Examples'

+.61035998459-5 (floatlng point format for + 61035998459x10’5)
61.036000000 (fixed point format) ,
+.20675703017+14 (floating point format for +.20675703017x1014)

TYPE Statements

TYPE statements output alpha-numeric characters. A maximum of 150

characters may be typed using one TYPE statement.

TYPE statements must ﬁot have a location tag.
The TYPE statement has the form:

TYPE sp L/S or F/S alphanumeric characters F/S s
The first five characters must be TYPE sp.":"

Sp means space bar on the typewriter.
L/S means the LETTER SHIFT key on the keyboard.
F/S means the FIGURE SHIFT key on the keyboard.

Example:
TYPE sp L/S ABSCISSA sp AT sp Y sp MAX F/S: F/S s
This entry would be typed out as follows:
ABSCISSA AT Y MAX:
If a tab or cérriage return is used in a TYPE statement the format 6f
the assembly listing will be destroyed. This can be averted by turn-
ing Switch B OFF while SCOPAC compiles a TYPE statement containing a
tab or carriage return.
For example to type:*
MAX WX MAX Y
as one TYPE statement the following could be done:
TYPE sp L/S MAX sp X F/S tab L/S MAX sp Y L/S C/R F/S s
where C/R means carriage return, |

* with Switch B turned OFF :
- 14 -

8. CONTROL STATEMENTS

Control statements are used to transfer control from one statement to another,

They are:

GO TO (Transfers control unconditionally)

IF (Trensfers control conditionally)

DO (Controls repetition of operations)

CONTINUE (Dummy statement)

ROUTINE (Provides the means to write subroutines
using SCOPAC statements)

RETURN (Transfers control to the main program from
subroutines written with the ROUTINE state-
ment)

HALT (Ceuses object program to halt)

END (Terminates compiling by the SCOPAC program.)

A location tag may be referred to in a control statement. This use of a tag
will be included in the following descriptions of the control statements.

8.1 GO TO Statements

The GO TO statement unconditionally transfers program control to a

specified tagged statement. This tagged statement may be either be~

fore or after the GO TO statement. After control is transferred,

another sequence of statements is executed beginning with the tagged
 statement. :

GO TO statements have fhe form:

GO TO tag s
or
GOTO tag s

A GO TO statement is also used to transfer to a ROUTINE.
GO TO routine name s

GO TO statements may have a location tag.

-17 -

8.2

Example :

GO TO DEANE s

DEANE is the tag of the statement to which control is un-
conditionally transferred. A transfer to the location
. assigned to the tag, DEANE, will occur when this statement

is ;xecuted in the object progrem. (See example in Subsection
8.6 '

IF Statements

IF statements are used to transfer program control conditionally, IF
statements have two forms:

(a) IF (expression) minus, zero, plus s

(v) IP (SENSE N) ON, OFF s
These statements may have location tags. In form (a) three location
tags follow the expression. They need not be different tags. Control

is transferred to one of the tagged statements according to whether
the value of the expression is minus, zero, or plus,

Exanmple:

REDO, M:M+.333 s

X:.5&M s

IF (X-3.4) REDO, REDO, OUT s
OUT, PRINT X s ‘

If the expression, (X-3.4), is minus or zero, the object pro-
gram transfers control to the statement tagged REDO.

If (X-3.4) is plus, the object program transfers control to
the statement tagged OUT,

In form (b) N stands for Sense Switch B, C, or D. Two location tags
follow the Sense Switch. Control is transferred to one of these
tagged statements according to the position of the sense switch when
the IF statement is executed in the object program.

- 18 -

8.3

Fxample:
IF (SENSE D) OUTPUT, ITERATE s

If Sense Switch D is ON, control is transferred to the
statement tagged OUTPUT when the TF statement is execu+ed
during the object program, °

If Sense Switch D is OFF, control is transferred to the

statement tagged ITERATE when the IF statement is executed
during the object vrogram.

DO Statements

DO statements control iteration loovs, which are called "DO loops",.
Basically, a DO loop is a set of SCOPAC statements which are performed
several times with changing values or cenditions.

DO statements have the form:
DO tag variable I.V. (mod.) F.V. s
DO statements may have a location tag.

The value of the variable is changed by the modifier (mod.) from the
initial value (I.V.) to a value not exceeding the final value (F.V.).
The modifier (mod.) may be either an increment or a decrement and
may be entered as a numeric value or an alphabetic name. If an in-
crement is entered as an alphabetic name, the name rmst not contain
the letter "A". (See Example IIT of Appendix G,) If a decrement is
entered as an alphabetic name, the name must contain at least one.
letter "A". The initial value (I.V.) and final value (F.V.) must
have the same sign.

The tag specifies the last statement in the range of the DO loop.

Any statement that permits the use of a location tag will terminate

a DO loop if used as the last statement of the loop. However, the DO,
GOTO or the IF statement must not be the last statement of the DO
loop.

- 19 -

Example: .

TYPE K s
" TAB s

TYPE FUNCTION s

DO ITERATE X 1(2)7 s

FUNCTION: THETA(K)/SIGMA(K) s

CRR s

PRINT X s

TAB s ,

ITERATE, PRINT FUNCTION s
The DO statement means "perform all statements, beginning
with the next statement after the DO statement, to and in-
cluding the statement tagged ITERATE". This DO loop would
perform all statements within its range four times: K=1
the first time; K=3 the second timej; K=5 the third time;
K=7 the fourth time. . ‘
The printout would be ag follows:

K ~ FUNCTION

(numerical value of FUNCTION
will be printed)

1.,00000000000 94 / 04
300000000000 | o5 / 03
5.00000000000 &5/ s
7.00000000000 o7 / o

Exampie: Decrementing a variable

DO GREG X 100(-10)10 s
MZ:1/SQRT (X'2 + K'4/X'2)
PRINT X 8

TAB 8

PRINT MZ s

GREG, CRR s

The DO loop will solve MZ for 10 values of X, beginning
with X=100 and decrementing X by 10 each time.

-20-

8.3.1 DO loops contained within the range of another DO loop.

Example:
DO OUTPUT K 1(1)3 s
DO OUTPUT J 1(1)4 s

PRINT M(K,J) s ‘Range of .Range of
OUTPUT, CER s inner loop : outer loop

The DO loops will print the elements of the array M.

M is an array with 3 rows and 4 columns
K is the row number
J is the column number

This would print
NH1

¥

NHS

,NH4

Y1
Yo
'Méj

sy

Note that the inner DO loop is completed before
control is transferred to the outer DO loop. The
DO loops are said to be "nested".

Example:

ARRAY PAR(6,5) s

DO PAM X 1(1)6 s

DO PAM J 1(1)5 s

PAM, ANGLIN PAR(K,J) s
The DO loops provide for the entry of 30 angles via the
typewriter when these statements are executed in the object

program., There may be any number of statements betweenr. the
ARRAY statement and the DO statements.

- 21 =

8.3.2 Use of DO Loops With READY Statement To Innut Elements of An Array

The elements of a two dimensional array may be input either row or
column wise. The subscript placed in the outer DO loop determines

the way the elements will be entered i.e. if the outer DO loop con-
tains the row subscript, input will be by rows; if the outer DO loop
contains the column subscript, input will be by columns. There may
be any number of statements between the ARRAY statements and DO state-
ments.,

Example: - To Input by Rows

ARRAY MATRIX (2,4) s

DO TAG I 1(1)2 s

DO TAG J 1(1)4 s

TAG, READY MATRIX (I,J) s

The array would be read in row wise because J would be the
most rapidly changing subscript.

Example: To Input by Columns

ARRAY MATRIX (2,4) s

D0 TAG J 1(1)4 s

D0 TG T 1(1)2 s

TAG, READY MATRIX (I,J) s

The array wéuld,be read in column wise because I would be
the most rapidly changing subscript.

Example: To Input a One Dimensional Array

ARRAY PEI (4) s
DO TAG J 1(1)4 s
TAG, READY PHI (J) s

The four elements of ARRAY PHI will be read in during the
execution of this DO loop in the object program.

- 22 =

8.3.3 Restrictions

The following restrictions apply to the use of DO loops. In the
diagrams, the brackets represent the range of statements under con-
trol of a DO statement.

(a) If the range of a DO statement includes another DO state-
ment, all statements in the range of this second statement
must 2lso be in the range of the first DO statement.

Permitted Not Permitted
—
——e

(v) No transfer of control by IF or GOTO statements is permit-
ted into the range of any DO statement from outside its
range, since such transfers would not permit the DO loop
to be properly indexed. - However, an IF statement may be
used to transfer out of a DO loop.

Permitted Not Permitted

—= —

—_— | N
:__:) | - B—

(c) . The maximum numbervof DO loops that may be nested is seven.

(d) A DO, GO TO, or IF statement cannot be the last statement of
a DO loop. . -

(e) The last statement in a DO loop cannot immediately precede
the END statement.

- 23 -

8.4

8.5

CONTINUE Statements

CONTINUE statements are dummy stateménté.
CONTINUE statements usually have the form:
tag, CONTINUE s
A CONTINUE statement with é tag may be‘the,last statement in a DO

loop. When used in this way control passes to the statement following
the CONTINUE statement after the operations.of the DO loop are com-

‘pleted,

A CONTINUE statement with a tag, may be used to provide a means of
transferring control to a statement that cannot have a location tag,
e.g. TYPE or SYMBOLIC, The statement that cannot be directly tagged

. should immediately follow the tagged CONTINUE statement.

Example:

LARRY, CONTINUE s

TYPE Y EQUALS s
A statement such as GO TO LARRY s elsewhere in the proeram
would transfer control to the statement LARRY, CONTINUE s.

This would be followed by the execution of the statement
TYPE Y EQUALS s,

ROUTINE Statements

ROUTINE statements provide the means to write subroutines with SCOPAC
statements. ‘ .

ROUTINE statements have the form:

- ROUTINE name s

- ROUTINE statements must not have a location tag.

The name identifies the subroutine.
The name may consist of not more than seven (7) alpha characters.

Example;

ROUTINE SYSTEM s
A transfer'statement to the subroutine should not be the statement
immediately preceding the ROUTINE statement. The ROUTINE statement

is followed by one or more SCOPAC statements which constitute the sub-
routine. These statements must be followed by a RETURN statement.

- 24 -

8.6

8.7

RETURN Statements

RETURN statements transfer control to the main program after the
execution of a subroutine., Control returns to the statement which
follows the transfer statement to the subroutine.

RETURN statements have the form:

RETTRN nare s
RETURN statements mist not have a location tag.
Example:

GO TO GUSS s

GO TO RON s

ROUTINE GUSS s

Y:X134SIN(M) s

RETURN GUSS s

RON, PRINT Y s
In this examnle Y:X'3+SIN(M) is the subroutine named GUSS.
Note that when the statement RETURN GUSS s is execnted,

the return from the subroutine to the mein nrogram will be
made to the statement GO TO RON s,

To avoid transferring control around subroutines in the main body of

the program, subroutines may be placed after the main bhody of the
progran.

HALT Statements

HALT statements cause a halt and transfer to location 30005 to be
executed in the object program.

HALT statements have the form:
HALT s -

HALT statements may have a location tag.

8.8

END Statements

An END statement indicates to the SCOPAC program that there is no more
information. This is the only purpose of the END statement. Since
the END statement does not generate a halt instrmuction it is advisable
to use a HALT statement just prior to the END statement.

END must be. the very last SCOPAC statement.

"END statements have the form:

END s

END statements must not have a location tag.

- 26 -

9. SYMBOLIC STATEMENTS

SYMBOLIC Statements |
The SYMﬁOLIC statements permit input of symbolic coding..
SYMBOﬁIC statements have the form:
SYMBOLIC s
SYMBOLIC statements must not have a location tag.
The symbolic coding is entered immediately following the SYMBOLIC
statements. (See Subsection 12.8 for examples.)
COMPTLE
COMPILE is used with the SYMBOLIC statement to notify the SCOPAC
program that no further symbolic coding is to be entered. Each time

symbolic coding is entered in the source program it is preceded by
the SYMBOLIC statement and terminated with the word, COMPILE.

Symbolic Coding Entered With The SYMBOLIC Statement

The SYMBOLIC statement permits the use of RECOMP II operations* and
certain special operations. Although the RECOMP II magnitude in-
structions cannot be entered directly, megnitude operations can be
coded with the SYMBOLIC statement as described in Subsection 9.4.

In turn, these operations are used to enter decimal and octal numbers,
addresses, alpha-numeric 1nformat10n, and instructions in command
format.

Functions may be entered as symbol;c coding provided the argume‘ts of
the Functions are in the A and R registers. just preceding the execu-
tion of the Functions. Normally,Functions are entered in the Arith-
metic statements. R ' : '

READY, ANGLIN, PRINT, ANGLOUT, CRR, TAB may also be entered with a
SYMBOLIC statement. If READY or ANGLIN are entered as symbolic coding,
the input must be stored just after the execution of READY or ANGLIN,
If PRINT or ANGLOUT are erntered as symbolic coding, the output must be
in the A and R reglsters Just prior to the execution of PRINT or
ANGLOUT. '

% See Appendix B for list of acceptable operations.

- 27 -

The special operations are:

ORG (origin)

BLA (block allocation)

DEF (definition)

EQU (equal)

The first word of the object program

is assigned the msbsolute address spec-
ified in the ORG instruction. This
operation is used only if an origin
other than 3000g is desired. The SCOPAC
program automatically assigns an origin
of 3000g. :

In the BLA operation the total number
of locations for the object progranm

is specified. This operation is used
.only if the storage allocated for the
object program is to be restricted be-
tween the origin and a location other
than 7757g.

In the DEF operation a symbolic location
is assigned an absolute address.

'In the EQU operation two symbclic ad-
dresses are assigned the same absolute
address.

Special operations used with the SYMBOLIC statement for output of words

- in decimal number format are:

~ DISD (display decimal)
TYWD (type word decimal)
PNWD (punch word decimal)

" PTWD (punch and type
word decimal)

The specified word is displayed as a
decimal number in the display register.

. The specified word is typed as a deci-
mal number.

The specified word is punched in deci-
mal number format,

The specified word is typed and punched
in decimal number format. '

NOTE: The above four operations require that the specified word
be in binary ccded decimal (BCD) format prior to execution

of the operation.

- 28 =

9.4

Writing Instructions In Symbolic Coding

There are four fields used when writing instructions in éymbolic
coding. They are Location, Command, Type and Address.

The format is:s

SYMBOLIC s
LOCATTON COMMAND TYPE ADDRESS
field field field field
COMPILE

LOCATION Field

The Location field may contain a location tag. This tag may be from
one to eight alphabetic characters. A numeric tag cannot be used.
The Location field may be left blank.

COMMAND Pield

The Command field may contain RECOMP II operations, special opera-
tions, Functions, or READY, ANGLIN, PRINT, ANGLOUT, CRR, and TAB.

TYPE Field
The Type field svecifies the type of entry which will follow in the

Address field. A single letter code is used to designate the tyne
of entry. '

S Symbolic (or if the Type field is left blank, it is inter-
preted as symbolic.)

N Numerio

A Aiphanumeric

C Comﬁand format

T Floating noint decimal number

D PFived point decimal number

ADDRESS Field

The Address field may.contain one of the tyves of entries specified
in the Type field,or is'left blank.

Symbolic {Address field)

A symbolic address containing from one to eight alphabetic
characters may be euntered.

- 29 -

Example:
DATA

Addresses relative to the symbolic address may bte written:

Examples:
DATA-0001 one word before DATA
DATA+0001 one word after DATA
DATA+27 - 27 words after DATA

Te insure that SCOPAC will not assign these locations for cther
purposes, it is advisable to reserve these locations with an ARRAY
statement, i.e. ARRAY DATA (27) s.

Example:
LOCATTON COMMAND TYPE ADDRESS
FCA ABC
FST s DATA

Magnitude Operations
Although the RECOMP II codes for magnitude operatiocns cannot
be entered, the use of a symbolic address +00001 is a way of
specifying the magnitude operations.

Example:

LOCATION COMMAND TYPE ADDRESS

FCA ABC+00001
FST S DATA

The absolute'valuelof'the contents of ABC will be
stored in DATA. ' '

Numeric {Address field)

The numeric entry in the Address field may be from one to five
numerals ., If five numerals are in this field, they are inter-
preted as the usual RECOMP II address, with 4 octal digits for
channel and gector plus a half-word bit. If there are fewer than
five numerals, the address is interpreted as a full werd address
with a half-word tit of zero. Enough leading zeros are automat-
ically inserted to right justify the numerals.

- 30 -

Examples:
ENTERED AS: INTERPRETED. AS:

1737 7737.0

525 0525.0

17 0017.0

23451 2345.1

1 0001.0

00001 | C000.1

0 0000.0

Examples
LOCATION COMMAND TYPE " ADDRESS

CLA N 6032
STO N 5004

Alphanumeric (Address field)

The alphanumeric entry may contain eight or less characters.

Examples:
MAXZ
SPAN1
CURVE 4
Example:
LOCATION ~ COMMAND TYPE ADDRESS
| cLA A CURVE 4
TYA S 7760

The alphanumeric entry, CURVE 4, will be typed during the
execution of the object program.

" Command (Address field)

A word in command format may be entered in the Address field..
An example of the command format is:

+005o320+6030500

- 31 -

Example:

LOCATION COMMAN TYPE ADDRESS
CLA c +0050320+6030300

STO N 6010

The word, +0050320+6030300 will be stored in 6010
during the execution of the object program.

Floating Point Decimal (Address field)

A floating point decimal number in the Addfess field may contain
- a maximum of sixteen (16) characters including the sign and the
decimal point. ' ‘ '

Neither the integer nor the fraction may contain more than eleven
(11) characters. The sign will be interpreted as plus if no sign
is given. .

Example:
-142857
642,31
.0513
Examples
LOCATTON COMMAND TYPE ADDRESS
FCA F 1.3
FMP X

Fixed Point Decimal (Address field)

If a decimal number is entered as a fixed point number the
position of the binary pcint must be specified.

A fixed point decimal number in the Address field may contain a
maximum of sixteen (16) characters including the sign, decimal
point and position of the binary point (two or three characters
are needed to designate the binary point). Neither the integral.
part nor the fractional part may contain more than eleven (11)
digits. If there is no sign, the number is assumed to be pos-
itive,

Either the integral part or the fractional part may be omitted
if it is not needed. If the position of the binary point is
omitted, the number will be converted incorrectly to a floating
point number without an exponent. There will be no error halt
for this condition.

- 32 -

9.4.1

If the magnitude of the number is such that it cannot be converted
at the svecified binary point the number will be incorrectly céh-
verted. There will be no error halt for this condition.

Examples of fixed point decimal entries are:

~14285T7+18
642.31+10
.0513-4

Example:

LOCATTON

for -142,857 at binary point 18
for 642.3%1 at binary point 10
for .0513 at binary point -4

COMMAND TYPE ADDRESS
D 642.31+10
Z

Writing the Special Operations in Symbolic Coding

Certain special operations, if used, must be placed at the beginning

of the source program.

1. ORG
2. BLA

The order of entry is:

3, ARRAY Stetements (These are not entered by symbolic coding.)

4. DEF and/or EQU

- ORG (origin)

This operation is used only if an origin
other than 3000g is desired. The SCOPAC
program automatically assigns an origin
of 3000g. If used, this operation must
be the first entry in the source program.

- The first word of the object program is

assigned the lccation specified in the
Address field. All other words in the
object program will be assigned locations
greater than the origin. (Origir must be

- an even number 2 0004. The Type field

must contain N.

Generally, Program Preparation Package
No. 2 (93-2) is used in conjunction with

_ the object program. P3-2 cccupies lo--

cations 0003g and -0010g through 2777g.
Therefore, if an origin < 2000g is speci-
fied, part of P3-2 will be destroyed.

- 33 -

Examples

LOCATION COMMAND

ORG

TYPE - ADDRESS
N 5000

An origin of 5000g is éssigned to the object program.

BLA (block allocation)

Examplez'

LOCATION COMMAND

3LA

This operation is used only if the storage
allocated for the object program is to be

restricted between the origin and a loca-

tion other than 77578.

The total number of locations cllocated
for the object program is specified in
the Address field. These locations are
congsecutive. The BLA operation must pre-
cede all ARRAY statements in a source pro-

gram,

The number of locations is written as an
octal number.

The Type field must contain an N,

TYPE - ADDRESS

N 100

1008 locations will be reserved for the object program. Assum-
ing an origin of 3000g the storage allocated extends from 30008

- 34 -

DEF* (definition) The symbolic address in the Location
field is assigned the absolute address
in the Address field.

The Type field must contain N.

This operation enables the programmer to
assign an absolute address to a symbolic

address.
Example:
LOCATION CCMMAND TYPE ADDRESS
ABC DEF N | 3200

ABC is the symbolic address.
DEF is the operation.
- N signifies a numeric address follows.
3200g is the absolute address assigned to the symbolic address, ABC.
EQU* (equal) The symbolic address in the Location
field is assigned the same absolute ad-

dress as the symbolic address in the
Address field.

Example:

LOCATION COMMAND TYPE ADDRESS
DOG B s PUP

DOG is a symbolic address.
EQU is the operation.
S means a symbolic address will follow.

PUP is the symbolic address which will have the same absolute
address as DOG.

* It is advisable that DEF and EQU operations immediately
follow the ARRAY statements to insure that all symbols with de-
fined locations and all equivalences are known before reference
is made to them.

- 35

The following four operations require that the word be in BCD (Binary
Coded Decimal) format prior to execution, BCD format must be arranged
by programming. (See the description of the Display operation in the
RECOMP II Operating Manual for details regarding BCD format).

DISD (Display Decimal)

TYWD (Type Word Decimal)

PNWWD (Punch Word Decimal)

PTWD (Punch and Type
‘Word Decimal)

- The word specified in the Address field

is displayed as a decimal number. The
Type field must be either N or blank de-
pending on whether the Address ficld
contains a numeric or symbolic entry.

The word specified in the Address field
is typed as a decimal number.’

The Type field must te either N or blank
depending on whether the Address field
contains a numeric or symbolic entry.

The word specified in the Address field
is punched in decimal number format.,

The Type field must be either N or blank
devending on whether the Address field
contains a numeric or symbolic entry.

The word svecified in the Address field
is typed and punched in decimal number
format. The Type field must bte either N
or blank depending on whether the Address
field contains a numeric or svrbolic
entry.

-36‘-

10. PREPARATION OF SQURCE PROGRAM ON PAPER TAPE

SCOPAC statements and/or symbolic coding may be prepared on paper tape.
Ebr Flexowriter offline tape preparation of SCOPAC source language and data,
see RECOMP Technical Bulletin No. 21. The bulletin was written for tape prev-

.aration of source programs for SALT (Program No, 1034) but avplies as well to
SCOPAC,|

10.1 SCOPAC statements and/or symbolic coding rmst be prepared on paper
tape in exactly the same format that is used sed for typewriter innut.
There must be at least eight (8) blanks between each character, in-
cluding figure shift (F/S§ letter shift (L/S), space (sp), etc.*

10.2 When preparing a statement on paper tape, each name or number rust be
terminated by a space, figure shift, or letter shift.

10.3 Terminate each statement by a figure shift followed by ah S.

10.4 VWhen preparing symbolic instructions on paper tave terminate the
Location, Command, and Type fields by a tab. Terminate the Address
field by a carriage return.

10.5 In the following examples at least 8 blanks must be inserted between
- each character.*

b means 8 blanks

t means a tab
Exanmple:
X:3 s
This would be entered on paper tape as:
XbF/Sb:b3bF/Sbspbs
Example:
32,CRRs
| This would be entered on papef tape as:

F/Sb3b2bF/Sb, bL/SbCbRLRLF/Sbs

* The requirement that at least eight blanks be between each character applies
only if the tape is to be read in via the photoreader.,

- 37 -

10,6

" Fxample:

SYMBOLICs
ORG N 3400
COMPIIE

This would be en+ered on paner tane as:

L/QbSbeMbBbObLbIbeF/SbsbtbL/SbObRbe“/obtbL/SbWbF/Sbtb}bAbObObT/QbC/R
L/SbCbObI bPbIbLLELF/SbtbtbtbL/SbC/R . '

A source program may be on more than one tape. In this case the fol-
lowing precautions must be taken: (1) Each tape must have a complete
statement at the end (i.e. a statement may not be continued on snother
tape)s {(2) All symbolic instructions to be entered by a SYMBOLIC
statement must be punched on one tave together with the SYMBOLIC state-

" ment and the word, COMPILE.

- 38 -

11, CORRECTION OF ERRORS WHILE PREPARING SOURCE PROGRAM'ON TAPE

11.1

11.2

If an error is discovered before termination of a statemeﬁt or symbolic

instruction, depress LINE FEED key and re-type the statement or in-
struction. If an error occurs, such as an incorrect character, it is
possible to correct without depressing the LINE FEED key by manually
moving the tape back to a point one space ahead of the incorrect char-
acter and entering the correct character. The tave is moved so that
the correct character is just ahead of the incorrect character.

If an error is discovered after termination of a statement or symbolic
instruction, it may be corrected by manually moving the tave back to a
point one space ahead of the termination character s or C/R-and depress-

ing the LINE FEED key. The statement or symbolic instruction may then
be re-typed. .

- 39 -

12.1

12.2

12.3

12.4

12.5

12.6

12. INPUT OF SOURCE PROGRAM FROM THE TYPEWRITER

For operations prior to entering the SCOPAC statements see Compiling
under Operating Instructions, Section 14.

A statement may be entered only when the ALPHA light is ON and the
COMPUTE light is QFF. '

No statement may consist of more than 150 characters. This includes
letter shift (L/S), figure shift (F/S), space (sp), carriage return
(¢/R), etc.

The expression in an Arithmetic statement may contain a maximum of 70 .

‘characters of the following tyve: All varentheses, operators (+, -,

& /y '), Functions, variables and numbers.
The entire Arithmetic statement may contain a maximum of 150 characters
including letter shifts, figure shifts, and all other characters.

A blank is a character in typewriter input.

Typing A Statement*

All location tags, varisbles, subscripts, numbers and names in a state-
ment rmst be terminated. The termination may be done by a letter shift
(1/s), figure shift (F/S) or a space (sp).

Each statement must be terminated by a figure shift (F/S) followed by
an 8.

‘At the beginning of any statement the tyvewriter is in L/S mode.

Therefore, if the first character requires L/S mode it is not necessary

to depress the LETTER SHIFT key.

* NOTE: - 1. If an error is discovered before termination of a state-
ment (prior to entering the s, or prior to depressing the
- CARRIAGE RETURN key if symbolic coding), depress the LINE
FEED key and retype the statement or the line of symbolic
coding. .

2. If an error is discovered after termination of a state-
ment (after entering the s, or after depressing the CARRTAGE
RETURN key if symbolic coding) depress the STOP key as soon
as possible. Tor following steps see Correction of Errors
While Compiling a Source Program, Subsection 14.6.

- 40 <

1207 '

Example:
DLD,TAB s

This is typed as:

DLD F/S, L/S TAB sp F/S s [@he space (sp) before F/S is
not necessary, _

Example:
Of,CRR]
This is typed as:
F/s 01 F/S, L/S CRR sp F/S s
Example:
READY V(2,3) s
This is tyved as:
READY sp VF/S (2 F/S, 3 F/S) sp s
Example:
ABC,Z(Q,J):2&X'34W/2 s
This is tyned as:

ABC ¥/S, L/s 2 F/s (L/SQF/Ss, L/SJ F/S) 2 F/S &
L/SXF/S'3F/S+L/SWF/S/2F/S sps

Entering TYPE Statements

The five characters, TYPE sp, rmst precede information to be entered
with a TYPE statement.

If a tab or carriage return is to be part of the TYPE statement, turn
Switch B OFF while SCOPAC compiles the TYPE statement. (Otherwise,
the format of the assembly listing will be destroyed.) The alterna-
tive would be to use the statements TAB and CRR separately from the
TYPE statenent.

- The TYFE statement may be corrected by either depressing the LINE
FEED key and re-entering the statement or by using the h character in

figure shift (F/S) mode. When the latter method is used, characters
may be removed in the reverse order of their input, a character at a
time, by depressing the FIGURE SHIFT key once and then by denress-~

- 41 -

12.8

ing the h key for each of the characters to be removed. Thus, if three
characters in succession were incorrectly entered, F/S hhh followed by
the three correct characters would be tyved.

Typing Symbolic Instructions

When typing symbolic instructions, terminate the Location, Command and
Tyve fields by a tab. Terminate the Address field by a carriage re-
turn (C/R). The last character in the Address field should be followed

by a carriage returm only.

- 42 -

The formats are:
B

SYMBOLIC s
LOCATION CONMMAND TYPE
1-8 3.7 1
Alpha tab Alpha tadb char-
characters characters acter
or ‘
left : S
blank or left
blenk
N
A
C
P
D

- 43 -

tab

ADDRESS

Symbolic

1-8 characters

Numeric
1-5 numerals

Alphabetic
1-8 alpha-
numeric
characters

Command
Format
such as:

+3030620+5736 700

Floating
Point
Decimal
1-16 characters
including sign
and decimal point

Fixed Point
Decimal

" 1=16 characters

including sign,

decimal point &
location of
binary point

c/R

C/R .

¢/R

¢/R

Although READY, AWGTIN, PRINT, ANGLOUT, C®R, and TAB are usually
‘entered as statements, and the Functions are usually entered in
Arithvetic statements, they may be entered as symbolic coding.

LOCATION

1-8
characters
'or
left
blank

Example:
SYMBOLIC s

ABC tab
tab
tab
tab
BBC tab
tab
COMPILE tadb

Example:
SYIBOLIC s

CCD tab
tab
tab
tab
COMPILE tab

COMMAND
Fuanctions
READY
ANGLIN .
PRINT
ANGLOUT
CRR
TAB
FCA tab
coS tab
FST tadb
FMP tab
PRINT tab
CRR tab
tab
CLA tab
STO tab
ADD tab
STO tab
tab

- 44 -

TYPE

left
blank

tab
tab

tab
tadb
tad

=2 b =2 a

tab

tab
tab
tab
tab

tadb

ADDRESS

left
-blank

X c/R
c/R

’C/R

C/R

+3030620+5736T00
2142

+2+18

2170

C/R

c/r
c/R
c/R

C/r

13, CHECFOUT OF RECOMP IT RREADINESS

!

.13.1 Turn computer POWER Switch ON and wait for RWADY lighf above switch
to go ON,

13,2 Turn Input-Output POWER Switch ON (on the front control ranel).
13,3 Turn the COMPUTERMANTAT PIW(H Switch to TOMPITER
13,4 If tape is to be read iuto memory:
a. Turn Tape Reader POWER Switch ON.
be Turn Tape Reader MOTO?.Switch ON,
c. Turn the»TAPE ADVANCE Switch to OFF,
13.5 If tape is to be munched:
a. Turn Tape Punch POWER Switch ON.
b. Turn the PUNCH-EXTERNAL Switch te PUNCH,
i3.6 Turn typewriter ON-OFF Switch (under lower right corner) tﬁ o,
13,7 Turn the OPERATION Switch (on the Console) to CONTINUOUS.
13.8 Turn £he PRE-SET 3TOP Switch to OFF.

13,9 Turn TRANSFER STOP Switch OFF (down),

The computer is now ready to use.

- 45 -

14, OPERATING INSTRUCTTONS FOR COMPILING

‘14.1 Preliminary Procedure for Compiling One or More Source Programs

8

b.

Load the SCOPAC tape. (A short program at the beginning of the
tape will clear memory to minus zero.) SCOPAC will use all
memory locations.

To verify the SCOPAC tape:

(1) Place the tape in the photoreader past the short "zero mem-
- ory" program.

(2) Press the VERIFY button.

Set typewriter margins and tabs.
(1) Set typewriter margins at 6 and 97.
(2) Set tab stops at 23, 33, 53, and 60.

(3) Set tab override switch in the OFF position.

Input of Source Program _

a.

b.

Ce

d.

Advence at least two folds of blank tape.
If the object program is to be listed, turn Sense Switch B ON.
If input is via the typewriter:

(See Section 12, Input of Source Program From the Typewriter and
Subsection 14.6, Correction of Errors While Compiling a Source
Program.) '

(1) Depress START 1 button.

(2) After entering a statement or symbolic instruction wait for
the computer to halt with the ALPHA light on.

(3) Type the next statement or symbolic instruction.

(4) After all of the source program has been entered, oroceed to
Step e.

If input is to be entered from paper tape:

(See Section 10, Preparation of a Source Program on Paper Tave
and Subsection 14.6, Correction of Errors While Compiling a Source
Program) .

(1) Place input tape in photoreader.

' (2) Depress START 2 button if all input statements are .to be

typed.

- 46 -

14.3

14.4

-

f.

To

-

(3)

(4)
(5)

Depress START 3 button if only those input statements
in error are to be typed. ,

After the source program is processed, proceed to Step e (1),
If the source program is on more than one tape:
(a) Place each tape in the photoreader.

(b) Press the desired START button (START 2 or 3) and com-
piling will continue.

After the END statemenf is entered:

(1)
(2)

Wait for the Assignment Table to be typed.
Wait for END OF ASSEMBLY to be typed.

Remove the object program from the punch canister.

Initialize the SCOPAC Progrem

Instead of reloading the SCOPAC program, it may be initialized
(re-establish SCOPAC in memory without reloading it) at any time
during compiling by the SCOPAC Initializer tape.

(1)
(2)

(3)

Press FILL button on the Console. -

Load SCOPAC Initializer tape. The SCOPAC program will be
re-established in memory and the computer will halt at
1413.1.

Return to Step 14.2.

To Interrupt Compiling

To interrupt compiling while entering SCOPAC statements via the type-
writer:

a.

b.

When

the typewriter is ready for input of the next statement

(ALPHA light on), turn the computer OFF,

To resume compiling with typewriter input:

(1)
(2)
(3)

(4)
(5)

Turn the compﬁter ON.
Turn POWER switch ON for the tape punch unit.

Check Switch B to be sure it is in the same position as it
was at the time compiling was interrupted.

Press START 1 button.
When the ALPHA light comes on, resume compiling.

- 47 -

To interrupt compiling while SCOPAC statements are being entered via
paper tape:

a, Wait for a time when the tape is not being read 5€ the photoread-
ers then press STOP key on the Console,

b, Set Channel and Sertor dials to 4720.
C. Turn PRE-SET STOP Switch to 1st.
- d. Press START key.

€. After the program halts at location 4720, turn the PRE-SET STOP
switch OFF,

f. Turn the computer OFF.

Ze Either leave tape in photoreader or mark tape and remove it.
(Mark tape so that it may be placed in the same position on photo
reader when compiling is resumed.)
h. To resume compiling with input from paper tape:
(1) Turn the computer ON.
(2) Turn the POWER switch ON for the tape unit.

(3) Check Switch B to be sure it is in the same position as it
was at the time compiling was interrupted.

(4) 1If necessary, place input tape in photoreader in the same
position it was at the time compiling was interrupted.

(5) Turn on photoreader (by turning the POWER switch and the
MOTOR switch ON).

(6) Set Location Counter to 4720.0 by pressing L key, typing the
location, and depressing the ENTER key.

(7) Press START key. (The type-out specified originally by START 2
or START 3 will be resumed automatically.)

14.5 Check of Source Program on Tape Without Compiling

The Check SCOPAC Source Program tape is used to run a check of the
statements in a source program on. tape without compiling.

a. Load the SCOPAC tape.
b. Load the Check SCOPAC Source Program tape.

c. Place the source program in the photoreader.

- 48 -

14.6

d. Press either START 2 or START 3 button.

(1) START 2 - every statement on the tape will be listed. If
an error is detected, ERROR or EQUATICN ERTCR
will be typed.

(2) START 3 - only those statements in error will be listed.
If an error is detected, ERROR or EQUATION ERROR
will be typed followed by a type-out of the state-
ment in error.

e. If errors in symbolic coding are detected, SYMBOLIC CODE ERROR
will be typed. If the error was such that SCOPAC fails to inter-
pret the word COMPILE as the termination of the symbolic coding,
statements that follow will be processed as symbolic coding, and
SYMBOLIC CODE ERROR will be typed.

f. Any number of off-line prepared tapes containing source proerams
may be checked without reloading SCOPAC and the Check SCOPAC
Source Program tapes. Just place the tape in the photoreader and
depress START 2 or START 3.

e After checking all tapes for errors, it is only necessary to load

the SCOPAC Initializer tape and a source program tape in order
to begin compiling. ’

Correction of Errors While Compiling a Source Prograsm (typewriter or
tape input)

e. If an error is discovered by the vprogrammer before termination of
a statement or symbolic instruction (prior to entering the s,
or prior to depressing the CARRIAGE RETURN key if symbolic coding),
depress the LINE FEED key and retype the statement or the symbolic
instruction (this applies only to input via the typewriter).

b, If an error is discovered by the programmer after termination of
a statement or symbolic instruction: '

(1) Depress the STOP button as soon as possible.
(2) Set Channel and Sector dials at 5000;

(3) Set PRE-SET STOP switch on 1st.

(4) Turn Switch B ON,

(5) Depress the START key.

(6) Wait until the halt at 5000 occurs.

(7) Turn PRE-SET switch OFF,

(8) (a) For all statements except the SYMBOLIC statement:
- Depress START 1 button, and wait for the ALPHA light
to come on.
- Type the correct statement.

- 49 -

Ce

(9)

(b) For a line of symbolic coding:
- Set the Location Counter at 2665.1.
- Press the START key and wait for the ALPHA light to
come on.
- Type the correct symbolic instruction.

An examination of the incorrect statement or symbolic in-
struction may indicate that even if all or part of it should
be executed by the object program, it would not affect the
program, If this is so, continue with the compiling. If it
is not so, either continue with the compiling, noting where
a transfer can be made around the incorrect instructions
when executing the object program, or initialize the SCOPAC
program and begin compiling again startlng at Step 14.2 of
Operating Instructions.

If an error is discovered while a source program on tave is
being compiled, follow the instructions in Step b(1)-(7).
In Step b(a)(as and (b) the instructions are the same, but
another START button is used.
- Depress START 2 button if all the statements are to
be typed out. .
- Depress START 3 button if only the statements in
which the SCOPAC program finds errors are to be tyved
out.

Errors detected by the SCOPAC program:

(1)

(2)

(3)

(4)

ERRCR

If the SCOPAC program finds an error in any statement ex-
cept the Arithmetic statement such as an illegal word or an
incorrect format, the word ERROR will be printed and the
ALPHA light will come on ready for a statement to be entered.
Type the correct statement.

EQUATION ERROR

If the SCOPAC program detects an error in an Arithmetic
statement the word EQUATION ERROR will be printed. This
indicates that parentheses have been improperly used, that
termination of names or numbers is incorrect, or illegal
entries have been made. When the ALPHA light comes on, tyve
the correct statement.

SYMBOLIC CODE ERROR .
If an error occurs while typing in symbolic coding, the
words SYMBOLIC CODE ERROR will be typed. When the ALPHA

- light comes on, type the correct line of symbolic coding.

Incorrect Entry of ARRAY Statement

If an ARRAY statement is not entered at the beginning of the
source program as specified in the SCOPAC manual, the follow-
ing statement will be typed:

TOO LATE TO ENTER ARRAYS

The computer will halt at 2610.0. Depress the START key to
continue with the next statement. i

- 50 -

(5) Assembly Error
If ASM ER is printed as a result of an illegal operation
(such as COW instead of CLA being input in symbolic coding)
it cannot be corrected by any means other than to start the
entire operation over again, begznnlng with initializing -
the SCOPAC program.

14.7 Procedure When the Type-out "ASSIGNMENT TABLE IS FULL" or "NO
- LEFT FOR YOUR_PROGRAM" Occurs During Compiling

-

ASSIGNMENT TABLE IS FULL

During compiling if all storage in the Assignment Table is used,
the following is typed:

ASSIGNMENT TABLE IS FULL

and the computer will halt at 2610.0. When this occurs, the
SCOPAC Agsignment Table Full tape and Sense Switch C may be used
to eliminate certain types of entries from the Assignment Table.
In this way storage is provided for additional entries into the
Table. The position of Sense Switch C will determine the type
of entries to be eliminated from the Table. With Sense Switch C
ON fewer types of entries are removed than with Sense Switch C
OFF.

(1) Set Sense Switch C.

(a) If Sense Switch C is ON, Alpha literals and location
tags of the form TAG o (except those needed in DO
loops) will be eliminated from the Assignment Table.

(b) If Sense Switch C is OFF, Alpha literals, Floating
literals, Fixed Point literals, Command literals, and
location tags of the form TAG NN (except those needed
in DO loops) will be eliminated from the Assignment
Table.

(2) Load the Assignment Table Full tape.

Computing will begin (at location 1412.0), and those words
and their assigned locations that are eliminated from the
Assignment Table will be typed out. When the operation is
completed,a word in command format will be typed. The com-
puter will halt at location 6447.1. This last word indi-
cates the number of locations now available in the Assign-
ment Table. For example, if the last word was:

+0007240+0007720

all locations from 0724.0 to 0772.0 inclusive are now
available for use in the Assignment Table. (Remember that
each word of eight or less characters will require two lo-
cations in the Assignment Table. Those with more than
eight require three locations.)

-51 -

(3) Press START key to resume compiling after the halt at 6447.1.
Compiling will resume at the point where it was interrupted
when the Assignment Table became full.

(a) NO STORAGE LEFT FOR YOUR PROGRAM
’ If the program being compiled by SCOPAC has used all
- the storage available, the following statement will be

typed:
NO STORAGE LEFT FOR YOUR PROGRAM
The computer will halt at location 2610.0. It may be

_possible to initialize SCOPAC, change the origin to
allocate more storage, and recompile the entire program.

- 52 -

15. DESCRIPTION OF THE EXECUTION OF THE OBJECT PROGRAM
A summary of the operations‘duringvthe execution of the object ﬁrogram are:

.15.1 Loading of Program Preparation Package No. 2 (P5-2) into memory.*
(P3-2 is normally used in conjunction with the object program.

15.2 Loading of object program tape into memory.
15.3 Placing data tape (if used) in photoreader.
15.4 Execution of the object program;

15.5 Entry of data (if used) via typewriter during the execution of the
program,

* If the statéments READY, READZ, ANGLIN, PRINT, or ANGLOUT, or any
Function (except SQRT) were in the source program, P3-2 must be used.

P3.2 occupies locations 0003g, and 0010g through 2777g.

- 53 -

16.1

16.2

16. PREPARATION OF DATA TAPE

Input Via READZ Statements

If the READZ statement is used to enter data, the following must be
entered in the order shown for each block of data.

a. An N code (the letter N, at least 8 blanks ahead of the first
number).

- 'b. The data, with each data word consisting of a sign, integer, a

decimal point code, a fraction, and an enter code.
c. Minus zero (-0.0) followed by an enter code;
d. A location of 17740 (17731 may also be used).
e, A start code.
As many blocks of data as desired may be on one tape. It is only nec-

essary that Steps a through e be followed and an ARRAY and READZ be
given in the program for each block of data., At least two inches of

‘blank tape must separate each block of data.

A minus zero must follow the data because the data is converted to
floating point form in the sequence in which it is entered and the
conversion continues until a minus zero is encountered. This means

it would not be converted to floating point form.

Preparation of Input on VERSATAPE

All the information except the N code may be put on tape by the

VERSATAPE.

a. Plug in integer - fraction, (decimal), cartridge at rear of Punch‘
Unit.

b. Turn the Selector switch on keyboard unit to the N/C position.

c. Enter the integer, consisting of 10 digits or less, on the key-

board. Leading zeros need not be entered as they are automatically

supplied by the Punch,
d. Press the sign bar (plus or minus).
e. Enter the fraction and then enter the number of zeros needed for

a total of 10 digits. (Ten digits rust always be entered to pre-
vent unwanted leading zeros from being punched.)

- 54 -

- f. . Press ENTER bar.
g. Repeat Steps c¢ through f for remaining data and, the -O.
h. Turn the Selector switch to the S position.
i. Press the SET L bar.
jo Enter 17740 (17731 may also be used).

k. Press LOC bar, - location is ﬁunched, and a start code is auto-
matically punched.

1. Via either the computer typewriter or a Flexowriter, the N code

is entered at least 8 blanks ahead of the first number of each
block of data on tape. *

16,3 Input Via READY Statements

The READY statement may be used to input the data., The order in
which the variables are listed on tape must be the same as the order
in which the corresponding variables appear in the READY statements.
The data may be prepared on the Flexowriter. There rmst be at least
eight (8) blanks between each character.* (The Flexowriter may be
wired to automatically enter at least 8 blanks between each cheracter
as described in Technical Bulletin No. 21, Flexowriter Offline Tape
Preparation of SALT Source Language and Data.) Numbers are entered
in the formet described in Section 18.

* The requirement that at least eight blanks be between each character applies
only if the tape is to be read in via the photoreader, '

- 55 -

17. OPERATING INSTRUCTIONS FOR EXECUTION OF THEIOBJECT PROGRAM
17.1 Load P3-2.*

.17.2 Load object program.

'

17.3 Set typewriter margins and tabs to desired settings.
17.4 If sense switches are used, set to desired settings.“

175 If data is to be entered by tape*, place the data tape in the photo-
reader. (See Section 18 for preparation of data tape.)

a. Set Location Counter to origin.** This will be 3000.0g unless
an ORG command was used in the source program to change the
- origin.

b. Press the START key (not START 1, 2, or 3 buttons) to begin ex-
ecution of the object program.

'17.6 If input of data is from the typewriter:
a. Set Location Counter to origin (see Step 17.5 a).

"b. Press the START key (not START 1, 2, or 3 buttons) to begin ex-
ecution of the object program.

_c.' When the ALPHA light comes on, type one word of data. (See
’ Section 18, Input of Data Via Typewriter During the Execution of
the Object Program.)

* It is essential to read in P3-2 prior to the object program if a
READZ statement is used in the source program. Normally data is
read from tape by using a READZ statement in the source program.
However, it is possible to use a READY statement in the source pro-
gran for- this purpose. If a READY statement is used to read data
from tape, the following command changes are made in P3-2:

LOCATION COMMAND
2315.0 +3524450+4000000
2360.0 +7377610+4100010

*% To change a location: Press L key on the Console. Type in location
: on Console keyboard. Press ENTER key.

To change commands: Press C key on the Console. Type in commands
on Console keyboard. Press ENTER key.

- 56 -

18. INPUT OF DATA VIA TYPEWRITER DURING EXECUTION OF THF OBJECT PROGRAM

When the ALPHA light is on, one number may be entered via the typewriter.
The entry of a number may consist of several parts:

A, The sign of the number
B. The integral part of the number
c. A decimal point followed by the fractional part of the number

D. The sign and (integral) value of the power of ten by which the
number is to be rultiplied

E. One of the following termination characters: carriage return,
space, tab, or blank.

Not all of these parts are required for every input. Any one of the following
combinations is acceptable. ;

BCE, BE, CE, ABE, ACE, ABCE, BDE, CDE, ABDE, ACDE, ABCDE, E (yields plus zero)
AE (yields signed zero).
Examples of proper formats are:

<959

-4

+3.9599

698.7634

Extremely large or small values may be entered in the following notation:
21+16 means 21 x 1016 v
14-10 means 14 x 10-10
1.6+6 means 1.6 x 106

The total number of decimal digits (integer and fraction) rust be < 12,

The absolute value rust be < 2 9-.1. The exponent rust be <511 in absolute
value.

If an error is made prior to enterlng the termination character, press the
LETTER SHIFT key. Type the correct number,

- 57 -

APPENDIX A ,
SUMMARY OF SCOPAC STA'I‘I:MENTS:

\I_§
Location Tag
Allowed?
ARRAY (Allocates storage space) . NO
ARRAY subscripted variable(items)s
ARRAY subscripted variable(rows, columns)s
ARITHMETIC (equations) : YES
Variable, subscripted variable: expression s
INPUT STATEMENTS (Inputs data from typewriter
or tape)
READY (typewriter or tape input, reads one word YES
of data) :
READY - variable s »
READY subscripted variable s -
READZ (tape input, reads one block of data) NO
' READZ variable s
ANGLIN (Typewriter input, reads one angle in YES
degrees, minutes, seconds)
ANGLIN wvariable s .
ANGLIN subscripted variable s
OUTPUT STATEMENTS (output via the typewriter)
PRINT (types one word) YES
PRINT wvariable s
PRINT subscripted variable s
TYPE (types alphanumeric characters) v NO
TYPE sp L/S or F/S alphanumeric characters s
CRR (generates a letter shift and carriage YES
. return)
CRR s

- 58 -

Page

No.

10

10

1"

12

13
13

14

15

APPENDIX A

- Is
Location Tag
Allowed?
OUTPUT STATEMENTS (continued)
TAB (generates a figure shift and tab) YES
TAB s
ANGLOUT (types one angle in degrees, minutes, YES
seconds)
CONTROL_STATEMENTS (transfers control from one
' statement to another in the
program)
GO T0 (transfers control unconditionally) YES
GO TO tag s '
IF (transfers control conditionally) YES
IF (expression) minus, zero, plus 8
IF (SENSE N) on, off s
DO (controls repetition of operations) YES
DO tag V&ri&ble ioVo (mod) foVo S
i.ve = initial value
mod, = modification
f.v. = final value
CONTINUE (dummy statement, no effective YES
operation is performed)
tag, CONTINUE s
ROUTINE (293 a control statement but it is NO
used prior to a sequence of state-
ments that constitute a subroutine)
ROUTINE NAME s
RETURN (transfers control from a subroutine to NO
main program)
RETURN name s
HALT (causes & halt in the object program) YES

HALT s
- 59 -

Page
No.

15

16

17

17

18

19

24

24

25

25

APPENDIX A

CONTROL STATEMENTS (continued)

END (terminates the Source Program)
END s

SYMBOLIC (enters symbolic coding)

SYMBOLIC s

- 60 -

Is
Location Tag
Allowed?

NO .

NO

Page
No.

26

27

APPENDIX B

RECOMP II

OPERATIONS BY ALPHABETIC CODES

and list of additional operational codes acceptable in SCOPAC programs

Alpha Code . Operation

ADD | Add

ALS Accumulator Left Shift
ARS Accurmlator Right Shift
CFL _ Copy from L Loop

C¥v Copy from V Loop

CLA Clear and Add

CLS . Clear and Subtract
- CTL : _ Copy to L Loop

CcTV ' Coby to V Loop

DIS | . Display

DIV | Divide

DSL Divide Single Length
DSR Divide Single Length and Round
DVR Divide and Round

.EXT Extract

FAD : Floating Add

FCA : Floating Clear and Add
FCS vFloating Clear and Subtract
FDV Floating Divide

FMP Floating Multiply

FNM Floating Normalize

- 61 -

APPENDIX B

Alpha Code Operation
FSB : : Floatihg Subtr;ct
FSQ ' : Floating Square Root
FST ' - Floating Store
HTR ‘ Halt and Transfer
MPR Multiply and Round
MPY , , Multiply
PNA B Punch 131 Characters in Alphabetic
, Mode
PNC _ Punch Character
PNW - Punch Word Command
PTA Punch and Type N Characters in
Alphabetic Mode _
PTC Punch and Type Character
v - Punch and Type Word
_ RDY Read N Characters from Typewriter
RDZ | Read N Characters from Photoreader
SAX . Store A and Exchange A and X
SQR . | ' Square Root
STA ' Store Address
STO Store
SUB Subtract
T™MI ‘ Transfer on Minus
TOV , Trénsfer on Overflow
_TPL Transfer on Flus
TRA Transfer
TSB ' Transfer on Sense Switch B

TSC- Transfer on Sense Switch C
‘ | - 62 -

APPENDIX B

Alpha Code Operation

TSD ' Transfer on Sense Switch D

TYA Type N Characters in Alphabetic
Mode

™G Tyve CharacterA

W Type Word

TZE Transfer on Zero

XAR ' . Exchange A and R

ADDITIONAL OPERATION CODES

ORG Origin

BLA | Block Allocation

DEF , Definition

EQU | ' Equal

ALF | Alphanumeric

com Command

DISD Display Decimal (BCD Format)
TYWD Type Word Decimal (BCD Format)
PNWD Punch Word Decimal (BCD Format)

PTWD Punch and Type Word Decimal
, (BCD Format)

- 63 -

APPENDIX C

 ASSIGNMENT TABLE

The Assignment Table is always printed after the END statement is recognized
by the SCOPAC program. The Assignment Table extends from 0100g through O0777s.
in the SCOPAC program. The Table consists of a pair of words for each unique
tag, variable, subscript, and literal constant (Floating, Fixed Point, Alvha)
which has been entered in the source program or was generated by SCOPAC.
Three words of the Table are used if an entry of more than eight characters
is made such as a Command Literal.

The type-out of the Assignment Table consgists of two columms., The first
column contains the entries. The second column contains informetion related
to the entries in the first column.

Following is an example of an Assignment Table:

START +0000000~-0030000

MAX. X +1000000-0030640
MAX. Y +1000000-0030220
+1.25 . +4400000-0030460
© +0053240+5742340 | +2007770-0031220
+1+39 , ~ +4000000-0030320
+123.456789 +4407760-0030160
BACK | +0000000-~0030700

END OF ASSEMBLY

The first two digits of each word in the second columm 1dent1£y the type of
entry in the first column.

00 means symbolic

10 means alpha literal

20 means command literal

40 means fixed point literal

44 means floating literal
'The'next five digits are zero unless there are more than eight characters.

All the characters in excess of eight are stored in the Assignment Table at
the location specified by the five digits.

The next three characters are always -00.

- 64 -

APPENDIX C

The last five digits specify the absolute address in the object program
assigned to the entry. If the entry is a floating point number, this address
will be the first of two consecutive locations which will be required by the
number in the object program.

Example:
FIRST WORD - SECOND WORD

+123.456789 _ +4407760-0030160
In the second word: |
+44 identifies the first word as a floating point number.

07760 is the location in the Assignment Table where the characters
789 of the floating point number +123.456789 are stored.

30160 is the address of the first of two'consecutive locations in ggg
object program assigned to the number +123.456789.

-65-,-

APPENDIX D

DESCRIPTION OF THE SCOPAC LISTING‘

A listing of the object program is obtained if Sense Switch B is ON, The
listing consists of the symbolic and absolute coding of the object program,

Each line of the listing contains in this order:
1, one symbolic instruction or literal constant
2. the absolute address assigned to (1)

3. the(cgntents of the location specified by the absolute address
in (2).

The contents consist of a word in command format containing:

a, the instruction and a transfer to the next instruction
or
b, & literal constant. -

- 66‘-

-Ll9-

READY.FIRST s

symbolic instructlon
. or literal constant.

TRA- QuADY
READY INCR s o
FST FIRST
: TRA ~ READY
READY LAST s v - o
. : FST INCR
TRA READY
DO OUTPUT X FIRST (INCR) LAST s
FST LAST
: - FCA FIRST
Y:SQRT(X/3.5) s .
TAG O1 - FST X
, FCA X '
FLOATING LITERAL +3.5;’
FST STOREO!
FSQ STOREQ1
CRR s ' ’
: FST Y
, TYC +37
OUTPUT,PRINT Y s
TYC +10
QUTPUT FCA Y
TRA PRINT
FCA X
FAD INCR
FST X
S5 LAST
™I TAG OI+OPOOI
HALT s
e TZE TAG O1-+0000T1T
END s
HALT +3000
assignment table
FIRST +0000000-003 0470
INCR +0000000~ OO“Oo”O
LAST +0000000- 0030010
TAG 01 +0000000-0030550
X Aooooooo-003017o
+3.5 +41:00000~ ~0030270
STOREO!T +0000000-003 1550
Y +OOOOQOO—OOﬁlOOO
OUTPUT *OOOOOOO~OO 1170

CEND OF ASSEMILY

abmﬂ#te

- address

3000
3005

3013

3022
| %ogz

3

4503055

contents of the absolute address :

+5722 140+5730050

© +3530470+5730150

+57221u0+5730220

" +3530640+5730320
+5722140+5730370

: OOIO+ 1470
RS eIE IS

+3530170+5731650
+30301°70+5730250

+7000000-00 0000+ooooooo-000001o
+053027o+570013o

315
251550+5730380

+3531000+5 730460
+7?00370+R730060

- +7200100+5731170 .
+3031000+573106%

+5722531+5731130
+3030170+5731250
+04306no+*7300 0

'+823O]70+ 732/ro

0010+ 021
1513055148 140600
‘ 145731600

+7730000+5732010

APPENDIX D

APPENDIX B
PROGRAMMING OF SUBSCRIPTED VARTABLES

Subscripted Variables

If a reference is made to a subscripted variable, the number +65535 will be
generated by SCOPAC. The use of this number agsumes that the subscript of the
first element is one, not zero. For example, the first element of A must bve

written as Aq or Aq 4 not A, or Ao,o’
Example:
Correct Incorrect
ARRAY A (9) s ARRAY A (9) s
DO ABC Z 1 (1) 9 s DO ABC Z O (1) 8 s
READY A (Z) s READY A (Z) s
ABC, CRR s ABC, CRR s

A reference to a subscripted variable requires that SCOPAC generate the coding
- necessary to compute the address of the specified element. This increases
compiling time, causes location tags to be generated by SCOPAC and stored in
.the Assignment Table and increases the computing time of the object program.
Thus it is advantageous to minimize references to subscripted variables.

For example, consider the following three equations:

X3A(295)&B(4’5)/A(1’2) 8

Y:A(1,2)'2+A(2,3)&B(4',5) s

Z:B(4,5)/(A(2,3)&4(1,2)) s
In the three equations there are nine references to subscripted variables.
This requires nine separate computations of the address of the snecified ele-
ments. Each of the nine computations will have a location tag generated by
SCOPAC and stored in the Assignment Table. To minimize the references to sub-

scripted variables, the three equations could be written in the following
manner: .

U:4(2,3) s

V:B(4,5) s

w:a(1,2) s

X:UV/W s

Y:W'2+U&V s

7:V/(U&W) s
In this way ther; are only three references to subscripted variables. The
compiling time will be less; there will be only three separate computations
of the specified elements, and instead of nine, there will be only three loca-

tion tags generated by SCOPAC. The variables U, V, W will be in the Assignment
Table but the total number of words in the table will be less.

- 68 -

APPFNDIX F

USE OF THE SAME MEMORY AREA FOR STORING SEVERAL ARRAYS

The same memory area may be utilized several times during the execution of
the object program for storing the elements of different arrays.

There are two requirements pertaining to the size of the arrays:

1.

2.

An ARRAY statement rmst reserve sufficient storage for the size of the
largest array that will be sharing the same memory space,

If both one and two dimeunsional arrays are to be stored in the same
memory area, the maximum number of elements to be entered should be
written in an ARRAY statement as subscripts of a two dimensional array.
This means that even if a one dimensional array is the largest array
which will be stored in a given memory space, the number of elements
must be expressed as subscripts of a two dimensionsl array.

Example:

Given: Three arrays to share the same memory ares,
v (100), & (2,3), J (10,5)

The largest array could be written as follows:
ARRAY V (10,10) ‘s

If all the arrays that are to be stored in the same Demory Area are one
dimensional it will not be necessary for the number of elements of the

‘largest array to be expressed as subscripts of a two dimensional array.

- 69 -

APPENDIX F

If Input of Source Progrem is Via the gxggvriter

Only the SCOPAC statements needed for replacing in memory the‘eleménts of
one array with those of another array are given in the following example:

Given: Arrays A(25,4), €C(20,3), DDD(40)*

During the execution of the object program the elements of these
arrays will occupy the same storage area in memory in the order:

Array CC, Array A, Array DDD

In the following statements, b signifies a blank.

Statements For
Source Program

ARRAY A(25,4) s

ARRAY ROW(1) s

KbbbbbCC: KbbbbbbA s

READZ CC s

This statement reserves storage for 100 floating
point values (25 x 4) - the size of the largest
array. ,

SCOPAC will generate:

(1) a constant which contains the absolute ad-

dress assigned to the first element of Array A.

(2) a constant which is the value of the row sub-
script for Array A.

Reserves storage for the values of the row sub-
scripts of the two dimensional arrays that will
occupy the same memory space.

This statement insures that the location assign-
ed to the first element of Array CC is the same
as the location assigned to the first element in
Array A. There must be 8 character positions in
these variables, typed in the order K, blanks,
and name of the array. (Blanks are entered by
depressing the Blank Key.) '

The elements of Array CC will be read from tape
into the common storage area during the execu-
tion of the object program. The first element
of Array CC will be stored in the location as-
signed to the first element of Array A.

* In this example if all the arrays were one dimensional the statement
ARRAY ROW(1) s and all READZ ROW s statements would not be used.

- 70 -

ATPENDIX F

READZ ROW s The row subscript (20) of Array CC will be read
' ‘ from tape into memory during the execution of the
object program.

RbbbbbCC: ROW s During the execution of the object program this
statement will cause RbbbbHCC to be the value,
20, the row subscript of Array CC.

READZ A s The elements of Array A will be read from'tape
into the common storage area during the execution
of the object program.

KbbbbDDD: KbbbbbbA s This statement insures that the location assigned
to the first element of Array DDD is the same as
the location assigned to the first element of Array
A, : ‘

READZ DDD s The elements of Array DDD will be read from tape
: into the common storage ares during the execution
of the object program.

The elements of the arrays, and the row subscript of Array CC, rust be on
a data tape in the order in which they will be called for in the obiect
progranm,

The order would be:

elements of Array CC

20 (row subscript of Array CC)
elements of Array A

elements of Array DDD.

- 71 -

APPENDIX F

If Tnout of Source Program is From Paper Tane

The sfatements in a source program on paper tape to input arrays in the same
storage, differ from those statements in a source program entered via the
typewriter,

A READZ statement containing only the array name of the largest array is used
to enter the elements of each array into the same storage area. (The state-
ments such as KbbbbbCC: KbbbbbbA which may be used in source programs entered
via the typewriter cannot be used in source programs on tave as the blanks
would not be recognized as characters by the computer.)

The absolute location for the row subscript must be used. This location can-
not be punched as a symbolic address because blanks would be required between
the first character, R, and the name of the array. Blanks on paper tape are
not interpreted as characters when read into the computer.

In the following example one storage area is to be utilized for several
arrays. The general formula* for obtaining the absolute location of the row
subscript is: '

ABIRS = (ORG+2)g + E(N1+2)1§] 8

where _
ABLRS is the absolute location of row subscript
ORG. . is the 6rigin of the object program

Ny is the total number of elements of the largest of the
arrays which will. occupy the same storage area.

* Formulas for determining the absolute location for the row subscript are
summarized at the end of Appendix F,

- 72 -

APPENDIX F

Statements required for entering the elements of seversl arrays in the same
memory area when the source program is prepared on tape are as follows:

Example:

Given: Three arrays to share the same storage area
Array A(25,4), Array CC(20,3), Array DDD(40)*

During the execution of the object program the elements of these
arrays will occupy the same storage area in mermory in the order:

Array CC, Array A,

Statements For
Source Program

ARRAY A(25,4) s

ARRAY ROW(1) s

READZ A s

READZ ROW s

Array DDD,

This statement reserves storage for 100 floating
point values (25x4) - the size of the largest
array.

SCOPAC will generate:

(1) a constant which contains the absolute ad-
dress assigned to the first element of Array A.

(2) a constant which is the value of the row
subscript for Array A.

Reserves storage for the values of the row sub-
scripts of the two dimensional arrays that will
occupy the same memory space.

The elements of Array CC will be read from tape
into the common storage area during the execution
of the object program. The first element of
Array CC will be stored in the location assigned
to the first element of the Array A.

The row subscript (20) of Array CC will be read
from tape into memory during the execution of the
object progran.

* In this example if all the arrays were>one dimensional the statement
ARRAY ROW(1) s and all READZ ROW s statements would not be used.

-7 -

SYMBOLIC s

FCA ROW

FST N XXXX

COMPILE

READZ A s
READZ ROW s

SYMBOLIC s

FCA ‘ ROW

FST N XXXX

COMPILE

"READZ A s

APPENDIX F

The row subscript, 20, will be stored in the
absolute location XXXX during the execution of
the object program. If the origin is at 3000g,
XXXX would be 33164,

The elements of Array A will be read from tape
into the common storage area during the execution
of the object program.

The row subscript, (25), of Array A will be read
from tape into memory during the execution of the
object program.

The row subscript, 25, will be stored in the
absolute location XXXX, (3316g), during the execu-
tion of the object program.

The elements of Array DDD will be read into the
common storage aree during the execution of the
object progran. - ’

All references in the source program to the arrays sharing a common storage
area must be made by using only the name of the largest array. Therefore a.

statement such as:

2:60(7,2) s

would be written as

Z:A(7,2) s

" The elements of the arrays and the row subscript of each two dimensional
array must be on a data tape in the order in which they will be called for
in the object program. The order would be:

elements of Array CC

20 (row subscript of Array CC)

~elements of Array A

25 (row subscript of Array A)

elements of Array DDD

- T4 -

APPENDIX F

The SCOPAC program reserves storage for arrays according to certain form-
las. It is possible for the programmer to use these forrmlas to obtain the
absolute location where the value of the row subscript will be stored.

If only one storage area is to be used for several arrays, the general for-
mula is: _ T C
ABLRS = (ORG+2)g+ E('N‘1‘>;2")10 8
The specific formula with the standard origin of 3000g and one storage area
is: } _

ABLRS = 3002g+ E(N1+2)1§J 8

If more than one storage area are to be used for several sets of arrays, the
general formula is:

ABLRS = (ORG+2)g+ E(N1+2)1o g* 2_2[2(}‘1(4'3)10]8

where
ABLRS is absolute location of row subscript.
ORG is the origin of the object program.

N4 is the total number of elements of the largest of
the arrays that are to occupy the first storage area.

Ny is the total number of elements of the largest of the
arrays that are to occupy the k¢n storage area. (k>2)

Example:
Assume the origin is 3000g.

Provision is to be made for three storage areas, each to be occupied

"by more than one array. The largest arrays to be stored in each of the
three storage areas are 200, 140 and 220 elements respectively. The
absolute locations of the row subscripts for these arrays would be
computed as follows:

First Storage Area
ABIRS = (0RG+2)3+[:2(N1+2)1(£]8
ABLRS = 3000+2+ Lé(2OO+2)1(ﬂ_8=3002+[(404)1§|8
= 3002+624=3626g

- 75 =

APPENDIX F

Second Storage Area N _
S = 2(N4+2 2(N
ABIRS = (ORG+2)g+[2(Ny+2)10] g+ %2[(k+3)1cz]3

ABLRS = 3000+2+ [2(200+2)10]g+ [2(140+3)10] ¢
- = 30024624+ [(266)49]
= 3626+436=4264g

Third Storage Area - - |
ABIRS = (onc+2)8+[:2_(n1+2)1(ﬂ8+ g:-zE(Nk*”w X
ABIRS = 300042+ [2(200+2)] g+ [2(140+3)10] g [2(22043)10] g
= 3002+624+436+676 '
- 4264467625162

- 76 -

APPENDIX G

Following are examples of source programs,

EXAMPLE I

Solve:

Flow Diagram:

'Y

Input A, B, D
via typewriter

'

X=(A+B)6D
Print X
- Halt
Statements:
READY A s
READY B s
READY D s
X:(A+B)&6&D s
CRR s
PRINT X s
HALT s
END s

- 77 -

APPENDIX G

EXAMPLE TI
Solve: ZE’A‘)IBQ-O-ZD ‘.;v‘here D goes from Dyin to Dpax by increments
of AD.
_Flow Diagram:

Input B, Dyin AD,
Dpax via typewriter

O
7= V3242
'

Print D

'

Print 2

'

D+AD—D

I
<+ 2> D0ax 7)

Yes

-t Halt

- 78 -

APPENDIX G

Statements:

READY B s
READY DMIN s

READY DELTD s

READY DMAX s

CRR s

TYPE D s

TAB s

TYPE 7 s

DO LOOP D DMIN (DELTD) DMAX s
Z:SQRT(B'2+2&D) s

CRR s '

PRINT D s

TAB s

LOOP, PRINT 7 s

HALT s

END s

-79 -

APPENDIX G

EXAMPLE IIT
Solve: Zp=(A+B,)2 Where 1£ n <100 and maximum n = ITEMS

Flow Diagram:

Input ITEMS, A
via typewriter

'

Input n values of
B, via typewriter

' ~
z=(a+B,)2

'

Print B,
1

Print 2

- 80 -

APPENDIX G

Statements:
ARRAY B(100) s
READY ITEMS s
READY A s
DO INPUT N 1(1)ITEMS s
READY B(N) s
INPUT, CONTINUE s
DO OUTPUT N 1(1)ITEMS s
Z:(a+B(N))'2 8
CRR s
PRINT B(N) s
TAB s
OUTPUT, PRINT Z s
HALT s

END s

- 81 -

GLOSSARY

i

Address - A label which identifies a register, location, or device in which
information is stored.

Absolute Address - A numeric label permanently assigned to a specific lo-
cation in the memory of the computer.

Symbolic Address - A label that identifies a particular word independent
of the location of the word in memory.

Binary Point - An implicit point separating the integral and fractional parts
of a binary number. The position of the binary point is described in
terms of the number of bit positions right or left of a point (defined as
binary point O) between the sign bit and the first bit. Thus a binary
point +2 defines the point as being between bit positions 2 and 3., A
binary point -2 defines the point as being two bit positions to the left
of binary point O, even though bit positions to the left of the sign po- .
sition do not exist.

Block - An unspecified number of words considered or transported as a unit.

Character - An elementary symbol which a computer recognizes. The symbols
usually include the decimal digits O through 9, the letters A through 7,
punctuation marks, operation symbols and any other single symbol which
the computer recognizes. '

Fixed-Point Decimal Number - A decimal number expressed in a system of arith-
metic that requires the position of the binary voint to be specified so
that the number may be converted to a binary number,

Floating-Point Decimal Number -~ A decimal number expressed in a system of
arithmetic that does not require the position of the binary point to be
specified in order to be converted to a binary form. The decimal number
is converted to a binary form consisting of a fraction and an exponent.
In the RECOMP II the fraction and exponent occupy two consecutive lo-

- cations. .

Format - A specified method of arranging information.

Instruction - A set of characters which defines a computer operation and an
address. The address specifies the word or register(s) in memory upon
which the operation is to be verformed. ‘

Symbolic Instruction - An instruction consisting of an operation written
in an alphabetic code, and a symbolic address.

- 82 -

GLOSSARY

Literal
Alpha Liferal - A word to be interpreted as alphanumeric characters.

Command Literal - A word expressed in the command word format of the
RECOMP II.,

Fixed-Point Literal - A decimal number converted to a binary number at
a specified binary point.

Floating Literal - A decimal number converted to a binary form consist-

ing of a fraction and an exponent. In the RECOMP II the fraction
and exponent occupy two consecutive locations.

Location - One storage position in the computer.
Absolute Location - Same as absolute address.

Symbolic Location - Same as symbolic address.

Memory - A storage facility forming an integral physical part of the com-
puter. In the RECOMP II the memory consists of 409610 words.

Octal - Pertaining to the number base of eight; e.g. in octal notation
6035 is 6x82+0x81+3x80=387,.

Off-Line Operation - Information is prepared or processed by equipment that
is not under the control of the computer.

Subroutine - A set of instructions which direct the computer to carry out
mathematical or logical operations. It is generally included as a
subunit of a program. SCOPAC statements may be used to write a sub-
routine.

Word - A set of characters occupying one storage location and treated by
the computer as a unit.

- 83 -

