TITLE:

PURPOSE:

EFFECTIVE DATE:
CONTENTS ¢

A I 0N E T I C 35
A DIVISION OF NORTH AMERICAN AVIATION, INC.

INDUSTRIAL PRODUCTS
358, Wilshire Blvd., Los Angeles 5, Calif.,

May L, 1960
RECOMP TECHNICAL BULLETIN NO. 10
Translation of FORTRAN to SALT

To indicate how certain FORTRAN programs may be converted to
SALT language.

May L, 1960

1. Constants, variables, and subscripts

1.1 Fixed point constants in FORTRAN are represented by
floating point words in SALT in- fixed point format,
Since SALT permits more digits than does FORTRAXN,
no conversion is required.

1.2 Floating point constants without exponents in FORTRAN
may have any number of digits. Numbers of this type
must be truncated to at most 15 symbols, including
decimal point and must not contain more than 11 digits
in either the integer or fraction,

1.3 Floating point constants with exponents in FORTRAN
have general form

nk&'x

where n is a floating point constant without an
exponent, E is the letter "E", and x is an integer.
To convert to SALT write

t & 10" (¥'X)
where t equals n truncated as per 1l.2.

1.k FORTRAN differentiates between fixed and floating
point variables., SALT does not make this distinction,
and hence no conversion is required.

1.5 If a FORTRAN identifier contains the letter "C",
another letter must be chosen to replace it such
that the identifier remains unique.



RECOMP_TECHNICAL BULLETIN 1O, 10 (Cont,) PAGE TWO

1.6

1.7

2.
2.1

3.
3.1

3.2
3.3
3.4
3.5
3.6

3.7

3.8

3.9

FORTRAY programs involving three dimensional arrays
must be entirely recoded to include at most two
dimensional arrays.

SALT subscripts must not contain any arithmetic
operations, If a FORTRAN subscript involves
arithmetic operations, a new unique subscript must
be defined equal to the arithmetic function. This
definition must precede the use of the new subscript.

Arithmetic statements

The following is a conversion table for the
arithmetic operations.

Operation FORTRAN SALT
Addition + +
Subtraction - -
Multiplication * &
Division / /
Exponentiation 35t 1

Control Statements

Unconditional "G@ T¢ n"

The FORTRAN "G@ T@ n" where n is a statement number
requires no conversion.

Assigned G@ T@ cannot be converted to SALT.

ASSIGN cannot be converted to SALT.

Computed G@ T cannot be converted to SALT.

IF requires no conversion,

SENSE LIGHT and IF (SENSE LIGHT) cannot be converted
to SALT. A numerical switch, however, can be
substituted for the sense light, in which case 3.5

may be used.

The FORTRAN statement IF (SENSE SWITCH 1) Dy, n
must be replaced by IF (SENSE j) ny, n,, where

2

i=l, ..., 6 and j=B, C, or D,

IF ACCUMULATZR @VEIFLIW and IF QU@TIENT @VERFLOW
cannot be converted to SALT.

IF DIVIDE CHECK cannot be'converted to SALT.



RECOMP TECHNICAL BULLETIN NO. 10 PAGE THREE

3.10

3.11

3.12

3.13

3.1L

L.

6.2

PAUSE requires no conversion, PAUSE n should be
translated as PAUSE,

STPP requires no conversion. STPP n should be
translated as ST@P,

The FORTRAN statement D¢ n 1—nl, n, should be

translated as Df n FAR i m (1)™m, .2 The FORTRAN
statement D@ n i=mys mys Mg should be translated

as D n F@R i my (m2) mse
CONTINUE requires no conversion

EXITF, Gf, and GPGH are examples of exit instructions
which vary from company to company; they should be
translated as END,

Input - output instructions: There are no analogies
among the FORTRAN and SALT input-output instructions.
Input-output regions should be entirely recoded..

Specification Statements

DIMENSI@N Vl’ V2, V3, voey Vﬁ,'where the Vi are

subscripted variables, should be translated as n
statements of the form ARRAY Vi‘

EQUIVALENCE, FREQUENCE, and CEMMEN cannot be
translated, but may in general be deleted.

Subroutines

Function definition formula. In FORTRAN, expressions

of the type A(X)=B where A is an identifier with last
letter "F", X is a set of arguments, and B is an
arithmetic expression based on the arguments, define
subroutines in the main program. SALT permits functions
of this form only if the function identifier is defined
in both the SALT and the SCRAP II macro list. X may
involve exactly one argument.

Function subprograms in FORTRAN are similar to routines
in SALT except for nomenclature and one restriction:

FORTRAN SALT
CALL NAME Gf TP NAME
SUBRPUTINE NAME RPUTINE NAME

RETURN RETURN NAME




RECOMP_TECHNICAL_BULLETIN NO, 10 PAGE FOUR

6.2,1 The SALT routinepresumes that the arguments have
been stored in fixed locations prior to execution.

REFERENCES:

1, "Signal Corps RECOMP Algebraic Translater" Program
No. 1034, T, J. Tobias, U.S. Army Signal Engineering
Agency, Arlington, Virginia,

2. "FORTRAN", International Business Machines.
INFORMATION TO: SALT Users.
WRITTEN BY: M. F, Berman

Applied Mathematics
Autonetics Industrial Products



EXAMPLE 1,

Find the approximate numerical solution of the ordinary differential equation

-

APPENDIX

in the interval 0€ x =1 given that y (0) = y -0

Ay = BxAlx) y, +1)

¥, =y (at x1+Ax) roax(x yy +1)

Vi Wit A x (g vy + 1)

Print at intervals of 0,01

FORTRAN

READ 1, DELTAX
PRINT 1, DELTAX
XPRINT = 0,01
X =0,0
Y =0,0

3 Y = Y + DELTAX # (X#Y+1,0)
X = X + DELTAX
IF (X-XPRINT) 3, L, L

4 PRINT 2, X, Y,

XPRINT = XPRINT + 0,01
IF (X-1.0) 3, 5, 5

5 ST@P
of Gf

3s

L,

5

SALT

READ DELTAX $
PRINT DELTAX $
XPRINT: 0.01 $
X:0$%

Y: 0%

Y: Y+DELTAX & (X&¥+1.0) $
X: X+ DELTAX $

IF (X-XPRINT) 3, L, L, $
PRINT X §

PRINT Y §

XPRINT : XPRINT + 0.01 $
IF (X-1.0) 3, 5, 5 §
STEP $

END $



EXAMPLE 2,

Multiply two matrices A and B together and leave the result in memory at
C. A and B have order N by N, where N may not exceed 15,

FORTRAN SALT

DIMENSIgN A(15,15), B(15,15), C(15,15) ARRAY A(15, 15) $
ARRAY B(15, 15) $
ARRAY D(15, 15) $

pg2I=1, N D 2FAR IL(L)NS
Dg2J=1,N D 2 FAR J L(1) N §
c(1,J) = 0,0 D(I,J) : 0 &
DF 2K =1, N DF 2 FER K 1(1) N $
C(IJ) = ¢(I,d) + A(I,K)*B(K,J) 2, D (I,J):D(I,d)+A(I,K)&B(K,J) &
ST@P STEP $
cgcg END $
EXAMPLE 3,

Write a subprogram to compute

v=x*+2 irx>1z

v x irx€z

FORTRAN SALT

SUBR@UTINE FINDY ROUTINE FINDY $

IF (X-Z) IJ) )J, 5 IF (X-Z) h, h, 5 $
L Y=23¢48+X hy Y:2'A+X$

Gg T¢ 10 6g 14 10 $
SY=XsstAa+2Z 5, YsXtA+2Z$
10 RETURN 10, RETURN FINDY $
Enter subprogram by: Enter subprogram byt

CALL FINDY Gg TO FINDY $



