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1 Introduction

This report presents the current design for Cronus, the
system being developed under the Distributed Operating System
Design and Implementation project sponsored by Rome Air
Development Center(1). It is i1ntended as an overview of the
system structure and as a synopsis of the current
system/subsystem decomposition and specification.

Thi1s report 1s a revision to two earlier drafts, BBN Report
No. 5260, November 1982, and BBN Report No. 5646, May 1984. A
previous report. "Cronus, A Distributed Operating System.
Functional Definition and System Concept’, BBN Report No. 5884 is
intended as & companion to the current report, and the reader 1s
assumed to be familiar with 1ts contents.

In Section 2, we briefly review a few of the areas covered
in the Funcuvional Definition. and extend them to cover current
development plans.

Section 3 presents an overview of the Cronus operating
svstem. stressing the common framework into which 1ts components
will fit and the functional decomposition of the system.

Sections 4 through 12 present the design for the various
syvstem functions. In 8 number of areas the design 1s only
partially complete. These sections will form the basis of a
continuing and evolving subsystem specification for the various
components, throughout the life of the project.

Section 13 sketches how the system supports some common
functions. Other Sections contain a description of the system
environment, 1ncluding hardware, Virtual Local Network, GCE
software, and system utilities and libraries.

(1). This work 1is being performed under RADC contract No.
F30602-81-C-0132
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In previous versions of this document, detailed descriptions
of the commands and functions 1n this system, as well as of the
objects, operations, and formats used in the decomposition. were
included. Much of this material 1s more appropriate to the
Cronus User's Manual. Many details which were 1ncluded in the
earlier versions of the System/Subsystem Description have been
removed from this report to the User’'s Manual. In addition,
detailed design notes made during the 1mplemention of the system
are included there. C(Cross references to this document appear
throughout the System’/Subsystem Description. These are of the
form (see Cronus User's Manual topic(number)); where topic is the
name of & page 1n the menual, and npumber 1s the section number
within the Cronus User's Manual where one mav find the page.

Many people. in addition to the current Cronus project
development staff listed as authors of this report. have
contributed both 1deas and enthusiastic effort 1n designing and
constructing the system described. These people include William
MacGregor. Benjamin Woznick., David Mankins, Robert Walsh, Ed
Burke, Steve Toner., Mort Hoffman and Steve Geyer.
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Cronus Project Overview

' 2.1 Project Objectives :_,-:).
| i
— -, The objective of the Cronus project 1s to develop & testbed f;3;,
for evaluating distributed system technology. To do this we are -xﬁéi
establishing & prototype local area network based hardware e
architecture. and building an operating system and software r!L
architecture to organize and control this distributed system. ?bf
The architecture was partially specified by the statement of uN'Q
work, and further defined during early stages of the project ) It R»Qw
1s described 1n the Cronus Functional Description [BBN 5041]. and 3; :
1s summarized 1n Section 2.4.21n addition to establishing & A
system architecture. the other major aspects of the Cronus .ig
project activities are‘: #'ré
yect eetavities erer v
B ¢
1y Select off-the-shelf hardware and software components as t%§
T & basis for an Advanced Development Model (ADM) protlotype jﬁﬁ
configuretion for the distributed svstem testbed’ W
L)
9\. . ’ \l “' .
;)kyDe51gn the system} ‘h%
3) Implement & version of the basic system components} P }\‘
roN
0
4) ,Jest and evaluate the concepts and realization of the DOS e
1n the Advenced Development Model. J/‘/w s | sz S *
The orientation we have chosen 1s both experimental through -asu
construction of working system components, and evolutionary dbm
through pre-planned continuation of design and development 5’&%
activities. tuh

2.2 Points of Emphasis - ~

The Cronus design 1s i1ntended to introduce & coherence and
uniformity to a set of otherwise 1ndependent and disjoint
computer systems. This grouping of machines. operating under the
control of a distributed operating system, 1s called a Cronus
cluster. The aim 1s to provide for the c¢luster configuration as
a whole features comparable to those found 1n & modern
centralized computer utility There are various ways of viewing

AT J‘_“‘v' -“-*,_J‘ fu‘ -‘ \\. * \'{‘\,’ \l(

N 5};TR?QRQ§.'Q}JSﬁ\;
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ﬁz this uniformity and coherence, each plavys a role 1n the Cronus h*}
lf design. 0.4
_ s
*? From an end user's point of view, the Cronus DOS provides a A
MA si1ngle account with access to all integrated system services, a f ‘ﬁ
ﬁf uniform distributed filing system and a uniform program execution ' 2 ?
;?f facilaity., which is 1ndependent of the site of the activity. From }'&
S' a programmer’'s point of view, Cronus provides a uniform interface bt
and access path to the distributed system resources, and supports ®
ag the 1nitiation and control of distributed computations. More o Sf
p&. importantly., from both an end user’'s and programmer's ﬂ%ﬂ
tpﬁ perspective. Cronus provides & common system framework for ’?ﬂ
fﬁf applications. This means thet otherwise i1ndependent computerized :ﬂﬂ
5&: activities can be constructed so that they are more easily made 4.,
to work together, despite implementations which cross host and "L
e processor—-type boundaries. q&%
ﬂ; !
Qm From an operations and administrative perspective Cronus #&3
%w provides & logically centralized facility for monitoring and 940
!‘ (} B v K \
Y controlling all of the connected systems. Functions such as R
account authorizetion. user priority. and access control can be “’Y
x? applied system-wide rather than i1ndividuaelly to each host. S&J
-h . ’ll
i‘ In addition to coherence and uni:formity, there are a number ’ 5
ﬁb of other system design goals. These are. K 4‘
.A‘ x“—
o Survaivability and integrity of Cronus itself, Wl
S GO
3 0] ~‘ 4
}é o Scalability to accommodate both small and large 5“%
?k configurations, ﬂQh
W9 ot ",:
o Experimentation with resource management strategies that
effect global performance, ﬁ?
ot
;1 o Component substitutability to allow easy use of alternate ~oo)
i functionally equivalent hardware, and :J:%
‘. " N "
12 <
o o Convenient operation and maintenance procedures. AL
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2.3 System Phases

System development consists of three phases. The first
phase, coincident with the development of the functional
definition. included component selection, installation,

interconnection and testing. The second phase includes the
design and implementation of the basic system that will provide
the uniformity and coherency to the collection of machines. 1t

also provides the framework for the i1n—-depth design,
implementation, and experimentation in the other areas of
interest (e.g. survivability), which are to occur as the third
phese. The second phase design 15 the principal subject of the
remalining sections of this report. In certain areas, elements
the third phease design are sketched &as well

2.4 The Cronus Hardware Architecture

2.4.1 Syvstem Environment

The Cronus environment consists of several parts: the local
area network which provides the communications substrate for a
Cronus cluster, the set of hosts upon which the Cronus system
operates, and a mechanism for connecting a Cronus cluster to the
Internet environment and to other Cronus clusters.

Cronus enables a variety of constituent computer systems to
operate 1n an integrated manner. Cronus is distinguished from
other distributed operating systems by one or more of the
following characteristics:

1. Cronus will run on a group of heterogeneous hosts.

2. Cronus hosts will run operating systems which are largely
unmodified. The Cronus distributed operating system
software runs as an ad)unct rather than a replacement for
the hosts’ primary operating svstems.

3. Hosts will be i1ncluded i1n Cronus with varying degrees of
system integration. Some support limited subsets of the
services defined by the Cronus environment.
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4. The 1nterconnection network is designed on & hierarchical
model. A Cronus cluster includes a set of hosts
connected by a high-speed, low-latency local network. A
set of Cronus clusters may be connected over slower
long-haul networks.

The Cronus architecture provides a flexible environment for
connecting hosts so that facilities available on one host may be
conveniently used from other hosts. 1t provides two alternative
host integration schemes. A host may implement the Cronus
Interprocess Communication (IPC) mechanism and have efficient
communication and operations with the rest of the Cronus hosts.
or it may access the other Cronus hosts through a front end
access machine. which 1s a simpler, less expensive option for
connection of a host, but which may be more limited from &
flexibility and performance viewpoint.

2.4.2' Host Classes

Cronus hosts can be divided into four groups. mainframe
hosts. Generic Computing Elements (GCEs), workstations, and
1internet gateways.

The collection of mainframe hosts, each of which serves a
number of users simultaneously. includes a variety of machines
with unrelated architecture. A mainframe host may be tightly
integrated into the system, both offering and using Cronus
services and fully implementing Cronus i1nterprocess
communication. Alternatively, they may be loosely integrated,
offering no services, possibly connecting into Cronus through an
access machine which provides communication with the rest of
Cronus.

GCEs are small. dedicated-function microprocessor based
computers of a single architecture but varying configuration.
Each GCE provides a basic service. For example, a GCE can be a
file manager. a terminal manager, an access machine or it might
carry out a more complex system function as an authorization
manager. Since all GCEs have the same architecture, they provide
a replicated resource which, with the appropriate scoftware,
enhances the reliability of basic Cronus functions.
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Workstations are powerful, dedicated computers which provide
substantial computing power and graphics capability at the

. disposal of a single user. They differ from mainframes in that

* they support a single user. They differ from terminals in that

4 they offer significant computational resources.

2

5 An internet gateway is a computer used to interface
communication between multiple networks. The Cronus gateway

integrates the Cronus cluster into the collection of networks
known as the ARPA 1nternet and provides a base for supporting

;s
-

{ remote access and intercluster communication.

;

A

X

?.

X 2.4.3 Svystem Access

t

{ There are a variety of user access paths to Cronus. One is
e connection by means of a Cronus terminal concentrator. Users

5 may gain access through the internet gateway from remote points.

i Cronus also supports access through terminal access mechanisms on

; 1ts mainframe hosts. These latter two access paths provide the

? same 1nterface to the user as the terminal concentrator. Access

" from a workstation may be different than from a terminal, since
the workstation defines the user interface. The user has

iy immediate access to the workstation's cepabilities.

¢

L

[

*

"
2.4.4 Local Area Network

M)

;n The set of hosts 1s connected bv & local area network. The

", characteristics of the network are crucial to the success of

% Cronus, since they determine the kinds of communication and

3 operations that are feasible across host components of Cronus.

? The selection of an Ethernet for the local area network for

. the Advanced Development Model has been described in a recent

& report [BBN 5086)]. This choice was motivated by criteria in the

;Q project’'s statement of work:

1. The network should be suitable to support & distributed
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operating system,

2. The network should be currently available and economical.
Since the Advanced Development Model will not be operated
in a stressed environment., certain constraints applicable
to a field—deployable version were considerably relaxed.

The Ethernet was chosen for the local area network substrate
for the following reasons.

o The network must be "high-speed”. For the ADM, the
network should operate at rates of Megabits per second
{MBi1ts) with low latency., with higher speeds desirable.
The Ethernet operates at 10 MBits.

o Network interfaces to all or most of the computer systems
in the DOS ADM should be avallable. With the exception
of the C70. whose Ethernet interface has been constructed
under the present contract, this was the case.

o The local network must provide & datagram-style service.

The Ethernet fulfills all three requirements and we beltieve is,
at the present time, the most cost-effective network technology
which does. In addition, the Ethernet provides broadcast and
multicast capabilities which, have been extensively exploited in
the system design.

The raw Ethernet layer will not be used directly. To
aechleve convenient substitutability of alternate communication
substrates, Cronus will use an abstraction of the Ethernet’
capabillities which is provided by a Virtual Local Net (VLN)
software layer, described in Section 14.2. The VLN represents an
enhancement of the DOD standard 1P protocol to provide for
features common to local area communication. We anticipate that
future versions of Cronus will need to be built upon a different
local network, such as the Flexible Interconnect, which have
reliability, communication security, and ruggedization not
avallable 1n current commercial products. By designing the VLN
layer and building Cronus upon it, it should be easy to
substitute any local network that provides the basic transport
services required by Cronus.
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2.4.5 Types of Hosts

GCEs are implemented i1n the ADM system by Multibus computers
with Sun processor board (the current vendor, one of several, is
Forward Technology) processors. large main memories, an Ethernet
controller, and additional hardware (disks, RS-232 ports, etc)
needed to support specific functions(2). The Multibus computers
were chosen because

1 They are relatively i1nexpensive. permitting low cost
incremental system growth.

[4V]

The Multibus standard guarantees the ability to package
individual GCEs 1n different ways with components from a
variety of vendors.

3. New processors and devices are expected to evolve for the
¥ Multibus over time.

Uti1laity hosts provide the program development and
appliceation execution environments for Cronus. In the ADM. thas
function will be supported bv C70 UNIX systems, VAX-UNIX Systems
and & VAX-VMS System. UNIX was chosen due to the rich set of
development tools already available for it and the ease of
developing new tools and applicetions. The C70 was chosen
because it was one of the least expensive computers which
supports & multi-user UNIX, and because of the in-house expertise
and support for the hardware base. The UNIX support will be
gradually shifting to VAX-UNIX. A VAX running the VMS operating
| system was chosen to demonstrate the handling of heterogeneous

systems.

(2). One of the functions we would normally instell on a GCE is
the Cronus Internet Gateway, which wil]l be installed on an DEC
LS1-11 computer instead, because the standard Internet Gateway
implementation uses the LSI-11.
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2.4.6 Cronus Clusters and the Internet

The goal of the Cronus project is development of a local %.'
area network-based distributed operating system. The Cronus '\£$'
cluster will operate in the Internet environment as a class B 4“"'$
network. Cronus hosts will support the DoD Internet Protocol “
(IP) for datagram traffic, and, where connections are required, qu%

the DoD Transmission Control Protocol (TCP). J“

.
'l'|‘0‘

A Cronus cluster 1s expected to use the Internet environment 5#
1in two wavs. First, access will be provided to Cronus from
points 1n the Internet external to the cluster. Second, the
Internet will support communication between distinct Cronus “ qh
clusters. ﬂw

2.4.7 The Advanced Development Model

The Advanced Development Model (ADM) of Cronus 1s the first
instantiation of the Cronus hardware and software. 1t 1s, as 1its
name suggests. the development testbed for Cronus. The ADM 1is
experimental and can be expected to undergo rapid change as
Cronus 1s developed, software 1s 1mplemented., altered, and
improved.

The ADM 1s being assembled using many off-the—shelf
commercial hardware and software component building blocks. This
reduces the cost of 1ts components. permits the use of newly
avalleble state-of-the-art hardware, and enables us to be more
flexible 1n 1ts design. We are developing a design with the
sufficient flexibility to permit later substitution of more
suitable hardware and software for deployable configurations.
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operations. The system structure is defined by the objects which
consitute the system. the operations on these objects, and the
responses which the objects give to the operations. The
-1 2=
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3 System Overview

A distributed operating system manages the resources of a
collection of connected computers and defines functions and
interfaces available to application programs on system hosts.
Cronus provides functions and interfaces similar to those found
in any modern. interactive operating system (see the Cronus
Functional Definition and System Concept Report [BBN 5041]).
Cronus functions, however, are not limited 1n scope to a single
host. Both the 1nvocation of a function and 1ts effects may
cross host boundaries. The distributed functions which Cronus
supports are.

generalized object management
global name management
authentication eand access control
process and user session management
interprocess communication

@ distributed file svstem

1nput output processing

svstem access

user 1nterface

system monitoring and control.

O 0O 000 OO0 O 0 O

In thi1s section, we 1ntroduce the Cronus design and briefly
discuss the ma)or elements of the system decomposition.

3.1 System Concept

The primary design goal for Cronus is to provide a
uniformity and coherence to its system functions throughout the
cluster. Host-independent, uniform access to data and services
forms the cornerstone for resource sharing. The design of Cronus
1s based on an abstract object model. 1In this model. we treat
the system as a collection of objects organized in classes.
files, processes, directories, and so forth. Only & limited
number of well-defined operations can be invoked on an object,
and the only 1nformation that a client can have about the
structure or content of the object 1s obtained through these
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underlying structure of the system. which 1s essentially hidden 'ma*gk
from the clients. consists of the primitives which deliver the Staty
operations to active objects (processes), or to processes which by,; .44
are responsible for passive ob)ects like files. y 1.%#
A 04
The Cronus distributed operating system is built from a ?ﬁﬁdbﬁ
number of concurrently existing objects called processes that ?wﬁng
reside on hosts which are part of the cluster. Some of them, Jhx“ﬁ
i called object managers, play & special role 1n implementing other A
i objects of the system. Other processes provide services and e ]
functions for the clients of the system. Sti1ll other processes ,b? 5%&
run user programs. Processes communicate with each othe. to form ) #?\ﬁ
larger abstractions and build more complex objects. At the most v ,,a'ﬁ
fundemental level. communication between processes 1s through < 2
messages sent over a local area network connecting the hosts of qur’-
the cluster. "l.$%

There are four 1nterrelated parts to the Cronus system
model .

o A kernel which supports the beasic elements of the object

model. processes, communication between ob)ects. object
addressing, and the relationship between objects and
their manager processes. This part of the system

includes facilities for locating an obj)ect and
controlling access to 1t.

o A set of basic object types. along with the object
menagers which implement them. There are two groups of
basic object types. One group is fundamental to the
development of new ob)ect managers in Cronus. This group
of object types includes processes, user records and
symbolic name directories. Another group of basic
objects 1s provided to support various application
domains and processing requirements. Imitially for
Cronus this 1ncludes files and 1/0 devices.

o A paradigm for building and accessing new types of
objects, which spells out the methods for i1ntegrating new
object managers.

"0 t.l
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o User i1nterfaces and related utility programs to provide
convenient access for both people and programs to the

system objects and services.
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3.2 The Cronus Object Model
The object model provides a coherent and uniform framework
for the system components of Cronus, and potentially for
application programs in a Cronus cluster. Since & distributed
operating system is itself a distributed application, the

methodology used in its construction should apply equally well to

the construction of other distributed applications. The
references [Xerox 1981, Rentsch 1982]) discuss the object—oriented
model of programming. The following are the kev features of the

object—-oriented mode] that Cronus supports:

o Each Cronus ob)ect is & member of & well-defined class,
which 1s called the tvpe of the object. The names of
Cronus types begin with the string 'CT_". a list of some
3 of the more 1mportant types mav be found 1n Table 1.

o There 1s a set of operations (often called methods 1n the
literature) defined for each Cronus type. These define
the only waevs thet &n object can be examined or modified.

o Every Cronus object has a unique 1dentifier (UZD) neame.
References to the object are generally through 1ts UID,
which 1s & bitstring uniquely identifying the object over
the entire Cronus cluster Cronus also has a symbolic
catalog for cateloging UID's to provide convenient
reference to objects.

o The primitive ]lnvoke causes a named operation to be
performed on a named object.

o There 1s a basic set of operations (called generic
operations) which are defined for all ob)ects; these
operations promote & unity among the various object types
of the system and constitutes & limited form of
inheritance of the operations defined for the basic type
CT_Object. These operations include those which create
and remove objects, and those which control access. Each
Cronus type then has its own operations, and may redefine
operations which are known to 1ts parent class.

o An object has one or more parts that are visible to the

outside world. These may i1nclude data. an ob)ect
descriptor, and an active (or process) component. All
- 1 4 -
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Cronus objects have at least an object descriptor, which
1s the repository for such information as &eccess rights.

Object Name See Section
CT_Obj)ect 4.2
CT_Host 5.1.4
CT_Cronus_Process 5.1.2
CT_Primel_Process 5.1.3
CT_Program_Carrier 5.2
CT_Cronus_Catalog 9.2
CT_Catalog_Entry 9.2.1
CT_Directory 9.2.2
CT_Svymbolic_Link 9.2.3
CT_Externsl_Link 9.2.4
CT_Cronus_File 8.1
CT_Primal_File 8.1
CT_Migratorv_File 8.1
CT_Dispersed_File 8.1
CT_Executable_File 8.1
CT_Principal T.5.2
CT_Group 7.5.3
CT_Authentication_Data 7.5.1
CT_Session_Data 11
CT_Line_Printer 10

Teble 3.1 Cronus Objects

Fundamentally. the implementation of the Cronus system kernel
consists of the implementation of the primitive Invoke. Each
object 1s associated with an gbject mapager. which knows all the
internal details of the construction and location of the object.
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When an operation 1S 1nvoked on an object, the Cronus kernel is *"
responsible for delivering the operation to the appropriate
object manager, which performs the task requested in the

operation, and, if appropriate, responds to the invoker. St

The operation switch i1n the Cronus kernel supports both f”'p‘
invocations of operations on objects and message communication -“#ﬁ
between processes. Since processes are system objects with ﬁpf%-
defined operations to send and receive messages, the operation d
switch provides a host-independent i1nterprocess communication 'r'ﬁﬁ
(IPC) fecility for both the system implementation and application K
programs. Further detai1ls of the object model and the design of ﬁ
the operation switch are described 1n Section 4. (ﬁ

Some of the attractiveness of & distributed architecture 1s e
the potential to utilize redundaency and configuration flexibility OON
| interest 1n the hardware architecture. Cronus supports a unified NetRh:
approach to these attributes through i1ts object orientation. In &’f
general . three somewhat different classes of objects will be };ﬁg,
accessed 1n Cronus. These are. Ve

| 1. Primal Objects k“ﬁﬂ’

2
These are forever bound to the host that created them. hﬁ@h
, There is no simpler form of Cronus object. An example "5Q
’ would be a Primal File, which 1s permanently bound to its ot
storage site.

t
2. Migratory Objects OO

These are objects that may move from host to host as 0
situations and configurations change. A standard Cronus
mechanism can locate the current site to complete an @
. object access. .

..
3

3. Structured and Replicated Objects ﬂhh'

R These are objects which have more internal structure than & ﬁﬁ
@ single uniquely i1dentified object. For example, & 9
replicated file would have a number of primal files as QﬂWQ
1ts constituent parts. The UID would be recognized by asa
maenager processes on each of the sites for the more F&q&;
primitive elements. Replicated objects are a key element W&l

in Cronus svstem survivab:ility.

-16- l:.‘t K

T,
- b
ER RN
RGOS ,'a.,H !.."‘,' TN '.1 .v '.\ JO \'

o
o O]

RIS X Q e J@ "c ',0 ,o‘ T N ". :‘;' o ) ‘ 2 ':‘0::‘0"::.:.\ .0".! Q"‘ ". ‘. .'l‘.' '.'. ~‘ e :"‘: harh .l‘ l'.\'.'" H l‘o

o K 1 i

wa“
L #.9
il n ey K5 . XX s IOSOBIREIONIN ‘.', RO .' .\ .0, .l .0 .0 !. (X! .‘, ;‘ .‘ .\ u’ Lo \‘ AN o‘.‘t’- i

\



“ "‘ “. i‘.:‘WQ ‘*‘:..'

Cronus can be extended by adding new object types to support
new requirements or functions. Certain features are required for
each object type including supporting the generic operations. In
eddition, the object model and its associated system components
define a number of system conventions such as, i1ntegration with
the monitoring and control software which may be adopted by
subsystem designers, on a case-by—case basis. A subsystem
designer can depend upon the existence of required features in
other system components, and 1s obligated to provide them in each
new component. On the other hand, the Cronus system design
minimizes the number of required features for system entities,
which., 1n turn. reduces the buy-1n costs for new hosts and object
types

Mainteaining the i1ntegrity of complex objects 1s the
responsibility of the managers for the type. This means that
techniques can be tailored to the patterns of access to the
object being meintained.

Since the generic operations i1nclude those which meanage
access permissions. uniform access controel 1s a basic part of the
Cronus object model. The object managers control access to the
objects they maintein through the use of e&ccess contro] lists
(ACL).  The operation switch reliably stamps the UID of the
invoking process on each of its messages. so the process making
the request can be reliably identified.

The conventions for communication are based on the message
structure library (MSL). A message consists of key-value pairs.
*There are also conventions that provide simple transaction
protocols, and other features to support flexible message
handling and processing. The MSL also standardizes the
representation of data types, which allows the common
interpretation of data items across e Cronus cluster. The MSL
design 1s discussed in Section 6.

3.3 System Objects

To provide the 1nitial operating cepability, & number of
basic system object types and their menagers are being developed
to support the functions outlined i1n the Cronus Functional
Definition [BBN 5041]. They 1nclude.
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o Process objects and process managers that suppori the
Cronus system and user programmable processes. They may
be linked together across the cluster, and connected

through 1nterprocess communicetion to form a user
session.

o User 1dentity objects and a permanent user data base that
support authentication and access control.

o Directory objects and catalog managers that implement the
global symbolic name space.

o File ob)ects and file managers that provide & distributed
filing svstem which can be used i1n providing non-volatile
storage for developing portable object managers, as well

as for saetisfving application program datea storage
requirements.

o Device ob)ects and device managers that support the
integration of 170 devices 1nto Cronus.

Much of the Cronus design has been decomposed 1nto the
subprobiems of developing the Cronus distributed object model and
of designing the components which provide these basic system
objects The design of these components is described in detail
1n Sectrons 4-12 and 1n the Cronus User's Manual.

3.4 Cronus Name Spaces and Catalogs

Cronus has two system-wide name spaces for referencing
objects. The unique identifier (UID) for an object is the basic
name . Unique 1dentifiers are fixed-length, numeric quantities,
intended for use by programs but unsuitable for people to read,
remember. and type. The unique identifier has internal structure
which Cronus uses. but is normally invisible to applications. It
contains the name of object's type and the name of the host that
generated 1t. The host neme 1s useful as a hint for locating
certain objects which do not migrate.

The Cronus system also i1ncludes a global symbolic name space
oriented toward human use. Normally. the accessing agent would
interact with the Cronus symbolic catalog manager to look up the
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unitque 1dentifier for the object. After it obtains the UID, the
accessing agent can then 1nvoke operations on the object.

Although there 1s no single 1denti1fiable catalog supporting
the UID name space, the notion of a catalog for UlIDs is & useful
abstraction. This catalog will be referred to as the U]JD Teble.
in practice, the functions that it supports are implemented by
object managers for different object types by means of UlD-to-
object—descriptor tables, which can be thought of as fragments of
the UlD Teable. When a Cronus object 1s assigned a UlD an entry
1s created 1n a UID table. This entry contains the information
that the menager needs to access the object. Object managers
support two kinds of operations. The generic operations. for
example. those used to create or remove an object, to modify the
access control list, and to examine the object descriptor, sare
defined for all objects. Other operations may be defined only on
@ particular type, these are often called type-dependent
operations.

The Cronus operation switch provides client processes with
addressing based on the UID, so if a client process has the UlD,
1t can communicate with the object. The UID 1s & universal name
that can be used from anv one of the hosts in the cluster to
refer to the object, no matter where i1n the cluster 1t 1s stored.
Although 1t may not happen often in practice., objects may move
(or be moved) from one host to another. When an object 1s
reloceted 1n this fashion. its UID does not change. A replicated
object also has a single, unique identifier for client eccess to
any of 1ts 1mages. Replicated objects may be developed out of
more primitive. non-replicated objects which are usually accessed
directly only by the replicated object manager. '

A Cronus unique identifier actually consists of a pair
<UNO, Type>

where UNO 1s an 80-bit unique number, and Jype 1s a 16-bit value
naming the type of the object. The UNO portion of the UID is
uniquely assocjated with a particular obj)ect. Each Cronus
service 1s assigned a type. In the current design, all types are
statically well-known. Since the type field can encode as many
as 65,536 distinct types, there 1s room for expansion to dynamic
types at & later time.
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Each Cronus type has & generic name associated with it, this
is a UID that has the type portion set to the type of the object
and UNO portion set to zero. Cronus generic names are used for a
variety of purposes. They act as class names in many of the
places one would expect, particularly when an object is being
created. That 1s, the creation of an instance of a class is

treated as an operation on the generic name. In addition, the
generic name is used when the system 1s i1nterrogating the
operation switch to find a maneger for the type. 1In the current

implementation, the manager itself 1s implemented from a Cronus
primal process, which has & UID of type CT_Primal_Process that
was selected when the process was created. The operation switch
}s responsible for i1dentifving the process that manages objects
of & particular type. It does this by examining the type portion
of the UID name on which the operation has been i1nvoked.

The fecility that generates unique numbers may be regarded
as ex1sting continuously throughout the life of a Cronus
configuretion. and 1s accessible to svstem and application
processes. No two requests by client processes for a UNO ever
obtain the same UNO. Hence the unique number generator 1s an
example of & surviveble distributed program. The generator must
be survivable, because UIDs must be unique over the lifetime of
the cluster, and 1t must be distributed, because without 1l new
objects cannot be created, so 1t cannot depend on any single host

being up.
.

The UNO consists of three fields. & HostNumber, a
Hostlncarnation and a SequenceNumber. The HostNumber is the
Internet address of the host that generated the UNO. The
SequenceNumber 1s incremented for each request. The
Hostlncarnation 1s incremented 1f the SequenceNumber overflows
its field. It 1s also incremented whenever & host that has been
down comes up. In order to assure the uniqueness of the UNOs

which are generated. the Hostlncarnation 1s kept in stable
storage, either on the host 1tself or on some other host that
supports stable storage.

The UNO si1ze. 80 bits, was derived from assumptions about
the number of UNOs that could be generated over the lifetime of
the Cronus implementataion and the mean rate at which systiems
enter or and leave a cluster. The current field sizes will allow
a mean generation rate of about 10,000 UNOs per host per second
and s mean crash rate of once every 3 minutes for 100 years;
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these numbers are assumed to be adequate for reasonable system
activities.

The principal design consideration for the symbolic name
space is to make 1t easy for people to use. Names for Cronus
objects are uniform and host independent. Svmbolic names are
supported by a catalog that provides & mapping between symbolic
names and the UIDs. This name space 1s a tree, composed of nodes
and directed labeled arcs. There is & node called the root.

Each node has exactly one arc pointing to it, and can be reached
by traeversing exactly one path of arcs from the root node. Nodes
in the tree generally represent Cronus objects which have
symbolic names. A complete symbolic name begins with the
panctuation mark colon (.), followed by the names of the arcs,
separated by colons For example. :a:b:c 1s the symbolic name of
an object .

Not &all Cronus objects have symbolic names, and those that
do mav have more than one. When an object 1s given a syvmbolic
name . an entry 1s made 1n the Cronus Catalog. and when the name
for an object 1s removed, 1its entry 1s removed from the Cronus
Catalog. The Cronus Catelog supports Enter. Lookup. and Remove
operations. In addition. operations are provided to read and to
modify the contents of catalog entries.

The catalog is distributed. different hosts manage different
parts of the name space. The implementation 1s logically
integrated, however, so that any catelog manager process can be
asked to perform any of the catalog operations. The upper
portion of the hierarchy 1s replicated to support efficient
access to different parts of the name space. The symbolic’
catalog 1s implemented out of more primitive directory objects,
which adhere to the general Cronus object paradigm. The Cronus
catalog i1s described in detail in Section 9.

3.5 The Cronus File System

KOO
ﬁo‘ﬂ‘
e

The collection of all Cronus files constitutes the Cronus A
distributed file system. Within this file system, Cronus
supports several file types. The most basic file is a primal
file, which 1s stored entirely within a single host and 1s bound
to that host throughout its lifetime. Other types of Cronus
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files are built from primal files. A replicated (or mu]t}—copy)
file. which has multiple 1nstances replicated across Cronus hosts
for i1ncreased availability or enhanced responsiveness, is

. constructed from several primal files. Therefore, 1f a host
: contributes storage resources to Cronus. 1t must support primal
3 files.

There 1s no single table that lists all file objects.
Rather, each file manager owns all of the data for the file
objects it manages. The Cronus object addressing facilities make
possible a client interface in which knowledge of a UID is
sufficient to access the fi1le regardless of 1ts location.

Clients may make file placement decisions themselves 1f they
wish. Alternatively, placement decisions will be made
automatically.

.

Ordinary read and write operations may be performed on file
objects. The expected mode of access to Cronus files 1s to
trensfer the file data as needed. much like conventional
filesvstem access to disk files. Coples of Cronus files are made
only to satisfv explicit user requests or to support other system
requirements The design for the Cronus File Svstem can be found
1in Section 8.

- e e e o

3.6 Cronus Process Manasgement

There 1s more then one type of process object i1n Cronus.
Primal processes are the simplest process entities. They are
constructed from the process abstraction that exists 1n the
constituent host operating system. This simple form of process
is used as a building block for the system implementation,
minimizing i1ntegration costs for new Cronus host types. Since
primal processes cannot be loaded dynemically with user programs
and lack flexible prccess control functions. they are too
inflexible to be used as vehicles for general application

programming, but are used as object managers and in other well-
defined system roles.
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To satisfy the requirements of application programs, primal
processes are augmented with a subtype, the program carrier
process, which supports a richer process environment. Program
carrier processes can be loaded remotely &and started i1n a manner
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that 1s uniform across the cluster. In addition, program

carriers support. in & host-independent menner, the kind of

flexible control and i1nterconnection of related processes found B
IQ'Q%:

in modern operating systems. A

g

Cronus processes have most of the features natural to the ﬁb?ﬁ

host on which they are built, and no attempt is made to hide ﬂ““ﬁ
these features. An application builder has the choice of when to ';
use locally-supported features and when to use standardized X #‘

Cronus features. To the extent that applications choose to adopt f‘.&h

Cronus process features, they will be better integrated with the ‘f‘?“
other cluster processing activities. On the other hand. the :ﬁ"

judicious use of local features will enhance the efficiency of \ “%

o
- l-l
the activity. Cronus processes are described 1n Section 5. =~

3.7 Device Integration

Special purpose devices, such as line printers and tape
drive devices are i1mportant elements in a system configuration.
As Cronus objects. these devices are availlable to the entire
cluster through en object manager. In some cases. more eleborate
interfaces can provide an access path with specialized features.
For example, & line printer service, can be provided that
supports spoolxng Device integration is discussed 1n Section
10.

A
3.8 User Identities and Access Control {?bw

4
Users are represented by syvstem objects, known as R -"

principals. A principal object contains date that describes the '

manner 1n which the user mav use the system. This information
supports operations such as authentication and session
initialization. The object menager for the principal objects and
for other access—related objects i1s called the Authentication
Manager . The Authentication Manager component services the
entire cluster.

The purpose of Cronus access control is to prevent
unauthorized access to Cronus objects. This is done uniformly by
assoclating ean access control }Jist (ACL) with each object.
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Access 1s then either grented or denied based on the 1dentity of V
the principal associated with the accessing agent and the © O
contents of the access control list for the object.

The operations of the Authorization Manager and the access Pf L

control svetem are discussed in Section 7. %h,gj
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3.9 Process Support Library ﬁﬁ??w
Uit

) i';'i‘."‘i:.

The Process Support Library (PSL) 1s & collection of dﬁ&bu

functions. that may be bound 1nto the load i1mage of a Cronus ?“Q{Q

process f“%hﬂ

PSL routines are considered part of the Cronus system and
are generally supplied with the system and maintained by system
programmers. The PSL fi1lls the following major roles.

1 It provides a convenient 1nterface to Cronus operations.

[}

1t provides access to special Cronus features such as the
faci1li1ti1es which generate UNOs and structure messages,
and to the elementary file system that underlies the
primal fi1le sytem: It also provides a uniform interface
to the i1nterprocess communication facility. These

features are not normally accessed though the Operation
Switch.

3. It provides COS interface and utility routines necessary
to support the production of portable programs. This

includes format conversion routines and mechine-dependent
constants, for example.

3.10 Important Subsystems

Subsystems are components which use system—-provided features
to support user services. Two 1mportant subsystems 1n the
initial 1mplementation of the Cronus systems are the user
interface and the monitoring and control subsvstem.
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The user i1nterface consists of several components, 1hcluding
the session manager, command interpreter and terminal manager.
The user may galn access to the system from dedicated terminal
access concentrators, from one of the shared hosts, or over the
internet. The 1nteractive processes which are controlled by the
user interface will be distributed across the cluster as required
either by the application itself or under the direction of the
user. A discussion of the user interfece may be found 1n Section
11. In addition, examples of user 1nteraction are shown 1n
Appendi1x A (Scenarios of Operation).

The monitoring and control subsystem (MCS) makes 1t possible
for an operator to monitor and control the entire cluster
configuretion from & single console. The functions of the MCS
include starting or restarting parts of the Cronus configuration,
monitoring i1ts facilities and components., and collecting error
reports and statistics. The MCS monitors object managers and
collects statistics based on a functional decomposition across
the Cronus configuration rather than a site-based decomposition.
The monitoring and control design is described 1n Section 12.

3.11 The Layering of Protocols 1n Cronus

The underlying support for the Cronus cluster architecture
1s & high-speed local area network. The Ethernet standard has
been selected for an inter-host transport medium within the
1initial Cronus configuration. The Cronus design does not,
however. depend directly on this. so later versions may use a
different local network. Furthermore, the design does use the
DoD standard protocols at higher levels, and requires an
interface between them and the physical local network.

To accomplish these objectives, we have developed a Virtual
Local Network based on DoD Internet Protocol (IP) conventions and
a representative set of local area network capabilities. The
Virtual Local network 1s an interhost message transport medium
which 1s i1ndependent of the physical local network.

The Virtual Local Network layer 1is described in Appendix C.
1t provides a primitive datagram service, compatibility with
Internet addressing. and i1ndependence from the details of the

physical loceal network. VLN datagrams can be specifically
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addressed, broadcast. or multicast. The VLN guarantees that
datagrams are delivered in order (sequenced) when they are
delivered at all]l, and that & datagrem is received once or not at
all by each intended recipient (non-duplication).
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4 Object Management LN
'(Q
4.1 Introduction ?::‘.::.:':0::‘
A
In this section, we outline the Cronus object model and show ':::0:::!:’:‘
how 1t 1s used to structure the kernel of the system. This ‘;:o:;:of.?:
discussion consists of the following elements: _'.'c‘.'gu‘
o A short discussion of the object model in general, and of ‘p
1ts relationship to Cronus objects. "gt.‘
G‘M}’ﬂq
DA
o A general descraiption of the basic objects that are .I:Q'.O:‘g"otf
included 1n the first implementations of Cronus. g:a:.:tzht‘
o The system primitives that Cronus uses to cause ",h_f .
operations to teke place on objects. 'l. .
Y
o} The role of special processes, called object managers. 1n *l )
the 1mplemention of objects. ¥ e
9
o The mechenization of the Cronus primitives, and the role Tt
of the operetion switch i1n this mechanization. .',l.::‘.::::::
(
"‘U“V.“l
o The definition of gepneric operations that are defined for '::*:’0’;::"
all Cronus objects. :‘.i,g'
° The structure of object managers. l.\‘:t:
"\ v’*
" I.'Q.p
In the course of this section. it will be necessary to refer to . :t ‘
the characteristics of Cronus processes. and to the methods of ot
communicating between such processes. Those elements of process
management and interprocess communication which are needed for
the understanding of the Cronus ob)ject model and for the
construction of object managers will be sketched in this section,
while the details have been placed 1n Sections 5 and 6.
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4.2 General Object Model

There 1s a considerable and growing literature concerning
object models and object-oriented programming, and it is not our
purpose to describe these methods 1n deta:l. On the other hand.
the conceptual framework and terminology of object—oriented
programming and system decomposition has not fully stablized, and
any system. like Cronus, that claims to use this methodology 1is
actually selecting from a range of ideas and applying them to a
specific situation; i1n this case, to the design and
mmplementation of a distributed operating system.

The basic 1dea of object-oriented systems is that all
interactions can. at some level. be described 1n terms of a set
of defined operations on objects. These methods are strongly O
associated with the development of the Smalltalk-80 system :ﬁd*b:
[Goldberg 1983]. but are alsc an outgrowth of work in the ﬁﬁadﬁ
manipuletion of data abstractions [Liskov 1977], [Robinson 1977]. ;
and recent developments 1n programming languages. There are
useful. brief i1ntroductions to the use of these methods in [Jones
1978). [Weinreb 1981] and [Kentch 1982].

At first glance. one might consider it enough to think of an
object as an instance of a data abstraction. 1f the internal
structure of the data object 1s suitably hidden from the outside
world and the proper operations provided to manipulate the
object, we can tind out everything we need to know about it and,
equally i1mportant., nothing about how the object 1s actually put
together. This 1s a strong application of the hiding principle
of software engineering, combined with a set of methods to
examine and modify the part of the data object which is of
interest to the outside world.

The object model] is this and more, however. There are
several extensions to this basic idea which have been made in
various systems. One of the most i1mportant 1s jnherjtance, which
we wi1ll discuss below. Another i1s the addition of objects which
are more than i1nstances of a data abstraction; for example, in
Cronus we have process objects as well as pure data objects.

In Cronus, &all the objects which are alike 1n their
structure and in the operations which thev respond to are members
of a Cronus type (1n other systems. this 1s often referred to as
@ ¢lass). Inheritance describes a relationship between types.

~-28~
-. LA

) 300
N . . ) n . SR N
D \ OAOIIO00 W g H.l.l.l.;' " n'n'u",l'v"o.'ﬂl.'c R
Moottt atirattusadiada ity teat el dattetitn b anfie b ittt biduchivhiny A
U ) O OO ) A R BOOIUN 9 ) N
D R AR R .‘:.i:‘:‘:':M'.‘v?':‘g‘.n'.n!u‘.‘s.o:'o?ig',.l‘.»'*‘~":a!0’\'.‘:tf':cf‘..l'.".‘!'.‘.v. R R -!.'.""""'-"‘

AONONAAAN A EOMA



NIRRT EAENELEAER XY LA TR XY R T A R U U U R RN O R O T AU PO VUWLU XU RU N N U - PRI R

'
'l‘o' ‘h
®
AN
.l | q \' ‘

ﬂ

We can say that a particular type 1s a subtype S of some other 'bbﬁﬁu'
type T. In saying this, we are saying that an i1nstance of the
type S is like an instance of type T in some important way.

Usually this 1s described by noting that any operation which may A ; 0”
be invoked on an instance of T may also be 1rvoked on an instance ﬂ agwﬁ
of S. This does not mean that exactly the same procedure will be ¢n¢§
applied to exactly the same kind of entity. For example, all $:'.
Cronus objects 1nherit the properties of the basic Cronus object 3 “
type CT_Object. There are & set of operations defined on this 5 '
object. 1ncluding Remove, which causes the object to go away. A # %

| very different procedure is used to Remove a primal file object % . “;

\ (whose type 1s CT_Primal_File) than the one which removes a user aﬁ
process (whose type is CT_Program_Carrier). But there 1s some ;'?&w,
clear 1ntuitive feeling which we have of what Remove means 1f we

think of primal files and user processes as objects.

)
It is worth noting that the inheritance relationship 1s a:m»ﬁ:
rather different from the relationship which one finds 1n ‘sﬂkib
composite objects. For example, the Authorization Manager ibﬂﬁﬁﬁi
supports the type CT_Group, which 1s a composite object that 1s 6*
built out of principals (objects of type CT_Principal. which 15 & RS
representation of a svstem user) and other objects of type }‘h%Vb
O
CT_Group. Groups are not subtypes of principals. but are &}hﬁw%
constructed from them. Some operations that can be 1nvoked on & “¥m$¢3
principal, such as the ones which manipulate the group expansion hﬂ :M
list have no analogue in the definition of a group, and make no
sense 1f they are invoked on a group. ﬂfvﬁ
?'
The following are the basic object types that constitute the “.Qﬁn&
initi1al implementation of Cronus: b&ﬁﬁyﬁ
il

CT_Object: This is the most besic type, and the generic
operations that create and remove objects and maintain ..
the access control lists and object descriptors (see
Section 4.4 and Cronus User's Manual object(3)) are
defined for objects of this type. 1In Cronus this is an
entirely abstract form, and there are no i1nstances of
objects of type CT_Object.

CT_Host: The Cronus system 1s made up of a series of hosts
which provide services for users. This object has a
process component that creates and manages the primal
processes that, in turn. actually perform the services
and manage the other objects of the system. The CT_Host
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object 1s sometimes called the Primal Process Manager for
the host, because that 1s 1ts most visible function. The
CT_Host object 1s closely allied with the operation
switch, which 1s used to implement the 1nvocation of
operations on objects.

CT_Primal_File: The i1nmitial i1mplementation of Cronus supports
files which are bound to & specific host. All ordinary
user data is stored 1n objects of type CT_Primal_File.

In addition. & number of other object tvpes are
constructed from primal files.

CT_Catalog:. The Cronus catalog 1s made up a series of entries
which translate symbolic names i1nto the corresponding
UID.

CT_Directorv. The Cronus catalog entries are organized into
objects of type CT_Directory. These are built from
objects of CT_Primal_File. but this structure is entirely
hidden from the user by the Catalog Manager.

CT_Principal. A principal 1s the system's representation of a
user or a svstem service which requires access to some
other service or object manager. The access control
system depends on identifying the objects of type
CT_Principal which are permitted to carry out an
activity.

CT_Program_Carrier: A program carrier 1s a process shell that
is prepared to receive a user program. The basic primal
process 1s too simple an object to be effectively used
for applications, even though i1t 1s adequate for long-
l1i1ved independent processes like object managers.

There are a number of other object types which are associated
with the Catalog Manager (such as CT_Symbolic_Link) and with the
Authorizeation Manager (such eas CT_Group), but the system could
function without them.

In object-oriented programming, a client invokes operations
on an object, often called the recejver, which i1s identified by a
UID, ObjectUID(3). The operation itself may be represented as a

(3). There are e few cases 1n Cronus where ob)ects are
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pair

<OperationName, Parameters>

In Cronus the basic primitive which causes an operation to be
1nvoked on an object is lnvokeOpHost. This causes Operation to
take place on the object named by ObjectUID on a host at a
specified network address. The operation switch of the Cronus
kernel provides the mechanization of this primitive (see Section
4.5)

While the primitive InvokeOnHost 1s sufficient to support
the system. the relatively large number of reply messages suggest
that there should be & more efficient method for answering &
request(4). A second message primitive, SendToProcess is
provided for this purpose. When & message from a client is
delivered. the ProcessUID for the client is 1ncluded. The
manager may then use SendToProcess to reply directly to the
client .

In a distributed system. the client does not usually know
which host has the object manager which 1s responsible for s
particular object. Each object must be willing to say whether 1t
1s on & particular host; that 1s., there 1s a particular
operation. called Locate that is among the operations which is
defined for every object in Cronus. When this operation 1s
invoked on the object ObjectUID at some HostAddress. the object
manager for that type will reply 1f 1t manages that object (5).

If the client does not specify the host when 1nvoking the
operation, the PSL performs the required Locste operations to
determine where to send the operation. These Locate operations

identi1fied by other means, for exampie, a specific catalog entry
may be identified by the symbolic name which is being
manipulated. The argument presented 1is analogous, so it 1s
sufficient to consider the cases where the object actually has a
UlD.

(4). 1f InvokeOnHost 1s all that is available, the reply must be
passed through the manager of the process to which the reply is
directed.

(5). Actually, if the client wants the negative acknowlegement,
it will also reply 1f it doesn't .,anage the object.
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are often performed using the broadcast facilities of the VLN.
The PSL (or the client) mayv cache locations of specific objects
and object managers for increased efficiency. 1In addition,
primal objects, which are bound to the host which creates them.
can be found quite easily. The PSL looks at the HostAddress
portion of the UID, which contains the address of the host which
generated the UNO portion of the UID. For the current
implementation, the UNC 1s generated on the host that creates the
object, and that also currently holds the object if it sti1ll
ex1sts.

Subtyvpe relationships are not a primitive concept 1n the
implementation of Cronus. There 1s no direct implementation of
inheritance: there 1s, 1nstead, a discipline which says that the
manager of each subtype must i1mplement the inherited operations.
Subtvpe relationships are statically realized 1n Cronus, through
the cooperation of the object menagers and the operation switch.
In addition to simple re~implementation of the inherited
operations (which 1s used for the generic operations). there are
several static i1mplementation techniques that can achieve

inheri1tance. A manager may register several type values with the
operation switch, and 1mplement some as subtypes of the others
internally. Alternatively, one manager may 1nvoke another

through the standard mechanisms.

4.3 Object Naming

The Cronus object model requires a mechanism for delivering
messages addressed to objects. This mechanism, outlined briefly
in Section 4.2 and described in detail in Section 4.5, is called
the operation switch. The operation switch, in turn, requires
the client to i1dentify the object which is being modified or
examined. The standard i1dentifier for an object is i1ts UID,
which 1s a bit-string containing 96 bits. This bit string
consists of two components: a unique number (UNO) that is
different for each object which has ever existed in the cluster,
and the Cronus type. It 1s useful to think of the UID as having
four fields (see Cronus User's Manual uid(4), uno(4)):

HostAddress. the 32-bit Internet address of the host which
created the object. If the object is a primal object,
the HostAddress 1s also the actual address of the object,
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1f 1t stall exists. : ‘t. h
Qn‘.Q'.l.
IncarnationNumber: a field containing an integer which is .
incremented whenever the host 1s loaded or reset, or when ”:??“
the associated SequenceNumber field overflows. éﬁh <
lw“’ "
SequenceNumber: a simple counter field which 1s used to i?ﬁ,{
assure the uniqueness of each UNO that 1s used to name an ety
object. ._
h.\' '..3
CronusType. the 16-bit i1nteger specifying the Cronus type of .'t"\s::
the object “w§d
03'0"0,
Between them. the Incarnat,onNumber and SequenceNumber fields ﬂgﬁlﬁ.
contain 48 bits, but the subdivision of this string may vary from T”WJ!W
host to host, for the hosts i1n i1n the i1nitial 1mplementetion, i
each field 1s 24 bits long. ﬁﬂﬂ
'.‘(',
It should be observed that the ob)ect 1s actually identified , ﬂﬁ“
uniquely by the UNO portion of the UID, and that the the Cronus ety
tvpe 1s added so the operation switch caean find the object ‘?
manager. In particular. 1t 1s possible to think of an object eas H':q:
having more than one UID, consisting of the same UNO paired with cv}gﬁé:
different types. The current system does not make any 'ﬂf@h;

i . Sy s , . U
interesting use of this possibility.

There are also generic (or logical) names, which consist of

a zero UNO and a type field specifying the type of the generac .‘?ﬂfl
name. Specific names are used for objects which can be created ﬁquQQ
and destroved. and have private state i1nformation which is *:&rﬁ
important to the accessor (e.g., a particular file). Generic ﬁﬁf\dﬁ

names are used for special purposes. For example, the client can
find out if there is an ob)ect manager for a particular type on ea
host by performing an InvokeOnHost to Locate the generic name.
Generic j.ames are also used 1n operations, like Create, 1n which
there 1s no object name available; the generic names act like
class objects in other object oriented systems like Smalltalk, or
like the generic addressing facility i1n NSW's MSG, which is used
to address an 1nstance of & service.

The PSL provides a pair of functions which convert between a
type name and the generic name for that type (see Cronus User's
Manual uidtype(2)). Generic names, like types. can be referred
to symbolically. By convention. logicel names begin with the
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prefix "CL_". For example, CL_Primal_File 1s the generic neme of
an object of type CT_Primal_File.

Accessing agents interact with object managers using Cronus n$:$
Interprocess Communication. The client may 1nitiate access by 0;&@
giving either the UID for the object or by giving 1ts symbolac '*w
name The PSL provides functions which will accept either name. L
1f the accessing process has the UID of the object, the PSL
simply constructs a message that invokes an operation upon 1t.

The operation switch delivers the requested operation code., the
UID, and any other parameters to the appropriate object manager.
The ob)ect meanager consults 1ts fragment of the UL.D Table to
access the object as necessary to perform the reques.ed
operation. 1f, on the other hand. the accessing process does not
have the UID, the PSL first consults the Cronus catalog; then,
when 1t knows the associated UID. 1t composes the message and
sends 1t on 1ts way.

This means that we allow the symbolic catelog to be by-
passed when an object i1s accessed. and the accessing process
knows the UID. Th:is i1mproves performance and enhances the
flexibi1lity of using primitive objects to build complex objects.
since the object menager for the complex object can use the UlDs
of 1ts components directly. The cost of achieving these benefits
1s primari1ly one of i1ncreased implementation complexity:

1. Access control 1s performed in a decentralized fashion by
all of the object managers.

Information about objects is distributed among object
managers and catalog managers. Care must be taken to
ensure that the information about an object 1s
consistent, or if it is not, that the system can operate
properly.

o -
e o

4.4 Generic Operations On Objects

The generic operations are defined for all system objects.
These operations fall 1nto several groups:

- -
sy - -

Create and Remove. These bring the object 1nto existence and
destroy 1t. The operation Create 1s 1nvoked on the

-
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generic name for the object. These operations must be
defined for all objects.

Locate: If the object exists and 1s managed by the obj)ect
manager which receives the message, the manager replies
that it knows about the object. This operation must be
defined for eall objects.

Read_ACL and Write_ACL: These manipulate the access control
l1st of the object. These operations must be defined for
all objects which are separately access controlled.

There are & few objects whose access is controlled
through another ob)ect. For example, objects of type
CT_Catelog_Entry are controlled through the permissions
on the containing object of type CT_Directory.

Read_Sys_Parms, Write_Sys_Parms, Read_User_Parms,
Write_User_Parms. Every object has an associated object
descriptor. The object descriptor contains various
pieces of information about the object that are made
visible to the outside through these Read operations, and
mav be modified by the Write operations. Access is
controlled separately for the User and Sys portions of
the object descriptor.

Report_Status: This operation is normally performed on a
generic neme associated with an object type. For
example, Report_Status i1s 1nvoked on the generic name
CL_Primal_Fi1le to find out how much space there is
available on the associrated file system.

For some operations, such as Create, the exact list of parameters
and responses will vary from object type to object type. Other
operations, such as those which operate on the access control
list, perform 1n the same way for all object types. For details,
see the appropriate sections of the Cronus User'’'s manual,
especially object(3), acl(3), the descriptions of the objects
below and 1n Section 3 of the Cronus User's manual, and the
descriptions of the PSL routines in Section 2 of the Cronus
User 's Manual .
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4.5 Object System Implementation : :ﬁ%w
RN
In order to describe the design of the operation switch and
its role in message-oriented interprocess communication, we must ﬁbﬁ
briefly introduce Cronus processes (the Cronus process is ‘::D:‘:(
described in detail in Section 5). ?&h?
ity
N
Cronus processes are constructed from constituent host LJ&&
processes (CHPs). The properties of a CHP are defined by the ®
machine architecture and the constituent host operating system f*.:
(COS). The Cronus process is constructed from one or more CHPs, ﬁﬁ*
with the addition of Cronus process features. The simplest type 4*:
of Cronus process 1s the primasl process (PP). A primal process ﬁ&
1s a CHP which can 1nvoke operations on objects through the St
Cronus Interprocess Communication facility and can be controlled Y
by the Primal! Process Manager. In addition, & primal process can 0]
. i
use the Cronus primitive Receive to receive messages sent through Rtehed
the Cronus IPC by either InvokeOnHost or SendToProcess. kg?
eyt
(3
The 1mplementation of Receive emplovs CHP-specific WLk
synchronizetion facilities. described 1n the appendixes on the '
" interface to the COS. to build an asynchronous Receive operation. "5.2:":‘
N A
L ‘I.g'l‘
'E: This section describes the framework of the object system ;}g}
{v implementation on Cronus hosts. Figure 4.1 illustrates the “4¢:
EQ relevant components on a single host. The boxes in the figure Q%ﬂ'
" represent abstract modules of the 1mplementation, and do not _
i necessarily map one—to-one into CHPs or address spaces. éﬁs
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Figure 4.1 Object System Components

In Figure 4.1. boxes 1-4 are Cronus process objects; box 5
is the operation switch, which accepts messages from and delivers :H”‘\fz
messages to the Cronus processes on this host. box 6 is the IP Sg,r'}
protocol demultiplexing service, and box 7 1s the Virtual Local By W,
Network layer. -
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The operation switch 1s table—-driven. This table contains
routing 1nformation that the operation switch uses to direct
messages from process to process. The sender and receiver may
both be on a single host. or the message service may be involved
in & host—-to-host message transfer. The operation switch does
not retain information about the messages, although 1t may gather
statistics and transmit them to the Monitoring and Control System
(see Section 12).

Since the i1nvoker can request reliable message transport,
and ordineri1ly does so for InvokeOnHost applied to a specific
host address. & fai1lure of &n operation 1nvocatlon 1s not likely
to be due to & transient communication fault, with high
probability. ei1ther the network or the target host. or both, are
down (see Section 6 for a detailed description of the IPC and
these services).

The 1nvocation sequence for an operation 1s.

o The Cronus Process Support Library (PSL), which 1s the
component of the system that appears within the client
process. formats & message which contains the name of the
object. the operation. its parameters. and other
informetion which 1s needed by the system.

o The message., which is marked as an invocation of the
operation, 1s handed to the local host's operation
switch. 1f HostAddress specifies the local host, it
processes the message 1tself, otherwise, it forwards the
message to the specified host. (These functions are
directly supported by the Cronus Interprocess
Communication facility, which 1s described 1n detail in
Section 6.)

o The receiving operation switch examines the ObjectUID,
determines the type of the object., and hands it to the
object manager for that type, 1f there 1s one.

o The ob)ect manager for the object type then performs the
processing associlated with the operation and its
parameters.

o Although 1t 1s not necessary for an operation to follow a
request-reply paradigm. most do. If & reply 1s needed,
-38-
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the object manager prepares a message that is returned
using the SendToProcess primitive.

Frgure 2 illustrates the transmission of an operation from
the 1nvoking process, through the local operation switch, to the
remote operation switch, and finally to the receiving process.
This section describes the calls and the representation of data
structures at the i1nterfaces 1, 2, and 3.

} Invoking |-——>| Local | | Remote |-—-->| Receiving |
| Process | | 0S8 | | 0S i | Process |

Figure 4.2 Operation Switch Interfaces

When the client performs an InvokeOnHost primitive on the
Cronus object. & message 1s generated that 1s ultimetely directed
to & manager process and accepted bv a Receive 1n that process.
Information crosses 1nterfaces (1) and (3) by means of Cronus
system calls, which are representations of the primitive
functions. made by the invoking &and receiving processes, these
calls may be represented as:

InvokeOnHost(TargetAddress,ObjectUID,Operation)

Receive(SourceAddress,SenderUID,ObjectUID,Operation)

where the function parameter Operation i1ncludes both the intended
operation and its parameters. (6).

(6). The calling sequences for these functions have been
modified for purposes of presentation clarity, see the Cronus
User's Manual send(2) and receive(2) for a description of the
actual celling sequence.
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Interface (2) 1s peer—to-peer communication between
operation switches, which 1s discussed i1n greater detaii in
Section 6. Messages exchanged between operation switches are
octet sequences. The Operation parameter of the InvokeOnHost
call 1s not interpreted by the operation switch, end is treated
simply as data to be moved. The message has several header
fields that are visible to both operation switches; these include
the UID of the object being operated upon (ObjectUID) and of the
client (ProcessUlD).

When the InvokeOnHost message arrives at the target host,
the operation switch tries to map the type to a manager process
on the host. The table of possible destinations consists of a
li1st of generic UIDs for ordinary managers and specific UlDs for
objects which are managed separately (7). The operation switch
first checks the ObjectUlD against the list of specific UlDs,
then the Type field against the list of generic UlDs. If the
mepping 1s not successful. the 1nvocation 1s discarded, but will
generate an exception reply. If the mapping is successful. the
message 1s transmitted to the manager process. The manager
obtains the i1nformation by i1nitiating an ordinary Receive
request, when the Receive completes. the SourceAddress,
InvokerUID, Objec*UID and Operation have been maede available to
the manager process.

Although one can reply by invoking the Send operation on the
ob)ect ProcessUID., replies are usually sent by means of the
alternative SendToProcess primitive This primitive hands
messages addressed to a specific process across 1nterface (1).
The operation switch then marks the message which it ships across
interface (2) as a SendToProcess message. The receiving
operation switch then places the message on the queue for the
target process, bypassing its object manager. The mechanism for
delivery, Receive, 1s independent of the transmission mode of the
original message.

(7). Currently, the only example of such & separately managed
object 1s the virtual terminal 1n the user interface (see Section
11).
_40_
, - 'V'
‘u\;‘ o‘. ‘ ‘I'.\‘|1 ﬁ-'\f%
,\ ‘| .. i‘o‘t' duel '.u l.\. A ';l., ‘ ﬂ:‘.’:‘.‘. AN .0" '.'\\%r'.'n' l'.'l‘.'l\ 's'l

OOl

,“ 1“%. ﬂ';\$§ll

?“.l
|’ AR
Y, i.' a3

@
'.0’; 1'

N ]
"t\_,

o Y
ﬂ;ﬁ N
ﬁ'q




i}

RN
2Ty 0 b
L ‘A i‘ Q'

‘0 3N

‘D..‘ .‘

l|l5§l
A

'n‘ .l

e 0(‘.0 e, .0

4.6 Object Manager Structure

Object managers are asynchronous 1ndependent processes.
They are asynchronous because they i1nterleave the processing of
messages. An object manager often 1nvokes operations on other
objects to satisfy the requests 1t receives, it does not wait for
the reply to such a request, but moves on to the next request or
reply from a previous operation. They are independent processes
because they are daemon processes which are started by the system
{or 1ts monitoring and control section) or by another daemon
process. Thev receilve messages. originate requests to satisfy
the client requests, and reply to the original messages.

The asynchronous character of the object manager has a
significant 1mpact on 1ts structure. Managers receive messages
which cause them to undertake actions. These actions may be of
two types. The first type occurs entirely within the manager's
own address space (or within a single Cronus process that may
consist of more than one COS process), and 1s called & local
action. The second type requires the manager to perform one or
more operations. called secondary requests, on objects that 1t
does not manage. It must be able to keep track of & number of
these actions. On the other hand. the manager cannot wait for
the response from a secondary request before 1t accepts its own
next request. The processing that comprises the operation is
divided into portions that are performed before and after the
secondary request 1s issued. When the manager issues the
secondary request, 1t saves components of its state that are
needed to complete the processing when the reply arrives.

There are a number of common elements i1n the construction of
object managers: :

A manager normally consists of an initialization section and
a main loop which 1s driven by the arrival of requests
through the Cronus interprocess communication facility.
Since & manager normally runs forever (until the system
crashes). there may not be code for wrap-up.

The manager parses incoming messages, and dispatches on the
message class., which takes on the values Request, Reply, and
IpProgress.

A new Request message causes the manager to set up a control
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block for the operation.

A Reply message causes the manager to identify the control
block associated with the message, and to continue
processing as required by that message.

In the case of a local action, the manager receiving the
message will (normally) process the request to completion and
compose & reply to the originating process.

1f & secondarv request 1s necessary, the situation 1s
similar to that found &t the originator. A request can be put
into the form.

Initi1alPortion
Op(Obj)) -> Reply
PostProcessing

That 1s. a secondary request 1s basically some operation (Op) on
an object (Ob}) which generales a Replv. Before we invoke this
operation. we usually have some initislization beyond composing
the message (Initi1alPortion) and after we get the reply, we often
need to do some PostProcessing.

The procedure that invokes the operation also creates a
control block that contains the information required for reply
processing After it passes the invocation to the IPC mechanism,
1t returns without waiting. The manager then processes the next
IPC message (which may be a Reply from & secondary request, or a
new Request)., 1f there is one aveailable. Otherwise, it goes to
sleep until the next message arrives (see Section 6 and
ipcmisc(2) in the Cronus User's manual for deteails). When a
Reply for a secondary request arrives, the manager finds the
control block associated with 3t, and performs the reply
function. When the reply processing returns normally, the
PostProcessing routine is invoked if the message is marked OK,
and an alternate error-handling routine is invoked if the message
1s marked NOT_OK.

The i1ndependent character of the object manager principally
effects the way errors are handled. When a process 1s
interactive, 1t makes some sense to report the error to the user.
1f an 1ndependent process detects an error condition, it may be
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necessary to report the error to the client that issued the
request. to the monitoring and control station (MCS, see Section
12), or to both. 1In addition, Cronus managers keep statistics on
; the kinds of errors which have been detected, and report them to
i the MCS periodically.

A manager that encounters e failure during an operation,
particularly when there are secondary operations involved, must
take steps to assure that the information which is retained
across host crashes (the permanent state of the svstem) and any
internal ststus i1nformation (the temporary state of the system)
are correct and consistent.

Changes 1n the permanent state of the svstem are made by
atomic transactions. If it 1s necessary to make several changes
1in the recorded data to perform an operation. the manager that
receives the operation assures the client all the changes wil}l
take place or none of them will. That 1s, 1n the case of a
failure. the atomic transaction mechanism either forces the
transaction to completion by carrying out the intentions which
have been posted. or undoes those portions of the intentions list

"
(see Cronus User's Manual intent(2)) already marked as performed. '%qﬁ
N
\)%'
When & menager {(or any other process, for that matter) 1s “h:‘

carrying out a composite action consisting of more than one ‘\N
operation on one or more objects, there are often other changes

in temporary state which must be undone if an error is detected. ,.,
The process mainteins a work—-in-process list that contains an '
entry for each action that 1s not yet complete. For example, if
& process has acquired locks on several files, and discovers that
an additional lock which is needed cannot be acquired, the
original set must be released. The work-in-process list also
contains entries for additional special processing that is
required i1f the action does not complete (see Cronus User's
Manual wip()).
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5 Process Management |:'£Nﬁ
N Ny XY
5.1 Introduction ..:,.' ':.
\\&ﬁbq
Processes are the active portion of any system. Each host ?}f}fﬁ
and constituent operating system 1n a Cronus cluster has at least hayxﬂi
one natural concept of the process. More generally, several ﬁbﬁﬂ%
different kinds of processes are present 1n each host, fulfilling "“;'
different roles. In the absence of a distributed operating TR
svstem. the processes on two hosts are unrelated to each other. bu aﬁ
This section describes how Cronus processes work and how they .ﬁ?&@
communicate with each other. The details of how processes are “#dhm
constructed from constituent host processes (CHPs) are discussed v ?354
1in Appendixes D. E. and F. In the following discussion. 1t 1s ek .'
usually safe to visualize a Cronus process as being built from a V
single CHP with the addition of an object descriptor and some 0
speclalized facilities which make Cronus work. On the other n“ﬁ@ﬂ
hand. the 1mplementation might be quite different i1n reality. ‘dhﬁﬁ'
That 1s. & Cronus process might be made up of several CHPs, or a Jﬂﬂéw
CHP might 1nclude more than one Cronus process (8). - b
1f we wish to build & syvstem of cooperating processes on a f“sq
cluster of computers. and to use it as a base for & distributed # ~q§
operating system. we must do the following: gh$$ﬁ
Wty
o Define a standard method for communicat:ing among the (O
processes. Cronus treats processes as objects, and uses ? W
the standard Cronus IPC facility and the primitives !%“1
InvokeOnHost and SendToProcess for all interprocess f‘“u$
communication. All procedures developed for structuring ﬁ%&gﬁ
and parsing messages for operations on objects, such as .'c:::t"o::
those described in Section 6, may be used for
manipulating process objects as well. 9 ."
t
o Establish mechanisms for creating and controlling P$$:
processes on hosts of different sorts. Agein, since q&ﬁ.ﬂ%
Cronus processes are objects, this reduces to the ""l‘.'.‘;:::
definition of the operations which may validly be applied
(8). In fact, a Cronus process might even span hosts. In the
current system design, all Cronus process are primal processes,
that 1s. thevy are bound to a single host. Later implementations

mav relax this restriction.
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to the process objects.

o Provide a method for organizing the process objects to
perform tasks. This is accomplished by defining other
objects which reflect the required organization. The
collection of processes on a host, for example, is
represented by an object of type CT_Host, which will be
described below. Another example are those processes
that make up a user session, which are represented by an
object of type CT_Session_Date (see Section 11).

The following three Cronus tvpes are discussed in this
section:

o CT_Host. the organizing object for the primal processes
assoclated with a physical host.

o CT_Primal_Process: the most fundamental type of process.
Obj)ect managers are normally constructed from processes
of this type.

o CT_Program_Carrier. a subtype of CT_Primal_Process that
has sugmented process control facilities that make it
more suitable for implementing user processes.

There 1s one object of type CT_Host associated with each physical
host, and it is the object manager of the processes of type
CT_Primal_Process on that host. It is responsible for starting
up Cronus services, which are also object managers for the basic
system objects; it is also responsible for gathering the
information which the operation switch needs to route messages to
the other object managers and to specific processes when the
primitive SendToProcess is used.

There are two basic Cronus process types, CT_Primal_Process
and CT_Program_Carrier(9). The type CT_Program_Carrier is a
subtype of CT_Primal_Process. Ordinary primal processes lack
essenti1al process control functions and other desirable
characteristics needed for application programming. The subtype

(9). Future system versions will introduce additional process
types which may be distributed in extent and have special
reliability properties.
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CT_Program_Carrier provides an environment tailored to the :gdﬁ
requirements of application programs. Agﬁ&
Primal processes and program carriers never migrate, once 3})”“
created, the process remains on the same host until] it is bﬁ&'
destroyed. The HostAddress in a UID for a primal process or ﬁyu“
program carrier tells where the process 1s, so an operation ”)5 ﬁ
switch can tell exactly where to deliver a message addressed to A
it. L
R ‘t
Every host participating 1n the system must support an '\%!3
object of type CT_Host, which 1s also referred to as & Primal .fﬂ“o
Process Menager (PPM), and primal processes. In their minimal ..“iﬁ
forms, the host object and primal! processes are relatively SO
simple. This keeps the cost of integrating & host type into a - Q‘
Cronus cluster low for those minimally integrated hosts that can e
obtain system services from other hosts, but do not provide F'ﬁﬁm
syvstem services. WY, §¢
o
A primal process which plays & well-defined functional role QO

within the system 1s called & Cronus service. Cronus services
are object managers for system-defined ob)ect types, for example.
a Primal File Manager or Program Carrier Manager.

Cronus processes may make use of some or all of the
functions 1n the Process Support Library (PSL), which provides
high level interfaces to manv system functions as well as general
purpose utilities for 1nterfacing to and manipulating the Cronus
environment. Portability is a major goal! for the PSL, so that it
can be 1mplemented readily in whole or in part on new host types.
The PSL 1s discussed further 1n Section 5.4.

5.2 Objects of type CT_Host

The basic organizational elements of Cronus are objects of
type CT_Host. These objects correspond to the intuitive physical
hosts that make up the Cronus cluster. A CT_Host object consists
of the the Primal Process Manager for the host and the basic
tables which are used by the operation switch 1n routing
operation invocations. In some sense, it is reasonable to think
of the operation switch i1tself as & part of CT_Host. When & host
joins the Cronus network, only the lowest level of network
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94 software 1s functioning; the Monitoring and Control System (See X
‘ Section 12) engeges 1n & dialog with this primitive host element, .
. and brings up the object CT_Host. The MCS is therefore the }“ﬁ%
ﬂi object manager for the objects of type CT_Host. thg
NG A
] O "]
o The Primal Process Manager (PPM) component of a CT_Host fﬁsg
pﬁ object 1mplements operations concerning primel processes as &a Rty
b class. The tables that i1dentify the object managers and )
e processes that are on a particular host., and that therefore are ‘;v1
0 d t 1 t the C t InvokeOnHost &nd g
K use o 1mplemen e Cronus primitives InvokeOnHost an \"
@f SendToProcess. are maintained by the Register and Delete ,%gw
pp operations on the CT_Host object. ﬂgﬁ#
48 AW
". 0 '.'
2 In addi1tion to the generic operations (see Cronus User's '?
'S Manual object(3)). the following operations are defined on Q{Q
4 objects of type CT_Host (see Cronus User's Manual cr_host(3)). -ﬁﬁg
AN
l'.: A :':‘:b
) Cronus_Restart ‘a*v
50 Service_List O
« Process_List o
- . LA
& Detere B
Y Mt
9‘ 'v
4 n ‘ t
5: The Cronus_Restart operation 1s used to shutdown all ﬂEﬁ!
’ activity on the CT_Host object. It removes all active processes.
" . including the process implementing the CT_Host object itself. 5*&4
;* After a Cronus_Restart, the host 1s 1n a state from which 1t mayv W%”&
) be bootstrapped. %f,
". 1 ¢
DA A,
)} The Service_List operation 1s used to find out what kinds of hhL
service the host is prepared to support, and which ones are in - o
"t fact being supported. The names of these services, which are jﬁ )
}, called role designators, are used to start primal processes that ::éf
%“ perform the service (see Section 5.3). ‘é};
B Wy
d *ﬁﬂ,
.} The Process_List operation tells what processes are active S
& and what roles they are playing, this is the information which o
~ the operation switch has about processes active on this host. *\*:
s Whenever a process 1s created or removed, the tables must be \ﬂ‘w
XY updated. These tables contain the following entries: \f\ﬁ
‘.‘ »le,) 3
N PR
p. o generic names for objects paired with the specific UID of Aﬁm.
the Cronus process, @
p U
W - hl {
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o specific UIDs for process objects that will receive
messages through SendToProcess:. and

o specific UlDs for those objects whose maneager cannot be
identi1fied by reference to a generic name (see Section
11).

The tables also coutain any COS specific 1nformation needed to
communicate with the process. They are automatically updated for
processes which are created by the CT_Host object 1tself, such as
the obj)ect managers. Other processes are created bv other
manegers. for exaemple. the program carrier manager. These 1nform
the CT_Host of changes thruugh the Register and Delete

operations

5.3 The Operations on Objects of Type CT_Primal_Process

Objects of tvpe CT_Primal_Process are among the most basic
1n Cronus. The three system primitives (InvokeOnHost.
SendToProcess. and Receive) are defined for these objects In
addition. the generi1c operations (see Section 4.4 and Cronus
User s Manual object(32)) are defined. The particular
characteristics of these operations, when 1nvoked on primal
process objects. are described in detail 1n the Cronus manual
(see Cronus User s Manual p_process(3)).

The Create operation tekes & role designator as an argument,
and starts & new primel process performing this role. The role
designator mavy be 1n one of the following forms:

1. A Cronus generic UID name for the service.

2. A Cronus symbolic service name. These are character
strings containing the literal characters of a logical
name. for example "CL_Primal_File”.

3. A host dependent role designator. These are arbitrary
strings, which have meaning only to the PPM on a specific
host .

Role designators of kinds (1) and (2) sre paired, and are
registered with the Cronus svstem administrator as the names of
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standard Cronus functional units. The allowable list of role
designators of these kinds for & particular host object may be
obtained by 1nvoking the operation Service_List on the object.
These primal processes are automatically registered, which makes
the logical name known to the operation switch on the host, so
that the process can be generically addressed.

Designators of kind (3) provide for the activation of host-
specific programs or devices. The host dependent role designator

might be a COS-dependent file that 1s executed as & result of the |§N
!

Create operation. Primal processes created with a host-dependent
role designator generally have no associated logical name, and
cannot be generically addressed.

The primal process wi1ll 1nitialize 1ts state entirely from

non-volatile storage (local or remote disks). Y

;' O

N é.;\fk

A process may 1nvoke any operations on 1tself as the target
object. A process may send 1tself messages, remove 1tself. or
read or change 1ts descriptor 1n the same way 1t performs these

operations on other objects.
RIK

NN
.!. .’. AN
The operations defined on primal processes provide process %wa&%
control functions. For example, Remove 1s 1nvoked to "destroy”
or “kill"” the process. 1[It erases all record of the process state

from the syvstem and frees any resources dedicated to the process.

A process which 1s removed 1s not notified of the operation.
and has no opportunity to terminate cleanlv. Only the resources
actuelly used to 1mplement the process object are freed;
resources held as a result of the computational activity of the
process (e.g.., locks on remote files) are not freed. Some primal
processes may possess dedicated resources, and Remove disables
the process, without releasing these resources.

A reply will be generated to the invoker to indicate that
the process has been removed. After receiving the reply, the
invoker knows that operations using the UID of the process will
not succeed.

The process descriptor 1s the object descriptor portion of
the Cronus process. It 1s useful to think of the process
descriptor as a list of (key, value) pairs., in the sense of the
MSL (See Section 6.2 and the li1st of standard key names 1n the
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Cronus User's Manual keys(4)). Some of the values implement
process control.  For exemple. the peir (Key_Priority.,5) would
indicate the 1mportance of a process relative to other processes
for competing resources. Some keys must be present 1n the list
(“required keys”), while others are optional (see Cronus User's
Manual p_process(3), process(4)).

All process objects must respond to the required keys in a
uniform way. 1f an object supports a standard optional key. the
process must apply it 1n & uniform. system-wide manner.
Additional, elective keys may be present. Their i1nterpretation
1s not specified by Cronus. but 1s the responsibility of the
process and the other processes with which 1t 1nteracts.

Currently, the required keys for Primal Processes are
Key_MyUID. Key_MyAGS., and Key_IPCEnabled.

The vealue associated with Key_MyUID 1s placed in the
descriptor when the process is created, and i1s never changed
thereafter. It 1s the specific UID of the process, and has type
CT_Primeal_Process (or CT_Program_Carrier. in the case of program
carrier objects!.

The value of Kev_MyAGS is the access group set, used with
access control lists to determine access rights to objects at
operation 1nvocation time. The 1nitialization and use of access
control and authentication data 1s discussed i1n detail in section

~

{.

The value of Keyv_IPCEnabled controls communication through
the operation switch. If the value 1s true, the process can send
and receive messages in the normal fashion. 1If it 1s false, the
process may not send or receive messeages, or invoke operations on
Cronus objects. This feature can be used for managing access to
network resources.

Currently. the only optional key defined for a Primal
Process 1s Key_Priority, but others may be defined later.

The generic operations on object descriptors permit a
process to 1nspect or modify the descriptor of another process.
1f several processes i1nvoke these operations on another process
at the same time, the effect will be as if the operations were
processed sequentially. 1.e., they are atomic with respect to
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each other. : Y
Since the CT_Host object 1s implemented by a Primal! Process, .
these process control operations apply to it. One of the by
operations, Remove, has a special meaning when applied to the )
CT_Host. Because it is the manager of Primal Processes, removing «
the CT_Host removes all Cronus processes on the host. This
forces a shutdown of the Cronus system on the host.
]
5.4 Program Carrier
; The tyvpe CT_Progrem_Carrier, which is designed to support [ ]
- user programs. 1s a subtype of CT_Primal_Process, and all of the
» characteristics of primal processes are inherited by program
; carriers. Additional operations can be invoked on program
carrier objects, and the set of required keys 1n the process
\ descriptor is enlarged. The program carrier '
9
o provides & process which can be created. loaded with a
program. started. and stopped under remote control:
: o provides uniform monitoring and debugging support; and
o provides application developers with the ability to o
control a collection of user written (possibly
distributed) processes.
A Cronus host 1s not required to support the CT_Program_Carrier
R process type; however, hosts which are not dedicated to system )
service roles usually support program carriers. o
. The generic operations (see Cronus User's Manual object(3))
ere all defined on objects of type CT_Program_Carrier. In
addition, the special operation Search_All_Descriptors is defined ;
on the generic program carrier object.
Create creates a new process of type CT_Program _Carrier and
returns the UID to the invoker. The program carrier manager
initializes the process descriptor of the new process. Several
of the fields have default values. 1n particular the standard )
input. output. and error output, and the access rights will be ; Q!
1
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inherited from the invoker 1f they are set for that proceéss.

Once a process has been created, the parent (or another
process) may alter values in its process descriptor, using the
generic operations on the object descriptor, if i1t has the
appropriate permissions.

The Report_Status operation mav be i1nvoked on the generic
name CL_Program_Carrier to test for the availability of resources
before performing the Create operation. Resources mayv include
processor type, primary memory size, and special processor
capabirlities. such as floating point hardware. This operation 1s
used as part of the scenario for selecting a site at which to run
a program (see Appendix A.8).

The Search_All_Descriptors operation may be 1nvoked on the
generic name CL_Progream_Carrier to find all program carriler
processes on & host with the designated key—-value peirs in their
descriptors. Two important uses of this operation are: 1) a
search on the Kev_Session key-value palr, to locate all process
associlated with & user session. 2) a search on the Key_Thread
kev-value peir. to locate &all processes belonging to & thread.

Cronus supports several kinds of relationships among program
carrier processes. All processes belonging to a session are
related. and can be located as & group, processes are related 1n
parent-child relationships: and processes are bound together by
the data streams that connect standard i1nput and stendard output
{and by other streams that may be explicitly opened by the
processes).

The knowledge that a group of processes belong to the same
session is useful for coarse-grained error recovery (killing the
session). Streams are used primarily to provide continuous data
paths between processes.

The parent-child relationship supports the flow of control
information among processes. When & program carrier 1s created
at the request of another program carrier, the list of children
in the requesting process’'s descriptor is updated. and the
requesting process’'s UID is entered as the parent in the new
process's descriptor. When & process 1s removed, a message is
sent to 1ts parent. The parent can then use that i1nformation to
noti1fy or terminate other children that were communicating with
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the first process. As a result, the processes form a tree; any |%ﬂJ“
subtree of this 1s called a process group. and the program ATV
carrier manager supports operations on process groups as well as v
on processes. these operations are applied to each process in the f};&“
subiree named by the process that the operation 1s invoked upon. f ‘%
These operations reduce synchronization requirements at process gwﬁ.
start-up. and still]l provide an easy mechanism to control all the ﬂ?
children of & process. - ".
The operations defined on objects of type CT_Program_Carrier aﬁp
are described 1n the Cronus Manual (see Cronus User's Manual g ‘JN‘
prog_carr(3)). 1n addition, the operations on 1ts supertype, ﬁ ‘l
CT_FPrimal_Process (see Cronus User's Manual p_process(3)) and the ’;‘ W
generi1c operations (see Cronus User s Manual object(3)) can be [ .
invoked on program carrier objects. The operations that are e
specific to the program carrier objects are: a&m&gq
» '.' "’ V-
Clear_Program :’.:':::‘;":‘
Load_Program W&ﬂ“w
- U
Proceed
Suspend ~b“
Stop l".'?::. i. '(
Report_State .l.' ek
Change_State ':‘é:':::'n'
Breakpoint .ﬂhﬁyﬂ
U
StopGroup i "
SuspendGroup RIS
ProceedGroup ﬁﬂ(ﬁﬁ?
et
Ngﬁhfﬁ
These operations are sufficient to meet two basic q;gﬁiﬁ
objectives: 1) It is possible to load a binary image into a new : ;
program carrier object, start it, and allow the process to .“ ,q
complete or be cleanly stopped, and 2) the Suspend, Proceed, ﬂ w
Report_State, Change_State, and Breakpoint operations, together :'.';:““.:n.
with the Primal Process operations., will support general remote h“ﬂ$ %
process control. N
L 8
The required keys for the object descriptor of a program
carrier are described i1n the Cronus User’'s Manual, on
prog_carr(3) end process(4). These 1nclude:
o Key_MyUID. Key_MyAGS, Key_IPCEnabled, and Key_Praiority,
all of which have the same meaning for program carriers
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as for primal processes.

o Key_State, which informs other processes of the current
state or mode of a process. The states reflect only the
interactions of Cronus operations and the process object,
and do not capture finer state subdivisions which are
host or local operating system dependent.

o Key_Stlnput. Key_StOutput, and Key_StErr identify the
data streams that are used for standard 1nput, output and
error reporting. The streams are used 1n a manner
analogous to the standard i1nput and standard output of
the UNIX process model. See prog_carr(3) for a detailed
discussion of the mechanism for 1nput/output redirection.

o Kev_Parent. which 1s the UlID of the process which
requested the creation of this process.

o Kev_Children, which are the processes, 1f any, created
directly at the request of this process.

o Kev_Threaed. which 1s a UlD identifying the portion of the
user session 1n which this process was created. A user
sessi1on may consist of one or more threads of activities
that may be running 1n parallel.

o Key_Terminal, which is the UID of the virtual terminal,

1{ any. that 1s associated with this process.

Since the program carrier object is designed primarily to support
user processes, many of the details of the use of these keys are
described 1n Section 11.

5.5 Process Support Library

The Process Support Library (PSL) is a basic part of the
Cronus 1mpiemementation. It contains a large number of functions
which can be used to construct Cronus object managers and user
programs. All Cronus programs are expected to use the PSL to
perform the functions which 1t supports. The distribution of
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responsibilities between the PSL and the Cronus kernel is often
not defined. and mayv shift from implementation to implementation.
Any program that bypasses the standard PSL i1nterface, and makes -
use of private information about this division 1s no longer " s{
insulated from modifications of the definitions of the objects,
object managers and the kernel, and the use of such a program may # Q&
produce unexpected results in the future. . .a‘

The following 1s a partial list of the kinds of functions '

S

\'I‘

which one may find 1n the PSL.

i

o A set of standard interface routines for all operations
on the basic Cronus objects. There are two sets of
interface routines: those which are designed for use with
managers &and other esynchronous programs. and which do
not wai1t for the response from an operation: and those
which are 1ntended for use 1n i1nteractive programs, which
do wait for a reply if one 1s expected.

o Functions supporting composite activities. such as
writing date on & file specified bv & svmbolic name

o Functions supporting the construction of Cronus ob)ect
managers. These include routines for manipulating UlDs
and UID tables, for managing the processing requests and
their responses 1n asynchronous processes, for creating
and modi1fying work—-in-process and intentions lists.

o A standard error reporting facility for both asynchronous
and 1nteractive processes.

o Sublibraries for message composition, string
menipulation, portable input/output operations. and
device management .

The PSL 1s described in detail in Section 2 of the Cronus User's
Manual .

Y |‘l .' (]
V7 ‘ t"’
b“

t".Q: '“

.‘. .‘
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6 Interprocess Communcation and Messages
6.1 Overview

Cronus presents a set of facilities for the composition of
messages and their transmission to provide & systematic
communicetion facility among Cronus processes. There are three
parts to this communication support:

) An 1nterprocess communication (IPC) transport faecility,
based on the object model and object-oriented addressing.
provides Cronus primit:ives for uniform. host-independent
communication among processes. This facility, which was
introduced 1n Section 4. 1s further described i1n the
current section.

o Conventions for passing data using Cronus canonical data
tvpes permit messages to be composed without concern for
the heterogenelty within & cluster.

) Protocols and conventions for constructing messages used
in 1ntercomponent interactions. especially the invocation
of operations and the replies.

The Message Structure Library (MSL) organizes these conventions
and protocols by providing routines for the composition and
examination of messages.

The 1PC mechanism of Cronus 1s built upon the primitive
functions InvokeOnHost, SendToProcess, and Receive. These
primitives support the asynchronous communication of
uninterpreted data octets among Cronus processes, by means of the

abstractions of sepnding to a process or jpvoking an operation on
an obj)ect.

Messages, the entities communicated by the IPC, may be sent
either reliably or with minimal effort. 1In addition, notions of
both a small message which can be carried by a single datagram on
the underlying transport mechanism. and a large message which may
require an arbitrarily large number of deatagrams are supported,
although this distinction is hidden by the IPC library routines.
Messages may be sent and received all at once or in pieces. The
s1ze of the chunk of data manipulated 1s independently selected
by the sender and receiver. Large messages of 1ndefinite size
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form the basis for interprocess stream communication.

The Message Structure Library (MSL) 1s used to format
messages, but 1s independent of the IPC. It provides a mechanism
for i1nserting and extracting typed, structured deta into a
message buffer 1n a position- and machine-i1ndependent manner.
Associ1ated with the MSL are conventions, called the Object-
Operation Protocol, for the patterns of communication that arise
in performing operations on Cronus objects.

The IPC and message structure facilities. and their
relationship, will be discussed 1n the following sections. The
detaills of the 1nterfaces and the specific amplemenation of the
IPC wi1ll be found 1n the Appendixes on the COS implementation and

in the Cronus User’'s Manual.

6.2 Messages 1n the IPC

The IPC facility supports two classes of messages: reliable
messages and minimal effort messages.

A message sent reliably will be delivered to the receive
queue of the addressed process (or the manager of the
addressed object on an InvokeOnHost) despite transient
fallures 1n the communication substraete. A reliable
message will be delivered at most once.

Minimal effort messages are transmitted with whatever
reliability characteristics are provided by the
communications substrate. The IPC facility does not
attempt to provide & sending process with information
regarding the disposition of the message.

In both cases, the message is protected by an end-to-end
checksum, so 1f the message 1s delivered, the content may be

presumed to be correct.

The sending process may use minimum effort messages whenever
1t seems appropriate. The current 1mplementation uses them for
all messages sent to a broadcast or multicast address.
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Messages mav also be categorized by length. A small message dgﬁbw

will fit 1nto an IPC packet throughout the cluster. The maximum YN
size of a small message is implementation dependent, and in the i
current svstem is about 1500 bytes (see Cronus User's Manual 'ﬂ:*ﬁp
message(4)). A large message may have a length set at the time é@ﬂ%ﬁ
the message 1s 1nitiated, or the length may be indefinite. '::':::"::'
Minimal effort messages are constrained to be small, while fgtiplio!
. .’l"..‘
reliable messages may be small or large. X MXG

9
A large message may be of any si1ze., although they are {“}ﬁﬂ‘
generally larger than the small message li1mit. and the PSL .ﬂbﬁ
automatically selects a small message for messages below the ﬁuwﬁb
limit and a large message for a message above the limit. :.0':.\"‘:.:,1
oA

Messages of indeterminate length support Cronus streams, ——J
which are uni-directional date channels between a source object “g {{
(sender of the message) and sink object (receiver). Cronus }5%“”
streams are used to i1nterconnect processes with devices and with *ﬁbﬁ‘
other processes. Although data flow on the stream 1s |¢5&d?
unidirectionel. the 1mplementation of & stream i1nvolves MO
transmissions 1n both directions: from source to sink conteining ] .r
data. and from the sink to source containing flow control and Qhéyw
synchronization information. hﬁqﬁqw
0030 .

'I.Q'l ,'l
One objective for the IPC facility is to make the %@*um,
distinction between small and large messages be as small as TR
possible. In particular, the content and structure of the ~ ..
information contained 1n & message. and anyv information about a Qa,gt
message that 1s delivered to & recipient {(e.g., size, source, _v,ﬁf'
etc.) is i1ndependent of 1ts transmission characteristics. The : .ﬁﬁ.
sender of a message indicates whether or not the message is to be &.\'“
transmitted reliably, and its length, if it is of bounded length. i,
The receiver need not be concerned with these characteristics of et
the message. nﬂC5 :
QU]
) 5 ."
Y
\ WY ‘l. {
"'"‘."
6.3 Programming Interface AR

The programming interface for the IPC provides facilities %?ka
needed to 1nvoke operations on objects, send messages to

processes, and receive messages from clients. Many application
programs wil]l be written in terms of higher level routines which

mav be found i1n the PSL. The i1nterface described 1n this section
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is primarily of i1nterest to systems programmers who are ~ ﬂ%$ﬂ%
| developing and meintaining object managers and PSL routines. ”f.&
The i1nterface provides direct support for the Cronus .qw
primitives (InvokeOnHost, SendToProcess, and Receive), for the Jﬂﬂ‘
full range of message types (reliable small, minimum effort e
R ..ﬂ.".v_
small, and reliable large), and for various buffering strategies d@“?d‘
that the sending or receiving process might wish to adopt. NN
]
When a process 1nvokes an operation on a Cronus object, it N”f
uses the PSL function Invoke, when the message is tranferred by hﬁwzﬂ
the SendToProcess primitive, the process uses the PSL function ‘;w¢°h
Send. In either case. the process indicates the size of the '5$$@w
message being sent, whether 1t 1s to be sent using reliable 'ﬁ, *
transmission, &and polnts to a buffer which contains the
information which is currently available for transmission. The \#?n
buffer mav contain the entire message or any portion thereof (see ﬂ
Cronus User s Manual send(2)). The IPC accepts the information .b% X
. 19 .. |.’I
for transmission, and returns a small integer, called the message ,?ﬂzﬂh
handle. 1f there 1s more information to be sent, a new buffer 1s hﬁkfﬁ
given to the SendMore function, along with the message hendle. Y
Finallv, the message 1s completed by applyving the LastSent ’W%"%Q
function to the message handle. R
::::t"c‘
L4, ‘. '\
The operation switch on each Cronus host provides buffering XY ';
for messages and synchronizetion between Cronus processes. fﬁ
Buffering and synchronization are closely related, because
buffering 1n an intermediary influences the synchronization ‘.t'.!
points between processes. qﬁ
-"a'
The sending functions accept the message 1f it can be queued r“‘“&ﬁ
somewhere within the IPC mechanism. [t can be in & host- ' mn
dependent transport mechanism between the process and the Y
operation switch (see Figure 1), on the “receive queue” of a ;ﬂﬁ‘@
Cronus process (1f 1t 1s an i1ntrahost message), or on the sqgﬁ
“network queue’” of messages waiting to be transmitted (if it 1s l:::t ::.
v
an 1nterhost message). I1f the message cannot be queued ‘hJ@#Q
immediately, 1t is refused by the IPC, and the sender is 'ﬁ‘&c

responsible for any required recovery.

Even 1f the message is accepted, the IPC does not report
that the message has been delivered or that delivery can be
assured The only way the sender can be assured that a message
has been received by 1t 1s to wait for a reply from the 1ntended
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recipient. Cronus managers respond with at least =a ReplyCode Ny

vhenever an operation 1s 1nvoked on an object. User processes it

should normally observe a similar protocol, since lower level e

§ protocols cannot assure dejivery of messages. ﬂﬁﬁb.
K Q'"’
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! queues A»‘
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e 1 o

ST e ey,

Peer—to- queue - | | |-.-> Receive Lt
peer >= e ————

Message <—==] ] | e
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int st . : "
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¥ ! l.\':: X}
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Process to Operation W PON
© Switch Transport G

)

Figure 6.1 Schematic of the Operation Switch o

The receive queues are maintained 1n FIFO order; the network *{\_
) queue 1s a group of FIFO queues, one per destination host or e
: process. Entries on the receive queues are delivered to client ?
processes to satisfy Receive requests, and entries on the network ‘1&%&
Y, queue are transmitted to remote operation switches, where they
i are placed on the proper receive gueues.
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When the receiving process 1s prepared to process new data,
it executes the Receive or ReceiveMore function. Each new
message is started with Receive, and 1f the entire message is not
available, or cannot fit into the buffer that has been given to
Receive, more of the data can be read with ReceiveMore ‘see
Cronus User's Manual receive(2)). Both functions return
immediately with the data, if any, that is available.

The buffering strategies in the two communicating processes
may be different. The sending process can, for example. send the
entire message i1n one pilece, and the receiving process may choose
to receive 1t a chunk at & time.

The IPC &lso provides functions which give the client
control over the message queues. the basic timeouts which control
error handling. and the processing of asynchronous events (see
Cronus User's Manual i1pcmisc(2). receive(2)). These functions
include.

Wai1tForChange suspends the process until an i1nteresting
event occurs. Typically. this will be the arrival of
another message or more data for & message which has been
partially received. Other 1nteresting events 1nclude
timeouts and events which are unrelated to the IPC
mechanism.

AbortMessage deletes a message from the queue without
completing processing (ei1ther send or receive).

SetDefaultTimeout adjusts the standard timeout for the
process.

MsgQueueSize tells how many messages are waiting for
processing. 1ncluding any partially received messages.




6.4 IPC Implementation

The i1mplementation of the Cronus IPC can be described at two
levels. There are some elements of 11 which are generic; the

: structure of the 1mplementation must support those facilities

! which clients expect of it. These include the overall issues of

i buffering. syvnchronization, and reliability. for example. At the

~ second level, there are specific decisions about how the 1nitial
implementation wil)l be constructed. Future implementations of
Cronus may choose to do things 1n & very different wav. For
example. the current 1mplementation uses the DoD standard
connection protocol, TCP, to 1mplement reliable message

transport. Future 1mplementations mav use a different reliable
transport mechanism.

Cronus IPC supports three types of messages.

o small, minimum effort messages,
o small. reliable messages. and
o large. reliable messages.

Neither the protocols used nor the structural requirements of the
implementation specify the division of responsibility between the
" operation switch and the PSL for these various classes of
message. In fact, the division might be made differently in
different hosts 1n the same cluster. The transport mechanisms
used 1n the current implementation are shown in Table 6.1.

Small, minimel effort messages are sent from Source
Operation Switch to Destination Operation Switch by means of P
detagrams using the standard User Datagram Protocol (UDP).

Recei1pt of an IP/UDP datagram bv the Destination Operation Switch
1s not acknowledged.

el g o~ 3

On receipt of & datagram. the Destination Operation Switch
determines 1f the enclosed message should go to a local object or
process. If so, 1t places the message on the receive queue of
the object manager or process
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TYPE OF MESSAGE TRANSPORT MECHANISM x

?’

Small, minimal . IP - Operation Switch <-> Operation Switch ' kﬁL

effort A‘-l.

Small, reliable. TCP - Operation Switch <-> Operation Switch f‘

Large. reliable TCF - One connection per large message, W
connection establishment initiated by
an Operation Switch to Operation Switch ety
interaction, but connection may be 1n i ,
the Operation Switch or the PSL. at the \QﬁJﬂ&
discretion of the host implementation. et

Table 6.1 Message Transport Summary v'

The i1nitial i1mplementation of Cronus will transmit small, H"'*ﬁ
reliable messages from Source Operation Switch to Destination '*
Operation Switch over a TCP connect:on because it i1s the fastest 3 RIS
way to get the 1mplementation working. TCP provides services not o,
required for small reliable messages (e.g., strong sequencing, B
reassembly) and we mav find that the overhead thev i1mpose makes j”;ﬁﬁ*
the performance of the IPC unacceptable. 1f this 1s the case, we “ﬁfﬁ
will develop & reliable small message protocol (RSMP). RSMP ‘lﬁﬁfﬁ‘
would perform the following services .

o Provide receipt acknowledgement. o

%
5

o Provide for retransmission.

T At AN g
}l‘ !

P L
55
LA

o Perform duplicate detection and elimination. ‘{\-

o o""“"

As with small minimal effort messages, upon receipt of a
message the Destination Operation Switch will determine which
local object manager or process should receive the message and
will place the message on its receive gqueue.

-63-

\ 0N f- o X ..l -T
. ‘H"n .v'i -
o ?3' . -v.. e “ R ~' %ﬁ:‘:!' ':5:-:‘ 5"5& h.., NN AR OR R



> Large messages are implemented through & TCP connection for
e each message. There is an interaction between the source and
destination hosts to establish the TCP connection. When the
message has been transferred, the TCP connection is closed.

The following steps are used to establish a new TCP
connection to carry a large message between t{wo processes:

The source host selects the port to be used for the TCP

. connection. and puts its end of the connection into the
listening state.

The Source Operation Switch sends & StartlLargeMessage (see
Cronus User's Manuel message(4)) message over the Operation
Switch to Operation Switch TCP connection. This messuage
speci1fi1es the destination. the port for the TCP connection,
and perhaps the first part of the message.

(SRR
RS

-
- -

s

The Destination Operation Switch places the message on the
recei1ve queue of the object manager or process.

: When the destination process executes & Receive and finds
ﬁ; the first part of & large message, any date sent along with
e 1t 1s delivered. The destination host selects & port for

? 1ts end of the TCP connection, and uses the TCP port

kﬁ supplied within the StartlLargeMessage message.

After the connection 1s established. the source host will
use 1t to pass message data to the destination host.

o

After the source process sends the last chunk of data in the
large message, the TCP connection will be closed.

- o
o e

This discussion does not specify whether the Operation
Switches or the client processes are responsible for managing the
connection that carries the bulk of the message data, nor whether
the Operation Switches or client processes are responsible for
actually using the TCP connection to send and receive message

data. These 1mplementation decisions may be made differently for
each host type.

e

- o
P Rt 304
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6.5 Object Operation Protocol : 4““{!
'b..‘lt‘:
The Object Operation Protocol (OOP) 1s used by the PSL -
whenever operations are invoked on Cronus objects. There are dﬁﬁﬁﬁ
three basic message types in this protocol:. Request, Reply. and EQSQ}
InProgress. All of the messages i1n the OOP are marked as q&ﬁ%ﬁ
belonging to the operation protocol, and each 1s marked with its :“.i"“:l"‘:.
basic type. Messages arising from one Request normally contain ity et
the same Cronus unique number called the operation identifier. A @
Request message also contains the operation neme and a Reply Qﬂ%@&
§ OO RN
) message contains a standard replv code. These are the minimal ':qu
, contents of the messages. they also contain add:itional, L'
' operation—-specific 1nformation. y
. t’n‘“&"‘
The simplest message pattern i1nvolves one Request message ®
generated by a client, and one Reply generated by an object :1&@*
: manager 1n response. “f%
‘ O
' During a manager's handling of the request. 1t may send an \ﬁﬂfﬂ
X InProgress message to the original requestor. Any number of !“”HE
‘ InProgress messages may be generated by manager processes _
. handling @ request. they are &ll addressed to the process which ».hkha
! Iinitiated the Request message. A client mav use these messages 5}¢¥§
to reset time-outs. for example. #$ﬁﬁ
%
! We distinguish between a simple operation (or operation) and ""'f."'.:
' 8 compound operstion. A simple operation has a single operation
name and operation i1dentifier. Anyv manager process, in the .af'
; course of acting upon a Request may 1nvoke one or more new \?}ﬂg
(simple) operations by sending Request messages. A compound ,ﬁﬂﬂqy
operation 1s the aggregate of all simple operations arising from .?hh{
or caused by the invocation of one simple operation. Normally, WORX
all of the suboperations will complete before the intiating L
simple operation completes. Each of the simple operations has 'Q#fq

its own operation identifier, so a process may invoke several
sub-operations 1n parallel.

Sometimes a manager cannot complete the processing required
for an operation. for example, a request for a catalog lookup may
be satisfied only by the cooperation of catalog managers on two
hosts. The manager may then either.

o perform as much processing 1t can, and send a Reply that
1s marked Incomplete, or

-65-
) .:':‘: ,n‘:'
. ‘}.
AT *'Sh X ‘o s ot q 5 Q‘ ﬂ\!
.".‘:' "' ‘:""' :“" "" f ,0. " .9.'.0..“."“.! "":::m I,n t,o it I:' ':: XX .l:: '. :’ '.:.‘::.. Mo 0'0 .:0;: a':‘!, k‘?’,. \"n LI a‘ .l :\ 'o‘



o elect Lo complete it using sub-operations, which follow
the same pattern as requests, and send a Reply when the
operation is complete.

1f the manager chooses the first of these alternatives, it can
often send the text of the message that the client needs to send
to the other manager as part of the Reply. The client can
complete the operation by 1nvoking another simple operation.

It is desirable for a Cronus process to be able to query the
status of a compound operation. The operation 1dentifier of the
original request 1s used as a global identifier for each
suboperation. Since this identifier 1s 1ncluded i1n the Request
messages of all simple operations 1t causes, the managers acting
on suboperations can respond to a status query keyed to the
initiating 1dentifier.

6.6 Messapge Structure

The primary design goal for the Cronus message structure 1s
the regularization of control traffic. Control traffic i1ncludes
requests for operations to be performed on objects, replies
generated by operations, exception notices, and messages needed
to coordinate distributed object managers. Control messages are
usually short (tens to hundreds of octets). Because performance
is @ major issue, messages should be compact, and efficiently
composed and parsed.

A message structure can be evaluated in a number of ways. A
discussion of evaluation criteria, and an application of these
critera to a number of well-known message structures may be found
in [BBN 5261] As a result of that analysis, a standard Cronus
message structure was formulated. It has the following
characteristics:

o Messages are self-describing, so the fields may be
identi1fied by name rather than by order. This simplifies
the parsing of messages, at the cost of transmitting the
identi1fying i1nformation.

o The conventions rely onlv on features that are available

N g'l‘ %‘.‘0:.'.:.":;'!::‘0‘. l:" ¥ \‘:’d‘.‘lﬂ' ", ) ) ..0'
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1n meny programming languages. This improves the
portability of the implementation, at the cost of

1increasing the cost of a single 1mplementation. N 1“%
doo!
o The need to define new data types, which are treated in Yot
the same way as the pre—-defined types, is explicitly
recognized. This 1s consistent with the general

philosophy of Cronus design.

o Name and data type fields are compactly coded., and
efficient programming i1nterfaces are provided, while the
overhead of a general message format 1s held down. These
all contribute to good system performance.

The Message Structure Library (MSL) is a collection of
functions thet 1s pert of the PSL; these routines fall 1nto three
classes.

o application interface functions,
o data translation functions. and
o structure manipulation functions.

The application 1nterface procedures construct the message in an
externas} representation. which 1s machine i1ndependent, using the
data translation and structure manipulation functions. This data
structure can be transmitted from one process to another, and
subsequently parsed by MSL procedures at the receiving process. A
summary of the functions and a cross reference to detailed
discussions of them may be found in Cronus User’'s Manual, on page
msl(2).

The Cronus external representation is based on key-value
pairs, where the key 1s a conventional name that 1s stored with
each data value. The key indicates the meaning of the value.

The value. 1n turn, consists of a data type indicator and the
actual date. Including the type indicator assures us that we can
move the data from one Cronus host to another. The internal
representation of the date mav differ at the sending and
recei1ving hosts, but 1t 1s always transmitted 1n @ canonical
fcrm. along with 1ts type [Herlihy 1982}.
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A canonical type 1s ei1ther en patomic or composjte type. An
atomic type, such as boolean or signed 16-bit i1nteger, defines a &
set of primitive date values. A composite type, such as array,
has substructure defined 1n terms of other cenonical types (see “ﬁ.ﬁﬂ
Cronus User's Manual can_types(4)). . §.ﬂ

oo

Keys are coded as short (16-bit) integers, but values can *Ufﬁh

vary 1n length from one octet to many thousands. and are not <, .o
restricted i1n form. and may be built from simple or composite .

data types.

¥p O ﬂ;,ﬁ‘

Most IPC messages passed among managers or between processes v%
and managers use a high-level protocol called the Object- ﬂqﬁ?h
Operation Protocol (OOP). OOP 1s based on & set of well-known fﬁﬂﬂ”
kevs which are used object managers (see Cronus User s Manual .
kevs(4))

-68-

BN

-t ' s .
'v’.'n l.: i:: ‘s 0"5 c‘. ||' 'H' l’l 6‘ '. '. 0’ .‘l“" ! .' ’ \|l 0':"“"“ ..x' NS, ‘ "‘0' A:l .' :::."'0‘.'
.

l

AN w’ .‘-’, Wty 'l" e e "|,l' SOOON0N |.l'o' l'o 0' .“ ‘ Oy "'v At I,..I"'l.“l "c.l



A N I T N O O OO A O O ODAN AR T KR WA R DU TR UL WU U U U UL I R

7 Authentication, Access Control. and Security : RN

7.1 Introduction

o l"'o':
The goals of the Authentication and Access Control facilaty ﬁhﬁﬁ?&
are: ‘”ﬂﬁﬂw
_$Q
1. Prevention of unauthorized use of Cronus and unauthorized Attt )
access to DOS maintained data and services. ®
9%, .. "~.
2. Preservation of the integrity of the system and 1ts “:f“ﬁ&
components ageinst intentionel i1nsertion of unauthorized %@%ﬂﬂ*
components. "'l:‘:':".".‘t
l‘ l.ft"h
3. Support for a uniform user view ol access control to the ()
resources and functions provided by Cronus :;:5-1\
Oy SO
4. Survivable suthentication functionality '.l':i:
\'l'g:l
\- ‘.l".l
The design of the access control and authentication facility ;0\.
assumes that systems 1n a Cronus cluster are all 1n a single
administrative domain. There are & three broed classes of hosts I.g"g'”
within the cluster. v,“l."!:"::
Wt
o hosts dedicated entirely to Cronus system functions and aﬁgﬁhﬁ
not user programmable. ot
- ®
) hosts supporting user applications using tamper-proof .H}";ﬂ
multiple protection domains (trusted multi—access hosts); . ]~ %
and ?‘:.c:.‘
- ' S
o hosts supporting user applications without secure MYy
multiple protection domains (single—-user workstation o
hosts). PRy,
. }
«:':":\::'
We assume all hosts supporting dedicated Cronus functions ':'.t".::‘
and multiple user protection domains are physically secure from kﬁﬁ%\\
tampering. Workstations may not be completely physically secure,
but have at least a tamper-proof component. At minimum, this 'l,"@'\:;
component 1s 1n the local network address insertion and reception & N ’a#
function. It could, however, be higher up in the workstation

system. 1n the virtual local network 1nternet address insertion
and reception function. 1n the obj)ect system process—unique

-69-

{ f oy o I’-F-' e J'-.’J' G Ll !\‘l.!‘ f-
“ ‘. w ~ \". \ &*ﬁ)"v&\' \v'& 5‘(&!‘ J\;’ -)\}'\i\ :t*-' :: J‘ﬁfﬁ'(‘w “If\ \f\-'\vl‘ 1'\. k‘\-‘t-‘\:- ‘* ﬂ.h.‘- -'J‘.-IF

-
o~ gy A N
"t "'H“t"l..h':.,A‘"ﬁ.'.‘ ‘;‘O.‘l...h. o. Rttt AN e gt J‘\

Ay ! o ety

A
‘ S ‘c.t‘



e i f e va i e 2tk 3%s Ml g A7y ke @Ve ST VAV 4V ana At 40 27 @ ia AU 24 8T N6 WR Ty dah 05 R TaB Fed 0 U P bk R g [N

R A a'b 0l ! "c .‘.O. AN

O
ot
l:::':::u
't
R
L
o
0ty
ey
‘Q.“.“'(
l..:l'r
St
"&'n"-
?‘l'..’l‘.
o
\ (™ o YL
O
f ; s
- ‘.""‘.
" :'izz'!:i
: identifier insertion and reception function, or even higher. In ‘:""::0"
this sense, all user—programmablie hosts support multiple ',ni'!u.!f’
protection domains (user and system), although in the limiting -
‘ case, the "system” domain mey simply be a piece of network .‘.:
4 interface hardware. Since we ere not aware of any workstation “‘:’,g
e systems meeting this requirement, we assume future product W :‘0',:
:' packaging changes. There seem to be two viable positions to take i ':"
N regarding the assumptions on these changes. o
L J
) 1. Assume only an absolute minimum. that & single low level 'N'.
K "address” can be protected. » 0‘";
OO
', 2. Allow the set of protected functions to grow as needed to "t‘::t
‘ convenlently i1nterface the workstation 1n & manner as W
- similar as possible to multi-access systems. [
Dy Weathy
_‘: The extreme solution to the second approach could be an access :.:0:::1:.
N machine for each workstation. although other solutions are also %:.:::.:
! possible. For our current work we will assume the second ‘.,l":,:"e
\ approach. planning only for an arguably i1nsecure implementation '.'o‘i.nf
directly within the workstation. ®
(A
. iy
i The network (cable) 1tself may also not be totally : ‘:I’.:z
: physically secure. While parts of 1t can be expected to be ;.‘oﬁ'.:;g
1 secure (e.g. within & secure machine room), other parts can be Q‘.Oﬁ:t‘;
) expected to be exposed to unauthorized connection. o‘q‘,ﬂo'.i’
o
e
. s
\; h&, ‘
il 7.2 The Cronus Access Control Concept .::;
L) '..’
t . "."'."
\ 7.2.1 Decomposition of the Access Control Problem AR
L
3 The basis of access contrel 1n Cronus is the ability of :"-?*-,'-
: Cronus to reliably deliver the address of a sender of a message ::S,s"‘
‘/I (or i1nvoker of an operation) to the receiver of the message. The ’v&\.
" Cronus communication subsystem is implemented so that this is j:»“f\"
' true. That 1s: h'S. %
9
. for IP and Virtual Local Network: VI L)
N AN
¥ . OO
*
:. 1f the sender is within the Cronus cluster, the ::::::0:.:‘
¢ internet host address of the sender 1s reliably "'L:':i§
\ delivered to the receiver. If the sender 1s not within !
AR
! S
' -%0 .‘" ..‘
1 tuU— .||
" S
. "
c. - -
“'t': . ".'"(‘:' KAy "’:' l. "c’.'n" .., .:l N "'; -". N oK 'Q" F» Y ‘k -}&3:-( N\"\“‘\ »
.‘{ 0 0
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the cluster, & non-cluster internet host address 1s :s::h:::v
delivered to the receiver, which can be interpreted by ‘:l,::o,::
the receiver as indication that the authenticity of the S
sender’'s address might be suspect. oy e
3 J . 0t
ot
" for the Cronus IPC/object system: \.:t 3
Rt
: The UID of the sending or invoking process is reliebly s).'-\'..
delivered to the recipient of the message. ' '.
A
The recipient of a request can decide on the basis of the 'ﬂ"
:, sender's 1dentity whether or not to perform &an operation ",:‘.c'.:f
¥ requested. 0‘:.0,:‘!,
K l“.',-
Iy ﬂ.\\"
4 For this to be a useful basi1s for access control, a means °
- for reliably essocirating some authorization with senders’ l}'f-'?
;: addresses and process UlDs 1s required. ' u::'.f
U AN
' 1y
N One approach 1s to make static bindings between ‘ 0:.‘.0:&
',) authorizations and addresses or UlIDs. These bindings would be :gq't:
¢ “well-known", such that when & process receives a request from
the process with UID_Y it knows that the process 1s acting under ::5“;‘1‘..
. the Z_Authority. This method 1s used in the ARPANET TELNET and ‘:::.I!j
¢ FTP protocols, users assume that the process for sockets one and a‘:‘:‘ﬁ"
: three are under the authority of the host edministration and can ":':n'u:
i be trusted with their passwords. Static bindings are too |oj
! restrictive to be the sole mechanism 1n a system like Cronus, )
, although & few static bindings are required for the access 'u";t'.q;
‘ control mechanism to work (see Section 7.6). "l::‘:.‘
NI
) ol
: Dynamic binding 1s useful when authorities are not all known .O'.gn:::t
) at system creation time, and when processes are dynamically ‘l.‘;‘t
p created. The system must not only support mechanisms to ‘
‘ dynamically establish the binding between a process and an '-'_';*-_.._;
:0 authority, but also to dynamically determine the binding from 'r'-;.,_\,
;: some system entity in & trustworthy manner. " t’ﬁ,‘
U Ll
» iy
: Most Cronus activity is the result of requests initiated by ::.»;
A users of the system. Human users are represented by an ' '.
abstraction called a "principal”. [If we extend the notion of a N
: principal to 1nclude elements of the system, such as object " ..,1::,
managers, all activity i1n the system can be thought of as "l.:}.‘
initiated by principals. System elements which are principals ‘ ':.l::
4 are called "system principals”. Each Cronus principal (human or ".'n':'!
]
‘ '. l"
) .‘.‘ ““:'.
' ~ .'o':.o'...'
' -71- .'Q"'. )
O]
. 't:,‘o'.:o:
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system entitv) has a unique identifier. Different system
principals have different authorities. For example the primal
file manager and the printer service are Cronus system
principals, neither of which need be euthorized for all of the
objects and operations accessible to the other.

Access control can be thought of as consisting of the
following steps:

1. Identi1fication. Determine the i1dentity of the principel
that 1s requesting & particular operation.

Authorization. Determine whether the principel has been
authorized to perform the operation.

For example. when an ob)ect manager must decide whether to
perform an operation. 1t must know the 1dentity of the principal
that is requesting the operation (ldentification) and the rights
the principal mav have with respect to the operation
(Authorization).

T.2.2 Authorization

Cronus uses access control lists to support authorization.
The access control list (ACL), which is part of the object
descriptor. "protects” a particular action. In the simplest
case, 1t 1s a li1st of the principals who have authorization to
perform the action. When & principal attempts an operation, the
li1st 1s checked for the principal, 1f the principal 1s present
the authority to perform the operation has been verified and the
operation may occur.

In Cronus this simple i1dea is extended in two ways:

Group 1dentifiers may appear on an ACL, so an entire
group of principals can be authorized as a unit, or have
1ts authorization revoked as a unit.

A set of rights is associated with each identifier on an
ACL. A single list cean selectively control a principal's
or a group's access to &an object for which several
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operations are defined, such as a file. Rights are
abstract, bound to specific operations by the
implementer.

An ACL 1s & list which contains elemenis of the form.
(1d. rights)
where "“1d” 1s either a principal (PID) or a group identifier
(GID)., and “rights” define the principal’'s or group's
authorizetion with respect to the object the ACL protects. The
allowable rights for a particular ACL are dependent upon the type
of object being protected.

Users log 1nto Cronus as principals by supplving an
appropriate name and corresponding password(10). A system
component called the Authentication Manager maintains records of
all principals and groups. Collectively, these records form a
User Date Base (UDB). At login time the Authentication Menager
expands the membership of & user-specified subset of the &access
control groups which he 1s a member. This 1s a transitive
closure computation on the specified list of group i1dentifiers 1n
the user's record. The user’'s own 1d, PID. 1s added to the
result of the expansion. The resulting set of principals is
called the access group set (AGS) for the process:(11)

AGS = {PID} U Show_Group_Membership_Expanded (GID)
for the default GIDs »n the PID record.

The AGS is used in access control checks as follows. When -
an action protected by an ACL 1s attempted, the ACL is compared
with the principal’'s AGS. 1[1f en entry of the form:

(ID, (.... Right, ...)})

where

(10). See Appendix A for a more complete description of the
login and session 1nitiation scenarios.

(11) The basic ideas associated with Access Group Sets have been
adapted from similar work at Carnegie Mellon University in the
Central File System project.

4
-
-
«

ZE s

S

@
o

. w',c
. )
% AR )«r WAL , o N " :,, ;, R A A e N PN NN I AT s f._“'.-:;: ~
A o s A TN NN Ny "5 D A O o oA
J‘. \*‘-I'.O o | ! 1?‘ X n' L) n'uv LX) ﬁ RLP 3K W N l.“ N A I"I. L . Ao LA Da L% B L AN



ID is 1n AGS. and
Right i1s required to perform the action

1s found on the ACL, the principal’s authorization 1s verified
and the action may be performed.

During a session, a user may add and remove identities from
the current AGS. To add & group 1dentity, the user must be a
member of the added group. Updating the current AGS s
accomplished via operations 1nvoked on the Authentication
Masnager. which causes the updete of the current process AGS list.
These operations affect a single process however, the new AGS
w1l] be 1nherited by subsequently-created children only.

7.2.3 ldentification 1n Cronus
There are two related i1dentification problems.

11, At the start of each session. the 1dentity of the user
must be established.

12 Processes must be able to ascertain the i1dentity of the
principal corresponding to the processes with which
they 1nteract.

The solution to both problems lies 1n a set of mechanisms that
bind processes with principal 1ds and group identifiers. These
mechenisms depend upon the ebility of the communication system to
deliver the UID of a sending process to the receiver of a message
reliably.

It is useful to restate these problems into the following
terms.

1. A binding must be esteblished between & process and an
AGS,
2. There must be a means for a process Pl to determine the

binding between another process P2 and 1ts AGS.
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¥When a user approaches Cronus to start a session & process (P1) A;fﬂ
1s allocated(12). Pl cannot be bound to U (the user's principal V;ﬂb
1dentifier) unti1l Cronus establishes the connection via password
authentication. Before that happens, Pl 1s bound to & well-known : ‘Qﬁ
principal., “Notloggedln’”, which has minimal authorization. One n :
task of the login procedure 1s to change the binding of Pl from *S tﬁ
NotlLoggedln to U. Btk

The binding between a principal 1dentity and & process 1s

established by the Authenticate_As operation. The user engages szﬁ&
in en authenticetion dialogue with Cronus, supplying a name and ‘#éga
password which 1s checked against the UDB If the suthentication h&{w
dialogue succeeds, the AGS for U 1s computed and & binding 1s el g
establishcd between Pl and U. A record of the binding kﬂﬁ W
@
P1, U, AGS AN
T
e
1s maintained by the process manager for the suthenticated };ﬁi
process, to be used throughout the process lifetime. The ol
1dentity of the user has been established. completing problem [1. Bﬂ?*'
@
Throughout the course of U's session. P! and other processes PR,
acting on behalf of U ettempt actions which require guthorization : : 4
verification by the processes that perform the actions. This 1s yy% ?
problem 12. Consider a situation i1n which Pl has requested gy W
another process (S1) to perform some action (A). shown i1n Figure o o,

1

In order to perform an &access control check, S1 needs v
determine the binding of Pl The 1dentity of Pl 1s known to Sl
because Pl's UJD was delivered along with the operation
invocation that requests A. S1 can obtein the binding of Pl by
invoking the Authorization_Binding_Of operation.

Authorization_Binding_Of(P1) -> U, AGS.

Authorization_Binding_Of causes a message to be sent from Sl to

(12). Cronus ectually uses a more complex process structure to
support & user session, as indicated 1n Appendix A.3. However,
the following discussion i1s i1nsensitive to these deteils., so we

use this s1mple model 1n our explanation
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Figure 7.1 Retrieving access Control Data

the manager for process Pl, which returns the bindings for the
process to Sl

The login sequence establishes a binding between user (U)
and an “1nitial” process (Pl). Bindings are established for
other processes created during a user session through
inheritance. During a user session, processes created by an
authenticated process inherit both the principal 1dentity and the
current AGS of the i1nitiating process. Object managers attain
their principal 1dentities and access group sets as part of the
system i1nitialization phase.
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7.3 Access Control List Initialization o
(™) 1!:".’
A common problem associated with Access Control List
v ) A . T
mechanisms is the effort required for proper explicit (manual ) R
initialization. In practice, the ACL for a new object can often d;ﬁ'z
be automatically predetermined based upon the type of the object, ?dl#
the creator, and the context in which the object is created #:: !
(primarily the directory in which 1t 1s subsequently catalogued). f.-&%
This 1s the premise upon which the Cronus Initial Access Control o
List (IACL) mechanism 1s based. A,
i
(K)
A li1st of type-specific TACLs mav be associated with !jﬂdﬁ
selected Cronus objects, currently Principal and Directory rb&;
objects. The IACLs are manipulated using the standard ACL 'Qhﬂ
maenipulation operations (ReadACL, AddToACL, RemoveFromACL),. ] !,
distinguished by an optional key denoting the type with which the ‘*5}&
JIACL 1s to be associated. The IACL mechanism also supports the -ﬂ%}?
Cronus type hierarchy. the J1ACL associated with an ancestor 1n r$$*m
the type hierarchy will be used if a more specific 1ACL for the ;eﬁ%}
type i1tself has not been specified. iy
) ]
Cronus Create operations 1ncorporate the following algorithm Eﬁf )
for 1nitielizing the ACL of newlv-created objects. - o
i
W )
1) A list of “IACL hints” (UIDs of objects potentially cﬂap‘d
having IACLs associated with them) ere searched in order Wy
for an 1ACL pertaining to the type of the object being -
created. The first one found is used. These hints Q?V )
usually reference the Cronus directory where the object 3§$A*
will subsequently be catalogued. e ]
-‘, »
. Dty
2) 11 no IACL search is specified, or the hints fail to ta

yield an appropriate JACL, the object for the Principal

invoking the operation is queried as 1f 1t were i1ncluded }cg{j
at the end of the hints list. el
"‘Al‘;‘ y

R

3) If an IACL 1s still not found, the invoking Principal 1is quf
given all rights to the object. T
There are user commands for setting up. examining and 'WTY
modi1fying the initial sccess control lists retained with cronus n k
objects. K '::ol:.:
s
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R 7.4 Authentication Manager

The Authentication Manager defines and maintains two types
cf abstract Cronus objects: CT_Principal and CT_Group. Like

3: other system objects, the CT_Principal and CT_Group identifier

;* objects have symbolic names for convenient human access.

{' Principels are symbolically nemed from a private name space

3- maintained by the Authentication Manager., which ensures their

o uniqueness across the entire system. Symbolic group identifiers
can be placed anvwhere in the Cronus catalog, at the convenience

ﬁ: of the creating user.

,l

ﬁ, Operations on objects of type CT_Principal and of type

& CT_Group are controlled by &access control lists. By convention,

N any legitimate principal can create a new CT_Group object, but

. only administratively authorized principals can create a new

hf principal. When the svstem 1s 1nitialized, 1t contains at least

ﬁ one pre-defined principal, which 1s euthorized to create other

principals.

In the following sections we discuss the design ofthe
objects and operations supported by the Authentication Manager.
a. Section 7.8 discusses how to make the functions of the

o Authentication Manager survivable.
A
0. ‘
l:'
)
i 7.5 Ob)ects Related to Authorization
W The object of type CT_Authentication_Data 1s the user data
K) base consisting of the records for system users and for groups of
! principals which have been defined i1n the system.
The object of type CT_Principal is the permanent data base”*
5@ entry that Cronus maintains for each legitimate user. It is the
" repository for such user—specific daeta as default priority and
b; other parameters associated with resource menagement; default
f: modes of behavior (e.g. default working directory); and
Y authorization data. 1t 1s expected that new kinds of data will
» be added to the principal objects from time to time.
K
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A CT_Principal! object can be expecied to contein the 'é:éﬂ
|’|

following data:

XN “"l
o Principal unique-identifier (PID) ﬁ
o Symbolic name of principal
o Access control list
o Encrypted password
o Direct group memberships
o Direct group memberships to be expanded on Login
o] Range of priority service authorized
o} Default priority
o Name of default 1nitial subsystem
e} Neme of home directory for the principal ... (other
user—specific data)
The priority date will be used 1n resource management
functions. The default subsystem is the program automatically
invoked following login. A home directory is a directory
assigned to the principal that serves as the i1nitial)l current
directory for cetalog accesses. 1n particular, 1t contains
addi1tional user initislization data.
Groups (objects of type CT_Group) gather a number of
identi1ties for purposes of collectively granting them rights to
objects and operations. Any user can create a new group. and
place anyv other principal or group in it. This group can then be
placed on an ACL. The access control list for the group object
controls modification of the group definition.
A CT_Group object contains at least the following data:
o GID for the group
o} Name of the group
o GIDs of the groups of which the group 1s directly a
member
o IDs of principals (P1Ds) and groups (GIDs) that are
direct members of the group
There are a few special group identifiers. One of these
(group world) represents the set of principal 1dentifiers without
actually enumerating them anywhere. This group i1dentifier is
automatically appended to every AGS computation. Another special
_79_
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group "“Wheel”
used for system maintenance,
all Cronus objects.
controlled.

A convention has been adopted which effectively supports

wheel capability only for objects of a specified type. A process ) gﬁﬁa
whose principal ID metches the PID of the manager process s SISO

automatically granted all
1s useful

represents an access control

manager. This

example, all

file managers are bound to & special

principal, and
peer fi1le managers.

7T 6 Operations

The generic operations to create and remove objects, and to

rights to all

AN

override capability *lﬂ
implicitly receiving all
Admission to this group 1s carefully

objects managed by that

1in handling peer managers.

implicitly have all access

to all

on Authorization Related Objects

examine and modifv the object descriptor.

apply to 1nstances of CT_Principal

The following operetion (see Cronus User s Manual
login to establish the binding of

auth_data(3))

1s used during
the user to the principal UID:

Authenticate_As

The following operations allow processes to control the
identities applicable to an authenticated process (see Cronus
They effect only a single process,
1invoking process or another process

User's Manual

auth_data(3)).
which may be eirther the
authenticated to the same principal.

Enable_Access_Group

Disable_Access_Group

The following operations meintain and

objects of type CT_Principal

Lookup_Principal
Show_Group_Memberships

2

y

RTINS

T

- ‘. "
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and CT_Group.

interrogate the
(Cronus User's Manual principal(3)):

~
X

BRI

file manager
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Add_to_Default_Group_Expansion_List . ﬂ¢’ “
Delete_from_Default_Group_Expansion_List ,hﬁ
Change_Password

The rest of the data i1n the principal entry in the user date S
base is treated as part of the object descriptor. The generic &x““g
operations which manipulate the object descriptor are used to ,&bﬁ?ﬂ
examine and set these fields. ®
TN
et
» '., ".‘
The following operations are used to inspect and maintain w&ﬁ%
the group 1dentifier objects (Cronus User's Manual group(3)): qh“?k$
O XN
Add_to_Group ®
Remove_from_Group oo '..;:;
Show_Group_Members Rin
'ﬂ%ﬁ%ﬁ}
OB
B
.
The rest of the data 1n objects of type CT_Group 1is "'o"'t‘.'n:
contained 1n the process descriptor and 1s maintained using the ®
generi1c operations defined on object descriptors. eF Nﬂ
.!‘\
The access control list of anyv object, i1ncluding objects of ﬁ :

type CT_Group and CT_Principal, can be set using the generic
operations on access control lists (see Cronus User's Manual
object(3)).

7.7 Operation of the Access Control Authorization Function

Cronus access control checks the current identity of the
accessing agent against access control lists maintained by the
service provider. A process 1s authenticated 1n & way which
binds the process UlD to a set of external 1dentities defining
the authorizations of the process. These identities, the AGS,
are avallable to any service-providing process. This section
discusses the authorization function which 1s part of the service
provider.

In general, the access control steps within an object
proceed as follows:

-81-~-
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1. The request 1s parsed to determine the originating ;.

process UID and the operation/object requested. The & o

process_UID 1s trusted because it 1s added to the message o bt
‘ by the operation switch. Universal public privilege for ,'?&k,%
‘ the operation to all objects managed by the manager is :qgﬂﬁ
first checked, to see if the specific access check 1s ‘;M{
needed. . 960}

o}
[ )

2. A meanager-based cache of process/object authorization

pairs for the process_UID 1s checked for a valid current a*’d
entry . '0:.; .a
3. 1§ there 1s no corresponding cache entry, the accessing ﬁ\ﬂ&,
agent ‘s AGS 1s obteined. This data 1s also cached but on NJ
a per—-host basis by the AGS cache menager. [If present on .
the host. this cache manager provides a high performance
interface to the Authentication_Bindings_Of function. f\:
There 1s & broadcast-based protocol for alterting AGS "“ 0
cache managers to entries that should be purged. 1If an \
AGS cache manager does not run on a host. managers A‘“ 4“
execute the Authentication_Bindings_Of operation
directly, and the AGS 1s not cached [The per host AGS ”iw

caching 1s not vet designed or implemented. ]

4. The access control software computes a new
process_UID/object authorization entry using the AGS and
the access control list maintained with the protected

object /operation The process_UID authorization entry 1s Qﬁﬁ@‘
then put 1n the manager cache. ﬁﬁ\a
v'\¢§§
5. The process UID object authorization 1s used to verify F\g
permission. It authorized, the operation 1s passed on to | v ¢

the operation code. If uneuthorized, the request is — o
rejected. et
)
6. To allow for the enabling of new access groups, steps 3-5 :i%;ﬁ;.
are repeated 1n the event that cached AGS fails. :i_ﬁg:
WA

The permission authorization function 1s accomplished by a
set of routines and data structures that we call the "gatekeeper”
because of 1ts role as protector of the objects/operations.
Gatekeeper functions can be 1nvoked as part of the procedures for
receipt of a message, or called directly from the host process.
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Access control can be applied to operations on the object
set supported by the receiving manager process. or on operations
defined by the receiving service. There is a fixed maximum
number of access control rights maintained by the gatekeeper
software (currently 32) for any object. These rights are
represented as positions 1n a bit vector associated with both the
1dentity 1t authorizes (principal i1dentifier or group identifier)
and the object 1t controls.

7.8 Host Registration

The lack of phvsical security for various parts of the
system presents problems for the access control subsystem. Since
the network cable mayv be accessible to tampering. the network
might be tapped. An outsider could then inject or inspect
packets under &an assumed network address. A workstation might
pose as the site of a trusted manager. We can use administrative
authorization to alleviate these problems.

Encryption of all local network traffic 1s a form of
authorization It can remove the threat of tapping for either
listening for or 1nsertion of packets. Providing the host with
the encryption/decryption key 1s administrative authorization to
participate 1n the Cronus cluster. 1f a host can communicate at
all, 1t can be considered an authorized host. Because
encryption/decryption 1s isolated 1n the communication i1nterface,
1t can be added transparently at anv time. While communication
encryption can be thought of as part of the Cronus design, 1t
wi1ll not be part of the i1nitial i1mplementation.

Since workstations may be treated specially for some access
control decisions, svstem configuration registry could be the
source of such 1dentification. in addition, the undesirability
of tightly controlling responses to broadcast Locate operations,
makes the registry useful in determining the suthenticity of the
respondee. A configuration registry enumerates all of the
authorized system hosts, and the system services (Cronus
functions) which they have been authorized to run.

One secure way to make the registry service available is to
support 1t on one (or more) well-known Cronus hosts (1.e. hosts
at & well-known 1nternet addresses, say host No. 1, ...). The

.
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configuraetion daeta can then be obtained with an Invoke On Host to ﬂfﬂnﬂ%
the well-known hosts using the logicel name for the service(13). e,
{ The cluster configuration service would support the following .
| functions: ,.'7,\: ':Sv
-t"‘-)_« P

A

Show_Configuration_Hosts ﬁ%ﬁh‘{
Set_Configuration_Hosts Fv('. ,4{‘1”
y J
vy

L
Standard access controls apply. with Show_Configuration_Hosts ﬂﬁﬁsﬂﬁi
being universally allowed, while Set_Configuration_Hosts limited bﬁ%ﬁﬁﬁ
to a svstem administration group. sm&*&y
bty
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7.9 Survivable Authorization Design } " p\;'.;
4 _qgw
- P ‘..‘."‘
7.9.1 Objectives AN
.‘"::::q:l‘
» .. .\
The authenticatlon function and eveluation of the current AGS eare AN iy

critical parts of the operation of Cronus. These functions must ]
be avalilable at all times or Cronus cannot operate effectively.
Our objectives 1n providing survivability 1n Authentication are:

a. A Cronus user should. under reasonable failure patterns,
alwavs be able to gain access to the system.

b. The current value of the process—AGS binding should be
avallable whenever a process 1s able to request services
from ob)ect managers.

c. A less 1mportant but desireable objective is that a
client be able to continue to perform meaintenance
operations on the principal and group objects despite
farlures of hosts supporting these functions.

To meet objectives (a) and (c), we must replicate the
Authentication function. To meet objective (b), we must maintain

(13). Since this function 1is often used to determine the
veracily of responses to the Locate operations, i1t can not safely
use Locate to find out where configuration managers are running.
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the bindings i1n a replicated fashion, or keep them close 'to the
process to which they refer, so that the bindings are available
when the process makes requests of other Cronus managers.

7.9.2 Observations

The authentication function is a global DOS function supported on
a GCE which 1s expected to be up most of the time. Becuuse these
services are simple, the host hardware and software should be
stable. 1ncreasing 1ts availaebility. Since the GCE 1s relatively
1nexpensive, 1t 1s also feasible to stock a spare.

The authentication function is based on maintaining two related
types of objects. The datea bases which the Authentication
Manager maintains to support the principal and group ob)ects are
not large. The principal data base 1s estimated to be no larger
than 1000 users, with an average entry having around 1000 bytes
of date. The group daeta base might have 2000 entries, averaging
300 bvtes of data. This 1s less than 2 MBytes of deta. and can
easilv be accommodated on a GCE.

The processing demand on Authentication managers 1s not expected

to be large. Aside from initiel authentication and group
expansion, which occurs typically once per user per session,
other operations are infrequent. New users and iroups are

occasionally created and the associated data bas~s occasionally
displaved and updeted. A single GCE appears easily capable of
handling anticipated processing requests.

Performance and size considerations do not seem to require more
than a single GCE per cluster. Survivability is the primary
motivation for replicating the authentication manager. Our
approach 1s to maintain completely replicated date bases on two
or more GCEs.

Of the operations performed by the Authentication Manager, the
one of most concern for survivability 1s Authenticate_As, which
1s a read-only function. This is also true of a number of other
AM operations (Lookup Principal, Show Groups Expanded, etc.).
Synchronization of multiple authentication managers is not
required to complete these operations.
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Some AM operations do modify the authentication data (e.g. Create ‘hiwk}
new principal, Modify User Parameters, etc.). These require ‘gdﬂﬁm
synchronization among Authenitication Managers for consistency. ACALS
However, because these operations are relatively infrequent and
have simple semantics, a simple approach to synchronization which
1 ignores maximizing concurrency will suffice. We designate a
primary Authentication Manager as a single point of
synchronization. This method is backed up by an alternate
procedure i1f the primary site is inaccessible. A complete
description of our approach follows in the next section.

In the current 1mplementation. each process has & process manager
on the same host. The process—AGS bindings are maintained by the
process manager 1n the process descriptors for these processes.
During host outages when & manager is inaccessible, so too will
be the process 1t manages. There i1s no need to maintain the
process—AGS binding anv more reliebly thean we maintain the
process reliability. As some later point, we wil]l address issues e
of process survivabilitv. We can then naturally think i1n terms of
replication of process descriptor data (i1ncluding the current
AGS) as part of the reliable process concept. and need not
address 1t separately.

e e o 3

7.9.3 Approach

Fully redundant copies of the authentication data bases are
maintained at more than one Cronus host. This means that,

ignoring synchronization, an operation can be completed at any ﬂf«
site which maintains the date base. We expect that two e
operational authentication sites will provide sufficient s
) . L
availability for most applications of Cronus. -

A spare GCE could be integrated into the system if one of the .
dedicated hosts needs to be taken off-line for any extended "
period. This minimizes the time during which there may only be a QFﬁ‘
single Authentication site functioning. The new host 1ntegration A
protocol first involves transmission of all of the existing
objects. When the object transmission is complete, the new
manager retrieves the change log and incorporates any updates.
The final step before assuming operational status is to
coordinate with any on-going activities.
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Each operation on authentication data objects 1s an independent ﬂgﬁhﬂ
transaction. so that there is no linkage between any two dﬁgﬁs
operations. The operations either reference the identified -
objects (read operations) or modify the identified objects (write ﬁgﬁﬂ%
operations). Read operations require no synchronizetion or &Hﬂﬁm
concurrency control between Authentication Managers. Any Read o 5&}
operation can be handled by any available authentication manager. &'.aﬁ
Some read operations have side effects which do change the state L0t
of other system variables (e.g. Authenticate_As modifies the [ J
current process AGS in its process descriptor) but these are 7}? ﬁ
1dempotent operations so repeating them at distinct sites as part 'q.:.'!:::::
of error recovery 1s not harmful. H&wﬁw
Nt
Write operations. on the other hand. require synchronization ~\yﬁh
among the Authentication managers to preserve the consistency of ... @
the data with respect to concurrent updates. To do this one AM bﬁ\:z?
1s chosen as the primary site. The designation of which AM is "“*gg
primary 1s found i1n the configuraticn date base for the system. .§¢’ }
Clients &s well as other AM processes can consult this data base :}t 4@
to find the primaryv site. The primary site remembers its role h‘ﬁﬁm
and will respond to broadcast request to i1dentify 1tself in case ] !
the configuration file 1s 1naccessible. %sﬁﬁbm
s,
All Write operations are initiated with the Primary AM, which 1*??
serializes the modifications to the database. The primary AM dkﬂ*hf
records the modification in a change log by appending a change hﬁ“““(
record to a multi-copy reliable file. After Jogging the request, —
1t updates 1t own data base, and i1nforms other operational AMs of N
the change. 1f all AMs are running, the data bases are again .

synchronized after each one incorporates the update. When an AM
1s restarted, 1t processes the change log to 1ncorporate changes
made to the data base in its absence before it will accept new .
requests. Multi—-copy files are used for change logs to avoid
single host failure reintegration dependencies.

This approach raises two issues.

a. What, 1f anything, should we do about read/write
synchronization for read operations that may be processed
by & non-primary AM while the corresponding object is
undergoing modification by the Primary AM?

b. What, 1f anything, should we do when a modification is
requested and the primary AM 1s 1naccessible?
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To answer question (a) we first observe that not only is ‘the date ',l% 1:.
changed 1nfrequently, but much of 1t 1s particular to & single U
Cronus user, and hence concurrent read and write access is quite ) .
unlikely. Furthermore an old copy of just modified datae is ety
almost never harmful. The behavior is similar to & race r:"’-"""r
condition between i1ndependent accesses to a single copy data hnels ‘:
base. Thus our approach to Read/Write svnchronization is to do -".2, A
' nothing. fh
' .

There are meny possible answers to question (b). One approach 1s .r"\;"‘
to do nothing. and reject these operations temporarily until the ff :0‘
primary AM 1s brought back on-line. Since modifications to ::.0‘*:‘
authentication data are not critical to the operation of the t-'
system. the major effect of this 1s 1nconvenience because we will h",;
need to repeat the operations at & leter time. A simple o .‘
mechanism which avoids this uses the lock on the change log file :-v '
as a tool for serializing updates from any of the available AMs. *'j"'?,y
In this scheme. when the primary AM 1s 1naccessible, any AM can .0’.
initiate the update if it can first lock the change log. 1t then l;..:
infcrms the other operational AMs of the change. When the } M\
primary comes back. 1t 1ntegrates the changes 1t has missed L
before assuming primary update responsibility egain. ; ‘\}“'.:;
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8 Cronus File System
8.1 File System Ovsrview

Cronus supports a number of different kinds of files,
including .

o Primel files.

The primal file 1s the most basic kind of Cronus file.
Other kinds of Cronus fi1les are 1mplemented from primal
files. A primal file 1s stored entirely within e single

host. and 1s bound to the host.

o Reliable files.

A reliable fi1le is implemented by one or more primal
files. Each primal file used to 1mplement a reliable

file contains all of the file data. The reliability of

these fi1les derives from the fact that the file 1s

eccessible es lonpg as !l least one of the primal files

that 1mplement 1t 1s.
o Dispersed files.

A dispersed file 1s 1mplemented by one or more primal
files. A dispersed fi1le 1s one whose contents may be

distributed over more than one host. Each of the primal
files used to implement & dispersed file contains part of

the contents.

The 1nitial Cronus implementation (the “primal system")

supports only primal files, which are implemented upon underlying

single-host file systems. The next major Cronus release (the
“reliable svstem”) will support reliable files. Later system
releases mav support dispersed files.

This section also describes a single host file system,
called the Elementary File System. which will be developed for

each Cronus file host to serve as a common base of implementation

support for Cronus file managers.
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Primal files are Cronus objects. They have unique
1dentifiers (UIDs), and mav be given symbolic names. There is &
Cronus object type CT_Primal_File.

Tt

Executable prograems will be stored as files of type “&gﬁ&
CT_Executable_File which 1s a subtype of primal File. There will “@dpa
be many different kinds of hosts in Cronus, and an executable o kﬂk
program fi1le which can run on one host type will usually not be

able to run on another. In addition to the normal descraiptive
information, files of this type have informaetion that specifies
where they cean be run. The additional i1nformation mainterned for
an executable fi1le would 1nclude.

o} The tvpe of processor required to execute the program
stored 1n the file.

I

o The run-time environment required by the program
including the local operating system and necessary
peripheral devices.

f‘ - - .

e

8.2 Cronus Primal Files
8.2.1 Cronus Primal Files

Primal files cannot be moved from one host to another, the
primal file svstem is partitioned among hosts that store primal
files. The HostNumber component of the UID for a primal file
alwayvs specifies the host on which the file 1s stored. A copy of
a primal file can be created on another host. and the original
can be deleted. The copy 1s a different primal file with a

different UID, 1t just happens to contain the same data as the
original file.

Like other Cronus objects, primal files are accessible to
processes by means of the 1nterprocess communication and
operation switch (Section 6). There 1s a Primal File Manager
process on each host that stores part of the primal file system.
A client process accesses a primal file by invoking an operation
on the file, 1n which the UlD for the file and the operation to
be performed on the file are specified.
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The Primal File Manager that maintaeins a primal file also
defines a mapping between the UID for the primal file and the

information required to manage the file. The collection of
information necessary to manage a primal file 1s called its
descriptor. The file descriptor 1includes.

UID of the creator;

Date and time of creation,

Date and time of last wrate.

Access control list (ACL) for the file:

Information necessary to find the file date on
the storage media;

Current si1ze of the file,.

Other 1nformation (to be specified as needed)

Most of the operations provided bv conventional file systems
(create. read. write, etc.) are 1mplemented for Cronus primal
files The design 1s discussed 1n terms of the normel life cycle
of a primal fi1le which 1ncludes.

1. The file 1s created.

2. Data 1n the file mav be read or written by a client.

3. Informetion i1n the file descriptor may be read or written
by a client .

4 The right to access the file may be granted to or revoked

from other users.
S. The file may be deleted.

File creation 1nvolves: the generation of a UID; the
creation and 1nitialization of a descriptor for the file; and the
binding of the UID and the file descriptor 1n the Primal File UID
Table Unti] date 1s written 1nto the file, the file 1s empty.
When & primal file 1s created by a Primel File Manager, it 1s
created on that manager s host.

There 1s an 1ssue regarding whether 1t should be necessary
to open & primal file before reading or writing file data. One
reason for “open” and '"‘close” 1s to provide for reader—writer
svnchronization, another 1s optimization of read/write
operations The disadventage 1s that open/close add complexity
to the Frimal Fi1le Menager because 1t must meintain state
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information for open files and deal with the problem of files
opened which are never explicitly closed (e.g., because the
client’'s host has crashed). Furthermore, i1f we require open and
close. additional operations must be 1nvoked on the file even
when the read or write is for a small amount of data.

The Primal File Manager supports access to files without
open and provides an open/close facility for clients that need
1t. A read or write without open 1s called & “"free read” or a
“"free write”. The client may then choose whether the additional
overhead of opening and closing the file 1s worthwhile. For
example. 1f we wish to write a simple log message when a process
1s 1niti1ated, we would probably choose the free write. 1f, on
the other hand, we were copving a file. we would probably choose
to open the files, 1ncurring the overhead of 1mnitiation once., and
gaining further system support for svnchronization and date
integrity. A client process mav read or write data 1n a primal
file (subject to authorization considerations) without opening
1t. unless another process has opened the file 1n such a way that
free reads and writes are forbidden.

Free reads and writes ere svnchronized i1n the sense that
multiple reads and writes are serializable. This means that the
File Maeanager will. 1n effect. perform each read or write
operation 1n 1ts entirety before performing another operation.

When a file 1s opened. two parameters specify the access
state requested. One specifies either Read or ReadWrite access.
The second specifies the type of reader-writer synchronization
desired. There are two tvpes of synchronization supported.
“frozen” which permits either N readers or a single writer. and
"thawed” which permits any number of simultaneous writers and
readers. When a file is opened with “thawed” access, readers of

the file see updates made by writers of the file. Opening a file
with “thawed” access prevents other processes from opening it
“frozen”
-92-
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Thus, the access states defined for a file are:

free,

frozen read open;

frozen readwrite open,
thawed open;

(free) read 1n progress,
(free) write in progress.

A fi1le may be opened so long as the access state requested
does not conflict with the current access state of the file.
Taeble 6.1 defines the compatibility of the access states with one
another, and with read and write operations 1nvoked by a client
without previously opening the file. An OK for an (OPERATION,
ACCESS STATE) entryv 1n the table means that a client process can
perform the operation on a file when the file 1s 1n the
corresponding access state., & NO entry means that the operation
wi1ll fail when the file 1s 1n the corresponding state; a DELAY
operation means that the operation will be delaved unt:i] the
operation in progress (and anv others that maey be queued) are
completed.

The data 1n a primal file 1s a sequence of octets, numbered
from O to N. The read operation specifies the first octet to be
read and the number of octets to be read. The write operation
specifies the octet position of the first octet to be written and
N octets of data to be written.

In order to support file system recovery, data that 1is
written to a file that has been opened for (ReadWrite. Frozen)
access does not become part of the permanent file data until the
file 1s closed. It 1s possible to close a file opened for
(ReadWrite, Frozen) access 1n & wev that sborts writes made to
the file while 1t was open.

A fi1le 1s open to a process. The Primal File Manager
provides an operation which returns a list of the UlDs for the
processes, 1f any. that have a given file open. Another
operation returns a list of the UIDs for the files, if any, that
a gi1ven process has open.

When & process 1s destroyved with files open. the files are
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ACCESS STATE

free frozen frozen thawed read 1n write 1n
read readwrite progress progress

OPERATION
frozen
read Ok OK NO NO Ok DELAY
open
frozen
readwrite OK NO NO NO DELAY DELAY
open
thawed OK NO NO OK DELAY DELAY
open
free Ok () NO OK Ok DELAY
read
free Ol NO NO OK DELAY DELAY
write

Teble B.1 Access State Compatibility

closed and any writes to (ReadWrite, Frozen) open files are
aborted The normal close operation mayv onlyv be i1nvoked by the
process that opened the file. An alternate close operation can
be used bv other processes to close & fi1le during cleanup.

A client can read the descriptor of a primal file. Some of
the information 1n the file descriptor 1s changed as a side
effect of operations on the file. For exemple, when a file is
written. the dete and time of last write 1s changed. There 1s
other information that the client may wish to change explicitly.

Access to a primal file 1s controlled bv 1ts access control
list (ACL). Access to a primal file may be granted to other
users bv adding entries to the ACL. Similarly. access to a file
mey be revoked from a user by removing the corresponding entry
from the ACL.

Some fi1le svstem support the notion of Delete, UnDelete and

l'. l. l.' 8'

awo«.mg-:; ANy

’*.Q
l| .‘2‘:'0"‘%.‘0 * A

Jl 'i ‘1‘.! (LI

n’ .\’ ‘ot K4 -". Lavy
AL LIS LA PR
‘\ﬁﬁph $ U N

Chl o) D alt

Axe,

I, RN AT LS
,\;up§ gt RS \

R T
T

Yy

o
o
. ."0' G

Hﬂ

Q
* '\ \ » V“‘ *5V
\

f..wﬂm&xs




TCTOTC AR A AT AWVTAT AT A LA TN e e e

x. ~T N
x’a’s;
.(_ y
RSLLL!
°
.‘ 4' ,V
LT
? j’:‘-(':‘r d
‘.x ] . i
oty )
gty
» () &
@
%Qaﬁ
ht |:“::§
Expunge operations. The current design for the primal file ! _{#y
system assumes that only Delete (called Remove) will be i hAhal
supported, but 1t 1s relatively straightforward to modify the TRt
specification of Cronus primal files to accommodate a Delete, Al .%
Undelete. and Expunge model of file removal. e it $
S
A
i ] "
b
[
@
Ty
8.2.2 Crash Recovery Properties s “‘
A
1f a primal file operation 1s i1nvoked. the Primal File ;“ )
Maneager normally acknowledges the operation., indicating the Mt
disposition of the operation (e.g.., success, fallure, and reason) g
and. depending upon the operation, to return anv data requested. x:&yi,
u:\.\:;'\ "h’
The Primal Fi1le Manager does not acknowledge write requests }:?:ﬁ::
until] the date has been written to non-volatile storage. A o ]
client process can be sure that the date hes been written when AR
the acknowledgement 1s received. even 1f the Primal File Manager B i,
or 1ts host should crash shortly afterward ’hjqﬁ :
B
Primal Fi1le write operations are atomic with respect to host s
crashes. That 1s, 1f the Primal File Manager host should crash b "v
during a write operation, after the host and Primael File Manager S AN

have been restarted and the Primal File Manager has performed 1its
recovery procedures, the write operation will have either
occurred 1n 1ts entirety or no part of 1t will have occurred. |If
the crash occurs after the data has been safely written but

before the acknowledgement has been sent, the acknowledgement
wi1ll never be generated.

This atomicity property 1s true for the Close-and-
RetainWrites operation. That 1s. either none or all of the
writes made while the file was open will have been performed.
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,{;: 8.2.3 Operations for Objects of type CT_Primal_File o]
A et
N Lt
In addition to the generic operations (Cronus User’'s Manual Ty
] object(3)) the following operations are supported for primal 'w:.‘.:
8] files. " ‘l‘:::‘:
e dhﬂw
o Open 4
)
':: Close s
Sync @
R DA
S Read ...'n‘.'..
U Wrate Y i
¥4 ﬂnp
KA Truncate .‘i.:...:
»:: Append l:.:l:(
K Fi1lesOpenBy At
OpenStatusOf __fQ
D CloseProcessOpenFile '..‘%-f
"i.‘ CloseAllPreocessOpenFiles -':: "
ok .r*‘
P | -
;“| The Open and Close operations provide an atomic transaction .h'; :
A capability for & single primal file. At some later point, we may \
define explicit BeginTransaction. EndTransaction. and ® ,
Y AddToTransaction operations which could be used to provide a 0:':
' capabi1lity for transactions that i1nvolve more than a single Q.‘ ".t:‘
Ry primal file. '.'::,
o o
R Jh‘
W In response to a Status operation. the Primal File Manager Dyt
‘ returns information about the status of the primal files it "!_
. manages (Cronus User's Manual p_filesys({(3)). such as the amount .:::::o‘,
‘ of free space. the amount of space used by existing files, the ﬁ,‘.‘%
:. number of files 1t manages. the number of files currently opened, l.::l.:::s
\ etc. This 1nformation will be useful to system operations ':‘ :;ot,:
;‘! personnel as well as to clients who might use it when deciding St
where to create primal files. o
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8.3.1 Objectives

The principal motivation within Cronus for maintaining
multiple copies of & file derives from reliability
considerations. The objective 1s to 1ncrease the probability
that the file will be available for access at any given time by
keeping coples (1n Cronus we shall call them images) of the file
at a number of hosts. Although any given host that stores the
file mav fail. so long as at least one of the hosts maintaining
an 1mage 1s accessible, the file will be also.

Secondary benefits 1nclude performaence i1mprovements that may
result from distributing the load due to file access among the
hosts that store the file and from the possibility that client
access to an 1mage of the file maintained on 1ts own host will be
more responsive than access to an 1mage on & remote host.

Increased file availability does not come for free. The
cost 1s 1ncreased complexity 1n managing the files. Most of the
complexity 1s a consequence of the fact that Cronus works to
ensure the mutusl consistency of the file 1mages, when one 1mage

o' s
of the file changes. all others should be updated to reflect the 'ﬁ;
change haﬁ&&ﬁ
Furthermore. 1n the Cronus environment it is desirable to :ﬁ?&
support concurrent access to files. For example, Cronus supports -
a form of multiple readers / single writer concurrency control
for primal files. The same sort of concurrency control 1s

provided for multi-1mage files.

Concurrency control requires that sites managing 1mages of a
file cooperate to synchronize client access to the file. There
1s complexity and overhead associated with this cooperation. In
addition. since strong concurrencv control mechanisms require the
participation of more than one site. si1tuations may arise where
an insufficient number of file i1mage sites are accessible to
perform the concurency control. Unless the system 1s willing to
perm:it unsynchronized access to an accessible file image in such
si1tuations, some of the reliability benefits of multi—-1mage files
will be lost. The danger of unsynchronized access 1s, of course,
that accessors mey cause different 1mages of a file to become
1nconsistent

The Cronus approach to concurrency control for reliable
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files 1s based on the presumption that file availability 1s
important enough that 1t i1s permissible to risk the consistency
of file 1mages and to grant access to file data when

. synchronization cannot be achieved. That is, when a choice must
be made. file availability or survivability is considered more
important than mutual consistency of file images.

The approach to concurrency control 1s to try to achieve
strong synchronization prior to file access 1n order to maintain
the consistency of the file 1mapges However, should the
synchronization fai1l because the file sites required to achieve
1t are 1neccessible. the client will be 1nformed and access to

the file will be permitted only 1f the client gives explicit
consent to continue. :

-
-

-,

g
> -

» This relaxed approach to concurrency control will be
practical only 1f.

] a. File access patterns are such that 1t is relatively

ﬁ unusu&al for multiple concurrent updates to occur.

i

R b. Hosts are reasonably reliable so that host faillures that

N prevent strong synchonization are relatively rare.

R

X

¥ c. There 1s a simple and 1nexpensive way to detect

: inconsistent 1mages of a file. We believe that the

’ Version Vector mechanism developed at UCLA [Parker 1983]

i 1s a good one for th:s purpose.

X Experience with Cronus mav show that there are some

U applications which require more aebsolute synchronization than

‘? this approach supports. If that proves to be the case, the
support for reliable files will be augmented to include a file

\ tvpe for which more positive svnchronization 1s supported.

4 8. 3.2 Reliable Files as Composite Objects

! A reliable file is a Cronus object of type,

3 CT_Reli1able_Fi1le A Cronus Relieble File (RF) is a collection of

: one or more primal}l files. each of which represents an image of

’ the relieble fi1le. No two 1meges of a reliable file are stored
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at the same site. a0

The number of 1mages of & reiiable file may change over the 5

lifetime of the file, as mayv the sites which maintain the ¢
’ individual images. The desired number of 1mages 1s called the :.‘
cardinality of the file. The actual number of file 1mages may be x>
different than the file cardinality. For example, when a file 1s ‘
first created 1ts cardinality wil) be greater than the number of
1mages unti1l all of the i1mages are created. Similarly, 1f the
cardinality of & file is changed, it takes finite amount time for
i the number of 1mages to be adjusted. Thus. the cardinelity is
properly thought of as an objective.

A reliable file of cardinality = 1 1s & migratery file.
Although 1t has only & single i1mage like a primal file, unlike a
primal file 1t mev be moved from one host to another.

Each Reliable Fi1le Manager (RFM) mainteins a UID table for
the relieble files that 1t manages. Unlike simpler obj)ects, such
as primal files, the management of reliable files requires the
cooperation of RFMs. Each RFM participates 1n the management of
@ collection of reliable files (the ones 1n 1ts UID table), but
not all RFMs participate 1n the management of all reliable files.

Depending on the cardinality of & particular reliable file,
a RFM mav need to cooperate with 0 (cardinality = 1). 1
(cardinality = 2), or more (cardinality > 2) other RFMs. For
each reliable file 1t manages. a RFM 1s directly responsible for
carrving out the operations on a particular primal file that
represents an 1mage of the file. We shall sometimes refer to
that 1mage as the manager s image or as the local (to the
manager) 1mage.

When a client 1nvokes an operation on a file, the underlying
Interprocess communication facility routes the operation to an
RFM capable of performing 1t. Anv interactions among RFMs that
are required to perform the operation are transparent to the
client process

Access to the primal files that comprise a reliable files is
limited to RFMs No other process may directly access a primal
file used to 1mplement & relieble file. even 1f the process has
the UID for the primal file. this 1s enforced by the Cronus
access control mechanism
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For Cronus, RFMs reside only on sites that also have primal ?f¢$ﬁ
files managers (PFMs). The manager’'s image of the file 1s stored f'“h>
at the manager’'s site. RFMs, of course, access the file images P
through PFMs in the normal fashion. ?ﬂf&:
':'A':‘:“.*- X
There is an issue regarding the relation of RFMs to PFMs. Zﬁ?ﬁif
They could be 1mplemented either as two completely separate '&}%}ﬁ
managers which communicate by means of 1nterprocess communication St
or as & single, combined manager for both CT_Primal_File and d
CT_Reli1able_Fi1le. The 1nitial implementation of reliable files SRRy
wi1l]l be accomplished by means of RFMs thet are separate from the Qﬁiﬁﬂv
PFMs Later i1mplementations may 1ntegrate the RFM functions into ;;5ﬁ;|
(some of) the PFMs. Qyﬁa*
RO
In addition to the information meintained 1n descriptors for - d
primal files, object descriptors for reliable files contain the }fﬂfr.
following 1nformation. Vgt
4
File Cardinality. ﬁ&ﬁﬁ&,
ID of primary si1te (see below). ﬁhif*'
Version vector for the local 1mage of the file ..
{see below). }“ﬁﬂ*,
Version vector for the local 1mage of the j 1&
descriptor (see below). H:‘ W
List of UID's for the primal files that 1mplement ;&;A“.
itmages of the file. Ry,
.o
':":;. \
A= \ﬂ\
0 v
e
R
8.3.3 Synchronization Considerations ,¢,v!.‘
tftzx“
In order to maintein the consistencv of i1mages of reliable 5?{} g
files and the i1ntegrity of i1nternal file date (for primal as well f;:;:
as reliable files), Cronus must contro)l and synchronize the "

manner i1n which clients access the files.

The general Cronus approach to synchronization for reliable
files can be characterized as a best effort approach consisting
of the following steps.

1 trv to svnchronize access.
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1f synchronization cannot be achieved permit access
the client so desires;

it

3. be prepared to detect and deal with i1nconsistencies that
may result from unsynchronized access later.

A specific concurrency control mechanism must be chosen.
Although much has be written about concurrency control and
synchronization for multiple copy files and data bases, there 1s
little practical experience on which to base a choice. We have
decided to use a simple mechanism for Cronus. Should the
mechanism prove to be 1nadequate (for example. because 1t cannot
achieve svnchronization often enough, given the failure patterns

observed 1n Cronus), 1t will be replaced with a more capable (and
complex) one.

Svnchronization will be accomplished by means of &
primary,ssecondary 1mage approach. Each reliable file will have
one primary 1mage and one or more secondary 1mages. Al] attempts
to synchronize access to a reliable fi1le will require
synchronization with the primary 1mage. We refer to the manager
of the primary 1mage &s the primaery manager for the file;
managers of other i1mages are celled secondary managers.

When a client attempts to access file data 1n a way that
requires synchronization. an attempt will be made to synchronize

with the primary image of the file. 1f the client's access
attempt 1s 1nitiated with the manager for the primary image,
synchronization occurs as for primal files. If the access

attempt 1s 1nitiated with the menager for a secondary 1mage of
the file, the secondary manager i1nteracts with the primary

maenager to gain the appropriate kind of access (non-exclusive
read, exclusive write).

RFMs use & locking discipline to support synchromization.
This discipline works roughly as follows. When an attempt to
open @ fi1le for reading i1s handled by & secondary manager, the
manager tries to set 1ts lock for the file to "reserved for
reading”. The attempt to set the lock fails 1f the file 1s
elready locked for wrating Next. the manager i1nteracts with the
primary meanager to iry to set the primary manager's lock for the
tfile If this succeeds. the secondary manager sets 1ts lock to
“locked for reading” end proceeds with the open. If the primary
has the file locked for writing. the secondary manager clears 1ts
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Inconsistent 1meages of a file can be detected by means of 8
the version vector mechanism developed at UCLA. A version vector RO
for a reliable fi1le, RF, 1s a set of N ordered pairs, where N 1s
the number of sites at which RF 1s stored. A particular pair
(S1, Vi) counts the number of times updates to RF were 1nitiated
at S1. Thus. each time an update to RF originates at Si1, Vi 1s
incremented by one. The version vector 1s part of the object
descriptor for RF.
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lock and reports to the client that the file is busy. When the \ ?&&
file 1s closed, both the local lock and the primary menager's & 3¢
lock for the file are cleared. Attempts to open a file for ry
writing are handled 1n an analogous fashion. This locking ;;;'
discipline is described i1n more detaill 1n the Cronus User's ;&;ﬁﬁ.
IR R
Manual . '“}ﬂif
AN
The reliable file system supports the notion of free reads LI,
and writes. For & free read the synchronization outlined 1n ®
Table 8.1 1s performed bv the file manager which handles the gl
client’'s read. but no attempt to synchronize with the primary ‘{-Nﬂ
manager i1s made. Free write operations require synchronization a..= ".'t"g
with the primary manager. éﬁ‘ﬁb%
0 "l.:'.'a
st
If sychronization for anyv operation fai1ls because the
primary manager cannot be reached. the operation mav proceed. but }:ﬁﬁhy
only with the explicit consent of the client, and. of course, at ;u'*\j
some risk. The risk 1s that different 1mages of the file may be \ )
Wit
undergoing unsvnchronized access. and. as & result. the file thfﬁf
images may diverge 1nto i1nconsistent states. .f*“bq
., ®
A client mav specify 1ts 1ntent with regard to uhd
unsvynchronized access when 1t 1nitiates a file operation by means ﬁhﬂ%ﬁi
of an optional operation paremeter. Alternatively. the client anh;
OQ‘
may choose not to specify the action to be taken when 1t 1nvokes ,'.*”5
the operation. 1n which case, 1f synchronization cannot be \dﬁ?ﬂ“ﬂ
achieved. the manager will ask whether 1t should proceed with or ®
abort the operetion. ?Txt;,
NS

Two 1meges of & reliable fi1le are said to be consistent 1f
the modification history of one 1s the same as or 1s an 1nitial

subsequence of that of the other. 1t can be shown that two
images are consistent 1f one of the vectors 1s at least as large
6s the other 1n every (S1. Vi) pair The Jarger vector 1s said
to dominate the smaller. and the 1mage corresponding to 1t {-'A
®
MM
!":'.1::‘0:“
..' .|‘|A
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ﬁ“ represents a later, consistent version of the i1mage corresponding 0
¢

iy to the smaller vector. [If two vectors are such that neither Htt
o dominates the other (that 1s, some pairs in one are larger than

10 some pairs i1n the other and vice versa), then the corresponding J #f
;:: file images are inconsistent with one another. :l‘-
; T ind
ﬁa Since the descriptor for a file may undergo modification ﬂyﬁé
&& independently of the file data., descriptors for reliable files f[

K )

also have version vectors.

9& The question of when version vectors for file imeges should rgﬂk
@hg be compared end what to do 1f thev are not equal 1s discussed 1n Q'a
%? Section 8.3.6. The svnchronization mechanism for reliable files & *
:f: outlined here is described 1n more detail 1n the Cronus User's ﬁiht
b Manual . @
e |,°f
f|‘l ﬂ“‘.:.
t".‘ . ":‘...
(X oy
‘:::‘ it
! &.3.4 Interactions Among Relirable File Managers gr
Qs' RFM s must 1ntereact with one another i1n order to maintain :lkd
&ﬁj reliable files. For example, when a reliable fi1le 1s updated,. \*fﬂ
y 8 the new fi1le data must be transmitted to each site that has an :.:-.N
Ly image of the file. K
S °
vee Occassionally & RFM that must participate in such ean A A
#s interaction will be 1naccessible. It 1s important that when, if Lk
% ever. such a RFM becomes accessible the i1nteraction occur. It 1s &;V
Qk the responsibility of the 1nititiating RFM to ensure that the ;3¢:
% interaction occurs. The mechanism used by RFM's to do this 1s as SN
v follows. o
ot
’ Each RFM meinteins a PendingActions data base which contains ﬁﬁ$i
\\ a record for each operation 1t was unable to completely perform 3 ?
due to 1ts 1nability to i1nteract with other RFM's. Each such ,
j& record includes.
3 the UID of the reliable file,
{% . a specification of the action required to complete
! the operation.
Q&- a li1st of the sites at which the action must be
?! performed (for some actions. this list mev be empty).
i
e m1o3-
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Whenever the RFM is unable to complete an operation, it adds ‘.
) a record to the PendingActions dates base to describe the actions U *f
) necessary to complete the operation. Subsequently, at regular ?’\‘5
N intervals, the RFM scans the PendingActions data base and for :' A
' each record, it attempts to perform the necessary i1nteractions. “/5&4“
N 1f the RFM succeeds in performing some, but not all, of the Pl
interactions, it updates the record. When all of the .“
. WU
" interactions described by a record are successfully performed, )
\ the record 1s removed from the data base. A
: :ql::Q‘l
R
: The actions that may be found in records 1n the &ﬁﬁ
A PendingActions datea base 1include. "'-'""
: & Acquire sites to store 1mages of & file. :{?:;]
' .“b 'l“-..-
n RO
» b. Update the descriptor for a file. el
y W AN
g oty
)
c Update a fi1le 1tself. WA
s When a RFM comes up for the first time. 1ts PendingActions vﬁﬁ“
l data base 1s empty. and if sites and the network never failed the h 5.
3 . aalth
; data base would remain empty. T
]
The PendingActions data base should be stored 1n a WY
{ reasonably reliable fashion. It 1s probably adequate to store 1t gguﬁk
, as a primal file on the RFM's local site Mﬁ%@#
Y Oy W]
A
) .
o
\:’,-.j'_'b’:\
o \
8.3 5 Operations on Reliable Files v, ¥

2041
vy
-
ol 1)
‘.)v{‘

The operstions supported for primal files are also supported

) for reliable files. Three additional operations are supported i

for reliable files The Cheange_Cardinality operation changes the o !
K cardinelity of a reliable fi1le. The File_Sites operation Al
; produces a list of the sites that are thought to be maintaining Ke

imeges of the file. with the primary file site distinguishec.
The Move_Image_To_Si1te operation moves a file 1mage from one site
to another (removing the 1mage at the source site).

= & %_° Ly
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The design of reliable files 1s conveniently described in ;ﬁﬂg&bp
terms of the normal life cycle for a file, which is much the sar.e OO0
as that for a primal file. The principal exception 1s that the T
cardinality of the file may change. The life cycle 1ncludes: .hkﬂhﬁ*

Lty
'O‘ () ‘.g Wi
a. The file is created. |‘|:'1‘!:c:8‘.n"
.'I::'." ) .‘
b. Date 1n the file may be read by & client. ittt
ryh
¢ Data 1n the file mav be written by a client. .;‘u:;"",'.:\':
dehity t'(‘{’
0
d Informetion 1n the fi1le descriptor may be read by a '\JHRM
client. »&? \
e. Information in the file descriptor may be written by a .
client . Zr a%
|l'| 0'\
f. The cardinelity of the file may be changed %
(5, ') ‘.".‘Q y
g The fi1le mayv be deleted. °
':;:.::,l’zt"
The following sections discuss these operations é?ﬂ%kf
4 I
::"::s‘(‘l?s‘&‘
WAy
-\‘ \

8.3.5 1 Creating Reli1able Files

A relieble fi1le must be created before date can be written
into 1t, and unti1l data is written into the file, the file
remains empty.

To create & reliable fi1le. the client 1nvokes the Create
operation specifving the cardinality of the file as a parameter.
The RFM that receives the Create operation becomes the primary
manager for the file.

For the 1nitial 1mplementation of reliable files, clients
may exercise control only over where primary file i1mages are
mainteined. 1f the Create operation 1s requested by means of
InvokeOnHost. then the RFM at that host becomes the primary
mansger, otherwise. the RFM selected by the 1nterprocess
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w communication facility becomes the primary manager. Later Qﬁ*“
o implementations may provide means for client processes (as well hdmg
™ as for users through the user 1nterface) to exercise control over
A the initial placement of secondary i1mages. After images are in P A
;} place, the Move_Image_To_Site operation can be used to move an g g
;? 1mage from one site to another. ¢w$w
W vy
ﬂf When a RFM receives a Create operation. it: ottt
K} a4
®
" a. Creates a (empty) primal file for the primary image of e
'Q the reliable file, and obtains 1ts UID (UID_pf). “h}:
N ( v,
K} )
Jb b. Allocates a UID (UID_rf) for the reliable fi1ie, and makes ﬁﬁaﬁ'
0 . .I'( 'g
Qb an entry for it 1n 1ts UID table, uﬁb
h T
3 ¢. Creates and 1nitializes & descriptor for the reliable ’aﬁhﬁ
3? file. The following descriptor fields are 1nitialized. h?’:
. RN
N S0t
K The cardinality, a*&ﬂ
’:.: The primery site, N
i The file version vector and descriptor version
. vector. At
‘W S dy
i The li1st of UlIDs for 1mages 1s 1nitialized to ,kﬁ&%
A include UID_pf. 5#
) ¥
i 33
ﬁ d. Returns UID_rf to the client, indicating that the Create DA
o succeeded.
: N
K Secondary 1mages of the file are not created until the file is uq "
ﬁ written the first time (That 1s., after a free write or after iﬁ
;ﬂx the file 1s opened. written 1nto and closed). éﬁ( ?
N (
0 Ap
When a reliable file 1s first written and whenever the file
h cardinality 1s 1ncreased. the RFM selects sites to store 1mages N,
;¢ cf the file. The acquis:i -on of new sites i1nvolves three steps. ;: *)
) "
"- oy
h‘ &a. The selection of the new sites. ;}S,
“ i

b. Obtaining commitments from the RFMs at the selected sites

N to store i1mages of the file.

?.‘

'l

: ¢c. Updating file descriptors at each of the file sites to

q reflect the new sites.
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The RFM acquisition procedure is structured so that an RFM gﬂ&kﬂ
need not, as part of a single acquisition attempt, acquire every
site required to support a file's cardinality. An RFM can fﬁ“lx
) . 9
support operations on a reliable file even if not all of the )* ]

desired images of the file have been created. When an RFM is M
unable to acquire all the sites necessary to achieve the desired ',)”yh
file cardinality, 1t creates a record 1n 1ts PendingActions data 2!!2.!:&!;%
base to ensure that the additional sites will be acquired. Y
v Wy t"t's

The acquisition procedure 1s described i1n more detail in the ' \‘ﬂ'
Cronus User s Manual

8.3.5.2 Reading Reliable Files

Reading & reliable file 1s similar to reading a primal file.
File data mav be read bv means of a free read operation. or by
opening the file prior to performing read operations. 1In either
case the 1nterprocess communication facility delivers the
operations to &an RFM that manages the file

There are several differences in dealing with reliable files
which are visible to a client. These 1nclude the following:

a. The 1nteraction between the RFM that receives the
operation and the primary RFM for the file 1n order to
achieve synchronization 1s not visible to the client.
However, should the synchronization fail because the
primary RFM 1s inaccessible, the client will be informed
and given an opportunity either to continue with the
access or to abort 1t.

b. A client process can obtein & list of the sites that have Eﬁ:ﬂ\‘
images of a relirable file, and 1t can choose which RFM to Qﬁﬂm l
deal with to access the file. For example, it might
choose the primary RFM. or, 1f an RFM happens to reside “\fﬂ%@
on the host 1t does, 1t might choose that one. e

€. After 1t opens a file, the client should continue to dea)
with the seme RFM for operations on the open file until
11 closes the file. .
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" 8.3.5.3 VWriting Reliable Files
. Writing @ reliable fi1le 1s similar to writing a primal file.
The principal differences are essentially those noted above for
i reading reliable files: the required synchronization may fail due
h to the i1naccessiblity of the primary manager for the file, in
f which case the client must decide whether to proceed at some risk
i or to abort the write, the client may choose the RFM with which
B it deals; and, after it has opened a reliable file for writing, a °®
client should deel with the same RFM for operations on the open
. file until 1t closes the file. ;L
[} KX
: File datea must be updated after a free write or after a file
: opened for writing has been closed (1f writes have actually been J:
o made and are to be retained). PY
K The RFM at which the writes are performed 1s responsible for %
] distributing updates to the other fi1le 1mages. 1t does this by
: interacting with the other RFMs sites in the following way:
1)
' a. It 1ncrements 1ts (Site, Version) element of the file b Py
version vector.
: ¢
: b. It attempts to interact with each other RFM that manages .
i an 1mage of the file. ;
i
c. Should 1t fail to complete the 1mage update with any RFM, °
1t adds a record to the PendingActions data base
N speci1fying the fi1le and the RFMs 1t was unable to update. X
d
)
3 The actual update procedure for a particular 1mage involves e
Y several exchanges between the initiating RFM (1RFM) and the - °
responding RFM (rRFM), and works roughly as follows.
1)
L}
» a. 1RFM does InvokeOnHost(Si1teOf (rRFM), UID,
. Updatelmage, DVV. FVV),
+
: where UID 1s the UID of the reliable file, DVV is the °®
version vector for the file descriptor, and FVV is the
version vector for the file 1tself. oy
: "
! b. rRFM compares both DVV and FVV against the descriptor and
' file version vectors 1t maintains for UlID. Assuming that
f
t
K -108-
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DVV and FVV dominate the corresponding version vectors at
rRFM. rRFM returns to iRFM a SendTheDescriptor message.
(Section 8.3.6 discusses what happens i1f iRFM's version
vectors are dominated by or are 1ncompatible with
rRFM's.)

¢. ¥When 1RFM receives the SendTheDescriptor message, it
sends the new value of the file descriptor to rRFM 1n a
HerelsTheDescriptor message.

d rRFM receives the file descriptor and updates 1ts copy of
the descraptor It then returns 1RFM & SendTheFileUpdate
message.

e. When 1RFM receives the SendTheFi1leUpdate message, 1t
transmits the file updete to rRFM 1n a
HerelsTheFileUpdate message. Depending on the nature of
the chenges to be made to the file image, the update may
be transmitted by sending the entire file or by sending
onlv the changes that need to be made to the file to
update 1t

f Finally. after 1t has stored the new file data i1n the
primal file that holds 1ts i1mage of the file, rRFM
returns an UpdatelmageSucceeded message to iRFM.

8.3.5 4 Other Operations

This section describes the Change_Cardinality and
Move_Image_To_Site operations. Both operations require
synchronizaetion with the primary manager.

Change_Cardineli1ty 1s used to change the number of 1mages
the system tries to maintein for a reliable file. An increase to
the cardinality 1s accomplished by execution of the acquisition
procedure described 1n Section 8.3.5.1. Decreasing the
cardinality 15 roughly the 1nverse of i1ncreasing it. The
performing manager selects a site or a set of sites which
currently maintain images of the fi1le and esks the manager at
each to agree to discard i1ts 1mage of the file, and to remove the
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file from its UID table. After each agrees, the performing
manager instructs each to discard the 1mage and the remaining
managers to update their descriptors for the file.

L ‘\
-

A
Sc

Move_Image_To_Si1te moves a file 1mage from one site to
another, preserving the file cardinality. The parameters of the
operation are the file UID, the site of the image to move, and &
new site to hold the 1mage. The operation 1nvolves creating an
image of the file at the new site, discarding the i1mage at the
old si1te, and updating the descriptors held by all managers of
the fi1le to reflect the change.

8.3.6 Use of Version Vectors

Version vectors are used to detect inconsistent 1mages of
reliable files. In the current design. both the descriptor for
file and the file 1tself are protected by version vectors.

Version vectors are compered 1n two situations.

When an i1mage of a file 1s updated. The RFM 1nitiating
the 1mage update supplies its version vectors, and the
responding RFM compares them with 1ts own.

When an attempt 1s made to lock a file for read or write
access. The secondary RFM attempting to lock the file
supplies the primary RFM with 1ts version vectors and the
primarv RFM does the comparison.

In each si1tuation, both the descriptor version vector and
the fi1le deta version vector are compared. There are four
possible outcomes for the comparison of version vectors:

a. The supplied version vector 1s the same as the local
version vector.

The supplied version vector dominates the local version
vector

|. . R:'.:‘... "... ..:'i: :: & '\w‘)‘\.‘h\n‘- ~ ",LJ. '1'7( ."
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¢. The supplied version vector 1s dominated by the local ""?z

version vector.

TR STV T s O WY

d. The two version vectors are 1ncompatible. ‘yzj;f
‘.)".“' )
The actions taken for these outcomes depend upon whether imege b&i&ﬂ
updating or file locking is teking place. *jf}ﬁg
For updeting. the version vectors are compared by the RFM 'ﬁ3:?%
whose 1mage 1s about to be updated. The various comparison igu_
outcomes and the actions to be taken for each are. WO
| N
a. The supplied version vector 1s the same as the local x-ﬁh@
version vector. Since the updating RFM 1ncrements its o
element of the version vector prior to sending it for g !%
comparison. 1f the RFMs are behaving properly, this case “ahs,tzo
should not occur. If 1t does, some RFM has been :ﬂsﬁﬂ
misbehaving. The update should be deferred and the ‘ \ﬂ‘%
operations staff should be alerted by means of a message ﬁﬂg&ﬂ
to the Monitoring and Control System. N '”
b The supplied version vector dominates the local version %"I'g:i
vector. This 1s the normal case, since the local 1mage '§¢&¢‘
1s being updated. In this case. the 1mage update should %ﬁgﬁﬁ
proceed. i:':'!\g:::.‘
c¢. The supplied version vector 1s dominated by the local
version vector. In this cese. the local 1mage 1s more
recent than the one that 1s to replace 1t. The update

should be aborted, and the local version should be used

to update the remote version.

d. The version vectors are i1ncompatible. This detects an
inconsistency. The update should be deferred until human

intervention can clear up the problem.

In the locking situation, the version vectors are being
compared by the primary RFM for the file i1n question.

a. The supplied version vector 1s the same as the local
version veclor. This should be the normal case, and
locking can proceed.
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b. The supplied version vector dominates the local version
vector. In this case, the primary 1mage is obsolete, and
should be brought up to date. If the file 1s being
locked for writing, the locking should proceed, and the
local image can be updated when the file 1s closed. If
the file 1s being locked for reading. there are two
possibilities. Either, the primery file 1mage could be
updated before proceeding with the locking, or the
locking could proceed and the file could be updated when
the lock 1s cleared.

d The supplied version vector 1s dominated by the local
version vector. The secondary i1mage should be updated
before proceeding. 1f the file 1s being locked for
reading. then the file 1mage &t the secondary site should
be updated so that the client 1s given access to the most
current file data. If the file 1s being locked for
writing. then the secondary file 1mage must be updated
first to avoid 1ncompatibility.

d The version vectors are i1ncompatible. 1f the file 1s
being locked for reading., the locking may proceed, but an
attempt to signal a user or operator to resolve the
incompatibility should be made. [If the file 1s being
locked for writing., the client should be 1nformed of the
incompatibility and given an opportunity to resolve it.
The client may proceed without resolving the
incompatibility, i1n which case the write 1s treated &s an
unsvnchronized write.

8.4 Elementary File System
8.4.1 Introduction

The Elementary File System (EFS) 1s an easily ported single
host file svstem that serves as a common base of i1mplementation

XSO0
support for Cronus fi1le managers on Cronus Generic Computing

\]
y C:t‘
", |t

Elements (GCEs) configured with disks, on the UNIX system, and on RN JW
the VAX. The underlying implementation of the EFS 1s consituent SQ* oy
host dependent. but the interface presented to the Cronus File el
Menger 1s uniform As & result. portability of the File Manager i
ool
() '..
() 0‘:‘:‘:‘!"
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1s enhanced, and the cost of integration of new hosts is reduced. uﬂ&bk

The EFS was originally developed as a primitive file storage el

capability for the GCE mass storage devices. 1wv13
R
The two principal design objectives of the EFS are: Médég

o A
~ |""
1. Sufficient functional! capability to support the Cronus N "';:i
distributed file system. b ';:‘
“«' ‘
N 2. Simplicity and efficlency. #Npl\,
) .4 .t N
l"n N
. The principsl users of the EFS will be object managers. |Qfé}:
Client processes will seldom. 1f ever., directly access files ﬂ§§#¢
4 through the EFS. Therefore, only the most basic file Litss
. operations need be supported. More complex file functions r}~2~
: cen be supported by the object themselv Simple hy
i pporte ¥ e ob)ect managers emselves. Simp *”F*M
| steps have been taken 1n the internal organization of the Rt ‘a
; EFS to support effective crash recovery and svstem restart .'b.‘:r
!, X OOU0
; procedures. vfﬁﬁﬂf

3 ) ’
The Elementary File System will have the following Ny .,‘
characteristics: e 0::‘
: I“'l.'l.Q:
) 1. The name space for EFS fi1les 1s flat. Names for EFS files :{g&k
p are called FilelDs. and thev are fixed length b1t strings. 4&&
FirlelDs are not Cronus UlDs. A FilelD 1s unique on the EFS : ;

that generated 1t, but it 1s not unique eacross all Cronus ﬁf?g?
| hosts. The EFS 1s a Cronus object 1n much the same way that Aﬂwggﬂ
! the exi1sting UNIX or VMS fi1le systems are C:ronus objects, Q:“J
' _ WL
' but D ."\
] n\ l.ﬁ
- o
2. A EFS file is not a Cronus object. L -"
3. File data 1s organized as & sequence of fixed length blocks. ;i;ﬁ J
; File 1/0 1s sequential. and 1s block oriented. The basic Sy \ﬂ
) file 1/0 operations are. NS *a&

ALKy

%

ReadEFSFi1leBiock(FilelD, BlockNumber, Buffer), and
WriteEFSFileBlock(Fi1lelD, BlockNumber, Buffer).

; 4. There are no open or close operations. No setup is
L necessary to read data from or write data to an existing EFS
file.
H
-113-
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It is necessary to create a EFS fi1le before writing data to
1t. This 1s accomplished by the

CreateEFSFile()

operation, which creates an empty EFS file and returns its
FilelD.

EFS fi1les are deleted by the
DeleteEFSFi1le(F1lelD)
operation

There 1s no access control for EFS files. Possession of the
Fi1lelD for a EFS file 1s sufficient to access the file.

The EFS will normally be accessible onlv to Cronus Services.
The primal file manager 1s an example of such a service. These
services provide controlled access to the objects and operations
that thev 1mplement. &s described 1n Section 8.

In addition to supporting the local primal file manager, the
EFS may be operated on as an object to permit remote access for
meintenance and debugging purposes. There 1s a single access
control 13st (ACL) associated with access to the entire EFS
through the EFS_Fi1le Manager. Only & very few principals will be
on the ACL for a EFS. An example of a principal which might be
granted access to the EFS 1s the "System Maintenance' praincipal.

8.4 2 File Formats

The following description of the Elementary File System
structure assumes that & disk can be represented by a series of
fixed length blocks. In the Cronus ADM, the storage may be.

'I ::;"!

a disk drive on & GCE, !
oy

) .Q' .‘l

a disk device 1n & UNIX system. or

O
. . ..-“, “”u-"w RN NS Oy 'V." o q'.( ) q. w0 AR ot “
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a contiguous file on the VAX/VMS.

The EFS makes few demands on the underlying recording medium, and
it 1s relatively easy to see that most potential Consituent
Operating Systems will provide a construct upon which the EFS can
be built.

File disk blocks are self-identifying for reliability
purposes. Each block 1ncludes a header that contains the FilelD
and the block number. The file header 1n each block contains a
NextBlock pointer which 1s the disk address of the next block. if
anv, 1n the fi1le. The NextBlock pointer 1n the last block
conteins & special value marking the end of file.

There is a FilelD Table which provides & mapping between
FilelDs &and the disk address of block 0 of the file (see Figure
1). The Fi1lelD Teble 1s as a fi1le with a well~known FilelD
(Fi1lelD = 1) Its block O will be stored at a known disk address
(with an alternate copv stored at another location to prevent
loss of data 1n case the primaryv block 1s bad) The FilelD Table
1s & hash table.

There 1s & sreeDi1<I:Blorck table which records the disk blocks
thaet are available. The FreceDiskBlock table 1s a bit table
stored 1n & file with a well-known FilelD (FilelD = 2). Its
block 0 is stored at & known disk eddress. When a file is
deleted, 1ts blocks are recorded 1n the FreeDiskBlock teble, and
the FilelD field 1n the headers of each of the blocks 1s cleared.
As disk blocks are needed they are allocated using the
FreeDiskBlock teable.

There are two types of EFS files. The type of the file is
contained 1n the header of block 0. T types of EFS files are
(see Figure 2).

a Short file
This 1s & file, all of whose data will fi1t within block 0.

b. Normal file.

This 1s & file whose data will not fit within a single
block.
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Random Access GCE Files

File Disk Block Format
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A Normal file may contain index blocks which allow random access
to the file. By convention, the first of these blocks is given
block number -1, and contains:

A block index which holds the disk address of blocks 1
through N of the file; and

The disk addresses for two overflow blocks, named
OverflowBlockl and OverflowBlock2, which can be used to find
the block index entries for blocks numbered greater than N.

1f the file 1s very large, not all of its index will fit into
block -1.

OverflowBlockl 1s used as an 1ndex for blocks which store
part of the block i1ndex which will not fit in block -1.
Specifically, if block -1 can store i1ndices for blocks 1 through
N, if OverflowBlockl can store M disk addresses as indices, and
1f each block 1t 1ndexes can store P disk addresses,
OverflowBlockl can provide access to indices for M*P additional
blocks, numbered (N+1) through (N+M*P). The block index for the
Normal file shown 1n Figure 2 overflows block -1 1nto
OverflowBlockl, and 1s small enough that it doesn’'t require
OverflowBlock?2

OverflowBlock?2 provides an additional level of indirection
for very large files. 1t conteins an index for blocks which are
used 1n the same manner OverflowBlockl is. [If OverflowBlock2 can
hold Q disk addresses as i1ndices, then it can provide access to
indices for M*P*Q blocks, numbered (N+M*P+1) through
(N+M*P+14M*P*Q) .

By convention the BlockNumber for Overf!owBlockl 1s -2. Any
index blocks referenced by OverflowBlockl, as well as
OverflowBlock?2 (if present), and any 1ndex b!.cks 1t references
directly or i1ndirectly are assigned BlockNumbers 1n & negative
sequential fashion starting at -3 1n the obvious manner.

Some constituent hosts will have multiple disks (in the case
of UNIX, these may actually be disjoint regions on & single
physical disk, and in the case of VMS. they would be multiple
contiguous files). Part of the FilelD specifies the disk on
which the fi1le resides. The CreateEFSFi1le operation takes an
optional parameter which specifies a disk. I1f the parameter is
supplied. block O and ell subsequently created blocks of the file
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are allocated on the specified disk. If the parameter is not \.“'t
supplied, block 0 and subsequent blocks are allocated on the disk Sate
the EFS sees fit. w
lp
WX h.
e
L)
R
SR
8.4.3 Disk Salvaging o
'.."‘. "V
There 1s & BadDiskBlock table which holds the disk addresses *JQ”&“
of bad disk blocks. The BadDiskBlock table is stored in a file *Qg&@
with a well-known Fi1lelD (Fi1lelD = 3). iﬂ}?k}ﬁ
! «.:.«,
J b ¢
There 1s a EFS disk salvage operation which can reconstruct %
the FilelD table. the FreeDiskBlock file, and the BadDiskBlock “Q?.
file. and reset the NextBlock pointers in files. ﬂ
O\
'ﬂ&?ﬁk
The salvager meyv encounter files with missing blocks. When “ﬂ'fﬁﬁ
it does. 1t will fi1ll 1n any hole 1t encounters with a newly de “
allocated filler block. linking the filler block into the file RS
where the hole was. The FilelD of the filler block will be set %ﬁ%&h
to the ID of the file. and 1ts BlockNumber will be set to a q@ﬁﬁg‘
special BlockNumber which 1dentifies it as & filler block. The Jhﬁxﬂg
only deta in & filler block will be the BlockNumbers of the gthQs

previous and next file blocks which contain data. Higher level
software can be used to recover the data in a file which contains

filler blocks. 4&? “0

R
, ﬂﬁ\ﬂﬂﬁ
As the salvage procedure encounters bad disk blocks. it @{ﬁ.ﬁ
records them 1n the BadDiskBlock file. If 1t encounters a bad “u“
block which is part of a file, the salvager will remove the block
from the file and substitute a newly allocated replacement block ‘J'“ﬁ?t
by linking 1t with the other blocks of the file 1n place of the “ﬁW
bad block. The FilelD of the replacement block will be set to

the ID of the file, and 1ts BlockNumber will be set to a special
BlockNumber which identifies 1t 1s & replacement block. The only
data 1n the replacement block wil]l be the BlockNumber of the
block 1t replaces. This will make 1t possible for higher level
software to recover the data i1n other blocks of the file.
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9 Symbolic Naming
9.1 The Cronus Symbolic Name Space

Cronus has a global symbolic name space with the following
properties:

1. Cronus symbolic names are location independent.
a. A name for an object is independent of its host.

b. A name that refers to an object can be used
regardliess of the location from which it is used.

Cronus symbolic names are uniform.

Common syntactic conventions epply to names for different
types of objects.

‘ ey
3
¥
s
K
W
K
¢

The symbolilc neme space 1s constructed upon a hierarchically
structured tree. The tree contains nodes and directed labeled
arcs. There 1s & distinguished node celled the "root” Each
node has exactly one arc pointing to it, and can be reached by
treversing exactly one path of arcs from the root node. Nodes 1n
the tree represent Cronus objects which have symbolic names.
Links provide an overlaid structure based on symbolic pointers
which provide a name space which is a network. so a node may be
reached by more than one path.

PR W o ..

Non-terminal nodes (those from which arcs may originate) are
called directories. Each labeled arc corresponds to a catalog
entry. The label for an arc is called an "entry name”

The complete name of a node. which 1s the symbolic name for
the object, 1s formed by concatenating the labels on the arcs
traversed on the path from the root node to the node i1n question,
separated with the character ":.". In other words, the syntax for
a complete name 1s.

b x o ity

where “x” and “v" are arc labels, the "{” . ”{" brackets 1ndicate
optional presence., the ".” 1s & punctuation mark to separate name

N- "'*a" ‘\'x"" e PRI
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It is also possible to name nodes relative to a directory. -
Such a relative name is formed by concatenating the labels on the t? ;w
arcs traversed on the path from the directory in question to the Eﬁ% :
node. The syntax for a relative name 1s: pﬁﬁﬁ%
A
P x ity smi&v
®
W
There are conventional names for the current (' connected” or $ﬁ$%
“working”) directory. 1ts parent, and the user’'s initial #}ﬂy&
directory. 'hfw}“
::"tt"ls
The most common types of cataloged objects are the various — o
kinds of files. but any other object may be cataloged. Some ﬁf;"?
conventions will be adopted. for example., there will be a :dev :_“:
directorv which contains the symbolic names for the devices on ) Qf[
the system. These conventions are not enforced by the system, i‘ “qﬁ
and any object mayv be entered i1nto any directory (assuming Rt Mty
appropriate authorizations) at the convenience of the user. 9
o
)
There are certain special object types which are used in &@*?@
support of the catalog 1tself, 1ncluding: szﬁ&;
XA N
"....‘f
o Directories On {0
A directory object (type CT_Directory) is a non—-terminal Wﬁf
node 1n the catalog tree. ( h:‘
b
: . q&‘
R o Links v I',.l"
: e
The catalog entry for a link (type CT_Symbolic_Link) _fi
1denti1f1es another point 1n the symbolic name space called 1'\“
the link target.  These objects are stored 1n the catalog !
1tself. Links are cataloged as terminel nodes 1n the name
hierarchv tree. Links are handled specially within the

: Lookup operation.

o External linkages

An external linkage (type CT_External_Linkage) is an object
which i1mplements access to another name space. External
linkages are cataloged as terminal nodes 1n the name

-121~
"‘ ." .“ . ‘ -\' ! |. l.. "‘ ™ -‘ ‘q‘ "f- ‘.S%
X oo \ t t s . -. w. o
R ’* R R R



P

hierarchy tree. External linkages permit users to refer to
non-Cronus objects directly from the Cronus name space. For
example, an external linkage might be used to give a file

directory on a Cronus application host a Cronus symbolic
name .

For some object types 1t is useful to be able to think of a
collection of the objects as a sequence of "versions" or
“revisions” of the same logical object. The Cronus Catalog
implements a version feature for certain types of objects; for
example. versioning will be supported for files, but it will not
be supported for directories.

For types for which versioning is supported. the catalog
entry operation will permit the same name to be entered 1nto a
directory more than once. Each copy of the entry will have a
distinct version field and should point to a different object.
However. all objects pointed to by different versions of the same
entry name must be of the same tvpe. The first time a name 1s
entered. the result will be version 1 of the object. Subsequent
entries of the same entry name will result 1n successively higher
versions of the object. All of the catalog operations which take

a name parameter will allow the specification of a version number
as well.

The catelog managers provide routines that can scan through
the catalog and return cetalog entries for names that match a
speci1fi1ed pattern.

The create(entry) operation can be used to simply establish
e symbolic name for a Cronus object of any type except a
directory, symbolic link, or external linkage object. These
types of entries are inserted in the catalog when they are
created (since other objects need not be named. the creation of
the object and naming of the object are distinct operations). In
a sense. these ob)ects are special 1n that they must have a
symbolic name in addition to a UID.

Figure 1 shows @& relatively simple symbolic nare tree and
Figure 2 shows part of the underliying directory structure that

corresponds to the part of the tree that contains the name
.a.b.c.
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When & Jookup operation is invoked, the catalog manager
interprets a complete Cronus symbolic neme by starting at the
root directory. The UID of the root directory is well-known.
The catalog manager processes a name component by searching the
current directory for a matching catalog entry. 1If it finds a
matching entry and there are no more name components, the lookup
is complete and it returns the catalog entry. 1f it finds a
matching entry and there are more name components to interpret,
the entry must be for a directory, symbolic link, or external
linkage, or else the lookup ends 1n failure. If the entry is a
directory, the catalog manager continues the lookup by obtaining
the UID for the directory from the entry and then using it to
interpret the next component. Interpretation of a relative
symbolic name 1s handled i1n the same fashion, differing only in
where the lookup starts. For a relative name, the catalog
manager starts its search at the starting directory parameter of
the lookup operaticon.

Symbolic ;1nks encountered during lookup are handled in a
special meunr r. When & link 1s encountered. & new name 15 formed
by substituting the link target, which 1s a complete Cronus
symbolic name held 1n the catalog entryv, for the portion of the
symboli1c neme evaluated so far. The lookup operation then
resumes by interpreting this new name. Links can be thought of
as macros which are expanded during the lookup operation.

A paremeter of the lookup operation controls whether links
are to be expanded. If the parameter specifies that links are to
be expanded, the substitution of link targets during the lookup
operation occurs. If the parameter is set to prevent links from
being expanded, the lookup operation terminates when a link 1s
encountered. In this case, the lookup operation will be
considered successful if the name has been completely evaluated.
Otherwise it will be considered a failure.

9.2 Objects Releted to the Catelog
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9.2.1 Obj)ects of Type CT_Catalog_Entry

Each catelog entry 1s a Cronus object; however, unlike most
objects in Cronus, a catalog entry has no UID. A catalog entry
contains the following information:

UID for the object,

Complete symbolic name for the object,

UID for creator of entry (PrincipalUID), and
Type—-dependent 1nformation

Tvpe—-dependent 1nformation for objects of type CT_Directory,
CT_Svmbolic_Link, and CT_External_Linkage 1s discussed below.
For objects that are not part of the Cronus catalog, everything
that can be known about an object 1s meintained by (or can be
obtained from) the manager for the object.  That 1s, no type-
dependent i1nformaetion 1s maintained 1n the catalog.

9.2.2 Objects of Type CT_Directory

For directories. no type-dependent i1nformation., except the
host that stores the directory, would be maintained 1n the

catalog entry. All other information about the directory will be
mainteined with the directory object 1tself.

9.2.3 Objects of Type CT_Symbolic_Link

For a symbolic link. the type-dependent information. which
completely specifies the link., consists of the complete symbolic
name for the link target.

UlD.

Complete svmbolic name for the link.

UID for creator of entrv (PrincipalUID), and
Complete symbolic name for the link target.
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9.2.4 Objects of Type CT_External_Linkage

For an external linkage, the type-dependent information s
completely specifies the extermal linkage. 1t includes a Cronus ‘§
interpretable designator for locating the other name space and a )
symbolic name that is interpretable in that other name space.

The details of the method for designating other name spaces and
for interacting with them are i1ncomplete. A catalog entry for an
external linkage will 1nclude.

UID,

Complete (Cronus) symbolic name for the external
linkage;

UID for creator of entry (PrincipalUID)

Cronus interpretable designator for the other
name space, and

Symbolic name interpretable in the other
name space.

9.3 Catalog Operations

9.3.1 Objects of Type CT_Catalog_Entry

The following operations are defined for the Cronus symbolic |
catalog (see Cronus User s Manual cat_entryv(3)): |

Create

Remove

Lookup

Read

Change
InitScan
ScanDirectory
LookupWild

LookupWild performs & catalog lookup using Cronus wild card
conventions (see Cronus User s Manual sym_name(4)), and returns a
11st of all the entries which match the specification. ]InjtScap
and ScanDirectory perform the same function. but incrementally,
returning i1ndividuel entries.

R
et
Rty
A,
h .|‘..‘ "‘
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9.3.2 Objects of Type CT_Directory Sty

o.‘ c"‘l‘n"
The following special operations are defined for objects of |
type CT_Directory (see Cronus User s Manual directory(3)): | $@

Create | M~

' ]
4, 2
Remove | ;;"..0‘

9.3.3 Objects of Type CT_Svmbolic_Link ;.‘"

i
The following special operation 1s defined for objects of | N 6&&
type CT_Svmbolic_Link (see Cronus User's Manual sym_link(3)): | ':\

Create | ™

9.3.4 Objects of Type CT_External_Linkage ﬁﬁ&i»l

The following special operation 1s defined for objects of I sl
type CT_External_Linkage (see Cronus User's Manual ext_link(3)): | :“

Create | ¢

t
9.3.5 Access Control for Catalog Operations ﬁiﬂ*

All of the catalog operations &re operations on one or more .b
directories. There are three rights defined for access control W
purposes:

ReadDirectory, ﬁ%‘

Q
WriteDirectory. and Y q%quﬁ
Mod1 fyACL.

t’p‘t‘ '
ReadDirectory rights are needed for all operations which Qb?”
| I
return wnformation from e directory. In operations which access
multiple directories. such as Lookup. ReadDirectory rights are
needed for each directoryv accessed. WriteDirectorv rights are
needed for all operations which 1nsert or remove entries from a
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directory, or alter the contents of an entry (with the exception

of those which chenge the access rights). ModifyACL rights are

needed

in order to change the access rights to an object

represented by a catalog entry.

varl

9.4

9.4.

Table 9.1 summarizes the access rights required for the

ous operations.

Create{entry)
Create(link)
Create(external linkage
Remove(entry)
Lookup

LookupWwild
Ini1tScan
ScanDirectory
Read(entrvi
Changeientry)
Createtdirectory)
Remove(directory)

Table 9.1 Access Rights Required for Catalog Operations

Catalog Implementation
1 Introduction

The following 1mplemen

the manner 1n which client processes 1nteract with the

catalog manager which

the use of Cronus date storage resources to implement the

catalog date base,

T R
N

e e
NN IR S L AL
e

. S
e AR

')

Read

Directory Directory ACL

)

MoM oM MM

tati1on 1ssues are discussed below:

1mplement
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)3 9.4.2 Cronus Catalog Managers
R
There 1s a catalog manager process at each host that
o maintains part of the catalog. It 1s the object manager for
& objects of tvpes CT_Cronus_Cetalog. CT_Catalog_Entry.
a“ CT_Directory. CT_Svmbolic_Link. and CT_External_Linkage.
v
WYy
hb The catelog managers communicate with client processes by
) means of the standard Cronus IPC facility. Since the catalog
Ka hierarchy 1s distributed among Cronus hosts, different managers
${ will have direct access to different parts of the catelog. Some
Q} catalog operstions can be accomplished by a single catalog
?‘ manager and some require the cooperation of two or more catalog
.g‘ meneagers.
;ﬁ‘ For example, the Remove(DirUID. catEntUID) operation would
! normally be sent to the manager for directory DirUID. and only
{‘ that manager 1s required. The lookup operation may require
3‘ catalog managers on two hosts if the menager to which i1t is sent
!?- does not contain the subtree required to interpret the entire
symboli1c name.
W
'* A client process will not. i1n general. know which catalog
ﬁﬁ manager 1s the best one to perform a given operation For thas
Q@ reason, a client can 1nitiate a catalog operation with any
w. catalog manager. 1f the manager selected can perform the
operation requested by itself., 1t will. If not, 1t will interact
.- with other managers as necessary to perform the operation.
b
)
)
D
\
' 9.4 3 Implementation of the Catalog Hierarchy
\]
%)
f 3 Directories are stored 1n files. The catalog manager
" maintains a UlID teble for the objects 1t manages. Since the
h principal objects 1mplemented bv the catelog manager are
& directories. this table 1s called the Directory UlD Table. The
)
f
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Directory UID Table maps the UIDs for directories into their Qﬁﬂ#'%

it
object descriptors. atatuy

A directory contains zero or more catalog entries. The )
catalog entry for a (inferior) directory contains the UID of that ‘ﬁf(
directory. To access a directory given its UID, the catalog v /
manager uses the Directory UID Table to obtain the object \;&} )
descriptor for the directory, and then uses the file UID in the }ﬁ?ﬁ&f’
descriptor to access the file that holds the directory. L]

R
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9.4.4.1 Pranciples Affecting Distribution ot #

9.4.4 Distribution of the Catalog

!

Among the considerations 1nfluencing catelog distribution ﬁq
are. )

1. The catalog should not be stored at only one site.

This 1s a reliability consideration.

The catalog should be distributed, and it should probably
be replicated in some fashion.

™

The entire catelog should not be stored at any single
site.

This 1s a scalability consideration.

3. It should be possible to access an object when the site
that stores the object 1s accessible.

This i1s a reliability consideration.

Access to objects through the UID name space has this
property since the information required to access an
object, given its UID, 1s maintained by object managers.
Access to objects through the symbolic name space should
also exhibit 1t.
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The catalog entry for an object (or & copy of the entry)
should be stored at the same site as the object. In
addition, there should be enough information at the
object site to control access to the object.
4. There is little utility in maintaining a catalog entry
for an object in a more relieble fashion than the object A
itself. COLe '
L ]
This 1s a common sense consideration. }
It 1s not necessary to replicate catelog entries for
objects bevond that required by (3).
There are some further 1sssues to consider associated with | fﬁkﬁ‘
(2) and (4). end we disscuss them 1n more detail 1n the next two i 5y#r:
subsecticnrs The discus<.on i1ncludes elements of the f :"*Jﬁ
implementation oi ilic reliable system as well as the primal | v
svstem. because these mav 1mpose constraints on the primal system | it
design
9.4.4.2 Dispersal Of The Catalog
This section examines the requirement that the catealog not .
be stored at & single si1te. The line of reasoning followed 1s
essentially that thet lead to the design of the Elan hierarchy a
[BBN 3796]
VN
Directories are the basic unit of distribution for the L J
Cronus catalog. Directories are implemented by Cronus primal and | ;nxhy
reli1able fi1les. The lookup operation follows the components of a Lfagf
symbolic name through e number of different directories., one for :{\
each component i1n the name (essuming 1t does not encounter a -3Qf\
symbolic link). Unless there 1s a further restriction on the ?J\M\'
dispersal of the catalog. each directory could be at a different
s1te from the previous one.
It 1s desirable to limit the number of sites that must be X

visited 1n a lookup operation. Two useful restrictions are to.
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1. Require that the catalog structure for entire subtrees Qﬂﬁi
below a certain cut (the "dispersal cut”) through the R ”*
catalog tree be stored within a single site. We call a g
subtree that is rooted at the dispersal cut a nf “‘

“dispersal subtree”

2. Require that the catalog structure above the dispersal
cut be stored within & single site. We call the . ‘“
structure above the dispersal cut the "root portion” of RRRRR
the hierarchy. DAY

. "Q !Qi L3
OUF N Nt
‘.‘d« J’f{“:’

3 ¢
Restriction 1 ensures that lookup operations within a
subtree that is below the dispersal cut can be confined to a
single site. Restriction 2 ensures that the task of determining
the site that stores a particular dispersal subtree can be
confined to the site that stores the root portion of the

hierarchy. As & result, lookup operations require at most two
catalog sites.

It 1s useful to add & third property to the dispersal of the

(;3'

catalog. uﬂc
e
3. The root portion of the catalog hierarchy should be :
replicated. Furthermore, a good way to replicate it is
to maintain it at each site that maintains a part of
the catalog (i.e. a dispersal subtree). The reasons 1"v““
for doing this are. a\ ’ﬁﬂ
.l;"l"
o To distribute the load resulting from lookup \
operations among severpl sites. \w&.m

o To allow some lookup operations to be confined to
&8 single site.

o To 1ncrease the availability of the root portion
of the hierarchy.

Figure 3 1llustrates how & simple name hierarchy might be
dispersed among several hosts according to these three
restrictions.
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For this to be practical, it must be possible to maintain

the copies of the root portion in a consistent fashion among the

. same set of hosts that store parts of the catalog. It has been
observed that the root changes very slowly, beceuse few users are
authorized to make changes, and because changes generally occur
as the result of the addition or deletion of a user or project.
This means that the maintenance mechenism need not be powerful
enough to handle the general multiple copy update problem. |

9.4.4.3 Replication of Catalog Information

The primary consideration for replicating catalog
information 1s one of reliability. The objective 1s to ensure
that Cronus objects with symbolic names are accessible
symbolically whenever the sites that manage the objects are. It
1s likely that unavailebility of & catalog manager will be the
) result of a host crash, so that we can assure maximum access by

providing a copy of a catalog entry on the host where the object

- -

~

. 1s cataloged. Then the entry will usually . be available whenever
: the object 1s. If this 1s the same as the site of the primary
‘: catalog entry, then no replication is needed. 1f it is

; different, then a secondary catalog entry is provided on the host
5 where the object resides.

For every host on which there are object managers. there

X will be either a full catalog manager or a secondary catalog
manager. Each full cetalog manager will maintain a fully
replicated root part of the catalog tree and its own subtrees

X rooted at the dispersal cut. 1In addition, both full and

. secondary catalog managers will maintain a separate database, the
secondary entry table, which contains secondary catalog entries
for objects which are on 1ts host but for which the catalog

. subtree containing 1t 1s not local.

: A secondary entry is a catalog entry which stands i1n for the |
primary entry for an obj)ect. It differs from the primary entry |

y 1n two respects. First, 1t can reside only on the host on which |

h - the object resides, and then only if the primary entry 1s on a |

) different host. Second, it 1s stored in the secondary entry |

‘ table, not 1n a directory. |

1
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The secondary entry table is not used to speed up local
access to the object UID. Rather, 1t 1s available only to
support catalog operations when the primary entry is not
accessible. The reason for restricting 1ts use 1s to avoid
synchronization problems between the primary and secondary
entries for an object during normal operation of the system when
no hosts are down. |[If the object has more than one symbolic
name, a copy of each catalog entry will be stored at the object’s
host. That is. there will be a collection of Cronus catalog
entries at each host for those objects that have symbolic names
that require access to directories on othei hosts. The catalog
manager software will maintain the consistency between these
secondary catalog entries and the primary entry.

Figure 9.4 1)llustrates how the catalog information will be
maintained. The circular nodes represent ob)ects that are stored
at the same host as their entry 1n the catalog hierarchy and the
square nodes are used to represent catalog entries for objects
that are stored remotely from their entries.

Under normal conditions. the lookup operation uses the
primary entries 1n the svmbolic catalog. When not all of the
directories are accessible, the secondary symbolic access path 1s
used. The Jookup will succeed whenever the object 1tself can be
~eached, since 1f the object has a symbolic name. a copy of the
catalog entry object will be stored at the site that manages the
object. (14)

When & client process first invokes a Lookup operation. the
operation 1s performed using onlyv the primary catalog entries.
If that fei1ls, the client may then attempt to perform a look up
on the full symbolic name of the entry of interest. In this
second lookup attempt. the client must multicast the lookup
request to all catelog managers and set the key in the request

{14) Lookups of partial svmbolic names cannot be performed wusing
the secondary access path. because the failure of the initial
lookup suggests that the catalog manager which can 1nterpret the
Directory UID for the start of the search 1s unavallable. To use
the secondary access path, the <client must remember the full

symbolic name for entry. Further, the secondary access path will
not have the mechantsm of svmbolic links availlable. As a result,
a path name utilizing such a8 link will also farl.
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indicating a secondary access path lookup.

Lookup by means of the primary path 1s much more efficient
since 1t 1s directed, whereas lookup by means of the secondary ERORAD
path 1s undirected. There is no a priori knowledge of the host o N
or hosts that need to be consulted to perform a lookup by the 1%$¢H
secondary path. heh

9.4.4.4 Synchronization Among Catalog Managers

There are two cases in which catalog managers must
svnchronize among themselves 1n order to preserve consistent
information: the replication of the catalog hierarchy above the
dispersal cut. and the correspondence between the primary and
secondarv entries for objects which reside on one host and have
their primary catalog entry on another.

n::'o:
el
In addition. there are two aspects of the synchronization | Pl
problem. the first 1s the synchronization among hosts which are } o
all running, the second between & host which has changed the | |~. :&
catalog and & host which 1s reintegrating i1nto the Cronus cluster | %f@%“
v e
after a period of 1nmaccessibility. 'péaﬁf
! :'l:::'::ei :
This section discusses techniques for automating replication Na'fd
of the root portion of the Cronus hierarchy (i.e, that ®
above the dispersal cut). While the approach discussed applies vﬁ{ﬂq
to the Cronus catelog. 1t 1s alse 1ntended to be used as a J&ﬂgﬁ
base for more general replication services that might be applied éﬁwﬁpx
to other Cronus components (the authentication manager, file #ﬁ%ﬂ?é
managers, etc.) ﬁ*ﬂMgr
®
As with all Cronus functions, automation of catalog RRGELY
l%c%@%
replication wi1ll be 1mplemented by the object managers. 'Fmahm
Initially, we can think of the functions needed to 1mplement this hﬁﬁbﬁh
automation as being composed of the basic operations on an a@gﬁa%
object type. Later 1t might be appropriate to cast them ‘af{ﬂfﬁ
as new operations. In anv case, we will refer to these
functions as operations 1rrespective of their actual g 'Trﬁ
implementation as operations on & type. In the case of the $ ﬁsﬁ
catalog. these replication functions will be handled by the 'f\q”ﬁ
Catalog Managers. reather than 1n & more general way such it ﬂ&
as through some form of replicated file Eventually. when we '%Jo
®
)
'E?* "
0\‘:"’»"‘-
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gain more experience with replication, we may want to provide a dﬂ

KR
more generic wayv of providing replication services. “JM
We define the following basic operations: ﬂ?WQ;
o Replicate existing directory X 'QQ::
o Dereplicate existing directory ety Q&ﬂ
o Modify existing directory (add. delete, modify/entry) LLbatet
o Reintegrate host TKQ“Q%
” 2
I:Q“’qzt
In addition to these operations. we can add two more functions hee &ﬂ
related to management of the replicated portion of the catalog: Y l@ﬁa
o Move dispersal cut (or replicate/dereplicate above/below
directory) f’l?
o Copy dispersal (make & copy of the entire dispersal hierarchy) 'QQ‘
t% N
In order to simplify the design. we will restrict ourselves to $h$?;;
these functions. Other variants. such as create a new lipiiet
replicated directory, can be 1mplemented from these and the '“W:W
exi1sting catalog operations 1n the obvious manner. ’ “&%ﬁ
R
Our approach to mainteining consistency in the .Q@&?ﬁ
replicated portion of the hierarchy will be to use update 4':5'
logs thet are maintained and accessed by the Catalog Managers.
We wil] discuss the management of wupdates in more detail f.
later. when we discuss reintegration. ' ‘
& '::‘.!“
Before discussing the operations, recall that all 'ﬁh\ O
directories 1in the hierarchy above the dispersal cut are 'Qw hs
replicated on all hosts. Below the dispersal cut, each =
subtree of the catalog hiererchy is meintained on a single s .
host. This ensures high availability of the root portion of the W }
catalog and & minimal number of inter-host accesses in a $ W‘:
directory search. The catalog 1s designed to accommodate }ﬁ?xﬂ'%
infrequent changes to the root portion of the hierarchy, so speed -}ﬁ?# :
of update 1s not & major 1ssue. ’yb“: |

In Figure 5 we see a detailed representation of the

|’, A".'t‘
replication of the root portion of the catalog hierarchy on {wo

,lb "\ ‘b."l

Nl
hosts, A and B. Note that the directories above the “ Q?
dispersal cut are truly repliceted, having the same directory ‘ﬁ 5
UlIDs. The reader should not confuse the 1mplementation of
~139-
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the catalog (as files with different file UIDs maintained by
the file managers) from the replication of the catalog itself
(directories with the same UlDs maintained by catalog
menagers) . The reader should also remember that the contents
of the replicated directories are also replicated (e.g. they have
the same entries), and that they have location independent

semantics. That is, the entries consist of a symbolic neme that
1s known globally (through the catalog) and a UIlD that 1s
known globally (through the operation switch). With this

background. we can now go on to discuss the operations in more
detail.

9.4.4.5 Replicate

The replicate function takes a specified non-
replicated directory and replicates 1t  throughout the

configuration. That 1s, a copy of the directory and all 1ts
entries will be created by the Catalog Manager on each host 1n
the configuration with the same UID as the source. The function
1s restricted 1n that only the root directory or children
of replicated directories cean be replicated. To ensure
consistency, a copy of the newly replicated directory is made
avellable available by the Catalog Manager when the operation
has been completed locally. Thus, only when the new directory
1s allocated and 1its entries are copied 1is 1t made visible
by 1nserting 1ts UID into the Catalog Manager's UID table. Each
copy of the directory 1s also marked as being replicated
to assist the Catalog Manager 1n its future management.
The operation 1s managed by the Catalog Manager of the source
directory which communicates directly with all the other
Catalog Managers i1n the configuration to complete the operations
on their hosts.

The replicate operation 1s logged by the initiating Catalog
Menager to allow reintegration of hosts which cannot complete
the replication 1mmediately. We will discuss update log
meintenance and reintegration later. For now, we note that a
log entry 1s created for the operation and hosts that have not
completed 1t will use the log 1n the process of reintegration at
a later time
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The following pseudo-code describes the algorithm: '::l..:l. Ry
0
e
REPLICATE DIR
IF DIR ALREADY REPLICATED OR PARENT NOT REPLICATED THEN TS
o.,‘ h.
ERROR { "
("»' 2
> ‘C':.l
ELSE . ‘:&,‘:;::«
LOG REPLICATE DIR ek
MARK LOCAL DIR REPLICATED i P ’
FOR ALL REMOTE CATALOG MANAGERS 6&4 0
v ot
Tl
CREATE REPLICATED COPY OF DIR ¢ q.\..‘g
/* CREATE, COPY ENTRIES, MARK DUPLICATED, (:'o‘.:
MAKE VISIBLE"/ A
o
There are several 1ssues that are raised by this method ;?‘_:,,.:-5
asi1de from those of log file management. First., the algorithm m,;;&:
requires that there be a database of &ll hosts 1n a configuration ﬁ"r'
that run the replication service. The datebase should be :} {“J\‘
distributed on all hosts for efficiency and availability o “.
";o;:;v‘.;&
The second 1ssue 1s whether the remote replications !.‘.:.‘:
should be managed svnchronously (wait:ng for remote ‘.l.‘..:",
LR
operation to complete) or a&asynchronously (telling the remote 6.0 Wyt
lq"gil
Catalog Manager to start the operation and not waiting for .\. '
completion). 1f the operation 1s svnchronous, there are
obvious performance implications for completion depending on how "
long the operation will teke. For a large configuration this D."
could be & problem. A time-out will be required for those hosts 0.‘
that are down or cannot respond Asynchronous management .:.‘.‘
means that 1t is hard for the originator to know when and .IQ‘C'Q-'-
if the operation was completed. It puts more of a burden on the l PS
reintegration procedure for making sure the operation is . 3
carried out successfully. One possibility in the .:3:
asynchronous case 1s for the target to acknowledge start of the o 0.::!."0.
operation and not have the originator wait for completion. X '~
oo
The 1ssue here 1s the definition of when an operation is PS
complete. Strictly, an operation 1s complete only when all -‘1.;‘2-‘«.;,
hosts 1n the <configuration have successfully completed it. ':::"0‘:.‘:‘:
However, 1t may be sufficient to consider an operation ::.:.h:
“complete” from the point of view of the 1nitiator when it has ':.\ 'o'::t
b e . h t ] t‘.‘
een successfully logged and all running osts 1n the W3 (4
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configuration have been notified to start the operation.
Since the reintegration procedure will]l presumably eventually
cause the operation to be completed on all hosts, relying on it
to make sure the operation 1s completed on all hosts 1is
probably adequate. Thus. the initiator’'s responsibility is to
a) log the operation; b) notify all running hosts in the
configuration to start the operation; and c) complete the
operation on the local host. Once the operation 1s successfully
Jogged. we assume that it will be completed on all hosts
eventually by the reintegration procedure even 1f any of

the hosts (i1ncluding the 1nitiator) crashes 1n the midst of an
operation

The only problem with this approach 1s 1f @& host cannot

complete the operation operation due to problems such as
lack of resources (e.g.. no space to add new directories,
etc.) In these cases, the best solution 1s probebly to notify

the operator of the resulting i1nconsistency through error logging
or the monitoring and control system so that the problem

cen be manually resolved The reintegration procedure can
sti1ll be wused 1n these cases to retrv the operation at a later
time. but presumablv operator instruction will be required 'n

some 1nstances to clear up the cause of the problem.

Another 1ssue in the design of replication functions is

maintenance of the secondary catalog database. Recall that
to maintain accessability of symbolically named objects, =a
secondary catalog entry 1s maintained on the host where an object
resides 1f the object is located on a different host than 1ts
primary catalog entry. Thus, objects will be accessible
symbolically through this secondary path even if the primary path
1S unavallable. However, in the case of the replicated

portion of the catalog, the need for the secondary database is
obviated since the catalog information 1s already available on
all hosts 1n the configuration.
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N 9.4.4.6 Dereplicate ety
'54:‘ '::‘.:
. The dere cate function tekes a specified replicated o
.;'! directory and removes all copies of it except the one on the ':‘m
,:.o host of the originator (which can be any host in the :.-"‘,'
';:: configuration). Dereplicate only applies to replicated "fi
;:1: directories whose children are not replicated. The algorithm - 4&
:g{p 1s similar to replicate i1n that it takes place available: first et
the directory 1s made 1nvisible on the remote host, then ,..
TR the remote copy 1s removed. The following pseudo—-code ‘\*‘”
" » 08
o summarizes the cperation. A
t:‘. :’0‘:'0"’
N QAKX
" DEREPL1CATE DIR i
,ﬁ: IF DIR NOT REPLICATED OR ANY CHILDREN REPLICATED THEN W'de
D ERROR _ .
- [
A v
‘:-: ELSE cl.'e:‘_
o LOG DEREPLICATED DIR et
;::‘ MARK LOCAL DIR DEREPLICATED o:::Q:::!
KX FOE ALL REMOTE CATALOG MANAGERS 0N
’ @
o DEREPLICATE DIR /* MAKE INVISIBLE. DELETE DIR */ ‘:'.:Z:!:Z
) WOMKRS
v e
L) O
% One 1ssue with dereplicate 1is how to preserve the :z:;l'zy::
’:’! characteristic that subtrees of directories below the dispersal i
. cut be contained on & single host. One solution would be to e
" force this «condition to be true before the directory could be >.;‘ A
::' moved below the dispersal cut (dereplicated). This would h"{.- \
;:.0 require manual reorganization of the directorv hierarchy A ‘
1.:‘ before dereplication. Another approach might be to relax this 't .':.\';
:\' constraint and allow the dereplication to take place anyway. b\u \
As an optimization, the hierarchy could be reorganized manually .
= A .
- later to meet the condition. J:}’-“
1 WA ’ .‘
. o Y
‘l ;‘* ...;
% RN
9.4.4.7 Modify L)
¥ ‘..:::.?0
u" The modifv replicated directory operations (add, delete, %::s
,‘, change) also proceed along the lines of replicate/dereplicate, ' ‘..‘
):y adding the operation to & log file and noti1fying all the ?':‘\_‘.f\
~:;_ remote Catalog Managers to complete the operation. W
' L
; W
) +
:n K ".a‘_
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Modification of the existing directories presents a more severe b#uh
synchronization and locking problem than replication and nwakl
dereplication. For replication and dereplication, atomicity of
the operations ensures consistency, since the directory will *w*w¢
be available somewhere, by virtue of the Cronus IPC system (i.e { 'J
UlDs are location independent) even 1f it 1s not yet “ ."
fully replicated. Modification, on the other hand., could lead \ﬁhﬁ;.é
to inconsistency 1if the operation is not completed successfully _,@)
or if simultaneous modifications to the same directory are .
attempted. 75 .lu
.ﬁéﬁ%&
Clearlvy. some form of concurrency control is needed to &
prevent conflicts and 1nconsistencies. Because changes to the
root portion of the hierarchy occur 1nfrequently, we can
prevent conflicts (simultaneous changes to the same entry) by
locking the root portion when any change 1s made, so that only
one change can occur at any time. Since modification of

the root hilerarchy is &an administrative function, this 1is
probably acceptable.

Inconsistency 1n the root portion of the hierarchy 1s a
different problem which results from latency 1n completing

the operation across all copies of the hierarchy. This results
1n periods where the directories have different contents.
This mey or may not be a problem i1n practice. depending on how

frequently changes to the root portion are made.

9.4.4.8 Update

So far. we have avoided the problem of hosts that cannot
complete replication operations, ei1ther because they are down
during an operation or because thev ware 1solated through
network failure or partition. We have mentioned that the
approach we will take for reintegration 1s the wuse of pending
actions logs where each operation 1s recorded until
completed by all hosts 1n the configuration. We now discuss
the details of reintegration and log fi1le management.

The basic jdea 18 that there 1S some log file
accessible to the Catalog Managers on all hosts. Entries in the
log s8re made for each replication operation. A host's
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catalog menager reads the log file when it comes back up and
before it accepts anv new requests. For each entry 1in the
log not completed by that host. the 1ndicated operation 1s
completed and the host marks the operation complete in the entry.
When all hosts in the configuration have completed the indicated
operation, the entry is freed for garbage collection.

Entries 1in the log file consist of &an operation code
(replicate/dereplicate directory, add/delete/modify directory

entry), arguments to the operation (directorv UID or actual
entry contents), and a vector of operation done bits
corresponding to each host 1n the configuration As the
operation 1s completed by a host. 1ts completion bit 1s set by
the remote host's Catalog Manager at reintegration time. If &all
the bits &are set and the entry 1s the last one 1n the log
file. the file can be truncated by the Catalog Manager.
Garbage <collection 1s done by & daemon process that runs
periodically to trim the log file. The assumption 1s that
the normal state of the log file will be empty (1.e. a&ll
operattions completed). In anv case, as long as all the hosts 1n
the configurations eventually come wup. the log file will

eventually be trimmed

Initrally, at least, there will be a single central log
file accessed by & global UID known to each Catalog Manager.
Admittedly, this presents a weakness in the mechanism, since
1f the log file becomes 1naccessible, updates to the hierarchy
cannot be done. This cean be dealt with 1n the future by
replicating the log file on multiple hosts or by using the
persistence database 1n each Catelog Manager to ensure the
operation’'s completion.

The central log file can also serve as a Jlock on the
hierarchy to serialize the updates Any access to the log
file must be exclusive. This presents synchroni1zation
problems 1n wupdating either the 1log file or the replicated
portion of the hiersarchy 1tself. Whenever a Catalog
Manager attempts @ replication operation, 1t first tries to
open the log file for exclusive access. ¥When the
tniti1ating Catalog Manager completes the entry, 1t releases the
log file. Again, the i1nfrequence of most hierarchy updates
should meke this acceptable.
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9.4.4.9 Failure Analysis ::.‘:::.:..:
~‘.l'.!l"!l
Let wus look at the types of failure in maintaining the T

0

replicated database. A host can be down when the operation fﬂ%a:
is started. In this case, the reintegration procedure bq@bk
will cause the operation to be completed when the host restarts. l"l:Q:':tz
Another form of failure is communciation failure that isolates as#%ag‘
a host from others on the network. In this case, we assume Lyt
the effects are similar to the previous case, since presumably if q”“’w
one host on the LAN cannot communicate with another, it is uﬁqﬂ$b
1solated from all others i1n the configuration. A third type of :Qﬁhﬂx
fairlure 1s 1nabi1lity to complete &an operation because of ﬁg#bﬁ‘
resource limitations or some other cause unrelated to total "J?&Eﬁ
host faillure or 1solation. As we mentioned earlier, the best we IR
can do here 1s to report the error and wait for manual ,:,
intervention to clear the source of the problem and fix the nﬂ%ﬁ%
inconsistency. The latter two <cases argue for running 'l'\,:v:f
the reintegration procedure periodically, even if the host ":ézg.l':vj
has not crashed. to restore consistency to the database 1n the ’ ﬁ.ﬁhﬁ
event of e transitory faillure 1n communications or resource PV
limitation. etc. " d
'i?.f";‘t'h
"'"‘f“}a
A different tvpe of faillure occurs when & host crashes ggﬁ@by
in the middle of an operation. Here, we want to avoid partial or ,wﬁm?ﬁ
incomplete results and ensure that the operation is ﬁ%&@y
eventually completed correctly when the host restarts. There are Mty
three mechanisms for protecting these operations from the results R
of such crashes. First, the 1nitiator logs the operation as ‘Nﬁhﬁw'
early as possible so that the reintegration procedure will be 'hﬁﬁ%ﬁ
able to recover from any subsequent host crash. Similarly, ‘bhﬂﬁ*?
hosts completing the operation do not mark the operation *”ﬁ**&
complete unti1] 1t has actually been performed. SUMAN
Second, the effecis of the operation are made visible only ’5}.: ¢
after the result 1s valid to avoid partial or unusable fﬁﬁ"
results. Finally. enough 1nformation 1is available for the
manager to verify whether the operation has already been
completed or not. 1n case of a crash before the operation has
been marked done i1n the log. This evoids the problem of a host
trying to perform a completed operation multiple times.
Thus when a host reads the log file it must verify that the
indicated operation has not already been performed. For
replicates or dereplicates of directories, it can check to

see 1f the i1ndicated directory already exists (or doesn’'t) and is
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marked as replicated (or not). For addition or deletion of e:i:::i:::‘
entries to replicated directories i1t cen similarly search for the hlbat
existence (or not) of the indicated entries. Finally, for RIRY
‘ modifications of a replicated entry, both the old and new “g;"
; entries must be present in the log entry, so the host can 'qs'c.::c
3, determine whether the modification was completed or not. !:.!:::
N OO
) ?,
t To summarize, the following describes the general form of VT
the operations from the point of view of the initiator, the . _'
R remote hosts. and the reintegration procedures. ::'.0:1:!:(
; .t‘.:o:"‘t:
A INITIATOR. :'.jt}a‘,tie
} LOG OPERATION .,::.::g.::;
' NOTIFY REMOTE CMs OF OPERATION RN
- COMPLETE OPERATION LOCALLY ,',..
’ (e W)
! %‘I 3
¥ REMOTE . COMPLETE OPERATION LOCALLY :..c',:::;.a
:. MARK OPERATION DONE IN LOG .:::::u:n:
! ity
; O
' UPDATE.  LOOP. READ LOG ENTRY ylse
IF OPERATION NOT MARKED DONE BY THIS HOST THEN ‘ ',
j, VERIFY OPERATION NOT DONE Q ,“:g.v};
; IF NOT DONE THEN iy
.\ COMPLETE OPERATION LOCALLY " 0"!::
_ r ¥
v MARK OPERATION DONE IN LOG Dtk
F1
PR
K Y
D 0%
: Ahe
) .l -_
: R
' NN
®
i::{‘\-'\l‘-“
\ 9.4.4.10 Other Operations %:-p: &
) & '.\'Q, )
D Earlier, we referred to two other functions which Aty
' are important in the practical edministration of the ~e '_.
K, replicated root portion of the Catalog Hierarchy. The : "0'
first, move dispersal cut. can be thought of as a compound :‘-,(‘\
replicate/dereplicate operation whose semantics are: given a -:bt:-\.
: directory 1D the hierarchy move the dispersal cut to '\f-‘«}"
) include 1t 1n the replicated portion by doing the appropriate N ‘.
O
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replicate or dereplicate operations on the intervening
directories. Conceptually this can be thought of as traversing
the hierarchy and performing the individual replicate or 1th,~
dereplicate operations. Operationally. this function may be oy

"ft%
quite dangerous, so thought must be given to protecting it Py
suitably. ;

s“,f O]

H
The other function relates to adding & new host to a ';'
configuration. There are a few 1ssues 1involved with this RN
task. The first 1s to add it to the configuration database gnﬁﬁhm
so that it can be 1dentified as running the replication service ?ﬁq*&ﬁ
by other managers. Second. 1t must be able to get & copy q%ﬁ@;ﬁ
of the replicated portion of the hierarchy from another manager. w?qﬁ?”
This 1s similar to the action required 1n replicating a L ;
directory. In this case one ¢f the Catalog Managers would walk RO,
down the root portion of the hierarchy and send coples of SFN “k,
each replicated directory to the new host. Since this is ﬁ
presumably done infrequently &nd at &a time before the new f \ft
host 1S supporting users, performance and synchronization ~‘ W
1ssues do not seem to be major problems. Finally, the update
log file must be reformatted to i1nclude the fact that there 1s =@
new host i1n the configuration (1.e., new entries must accommodate hf‘f“ﬁ
the new host 1n the vector of operation done bits). kﬂ%'
: ": tx
A similar 1nverse set of operations must be done for \

removing hosts from the hierarchy. The host being removed
must be taken out of the configuration database and the log file
must be updated to account for the host's no longer
participating 1n the replication service.
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10 Input/Output
10.1 Introduction

Devices, such as line-printers, tape—-drives, or terminals are
integrated into the Cronus system as sub-types of a generalized
1/0 object CT_10Stream, which supports a generalized set of 1/0
operations.

We have tried to generalize the i1nput-output operations to
make similar operations on different types of objects as similar
as possible. so that programs and programmers do not have to be
burdened with special-case software which depends on whether the

output 1s a terminal. & printer, a disk file, or the standard
1nput of another program. There are places where these
similarities break down, as discussed below. The special-case

software 1s 1solated in the PSL so the CRONUS applications
programmer will be largely 1solated from these details.

10.2 Operations on devices

Devices are ob)ects of type CT_Device. which 1s & subtype of type
CT_l10Stream. and i1mplements the standard operations of that type.

Open

Close

(15)

IOLock

Read

Wraite

10StreamsOpenBy

OpenStatusOf
CloseProcessOpeniOStreams
CloseAllProcessOpenlOStreams

{15) Open and close are used for synchronization. They are also
used to trigger those actions that many device managers will wish
to perform (e.g.. hanging up a modem when the last process closes
i1ts output to the terminal. i1ssuing a form-feed when a process
opens the lineprinter) when the device gets accessed.
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In addition to these operations, device ob)ects also implement a
number of special-purpose operations, for example, a tape drive
or a disk drive have a Seek operation to allow writing or reading
to be done from &a particular position 1n the medium which the
device uses. (16) The details of individual device-ob)ect

operations will be specified as actual devices are added to the
CRONUS cluster. (17)

We anticipate a hierarchy of object types, breaking down
into finer and finer distinctions. For example, CT_l1OStream >
CT_Device > CT_printer > CT_lineprinter. Just as there are
several kinds of [/O-stream objects, there mav be many kinds of
lineprinter obj)ect, perhaps one for each kind of lineprinter, or
there may be page printers and graphics printers.

Device object managers also will commonly refuse a request

for “frozen"” access. In addition to the exclusivity of access
provided by frozen access, one also gains the ability to cancel
the writes which have been done to the object. This latter

ebi1lity cannot be 1mplemented on devices 1n any meaningful way.
so this form of access 1s not allowed by the device’'s manager.
(18) One may open devices for exclusive access. of course.

(16) Other special operations 1individual device menagers are
Jikely to 1mplement are. density and format control for tape and
disk drives, many devices may be turned off-line by software,
printers will have page-length, page-width, and font controls,
and so on.

(17) The description of the special operations on terminal
devices 1s discussed 1n section 11.

(18) We might at some later date explore making some device
managers clever enough to provide their own spooling, in which
case one would be able to do frozen writes with the ability to

cancel the writes. Such cleverness would likely lead to a number
of specilal-purpose (spooling-oriented) operations, such as
“perform output after a specific time”, etc. While 1t might seem

that such cleverness 1s more appropriately placed 1in a program
end not 1n a device manager, for efficiency reasons one might
desire to eliminate the middle-man.

For example, a file to be spooled for printing, the
requesting process, and the printer manager may all reside on
different machines. There 1s little point in the data from the
file to be passed through the network to the requesting program,
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10.3 Implementation overview

For each device object on a host there is &a manager for the

device. Device managers may manage multiple devices (for
example, a host might have only one line-printer menager for all
of 1ts lineprinters, or may have a single manager that manages

both tape-drives and disk-drives (19) ), or a manager may manage
a single device. Which of these approaches 1s taken will]l depend
entirely on the implementation, and 1s not within the scope of
this document. When started. the device manager registers the
UIDs for 1ts devices with the operation switch on 1its host, so
that the Cronus IPC mechanism delivers operations on the device
object appropriately.

10.3.1 The use of large messages for device 1/0

We expect that most !/0 devices will be done using a stream
interface as supported by Cronus large messages, 1n order to
avold passing all the 1/0 messages through the operation switch.
This 1mplementation 1s different from primal files, for example,
because of the fundamentally different wavs in which we expect
the object managers to be 1mplemented. For devices such &s
line-printers. terminals and tape-drives, it seems realistic to
expect that there will be one menager process per physical
device. Unlike the primal file system. which is accessed by many
processes at one time, an 1ndividual device 1s typically a
limited-access entity. Users typically require exclusive access

then passed back through the network to the printer manager when
the data <could go straight from the file to the printer manager
in the first place. Thus, a printer-object-manager may implement
a "spool for printing” operation which takes the UID of the file
to be printed as & parameter. Probably the act of spooling itself
should be treated as an object and given 1t's own UID. Suggested
operations on spool-objects. Create (to get a UID for subsequent
transactions). Remove (to cancel a spooled action);, TimeToBegin
(to set the time for the spooled action to take place);, as well
as the wusual printer-oriented operations (header format, font,
etc. ).

(19) Exotic as this may sound, 1t 1s easy to 1magine a single
menager for DEC-Tape drives and disk drives, for example.
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to a device while they are using it. Thus we expect a device A ’ ’
manager to be able to maintain a stream connection to everyone &
who wants to talk to its object. Very few constituent opereting -
systems would permit a process to have so many open network ;*ﬁ?‘xq
connections supporting the message stream at one time, so we :I{'.‘ﬂ
expect 1/0 from primal files to be datagram—-based, rather than Pzﬁ.fﬂ%
connection based. In contrast, [1/0 from devices may be fﬁg}#w
connection-oriented, bypassing the operation switch for reasons Ehht&”
of efficiency. ‘ .W
SV
%“fﬁt
Nt
ey
ety
R
10.3.2 Reasonable defaults for unspecified options ‘Qﬁfw
g .l'l‘.!‘l‘
In order to provide uniformity of access, the device ? .
managers assign reasonable defaults for their device~-specafic $§%ﬁ{
parameters (e.g.. tape density) if the application program does ) ‘o.::lll.:n
not 1sSsue operations specifically setting them. The goal here 1s u# fﬁﬂ
to provide an access mode 1n which the application program cen w‘
remain largely unaware of the nature of the object receiving its ”
output or providing 1ts i1nput.
5 i"c'"\
R
O '!'l..‘
10.3.3 Naming f hﬁ*&
Wt

Devices like any other Cronus objects have names 1n the
globe Cronus symbolic namespace. These names may appear anywhere
in the name heirarchv though. as happens on UNIX systems where a
similar approach 1s taken to devices. most devices will probably
be gathered together i1n the directory ":dev’. For example, the
most popular line-printer may be given the name “:dev:lipt”, or
devices mayv be given more descriptive nemes, like
“.dev. fancy_printer_in_graphic_arts_dept”, or users may choose to
locate the npame of @& private device i1n & more convenient
directory. like “:usr melissa.my_printer” (for the printer in
Meli1ssa's office) The symbolic cetalog neme 1s used only as a
convenient means for accessing the device UID and plays no role
1in the way the Cronus system treats the device. (20)

(20) "Attached to” here 1s taken 1n a very loose sense. BBN-CLXX
has a printer which 1s phyvsically attached to a BBN-NET TAC port
{and which 1s accessed by & number of hosts). vet 11 is easy to
imagine & device manager for this printer being provided 1n the
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* 11 User Interface

11.1 Introduction

; The Cronus user interface provides uniform, convenient
i) access to the functions and services of the Cronus distributed
% operating system and the subsystems which run under Cronus. User
} requests for access to the functions and resources of the system
' are similar for all DOS components, that is, a request to run a
program 1s the same no matter where the user access point is in
: the cluster, and no matter where the process that satisfies the
- request 1s run.
. The user 1nterface 1ncludes four major elements by which
; humen wusers gain access and interact with Cronus to perform
" tasks.
)
. 1 The terminel manager ts responsible for the behavior of
: the terminal! or other device by which the user gains
N access to the system Cronus supports a number of
' different terminal managers for users who have a direct
connection to the cluster or who access Cronus through
, the Internet.
: 2. The session manager controls the user session from Jlogin
! to termination. It operates on the authentication data
) base (through the Authentication Manager) to verify the
X user's principal identity, and on the session record data
! base (through the Session Record Manager) to record
: information about the session. It also creates parallel
¥ execution threads and allocates portions of the terminal,
! under user control, to each thread.
- 3. The command Japguege interpreter (CL]) receives requests

from the user to create processes and execute programs to
perform the tasks.

‘ 4. The user programs or applicetions thaet actually perform
1 the tasks run 1n program carriers (see Section 5). The
; terminal menager., session manager, and the CLI cooperate
1n creating these program carriers, loading them, passing

Cronus cluster.
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parameters to them. and directing the input and output to q&ﬁﬁﬂﬁ

the places that the user has requested. U

T

ol v

The design of the Cronus user interface has been influenced e _ﬂh

by the following considerations: 3&;&&%
ﬁgégﬁ

o The user 1nterface should deal effectively with the Dy
distributed character of the operating system. ..“‘._'.

(X

ey

o Variations 1n cluster configurations and in user ?4¢4¢§
requirements will likely lead to & number of different 'ﬁwﬂﬁﬁ

user interfaces, and these i1nterfaces will evolve. .:;'.;-".:::':'
Therefore, the current implementation should focus on the halur,
underlying structural concepts needed to support a 5 .,>

vartrety of presentation methods. "“Q ﬁ:

p \

o The utility of Cronus depends on widespread w&&ﬁhﬂ
accessibility. Therefore, the 1nitial implementation 'a“a}mﬁ

should support commonly avallable terminals 1instead of (OO

maore owerful devices which are now ust becomin &

: p J g f‘?q$
available. '”*&W‘

N (N

Eaneaa

o The user 1nterface should support svstem reliability and ::\".'f
error recovery from malfunctions during a user session. ".Q.ﬂ'".l:'
! ' ‘ 1
The consequences of these observations for the design of the user r~qw: .
interface 1n & distributed system &are explored 1n the next ;f«‘ "
section. The terminal manager, session manager, command ]language rﬁﬁvhﬁ

interpreter. and the pattern of the cooperation among them and k ¢$
their use of other system objects are discussed 1n the following ".hdb
sections. C oty
I _..,
.)\,:'“J‘\ 1
iy
11.2 VUser lInterface Design for a Distributed System h '~~$

The Cronus user 1nterface 1s a generalization and extension W
of wuser 11nterfaces provided by other computer systems. Since SRR
Cronus 1s e distributed operating system that integrates a a@ﬁﬂ?é
collection of otherwise independent computer systems, the '

implementetion of a function may be dispersed across the cluster.
The Cronus wuser interface 1s 1ndependent of the user i1nterfaces
for the COSs
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o The following are some of the design objectives for the user ) ,g\'s‘-'
= interface that have been 1nfluenced by the distributed nature of k\,:}m’
i Cronus.
AR
. 1. Command 1nvocation and program conirol should be wuniform g.:::::::',:
8 across the cluster. ﬁgz‘o"::'
‘ .'O'h::'lt
2 2. Multiple pearalle)] activities should be supported directly g':'c t:'f;
? by the user interface. S
c . T
N 3 The user should be able to start and control distributed ;\u'x_',‘ '
E activities. Ry '::
j 4. System operation should be 1ndependent of the location of }?‘ A:E
? the terminal manager, session manager, CLI, and user ®
processes. R
{ ;:;-Q’Q
: 5 The user i1nterface should support detection and recovery ‘F_ '.v,f
: from maelfunctions affecting only parts of a user’'s ' "l'.o'
[} session. ‘1!'50"
6. The user should be able to 1ssue commands directly to the ‘rw.,o
| cos. ...' o‘..s'
; i:'%:t'"h
: |:l:$'°3:5
: First and foremost, Cronus itself provides for the wuniform |'.1,g!:§;
’ invoecation of any command. The command 1nterpreter finds the ®
command 1n the Cronus svmbolic c&talog and creates a program |:t:i'.l‘i'.l:i'
) carrier for 1t. Because the symbolic name space 1s host :::.:0:::::.:
’ independent. commends can be organized 1n any m&nner convenient g,l.’::l.:'.s
A to the wuser. for example. all the programs used to carrry out a :“‘::.’::ﬂ:
l particular task can be cataloged 1n a private directory, even if :ul't."l.‘:-
some of them can only be executed on specific host types. The ' ®
- host 1s normally selected by examining the type of the executable < "“
‘ file for the command AN
_\ :r st
K A Cronus cluster may have more than one host of a particular ‘ : ".:l;
i type. and different copies of reliable files are stored on '."0,
a different hosts. The interface allows (but does not require) the ®
user to communicete &an i1ntention to use a specific i1nstance of '0‘“."0“‘
P . anv replicated resource. .:‘:.:tzg:v“g
|‘:':::.:‘:‘:
: b “l‘f‘\

AR)
|=“I'| v
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A single user session may contain a number of independent

tasks executing 1n perallel on different hosts. In such a
session, the user caen exploit the true parallelism which separate
processing elements provides and reduce the effects of

' communications delays by selecting the host on which a task

; executes. Cronus provides device-independent mechanisms that

I support the use of a single terminal ior controlling parallel
activities. The effectiveness of a particular terminal for this
purpose 1s, of course, dependent on the capabilities of that
device.

A programmer can develop multi-part applications in which
the 1ndividual parts (program carriers) can execute on different

hosts. To the end user, the distribution of components can
remaln Jlargely nvisible. since the programmer and Cronus can
take care of the details of the distribution. In perticular, a

task mav consist of & multi-host pipeline of processes, 1n which
& process running on one host can pass 1ts output directly to the

input to & process running on another host . Eadiat
hERAAT Y

The Cronus architecture p.ovides several kinds of access ?";!
point. Although the user 1nterface has comparable components for :ﬁaﬁ¢
each of these access points. the location and mode of Cﬂﬁh é
interconnection among the components will differ. The g&_”&
decomposition of function 1n the user interface permits flexible :;Etg

distribution of these components.

On the other hand. the distribution of the components
increases the cost of synchronization and probabilaty that a
single host fei1lure will affect the wuser session. To reduce
svnchronization traffic, Cronus does not maintein a centralized

record of all elements 1n a user session. Rather, this data 1is
distributed among the managers responsible for the individual
parts. This makes the 1nterface somewhat tolerant of failures
and provides & basis for the design of a relieble user session

The wuser 1nterface facilitates direct access to COsS
functions through a user Telnet function. which can access the
COS command i1nterpreter for the hosts of the cluster. Telnet 1s
treated as a parallel activity with other user activities; that
1s, 1t 1s & separate thread 1n the user session.
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: 11.3 Overview of a User Session ‘f‘ ;
! A
A session begins when a user activates a terminal that is )
R connected to Cronus and proceeds with & system login. The O ot
) session normally ends when the wuser lcgs out. During the an {
: session, the user interacts with the system to run programs which 1;~:ﬁ
' interrogate and manipulate Cronus resources and to perform such Z‘-f Y
; Job specific functions as word processing or data base inquiry. RRELEYY.
; Users galn access to Cronus in one of following ways: ;ﬁg%sk
y;u{"
: 1 Terminal access controllers (TACs). A Cronus TAC 1is =a Xibﬁfl
: terminal multiplexer connected directly to the local area i}éﬁh
network. Cronus TACs are i1mplemented 1n dedicated GCEs. # A
®
y 2 The Internet. The Cronus local network 1s connected to :;:;: ‘
) the Internet by means of an Internet gateway. Users .I“f‘}
: outside the cluster may access Cronus through the WL IRA
' standard terminal handling protocol (Telnet) which “~§§5
! operates upon a lower level, reliable transport protocol N
{TCP} . e
; 3. Mainframe hosts. Cronus mainframe computers can have f%&%””
i terminal ports that enable access to Cronus. }*Qé, $
| VY
4. Dedicated workstation computers. A workstation 1is a et
computer that 1s. at any given time, dedicated to a
" singile user. Workstation hosts have sufficient
: processing and storage resources to support non-trivial
¥

application programs, such as editors and compilers, and
to operate amutonomously for long periods of time(21).

The user interface has four principal modules: &a terminal
b manager. & session manager. the session record manager, and the
commaend language 1nterpreter

{ When the user activates a terminal, the terminal manager
connects the wuser to & session manager. There 1s a session

manager for each active user. 1t hes a limited set of commands
for 1nitiating and manipulating sessions and session data (see

(21). The Primal system will not support workstations.
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Cronus User's Manual session(1)). The login command, which wﬁﬁﬁﬁ
initiates a new session, performs two basic functions. First, it U
identifies the user, establishes the access rights for the v
session, and gets the user data needed for session Rmfzf
initialization. Second, it creates a session and records it in & h¢¢f'
sessjon record. A complete description of the session 1is g&:}
distributed among a number of system components, but the session ﬂ?ﬁ{:
record object records the existence of the session and certain e
other key 1tems (see Cronus User's Manual session(3)). U:V
R,
After the session manager has identified the user, it starts g
the 1nitial subsvstem specified 1n the user's principal object & agﬂ
(see Cronus User's Manual principal(3). principal(4)}). This can N w
be either a pgeneral purpose command interpreter or a special AN chs
purpose application. The principal object may also request that 3 8
the 1nitral subsvstem be run on a specific host. g“@“é:
- P Sl
‘;:C.Q.C;(;t
The session manager meintains session data as part of its ‘§q45m
temporary state. that 1s, this information does not survive 1f q%&ﬁ&}
the session manager crashes. The session record manager, on the HINAE
other hand. mainteins the basic 1nformation needed for session »_‘45.
recovery 1n non-volatile storage. ;qﬁg
The initial subsystem runs in the first processing thread in 3&3% }
the session. The wuser may create more threads, each of which Q;%{W
consists of & varying number of progrem cerrier processes b
organized 1nto a hierarchy rooted at the program cerrier created AT
bv the session agent. This program carrier 1s called the head NG .ﬁ
process of the thread. ;"E:
Yo
Often the head process i1s e commend Jenguage J1nterpreter $‘$’:
(CL1). This is a program that interacts with the user to receive ¥ o
commands, which 1t performs by creating and controlling pﬁf?_t
processes. In the following discussion, we assume that the head ﬂ?:ﬁxﬁ
process of the current thread 1s the Cronus standard command :'ﬂ¢;
language 1nterpreter. which 1s called ¢li (see Cronus User's ’
Manual cli(1)). N

The heed process can execute a command that terminates the
thread. The session agent may also force the termination of a
thread. The logout command terminates 8 user session. At  the
end of the session. the session record object 1s removed, and the
terminal 1s free to support a new session.
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Instead of executing logout, the user may detach from the

session and re-attach to it later. Processes in a detached
session are no longer controlled by the session manager and from
the terminal. These processes will continue execution until they

require terminal input or output, at which point they will block.
and wait wuntil they are re—attached. When the user re-attaches
to this session. the new session manager and terminal takes over
as the source of control and terminal input/output. The session
manager command resume causes the processes to continue. This
procedure 1s also used 1in recovering a session which has been
detached by a host crash.

The user 1nterface assigns the responsibilities for |user
session activities as follows.

o The termina)l manager encapsulates the physical terminal

device. It heandles the terminal device, directs the
keyboard i1nput to the active process. receives the output
from one or more active processes, and manages the

display (for video displav units)

o The session manager initiates user authentication,
creates a thread. starts the 1nital subsvstem., creates
and manages additional threads. attaches and detaches

sessicns, and assigns terminals to processes.

o The commend Jlenguage interpreter reads and parses command
line 1nput, starts and controls processes that run the

commands. and controls assignment of standard 1nput and
output .

o The session record manager creates and maintains records
for active and detached user sessions.

In addition. other components of Cronus support the user session,
of particular 1mportance are the program carrier manager, the
catalog manager, and the authentication manager.
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11.4 Terminal Manager NAONN
RN
The terminal manager 1s the process which is closest to the o
user. It provides the Cronus i1nterface to the physical device, Y, aﬂk
through cooperation with the COS of the host to which the } ,
terminal 1s connected. The terminal manager supports three broad ;g zﬁf
classes of device. ﬁb ‘f#(
O X )
. f\d J‘

o hardcopy terminals that are strictly line-at-time devices ',.z
capable of producing upper and lower case ealphanumeric "dqu
characters and the standard ASCII control character set; '“3\3

‘
' .l' o F

o ASCl] video terminals <(often called CRT terminals or é'he
video display units) that support cursor addressing on a PRI
display screen that 1s large enough to support, for
example. a full-screen editor., and

o advenced terminals (often celled bit-mapped terminals)

The primary focus of the primal svstem 1s on the ASCI] wvideo

terminal
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that contain & ©processing element and enough memory to
support multiple display areas and graphical output.

because there are manv of them available today. Cronus
the sharing of a single, physical terminal device among
lle]l activities in a session. This terminal multiplexing
most effective when an advanced terminal 1s available,
be possible in a limited fashion with the other terminal

terminal manager encapsulates the physical terminal, the
nding Cronus object 1s of type CT_Physical_Terminal (see
User's Manual phys_term(3)). which has e number of

corresponding to the different kinds of terminals. One
objects (called Cronus terminals or simply terminals 1in
ussion below) of tvpe CT_Terminal 1s associated with each

terminal Thi1s provides & mechanism for multiplexing or
the phvsical terminal among e number of Cronus terminals.
us terminal 1s the input /output device for a process.
erminals are Cronus objects, they have all of the usual
es of objects, 1ncluding host-independent access. In

to the generic operations defined on CT_Object (see
ser's Manual ob)ect(3))., the following operations are
on objects of type CT_Terminal .
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Open
Close
Read
Write
b Activate A
: Deactivate LB
; ot
i . AR
_ Programs may treat a Cronus object of type CT_Terminal 1ike ?,.'fk
an ordinary terminal, since it has & keyboard and & screen, ®
N although either or both of these may be 1nactive at any time. Byt
: Each thread 1n a user session, and the session manager itself, *ﬁ ;us
‘ has 1ts own object of type CT_Terminal. which will simply be *fﬁrgﬁ
called the terminal 11n the discussion that follows. Within & |ﬁ?¢¥}
thread. processes coordinate their access to the terminal through -fﬁ%ﬁh

k the terminal menager.

If the physical terminal supports i1ndependent display areas

(windows). the session agent maeintains & window for status
displays. The rest of the physicel displav contains one or more
regions. each of which 1s wused for the output of & single
term:nel. The physical keyboard can be associated with only one
of the terminals at any time; the thread that owns this terminal A W
1s the current i1nteractive activity in the session. The keyboard l*‘¢$ﬂ'
can be transferred to the session manager's terminal by a control v.f~$f
/ character sequence (see Cronus User's Manual terminal(1)). Once Ef ooy
X the session manager 1s in control, the user can execute commands ~ 53{&
to create new terminals, remove old terminals, and change the
¢ current interactive terminal (see Cronus User's Manual ."?0;3
. .
: session(l)). ':::‘“E'.j
¥ ) O
\ Output to any of the regions currently displayed 1s ‘Nn'oﬂ
' immediately visible. Input 1s directed only to the current bitatetytn !
thread. Normally all input characters go to & single process. ®
: However . when one process creates another process, 1t mey request D
) certein (control) characters to be i1ntercepted and sent to 1t; ﬁbﬁﬁ;
) the 1nterrupt facility discussed 1n Section 11.8 1s implemented ;ka?_
: usi1ng this facility. :ﬁ%bg}
| RS Yy
Processes 1nvoke Read and Write operations on the terminal ®
to get 1nput from the keyboard and write to the display. These s ﬁw;
use large messages of indefinite length to provide a stream Ww“\nj
; between the terminal manager and the process. A process will :’:ﬁy
. have two messages associated with the keyboard. 1t sends read N \$
: requests on one of them. and receives the 1nput on the other one. *J%AE;
' o
‘ . R
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As keybord 1nput is <collected, 1t 1s wused to fulfill any

outstanding read operation. Since the terminal 1s shared among
the processes of the thread, characters are sent only in response
to a read request. I1f there 1s no outstanding request, the

terminal buffers characters until it exhausts the space allocated
for them.

When control of the keyboard 1s transferred from one process
to another, the old process stops 1ssuing read requests. 1f the
new process needs kevboard input, it establishes the two messages
used for the stream and begins i1ssuing read requests of its own.
The PSL routines for reading and writing take care of the details
of establishing the messages, so ordinary applications need not
be concerned with them. The Write streams are not controlled:
simultaneous output from two processes 1n a thread may become

interleaved wunless they are coordinated by the application
program logic

Each terminal hes mode settings which control 1ts behavior.
These are discussed 1n detail 1n the Cronus User's Manual page

terminal (1} Among the most 1mportant are the following.

1 Read activation termination character set. An input
character from this set terminates the current read
requesti. The terminal manager stops sending characters
after 1t trensmits the ones it has, 1ncluding the

termination character. unti1l 1t receives another request.

2. Echo control. Input echoing at the terminal manager may
be ei1ther on or off. If 1t 1s on. 1t may be performed
immediately or deferred until the characters are used to
sati1sfy a read request.

3. Buffering and local editing. Terminal 1nput may be
buffered until an activation request termination
character 1s typed. 1f the 1nput 1s buffered, local
editing functions are also avallable. If the i1nput 1s
unbuffered, 1t 1s sent as soon as 1t is accepted when =a
read request 1s active, the application process then
assumes the responsibility for editing functions.

4 Interrupt character handling. The user may set certain

characters as interrupt characters, see the discussion 1n
Section 11 8
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11.5 Session Manager

The session manager creates and —removes user session
records, controls the allocation of the physical terminal
display, and creates and controls threads.

During & simple session, in which a user executes a series
of commands sequentially, the session asgent is largely 1nvisible
to the user. The user may. however, wish to initiate and control
parallel activities. Each collection of perallel activities is a
thread. Session threads are objects of type CT_Thread. At any
time during the session, the user can i1nstruct the session agent
to create additional threads which operate in parallel with other
exi1sting threads(22). A thread can be used to support parallel
processing or to maintain the state of some activity while the
user shifts attention to another activity.

The first process created 1n & thread 1s called the heead

process. and 1s usually @a command language interpreter. The
default head process 1s an i1nstance of the principal’'s 1nitial
subsvstem. but the user may select any program 1n the Cronus

symbol1c namespace.

A new thread 1s created whenever & Telnet connection 1s
opened, with the Telnet process at i1ts head. The connection may
be to any Internet host, either within or outside the cluster.
For the forseeable future. Telnet paths to cluster hosts will be
needed to support activities not vet 1ncorporated 1nto Cronus.
such as maintenance of the COS.

The following commands are supported directly by the session
manager (see Cronus User's Manual session(1l)):

- Stert a new session (login)

~ Terminate a session (logout)

— Attach session agent to an existing session (attach)

- Detach session agent from an existing session (detach)
- Initi1ate & parallel activity (create_thread)

- Terminate a thread (killthread)

- Create & Cronus terminal (make_terminal)

(22) There 1s user-settable control kev that activates the
session manager so the user mav 1nvoke session manager commands.
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Remove a Cronus terminal (remove_terminal)
Mep thread to region (map_thread)

Display threads (showthreads)

Activate named thread (thread)

Telnet to host (telnet)
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11.6 Session Record Menager )

The session record manager maintains the centrally
accessible. non-volatile record of active Cronus sessions in
objects of type CT_Session_Record (see Cronus User's Manual
sess_rec{3)). A sessi1on record ob)ect contains the following
data.

- Session UID

- Creating principal

- Time of Creation (for i1dentification purposes)
- Lists of thread UlDs

- ACL

- Session agent ProcessUID

s

A session record 1s created at the beginning of each Cronus
session. During the session’'s lifetime, date is added and
removed by the session agent. The session record 1s wused 1in

s
recovery after a host or svstem crash. ,l“ L

! ¥§¢¢'

The session record can be a&accessed by other programs to
report about an individual session or all current sessions. In
addition to the generic operations, the following operations are
defined on ob)ects of type CT_Session_Record.

Read_Public

Read_Private
Write_Session_Record :§:1,~
Lookup_Principal LY PR ¢
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11.7 Command Language Interpreter

A user request usually consists of a command name plus one
or more parameters or grguments. There are three basic kinds of
arguments for cli: names of objects from the Cronus catalog;

control parameters, called gswitches: and application—-specific
parameters. Switches may be associated with either the commend

as a whole, modifying its behavior, or with one or more of the
object names that appear on the command line.

1f one thinks of the command as a series of words typed on a
line, the command name is the first word. The command name
specifies the action to be performed; the actual name 1s often a
simple English word suggesting that action, for example, print.
Cli interprets the command neme as an entry in the Cronus
symboli1c catalog. 1t expects the command name to be the symbolic
name of an object of type CT_Executable_File. Either a complete
or partial pathname may be entered on the command line. A
designated set of Cronus directories (called the search path) are
used to resolve partial pathnames; the first match encountered
causes the search to stop.

There 1s a small set of commands built 1nto ¢}li1. These are
used to control the command interpreter’s environment (such as
the current working directery) and the execution sequence of
commands . Executable objects may be either process jmages or %&ﬁ
files conteining commands. The built-in commands that control

execution segquence are most often used 1n command files. ey

*nﬁ'

The executable object may be augmented by a syntax
definition, so the command interpreter can know the number and
type of the arguments, default and legal values for the switches,
and help information for the command. Users may assoclate
private syntax definitions with public commands. Commands which
have syntax definitions, ei1ther private or public, are called
defined commands.

Command arguments are passed as part of the process
descriptor (see Section 5 and Cronus User's Manual process(4)) of

the new program carrier process. When the command syntax

definition 1s available., cli performs type and range checking on

parameters, and conversion from alphanumeric to internal

representations for certain of types, 1ncluding Cronus obj)ect

name and i1nteger. Both forms are passed to the application
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process, since the character string form 1s of use in some cases,
for example 1n generating error messages.

The syntax definition facility is particularly valuable in =&
distributed environment for the following reeasons:

o The cost of remote command invocation is generally higher
than 1t is 1in monoprocessor cases. Parameter error
checking reduces the frequency of execution faillures
caused by usage errors.

o If the command i1nterpreter knows the names of some of the
objects that the command 1s operating on. it may be able
to use object location as one criterion 1n 1ts selection
of & site for command execution.

Many command earguments &are cataloged ob)ects. Cronus
supports a working directory list, which 1s an ordered collection
of directories that are used 1n relative peathname searches for
named objects. The user may change this list at eny time. The
cli also supports partial name recognition. The user may press a
kevy to get & list of all matches for the partial name, using both
the working directory list and the standard wild-card facilities
({see Cronus User's Manual sym_name(4)) of the Cronus catalog,
from which the actual name may be chosen. There is also a
deferred recognition key which allows the user to ask for the
matching to be done. but not reported i1nteractively.

The help kev cen be used to displav help information which
1s found i1n the syntax description of a defined command.

The command interpreter allows & wuser to provide a host
designator when specifying an object name, 1ncluding the name of
the command 1i1tself. For example,

edit textfi1le@CVAX

would 1nvoke the editor on the copy of textfile stored on the
Cronus VAX.

copv filel f11e2@GCE3

would make a copy of file] under the name fi)e2 and store the new
~167~
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file on host GCE3, and :',:o::{:.:
e
Radar@CLXX other_parameters
’ ﬁ
would select host CLXX to run the subsystem Radar. ? p J
..‘
Objects of various types may be cataloged 1in the Cronus _ f(#
symbolic name hierarchy without restriction. Often, a user will I ‘
wish to select objects of a specific type, so a standard switch
is defined for type designation. As an example, & user would %ﬂ§
type ‘ﬂ
‘t»"-
dir_display file_name.*/type=reliable_file “s “ﬂ.
8. ¥ -l‘n“i‘.
to display the names of those objects in the current working ,
directory 1list that match the wildcard pattern file_name.*® and ‘@afw
are of type CT_Reliable_File. ﬁu$“\§&
.'
Cly performs two kinds of i1nitialization. First, internal “Q?ﬁ
variables are set from & profile date file. which consists of “
lists of (name. value) pairs. This file can be maintained using hq
edit key value (see Cronus User's Manual editkey(l)). Second, b 1"‘5‘.\'
- T | (
cli executes & profile command file &} {.&?
h
A
After cl) has collected and parsed a command, it creates a ! N““ﬂ
i
program carrier object, loads 1t with the executable image and gt it
starts 1t. Normally the process uses the same terminal as the
command 1nterpreter does. Therefore. cli1 releases control of the ‘“‘12&¥
terminal to the user process. and waits for 11t to terminate $‘ qr‘
before collecting another command.

Cl) uses the program carrier process support for 1nput and
output redirection (see Section 5 and Cronus User's Manual
prog_carr(3)). The redirection 1s 1ndicated by the punctuation
character >, thus the command

dir_display file_name.* >newfile.lst
would place the result of the catalog lookup of file_name.* in
the file newfile lst When ¢l1 redirects output i1nto a file
whose name did not previously aeppear 1n the Cronus catalog, it

creates a new primal file. The user may use the standard switch
(/type) to designate another type. for example,
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dir_display file_name.* >newfile.lst/type=reliable_{file
will create a reliable file to receive the output.

The user can specify that two or more commands should be
executed simultaneously and linked together linearly, in such a
way that the output of the each command becomes the input to the
next one. We refer to the collection as a pipeline. Since the
components of a pipeline may be on different hosts. the user can
dynamically construct multi-machine distributed commands.

11.8 User Processes

In most cases. actual work of an aepplication is carried out
by a user process that i1s created in response to a command issued
to cl1. These user processes are program carriers, and make use
of all of the properties of those objects. Objects of type
CT_Program_Carrier have been discussed 1n Section 5.56.
Application programs typicallv make extensive use of the PSL. in
this section. we discuss 1nterrupts and wuser error reporting.
both of which are supported bv the PSL.

Sometimes a process needs to be terminated by an jnterrupt
or signal. Cronus supports two forms of interrupt. a hardkill.
which terminates the process 1mmediately without giving it the
opportunity for application-specific termination processing. and
@ softkil] that gives the application process the opportunity to
terminate cleanly. In the event that programs do not respond to
softkill requests. hardkill can be 1mposed. Interrupts are
usually 1nvoked by typing a control sequence during a user
session. but they are also generated by & command (see Cronus
User s Manual signal(1l)).

Programs mav choose to receive softkill signals, and use
them for application—-specific purposes unrelated to process

termination. Cli will always receive the hardkill signal and
remove the application process.

Interrupts invoke the Stop operation on program carraier
objects. The exact implementation on a particular host depends
on the facilities of the COS that are available to the program
carrier manager
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The processes created by cli1 form a hierarchy of program 4N&Q&
carrier objects, which may be decomposed into sub-hierarchies of R0
the thread object. Any subtree of the thread hierarchy is called -
a process group. An entire thread is the largest process group. i’"ﬂ‘“:.
Process groups are managed by the program carrier menager in the »$$&P§
current 1mplementation. Operations on process groups support Qpﬂ'sv
convenient control and cleanup of process subtrees. '“.'zﬁ
O
Methods for reporting errors 1n Cronus are designed to e
support a variety of program structures and execution “mﬁ4¢
environments. There are two basic program structures: {&Sﬁﬁ
OO
Asychronous processes, often called manager processes $$$$§ﬁ
because ob)ect managers are of this class. these processes BBV
receive messages from a number of sources and may not wait -
1f thev 1ssue requests to other managers to satisfy incoming aﬁa
requests. Error handling 1n manager processes is discussed
1n Section 4.6. .c\:ﬁ;
Svnchronous processes, which process date that arrives In a h' Oy r
more or less predictable fashion, often from & terminal or a 7.7
file. When these processes send messages. they usually wait $Qﬁﬁ$ﬁ
for a replv. %?ﬁbi
. ll': ::':’:
We have 1dentified the following execution evironments: 4&2&%&
s ¢
Independent processes are asynchronous processes, wr.
particularly object mangers that are daemon processes '¢
started by the Monitoring and System or by &nother daemon ‘ﬂ“hik
process. : |::.::‘|:l:g
3 |.C‘:::'1!
Interactive processes may be either synchronous or : \J
asvchronous. In this environment, a human user carries on a _‘_'w
\ conversation with the process. Examples of ©processes 1in ’“1?“*
! interactive environments 1nclude the traditional .:0.:‘0!’.;.::
applications of distributed systems. multi-host database v.gﬁhy
systems, office automation, and program development systems. 9?&\ 0,
d}ﬂ.ﬂ?“
Pipelined processes consist of two or more programs which L]

might normally be run 1n an interactive environment that are
connected i1n such & way that the upstream process writes its
output on the i1nput of the downstream process. A pipeline
can span host boundaries
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Background processes are generally 1nteractive programs
which are set 1nto execution in such a way that the data
which normally comes from the user is found somewhere else
(usually 1n a file).

In the 1nteractive case, where the error 1s reported
directly to the user, we have & situation that 1s similar to the
one in an ordinary, centralized operating system. It can be seen

that error handling 1s similar 1n pipeline and background cases.

A program 1n an interactive environment wi1ll &also report
certein errors to the Monitoring and Control System (MCS). These
1nclude errors caused by system resource limitations and some
kinds of access contro] violations.

Independent processeés, including Cronus managers, report
errors to the client which i1ssued the original request, and may
also send a messege to the MCS. In addition, Cronus managers

keep statistics on the kinds of errors which have been detected,
and report them to the MCS periodically.

The responsibility to terminate or continue ©processing
belongs with the applicetion or manager, so PSL routines never
take pre—emptive action, and never terminate the ©process. The
PSL routine cannot understand the situation well enough to ex:t
properly. since the routine mavy be executed within an atomic
transaction. or within & composite action which has other work-
in-progress entries (see Section 4 .6) Instead. 1t sets
perameters describing the condit'on 1n an error block (see Cronus
User "¢ Manual error(4)), and t. applicetion error handler fields
the error and processes 1t.

The standard error list mav be found 1n the general

Introduction to the Cronus User's Manusl. Each PSL routine page
1n Section 2 of the Cronus User s Manuai lists the errors which
may occur duiing the execution of the the function. In most ’ -
cases, an 1nteractive process would perform any necessary Hﬂﬁﬁu
cleanup. and then use the standard error reporting routines (see 9 .
W T
Cronus User s Manual error(2)) 5ﬂxﬂ&3
AN
. :,‘.:\.:_‘.5
Whenever an error 1s detected 1n processing a request from a QFHFKA
- .. L]
client process, the error condition 1s reported through the reply '{iéﬂfﬂ
L] m
message The error procedure uses the standard message M ﬁdﬁ
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structure, and certain assigned keys. When 1t i1s necessary to
report an error to the MCS, the process uses a standard routine L
to generate the message to the MCS (see Cronus User's Manual
error(2)).
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12 Monitoring and Control

12.1 System Capabilities

The monitoring and control system (MCS) for Cronus includes
monitoring and control of hosts and of the Cronus functions on
these hosts, of the network substrate, and of gateways. The
monitoring and control station provides the functionality of an
operator’'s console for the Cronus Distributed Operating System.
The MCS treats Cronus &s an 1ntegrated system, decomposed by
function rather than by host. Where practical, 1t also monitors
and controls Constituent Operation Svstem (COS) functions from
the same station. but such functions are limited by our desire to
modifyv the COSs as lattle as possible. The discussion 1n this
section i1ncludes elements of the Reliable System as well as of
the Primal System. These additions are 1ncluded to assure that

the Primal System design does not interfere with future
extensions.

Cronus 1s restarted from the Monitoring and Control System.
For some hosts, the MCS will 1nvoke functions already on the
hosts. 1n other cases (for example. GCEs which have no disks),
the MCS wil] downloaed the host to start Cronus.

Network monitoring and control of a local area cable-based

network such as the Ethernet 1s relatively simple. It includes &
detection &and reporting of —changes 1n host avallebility,
monitoring &nd controlling traffic levels on the cable. Cable

utilization and the traffic level of each host 1s measured.
Priority or allowable traffic density may be set for each host.
Transmissions from & host may be stopped altogether.

12.2 Svstem Model for Monitoring and Control

Cronus consists of a set of services(23) and low-level
£y -~1ein suppo-t entities. 1ncluding the Cronus I1PC mechanism. The

(23) A C(Cronuas service 1s a process which performs Cronus

operations 1n response to requests from other Cronus processes.
All object managers. for i1nstance, are services.
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MCS 1s a set of processes on a Cronus host, i1ts functions can be ;‘ A
executed from anywhere in the cluster. ' ﬂg I
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Figure 12.1 Structure of the MCS
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The MCS monitors both the support layer and the services. A
The set of services 1s extensible, and the MCS 1s designed to ‘J{hb‘
accommodate new services. el

The MCS 1s based on & functional decomposition rather than
on & site-based decomposition of the system. For example, one w
service monitor monitors all file system managers while another :
mopitors authenticetion managers. The MCS wi1]l be aware of :f
distinctions between =si1tes e&nd to distinguish them 1n 1ts
reports
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12.3 Structure of the MCS

The MCS runs as one or more Cronus processes. The MCS
station 1is not bound to any particular site, although certain
information gathering functions are most conveniently performed
at one location. It uses the Cronus file system, in which it
will store data, and the Cronus IPC facility. The MCS will be
divided into two parts. The first part is the interactive
section, which does on-line data collection., displey, and control
of Cronus. It obtains status 1nformation from host and service
probes, and incorporates 1t 1nto 1ts own date base. The second
part performs dete reduction and generates reports.

The interactive section of the MCS consists of a very low-
level module and a higher level module (see figure 1). The
majority of the MCS resides 1n the high—-level module, a Cronus
service which communicates with 1its probes through the Cronus
interprocess communication facility. The low-level module uses
only the 1lowest level of network protocol (User Datagram
Protocol). This primitive lower level can be relied upon when
Iittle of Cronus 1s  functioning. This portion will be
implemented first. It provide the functions required to
bootstrap Cronus. to examine and alter memorv on Cronus hosts,
and to do simple monitoring of the Cronus network.

There are two types of reports to the MCS: polled messages

and traps. Polled messages are reports 1n response to a request
from the MCS Traps are reports from probes which are
unsolicited. They normally represent wunexpected or unusual
events.

The MCS uses polled messages as the primary data gathering
technique. The polling request provides a mechanism which will
quickly recognize when & host or service disappears.

Traps are emploved for reports about specific events. which
may require real-time response, or which are unanticipated. For
instance, the crash of a service would be reported as a trap, so
that service restoration or reconfiguration could be 1nstituted
immediately. A host coming up would similarly be reported by e
trap message., because of the timeliness of the information and
because a new host on the network might not get any unsolicited
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The MCS contains a trap logging service. Trap reports are

¢ generated by both host and service probes. Trap messages include Mt

U ) A ")

4 a service type and priority in their header, so that display g f“s

§ routines can easlly determine which traps require immediate :} J&

? display in a high-priority window, and so that the operator can g§§ﬂ§

' easily select all traps 1n a priority range from a given service ‘jh{'
class (e.g. file system). The trap logger could be extended to o

Q permit automatic operations in response to traps., so that a F}\; )

K “service crashed” trap report could be used to force a restart of ﬁxyh'

2 the service from the MCS. G,

D F, A

3 A

! The displav processes normally directs critical reports to Vbt
the system operator. with each process controlling one or more ®
text streams. A text stream may be directed to a display :‘;1&

N terminal window. & hardcopy output device, & file. or several géﬁ#hﬂ

) different pleces. The operator terminal should support a multi- :i:"k

X window display. which w:ll enable the operator to monitor a A '

- variety of aspects of system operation simultaneously., with one Haék'
window usually reserved for critical reports. Other windows wil]l o

" be created to present data as requested. For 1nstance, an sy

PR,

K operator might choose & process 1n one window which presents the g¢MF@

! genera]l status for all hosts 1n the network, and another window .Qﬁ :

; to present the load status for a particular host of interest. :?fﬂh

/ Ry

When the sophisticated window package 1s not available, @ .

K simpler 1nterface would enable the operator to monitor one window fﬁ§§¢.
at a time. the difference would be 1nvisible to the MCS since :ﬁ&ﬁ”;
each window would look to it like an i1ndependent display. :ﬂspﬁ'

. S

i The date reduction facilities of Cronus can reside wherever ?ﬁ_t d
convenient, and will be regarded as background tasks. The ®

' integrity of the system does not depend on their availability, fnjﬂgf

‘ but their reports should prove useful to the tuning and }blf:

+ management of the network. j:.::ﬁ-

"-’."'-.":: t

4 PRGN

@

Fl e,

h - (24) Polling for hosts which are known to Cronus but currently gg& ;&

. down would continue et a low rate. however. so that a lost trap oy 33

K, for such a host coming up would not be fatal F¥\~ '
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The data reduction section will take advantage of the fact
that the files generated by the 1nteractive section are available
globally as part of the Cronus file system.

12.4 Host Probes, Service Probes, and Network Monitoring

A host probe 1s & primitive entity which every Cronus host
must provide to report status to the MCS. A host probe must at
least report the presence of the host and its internet address at
the time the host operationally enters Cronus, and must respond
to AREYOUTHERE messages broadcast from the MCS. The host probe
1S the distributed part of the low-level section of the
monitoring and control system. A host probe will often offer
further 1nformation 11n 1ts report. host type, probe reports

avallable, current MCS reports, Cronus services, Jlevel of
integration. etc.

Service probes are monitoring entities 1n all Cronus
services. Services to be monitored will 1nclude object managers,.
terminal concentrators. and user authenticators. Service probes
reflect & functional rather than si1te-based decomposition of
Cronus. Data from related service probes on different hosts are
combined 1n the MCS, in order to present a more understandable
picture of the service. The MCS specifies what types of data

should be <collected and reported through poll responses and
through traps.

A service probe 1s located within the service. Unlike host
probes., thevy mav require a certain level of Cronus functions,
since the loss of service monitoring and control does not
compromise our ability to restart the system. Service probes use

the full range of Cronus services. especially the Cronus IPC
faci1lity.

Some messages. i1ncluding control messages and high-priority
monitoring. will run with & priority above that of the service.

Most monitoring, however, will run with a priority below that of
the service 1tself.

The service probes for the Cronus file svstem reports the
loading on the local portion of the file system. the number of
requests for verious classes of services, etc. ]t may also
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include the ability to trace all activities on particuler files
(using traps) as a debugging aid.

-~ .
P

& The process manager probe reports machine process loading, LT; 5
Q both for Cronus and non-Cronus processes, and optionally supports :,:,:”
@ tracing services for activities on Cronus processes. The probe ﬁ?ﬁhf
:Q will report certain classes of exceptional events on processes, ﬁﬁﬁf
:? and will provide services, 1nvokable from the MCS, for 1invoking AN

and killing processes, and for +tracing process activity on a
per—-process basis.

<l
Il ol A

)]

~
S

fin
-

h Gatewav monitoring would normallv fall i1nto the category of X

b service monitoring, however, the gateway already reports status ;,ﬁ*ﬁ

x 1n response to polling by @ host. We will use this capability to il
obtain gateway and i1nternet status. Since we do not wish to do .

b development 1n this area, we wil] to restrict ourselves to the WL

L' avallable capab:lities. Y

q

3 The MCS will not monitor the cable network traffic directiy.

k Rather, 1t wi1ll gather reports from hosts on the traffic sent,

traffic received. and the collision rate at each node.

? 12.5 Loading and Debugging Support
\
. The control function has the capability for restarting L e
o Cronus on the hosts of the network. [t may do this 1n one of two e
x ways. In some cases (e.g. GCE). this 1ncludes transmitting the ¢:rﬂ\'
Q code directly to the host to be loaded. In other cases, the r{ﬁ{.:
b computer s own loading sequence 1s 1nvoked. wusing 1ts private ?55$lf
K secondary storage. In no event should the downloading procedure ﬁﬁbff<
. require the assistance of a third machine. Some machines may -
-0 detect some of their own failures and restart themselves ;{ 2
iy
-
5 A distribu ed., heterogeneous system such as Cronus poses
‘2 special problems for debugging tools. The goal 1s to have a
sophisticated debugger which runs on one host and debugs on
> another . We would 1like to have a single debugging system be
b capable of debugging computers of differing architectures.
)

Moreover, we would like the debugger to be able to debug at
source language level to provide for efficient development.
Currently, the leeding candidate for developing such a tool 1s

P -
-.-‘- -~
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XMD, which 1s adapted from the multi-window editor PEN. XMD does X
e O]

not currently debug code 1n high-level languages, but can be
extended in this direction, since it does not depend on the
structure of the debugged code, relying instead on symbol table
entries to provide it with information about the target code.
XMD may soon be extended to debug C source code as part of the
effort of another project at BBN.
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12.6 Cronus Initialization Bttt
? Wt

L
(]
The 1nitialization of Cronus s performed from the KON

Monitoring and Control Station. In 1nitializing the system. the
MCS will have no certain knowledge of what hosts are availlable.
The first step 1s to poll for the available hosts, and then to
1ni1tialize each host which responds.

The 1nitialization of Cronus proceeds as follows{25): (See
the scenario 1n Section 13.)

1. The MCS broadcasts AREYOUTHERE onto the network.

2. Each host has & routine in its COS that listens for
AREYOUTHERE and responds with HEREIAM and the

parameters (a) name, (b) 1nternet address, (c) boot
class. (d) boot file name, and any other required
information. The name 1s printable. The boot class

indicates the method wused to initialize the host.
Class 1 hosts accept a BOOTYOURSELF command and
initialize Jlocal Cronus software upon its receipt.
Class 2 hosts require & BOOTLOAD command, which 1is
followed by a boot file (1tem d) which passed to the to
the host with the code to load. Class 3 hosts require
a host-specific loading protocol. which 1s executed on
the MCS from the boot file  (There are no plans to

(25). These messages do not use the full Cronus IPC mechanism 1in
the first four steps of the procedure, since the operation switch
and primal process manager are not i1n place on the host being

1ni1tialized Instead, thev wil) be i1mplemented as VLN messages.
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implement Class 3 hosts in the ADM ) .:c:::c"
! n.:.':'l!:'
3. When the MCS receives a HEREIAM message, it enters the
o addresses of the host 1n & host monitor table, with a I
K notation that the host is not wup. It then sends a .!.::v.::t
:3: BOOTYOURSELF message if it 1is a class 1 host, or a :‘l.:;.ﬁ
;,:. BOOTLOAD followed by the required file 1f it is a Class ) ."
W 2 host . MGG
4
KX 4. When & host has completed Cronus 1nitialization, 1t NN
4::: sends a message BOOTDONE to the MCS. Alternatively, 1t .“a"“
;@ mav send the message BOOTFAIL. possible with parameters 2 ﬁ?
W indicating reason (e.g. "missing file block 5"). The 0':&:4
f: MCS may then retry the boot, 1f appropriate. t:bt\ X
[ ]
v":‘ 5. After the host is initialized. the MCS will communicate :";'-‘.f
" with 1t wusing the Cronus IPC mechanism. It will ‘;.(-'7‘ ¢
v:: normally obtain & li1st of avairlable services and will ‘\.j:z
;:o then ask 1t to start up the services 1t supports. :;'\.h
D A
N SR
The initiralization procedure requires a small amount of code -
‘:. resident in each processor 1in order to respond to the MCS .\i-
LN messages. This code will fit 1n ROM on machines which do not ‘::.':n
:: heve secondary storage. Zon it
4 ::-w
Y e
“ 12.7 Siting the Monitoring and Control Svystem
L,
|‘ Should the MCS be located on the GCE or on an application
:.'l host? Using & GCE 1s desirable because 1t can be specially
' configured to support the MCS. 1t 1s 1ntended to be the dedicated
processor, 1t provides controlled, predictable performance with
Y dedicated, low <cost hardware, and 1t 1s expected to be
:‘d redundantly available. Since UNIX hosts may not be availlable
. redundant])v. we would less often have back—-up service 1f wuse 1t
~ on & UNIX we&pplication host for the MCS. On the other hand,.
. building the MCS on an application host hes several advantages.
the UNIX host provides a much richer development environment, -
;:' heve already been written for UNIX, so that less program :,-:_-.'r
I» . development would be necessary, we can take advantage of the set o " :‘
.'.: of avairlable UNIX utilities. '\,:h
"
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For the near term, we will build the tools on UNIX. We will
be careful to code the routines 1n a portable manner, so we can
easily move them to a GCE environment. This provides us with the
benefit of  using UNIX . in the short term. while keeping the
eventual goal of relying on redundant GCE's for Cronus services.

12.8 Phased Implementation

Implementation of the monitoring and control station will
occur 1n phases. both 1n terms of functionality. and 1n terms of
reliability and performance. The functionality will be increased
both as the reporting capabilities of the probes i1ncreases, and
as the need for data analysis grows.

Initially., the MCS will exi1st on a single host, without
strong reliability or performance goals. We will first build the
host monitoring section of the MCS, and simple host probes 1n
order to be able to start and restart Cronus hosts and services,
and to record the status {(up/down) of hosts. As services are
written., we will add service probes, and extend the MCS to ‘ | ﬁ,
monitor them. This 1nitial system will utilize the UNIX file
system unti1l the Cronus primel file system 1s avai:lable, and will
then convert to the use of Cronus files. Later the MCS will
reside on 8 GCE and will use standard Cronus files.
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13 Scenarios of Operation

13.1 Basic User Commands and Functions

This sectiron presents examples of the use of Cronus
functions and of the integration of structural units. Scenarios
are presented for typical system and application tasks. The
intent 1s to suggest the interactions through the flow of control
and shared data. The scenarios also suggest how the primitive
functions might be combined to support operations required of
modern operating systems. The first few sections are narrative,

and the later ones provide pseudo-code examples. Deteails of
syntax and calling sequences in these examples are not those of
the actual 1mplementation.

Manv of the user commands and functions of Cronus fall into
the following categories.

o Sessi1on 1i1nitiation and termination. Login, Logout,
Attach, etc.

o User and system data base status and maintenance. Display
and edit user records, access control lists, show logged
on users, etc.

o File manipulation and file/directory maintenance. name
lookup. read. write, directory listing. etc.

o Program 1nvocation and control. create process. terminate
process. etc.

o Input /OQutput: List file etc.

o System Operation. Starting the system, monitoring 1ts
components. etc.

Each of the following sections presents a scenario from one
of these categories.
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13.2 Registering a New User

New users may be added to the system only by members of the
administrative group. The command to create &8 principel entry
1ssues an Invoke operation specifying the logical name for the
principal data base manager (CL_Principal) as the target process,
and including the Create_Principal operation and 1its parameters
in the message text. The Invoke uses the Locate(CL_Principal)
operation, to find en available principal data base manager, then
sends the message text to one of the sites thaet responds using
SendToHost. The site 1dentifier may be <cached to simplify
subsequent requests. The principal data base manager creates a
user entry and returns the unique 1dentifier for the new ob)ect.
This UID 1is the Cronus i1nternal name of the principel. and will
appear 1n Access Group Sets and Group specifications. It may
also be wused to 1dentify the user record whenever that record
needs to be accessed.

When & principal is added, a number of user date Dbase
entries are 1nitielrzed. One of those 1s the priority range
authorized for the user. A private directory 1s created. and the
principal 1s given @&ll rights to 1t. The pathname for this
directory 1s entered as the default home directory for the
princaipal The home directorv serves as the repository for
command 1nterpreter profile data that specifies user—-customizable
system features. \

13.3 Login .

A user may connect to Cronus either through Telnet and e
standard session agent running on a shared Cronus host. or
through a Cronus Termina)l Access Computer (TAC). Telnet supports
access from outside the cluster through gateways, and from other
devices obeving the protocol.

Access through a Cronus terminal device process is available
only from & host that supports Cronus 1nterprocess communication
protocols and will probably be supported only on workstations or
Cronus TACs. It 1s more powerful. because the access point
software 1s fully i1ntegrated with Cronus.
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To 1nitiate a session, a user must have a terminal device
process to manage his terminal communication, and a session
controller process to manage interactions with the system.
Telnet access requires both processes to execute on a shared host
of the system. A workstation access path can support both
processes; @a Cronus TAC access path places the terminal device
process in the TAC and the session controller process on a shared
host .

Login i1s handled by the Cronus session <controller process.
The wuser is prompted for a login name and password. which are
used by the session controller process to build a request to the
Authentication Manager by 1nvoking the operation.

Authenticate_As(name,encrypled_password)

On receiving this message, the Authentication Manager retrieves
the wassociated principal data base entry., verifies the password,
and creates the Access Group Set for the process.

The Authentication Manager interacts with the Cronus Session
Manager to record the session. The Session Manager assigns &
session tdentifier and adds 1t to the table of active sessions.
A session record contains are the UlIDs of the session principal,

controller process, and terminal device process. This table 1is
used to se i1sfy status requests about the cluster and active
users. Some emergency procedures, (for example., destroying all

processes associated with a session), may also rely upon this
table.

The session identifier,the AGS, and other user data base
entries are placed 1n the process environment through an
interaction with the process manager for the authenticating
process.

After modifying the process environment to 1indicate
successful eauthentication, Authenticate_As returns the principal
UID to the authenticated process. This i1dentifier 1s used to
interrogate the wuser data base for other 1nformation needed to
complete the login sequence. One such item 1s the default home
directory, the symbolic name of the 1nitial Cronus directory
which 1s used for unrooted catalog lookup operations, 1ncluding
the search for additional user 1nitializetion data. The
directory name 1s converted to & catalog entry UID by an

-184-

ol T ".-'-!'l.".-.\ 7 o ,)l\' LY '\'.\ NI
*-"\ oy AT AT AT AT

.’\‘.‘} s L o XX ‘

----,\.- -{'n
*ﬁ *u 2 iia( - * “u
AT »,
'p .v.‘! P N NN N s D L

Y

AR SEREY
) N :;.‘_-\)- $

WY,

Wiy h\*
PGPS
APy \¢~*\ﬁ

" NS \O‘v



el
RO

interaction with the catalog manager, and the UlD i1s stored in
the process descriptor.

A principal may have a default program registered with the
Authentication Manager; if so, this program i1s executed at log:n
time. If no program 1s specified, the standard command
interpreter 1is assumed. The standard input and output for the
executing process are directed to the principal's terminal device
process.

13.4 Accessing a File

Each process descriptor contains (among other things) an
entry for the UID of the <current directory. This value 1s
1initialized at login to the principal 's home directory, but can
be modified during the course of the session. The current
directory 1s 1nherited by & new program carrier process.

Suppose & client process wants to read the first 500 bytes
of date 1n the primal file with the svmbolic name :a.b:c. To do
this, 1t would obtain the UID for the Primal File by means of.

Lookup(nullDirUID, “:a:b:c”, true)
-> abDirUID. abcCatEntUID. abcCatEntContents.

Bv convention. the UlD for the null directory, nullDirUID, 1is
used to specify the starting directory whenever a complete name
1s to be looked up. Next. 1t would read the file data by means
of .

ReadtabcCatEntContents.ObjectUID, 0, 500)

which would cause the primal file manager to send the farst 500
bytes of date for the file.

These operations are made available by &a single function
call 1n the Process Support library.

ReadFi1leData("”.a:b:c"”, 0, 500)

-185-

A0 SR LY,

S :'5 N

0N 000

P ]

e A N YN R N RS T N D B
PSRN AL e AN AN A AN M L NNt

U
\.:‘::‘gl'l’::

. AN AR
% > oy AT A A, e NN '!:"‘\-'{s ‘.)-.,h ..\
'l‘:'.:,::h:',l..::‘\..o.l.!l.o. b W (S :-!\o?'u:?'n U X R G L A s R RN MANININR



i
|
|

Now. assume that a process has a relative symbolic name for a

file. The current directory UID 1s included 1n the request to
the catalog to look up the file name. Using the general form of
Invoke, the catalog manager 1s found based on the hint in the

catalog entry UID. The catalog manager performs the lookup and
returns the primal file UID associated with the symbolic name.
The primal file UID is then used to find the file manager for
this object, again using the hint which is part of the file UID
to locate the menager.

13.5 Creating a File

A Cronus cluster mav contain many hosts with file managers,
each willing to store and retrieve file date at the request of
other processes. The operation

Locate(CL_Primal_File)

can be 1nvoked bv & process to determine the set of @accessible
primal file managers.

One policy for the creation of files might be to try to
create the file on the same host as the creating process if a

local primal file manager responded. If this is not possible, a
remote manager can be selected and asked to create the file. The
primal files manager 1nclude status i1nformation, information 1n

the responses, such the amount of unused disk storage availlable;
a measure of the current 1/0 and processor load; or a restriction
on the principal UlDs that may to create files through this
manager. This 1nformation can be used to select a storage site
for the file. The selection strategies are packaged in a library
routines 1n the Process Support Library.

The file mev need a symbolic catalog entry. The catalog
entry operation 1s carried out by the catalog manager of the
directory to which the file 1s being added.

Suppose that the client process wants to create a file and
to give 1t the symbolic name &a.b.c. Further suppose that a
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directory named .a:b already exists. " 'ﬁ

™y U
First the client would use the N

Create -> FileUlID

operation to create a new primal file. The file would be empty.
The client could write data into the file by means of:

Write(FileUID. BytePosition, Data) S
QAR
O

;‘,"x‘ A ".‘
or by bracketing the write(s) by W

Open(Fi1leUID. ReadWrite, Frozen)

and

Close(Fi1leUlD, RetainWrites)

oper&ations

To catalop the file. the client first obteins the UID of the
directory that will contein the catalog entry for the new name.

Lookup{(nullDi1rUID. " . a:b", true)
-> aDarUID. abCetEntUID, abCatEntContents

and then enters the new name

Enter(abCatEntContents ObjectUID. “c”, FileUlD)
-> abcCetEntUID

1{f there were no directory :a.b or :a, then the client would
first heve to create both .& and .a.b. This could be done as
follows First the client would obtain the UID for the root
directory By convention the name of the root directory ais
.Root. The fact thet the root directory is cataloged 1n itself
represents the onlyv violation of the tree structured property of
the Cronus svmbolic neme space. -sﬁsﬁﬁ
AR
@MQ|Q¢

Lookup{nullDirVUID. " .Root”. true) A .#

~-> rootDirUID. MR
rootCatEntulD,




rootCatEntContents

Next, the client would create the directory :a:

CreateDir(rootDirUID, "a”
—-> aDirUID, aCatEntUID

and then. i1t would create the directory :a:b:
Create(aDi1rUID, “b”) —> abDirUID. abCatEntUID.

, At this point, the symbolic name .a.b.c can be established. as
above., for the primal f{1i1le.

The Process Support Library conteins routines coupling the
creation &end naming of files, to avoid the si1tuation where a
failure produces a file which does not have & syvmbolic <catalog
entrv and hence 1s not easily accessed. The operations are
ordered such that the svmbolic name 1s entered before the file 1s
closed. I1f the process fal1ls after the name 1s entered, the
catalog entry mayv be deleted by explicit user commands, or by
automatic recovery mechanisms.

13.6 Deleting & File "'"t"'i,""
“ﬁ.a}
Suppose the name of the file to be deleted 1s >a>b>c. \‘N “pc
Deletion 1s accomplished by the following operations.
Lookup(nullD1rUID, ".&a:b:c"”., true)

-> abDirUID. abcCatEntUID, abcCatEntContents
Delete{ebcCatEntContents . ObjectUlD)
Remove(abcCatEntUID)
If the primal file and catalog manager are coupled., the

Delete operation could have the side effect of 1nvoking the
Remove operation.
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13.7 Listing a Symbolic Catalog Directory

Suppose the name of the directory 11s :a.b:c. A utility

program executes the following sequences of operations to print
the desired file names.

InitScan(nullDarUID, “:a:b.c *.*")
-> abcScanState,
xDirU1D,
xCatEntUID,
xCatEntContents ’ﬁclq

-e

repeat until abcScanState 1ndicates end of scan 'ﬁ:
[ if TypeOf(xCatEntContents.ObjectUID) = A_filetype BN
then print xCatEntContents.SymbolicName,

ScanDirectory(abcScanState)
~> abcScanState,
xDirUID,
xCatEntUID,
xCatEntContents,

13.8 Running a Program

Application programs are executed within program carrier
objects. The creation of an application process has three steps:
@ program carrier 1s created. the program carrier is loaded with
the program image, and the program carrier 1s started.

“W”*hf

The program 1mage will generally be obtained from a Cronus
file. which may be anywhere within the Cronus file system. A
routine, that combines these process creation steps process
creation will be available in the PSL. This routine takes as one.
of 1ts arguments the symbolic name of the program image file.
The symbolic neme 1s translated to the file UID by means of a
symbolic cetalog lookup, and the file UID is used to load the
program i1mege 1nto a new program carrier object.
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In a heterogeneous system, a particular program 1mage can J“ﬁ‘ﬁ
Wik
only be executed on certain processors. A VAX program image, for ,dmﬁ&
example, can only be executed on a VAX host. Some mechanism must @
exist to match the the program i1mage to a processor capable of Ss«ﬁﬁ
executing it. . ‘J§ i
| ‘,‘ ".)‘:‘
Subtypes of program carriers are defined for each processor %\":
architecture for example, CT_VAX_Program_Carrier. These subtypes RRigtal
contribute no new operations to objects of type R
CT_Program_Carrier, but provide a means of locating a specific ;jcy‘
. 50
kind of processor. For example, the operation 5
e W ‘:. A
\
)
Locate(CL_VAX_Program_Carrier) (Q}ﬁ
KN
O]
will attempt to locate &ll program carrier managers on VAX hosts. . L
W
Executable files are subtypes of primal files with the type f,“ q
CT_Executeble. The descriptor of a program image file contains NS
the logical name of a program carrier subtype. e.g.. ‘, bﬁ}
CL_VAX_Program_Carrier. The file descriptor may ealso contain f;f'
other 1nformation such as special host requirements. An
h operation on program carrier managers. Resource_Test. determines 5‘ .
ﬁ. 1f & particular manager has the resources which are prerequisites ﬂ'ﬁ:
:f to execution, the <Create_Process routine can i1nvoke this test uﬂjk$
; henever & cess has special ds. ettt
:: w er pro p needs ““:q".:z.
B The actions carried out by the library routine can now be R
a described 1n greater detail N f&%;
" 3
() ]
K R
;:: 1 The symbolic program name 1s translated to an executable 9‘ '1.‘:
¢ file UID. by means of & symbolic catalog lookup. Z.A.‘
}
o
- 2. The routine requests the file descriptor of the program kE{QSE
3y image fi1le, by 1nvoking the Read_Descriptor on the file N Y,
W brect "
o objec :ﬁﬁﬁ’

wW

[ s
1'5
61‘

The required program carrier type and any special
requirements are determined from the file descriptor.

4. A Locate operation finds the Program Carrier Managers
capable of executing this process, and a Resource_Test
operation narrows the candidates further.

O
e X )
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5. A Program Carrier Manager 1s selected according to some
policy (26) and the operation Create_Program_Carrier 1s
invoked on it; the UID of the new Program Carrier object
1s returned.

6. The Load_Program operation 1s invoked on the program
carrier object.

~1

When the load operation 1s complete, the routine receives
e reply from the Program Carrier object, and then invokes
Proceed on the Program Carrier to start it.

The Create_Program_Carrier operation takes as a 1implicit
parameter the process descriptor of the creating process, which
1s inherited (with certein changes) by the new process.

A process descriptor contains some 1nformation which 1s
maintained securely by the system (e.g.. the process UID. and the
UID of 1ts praincipal) and an open-ended set of information
inserted 1into the descriptor by the Change_Process_Descriptor
operation. All of the open-ended i1nformation 1s 1nherited
directly by the descendants of the process. Some of the system
information 1s 1nherited (e.g.. the principal 1s normally
inherited) and some of it 1is not (e.z., the process UID of a
descendant is unique 1o it). The system 1nformation defines the
authority of the new process for access to information and
resources.

The creating process mavy 1i1nvoke Change_Process_Descriptor
after but before starting., the program carrier to make changes 1n
the descriptor.

(26) A reasonable policy might select the Program Carrier maneger
on the Jocal host, 1f 1t 1s a candidate, and to select the most
lightly loaded host (from i1nformation 1n the reply to Locate) if
1t is not. Meny other policies are possible, and exploring the
possibilities 1s an i1mportant area of future work.
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13.9 Starting a Cronus Service *dhﬁ*
In this section we sketch a scenario which might be directed '\ﬁpﬁﬁs
by a cluster control station. to startup, operate, and take down ' ﬁgﬁﬁ
a Time Service instance on one host. It 1is 1ndicative of the hﬁwﬁ :
steps required to 1nitiate and control! an initial process load 4.#1
sequence. The steps required to bring up each host to the point f ﬁk‘“
assumed 1n this scenarios have been discussed i1n Section 12. T e
g ﬁf:
The Cronus Time Service has two main functions: ﬁJﬁﬁ
I" ..l "l
1. To respond to direct requests for the date and time, and h“\w%
for format conversions among the Cronus date and time hﬂﬁﬁfh
formats. ®
i
2. To periodically multicast the date and time on a well-known .ﬁ
VLN multicast channel. #’agﬁﬁ
R
l"::'r"'t'!:o

Assume that host CVAX has )joined the Cronus system, and the

primal process manager 1s the only active Cronus process. The .:“.'clc*‘.q‘
control station performs I&
’wéﬂﬁ
InvokeOnHost ( "CVAX", KX o
CL_Primal_Process, ®
) <(Ck_Operation_Name.CO_Service_List)> ggv&.£$
' ¢3ﬁ%ﬁ§3
S, y:
and receives 1n reply a list of the services which could be Q?‘Mﬁ%{
created on CVAX, only the PPM 1s marked as active. The logical kﬁk %

name CL_Time_Service 1s contained 1n the list. The control
stetion then performs

InvokeOnHost ("CVAX"
CL_Primal_Process,
<(CK_Operation_Name .CO_Create_Primal_Process)
(CK_UID_Service_Name .CL_Time_Service)>)

The Time Service process 1s created and started. and the control
station receives a reply containing CVAX_Time_Service_UID, the

specific UID of the Time Service Primal Process. The Time

Service begins its work . and 1f left wundisturbed will

periodically multicast the date and time forever. The control
-192-
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station (or eny other Cronus process) could request the current ﬂﬂ*fi
date and time by performing ﬁﬁﬁ“ﬁﬂ

InvokeOnHost ("CVAX", ':«' )
CL_Time_Service, é ﬁ

<(Ch_Operation_Name,CO_Date_Time)>) HW&?‘

FHAR)

ot

i‘ G0

At some later time, it becomes necessary to temporarily ®
inhibit the periodic multicasts of the Timer Service. The IO R
A ROAO]

control station performs éﬂ?dﬁ?
R

R

InvokeOnHost ("CVAX" 'dfﬂﬂsﬂ
CVAX_Time_Service_UID, aitntah '
<(CK_Operation_Name, CO_Change_Process_Descriptor}. .

(CK_Modify,) Y
(CK_I1PCEnabled,"false”)>) ‘o“t.‘ ¢

&

|'| l.qt

|."l‘.|., l‘l‘

After the control station receives the reply confirming this f'ﬂﬂ‘“
operation, it 1s known that all IPC to or from the Time Service o

has been 1nhibited. The Time Service process continues to exist, A

however., and 1s eventually restored to 1ts normal function when Qo]
l‘.‘l‘g.b |'l|

the control station performs ‘*ﬁﬂﬁﬁb

ity

AU

InvokeOnHost ("CVAX", e
CVAX_Time_Service_UID, ®

<(CK_0peratlon_Name.CO_Change_Process_Descr1ptor).
(CK_Modifyv,)

NN
k ;. 0 ...c
(CK_IPCEnabled, “true”)>)

Finally, perhaps in preparation for replacing the Time Service
code with a new version, the control station does

InvokeOnHost (“"CVAX",
CVAX_Time_Service_UIlD,
<(Ck_Operation_Name ,CO_Destroy)>)

and the Time Service process 1s known to be destroyed when the
reply arrives at the control station.

Revision 1.1 83/06/06 10.39.32 bjw
Initial revision

*
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14 Primal System Hardware

The Advanced Development mode! of the Cronus distributed
operating system will have three mainframe computers, four GCEs,
and a gateway. The mainframe computers are two BBN C70s and a
Digital Equipment Corporation VAX 11/750, the GCEs are Multibus
computers with M6B000 centrel processors, and the gateway 1is an
DEC LSI-11 based computer.

The C70 computers are configured as general development
machines. The first. C70-1, 1s the site of the majority of the
development work since 1t supports both the C70 development tools
and those of the GCEs. We will rent time on a second C70, C70-2.
which will be wused to exercise Cronus support for reliable
redundant hosts, and to test scalability. Both C70s will run
UNIX version 7 as released by BBN Computer Corporation and
modi1fi1ed by the Cronus project.

The VAX 11/750 provides &a VMS-based software development

environment, as well as & malnframe of a distinctly different
archiiecture. Its purpose 1n the ADM 1s to provide a limited
integration host. Since i1t is a large well-supported mainframe,
1t wi1ll contain 1ts own development environment. and we will also

use 1t as a source of computer power for general tasks. both to
off-load the C70, and to test real usage of the Cronus
heterogeneous host environment. The VAX 1s configured to reflect
1ts usage as a software development machine.

The Cronus system has four GCEs, configured for a variety of
tasks. Since they are compatible machines, their configurations
wi1l]l vary over time, as we perform different experiments -on the
network., and as we make board substitutions to make one GCE
perform functions of another which is temporarily out of service.
The configuration table for the GCEs should be regarded as only a
typical set of GCE configurations.

The Cronus gateway 1s implemented on an DEC LSI-11 computer.
This would normally be a task for a GCE, however, standard
internet gateways are currently implemented on LSI-11, and
adoption of the LSI-11 gateway aliows us to obtain an off-the-
shelf implementation. The next generation of internet gateways
is expected to be built on M68B000 computers, and at that time we
wil] probably move the gateway to a GCE.

-195-

x - g - V .w. - W '\ﬁ A . '\r‘ -\‘. "N r .‘.
5 o' AN oy \‘\'h AT
'~ “ '.‘ ‘.". R "..‘...‘ ‘.'\ ::. o .‘. .:. " ..:':::.o,! O t"‘a‘m‘ t‘. O’a 0"‘\’ Oyan 325\,&'., e, '0 ) h |'..o'..u"‘ o .‘.:“" l‘::‘i'o "0-“:5"'. :‘\"h

t.t,\. l‘.t.c



M
A

s .

]
3
4
f

C70-1 1 Mbyte main storage
2 BO Mbyte removable disk draives
Magnetic Tape Drive,
800/1600 bpi1, 125 ips (Cipher)
Arpanet 1822 LHDH interface
Ethernet interface (using
Interlan protocol module)

CcC70-2 1/2 Mbyte main storage
2 160 Mbyte removable disk drives
Arpanet 1822 LHDH 1nterface
Ethernet i1nterface (using
Interlan protocol module)

VAX 11-750 1 Mbyte main memory
1 160 Mbyte Winchester disk
Magnetic tape drive, 1600 bpi, 40 1ps
MD1 high speed synchronous serial 1nterface
3COM Ethernet Interface
VMS Operating System

Table 14.1 Software Development Hosts
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GCE-1+2 Forward Technology M68000
processor with 256 Kbytes memory
Micro-Memory 256 Kbyte memory board
80 Mbyte Winchester Disk Drive and SMD interface
3COM Ethernet Interface
8-slot Multibus backplane

GCE-3 Forward Technology M68000 processor
with 256 Kbytes memory
Micro-Memory 256 Kbvte memory board
8-11ne RS-232 seri1al 1nterface
3COM Ethernet Interface
B-slot Multibus beckplane

GCE-4 Forward Technology M68B000 processor
with 256 Kbytes memory
Micro-Memory 256 Kbyte memory board
8-line RS-232 serial 1nterface
300 1pm line printer
3COM Ethernet Interface
8-slot Multibus backplane

Table 14.2 Generic Computing Elements —-- Typical Configurations
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Gateway LS111/03 processor card K Wi

p.i 64 Kbyte memory card %:’
DLV11J 4 line terminal card i

MRV11C ROM card (bootstrap) e

ACC 1822 interface with DMA LAY

Interlan NI2010 QBUS Ethernet controller QHV'W

BBN FNV11 Fibernet 1nterface ?' "

MDB backplane and power-supply. ettt

Table 14.3 Gateway Configuration
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15 Virtual Local Network
15.1 Purpose and Scope

The Cronus Virtual Local Network (VLN) provides interhost
message transport 1n the Cronus Distributed Operating System.
The VLN client interface 1is available on every Cronus host.
Client processes can send and receive messages using specific,
broadcast, or multicast addressing.

The VLN stands 1n place of & direct 1nterface to the
phvsical local network (PLN) . This additional level of
abstraction is defined to meet two major system objectives:

o Compatibility. The VLN 1s compatible with the Internet
Protocol (IP) and with higher-level protocols, such as the
Transmission Cortrol Protocol (TCP). based on IP.

o Substitutability. Cronus software built above the VLN 1is
dependent only upon the VLN interface and not its
implementation. It 1s possible to substitute one physical
local network for another provided that the VLN interface
specification 1s satisfied.

This description assumes the reader 1s familiar with the
concepts and terminology of the DARPA Internet Program:. reference
[NIC 1982} is & compilation of the important protocol
specifications and other documents. Documents in [NIC 1982] of
special significance here are [Postel 198le] and [Postel 1981b].

The Advanced Development Model ADM will be connected to the
ARFANET, and it is important that the ADM conform to the standard
and conventions of the DARPA internet community. In eddition. a
large body of software has evolved, and continues to evolve, in

the internet communtty. For example, protocol compatibility
permits Cronus to assimilate existing software components
providing electronic mai1l, remote terminal access, and file
transfer.

The substitutability goal reflects the belief that different
instances of Cronus wil]l use different physical local networks.
Substitution may be desirable for reasons of cost, performance,

or other properties of the physical Jocal network such as
mechanical and electrical ruggedness.
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Figure 1 shows the position of the VLN 1n the lowest layers
of the Cronus protocol hierarchy. The VLN interface
specification leaves programming details of the 1nterface and
host-dependent issues unspecified. The precise representation of
the VLN data structures and operations will vary from machine to
machine, but the functional capabilities of the i1nterface are the
same regardless of the host.

| Transmission | User | |
| Control | Datagraem | ... |
| Protocol | Protocol | i

| Internet Protocol |
( (1py {

| Virtual Local Network |
| (VLN) I

| Physical Local Network |
| (PLN, e.g. Ethernet) |

— e ————_——— e ———————— e e = e

Figure 15.1 Cronus Protocol Layering

The VLN 1s completely compatible with the Internet Protocol
as defined 1n [Postel 1981b]. No changes or extensions to IP are
required to implement IP above the VLN.
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15.2 The VLN-to-Client Interface il
) 'l,q l.!
The VLN layer provides a datagram transport service among
hosts 1n a Cronus cluster, and between these hosts and other
\ hosts in the DARPA internet. The hosts belonging to a cluster 4é
¢ are attached to the same physical local network. Communication é\
v with hosts outside the cluster 1is achieved through interpet ; f
: gateways, shown in Figure 2, connected to the cluster. The VLN 5 Lw J
routes datagrams to a gateway if they are addressed to hosts 1
i outside the cluster, and delivers 1ncoming datagrams to the '§g§§
ol appropriate VLN host. A VLN is a network i1n the 1nternet, and ‘! “\
K thus hes an 1nternet network number(27). ﬂ..éx
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h (27). The network numbers for the PLN and VLN may be the same or
h different. 1f the numbers are different, the gateways are
M somewhat more complex. Either approach is consistent with the
-; internet model .
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Figure 15.2 A Virtual Local Network Cluster s
2
WO Q
. X :- w d
The VLN interface will have one client process on each host. N #w
y {
normally the host's IP implementation. The VLN performs no ‘J‘*Vu
multiplexing/ demultiplexing function. “% “ﬁ
HOTOWUM
The structure of messages which pass through the VLN is
identical to the structure of internet datagrams. The VLN
definition assumes that there 1s & well-defined representation
for internet datagrems on anv host supporting the VLN interface.
The argument name “Datagram” i1n the VLN operation definitions
below refers to this well-defined but host-dependent datagram
representation.
The VLN guarantees that a datagram of 576 or fewer octets
can be transferred between anv two VLN clients. Although larger
dataegrams may be transferred between some client pairs, clients
should evoid sending detagrams exceeding 576 octets unless there
~202~
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is clear need to do so. The sender must be certain that all
hosts 1nvolved can process the oversized dategrams.

The internal representation of an VLN datagram 1is not
included 1in the speci1fication, and may be chosen for
implementation convenience or efficiency.

Although the structure of 1internet and VLN datagrams 1s
identical, the VLN-to-client interface places 1ts own
interpretation on i1nternet header fields, and differs from the
IP-to-client 1nterface 1n significant respects.

1. The VLN laver uses only the Source Address. Destination
Address. Total Length, &and Header Checksum fields 1n the
internet datagram. other fields are accurately transmitted
from the sending to the receiving client

2. Internet datagram fragmentation and reassembly 1s not
performed 1n the VLN levyer. nor does the VLN laver
implement anyv aspect of internet datagram option

processing.

3. At the VLN 1nterface, a special 1nterpretation 1s placed
upon the Destination Address 1n the i1nternet header. which
allows VLN broadcast and multicast addresses to be encoded
in the i1nternet address structure.

4. With high probability, duplicate delivery of datagrams sent
between hosts on the same VLN does not occur.

5. Between two VLN clients S and R in the same Cronus cluster,
the sequence of datagrams received by R is a subsequence of
the sequence sent by S to R, a stronger sequencing property
holds for broadcast and multicast addressing.

In the DARPA internet. an jpterpet address is defined to be
a 32-bit quantity that is partitioned into two fields, & petwork
pumber and a Jocs]l address. VLN addresses share this basic
structure, but it attaches special meaning to the local address
field of a VLN address.

Each network is assigned a class (A. B. or C), and a network
number . The partitioning of the 32-bit i1nternet address into
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network number and local address fields as & function of the “qﬁmd&
class of the network 1s shown in Table 1. a0
RS "
Width of Width of it
Network Number Local Address f#&"x
SO
'y S
Class A 7 bits 24 bits .‘
R
) Class B 14 bits 16 bits / &' .,'
i t'::l’::!‘t:n‘
) Class C 21 bits 8 bits Satintey
y MO
. ke
. o
X Table 15.1 Internet Address Formats o ::3:::
: PEAR
) :‘.ﬂ.:;‘:'t':”
! The bits not 1ncluded i1n the network number or local address t.::l‘::t:'."!'
X fields encode the network «class. e.g., a 3 bit prefix of 110 W “¢0€
designates & class C address (see [Postel 1981a]).
¥ The 1nterpretation of the local address field 1s the '\
: responsibility of the network. For example., i1n the ARPANET the é«%ﬁh
A local address refers to a specific physical host. VLN addresses, \ J
! in contraest, may refer to all hosts (broadcast) or groups of 0“0 “N
’ hosts (multicast) i1n a Cronus cluster, as well as specific hosts
’ insitde or outside of the cluster. Specific, broadcast, and ﬂb “
. multicast addresses are all encoded 1in the VLN local address " u?"ﬂ
! field (28). The meaning of the local address field of a VLN .s “‘
: address 1s defined in Table 2. \yhfkﬂ
: l.i.n
‘
)
)
[}
[l
X (28). The ability of hosts outside a Cronus cluster to transmit
. datagrams with VLN broadcast or multicast destination addresses
: into the cluster may be restricted by the cluster gateway(s), for
‘ reasons of system security.
]
)
! -204-
13
) - OB W0
4 : \ " "‘

nint
,o‘ ‘»\ M'o'\

. _ - N
.‘ - ey o L) “ 4,’\- Mo ) §
RO s RRR R u'"'- GO S 0'» N !
A o ‘1 N .:.'l Hint ' 3} ! " " \'“ .}:";’.'ﬂ..q' "l::‘! l':‘:}c“': ."’!\ "l "' Yoy, ‘ln"l .h“l"‘u oty .:t‘f::‘.'o .'u‘-‘t“‘a OO0 o 'o ';..



J$&\V M‘hvm:ﬁ

,('1

o

Py
Pt

ess Mode VLN Local Address Values
Specific Host 0 to 1,023
Multicast 1,024 to 65.534
Broadcast 65,535

Table 15.2 VLN Local Address Modes

In order to represent the full range of specific, broadcast, and
multicast addresses 1n the local address field, a VLN network
should be either class A or class B.

The VLN does not attempt to guarantee reliable delivery of
datagrams, nor does 1t provide negative acknowledgements of
damaged or discarded daetagrams. It does guarantee that received
datagrams are accurate representations of transmitted datagrams.

The VLN guarantees thet datagrams will not replicate during
transmission. so each 1ntended receiver, a given datagram given
to the VLN by higher levels 15 received once or not at all(29).

Between two VLN clients S and R in the same «cluster, the
sequence of datagrams received by R 1s & subsequence of the
sequence sent by S to R, that 1s datagrams are received in order,
possibly with omissions. A stronger sequencing property holds
for broadcast and multicast transmissions. If receivers R1 and
R2 both receive broadcast or multicast datagrams D1 and D2.

either they both receive DI before D2. or they both receive D2
before DI1.

While a VLN could be implemented on a long-haul or virtual-

(29). A protocol operating above the VLN layer (e.g., TCP) may
employ a retransmission strategy. the VLN layer does nothing to
filter duplicates arising 1n this way.
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circuit-oriented PLN, these networks are generally ill-suited to

the tesk. The ARPANET., for example, does not support broadcast
or multicast addressing modes, nor does 1t provide the VLN
sequencing guarantees. I1f the ARPANET were the base for a VLN
implementation, broadcast and multicast would have to be
constructed from specific addressing, &and a network-wide
synchronization mechanism would be required to implement the
guarantees . Although the compatibility and substitutability

benefits might still be achieved, the 1mplementation would be
costly., and performance poor.

A good 1mplementation base for a Cronus VLN would be =&
high-bandwidth loceal network with all or most of these
characteristics.

1. The ability to encapsulate a VLN datagram 1n a single PLN
datagram.

2. An efficient broadcaest addressing mode.

3. Natural resi1stance to datagram replication during
transmission.

4. Sequencing guerantees like those of the VLN interface.
5. A strong error-detecting code (datagram checksum).

Good ceandidates 1nclude Ethernet, the Flexible Intraconnect, and
Pronet, among others.

15.3 A VLN Implementation Based on Ethernet

The Ethernet local network specification 1s the result of a
collaborative effort by Digitel Equipment Corp., Intel Corp., and
Xerox Corp. The Version 1.0 specification [DEC 1980] was
released in September 1980. Useful background information on the
Ethernet internet model is supplied 1n [Delal 1981].

The addresses of specific Ethernet hosts are arbitrary 48-
bit quantities, not under the control of the DOS. The VLN

implementation must map VLN addresses to specific Ethernet
addresses. The mapping can not be maintained manually 1n each
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VLN host, because manual procedures are too cumbersome and
error-prone for & local network with many hosts, each of which
mey join and leave the network frequently. A protocol s
described below which &allows @& host to construct the mapping
dynamically, beginning only with knowledge of its own VLN and
Ethernet host addresses.

An internet dategram is encapsulated in an Ethernet frame by
placing the internet datagram 1n the Ethernet frame data field.
and setting the Ethernet type field to "“DoD 1IP”, &as shown in
Figure 3.

The Ethernet octet ordering 1s required to be consistent
with the |IP octet ordering. If IP(i) and IP()) are internet
dategrem octets and i<), and EF(k) and EF(1) are the Ethernet
frame octets which represent IP(i) and IP()) once encapsulated,
then k<l. Bit orderings within octets must also be consistent.

Each VLN component maintains a virtual—-to—physical address
map (the VPMap) which translates a 32-bit specific VLN host
address to & 48-bi1t Ethernet address. The VPMap data structure

and the operations on it will implemented wusing hashing
techniques.

Each host controller has an Ethernet host address (EHA) to

which 1t responds. The EHA 1s determined by Xerox and the
controller manufacturer. In addition. the VLN assigns a
multicast-host address (MHA) to each host. This multicast

address is constructed from the 1local host portion of the
internet address. : '

When the VLN client sends a datagram to a specific host, the
local VLN component encapsulates 1t and transmits it without
delay. The Source Address in the Ethernet frame is the EHA of
the sending host. The Ethernet Destinetion Address is formed
from the destination VLN address in the detagram, and 1s either:

o the EHA of the destination host, if the sending host knows
1t, or

o the MHA formed from the host number in the destination VLN

address, as described above, 1f the sending host does not
know the EHA coresponding to the host number.
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 Eod o)

e

%

%
‘ ’ A " “ ." ‘ e 't‘ ” ‘. Wotto l." .."’."'t‘.'t’;‘l‘-‘i SN o iy '6.:'\ .&

0 1 2 3
0123456 7890123456789 0123456778889°0.1
B o s s T e S B S s (e A WL T S ST ST BRI S S DY 38
| Destination Address |
B s e e S S s s o T S SRV I S S SRS SRS WEIT S SR R SR
| Destination Address (contd.) | Source Address |
B e S e S S o Tt S A S S QISR ST S SARUU ST SR S S S
| Source Address (contd.) |
s e S e e s T T S S SR DTGNS A R T S
| Type ("DoD I1P") |
B i T S o s e ek s ST S

e T S S S S B L T s T a3

|[Version| IHL |Type of Service|
e e T S T S S 1
i Total Length | Identification |
B s T s R e tarts 2t S R B Rt i s s T RS S
|Flags| Fragment Offset | Time to Live | Protocol |
B s ST T S S Tty A ST SN I G S VS RNY VRIS S ST S e
| Header Checksum | Source Address |
s s e S e s e s Tt S S S ST S S S e
| Source Address (contd.) | Destination Address |

=t —t—dmd bbbt bbbttt bbbttt —t— =t~ —d—F—t—t—+
| Destination Address (contd.) |
e e s et S S S e

tot—t—t—t—t bttt bttt —b—t =+

| |
T e e e T e e e B e i A e e e e
| Data |
e LA e et e e e e Bt e B T s S e s

tmt—t—t—tmtt—t—t—t—t =ttt —t—t bt —Fmd b —t— bt b b— b b —f—p—p— b=+

B s e S e B S S T A S L DU e
dtmtmd—p—pt—t—t—F—t—t bt —t—t bt — bbb b m b e b — b — b b —t—F

| Frame Check Sequence i
e s e S B e s L At et ot o S ST B S B St s

Table 15.2 An Encapsulated Internet Datagram

Y .t,'.n'.i.ﬂ.n'mﬁ.t .00 0

-208-~
a M
- LS -.‘,-..
,f A & '-H ¥ <, ﬂv‘{ r o ﬂf~» »
b.. ".I‘.'Q Ly ‘.O.‘. ﬂﬁ“"‘ # 5:. .' . N f ¢, N \f\l‘




i un g G Pt 6.0'50 .00 0 A4V 478 PR AVE RS0 PR R L

!

B
TRER

Tt

-

s &

e

ot AN

When a VLN component receives an Ethernet frame with type
“DoD IP”., 1t decapsulates the internet datagram and delivers it
to its client. [If the frame was addressed to the EHA of the ;
receiving host, no further action is taken. If the frame was Ly
addressed to the MHA of the receiving host, the VLN component L]
broadcasts an update for the VPMaps of the other hosts. The
other hosts can thenuse the EHA of this host for future traffic.
If the MHA 1s represented as & sequence of octets 1n hexadecimal,
1t has the form.

A B C DEF .
},vi
09-00-08-00-hh-hh )
A 1s the first octet transmitted, and F the last. The two octets
E and F contein the host local address: e
E F Y
Y 000000hh hhhhhhhh
1 1
MSB LSB N
@
hrtek
MY
| Qh‘f‘f
' The type field of the Ethernet freme containing the wupdate f ég
N 1s "Cronus VLN", and the format of the data octets 1n the frame yjﬁéﬂ
' i . P X a0
is:
: ®

0 1 2 3
0123456789012345617890123456T°7829°401
e T S S S s s e et T S e e s t
| Subtype ("Mapping Update”) | Host VLN Address |
B i e T T s s s st S S B e s T s 2
| Host VLN Address (contd.) [
t—d—t bt —t b b — b —t—+

) When & local VLN component receives an Ethernet frame with type
f “Cronus VLN" &nd subtype "Mapping Update"”, it performs a
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; StoreVPPair operation using the Ethernet Source Address field and ’bﬂﬁb%
the host VLN address sent as frame dats R
; A VLN datagram will be transmitted 1n broadcast mode if the )t;;}\
X specifies the VLN broadcast saddress (local eddress = 65,535, ;#Wfﬂ
) decimal) as the destination. The receiving VLN component merely ..? 3
1 decapsulates and delivers the VLN datagram. ;ﬁé f
i Yirldad
The implementation of multicast addressing 1s more complex. “ﬂ
o Eech host defines the number of multicast addresses which can be %¥%4
ﬁ' si1multaneously “attended” (listened to). Thi1s number 1is a 'k“
0 function of the particular Ethernet controller hardware and of "“"
!: the resources that the host dedicates to multicast processing. ..ﬂ:::l?‘;
:~ The VLN protocol permits a host to esttend eny number of multicast ACRON
’ addresses. from O to 64,511 (the entire VLN multicast address f'!i
\ spesce). independent of the controller 1n use. .sﬂkw%
\ 'l."o‘i'o'i
i It 1s possible to 1mplement the VLN multicast mode wusing qw*&&
-: only the Ethernet broadcast mechenism. Every VLN host would &ﬁwhf'
s receive and process every VLN multicast. discarding uninteresting
dategrems. More efficient opereation 1s possible :1f some Ethernet “5
’ multicast addresses are used. and 1f the Ethernet controller has a? #ﬂ
| multicast recognition which aeutomatically discard misaddressed
f frames.
i
Ry There 1s no standard for multicast recognition. The 3COM
Model 3C400 controller performs no multicast address recognition.
“ 