
Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

January 1975

Sponsored by:

Advanced Research Projects Agency
ARPA Order No. 2351
Contract No. F08606-73-C-0027

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

PREFACE

"Pluribus Document 2: System Handbook" is one of a set of nine

which, taken together, provide complete documentation of the

Pluribus line of computer systems. In the present document,

Part 1, entitled "Guide to Documentation," gives an overview of

the entire set. Part 2, "System Description," contains an ex­

tensive discussion of the Pluribus line and the ways in which it

can be used. This system description is the primary text for

anyone seeking familiarity with the Pluribus, although, of course,

there are many details which can only be found elsewhere in the

set. Part 3 is a glossary of specialized Pluribus terms used

throughout the set. Part 4 is an index to the present document.

Part 5 contains reprints of several papers relevant to the

Pluribus.

Of the five parts of "Pluribus Document 2," parts 1, 2, 3, and

5 are presently included here; part 4 is in production and will

be added when it becomes ready.

iii

Report No. 2930 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

Preface

Part 1: Guide to Documentation ~

Part 2: System Description•........

Part 3: Glossary

Part 4: Index

Part 5: Reprints of Papers•.•

v

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

PART 1: GUIDE TO DOCUMENTATION

1

GUIDE TO DOCUMENTATION

Update History:

Originally written - February 1975

2

Report No. 2930 Bolt Beranek and Newman Inc.

The Pluribus line of computer systems is documented in
a series of nine volumes entitled as follows:

"Pluribus Document 1:
"Pluribus Document 2:

No. 2930
"Pluribus Document 3:
"Plur.ibus Document 4:
"Pluribus Document 5:

No. 2391

Overview," BBN Report No. 2999
System Handbook," BBN Report

Configurator," BBN Report No. 3000
Basic Software," BBN Report No. 3001
Advanced Software," BBN Report

"Pluribus Document 6: Functional Specifications,"
BBN Report No. 3002

"Pluribus Document 7:
"Pluribus Document 8:

Construction,"
Card Testing,"

BBN Report No. 3003
BBN Report No. 3004

"Pluribus Document 9: System Integration," BBN Report
No. 3005

The set of documents taken as a whole is intended to cover

all aspects of the Pluribus; e.g. , the decision to use a Pluribus,
the design of systems involving the Pluribus, programming the
n1uribus, actually fabricating the Pluribus hardware, and
maintaining Pluribus systems. On the other hand, the set of
documents is organized so that any one aspect of Pluribus
endeavor (e.g., Pluribus manufacture) should be documented with

a subset of the documents; thus, not everyone need carry all
documents with him at all times--only those he needs.

The chart on the following page suggests which Pluribus
documents will be useful for which areas of endeavor and for
what types of people.

3

FOR (AREA OF ENDEAVOR} : SEE DOCUMENT NUMBER:

Designing an application
system based on the Pluribus •.••...• l, 2 I 3, 6

Building a Pluribus Computer •......• 2, 4, 6 I 7, 8, 9

Using a Pluribus Computer• 2, 4, 5, 6

FOR (TYPE OF PERSON} :

One considering buying a Pluribus ..• 1, 2

A Pluribus factory worker ...•.....•. 7, 8, 9

A Pluribus hardware maintainer ...••. 2, 4, 6 I 8, 9

A Pluribus programmer ...•••.•..•...• 2, 4, 5, 6

Table 1: Guide to Pluribus Documents

:::0
rt>

"O
0
-s
rt

:z
0

N
l.C
w
C>

.......
::s
(')

Report No. 2930 Bolt Beranek and Newman Inc.

The documents have a loose-leaf format to facilitate

updating.

Of the nine, documents 1 through 6 will be available in

reasonably large quantities. Documents 7, 8 and 9 contain much

detail of little general interest (e.g., wire lists, assembly

drawings) and are extremely cumbersome to produce; therefore,

their availability from BBN will be quite limited, although

they will be submitted to the National Technical Information

Service to allow general access.

In the following paragraphs, we discuss each of the

nine documents in turn, presenting the contents of each and

discussing its expected use.

Document 1: Overview. This document is meant to provide

a quick summary of the Pluribus's capabilities, possible appli­

cations, and architecture, and is the first document one should

read to determine if he is at all interested in using a Pluribus.

Document 2: System Handbook. This document is the primary

text for one seeking familiarity with the Pluribus. The funda­

mental ideas of the Pluribus are introduced and then discussed

in detail, including the structure of the hardware and guidance

on how we think the hardware should be configured and programmed.

In particular, after a brief general description of the Pluribus

system structure, there are discussions of the processor

structure and of the addressing structure for the system, an

outline of how programs might be written to use the Pluribus

structure effectively, a discussion of Pluribus device handling

and I/O handling, a discussion of the structure of the Pluribus

busses and how they are coupled together, summaries of the

5

Report No. 2930 Bolt Beranek and Newman Inc.

various devices which can be connected to the Pluribus, and a

discussion of the Pluribus reliability mechanisms. While this

document might best be thought of as a programmer's reference

manual for the Pluribus, or alternatively, as the reference

manual for Pluribus systems analysts, we think that everyone

associated with any phase of Pluribus development and use will

be likely to want it, with the possible exception of those

concerned with only very local aspects of Pluribus construction.

This document is enhanced by the inclusion of a glossary,

a guide to other documentation (which you are reading), an

index, and some reprints of relevant papers written during the

Pluribus development process which may give the reader greater

insight into the use and structure of the Pluribus.

Document 3: Configurator. This document lists the various

components that make up Pluribus systems (e.g., memories,

processors, busses) and gives rules for configuring Pluribus

systems. These rules are of two forms: rules of the first

form are concerned with performance limitations; rules of the

second form are concerned with physical limitations. An

example rule of the first form tells how effectively multiple

processors on a bus can share a memory on the same bus as a

function of processor speed and memory speed. An example rule

of the second form says that if more than some number of cards

are to be used on a bus, then a bus extender wiLl be needed.

Of course, in some areas these two forms of rules are not

independent; for instance, adding a bus extender may slow down

the bus.

6

Report No. 2930 Bolt Beranek and Newman Inc.

This document will be used primarily by the systems

analyst or system architect for a computer system using the

Pluribus. Further, it will be necessary in order to price

Pluribu2 systems accurately, since only careful configuration

will list all the system components actually needed.

Document 4: Basic Software. This document presents only

enough about the Pluribus software to enable the reader to

program in basic machine language for the Pluribus. The Pluribus

instruction set is presented, the several different Pluribus

assembly languages are introduced, and there is a discussion

of the basic debugging package which allows Pluribus memory

locations and machine state information to be inspected and

changed.

Every Pluribus programmer will need to read this document

as this is the software he will need to do "hands on" debugging

of his program. Additionally, those building and maintaining

Pluribus hardware systems will need to read this document

because it describes the software they will need to operate

hardware diagnostic programs.

Document 5: Advanced Software. This document describes

software beyond that needed just to debug programs and operate

hardware diagnostics. The software available for the Lockheed

SUE, the processor used in the Pluribus, is listed. Detailed

descriptions and operating procedures are given for the two

cross-assemblers available to assemble programs for the Pluribus.

7

Report No. 2930 Bolt Beranek and Newman Inc.

The somewhat unstructured "package" that has been developed to

permit reliable operation of the Pluribus is also discussed.

Every Pluribus programmer, whether he is writing application

programs, utility programs, or diagnostics, will need to refer

to this document.

Document 6: Functional Specifications. This document

provides the physical characteristics, operating characterisitcs,

and necessary programming details for every Pluribus card. One

way to think of this document is as an extension to Document 2,

giving greater detail on specific devices.

Document ?: Construction. This document provides the

information necessary to build the components of Pluribus

systems. For every Pluribus card, the following are included:

parts list, wire list, art work, assembly drawing, and assembly

procedure. For every mechanical part and cable used in a

Pluribus, this document includes the following: parts list,

assembly drawing, and assembly procedure. In addition, this

document contains a section which includes detailed instructions

for any modifications and option selections for Pluribus cards.

Document 8: Card Testing. This document gives instruction

for testing every card that can be used in a Pluribus system.

For Pluribus cards obtained from Lockheed, the Lockheed main­

tenance bulletin and diagnostic procedure are provided. For

every card specially designed and constructed for the Pluribus,

8

Report No. 2930 Bolt Beranek and Newman Inc.

this document includes the following: schematic diagrams,

logic description, wire lists, test program, and test procedure.

This document is necessary for anyone debugging cards,

either after initial construction in the Pluribus factory or

after failure in the field.

Document 9: System Integration. This document describes

how the components of a Pluribus system are assembled into

a complete hardware system; e.g., how chassis mount in racks,

how cards mount in chassis, and how to test the whole thing

once it is together. Included in the document are an overview

of the hardware system assembly process and the hardware system

assembly procedure; option selection information; system test

programs; and finally, system quality control and acceptance

porcedures for newly constructed systems.

This document is necessary for anyone debugging Pluribus

systems, either after initial construction in the factory or

after failure in the field.

9

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

PART 2: SYSTEM DESCRIPTION

Report No. 2930

SYSTEM DESCRIPTION

Update History:

Originally written by C. R. Morgan
and G. Falk, December 1974

i i

Bolt Beranek and Newman Inc.

Re po rt No. 29 30 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

1. INTRODUCTION

2. PLURIBUS SYSTEM STRUCTURE.

3. PROCESSORS

4.

5.

6

3. 1 Instruction Set and Format Summary
3.2 Processor States .
3.3 QUIT Handling.

ADDRESSING
4. 1 References to Private Memory
4.2 References to Commom Memory
4.3 References to System I/0 Space
4.4 References to Maps, Processor Registers,

Local I /0 Space.

PLURIBUS PROGRAM STRUCTURE .
5. 1 Basic Control Structure.
5.2 System Response Time and Strips.

and
.

5.3 Shared Data Structures, Shared Code, and Locks
5.4 Using the Map Registers.
5.5 Using Multiple PIDs.

DDEVICE HANDLING AND I/O.

6. 1 Address Structure
6.2 Programming BBN DMA I/0 Devices.
6.3 BBN Non-DMA I/0 Devices.
6.4 Lockheed SUE I/0 Devices

i ; ;

.

3

9
9

1 0

12

14

1 7
18

1 9

. 20

22
22

. 24

• 28

32
33

. 35

35

• • • 3 9

43

45

Report No. 2~30 Bolt Beranek and Newman Inc.

7. SYSTEM RELIABILITY MECHANISMS 48

49

49

7. 1 Hardware Reliability Mechanisms
7. 1. l Power Failure/Restart Interrupts
7. 1.2 Hardware Timeouts ...

7.1.2.1 Infibus Timeout. .
. 50

51
7. 1.2.2 Device Timeout and Multiple Interfaces 51

7. 1.3 Remote Reference/Control of Devices on a
Processor Bus 52

7. 1.3. 1 Backwards Bus Coupling 52
7. 1.3.2 Remote Resetting of a Processor Bus. . 56

7. 1.3.3 Bus Amputation 57
7. 1.4 Externally Initiated Reloads . . . 59

7. 1.5.Parity Generation/Checking 60
7. 1.6 Transfers Between Private Memories on

the Same Processor
7.2 Software Reliability Mechanisms

61
63

8. INFIBUSSES 67

9. BUS COUPLERS
9.1 BCP.

1 0.

9.2 BCM.
9.3.BCI.

DEVICES. .
1 0. 1 Pseudo

. . . .
Interrupt

1 0. 2 Real-time Clock

. . . .
Device (P 11 D)

(RTC) .
l 0. 3 Low Speed Modem Interface (ML) .
10. 4 Local Host Interface (HLC). . .
1 0. 5 Checksum/Block Transfer Device

10.6 External Reload Device (RLD). .
(f"RT) ,--·1•

.
1 0. 7 Synchronous Line Interface (SLI).

i v

. . .

.

70
70
73
77

79
79
80
82
86
00 uu

90
99

LIST OF ILLUSTRATIONS

Figure l Typical Pluribus System Configuration. 5

Figure 2 Processor Address Space· 15

Figure 3 Address Mappings 16

Figure 4 Processor Bus Shared Address Space 21

Figure 5 System 1/0 Space· ' 36

Figure 6 Allocations of Primary System 1/0 Space· . . . 38

Figure 7 OMA Registers. 44

Figure 8 Backwards Bus Coupling. 53

Figure 9 Bus Amputation Example 58

Figure 10 Reliability Software 66

Figure 11 Types of Bus Couplers· 71

v

Report No. 2930 Bolt Beranek and Newman Inc.

1. INTRODUCTION

The Pluribus* system is a general-purpose multiprocessor

computer suitable for applications ranging from those normally

identified with minicomputers to those typically associated with

larger machines. Pluribus hardware has been designed so as to

provide a suitable basis for the development of ultra-reliable

hardware/software systems.

Pluribus systems contain an arbitrary number of identical

processors each of which has access both to its own private

memory and to a common memory accessible by all processors. I/O

devices which are part of the system can be controlled by any

processor. The number of processors, size of common memory, and

amount of I/0 gear on a Pluribus system can be quite large.

The Pluribus system achieves modularity and reliability by

making all the processors equivalent. Any processor can perform

any system task or control any device. Since each subsystem of

the Pluribus system (processor, memory, and I/O) is expandable,

systems can easily be configured to meet the throughput require­

ments of a particular job. The scheme for interconnecting system

components is also modular; hence, interconnection costs vary

smoothly with system size.

The Pluribus system was originally developed to serve as a

modular reliable packet-switching node for the ARPA Network [l].

A node consisting of a 13-processor system is currently operational.

The Pluribus approach is appropriate, however, for many other

applications where reliability, modularity, or large logical com­

puting power is required.

*Trademark of Bolt Beranek and Newman Inc. (BBN)

Report No. 2930 Bolt Beranek and Newman Inc.

This handbook will describe the structure and operation

of the Pluribus system. It will emphasize utilization of the

Pluribus architecture in the manner for which it was originally

designed, although additional possibilities will become clear

as the discussion progresses. The handbook is oriented both to

the programmer who will use it as a basic reference document and

to the system designer who will have to determine if the Pluribus

is appropriate for his particular application. Section 2

presents an overview of the Pluribus architecture. Section 3

contains a brief description of the processor. Sections 4, 5,
and 6 present the basic information concerning the Pluribus system;

addressing, programming, and device handling. Section T discusses

reliability machanisms in the Pluribus system, both hardware and

software, in detail. Sections 8 and 9 discuss the Infibusses

and bus couplers. Finally, Section 10 describes many device

dependent features and bits and will be useful most likely for

reference purposes only.

The Pluribus is constructed out of components manufactured

both by BBN and by Lockheed Electronics Company, Inc. (LEC). The

BEN-produced hardware is described in detail in this document.

LEC hardware from the SUE minicomputer line is discussed only in

sufficient detail to make the description of the Pluribus co­

herent. More complete information on the SUE components can be

found in the Lockheed product literature [2,3,4,5].

2

Report No. 2930 Bolt Beranek and Newman Inc.

2. PLURIBUS SYSTEM STRUCTURE

A Pluribus system consists of a number of components

(processors, memory modules, and I/O devices), a number of

busses over which these components communicate, and a number

of bus couplers which provide the mechanism for interconnecting

the individual busses. Within this framework a wide variety

of systems can be configured ranging from small single bus

systems to large multi-bus systems with tens of processors, up

to 1024K bytes of main memory, and a large assortment of I/O

gear. The subsequent discussion will focus on a medium sized

Pluribus configuration. Very small and very large systems

both involve additional considerations not discussed in detail

here.

The basic skeletal unit of the Pluribus system is the SUE

Infibus* onto which all BBN and LEC devices are connected. The

Infibus not only serves as a chassis into which device cards are

plugged but also provides a means for communication among all

attached devices. In general, a single Infibus can have an assort­

ment of cards on it: processors, memories, or I/O devices.

However, only one device can be in control of the Infibus at any

given instant. An Infibus arbiter (Bus Control Unit Card or BCU)

which must be present on the Infibus guarantees that this is the

case. The total number of components which can be plugged onto a

single Infibus is dependent on the number of slots available for

cards and the type of power supply used (see section 8.).

Throughout the remainder of this document the word "bus" will be

used as a shorthand for Infibus.

*Trademark of Lockheed Electronics Company, Inc.

3

Report No. 2930 Bolt Beranek and Newman Inc.

A small Pluribus system (even a single processor system)

can be built using only a single bus. For many applications,

however, the bandwidth capability and/or c.ard capacity of a

single bus is exceeded and a multi-bus structure is required.

In addition, applications which take advantage of the full capa­

bilities of the Pluribus hardware for bandwidth and reliability

will require multi-bus configurations.

With more than one bus, the question becomes how to assign

processors, memory, and I/O devices to the individual busses and

how to connect them together. A typical configuration is illus­

trated in Figure 1. Lines between busses represent bus couplers.

Typically, busses in a Pluribus system are configured as one of

three types: processor buss es, memory buss es, or I/0: buss es.

Processor busses support processors and private memory associated

with each of the processors. Up to four processors (numbered 0-3)

can logically be put on a single bus although contentlon for the

bus is likely to reduce the effective processor bandwidth. In the

ARPA Network application, for example, four processors with con­

tention produce the same computational capacity as would three

processors if there were no interference among the processors (i.e.,

if the processors were actually independent). Although the con­

tention is application-dependent, Pluribus systems will generally

be configured with one, two, or three processors per processor bus.

Two processors are indicated for the system illustrated in Figure

1. The other components normally residing on the processor bus

are the processor private memories. These memories will contain

the "hot code" (i.e., those routines most frequently referenced)

so as to reduce competition for the pool of shared (cQmmon)

memory, and other code which is important to protect by

removing it from shared memory. One useful technique

4

Report No. 2930

PROCESSOR

MEM
gJ

MEM

BUS A ---------------
\
\

MEMORY
BUS A

I
I
I

\
\
\

\

I COM

\
\
~

7
I .. , .
I
I I

I MEM I

IIO
BUS A

I
I
I
I
I

J_

PIO

I I
I
I
I
I

i

DEVICE
INTER-
FACE

L_/

COM
MEM

n

L_ ,,,c'

. . .
DEVICE
INTER-
FACE

Bolt Beranek and Newman Inc.

PROCESSOR

MEM
t)

MEM

BUS B ____...._,~_...-...,..---ii--

L ~

/
/

COM
MEM
n+I

B

PIO

I
I

I
I

L

\ \
• \. I•

I I
I \ COM \ \
I I MEM
I \ m

' \
\

\
~

I

I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i

...
DEVICE DEVICE
INTER- INTER-
FACE FACE

Figure l Typical Pluribus System Configuration

5

Report No. 2930 Bolt Beranek and Newman Inc.

is for all private memories to contain identical copies of the

same code. Much of the system reliability software will be held

in the private memories to guarantee that redundant copies exist

in case of any memory failure. The maximum amount of private

memory addressable by each processor is 16K bytes. Not shown in

Figure 1 but existing on every bus is the BCU (bus arbiter) card.

In certain cases it may be desirable to have some I/O devices on

the processor bus, but this will be the exception rather than the

rule and is discussed further in section 6.4.

Memory busses contain common memory shared by all processors.

Up to 1008K bytes of common memory can be added in 8K or 16K byte

increments. The common memory will typically contain code which

is referenced less frequently than the "hot code". Generally,

shared data structures, variables, and buffers will also be held

in common memory.

The configuration of common memory, that is, the assignment

of memory modules to memory busses, depends on considerations of

reliability and memory contention. For both reasons it is desirable

to have multiple memory modules on a bus, multiple busses, and

redundant copies of code and data structures. The details are

application dependent and relate to the cost/performance (relia­

bility) trade-offs which the system designer must consider. For

reliable operation at least two memory busses, two processor

busses, and two I/O busses will be required.

The I/O busses contain I/O devices and the Pseudo Interrupt

Device (PID) central to the Pluribus system operation. The PID

keeps in hardware a list of what to do next. A number can be

written to the PID at any time and it will be remembered. When

read, the PID returns (and deletes) the highest number it has

6

Report No. 2930 Bolt Beranek and Newman Inc.

stored. By coding the numbers to represent tasks, and keeping the

parameters of the tasks in memory, a processor can access the PID

at the end of each task and determine very rapidly which task to do

next. This approach is an important departure from the use of

conventional interrupts and avoids the costs associated with saving

and restoring machine state.* Further, this approach neatly side­

steps the problem of routing interrupts to the proper processor.

More detail on the use of the PID is given in section 5.

There can be no more than four PIDs in a Pluribus system.

Even though some I/0 busses may conceivably not contain a PID, or

a bus may contain more than one, the usual configuration is one

PID per I/O bus.

In a Pluribus system, processor, memory, and I/O busses are

connected by devices called bus couplers. The different types of

bus couplers required to connect different bus pair types together

are discussed in more detail in section 9. For moderate sized

systems, there will generally be a bus coupler between any two

busses between which communication is required. Usually this

implies a coupler from each bus to all busses of other types.

Thus the total number of bus couplers for such a Pluribus system

with P processor busses, M memory busses, and I I/0 busses is

P ·M + M·I + P·I. For smaller systems it is possible for one or

more Infibusses to serve as combined memory and I/0 busses,

reducing the number of required bus couplers. For applications

requiring large numbers of components (processors, memories and

I/0 devices) it will be possible to reduce the required number of

bus couplers by building hierarchical Pluribus systems where

*Although not used within application software, conventional

interrupts can result from errors and are used for special purposes.

See section 3.3.

7

Report No. 2930 Bolt Beranek and Newman Inc.

busses are not completely connected. A more detailed discussion

of the issues and procedures for configuring a Pluribus system

can be found in a separate document [6].

Several distinct processor models are available. The SUE

is a relatively slow and inexpensive processor. Typical memory­

to-register instructions have execution times on the order of 4
microseconds. For a given application, the required processor

power can be attained by using as many processors as are necessary.

This approach to generating high throughput systems has the

advantage of permitting extreme modularity and high reliability

as well as graceful degradation.

8

Report No. 2930 Bolt Beranek and Newman Inc.

3. PROCESSORS

3.1 Instruction Set and Format Summary

Lockheed SUE processors are used as processor components

for Pluribus systems. The basic processor is a microprogrammed

general purpose 16-bit minicomputer with 8 general registers (one

of these registers is the program counter~ and a status and a

control register. These registers (general purpose, status, and

control) may be accessed externally by other devices via the

Infibus. In a multiprocessor this allows one processor to stop

another, examine and change its registers, and restart it. There

are 8 general instruction classes: MOVE, ADD, SUBTRACT, INCLUSIVE

OR, EXCLUSIVE OR, AND, COMPARE, and TEST. Each of these instruc­

tions can use a variety of addressing modes including register-to­

register, memory-to-register, register-to-memory, indexed, in­

direct, and auto-indexed. Also available are rotate, shift,

conditional branch, unconditional branch, and subroutine calling

instructions. The conditions tested for branching are bits in

the status register of the SUE. There are tests for result being

zero, result being negative, carry on last arithmetic instruction,

register value odd, overflow, value greater-than on last comparison,

value equal on last comparison, and loop completion. The branch

can occur on either value TRUE or FALSE. Instructions are either

one or two words long. The processor also contains 3 programmable

flags, contained in the status register, that can be manipulated

directly by instructions. The SUE processor recognizes and

generates 16-bit addresses. In addition it contains a 2-bit KEY

register which is settable by the SKEY instruction in the pro­

cessor. The contents of this register are appended to the most

significant end of the 16-bit address to generate an 18-bit address.

Every memory access by a processor has these two bits appended.

9

Report No. 2930 Bolt Beranek and Newman Inc.

Certain of these 18-bit addresses are mapped into 20-bit system

addresses as described in section 4. The processor operates on

either 16-bit words or 8-bit bytes of data. Bit 0 is identified

with the low order bit and bit 15 with the high order bit. Details

of the SUE instruction set and the various processor types may be

found in reference 4.

3.2 PROCESSOR STATES
SUE processors can be in one of three states: halted,

running, or idle. Transitions between these states may be ef­

fected either by the processor itself or by external manipulation.

The implications of each of these three states are as follows:

Halt:

Run:

Idle:

No instructions executed, interrupts disabled,

registers externally accessible

Instructions executed, interrupts enabled,

registers not externally accessible except

control register.

No instructions executed, interrupts enabled,

registers not externally accessible except

control register.

External references to registers which are not accessible will

result in a QUIT, as described in sections 5.6.1 and 9.2. The

Idle state is entered from the running state by executing a WAIT

instruction; the HA.LT state, by a HALT instruction. The Run

state is entered from the Idle state by the occurrence of an

interrupt. External manipulation of these states operates as

follows:

The processor control register is the only register accessible

while the processor is running.

written to its control register.

To halt a processor, a one is

The processor will normally halt

10

Report No. 2930 Bolt Beranek and Newman Inc.

when the instruction it is currently executing is completed However,

if the control register is read between the time that a zero

is written to the control register and the time that the pro-

cessor completes its current instruction, the halt signal will

be lost. Hence, some algorithm such as the following should

be used to guarantee that a processor does in fact halt:

L: Write 1 to the processor control register.

Read some other processor register.

If QUIT results go to L (see section 3.3).
At this point the processor is halted.

To start a processor, one must initialize all important

registers to needed values and store the number two into the

control register. This is done as follows: First it must

be assured that the processor is halted. The program counter

is initialized to the address of the program to be executed.

The general registers are loaded with any values to be passed

to the program. The status register is initialized to specify

the enabled interrupt levels, initial status flags, and pro­

grammable flags. Bit 11 (hexadecimal constant 0800) should

be set to activate the processor. Finally, writing a 2 to

the control register starts the processor. An additional

feature of the SUE processor is the ability to single step

through an instruction sequence. The procedure fer doing

this is identical to that of starting a processor except

that a 3 is written to the control register rather than a 2.

1 1

Report No. 2930 Bolt Beranek and Newman Inc.

3.3 QUIT Handling

Processors requesting access to memory locations or I/O

registers do so by directly or indirectly placing the desired

address on the appropriate bus along with the required operation

(e.g. read, write) and any data required (for a write operation).

When the requested operation is complete, the processor will

receive a signal called DONE. If no device on the destination

bus recognizes the address provided or if the device recognizing

the address malfunctions, no DONE signal will be returned to

the processor. Instead, after a fixed period of time, the bus

arbiter on the requesting processor bus will send a QUIT signal

to the processor, causing a conventional interrupt. (An equi­

valent thing happens to requests by I/O devices from I/0 busses.)

In many applications a programmer will want to take some

action based on the presence or absence of QUIT interrupts. In

the ARPA Network application, for example, a device discovery

routine in the reliability software searches system address space

and determines if known devices have disappeared or new ones

appeared by attempting to read the devices' registers and

checking for resulting QUITS. To provide this mechanism the

interrupt level routine which responds to QUITs should be written

so that control will be passed back to the application program

1 2

Report No. 2930 Bolt Beranek and Newman Inc.

if the application programmer has indicated that he wishes this

to happen. He indicates this wish by surrounding the instruc­

tion which potentially causes the QUIT by an "unusual pattern"

of other instructions. For example, if a programmer wants to

check for a QUIT occurring when location ABC is referenced he

might write the following:

LDA A2, ABC

NOP

BR . + 4

'\L: QUIT BRANCH ADDRESS

If no QUIT, program continues

~
The QUIT interrupt service, upon receiving control, would check

to see if the two lnstructions following the one which caused

the QUIT were NOP and BR . +4. If they were, it would simply

store the two bytes starting at location L (the address of the

instruction causing the QUIT plus 8) in the program counter and

dismiss the interrupt. If the two instructions at L-4 and

L-2 do not match the NOP BR . +4 pattern, the interrupt service

routine would take its usual action in handling the QUIT. Of

course, references to ABC which do not cause QUITs cause

execution to continue at L+2 as indicated.

1 3

Report No. 2930 Bolt Beranek and Newman Inc.

4. ADDRESSING

A typical Pluribus configuration incorporating both

private memory associated with each processor and a pool of

common memory shared among all processors has been presented

in section 2. In this section the Pluribus address structure

is described in more detail. The application of this address

structure to Pluribus program structures will be discussed in

section 5.

In Pluribus systems all devices communicate with one

another by writing into or reading from addresses. These ad­

dresses may be memory locations, locations for controlling or

interrogating I/O devices, or they may have some other special

function. In any case it is important to understand two things;

first, how addresses are generated and routed through the system

and second, what things are referenced by what addresses.

Addresses are generated by active devices, that is devices

wanting to read or write some location. This includes both

processors and I/O devices. Consider first a processor.

As indicated in Figure 3(a), SUE processors normally

generate 16-bit addresses. With the addition of the 2-bit KEY

register in the SUE, however, the Pluribus processors actually

generate 18-bit addresses which are put on the processor bus.

The KEY register can be changed under program control by

execution of the SKEY instruction. For the class of applica­

tions being considered in this document, however, each processor

on a bus will initially set its KEY register to a distinct

value indicating its physical processor number and will not

14

Report No. 2930 Bolt Beranek and Newman Inc.

PRIVATE MEM
FOR PROCj

o...---

PROCESSOR j ADDRESSES 3FFF--.....

¢000-3FFF J
4¢00-5FFF------------

G{?10{ZJ-?FFF} RELATIVE TO
8000- 9FFF MAPS 1,2,3
A¢~0- BFFF RESPECTIVELY

COMMON ADDRESS
SPACE

¢¢0¢91---

C000- FBFF
FC{ZJfl}-FFFF----+------

MAPS FOR PROC j
~

FC¢0 MAP {ZS

MAPI

MAP2

MAP3

h
PROCESSOR

1 REGISTERS
AND LOCAL

·"'
4., 1/0 SPACE

I

FFFF

FC¢¢¢ --- l SYSTEM
110
SPACE ---FFBFF

Figure 2 Processor Address Space

1 5

Report No. 2930 Bolt Beranek and Newman Inc.

KEY(2) 18 BIT ADDRESS ON PROCESSOR BUS

~ROCE$0R ADDRESS(l6) ___ ,_J I f I
-~~~~~~~~~,~~~~~~~~~~~~~~---'-

(a)

18 BIT ADDRESS ON PROCESSOR BUS

lxveJra I

(b)

MAP REGISTER (7)

14BIT ADDRESS ~ECOGNIZED BY
PROCESSOR-XV S PRIVATE MEMORY

f
20 BIT ADDRESS PUT ON MEMORY BUS

:
I I I

le BIT ADDRESS ON PROCESSOR BUS .__ __ f f
_XYrst I ~1--~~~~~~~~~~-­

rs= ¢1,1QS
(c)

20 BIT ADDRESS PUT ON 110 BUS

1111

18 BIT ADDRESS ON PROCESSOR BUS

XY 11 tuvw
tuvw~llll

(d)

18 BIT ADDRESS ON PROCESSOR BUS

txv1111111 .1
ADDRESSES OF THIS FORM REFERENCE MAP REGISTERS, PROCESSOR BUS 1/0
DEVICES, AUTO LOAD ROM, AND PROCESSOR AND CONSOLE REGISTERS

(e)

Figure 3 Address Mappings

16

Report No. 2930 Bolt Beranek and Newman Inc.

normally change this setting.

The KEY bits thus serve to differentiate the address spaces

of the various (up to four) processors on the bus. The r5ght­

most bit of the 16 left to each processor is used to select left

or right byte in byte mode instructions, allowing 21 5 = 32K

addressable words. In order to allow larger common memory and

I/0 space than this, provision has been made for mapping portions

of this 32K processor address space onto a 512K word system ad­

dress space.

The addresses shnwn at the left in Figure 2 are the 16-bi t

addresses generated by a typical processor (processor j). The

manner in which the address space is accessed by any processor

generated address depends on the range in which that address lies.

The four types of access will be discussed individually below.

With all 4 types of access being discussed, the 18-bit address

is simply put on the processor bus. Devices (memory, bus couplers,

and I/0 gear) able to recognize that address will respond and

all others will ignore the address.

4.1 References to Private Memory (0000-3FFF):

Any processor generated address in this range refers to a

location in the private memory associated with processor j on

its processor bus. Up to 16K bytes of private memory can exist.

As shown in Figure 3 (b), the high order two bits of the 18-bit

address are used to select the proper memory module and the low

order 14 bits select the location within the private memory.

l 7

Report No. 2930 Bolt Beranek and Newman Inc.

4.2 References to Common Memory (4~~~-BFFF):

Any processor generated address in this range refers to a

location in common memory, that is, memory on one of the memory

busses. There are 4 distinct sub-ranges within this range, each

associated with a distinct hardware mapping register. This

association is indicated in Figure 2. Each map register allows

a contiguous set of 8K bytes of commom memory locations to be

referenced. A separate set of 4 map registers is associated with

each processor on a processor bus. The map registers are physi­

cally located in the bus couplers (see section 9.1.)

Figures 2 and 3(c) illustrate how this mapping into common

memory is accomplished. An address in the range 4000-5FFF

implicitly refers to map register 0. A 20-bit system address is

developed at the processor end of the coupler by appending 7 bits

from the map register to the low order 13-bits of the 18-bit

address on the processor bus. This address is then forwarded to

the common memory bus with the access request.

Addresses in the range 6000-7FFF, 8000-9FFF, and AOOO-BFFF

implicitly refer to map registers 1, 2, and 3 respectively and

the identical type of mapping occurs when these sub-ranges are

referenced. The only special feature in the way that the four

maps work is related to memory read operations via map register

3 which are transformed into read-modify-write accesses to

common memory where the data rewritten is always zero. This

allows the implementation of multiprocessor locks in the Pluribus

system. More detail on the use of this feature is discussed in

section 5.3 where Pluribus program structures are considered.

1 8

Report No. 2930 Bolt Beranek and Newman Inc.

One final complication arises from the fact that a few of

the first addresses on every memory and I/0 bus are allocated for

accessing the bus coupler control registers. The amount of this

allocation depends on the number of couplers connected to the bus.

In general, the memory words at these addresses should not be

used. For more detail on the bus coupler control registers see

section 9.2.

4.3 References to System I/0 Space (C~~~-FBFF):

Any processor generated address in this range refers to a

location in system I/O Space. In general, each Pluribus system

device on an I/0 bus appears to the processor as a set of 8

contiguous registers (locations) in system I/0 space. This block

of registers is referred to as the device register block. A

processor can activate a device by writing commands or data to

certain (device dependent) addresses within the device register

block. A processor can interrogate a device by reading data or

status registers within the 16 byte device register block. More

detail about the allocation of system I/O space to multiple I/0

busses and about the internal structure of the device register

block can be found in section 6 where device handling and I/O is

discussed further.

As indicated in Figure 3(d), the way that system I/0 space

addresses are developed is by appending four ones to the low-order

16 bits of the 18-bit address on the processor bus. This is done

automatically as is the appending of the map registers (discussed

above) by hardware in the bus couplers.

l 9

Report No. 2930 Bolt Beranek and Newman Inc.

4.4 References to Maps, Processor Registers, and Local I/0 Space

(FCOO-FFFF):

Any processor generated address in the range FCOO-FFFF

(see Figure 3(e)) refers either to the map registers for that

processor (in all the bus couplers attached to the processor

bus) or refers to a part of the address space shared by all

processors on a processor bus. The map registers must be ad­

dressable, of course, so that a processor can dynamically modify

the portions of the potentially large common memory to which it

has access. Map registers ~' 1, 2, and 3 can be referenced via

addresses FCOO, FC02, FC04, and FC06 respectively.

The local (to the processor bus) shared address space is

assigned as shown in Figure 4. In general, I/0 devices will be

attached to an I/O Infibus in a Pluribus system. In some cases,

however, it may be desirable or necessary to connect I/O devices

directly on a processor bus. Addresses in the range FC08 to

FDFF will be used in such a configuration to refer to the device

registers, similar to the way that the device register block is

used for referencing devices on the I/O Infibus. The auto load

ROM is an optional hardware device attached to the processor bus

which contains a program that when executed will cause a processor

to load memory from a paper tape reader on the processor bus.

The registers of all the processors and the processor bus console

are accessible at addresses above FFOO. A processor should be

halted before an attempt to read any of its registers occurs.

Halting a processor is described in section 3.

20

Report No. 2930

FC08

PROCESSOR
BUS
1/0

DEVICES

FE00
AUTO LOAD

ROM

FF00
PROCESSOR
a CONSOLE
REGISTERS

FFFF

Figure 4

}

FF00

FF20

FF40

FF60

FF80
FF82
FF84

FFFF

Bolt Beranek and Newman Inc.

PROCESSOR 0
REGISTERS

PROCESSOR 1
REGISTERS

PROCESSOR 2
REGISTERS.

PROCESSOR 3
REGISTERS

ADDRESS LIGHTS
DATA LIGHTS

UNASSIGNED

1

,......
~-

PROGRAM COUNTER

REGISTER 1
REGISTER 2

REGISTER 3
REGISTER 4
REGISTER 5
REGISTER 6
REGISTER 7

STATUS REGISTER

CONTROL REGISTER

Processor Bus Shared Address Space

21

'{

l
\
A
(

<.:::-

(;)

l 1-
l 1
l6
1~
iA

[t

ht

Report No. 2930 Bolt Beranek and Newman Inc.

5. PLURIBUS PROGRAM STRUCTURE

In most current computer systems a hardware priority

interrupt mechanism is used to inform the program of the oc­

currence of asynchronous external events. Since Pluribus systems

do not generally use interrupts for this purpose, Pluribus pro­

grams tend to be structured differently from programs developed

for conventional machines. The fact that Pluribus programs are

designed to operate in a multiprocessor environment imposes ad­

ditional constraints on the program structure. This section

presents some of the issues and programming techniques which we

believe are useful in developing Pluribus programs.

5. l Basic Control Structure:

Before giving an example of a typical Pluribus program

control structure, the basic operation of a PID will be reviewed

(more detail on the PID can be found in section 10.1). The PID

is a priority ordered memory device. It has a read address and

a write address. When an even 8-bit number is written to a PID,

the number is stored. When a PID is read, the largest 8-bit

number stored in the PID will be returned and the number deleted

from the PID. If nothing has been written to the PID, the read

will return a value of zero. Numbers may be written to the PID

both by hardware I/0 devices and by software. Processors poll

the PID for tasks to be executed. As a simple example of a

Pluribus control structure, consider a·system consisting of a

number of tasks which service a set of I/0 devices. The fol­

lowing assembly language code could provide the framework for

the required program.

22

Report No. 2930 Bolt Beranek and Newman Inc.

TASKDISPATCHTABLE: MAINLOOP, TASKl, TASK 2, ... , TASKN

MAINLOOP: LDA Al, PIDREADADDRESS
JMP @ TASKDISPATCHTABLE (Al)

TASK1 '!
JMP MAINLOOP

The main loop of the program simply reads the PID and jumps to

the appropriate task indirectly through TASKDISPATCHTABLE (i)

where i is the value obtained by reading the PID. At the end

of any task (e.g. TASKi), a jump to the main loop returns the

processor to look for the next task to perform. If there is

nothing in the PID, zero is returned and the processor simply

cycles at MAINLOOP. Note that it is useful to have the PID

store even numbers only since the number retrieved will be used

as an index into a table with two-byte entries.

To allow tasks to be initiated by the software (e.g. TASKi

to be initiated by TASKj), the following type of structure

would be used:

TASKj:

LDA

STA!

JMP

Al, TASKiPIDLEVEL

Al, PIDWRITEADDRESS

MAINLOOP

23

Report No. 2930 Bolt Beranek and Newman Inc.

5.2 System Response Time and Strips:

As indicated in the above example, the way that I/O

devices obtain service in a Pluribus system is to write the

priority level of their service routine to the PID when they

need attention, and wait for some processor to return to the

main loop and pick up the associated task. Since the time

that a device can wait for service before losing data may be

critical, it is essential to configure systems and design soft­

ware so that response time requirements can be met.

The two main factors which influence the rate at which a

Pluribus system can respond to high priority external events are

the total number of processors in the system and the duration

of task servicing instruction sequences. For example, in a

single processor system where the tasks are all of the form

illustrated by the two previous examples, if the longest task

execution time were T milliseconds, the maximum time which it

could take to respond to an external event (i.e., notice that

it had occurred) would also be T milliseconds. This worst case

would happen only when the event occurred just after the single

processor had picked up the longest task to run. Since in a

Pluribus system there are no interrupts, the entire task cur­

rently being executed runs to completion before there is a

reaction to the event (even though it may be of higher priority

than the task currently being run).

In the multiprocessor case, things are slightly more com­

plicated. Considering the worst case response time as above, if

the ordered task execution times are T1 (smallest), T2 , T3 ,

Tn (largest) and there are P processors, the maximum time to

respond to an external event assuming n>p will be between

between T and T depending on the number of incarnations of
n-p n

24

Report No. 2930 Bolt Beranek and Newman Inc.

a particular task which can exist simultaneously. Of course,

the probability of such worst response times may be exceedingly

small if the large tasks are run less frequently than the smaller

tasks.

Typical (average) rather than worst case response times

will depend on three factors: (1) average task execution time,

(2) number of processors P, and (3) average number of tasks,

NQ, queued on the PID. If the average task execution time is

Tav and NQ~P, the typical time taken to service a high priority

event will be T /2. If P>NQ then there will usually be an idle
av

processor which will immediately react to the external event and

average response time will be essentially zero.

In ~eneral, the application will dictate where strict

real-time response must be guaranteed or if more flexible system

response characteristics are adequate. If strict real-time

response is required, then some program structure which permits

both logical tasks of arbitrary length and fast response to

critical external events may be required. To accomplish this,

Pluribus program tasks can be partitioned into code segments

referred to as strips. A strip is simply a sequence of instruc­

tions within a task. A task can give up control of its proces­

sor at the end of each strip so that any higher priority tasks

may be run. Of course, if the task is incomplete at the end of

a strip, the task queues itself on the PID for further execution

before yielding its processor. The idea is illustrated by the

example below where TASKk is broken down into two strips.

25

Report No. 2930 Bolt Beranek and Newman Inc.

DISPATCHk: Kl /INITIALIZE TO THIS VALUE.

TASKk: JMP @ DISPATCHk

Kl:

LDA A2, = K2

STA A2, DISPATCHk

LDA Al, TASkPIDLEVEL Strip 1
STA Al, PIDWRITEADDRESS

JMP MAINLOOP

K2:

!
) LDA A2, =Kl

STA A2, DISPATCHk

JMP MAINLOOP

Strip 2

The first instruction of TASKk is a dispatch to the segment

(strip) of the code to be executed. This dispatch is initialized

to Kl so when TASKk is first initiated, execution will begin at

Kl. At the end of strip 1, the task stores a new dispatch ad­

dress (K2) in the subtask dispatch location, DISPATCHk, writes

its own PID level back into the PID and gives up the processor.

The next time this PID level is serviced, the task will be re­

sumed in strip 2 starting at K2. At the end of Strip 2, the

subtask dispatch location is restored so that strip 1 will be

executed the next time that TASKk is activated. It must be kept

in mind that a task writing its own level to the PID will pre­

vent the processor which is executing the task from picking up a

waiting task with lower priority. In certain situations it may

be desirable fo::c a task to yield the processor and also "sleep"

a specified period prior to getting rewritten to the PID. This

can be accomplished by the task setting a software timer which

26

Report No. 2930 Bolt Beranek and Newman Inc.

gets counted down by a periodic clock routine. When the timer

reaches zero, the clock routine can write the sleeping task's

level to the PID. The 5 instructions at the end of strip 1 in

the above example might, therefore, be replaced by the following:

LDA A2, = K2

STA A2, DISPATCHk

LDA A2, SLEEPTIME

STA A2, TIMERk

JMP MAINLOOP

Thon after TIMERk has been counted down, the timer routine will

execute the instruction:

LDA Al, TASKkPIDLEVEL

STA Al, PIDWRITEADDRESS

The decision of precisely where to segment a task into

strips is somewhat arbitrary; the main rule is that the strips

must be short enough so that the proper response characteristics

can be guaranteed. In the ARPA Network application of the

Pluribus, for example, it turned out that the proper typical

strip size was on the order of 100 instructions (although a few

infrequently run ones are much longer). As a rule of thumb, it

will generally be sufficient to segment a task into strips as­

suming each instruction takes 4 µsec for execution.

Two other related practical issues relevant to strip size

selections are convenience and overhead. In general, tasks should

be broken into strips at convenient points in the code; that is,

points at which little information (e.g. in the registers) needs

to be preserved. It may occasionally be desirable to have strips

somewhat smaller or larger than the nominal size so that such a

27

Report No. 2930 Bolt Beranek and Newman Inc.

partitioning will be possible. Data which must be saved and re­

stored across strip boundries adds to the already existing over­

head associated with breaking the code into strips. In many

applications it is likely that little or no breaking of tasks

into strips will be required. In the ARPA Network application,

for example, multi-strip logical tasks are the exception rather

than the rule.

The fractional overhead associated with breaking a task into

strips depends directly on the strip size since the number of

instructions required for strip switching is essentially fixed.

For example, in TASKk presented above 8 overhead instructions are

associated with switching from one strip to another (6 in TASKk

and 2 in the main loop). If the strip size were 100 instructions

as is typically the case in the ARPANET application, then the

processor overhead due to using strips would be 8%. In applica­

tions where larger strips are acceptable, of course, the over­

head will be even smaller. Experience with a number of Pluribus

system applications has indicated that the processor overhead

and programmer effort associated with breaking tasks into strips

is not a serious problem and is a relatively small price to pay

for the increased reliability and performance of the novel

Pluribus architecture.

5.3 Shared Data Structures, Shared Code, and Locks

In a multiprocessor care must be exercised when a piece of

data may be referenced (read and/or written) simultaneously by

more than one processor. In this context, "simultaneously"

means that a process running on one processor desires access to

the data while another process running on a second processor

already has access to the data. Consider, for example, two

processors that are concurrently executing processes which

28

Report No. 2930 Bolt Beranek and Newman Inc.

obtain buffers from a common free storage list. If some interlock

is not used, it would be possible for both processors to get the

same buffer since the second processor could access the list after

the first processor had accessed it bvt before the pointer was

updated.

To avoid this and a multitude of similar situations involving

shared resources, a lock mechanism is typically used in programs

for multiprocessors. Before a shared resource is accessed by a

process, a logical lock is set. All processes determine if the

lock is set prior to accessing the resource, and if so, then the

process will wait. Only one process can, therefore, have access

to the shared resource at any one time.

To be effective it must be possible to test and set a lock in

a single operation. A typical implementation provides the

ability to read, test, and provisionally modify a memory location

in a single interruptable operation. In Pluribus systems this

feature is provided by turning memory reads through map register 3

into read-modify-write accesses where the data rewritten is all

zeros.

To ~mplement a lock on a shared resource one simply assigns a

location (LOCKVAR), addressed through map register 3, to the

lock. The resource is unlocked if the lock is non-zero and

locked otherwise. A segment of code which accesses a locked

resource might look as follows:

L:

Ll:

LDA
BZ

l
STA

!

A2, LOCKVAR
L

PC, LOCKVAR I

(Lock and continue) or (WAIT)

access to shared resource

Unlock Lock

29

Report No. 2930 Bolt Beranek and Newman Inc.

If a processor falls through the loop at L, the resource was

unlocked but is now locked by the process running on this proces­

sor. If a processor loops at L, then the shared resource is in

use and the processor waits until the lock is released. To unlock

the resource at Ll any non-zero quantity could have been stored in

LOCKVAR. The current program counter (PC = general register 0)

contains one such value which has the additional advantage of

leaving a partial trace of the program execution in the lock

registers. This trace may be helpful for debugging purposes.

When a process encounters a locked resource, it may take one

of two actions. As in the above example, it can remain in a tight

loop checking the lock until it is unlocked. This type of waiting

will be called busy waiting since the processor running the pro­

cess remains occupied while waiting. Alternatively, a form of

non-busy waiting may be implemented where the process may either

write itself to the PID or set a timer so that a clock routine

will later write it to the PID as described earlier. In either

case the processor then is free to seek other tasks while waiting.

The busy form of a lock is appropriate in situations where the

resource will be locked for only a short period. An example of

this is the free buffer list accessing mentioned at the begin­

ning of the discussion on locks. The lock implementation which

dispatches the processor to do other useful work will be more

suitable in situations where the shared resource is likely to

remain locked for a relatively long time. A paper tape reader

shared by two processors might be such a resource.

The preceding discussion leaves considerable latitude with

respect to what should be locked and when. For example, if each

incarnation of a piece of shared code references a set of shared

variables, it may be more efficient to associate a single lock

30

Report No. 2930 Bolt Beranek and Newman Inc.

with the set of shared variables than a lock with each of the

individual variables. What needs to be balanced against this goal

of fewer locks is the desire to keep locked segments short.

Large locked segment~ while reducing the total number of locking/

unlocking operations required,will tend to increase overhead due

to increased busy waiting or processor task switching. This

overhead can become quite large on the percentage utilization of

the shared resource increases beyond 60 - 70%. For this reason,

the system designer must use considerable judgement in deciding

on the extent of locked segments. In addition, locks should not

remain locked across strip boundaries. Locked segments should

also be executed with interrupts disabled so that prompt unlocking

of the shared resource is assured.

One further consideration is that a processor may fail while

executing a locked segment. Two problems can arise in this case,

(1) the locked resource will be unavailable to other tasks and

(2) if busy waiting is implemented, processors may be executing

infinite loops. Therefore, a processor should only be allowed to

wait for the maximum amount of time which the lock can legiti­

mately be set before deciding that a malfunction has occurred

and activating a recovery procedure.

Cooperation with respect to the use of shared variables

is required between tasks corresponding to different code

segments and especially tasks corresponding to different incar­

nations of the same reentrant code segment. In general, reentrant

coding is particularly appropriate in a multiprocessor such as the

Pluribus system. The shared code may exist in common memory

or multiple copies of the code may exist in the private processor

memories to reduce contention. In the ARPA Network application,

for example, shared code is used to transmit data from the IMP to

each of a number of modems. In this case, the control structure

31

Report No. 2930 Bolt Beranek and Newman Inc.

illustrated earlier in this section is modified to look as

follows:

TASKDISPATCHTABEL: MAINLOOP, TASKl, •••, MODEMOUT, MODEMOUT, •••TASKN

CONTROLBLOCKS: 0, BLOCKl, •••, MBLOCKl, MBLOCK2, •••BLOCKN

MAINLOOP: LDA Al, PIDREADADDRESS

JMP ~TASKDISPATCHTABLE (Al)

MODEMOUT: LDA A2, CONTROLBLOCKS (Al)

LDA A3, MODEMLOCK (A2)

~
STA PC, MODEMLOCK

JMP MAINLOOP

The modem interfaces each write different levels to the PID when

output of a buffer is complete but all these levels activate the

same piece of shared code, MODEMOUT. The PID levels are used,

however, to select the address of a control block which contains

the variables specific to the modem being serviced. At the start

of MODEMOUT, an instruction is executed which loads an accumu­

lator, (A2), with the address of this control block. One of the

words in this block is a lock used to lock all the other shared

variables in the block. These variables remain locked for the

duration of the modem output taskB.

5.4 Using the Map Registers:

The map registers allow four independent SK byte segments of

the common memory to be referenced by each processor. The

constraint is that a read done through map register 3 will be a

read and clear. The other three map registers may be used to

32

Report No. 2930 Bolt Beranek and Newman Inc.

point to program or data as required by the application. It is

possible to have two map registers point to the same segment of

memory. In the ARPA Network application, for example, map 3

and one of the other map registers point to a segment containing

system variables which can be accessed normally or used as lock

variables.

In Pluribus systems with small memory configurations little

of no map changing may be required. For applications requiring

large primary memories, map changing will be more frequent. Of

course, it is desirable to design a system so that as little map

changing as possible will be required. To change the area of

common memory addressed through a particular map register, one

simply stores into the map register a constant whose high order

7 bits are to become the contents of the maD. As already mentioned

in section 4.4, the four maps have addresses FCOO, FC02, FC04, and

FC06. The code which changes a map must not itself be referenced

through that map/ One way to make sure that this does not occur

is to execute all map changing code out of private memory.

5.5 Using Multiple PIDs

The PID is the heart of the Pluribus system. Essentially all

task dispatching is done via this device. It is important, therefore,

that reliability provided by redundancy in the remainder of the Plu­

ribus system components not be jeopardized by availability of only a

single PID.

In a multi-PID system, the PIDs will themselves be priority

ordered. Typically, the control program in such a system will read

the highest priority PID first. If a PID other than the lowest

priority PID returns zero, the next lower priority PID will

be read. If all PIDs return zero, the control program simply

33

Report No. 2930 Bolt Beranek and Newman Inc.

cycles by reading the highest priority PID again.

As indicated earlier, a Pluribus system can have up to 4 PIDS,

one on each of 4 I/O busses. A hardware device on an I/O bus is

associated with a PID on that bus. Software tasks, on the other

hand, may write to any of the PIDs in the system. Redundant I/O

devices will generally be on different I/0 busses and associated

with different PIDs.

34

Report No. 2930 Bolt Beranek and Newman Inc.

6. DEVICE HANDLING AND I/0

Pluribus systems may be comprised of two types of I/0

devices, BEN-developed devices and Lockheed-developed devices.

The primary distinctions between the two are that BBN devices

interpret 20-bit addresses and use the PID while Lockheed devices

interpret 16-bit addresses and utilize the standard SUE priority

interrupt mechanism. Since SUE I/O programming is discussed at

length in [2], most of this section will be devoted to the

specifics of programming BEN-developed devices. Special con­

siderations relevant to the programming of Lockheed I/0 devices

in a Pluribus environment are given at the end of the section.

6. 1 Address Structure
As shown in Figure 2, system addresses FCOOO to FFBFF are

reserved for Pluribus system I/0 space. The detailed structure

of this space depends on the allocation of addresses to I/0

busses. Figure 5 shows one possible allocation of addresses in

the case of a Pluribus with 2 I/0 busses. Possible variations

on this structure will be indicated later.

The total system I/0 space in Figure 5 is divided into four

almost equal parts, two of which are assigned to each bus. The

high address segment for each bus will be referred to as the

primary I/0 space and the low address segment as the auxiliary

I/0 space. Note that the primary address space of bus 1 (from

address FFOOO to FFBFF) is shorter than the other 3 segments by

1024 bytes because these 1024 addresses are allocated to

individual processor maps, registers, and local I/O space as

shown in Figure 2. At the beginning of each primary address

space are 144 bytes of reserved addresses. These locations are

associated with the clock (RTC) and PID on the bus (see sections

10.1 and 10.2), contain the bus coupler (BCM) control registers

35

Report No. 2930

SYSTEM
1/0

SPACE
FCcifiJfiJ

PIO & RTC

BUS¢
FEQJlfiJ

BLOCK

FDcici~

BUSI BUS
COUPLER
CONTROL
REGISTERS

BUS ci

BUS 1

FFBFF---
FE¢8¢

BACKWARDS
BUS

COUPLING
REGISTERS

FE9J99J

110
DEVICE
BLOCKS

(8 WORDS
EACH)

,.,,, .~

FEFFF

Figure 5

Golt Beranek and Newman Inc.

FE002

FE{a{a4

FE~flJ6

FE¢9J8

FE¢¢A

FE¢9JC

FE¢~E

,,·

FEflJ8fiJ

C,

15

PIO WRITE .,

r~ PIO READ+c!APrtt.. c1

PIO CLEAR

CLOCK COUNTER ,,1·

CLOG1< P'iO
LEVELS i
CLOCK READABLE.
REGISTE:R 1 ;tr

CLOCK Rl::ADABLE
REGISTER 2

CLOCK READABLE
REGISTER 3

CODE
WORD

BBC
WINDOW

3

'

t

2
BE
B N
CA

B
L
E

FE¢82

FE¢84

FE¢86
~~ir'TT~~~~

FEjlJSE BBC MAP

System I/O Space

36

I
FE
ON
RA
we
AL
RE
D

I

_t
R
E
s
E
T

1f ~

BC
CONTROL
REGISTER

Report No. 2930 Bolt Beranek and Newman Inc.

(see section 9.2), and provide mapping for backwards bus coupling

(see section 7.1.3) using this bus.

The remainder of the system I/O space is divided into 16-byte

blocks where each block is associated with an I/O device (other

than the clock and PID) attached to the bus. These blocks. are

called device register blocks. A processor activates an I/O

device by writing to a certain address within the device register

block. A processor can interrogate a device by reading the con­

tents of status registers contained in this block. More detail

on the structure of device register blocks is given below and is

also contained in section 10. where individual I/O devices are

discussed.

Variation of the structure shown in Figure 5 depends on the

number of I/O busses and the allocation of system I/O addresses

among them. This allocation is determined by switches on the bus

couplers (see section 9.2). Figure 6 indicates allocations of

system I/O space for 1, 2, 3, and 4 I/O busses. Only the primary

I/O space allocations are shown; the auxiliary allocations are

identical to these except that the highest address segment of

auxiliary is the same size as the rest of the segments, that is,

it is not reduced in size by 1024 bytes. The low 144 bytes of

each primary segment is reserved on each bus as indicated in

Figure 5. While other allocations are possible, the ones shown

in Figure 6 constitute all of the reasonable ones. Switch

settings resulting in non-contiguous primary and auxiliary seg­

ments for individual busses, while possible, are not considered

here.

37

Report No. 2930

(a) ONE BUS

{ b) TWO SUSSES

(c) THREE SUSSES

{ d} FOUR BUSS ES

Bolt Beranek and Newman Inc.

FE000

BUS 0

FFBFF ____..

FE000

BUS 0

FF000
BUS 1

FFBFF

FE000

BUS 0

FF000 BUS 1
FF800
FBFFF u 2

FE000 BUS 0

FE800 BUS l

FF000 BUS 2
F F800 1---8-us---3--4
F F BF F 1--.=.:.:::;...:.__,

FE000 BUS 0
FE800

BUS 1
FF000

BUS 2
FFBFF

Figure 6 Allocations of Primary System 1/0 Space

38

Report No. 2930 Bolt Beranek and Newman Inc.

6.2 Programming BBN OMA (Direct Memory Access) I/0 Devices

BBN DMA (Direct Memory Access) devices provide a means for the

automatic transfer of blocks of data to (from) memory from (to)

I/O devices on the I/O busses. While the DMA hardware and

its associated device interface are on separate cards, from the

programmer's viewpoint they may be thought of as a single unit.

In general, each data transfer will involve sending or re­

ceiving a number of data buffers. Each data buffer will consist

of an integral number of words. For each direction of data flow

(read, write) there are three main registers used by the programmer

to control I/0 operations; the begin memory (buffer) address

register, the end memory (buffer) address register, and the status

register. These registers are contained in the 16-byte device

register blocks. The structure of the device register blocks for

BBN DMA devices is shown in Figure 7.
is described in detail below.

Each of these registers

DEVICE TYPE - The high order byte contains a number indicating

the type of device interface involved (e.g. modem, host, etc.).

This number is fixed by hardware in the device interface associa­

ted with the DMA. In general, the low order byte contains the

value set in the device number switches in the device interface.

The device type register is readable; writing to it will have no

effect.

RECEIVE/TRANSMIT BEGIN ADDRESS - These registers co~tain the

high order 16 bits of the 20-bit system address specifying the

first location of the buffer to be read or written. Bits 1-3

of the 20-bit starting address are contained in the receive or

transmit status register (see below). Bit 0 of the 20-bit system

address is always 0. The beginning address registers may be

39

Report No. 2930 Bolt Beranek and Newman Inc.

either read or written. If read, the result returned is simply

zero. Normally when writing into this location, no data trans­

mission will be in progress in the direction corresponding to

the register written (receive or transmit). The device will

simply be initialized to transfer a buffer; actual data transfer

does not commence until the buffer end register is written.

If a transfer is in progress when the location is written, the

transfer is aborted, the error bit (in the end address register

- see below) is set, the PID is written, and the corresponding

half (receive or transmit) of the device is initialized for trans­

mission of a new buffer.

RECEIVE/TRANSMIT END ADDRESS - These registers may be read or

written. Normally, bits 0-12 of these registers will be written

with the low order 13 bits of the address of the end of the

buffer. ~it O is actually ignored and assumed to be zero.)

Writing to this address initiates the data transfer. After the

data transfer has ended, these registers can be read to determine

information concerning the way that the transfer completed.

Bit 15, if set, indicates that no error has been detected and

that this was the last buffer of the transfer. (Bit 15 will be

set when the last buffer is transmitted correctly.) Bit O serves

as an error bit and will be set if: (1) the device was reini­

tialized during the previous transmission (see above), (2) a QUIT

occurred during transmission of the previous buffer, (3) the

device is currently active (see RECEIVE/TRANSMIT STATUS below) or

(4) the device itself is reporting an error. Bits 1-12 of the

end address register indicate the address, modulo 212 , of the

last work actually transferred. The top 7 bits of the DMA pointer

into the buffer come from the begin address (see above) and never

change. Therefore, the buffer will ;1wrap around" on 8K byte

boundaries in memory.

40

Report No. 2930 Bolt Beranek and Newman Inc.

RECEIVE/TRANSMIT STATUS - The receive and transmit status regis­

ters may also be both read and written. Writing the RESET bit

causes the particular half of the interface (receive or transmit)

to reset itself. If that portion of the interface is active when

the reset is initiated, the operation in progress will be aborted,

the error bit in the end address register will be set, and the

receive or transmit level for the device will be written to the

PID. Before initiating a DMA data transfer, bits 1-3 of the

buffer beginning location must be written into bits 0-2 of the

corresponding status register. Reading one of the status registers

allows a processor to determine the PID level associated with

that direction of data transfer and to interrogate the QUIT flag.

The PID will be written and the QUIT flag will be set if a QUIT

occurred during the previous data transfer performed by the DMA.

This could indicate a parity error, non-existent address, etc.

In this case, when the end pointer is read, the error bit will be

set.

The interpretation of the device dependent status bits varies

from device to device but in general these bits provide for

direct two-way communication between a processor and a device

interface.

One of the device dependent bits will be the ACTIVE bit which,

if set, indicates that a transfer to or from the device is in

progress. More precisely, a DMA device is active from the time

that its end pointer is written (which starts the device) until

the time that it writes its level to the PID (indicating it is

done).

DEVICE DEPENDENT - This register can be optionally used by the

device interface for any appropriate function. The assignment

of data bits is arbitrary.

4 1

Report No. 2930 Bolt Beranek and Newman Inc.

To cause a transfer to be performed by a BBN DMA device, the

program will typically perform the following steps:

1. Write the STATUS REGISTER - This sets up the low-order 3 bits

of the buffer start word address and selects any desired options

(e.g., looped modem). This will normally be done only once for a

sequence of DMA transfers.

2. Write the BEGIN ADDRESS REGISTER - This sets up the 16 high

order bits of the buffer start address.

3. Write the END ADDRESS REGISTER - This sets the end address of

the buffer and initiates the DMA transfer.

When the PID level, indicating device completion, is picked up by

a processor, it will:

4. Read the END ADDRESS REGISTER and check bit 15 (completion).

If it is not set, the transfer has completed (i.e., no error

occurred and this is the last buffer of the transfer). Bits 1-12

are used to give the length of the buffer.

5. If this bit is not set, bit 0 (error) is checked. If bit 0

is zero, then no error occurred but this buffer is not the last

of the transfer. As above, bits 1-12 are used to determine the

length of the buffer.

6. If bit 0 is one, then an error has occurred. These are dif­

ferentiated by examining the STATUS REGISTER. If bit 13 (active)

is set, the device is still active and the PID value was spurious.

If bit 8 (QUIT) is set, a QUIT occurred during the transfer.

Device dependent status bits may further define the error.

In addition to the registers mentioned above, each BBN block

transfer type of device has a number of manually settable switches.

These switches, located on the device interface, are as follows

(number of switches provided for each purpose shown in paren­

theses):

(i) Device Address Switch (10) - These switch settings define

42

Report No. 2930 Bolt Beranek and Newman Inc.

the address of the device register block in I/0 space (see

Figure 5). The ten switches specify bits 4-13 of the address of

the first register of the block. (Bits 14-19 of this address

are all ones and bits 0-3 are all zeros.)

(ii) Receive/Transmit PID levels (7) - These seven switches

define the number written to the PID upon completion of a data

transfer. For duplex devices there are two sets of switches.

For simplex devices only a single set is provided (e.g., CBT -

see section 10.5).

(iii) PID Address (2) - Selects which of the 4 PIDs will be

written to by the device. The selected PID must be on the same

Infibus as the device itself.

(iv) Device Number (8) - In general, a set of 8 switches readable

as the low-order byte of the first word in the device register

block (see Figure 7). The CBT device, however, has only one such

switch.

6.3 BBN Non-OMA I/0 Devices

Typically, non-DMA devices will only have a small amount of

internal hardware buffering, therefore, they need to be serviced by

a processor no slower than every few byte times. The mechanism by

which such a device is serviced can take one or two forms in Pluribus

systems. One approach is to let the device be passive and put the

responsibility for servicing the device completely on the processors.

For input, the processors would have to poll the devices faster than

the input rate so that no data is lost. For output, the processors

would have to deliver data to the devices at a rate sufficient to

guarantee that no undesirable gaps within the data occur. Although

such an approach permits a relatively simple hardware interface im­

plementation, it may require an undesirable amount of processor

overhead.

43

Report No. 2930 Bolt Beranek and Newman Inc.

111111 110-BIT DEVICE ADDRESS SWITCH 10000

WORDf--

:::;r~----------1-5----~
8 7 0

0 DEVICE TYPE }--1
1 RECEIVE

BEGIN ADDRESS

RECEIVE
END ADDRESS

2

RECEIVE
STATUS 3

TRANSMIT
BEGIN ADDRESS

4

TRANSMIT
END ADDRESS 5

TRANSMIT.
STATUS 6

DEVICE
DEPENDENT 7

..---------------------.-----------------------
DEVICE INTERFACE 8-BIT DEVICE NUMBER

SWITCH ON
TYPE DEVICE INTERFACE**

--~

15

15

HIGH ORDER 16 BITS OF
FIRST BUFFER LOCATION

LAST BUFFER OF TRANSFER

0

(TRANSMIT ONLY) l 0

LOW ORDER 13 BITS 0
OF BUFFER END ADDRESS* ---------------------BITS 1-12 OF LAST

WORD TRANSFERRED ADDRESS

ERROR
NO ERROR 8i LAST BUFFER OF
TRANSFER (RECEIVE ONLY)
9 8 7 3 2 0

R LOW
E ORDER
~ START

DEVICE ADDRESS - -DEPENDE NT--__.T...,..... _________ __.

STATUS S
I
T

PIO LEVEL 0

*BIT 0 ON TRANSMIT END HAS A SPECIAL INTERPRETATION
FOR THE CBT DEVICE (SEE SECTION 10.5)

**ONLY ONE SWITCH EXISTS FOR CBT DEVICE (SEE SECTION 10.5)

Figure 7 DMA Registers

44

Report No. 2930 Bolt Beranek and Newman Inc.

An alternate approach is to make the device active with respect

to notifying the processors when it requires service. In a Pluribus

system this implies that the device will write its level to the PID

when its internal buffers are ready. Checking whether the device

needs service will, therefore, be done automatically as part of

the main PID reading loop of the program. Such an approach, of

course, requires more hardware in the device interface than does

implementation of the first approach mentioned above.

The only BBN non-DMA I/0 device which currently exists is

the synchronous line interface (SLI) which is described in detail

in section 10.7. This device is passive and consequently requires

polling by the processors. Both DMA and non-DMA I/0 devices which

are addressed through system address space will have 16 byte device

register blocks associated with them. In contrast to the DMA

device register blocks which have a common format for all DMA

devices, the structure of the non-DMA device register blocks will

be device dependent.

6.4 Lockheed SUE I/0 Devices

As indicated above, standard SUE I/0 devices differ from

those developed specifically for the Pluribus system in that (1)

they interpret 16-bit addresses rather than 20-bit addresses and

(2) if they are set up to actively notify the processor when they

require service, they do so via a hardware priority interrupt

mechanism rather than via the PID. Since it will often be desirable

to incorporate such devices in aPluribus system, some procedures

for interfacing and programming them need to be developed. There

are two distinct approaches that may be taken. First, sufficient

modifications could be made so that the device will work on the
'

system I/O busses. This approach has the advantage that the I/O

device will be accessible to any processor in the system. It has

45

Report No. 2930 Bolt Beranek and Newman Inc.

the disadvantage that hardware modifications probably need to be

made to the device hardware. The other approach is simply to have

the LEC device reside on one of the processor Infibusses, the place

for which it was designed. This approach has the disadvantage of

essentially isolating the device from the processors in the system

on other processor busses but has the advantage of requiring no

hardware modifications.

If the first approach is taken, that is, the device is put on

an I/0 bus, the hardware modifications required depend on whether

the device will be active or passive. In either case it will be

essential to modify the device interface to recognize 20-bit ad­

dresses. If it is to be a DMA-type device it would also be required

to generate 20-bit addresses. In the ARPA Network application, for

example, a system control teletype has been interfaced in this manner

and is handled by the processors as a passive device. Programming

of LEC devices on the I/0 busses will be similar to the BBN I/O

devices discussed above. The details, of course, depend on how the

device interfaces are modified.

The only logical difficulty with putting LEC I/O devices on

the I/0 busses arises in the case of high speed DMA devices which

require fast servicing for proper operation. To guarantee that

such devices will be serviced within a specified time is likely to

impose unacceptable constraints on the size of the strips into

which tasks are partitioned. In such cases, e.g., handling a disk,

it will probably be essential to take the second approach mentioned

above and interface the device on one of the processor busses.

Programming LEC I/0 devices on a Pluribus processor bus is

essentially identical to programming them in a standard multipro­

cessor SUE configuration. The only difference arises with DMA

devices which are dealing with buffers in Pluribus common memory.

46

Report No. 2930 Bolt Beranek and Newman Inc.

Since the devices only produce 16-bit addresses, some mapping

mechanism similar to the processor address mapping is required

here. This can be accomplished by simply dedicating one of the

first three map registers associated with processor 0 to the I/O

device for the duration of the time the device is being used.

The I/O device addresses which have no key bits set appear to

the bus couplers as requests from processor 0 and are mapped

accordingly. I/0 interrupts, when they occur, are always routed

to processor 0. Even though it is undesirable from an overall

system reliability standpoint, this dependence on a specific

processor is unavcidable.

More detail in programming specific LEC peripherals can be

found in the LEC SUE Computer Handbook [2].

47

Report No. 2930 Bolt Beranek and Newman Inc.

7. SYSTEM RELIABILITY MECHANISMS

The hardware architecture of Pluribus systems which provides

a foundation for the development of reliable computer systems has

already been presented. This section describes both some additional

hardware mechanisms which have been included to improve system

reliability and a general description of some software mechanisms

which when operating on the Pluribus hardware can create a reliable

computing environment in which to execute application programs .

..
The interpretation of reliability is strongly related to the

type of applications for which a computer system is intended. At

one extreme are computations which do not have strict real-time

constraints, for example, large numerical computations. For these

applications, reliability may mean simply checkpointing, that is,

dumping intermediate states of the computation on a mass storage

device so that the computation can be continued without much wasted

effort should a system outage occur. At the other extreme are

real-time control applications in which no outages are allowed and

every request must be serviced within a short fixed time period.

Such applications may require simultaneously running the system on

several identical hardware configurations with decisions based on

a majority vote. Although the Pluribus system can be applied to

applications in both of these two classes, the applications for

which it was specifically designed fall somewhere between these two.

The Pluribus system will be most appropriate in situations where it

is important to maximize MTBF and minimize MTTR but where occasional

outages and minor delays in servicing requests can be tolerated.

A reliable Pluribus system will generally be configured with

at least one redundant copy of each hardware resource essential

for running the overall system. It will be the goal of the relia­

bility software to maintain a "working set" of resources and, if

48

Report No. 2930 Bolt Beranek and Newman Inc.

possible, backup spares for each of them. In general, the relia­

bility software will attempt to recover from failures of single

hardware resources.

7.1 Hardware Reliability Mechanisms

The following mechanisms can be used both by the Pluribus

reliability software described later in this section and applications

programs which choose to use them directly.

7. l. l Power Failure/Restart Interrupts:

(i) Processor Infibusses - The Infibus provides power for

each of the devices it contains. If the power supply

is about to fail on a processor Infibus, processor 0

on that bus receives a level 4 interrupt with device

code 2. Processor 0 then has approximately 2.5 milli­

seconds to signal the other processors and save any

important data on a non-failing Infibus or in non­

destructive memory. When a processor Infibus is with­

out power, the Control Register of any bus coupler con­

necting this Infibus to another is still modifiable.

When power is restored to the Infibus, a reset of the

Infibus is executed by the BCU and each device on the

bus will reinitialize itself. Each processor will

enter an idle state with all registers zeroed. Proces­

sor 0 will then execute a level 4 interrupt with

device code 4 (power restart).

(ii) Memory and I/0 Infibusses - When power is about to

fail on a common Infibus, processor 0 of each Infibus

connected to the common Infibus executes a level 1

interrupt with device code 1. The processor must then

49

Report No. 2930 Bolt Beranek and Newman Inc.

7. 1. 2

read the control register of each bus coupler on its

Infibus to determine which one caused the interrupt.

If the Control Register is 0*, then the attached

Infibus is losing power.

When the processor determines which common Infibus

is losing power, it has 2.5 milliseconds to signal

other processors, save important data stored on the

failing Infibus, and mark that Infibus unusable by

the program. While the Infibus is without power the

bus coupler map registers are still modifiable.

It will be necessary for the processors to periodi­

cally check the dead Infibus to see if power has been

restored. When this is the case, the Control Register

will read (hexadecimal) 2100*.

Hardware Timeouts:

A philosophy prevalent in the Pluribus hardware and

software is that the system should perform sufficient

introspection to recognize illegal and deadlocked states.

If such states are detected, actions sufficient to move

the system into some legal state should be initiated.

The Infibus and device timeouts discussed below are two

implementations of this general philosophy.

*This may be modified by the ~ontents of any overlapping memory

location (see section 9.2).

50

Report No. 2930 Bolt Beranek and Newman Inc.

7.1.2.l

7.1.2.2

Infibus Timeout - The Bus Control Unit monitors the

frequency of activity on the Infibus. If there are no

accesses for one second, the BCU will execute an Infibus

RESET and each device on the Infibus will reinitialize

itself. Processors on the bus will enter an idle state

with their registers set to zero. Processor 0 will sub­

sequently receive a level 4 interrupt with device code 4
power restart.

Device Timeout and Multiple Interfaces - In many applica­

tions of the Pluribus it will be important to have redun­

dant (multiple) interfaces to one or more of the I/0

devices in order to improve system reliability. In the

ARPA Network application, for example, multiple inter­

faces to modems and Host computers are planned. Since

such multiple interfaces will share a single I/0 device,

it will be necessary to electrically disable the device­

interface transmit path on all interfaces but the one

currently in use at any given time.

Rather than have the enabling/disabling of these

paths controlled by the processors, the interfaces

themselves are provided with sufficient logic so that

the decision can be made locally. Each device interface

which permit other interfaces like itself to be connected

to a shared I/O device is equipped with a hardware timer.

This timer is reset whenever a specific (device dependent)

word in the corresponding device register block is accessed.

If the word is not accessed for a fixed time period, the

timer runs to zero and the associated device - interface

path is disabled. The path will be enabled whenever the

specific word in the device register block is next

51

Report No. 2930 Bolt Beranek and Newman Inc.

referenced. A processor can, therefore, switch from

one interface to a spare by simply stopping references to

one interface and starting references to another. If for

some reason an interface cannot be referenced, it will

soon return to its stable, legal, disabled state. All

DMA devices currently implement this facility and have

one second timeouts. If a transfer is in progress when

the interface timer reaches zero, the interface will

short the transfer, write its level to the PID, and set

the error bit in the associated device register block.

The specific words in the device register blocks which

must be referenced in order to reset the timers are given

in section 10, where the different I/O devices are dis­

cussed.

7.1 .3 Remote Reference/Control of Devices on a Processor Bus:

7. 1.3.1 Backwards Bus Coupling - Using the type of interbus

communication described so far, it is not possible for

a processor on one bus to interact with a processor on

another bus except by voluntary communication on the

part of both processors through a mutually agreed upon

portion of shared memory. A processor cannot directly

halt, restart, or modify the registers or local memory

of a processor on a different processor bus. To over­

come this shortcoming, the Pluribus has an additional

mechanism known as backwards bus coupling (BBC). Back­

wards bus coupling permits requests to be transmitted

to a processor bus via a bus coupler as well as from a

processor bus, the normal direction. This is illus-

trated in Figure 8a where a processor on bus A is trying

to reference some address local to bus B via I/0 In­

fibus C.

52

Report No. 2930 Bolt Beranek and Newman Inc.

l/O BUS

(a)

ADDRESS SPACE OF PROCESSOR WITH
KEY BITS XY ON BUS B

¢¢0¢

15 3 210

I Hl~
M~P R:Gl~TE; \

ADDRESSES
ON BUS C
REFERENCED
BY PROCESSOR
ON BUS A

l--------1 ,...-t\. 1--------, L-,1'
L--------1 BBC
t_:-_: _: _: = =-JMAPPING
L _______ _J
L _______ .J

>

FFFF

(b)

>

EFFECTIVE
ADDRESSES ON BUS B
ACTUALLY REFERENCED
BY PROCESSOR ON
BUS A

Figure 8 Backwards Bus Coupling

53

Report No. 2930 Bolt Beranek and Newman Inc.

Backwards bus coupling from one processor bus to

another is only possible over a shared I/O Infibus. In

addition, only one bus coupler on an I/O bus can be enabled

for backwards bus coupling at a time. Attempting to·

enable more than one BBC path on a single bus will produce

unpredictable results. A lock will typically be as­

sociated with this shared "BBC path" resource.

For backwards bus coupling to proceed, the BBC enable

bit in the Control Register of the bus coupler connecting

the shared I/O bus to the target processor bus must be

set to one. (See Figure 5) This can be accomplished by

writing the hexadecimal constant DE7D to the control

register if forward coupling is to be disabled or DE7F if

forward coupling is to be enabled. The first 13 bits of

these constants are a code word required to prevent indis­

criminate modifications of the register by malfunctioning

devices. After the BBC enable bit is set, the BBC Map

Register (see Figure 5) may be set to point to the desired

area of address space on the target processor bus (at­

tempting to write the BBC map prior to enabling BBC will

result in a QUIT). With BBC enabled and the map register

set, reference to locations on the target processor bus

may proceed by making reference to corresponding bytes

within the BBC window (see Figure 5). After BBC accessing

is complete, the coupler control register should be re­

turned to its previous state by resetting the BBC enable

bit.

Figure Sb illustrates the details of the BBC map~

ping in thP context of the situation shown in Figure ~a.

To reference locations within the address space of the

processor with key bits XY on bus B, processor A loads

54

Report No. 2930 Bolt Beranek and Newman Inc.

bits 2 and 3 of the bus C BBC map register with XY and

bits 3-15 of this map register with the high order 13

address bits of an area on processor bus B. Subsequent

references to bytes or words within the bus C BBC window

are translated into 18-bit references on the target

processor bus A at the address formed as follows:

(low order 3-bits of
XY Bits 3-15 of Map Register address of byte

referenced in BBC
Window)

The BBC Map Register essentially serves as a base register

which allows up to 8 bytes starting at the BBC map ad­

dress to be referenced. Of course, the BBC Map Register

will need to be updated quite a bit if any significant

number of BBC references are required.

One further complication is the fact that simul­

taneous forward and backward bus coupling requests conflict.

The result of such conflicts will be short term deadlocks

while the Infibusses at both ends of the bus coupler

time out their respective requests prior to sending QUITs

to the requesting devices. In Figure Ba, for example, if

processor P on bus A were attempting to access memory M
0 0

on bus B at the same time that processor P1 on bus B

were attempting to access device D on I/0 bus C, a

deadlock would occur with respect to coupler BC. Busses

B and C would, therefore, timeout the requests made to

BC prior to sending QUITs to processor P1 on bus B and

bus coupler AC on bus C respectively. Since the time

until a QUIT is returned is typically longer on a proces­

sor bus than on an I/O bus, however, the bus coupler AC

55

Report No. 2930 Bolt Beranek and Newman Inc.

will generally receive the QUIT first and terminate the

BBC request passing on the QUIT to the requesting proces­

sor, P on bus A. The forward bus coupling will then
0

continue until completion. The point of this discussion

is that the application program using the BBC mechanism

should be aware that QUITs may result, be prepared to

test for them (see section 5.5.1), and repeat the BBC

request if necessary.

The following list summarizes the previous discussion with a

typical sequence of steps to follow for BBC references:

1) Lock (or wait on lock) BBC path resource on I/O bus

2) Set BBC Enable bit in Control Register

3) Write Map Register

4)

n-2)

n-1)

7 . 1 . 3 . 2

Set of BBC References:
Will involve sensing and reacting
to QUITs and may involve changes
to map register

Reset BBC Enable bit in Control Register

Unlock BBC path resource on I/O bus.

Remote Resetting of a Processor Bus - Writing a zero to

bit 0 of the control register of a bus coupler connecting

a shared (I/O or memory) bus to another processor bus

will cause that processor Infibus to execute a RESET.

All devices on the processor bus will be reinitialized;

each processor will enter an idle state with all registers

zeroed. A subsequent 60 cycle clock interrupt (level 4,
device code 1) will reactivate processor 0 on the bus.

As with writing the BBC Enable bit, the first 13 bits of

the word written to the control register must agree with

the hexadecimal constant DE78. In addition, bits 1 and 2

56

Report No. 2930 Bolt Beranek and Newman Inc.

7.1 .3.3

of the control register should be written so as to create

the proper state with respect to forward and backward

coupling after the reset.

Bus Amputation - Bus amputation provides a means of

isolating selected active devices (I/O devices and proces­

sors) from the remainder of a Pluribus system. In this

way malfunctioning devices can be prevented from af­

fecting the healthy system components. The unit of ampu­

tation is the bus; that is, a whole bus must be amputated

if any device on that bus is to be disabled.

Bit 1 of the control register of a bus coupler must

be 1 if the coupler is enabled for forward bus coupling.

By setting this bit 0, therefore, all forward requests

over the coupler can be blocked. By zeroing this bit in

all bus couplers coming from a bus containing a malfunc­

tioning device, that device can be removed from the

operational Pluribus system.

A processor is not able to write the control registers

of any couplers connected to its bus (see section 9.2),

therefore, amputation must be accomplished by references

to the control register arriving over a different path.

In Figure 9, for example, coupler ac could not be shut

off by Processor P on bus A. Processor P on bus B,
0 0

however, could cut path ac with an access to the ac

control register (in the address space of bus C) via

coupler be. As with writing the RESET and BBC Enable bits,

the first 13 bits of the word written to the control

register must agree with DE78 hexadecimal, therefore, the

word to write to the control register to amputate a bus

is DE79 if BBC is to be disabled and DE7D if BBC is to

be enabled.

57

Report No. 2930 Bolt Beranek and Newman Inc.

PROCESSOR A---.---­
BUS

PROCESSOR e-------------­
BUS

OC bd

MEMORYc----....... ----~
BUS

cd

Figure 9 Bus Amputation Example

58

Report No. 2930 Bolt Beranek and Newman Inc.

To illustrate, suppose that in Figure 9 processor

P on bus B decided that processor P on bus A was mal-o 0

functioning and its bus should be amputated from the

system. It could do this by simply zeroing bit 1 in the

control register for couplers ac and ad. Similarly, if

processor P determined that device X on I/0 bus D was
0

writing spurious data bits to common memory, it could

isolate the device by zeroing bit 1 in the control

register for coupler ed. This would effectively remove

bus D from the system as far as memory transfers are

concerned although addresses on bus D could still be

referenced via couplers ad and bd.

7.1 .4 Externally Initiated Reloads:

For the ARPA Network application it was necessary to

develop a means of reloading Pluribus systems remotely over

phone lines. In other communication applications, the ability

to do this may also be important.

A special piece of hardware called the Reload (RLD)

Device is available which resides on an I/O bus and monitors

up to 8 modem interfaces (receivers). When the RLD observes

a command in the input stream, it interprets the next 20 bits

as a system address and the following 16 bits as a data word

to be stored at that address. The address and data are heavily

checksummed. Sequences of such commands can be sent to cause

the RLD device to fill a portion of common memory or write via

backwards bus coupling to the processor bus address spaces.

Details concerning line protocol and device operation are

given in section 10.6.

59

Report No. 2930 Bolt Beranek and Kewman Inc.

7.1.5 Parity Generation/Checking:

Parity generation and checking schemes provide a simple and

effective way to detect many of the errors which occur in computer

systems. The Pluribus uses such a scheme to automatically recognize

memory failures and failures along the data transfer paths (i.e. bus

couplers). This mechanism is invisible to the programmer except for

the fact that a QUIT may result from a data access if bad parity is

detected.

The type of parity calculated is called "address XOR Data"

parity or AXD parity for short. AXD parity involves two parity

bits for each 16-bit word, one associated with each 8-bit byte.

Each parity bit is calculated as the exclusive-or of the address

parity and contents parity of the byte. The advantage of this

parity function is that it detects: (1) one data bit in error,

(2) all data bits zero, (3) all data bits one, and (4) one address

bit in error.

There are essentially four distinct paths in a Pluribus system

that implement parity checking. Each of these paths involves inter­

bus transfers and is described below. Parity checking for data

accesses on a single bus is not implemented.

(i) Processor/Common Memory Path - When data is being written

to common memory the processor end of the bus coupler computes

the AXD parity bits and sends them to be stored in the memory.

On reading a memory location the stored parity bits are re­

trieved and returned to the processor end of the bus coupler

which recalculates the parity and matches it against the re­

trieved bits. A QUIT will be generated if these two sets of

parity bits do not match.

60

Report No. 2930 Bolt Beranek and Newman Inc.

(ii) I/0 Device/Common Memory Path - The procedure here is

virtually the same as for the Processor/Common Memory Path

above except that the I/0 end of the bus coupler rather than

the processor end checks the parity bits.

(iii) Processor/I/0 Device Path - When a processor writes

(reads) data to (from) one of the devices on an I/O bus, a

different sort of parity checking is performed. A special

device on the target I/O bus, the Parity (PAR) card, con­

tinuously generates AXD parity from addresses and data placed

on its bus during accesses to devices on that bus. This parity

is fed back through the bus coupler involved in the reference

and checked against parity computed at the processor end. A

QUIT will be generated if the two sets of parity bits do not

match. This technique is referred to as feedback parity

checking.

(iv) Backwards Bus Coupling Path - Parity checking during BBC

references is restricted to the forward part of the overall

processor bus-to-processor bus path. The BBC registers are

treated by the PAR card as if they were the registers of an

I/0 device on that bus, consequently the parity checking

described in (iii) above applies.

7. 1.6 Transfers Between Private Memories On the Same Processor Bus

Using the BBC mechanism it is possible for a processor on one

processor bus to transfer data into the private memory of a proces­

sor on another processor bus (see ~ction 7.1.3.1). It is also

desirable for a processor to be able to effect transfers into the

private memory of another processor on the same processor bus.

Such transfers will be required, for example, when a processor on

a bus wants to reload and restart another processing on that bus.

61

Report No. 2930 Bolt Beranek and Newman Inc.

A recommended technique for doing this is described below. It

involves running a short program out of the registers in one of

the processors.

Suppose processor 0 wishes to transfer N words from its private

memory starting at location SOURCE to consecutive words starting

at location DESTINATION in processor l's private memory. Processor

0 first stores the following program in processor l's registers

(starting at FF20):

LDA A2, SOURCE (-Al)

KEY 1

STA A2, DESTINATION (Al)

KEY 0
BLP

JMP

FF20

(A7)

/Address of Processor 1 register ~

Next, Processor 0 sets up the count N in one of his registers (Al

in the example above) by executing the following:

LDA Al, = N

Finally, processor 0 executes the program on processor l's registers

via a:

JSB A7, FF20

This example has assumed, of course, that processor 1 was initially

halted and that the original contents of processor l's registers

either did not matter or were initially saved and later restored.

An attempt by the reader to work out some more straight forward

solution should demonstrate the necessity of the sort of implemen­

tation described above.

62

Report No. 2930 Bolt Beranek and Newman Inc.

7.2 Software Reliability Mechanisms

There are no strict constraints on the programmer concerning

how the Pluribus hardware features can be used. These hardware

mechanisms have been developed, however, with a particular hardware/

software structure in mind. This structure will be described below.

It should be pointed out that there does not currently exist any

reliability software package that is available with a Pluribus

system. The Pluribus reliability software which now exists is

integrated into the ARPA Network IMP application of the Pluribus.

Nevertheless, we believe that the basic ideas embodied in this

software (and perhaps much of the code itself) can be applied in

other Pluribus applications and are, therefore, worthwhile describing

here.

One view of the relations between the three major software

components in a reliable Pluribus system is shown in Figure 10.

From the figure it can be seen that there are two major modules of

the reliability software. The system reliability code is applica­

tion independent and attempts to maintain a suitable set of re­

sources in which to run the overall system. The application relia­

bility code, on the other hand, is totally dependent on the particular

application since it has responsibility for checking and fixing

the data structures internal to the application program. To

develop this module one must have a detailed knowledge of the

states of that program. For this reason, the following discussion

will focus on the structure of system reliability code module.

Under normal circumstances, the application program will be

continuously running, executing application tasks fetched from the

PID. The system timer routine which runs off of the real-time

clock (RTC) causes both the application reliability code and the

system reliability code to be periodically executed. The system

63

Report No. 2930 Bolt Beranek and Newman Inc.

reliability code is comprised of a sequence of stages that are

performed when activated. These stages include such tasks as

calculating the checksum on programs in local and common memory,

checking whether any memory or I/O device has either appeared or

disappeared, maintaining original and spare copies of code and

variable segments, and maintaining the running status of all

processors by reloading and restarting them if necessary. If all

these tasks can be performed successfully, the system reliability

software will return to the application program. This will normally

be the case. In some situations, however, the system reliability

code may be required to supervise the initialization of the applica­

tion program itself. Reinitialization of the application code,

would be required, for example, if a segment of memory containing

variables were taken out of service and a new portion of memory

were allocated for this purpose.

An important concept associated with the system reliability

module is that of processor consensus. Before a processor is

allowed to run either the application program or the application

reliability code, it is necessary to establish a common environment

for all processors. This process of reaching an agreement about

the environment is called "forming a consensus", and we dub the

group of agreeing processors "the Consensus". The work done by

the Consensus is in fact performed by individual processors, but

the coordination and discipline imposed on the Consensus members

make them behave like a single logical entity. An example of a

task requiring consensus is the identification of usable common

memory and the assignment of functions (code, variables, buffers,

etc.) to particular segments. The members of the Consensus may

not agree in their view of the environment, as for example when a

broken bus coupler blinds one member to a segment of common memory.

In this case the Consensus, including the processor with the broken

64

Report NO. 2930 Bolt Beranek and Newman Inc.

coupler, will agree to run the main system without that processor.

In addition to periodic activation by the system timer routine,

the system reliability code will also be activated following certain

exceptional conditions indicated in Figure 10. Several of these

conditions have already been discussed. An extremely important

mechanism not yet mentioned, however, is the 60Hz interrupt which

is used to guarantee that each processor does, in fact, periodically

run the system reliability code. Each processor upon executing the

system reliability code sequence will reset a timer which the 60Hz

interrupt service will count down. If the timer ever reaches zero,

a processor has been lax for one reason or another and the relia­

bility code will try to get the processor running correctly again.

As is the case for periodic activations, the system reliability

code will eventually either go to sleep or supervise the initiali­

zation of the application reliability routine or the application

program itself.

The discussion in this section has only provided a brief

overview of the Pluribus software reliability mechanisms which are,

in fact, currently in state of flux. More details and additional

motivation for many of the design decisions relating to Pluribus

reliability mechanisms may be found in [7].

65

Report No. 2930 Bolt Beranek and Newman Inc.

APPLICATION DEPENDENT APPLICATION INDEPENDENT
I
I

PERIODIC ACTIVATION OF

ALL APPLICATION PROCESSES

INITIALIZATION

PERIODIC
ACTiVATiON

Figure 10

I
I
I

QUI Ts
ILLEGAL OPERATIONS
60 Hz INTERRUPT
POWER FAIL INTERRUPT
POWER RESTART INTERRUPT

Reliability Software

66

Report No. 2930 Bolt Beranek and Newman Inc.

8. INFIBUSSES

The Infibus is the primary power and communication path­

way between devices. Physically, the bus is a panel containing

24 slots. Each device is inserted into one or more of these slots.

Power and signal circuits connect all of the slots together.

Power for the bus is provided by one of two possible power supplies:

the smaller· power supply is plugged into 8 of the slots of the bus,

leaving 16 slots for devices; the larger power supply is external to

the bus (leaving 24 slots for devices) and can provide power for

one or more busses (depending on power requirements of the devices).

The Bus Control Unit (BCU) module is necessary to control every

Infibus. It occupies one slot, leaving either 15 or 23 slots for

other devices. A bus can be extended by the addition of another

bus cabinet. The electronics for the extension will occupy one

slot in each cabinet, leaving 29, 37, or 45 slots for devices. The

number of slots occupied by the major components of the Pluribus

system are as follows:

Device Number of Slots

Processor 2
Bk bytes Memory 3
16k bytes Memory 3
Bus Control Unit (BCU) 1
Bus Coupler (BCP, BCM, or BCI - see section 9) 1
PID Pseudo Interrupt Device 1
RTC Real Time Clock 1
HLC Local Host Interface 2
CBT Checksum/Block Transfer 2
ML Low Speed Modem Interface 3
RLD Reload Card 1
PAR Parity Module 1
SLI Synchronous Line Interface 1

67

Report No. 2930 Bolt Beranek and Newman Inc.

Electronically, the Infibus is the communications channel

between devices. At any time, at most one device contained in a

bus has access to that bus. This device can request data from

another device contained in the bus (read) or request that another

device receive the data that this device is providing (write).

The device which has access to the bus is called the bus Master.

The Slave device is the device the bus Master is transferring data

to or from. The Master communicates with the other devices con­

tained in the Infibus by providing the following information:

2,0-bit Address

One of the control functions:

Read

Write

Read-Modify-Write

Whether data is word or byte

Data (if function is Write)

Parity

Each device contained in a bus continuously monitors the address

being transmitted by the bus Master. A device becomes the Slave

when it observes an address on the bus that it recognizes as its

own. The device then performs the activity indicated by the ad­

dress and control functions. When this activity is completed, a

completion signal called DONE is returned. When the Master observes

the DONE signal it accepts any data expected from the bus and

relinquishes access to the bus. The Bus Control Unit has at that

time already chosen the next device to be Master from among the

devices which have requested access to the bus but have not yet

received it. If no device recognizes the address that the Master

provides the bus or if the Slave device malfunctions, then no

action will be taken and no DONE signal will be returned. After

68

Report No. 2930 Bolt Beranek and Newman Inc.

~fixed period of time (dependent on the particular bus), the

Bus Control Unit will send a QUIT signal to the bus Master. The

bus Master then reJinquishes control of the bus and access is pro­

vided the next requesting device. The time allowed between access

and a QUIT signal is established by the BCU hardware and is nor­

mally between 5 and 500 microseconds. Processor busses will

normally have the longest QUIT timeouts with I/O busses and memory

busses having the next longest and shortest timeouts respectively.

Two different devices on a bus can recognize the same address.

If both of these devices respond with action and a DONE, the system

will likely malfunction. Devices must, therefore, use some criteria

external to the bus to resolve which device becomes the Slave.

Normally the address recognition switches on each device in a sys­

tem will be set to recognize disjoint portions of the system ad­

dress space.

The bus provides an initialization signal, called RESET, to

each of the devices attached to it. This signal is transmitted to

the devices whenever power is being restored, whenever the bus is

reset from the console or from another processor, or whenever there

has been no transaction on this bus in the last second. Each

device will terminate any activity when it receives the RESET signal

and reinitialize the state of all registers and indicators.

69

Report No. 2930 Bolt Beranek and Newman Inc.

9. Bus Couplers

The functions of the bus couplers as components in an opera­

tional Pluribus system have already been discussed in several

earlier sections. In this section the internal structure of the

bus couplers is considered in more detail.

Each bus coupler connects two busses and, therefore, has two

ends. Each end of a bus coupler appears as a normal device on its

containing Infibus. The 3 types of ends (BCP, BCM, and BCI) and

two types of bus coupler (BCP-BbM and BCI-BCM) that may exist in

a Pluribus system are illustrated in Figure 11. BCP-BCM couplers are

used to connect processor busses to either memory or I/0 busses.

BCI-BCM couplers are used to connect I/0 busses to memory busses.

The operation of the BCP, BCM, and BCI devices are presented below.

9. 1 BCP:
Each BCP contains four 7-bit MAP registers for each of the

four possible processors on the Infibus. The MAP registers are

numbered 0-3 and are located in the address space of each processor

at locations FC00-FC06. Each processor has its own set of MAP

registers, selected by bits 16 and 17 of the 18-bit address of

data on the Infibus. These two bits are specified by the last

execution of the SKEY instruction in the particular processor.

The MAP registers can be modified by writing the new contents of

the MAP to the corresponding address FC00, FC02, FC04, or FC06.

The high order 7 bits of the word written become the new contents

of the map register. In general, bus coupler registers may be

written but not read. Reading a MAP register gives a result of

zero and does not change the register. Infibus RESET does not

effect the contents of the MAP register. The contents of the MAP

registers are unpredictable at power-up.

70

Report No. 2930

PROCESSOR-------------­
BUS

Bolt Beranek and Newman Inc.

---------------- 1/0

MEMORY
BUS

BUS

Figure 11 Types of Bus Couplers

Report No. 2930 Bolt Beranek and Newman Inc.

During forward (normal) bus coupling the BCP is a Slave

device on its bus and the BCP transforms each 18-bit processor

address into a 20-bit system address to be sent to the BCM. As

discussed in section 4., each processor's address space is divided

up into 7 components:

Addresses

0000-3FFF

4000-5FFF

6000-7FFF

8000-9FFF

A000-BFFF

C0.00-FBFF

FC00-FFFF

Description

References to Local Memory

Transform address using map 0

Transform address using map 1

Transform address using map 2

Transform address using map 3

Transform address to I/O space

References to Processor Registers

and Local I/O space

Addresses within 0000-3FFF or FC00-FFF are ignored by the BCP.

For those Bk byte segments of processor address space utilizing

a particular MAP, the BCP forms a system address by preserving the

low order 13 bits of the processor generated address while replacing

the high order 3 bits by the 7 bit contents of the corresponding

MAP register. Addresses in the segment C000-FBFF are considered to

be references to Pluribus device registers. The system address

for such a reference consists of appending four bits of l's to the

most significant portion of the address.

When the BCP transforms an address, this address, any

data, and one of the control operations (read, write, read-modify­

write, byte) are communicated from the BCP to the attached BCM

through a cable. The control operations will be used by the BCM to

generate a bus access on the target bus, generally identical to

the bus access on the source bus except for the transformation of

the address. Read operations using MAP 3, however, will be

72

Report No. 2930 Bolt Beranek and Newman Inc.

transformed as previously described into read-modify-write accesses

on the target bus (where the write data is zero) to allow imple­

mentation of multiprocessor locks.

When backwards bus coupling is enabled, the BCP acts as a

Master on its bus and simply passes along the 18-bit references

generated by the BCM at the other end of the cable.

9.2 BCM:
When a processor accesses a shared resource on a memory or

I/O bus, all of the BCPs on the source bus map the initial address

and pass it along to the BCM end of the bus coupler. Similarly,

when an I/0 device accesses a shared resource on a memory bus,

all the BCis on the source bus transmit the initial address to

their BCM end. Each BCM then determines if the address sent to it

is one to which it can respond. If it is not, the BCM simply

ignores the request. If it is, the BCM requests access to its

Infibus. When it receives control, the BCM transfers the 20-bit

address, any data, and all control signals to its bus and returns

any responses received to the originating end of the bus coupler

pair. The addresses to which a BCM will respond are determined by

the Cable Recognition Switch described below.

There are two important reasons for making the bus coupler

perform address discrimination. The first is to reduce hardware

contention. If each BCM simply passed all addresses to the con­

taining bus, every processor reference to common memory would be in

contention for each memory bus rather than just the single bus on

which the referenced memory was located. A similar contention

problem would exist for processor references to I/O busses and I/0

references to common memory. The second reason for BCM address

discrimination is to eliminate multiple responses by the connected

busses. Since a bus always responds either positively (by DONE) or

73

Report No. 2930 Bolt Beranek and Newman Inc.

negatively (by QUIT), one DONE and multiple QUITs would result from

every access to common memory if no address discrimination was

done. The QUITS would, of course, confuse the device that previous­

ly requested the access since it would already have taken actions

based on the previous DONE. This same problem is the motivation

for configuring Pluribus systems so that BCMs connected to different

busses recognize disjoint areas of system address space. In general,

the addresses recognized by all BCMs connected to the same bus will

be identical.

The BCM contains several physical switch registers which must

be manually set and a single 16-bit control register which may be

referenced under program control. The switch registers along with

the number of bits (switches) in each register are indicated below:

Switch Register

MEMSW (Memory or I/O Bus)

BCM CONTROL REGISTER ADDRESS

BCM ADDRESS RECOGNITION:

BASE

RELEVANCE

Number of Bits

1

6

8
8

The algorithm used by the BCM for address djscrimination is as

follows: if the 20-bit address it receives is less than FC000,

then the high order 6 bits of the address are compared against

the high order 6 bits in the BCM ADDRESS RECOGNITION switches.

The comparison is satisfied for a particular address bit if either

the corresponding RELEVANCE switch is OFF or the RELEVANCE switch

is on and the address bit matches the corresponding switch (bit) in

BASE. If all 6 high order bits satisfy the comparison, then the

20-bit address is accepted and used to request a bus access.

74

Report No. 2930 Bolt Beranek and Newman Inc.

Typically, the BASE AND RELEVANCE switches will be set to recognize

a contiguous portion of system address space. This is done by

setting the high order 6 bits of BASE to some starting address and

turning off some number of low order switches (within the high

order 6) in RELEVANCE. Of course, more complicated memory access

patterns can be implemented by other settings of the RELEVANCE

switches.

If the 20-bit address passed to the BCM is greater than or

equal to FC000 and MEMSW is on, the address will not be recognized

by the BCM. If the address is greater than or equal to FC000 and

MEMSW is off, bits 11 and 12 of the address must satisfy the com­

parison test described above with respect to the two low order

bits of the BCM ADDRESS RECOGNITION switches if the 20-bit address

is to be recognized and put on the (I/O) bus*.

The BCM contains one internal register, the BCM Control

Register. As already indicated in section 4.3 and 6.1, the block

of addresses where these control registers can be found is at the

beginning of one of the address space segments recognized by the

bus to which the BCMs are connected. The precise location of a

BCM Control Register is specified by the 6-bit BCM CONTROL REGISTER

ADDRESS Switch. The number set in this switch is used as the dis­

placement in words of the BCM Control Register from the starting

address of the control register block. To state this more suc­

cinctly, the address of each BCM control register is:

*Early models of the bus couplers required all 8 high order bits

of the address to match the switch bits for address recognition

to occur.

75

Report No. 2930

Address Bits

14-19

13

7-12

1-6

0

Bolt Beranek and Newman Inc.

From

High order 6 bits of BCM ADDRESS

RECOGNITION BASE switches

Negation of MEMSW

0

Contents of BCM CONTROL REGISTER

ADDRESS switches.

0

The 3 switches (BBC Enable, Foreward Enable, and Reset)

which can be set in the BCM control register by a processor have

already been discussed in detail in section 7.1.3. It has also

been pointed out that the data written to a BCM control register

must agree with the high order 13 bits of the hexadecimal constant

DE78 if the write is to take effect.

One additional complexity in the BCM arises since the Control

Registers for BCMs on a memory bus and those on an I/O bus will

differ in one respect; those on a memory bus will share addresses

with the memory devices on that bus whereas those on an I/O bus

will not share locations with any I/O device. Since devices

referencing BCM control registers will expect a single DONE signal

upon completion of an access, the BCM works as follows: if MEMSW

is on, the BCM does not return a DONE since references to the

control register also reference a memory location and the memory

device returns the DONE signal. If MEMSW is off, on the other

hand, the BCM generates and returns a DONE signal for references

made to its control register since there is no other "overlapping

devices" that will produce it.

76

Report No. 2930 Bolt Beranek and Newman Inc.

The effect of two devices (BCM and memory) sharing the same

address must also be kept in mind when the BCM control register is

read or written. For BCMs attached to I/O busses, reading will

return 2100 if the attached bus is up or 0 if the bus is in the

process of going down due to a power failure-- see section 7.1.1

(of course a QUIT will be returned if the attached bus is completely

down). If the BCM shares the address of its control register with

a memory module, however, this 2100 or 0 will be Inclusive-Or'ed

with the contents of the associated memory word. For this reason

and to permit proper operation of the Pluribus system parity

mechanism, any read of a BCM control register will normally be

preceded by a write of zero to the control register. This will

clear any "shadow" memory location but not effect the control

register contents. The response to stores at the address of the BCM

control register will also depend on whether the address is on an

I/O bus or a memory bus in addition to whether or not the high order

13 bits of the data written match the key DE78. If the Key matches,

the write will take effect and a DONE will be returned. If the Key

does not match, a DONE response will be returned if the BCM control

register is on a memory bus and a QUIT response will be returned if

the BCM control register is on an I/O bus.

9.3 BCI:

The BCI serves in place of a BCP when coupling an I/O Infibus

to a memory Infibus. Its relation to the BCM is identical to that

of the BCP with the following three exceptions: (1) no address

mapping is performed (devices on I/0 busses generate 20-bit addres­

ses), (2) any address less than FC000 (with any data and control

signals) is passed directly through the BCI to the BCM, and (3) any

address greater than or equal to FC000 is ignored. Devices on an

I/O Infibus cannot directly communicate, therefore, with I/O

77

Report No. 2930 Bolt Beranek and Newman Inc.

devices on another I/O Infibus any such communication must be done

via common memory. The BCI-BCM bus coupler cannot be used for

backwards bus coupling.

78

Report NO. 2930 Bolt Beranek and Newman Inc.

10. DEVICES

In section 6, the general information necessary for program­

ming both BEN-developed and LEC devices was discussed. This

section provides additional device-dependent information for each

of the BBN-developed devices. Similar information for Lockheed

devices can be found in the LEC Product literature.

10. l Pseudo Interrupt Device (PIO):

The PID is a priority memory device. The application of this

device to the control of processes in a Pluribus system has been

described at length in section 5. A Pluribus system may have up to

four independent PIDs. As indicated in Figure 5, the PID and

Real-Time Clock (RTC) share a 16-byte device register block in the

address space of the containing I/O bus. The three registers in

this block associated with the PID are the following:

PID WRITE:

When data is written into the PID WRITE register, bits

1 through 7 of the data get a zero appended as bit 0

and the resulting even 8-bit number is stored. Only

one copy of any number is retained. When the PID WRITE

register is read, the largest number stored in the PID

is returned but not deleted.

PID READ:

When the PID READ register is read, the largest number

stored in the PID is returned and that number deleted

from PID storage. If there is no number stored in the

PID, a zero is returned. An attempt to write the PID

READ register will result in a QUIT.

79

Report No. 2930 Bolt Beranek and Newman Inc.

PID CLEAR:

When data is written into the PID CLEAR register, bits

1 through 7 of the data set a zero appended as bit O and

the resulting even 8-bit number is compared with the

memory of the PID. If that number is already in PID

memory, it is deleted. When the PID CLEAR register is

read, the largest number in PID memory is returned but

not deleted.

The address of each PID is specified by a two bit switch

on the device which selects bits 11 and 12 of the device

register block starting address. Bits 0-10 of the device

register block starting address are zeros and bit 13-19

are ones. The PID card has a set of lights which display

the high order 7 bits of the largest number stored.

10.2 Real-Time Clock (RTC):

The Pluribus has two methods for timing events. Processor 0

on each processor bus can recive an interrupt every l/60th of a

second on processor interrupt level 4. This rate is too infrequent

for many applications, however, and does not fit into the proces­

sor independent structure of the Pluribus. For these reasons

another timing device, the RTC, has been developed. The RTC also

provides a common time reference for all the processors. The RTC

provides access to a clock which is incremented every 100 micro­

seconds and which generates two distinct PID levels periodically,

one every 1.6 milliseconds and another every 25.6 milliseconds.

As indicated in Fibure 5, the RTC and PID share a 16-byte

device register block in the address space of the containing I/0

Infibus. The five registers in this block associated with the RTC

80

Report No. 2930 Bolt Beranek and Newman Inc.

are the following:

CLOCK COUNTER: The 16-bit clock counter. The RTC increments

this register every 100 microseconds.

CLOCK PID LEVELS: ·The high-order byte is the number which will

be written to the PID every 25.6 ms. The low-order

byte is the number which will be written to the PID

every 1.6 ms.

CLOCK READABLE REGISTER 1 - A switch-settable register.

CLOCK READABLE REGISTER 2 - A switch-settable register.

CLOCK READABLE REGISTER 3 - A switch-settable register.

These five registers are all read-only. Attempting to write to

them will have no effect.

The RTC has a device timer which will stop the clock if it

has not been accessed (i.e. none of its 5 registers have been read)

within the past second. This allows the Infibus timeout mechanism

to detect and recover from the illegal state where the RTC is the

only device putting requests on an I/O Infibus. The clock will

also stop on master (bus) reset. Reading any RTC register will

start the clock again in these two cases.

The address of each RTC is specified by a two-bit switch on

the device which selects bits 11 and 12 of the device register

block starting address. There is also a two-bit switch which

specifies the address of the PID to be written to in the same way.

Normally, these two bits will be identical to the two bits which

locate the RTC device register block. In any case, bits 0-10 of

the device register block starting address are zeros and bits 13-19

are ones. Two seven-bit switches are also available on the RTC

to specify the 1.6 second and 25.6 second PID levels.

81

'
Report No. 2930 Bolt Beranek and Newman Inc.

10.3 Low Speed Modem Interface (ML):

The ML connects the Pluribus to a 303 modern at speeds up to

250kb. The ML will transmit or receive messages of an arbitrary

even number of data bytes to or from the 303. The Pluribus need

only specify a portion of the message to the ML at any time. This

portion of a message is called a buffer and is delimited in core

by two addresses provided to the ML by the Pluribus DMA. On

transmission, the ML will transmit end of message characters if an

end of message flag is associated with a buffer. On reception, a

buffer will be read until either the input area provided is full

or the end of message characters are detected. Three test options

are available on the ML under program control: (1) the ML can be

crosspatched to itself so that it takes its transmitted data back

in as receive data ignoring the 303 modern, (2) the ML can loop

the 303 modern back thus testing both the ML and the 303 modern, and

(3) the ML can be forced to send a zero checksum to test the error

logic of the ML.

To allow for multiple MLs connected to the same modem, the

device timeout feature described in section 7.1.2.2 has been im­

plemented for the ML. Data buffering is provided on the ML card

to tolerate delays in servicing of approximately 32 characters on

both input and output without loss of data or line utilization.

Additional delays of indefinite length are tolerated on output by

sending a line protocol idle sequence.

All data on the communication line is organized as 8-bit

bytes, and sent low-order bit first. There are four control

bytes:

82

Report No. 2930 Bolt Beranek and Newman Inc.

NAME CODE (Hexadecimal) -- --
SYN 16

DLE 10

STX 02

ETX 83

The protocol on the line looks as follows:

s s D s T D D T D s

rE
D E c c c s s

E E
y y L T x L L x L y L T c c c y y

l \ N N E x T E E T E N E x 1 2 3 N N

1 2 3 4 3 5 3 6 7

Notes:

1. At least two SYN characters separate adjacent messages.

An idle line is filled with SYN characters.

2 . The beginning of a message is indicated by the sequence DLE STX.

The following character is text. Note that if the RLD card

is used, the first bit of text must be zero if the message is

not to be interpreted as a special reload message.

3. The text is made up of characters taken from the buffer to be

sent. The right half word is sent first, then the left half­

word. There are always an even number of text characters in

a valid message, otherwise messages are of arbitrary length.

4. When the escape character DLE appears in the text, the hardware

inserts an additional DLE.

5. If text is not available to the ML in time, the sequence DLE SYN

is sent as an idle protocol until text becomes available.

83

Report No. 2930 Bolt Beranek and Newman Inc.

6. The end of a packet is indicated by the sequence DLE ETX.

7. Each packet is followed by a 24-bit CRC checksum, sent as 3

8-bit characters. The checksum is computed based on all of

the characters in the message starting with DLE STX and

ending with ETX. A bad checksum will cause the device

receiver to report an error.

Note that a DLE is always followed by a DLE, SYN, STX, or ETX.

Any other character following a DLE will cause an error on receiving.

An error may also be reported if the ML receiver is not serviced

quickly enough, that is, within 64 character times of the time that

it writes the PID. A receive reset command flushes the input buffer

and forces the receive half of the interface to look for character

sync. Detected errors also reset the interface to search for charac­

ter sync, and flag the data as end of packet and error, but do not

flush the buffer.

The ML is a DMA device and as such is programmed as described

in section 6.2. That section also describes the switches and device

independent bits in the ML (DMA) registers. The interpretations of

device dependent bits in the registers are indicated below. In

each case, the description assumes that a one is read or written.

DEVICE TYPE: The high order byte contains a 1.

RECEIVE S'rATUS (15) "Loop":

Write: Cause the 303 modem to send back the transmission

of the ML to the receive portion of the ML. The

receive portion of the ML should be initialized

before the transmit portion so that no data is lost.

Read: The ML is looped.

84

Report No. 2930 Bolt Beranek and Newman Inc.

RECEIVE STATUS (14) "Crosspatch":

Write:

Read:

Cause the ML to take back its transmitted data

into the receive portion ignoring the 303 modem.

The receive portion of the ML should be initialized

before the transmit portion so that no data is lost.

The ML is cross-patched.

RECEIVE STATUS (13) "Active":

Read: The ML receive portion is either waiting for or

transferring a buffer from the 303 modem to memory.

TRANSMIT STATUS (15) "Device Timeout":

Read: A one second timer has deactivated the ML. If the

transmit status word has not been written for one

second, all activity of the ML is aborted.

All ML circuits which communicate with the 303
modem are deactivated. The ML will become usable

again when the transmit status word is written.

TRANSMIT STATUS (14) "Zero Checksum":

Write: Generate a zero checksum for this message.

Read: A zero checksum will be generated for this message.

TRANSMIT STATUS (13) "Active":

Read: A buffer is being transmitted.

85

Report No. 2930 Bolt Beranek and Newman Inc.

10.4 Local Host Interface (HLC):

The Local Host module provides an interface between the

Pluribus and another computer (called a Host) according to the

hardware specification for IMP to Host connections described in

the BBN report, "Specifications for the Interconnection of a Host

and an IMP" [8]. This is a general purpose asynchronous serial

interface. The Local Host module can perform block transfers of

data in either direction between the Host and the PLURIBUS. A

data block can be either read or written as a number of separate

buffers if required. Transfer of the last buffer will have an

associated end of data block flag. Padding is provided by the

HLC receiver at the end of data blocks to account for word length

mismatch between the Pluribus and the attached Host. Two padding

options are available: (1) a 1 followed by O's as described in

Report No. 1822 or (2) all zeros. The choice is fixed by hardware

jumpers on the interface. Another set of jumpers permits the

Pluribus and Host ready lines to be permanently disabled (ignored).

The Local Host module can be programmed to be looped. In this

state, all data transmitted from the transmit half of the HLC is

returned to the receive half of the HLC. This mode of operations

is convenient for hardware and software debugging. To allow for

multiple HLCs connected to the same Host, the device timeout feature

described in section 7.1.2.2 has been implemented for the HLC.

The HLC is a DMA device and as such is programmed as described

in section 6.2. That section also describes the switches and

device independent bits in the HLC (DMA) registers. The inter­

pretations of device dependent bits in the registers are indicated

below. In each case, the description assumes that a one is read

or written.

86

Report No. 2930 Bolt Beranek and Newman Inc.

DEVICE TYPE: The high order byte contains a 2.

RECEIVE STATUS (14) "Loop":

Write: Connect the receive portion of the HLC to the

transmit portion so that data transmitted by the HLC will be re­

turned to the receive portion of the HLC. To initiate the trans­

mission both RECEIVE END AND TRANSMIT END must be written. RECEIVE

END should be written before TRANSMIT END so that no data is lost.

When the HLC is looped, the HOST READY indicator is the same as the

Pluribus READY indicator.

Read: The HLC is performing in looped mode.

RECEIVE STATUS (13) "Active":

Read: The receive portion of the HLC is active receiving

a data block.

RECEIVE STATUS (12) "Host Ready":

Read: A one indicates that the Host has set its ready

indicator.

RECEIVE STATUS (11):
Read: There was an error in the last buffer received from

the Host. No end of message terminated the data block. This bit

will be set if the Host Ready signal went away and returned during

the previous transfer. Note that the error bit in the RECEIVE END

register will also be set.

RECEIVE STATUS (10):

Read: Same as RECEIVE STATUS (11) above except if this bit

is set, an end of message indication did terminate the data block.

TRANSMIT STATUS (14) "Loop":

Read: The HLC is performing in looped mode.

TRANSMIT STATUS (13) "Active":

Read: The transmit portion of the HLC is active transmitting

a data block.

87

Report No. 2930 Bolt Beranek and Newman Inc.

TRANSMIT STATUS (12) "Pluribus Ready"

Write: Writing a one sets the Pluribus ready indicator.

Writing a zero clears the Pluribus ready indicator. This indica­

tor will also be cleared if neither the transmit or receive status

words has been written in the last second in order to implement

the previously described device timeout feature.

Read: The Pluribus ready indicator is set.

10.5 Checksum/Block Transfer Device (CBT):

The Checksum/Block Transfer Device performs one of three

operations on a source data buffer: (1) it calculates a 16-bit

checksum on the data (2) it transmits the data words from the

source buffer to a destination buffer, or (3) it does both (1) and

(2) simultaneously. Aside from providing a convenient way to move

data around with a Pluribus system, this device provides a key

service for the system reliability software (see section 7.2). To

the DMA, the device appears as two separate sections - source

(transmit) and destination (receive) which deal with the DMA data

transfer independently but are linked closely together within the

device. Only the source interrupt and status, however, are used.

Checksum calculation is performed serially, low order bit first

with provision for either reinitializing or continuing the compu­

tation when a new data block is specified. Either an IBM CRC

16-bit checksum or a CCITT 16-bit checksum may be calculated. The

choice is switch-selectable. The generator polynomials for these

checksums are as follows: IBM: x16 + x15 + x2 + 1 and CCITT:

x16 + x12 + x5 + 1. Transfer rate is limited only by bus access

time when no checksum is being computed and by the slower of bus

access or checksum computation when a checksum is being computed.

Checksum computation time is approximately 1.3 microsecond per

16-bit word.

88

Report No. 2930 Bolt Beranek and Newman Inc.

The CBT is a DMA device and as such is programmed as described

in section 6.2. That section also describes the switches and

device independent bits in the CBT (DMA) registers. The interpreta­

tions of device dependent bits in the registers are indicated below.

In each case the description assumes that a one is read or written.

DEVICE TYPE: The high order byte contains a 3. Switch (bit) 0

selects a CCITT checksum (off) or an IBM CRC16 checksum (on).

TRANSMIT (SOURCE) END (15):

Write: This is the last buffer of the block.

TRANSMIT (SOURCE) END (0):

Write: Clear the checksum accumulator register. Writing

a zero indicates that the previous checksum should be pre­

served, e.g. when checking a multi-buffer block.

Read: Error

TRANSMIT (SOURCE) STATUS (15) "Check":

Write: Calculate checksum. Changing this bit while an

operation is in progress will cause an interrupt and a device

reset.

Reset: Checksum being calculated.

TRANSMIT (SOURCE) STATUS (14) "Transfer":

Write: Move data from source buffer to destination bu.ff er.

Writing this bit while an operation is in progress will

cause an interrupt and a device reset.

Read: Data being moved from source buffer to destination

buffer.

TRANSMIT (SOURCE) STATUS (13) "Active":

Read: CBT operation in progress.

89

Report No. 2930 Bolt Beranek a~d Newman Inc.

TRANSMIT (SOURCE) STATUS (12) "EOB Destination":

Read: Interrupt requested since the destination buffer

is too small for source buffer. CBT has suspended activity

until new destination buffer addresses are supplied for the

remainder of data. No data is lost. The error bit is also

set.

TRANSMIT (SOURCE) STATUS (11) "NOP":

Read: Interrupt requested since CBT initiated action but

registers indicate that there is nothing to be done. The

error bit is also set.

TRANSMIT (SOURCE) STATUS (10) "Last":

Read: TRANSMIT (SOURCE) END (15) was set when this buffer

was written.

TRANSMIT (SOURCE) STATUS (9) "Destination QUIT":

Read: The receive (destination) portion of the device

received a QUIT during the previous operation. The error bit

is also set.

DEVICE DEPENDENT DMA REGISTER - The 16-bit checksum is accumulated

here. This register may be initialized prior to the start of a

checksum computation. Writing this register during a check opera­

tion will cause an erroneous checksum to be calculated.

10.6 External Reload Device (RLD):
The Reload card (RDD) monitors the input data from up to eight

modem interfaces. When the RLD observes a command, it decodes the

command as a 20-bit system address, a 16-bit data word, and a 16-bit

CRC16 checksum. This single card device is not processor control­

lable, but is controllable by external ~ignals arriving over the

normal communication lines. The purpose of the RLD is to change,

control, or restart the Pluribus system from a remote site without

90

Report No. 2930 Bolt Beranek and Newman Inc.

on-site supervision. The RLD resides on an I/O bus, thus the RLD

can modify common memory busses and access processor busses by

backwards bus coupling as well as access devices on its own bus.

Whenever a message is received over a communication line,

the RLD checks the first bit (the least significant bit of the

first 16-bit word). If this bit is one, the RLD determines that a

sequence of RLD commands is arriving over that communication line

and ceases to monitor the other 7 modem interfaces until all com­

mands in the incoming message have been processed. Except for the

first bit of the first command in the message, each of the remaining

bits in each command are doubled to increase the uniqueness of the

reload packet and to guarantee that the DLE character will not

occur in the reload data stream. The format of an arriving RLD

message is indicated below:

D s 1 I Aj A A A 1 D D D D c c c c A c D E

AIJ:l D D D A A A A H H H H D H

L TD D D D D 1 T T T T E E E E D E L T

DR R R R A A A A c c c c R c
R E1 E E E 1 K K K K E . . . K

E s s s s s s s s s s
E XS s s s s 1 u u u u u u E x

s M M M M M M

0 4 8 12 16 0 4 8 12 0 4 8 12 0 f- 2

Bits: + + + + + + + + + + + + + + +

3 711 l~ l~ 3 7 l~ l~ 3 7 11 15 3 ~5

It should be noted that:

1) The low-order two bits of the first word of the first command

must be 01. The low order two bits of the first word of sub-

91

Report NO. 2930 Bolt Beranek and Newman Inc.

sequent commands in the message must be 00.

2) An eight-bit padding byte follows the high order address bits.

This byte can contain any non-zero "doubled" four-bit pattern.

The pattern can be set by jumpers on the card. (Note that

four ones are shown in the figure above.)

3) An arbitrary number of commands may contained in an RLD

message.

4) The 16-bit checksum on the address and data bits in the IBM

CRC-16 checksum with generator polynomial x16 + iI5 + x2 + 1.

For each command in the message, the RLD device stores the

incoming data word at the specified system address. This process

is repeated until either a bad checksum is detected, bad padding is

detected, non-doubled data is detected, a delayed bus access occurs,

or the RLD device times out after one second of inactivity. In

each of these cases, the RLD device releases the communication

line and is available to service one of the other modem interfaces.

There are 3 lights on the RLD device which provide a visual

indication of the device operation. One light is on from the time

that the device is first activated until the bus containing the

device is reset. The second is on for the duration of a single RLD

The third indicator is briefly lit by completion command sequence.

of each bus access.

10.7 Synchronous Line Interface (SLI):

The SLI provides a simple synchronous full-duplex interface

to a wide variety of modems. In contrast to the other interfaces

previously described, the SLI is a single passive device and does

not use either the DMA facility or the PID. To guarantee that

92

Report No. 2930 Bolt Beranek and Newman Inc.

neither data not line bandwidth will be lost, the processors must

poll each SLI in the system faster than the byte rate being used.

Each physical SLI card provides interfaces for two independent

lines. The allocation of the 8 words in the device register block

is given below. The location of the register block is fixed by

jumpers on the card.

Register 1: Device Type - Modem 1

Register 2: Status - Modem l

Register 3 : Control - Modem 1

Register 4 : Data - Modem l

Register 5: Device Type - Modem 2

Register 6: Status - Modem 2

Register 7: Control - Modem 2

Register 8 : Data - Modem 2

The Device Type and Status words are read only registers whereas

the Control and Data words are read-write registers. The inter­

pretation of bits in each of these four registers are given below.

In each case, the interpretation assumes that the particular bit is

one unless otherwise stated.

DEVICE TYPE (8-15): The high-order byte of the Device Type

register contains a 4.

DEVICE TYPE (6-7): These bits are set by switches on the SLI

card and indicate information concerning the speed of the

modem to which the SLI is connected.

Bits (6, 7)

00

01

10

11

93

Speed

Under 2.5K bits/sec

Under 5K bits/sec

Under lOK bits/sec

19.2K bits/sec and over.

Report No. 2930 Bolt Beranek and Newman Inc.

STATUS (15): The transmitter buffer is empty. The next character

may be written to the Data register. (It is assumed that

Clear to Send status (10) - has previously been found to be on.)

STATUS (14): A SYNC character has been transmitted. The program

was too slow in responding to STATUS (15) above and in the

absence of new data a SYNC character was transmitted. This

bit remains set until the next data character starts being

transmitted.

STATUS (10): Clear to Send. This is a signal received from the

modem. In general, this indicator signifies that the modem

is ready to transmit data. Refer to the modem literature for

more detail.

STATUS (8): Data Set Ready. This is a signal received from the

modem. In general, it indicates to the SLI that its modem

is not in a test mode and its power is on. Refer to the

modem literature for more detail.

STATUS (0-7): After a Receiver Reset (CONTROL bit 0) this half of

the Status Register will monitor the input data stream, that

is, bits will be detoured here as well as going to the Data

register. This will continue until a zero has propagated to

STATUS 0 at which point these 8 bits will no longer change.

A subsequent receiver reset will cause this first even char­

acter search mode to start again. It is expected that this

feature will be used to handle the case of devices transmitting

to the SLI which employ different sync characters. The first

even character received can by mutual agreement be the sync

character that will be recognized by the interface hardware

(see DATA (8) and DATA (9) below).

94

Report No. 2930 Bolt Beranek and Newman Inc.

CONTROL (10): Request to Send. This signal is passed directly

to the modem. In general, it indicates to the modem that the

SLI is ready to transmit data. The modern will normally

respond by setting Clear to Send STATUS (10). Refer to the

modem literature for more detail.

CONTROL (9): Loop Test. Loop the SLI output back into the SLI

input. This feature allows the SLI to test itself without a

modem.

CONTROL (7): Transmit and recieve in 7-bit plus parity mode.

This bit will be set by the program when communicating with

an ASCII terminal. When writing to the data register bits

0-6 will be accepted and the SLI hardware will add the correct

bit 7 to create odd parity in the 8-bit character transmitted.

Data words received will be checked for odd parity (see DATA

(9) below) but bit 7 of the data byte read will be zero. For

communication with EBCDIC terminals, CONTROL (7) is cleared.

In this case parity is neither generated nor checked. The

8-bit character transmitted is the 8-bit byte written to the

data register.

CONTROL (0): Receiver Reset. Clear Received Parity Error -

DATA (9), Receiver Overrun Error - DATA (8), Sync Received -

DATA (14), and Data Ready - DATA (15). As described above,

writing this bit also initiates sync character search mode and

initializes STATUS (0-7) to all ones.

In contract to the DMA devices previously described, the input

and output halves of the SLI share a single address for the two

(read and write) DATA registers. The proper SLI internal register

is referenced when the SLI is accessed as described below.

95

Report No. 2930 Bolt Beranek and Newman Inc.

DATA (15)

Read: Data Ready. Finding this bit set segnals that

a new character is in bits 0-7 of the DATA register.

If DATA (15) is zero, then no change has occurred to

bits 0-7 of the DATA register since the last time the

DATA register was read. Reading the DATA register

sets bit 15 if it was one. In normal operation, the

DATA register is read more frequently than the byte

rate, bit 15 is tested, and bits 0-7 extracted or ignored

as appropriate.

DATA (14)

Read: Sync Received. This bit will be one from the

time that a sync character is detected until a non-sync

character is detected. Although available, this infor­

mation will generally not be used by most programs.

DATA (9)
Read: A parity error has been detected. This bit is

cleared only by Receiver Reset. It is never set unless

CONTROL (7) has been set to one. Parity checking is

enabled when data mode is entered, that is, when the

first non-sync character after two successive sync

characters arrives.

Write: Store Transmit Sync. Route DATA (0-7) to a

special holding register (rather than transmit it).

This character will become the transmitted sync character,

i.e. it will be transmitted whenever the last bit of

a character has been sent but no new data character has

been written to DATA (0-7). This register remains

unchanged until rewritten.

96

Report No. 2930 Bolt Beranek and Newman Inc.

DATA (8)

Read: The incoming data stream has not been serviced

quickly enough and a character has been lost. Since

the input is double buffered, two byte times must have

elapsed since Data Ready was last set for this to occur.

This bit is cleared only by Receiver Reset.

Write: Store Receive Sync. Route DATA (0-7) to a

second special holding register (rather than transmjt

it). This character will become the receive sync

character, that is, this character will be compared to

the received bit stream to achieve character

synchronization. Data mode will be entered after at

least two adjacent sync characters have been received.

This register will remain unchanged until rewritten.

DATA (0-7)

Read: Input Data Byte. This is the data to be extracted

when Data Ready is Set.

Write: Output Data Byte. This is the location to which

the next 8-bit byte should be written when Transmit

Buffer Empty is found set. This repister is not protected

against premature writing and no indication is provided

if it is written when Transmit Buffer Empty is zero.

If this happens, the character previously written will

have been lost without being transmitted. Each receive

and transmit portion of the SLI device is actually

double buffered in addition to the serial-to-parallel

shift register in the card. This extra bufferinv implies

that the programmer actually has longer than a single

character time in which to service the device. In addition,

the programmer should also be aware that this buffering

97

Report No. 2930 Bolt Beranek and Newman Inc.

has other implications since the contents of the status

and data registers are not synchronized. A status

indicator can not be associated with the data byte

currently available in the data register.

The SLI device can be used with either switched or

dedicated channels. The Data Set Ready, Data Terminal

Ready, and Carrier Detect signals will be useful primarily

in switched applications. They can all be strapped to

"true" values for unswitched operation. If the SLI

is used with a full-duplex channel (i.e. modem and

circuit) the Request to Send and Clear to Send Signals

could also be strapped "true". They are included to

allow the option of half-duplex operation.

98

Report No. 2930 Bolt Beranek and Newman Inc.

REFERENCES

1. Heart, F. E., Ornstein, S. M., Crowther, W. R., and Barker,
W. B. , "A New Mlnicomputer Mu 1 ti processor for the ARPA
Network,n ~r_g_c;eedings of the 1973 AFIPS Nationa:), Computer
Corif.e_rer.i_~_e, Vol. 42, pp. 529-537.

2. Lockheed Electronics Company, SUE Computer Handbook

3. Lockhe~d Electronics Company, SUE Computer System, General
System Bulletin G2, included in Pluribus Document 3,

4. Lockheed Electronics Company, SUE Processor Instruction
Set, General System Bulletin G3, included in Pluribus
Document 4.

5. Lockheed Electronics Company, SUE Infibus Interface,
General System Bulletin G4, included in Pluribus Document 6.

6. Bolt Beranek and Newman Inc., Pluribus Document 3:
Configurator.

7. Ornstein, S.M., Crowther, W.R., Kraley, M.F., Bressler, R.D.,
Michel, A., and Heart, F.E., "Pluribus - a Reliable
Multiprocessor," to appear in the Proceedings of the 1975
AFIPS National Computer Conference.

8. Bolt Beranek and Newman Inc., "Specifications for the
Interconnection of a Host and an IMP," BBN Report No. 1822.

99

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

PART 3: GLOSSARY

1

Report No. 2930 Bolt Beranek and Newman Inc.

GLOSSARY

Update History:

Originally written by M.F. Kraley, February 1975.

2

Report No. 2930 Bolt Beranek and Newman Inc.

60 Hz. interrupt - a classical interrupt occurring at the
power line frequency on level 4, device number 1.

abort - a QUIT.

access time - time from the initiation of the request (rise
of STRB) to the presentation or acknowledgment of data
(rise of DONE) .

active - said of a DMA device while it is transferring data:
from the writing of the end pointer to the setting of
the PID level.

active I/O device - an I/O device which indicates its need
for service directly, usually either by classical or
pseudo interrupt; cf. passive I/O device.

address halt - a feature of the control panel which halts a
processor when a selected address is accessed on the
bus.

address recognition - the process in which a module checks
the Inf ibus address lines for an address which is in
the range of those which pertain to that module.

address space the set of locations accessible to
(addressable by) a device; cf. memory space, I/O
space, system address space, processor address space,
etc.

amputate - to disconnect a bus (usually a processor bus)
from the rest of the system by turning off the forward
enable bit in all bus couplers coming from that bus.

ALD - a LEC card which implements the AutoLoaD function.

arbitration - the act of choosing the next prospective user
of a resource.

ARPA Network - a national network of heterogeneous computers
linked to facilitate research; the original design
environment for the Pluribus.

asynchronous - not necessarily occurring at a certain time
or at fixed time intervals.

asynchronous line - a serial communications
receiver derives timing information
transition of a character's start bit;
sent individually, at arbitrary times,
and stop bits.

3

line where the
from the initial
characters are

bounded by start

Report No. 2930 Bolt Beranek and Newman Inc.

attention - a classical interrupt on level 1, device
FF80, caused by pushing the "attn" button
control panel.

number
on the

autoload - a LEC module which contains some read only memory
programmed to do loading from any of a number of I/O
devices; when commanded by a bus signal, the autoload
will initiate a classical interrupt, having first set
the vector address to point to the ROM.

auto restart - see power recovery.

auxiliary I/O space - the portion of I/O space from FCOOO
through FDFFF.

auxiliary processor - a processor which is not number 0 and
thus does not handle classical interrupts.

AXD parity - a scheme wherein the parity bit(s) are derived
from both the address and data; specifically, the
parity bit of each byte is the exclusive-OR of the odd
parity of the data and the odd parity of the byte
address of that byte.

backwards bus coupling - the process by which a master on a
common (usually I/O or M/I) bus can access a slave on
another bus (usually a processor bus) ; used by
processors to access other processors' address space.

bandwidth - the rate at which information may be transferred
or processed.

BBC - Backwards Bus Coupling.

BBC enable bi\t - bit 2 of the bus coupler control register;
controls whether that coupler is selected for BBC.

BBC map a register in the BCM which specifies the
high-order address bits of a BBC reference.

BBC window - the four word region of system address space
through which BBC references are perfoZ11ted.

BBN - Bolt Beranek and Newman Inc.; the developer of
Pluribus.

BCI - Bus Coupler I/O end; the card which forms the I/O end
of an I/0-to-memory bus coupler.

BCM - Bus Coupler Memory end; the card which .forms the I/O
end of a processor-to-I/O coupler and the memory end of
processor-to::..memory and I/O-to-memory bus couplers.

4

Report No. 2930 Bolt Beranek and Newman Inc.

BCP - Bus Coupler Processor end; the card which forms the
processor end of processor-to- memory and
processor-to-I/O bus couplers.

BCU - Bus Control Unit; a LEC card which performs bus
supervisory functions; it is chiefly responsible for
arbitrating the use of the bus, but also assists in
classical interrupts and other specialized functions.

BDR - Bus Driver/Receiver: a custom IC used in both LEC and
BBN boards to interface with the Infibus.

begin pointer - in a DMA device, the address of the first
word of the buffer.

bezel - the decorative front of a bus unit which also
contains an air filter.

block transfer - the act of copying the contents of a series
of contiguous memory locations to another place.

buddy - the other processor(s) on the same bus.

buffer - a series of contiguous memory locations which holds
a block of data.

bus - usually an abbreviation for Infibus.

bus arbiter - a BCU.

bus controller - a BCU.

bus coupler - a module which allows transactions on one bus
to be transformed into transactions on another bus,
depending upon address; composed of a BCM, either a BCP
or BCI, and connecting cables; performs other special
features such as parity generation and checking,
mapping, power isolation, and amputation.

bus extender - a LEC module which allows one logical bus to
span more than one bus unit; the extended bus looks
just like one long bus; it consists of two cards, BXD
and BXR, and two connecting cables.

bus timer - usually refers to the reset timer.

bus unit - the basic mechanical module of the Pluribus;
contains various combinations of Inf ibusses and power
supplies, and has integral cooling.

BXD - Bus Extender Driver; the card which forms part of the
bus extender; plugs into the same bus as the BCU.

5

Report No. 2930 Bolt Beranek and Newman Inc.

BXR - Bus Extender Receiver; the card which forms part of
the bus extender; plugs into the bus which does not
have a BCU.

byte - 8 bits; two bytes to a word.

cable - an assembly which electrically connects two or more
moduJes and/or external equipment; each type has a four
letter designation.

card - a logic board which plugs into the Infibus; each type
has a three letter designation.

CBT - a BBN card which forms part of a Checksum-Block
Transfer module.

CCITT checksum - a 16 bit checksum computed with polynomial
x**l6 + x**l2 + x**S + x**O.

CCP - Communications and Control Processor, a
application which involves the collection,
processing and routing of seismic data.

Pluribus
limited

central processor - the
connected to the
classical interrupts.

number 0 processor
bus arbiter which

electrically
handles all

checksum - a number of bits associated with a block of data
computed via a fixed function from the data; the
implicit redundancy can then be used to detect changes
in the data.

checksum-block transfer - a BBN module which allows the
computation of a cyclic checksum and/or the copying of
a block of memory; consists of a DMA and a CBT.

classical interrupt - the diversion of the control stream of
a processor in response to an external event; the
device number of the interrupting device, status and
program counter at the time of interruption are saved
and the processor jumps indirect through a fixed
location; also refers to the bus transaction which
causes the interrupt.

classical parity - the par.ity scheme wherein the source
generates on writes and the source checks on reads.

clock - usually refers to RTC.

cMB - the LEC printed circuit board which forms the actual
Infibus; holds the edge connectors for the cards.

6

Report No. 2930 Bolt Beranek and Newman Inc.

common bus - a bus which is not a processor bus: a memory,
I/O, or M/I bus.

common memory - that memory which can be
processors, that is, all memory
busses.

accessed by all
on memory or M/I

configuration - the process by which a group of Pluribus
modules are selected and an arrangement designed to
create a machine for a particular application.

consensus - the agreement between processors that to take a
particular action would be in their common interest;
also refers to the process by which agreement is
reached.

console - usually refers to the control panel.

contention the situation where
attempting to simultaneously
usually causes delay.

multiple users
use a resource;

are
this

continuous read/write - a feature of the control panel which
when set, repeatedly performs the access requested by
depressing the "read" or "write" buttons; located on
the rear of the control panel.

control panel - a LEC module which allows manual reading and
writing of addresses, typically memory locations,
processor registers, and starting and stopping of
processors, and other special functions; consists of
two cards, PCB and PBI, connected by a DIP connector
cable, and a front panel, SWB, which connects to the
other cards via three ribbon cables.

control register - a location associated with a module whose
bits correspond to program settable functions; in a
processor, register 15; in a serial or parallel
interface, the address of the device + 6; in a bus
coupler, set by the jumpers on the BCM.

cooling module - the external shell
provides mechanical support
fan pack, and bezel, and
deflection.

of a bus unit which
for the Infibus chassis,

airflow isolation and

CPA - a LEC card which forms part of the processor.

cPB - an early LEC card which used to form part of the
processor; superseded by CPC.

CPC - a LEC card which forms part of the processor.

7

Report No. 2930 Bolt Beranek and Newman Inc.

CPU - central processor; more generally, but incorrectly, a
processor.

CRC-16 checksum - a 16 bit checksum computed with polynomial
x**l6 + x**l5 + x**2 + x**O.

cycle time - the time from the beginning of a request until
the device has completed all activity related to that
request and is ready to start or accept another;
usually longer than access time.

cyclic checksum - a checksum computed by dividing the data
by a specific polynomial and taking the remainder.

D-cable - a cable which connects a card plugged into an
Infibus with the fantail.

DBAL - Dual Bus Access Logic, a custom IC that contains much
of the logic necessary to be a bus master.

DDT - a program which allows the user to inspect and change
memory locations and processor registers, start and
stop processors, copy memory, field traps and other
useful things; in many ways, can be thought of as a
simple executive, providing an environment for user
programs.

deadlock a state in which two (or more) processes
(hardware or software) are each waiting for a resource
held by the other; each now waits indefinitely for the
otherrs resource to become available.

device - usually a module that performs I/O functions;
sometimes refers just to DMA devices.

device dependent - a register or bit whose interpretation or
function is determined by the particular module with
which it is associated.

device independent
interpretation
module types.

or
a register

function
or bit with a common

over a range of different

device register block - the eight word segment of address
space which is associated with a DMA device.

device type - a nurnber indicating the type of the associated
module; usually program readable in the low order byte
of the first register of the device.

device number - a number associated with each device which
causes classical interrupts; when servicing an
interrupt, this number can be read from the first word

8

Report No. 2930 Bolt Beranek and Newman Inc.

of the interrupt vector, indicating which device caused
the interrupt.

DMA - Direct Memory Access; a BBN card which performs the
bus interaction and pointer management for I/O devices.

DMA device - an I/O device which uses a DMA; it transacts
directly with memory with data in buffers.

DONE an Inf ibus signal that indicates successful
completion of a bus access cycle; also serves as the
strobe for data in a read access.

doubled cable - a cable which connects the two parts of a
doubled interface with the fantail.

doubled interface - an interface which, for reliability
considerations, consists of two modules on different
busses, connected such that either one can serve the
external equipment.

elastic buffer - a buff er which allows input and output to
proceed asynchronously, at different rates.

end pointer - in a DMA device, the address of the last word
of a buffer.

executive core - usually refers to locations 0-SE; the area
in which interrupt, QUIT, and ILLOP information is
stored.

EXY - Eight X and Y; a LEC card which forms part of the
memory; contains the core stack itself.

F-cable - a cable which connects external equipment to the
fantail.

fan pack - a chassis containing six fans that provide the
cooling for each bus unit.

fantail - a panel which contains connectors for cables from
external equipment which interface to internal cables;
used to facilitate the reconnection of external
equipment.

feedback parity - the parity scheme wherein the destination
generates and the source checks parity on all
transfers.

flop - flip-flop.

force reload - a scheme by which memory locations may be
loaded, processors started, etc., via special,, heavily

9

Report No. 2930 Bolt Beranek and Newman Inc.

passworded messages on modem lines; used for remote
start-up of machines.

forward enable bit - bit 1 of the bus coupler control
register; when cleared, prevents all forward accesses
through that coupler, thus amputating the bus
associated with the BCP or BCI of that coupler.

F-stick - to map an address in I/O space via the implicit
fixed mapping.

full duplex - a communications path wherein transmission can
take place in both directions simultaneously.

ground modem - not a satellite modem.

half duplex - a communications path wherein transmission can
take place in either direction, but not both
simultaneously.

halt(ed) - a state of the processor wherein instructions are
not being executed, interrupts cannot be honored, and
the registers are externally accessible.

hex - abbreviation for hexadecimal, base 16.

high speed modem - a BBN module which interfaces to a Bell
306 modem at speeds up to 1.5 Mbaud; consists of MHX,
MHR, and DMA.

HLC - Local Compatible Host; a BBN card that forms part of a
Host interface.

HIT - the name of the general Pluribus system test program.

Host - a computer which provides and uses the actual network
services; connected into the network via an IMP.

Host interface - a BBN module which interfaces to a local
Host; comprised of a DMA and HLC.

hot code - frequently executed code which is located in
local memory.

IBM - four card interconnect module.

IBM checksum - CRC-16 checksu..Ti.

ICM - three card interconnect module.

IDM - two card interconnect module.

10

i
'

Report No. 2930 Bolt Beranek and Newman Inc.

I-cable - a cable which connects two internal cards.

idle - a state of the processor wherein no instructions are
being executed, registers are not externally
accessible, but interrupts may be honored.

illegal operation - trap caused by attempted execution of an
instruction not in the repertoire of the processor.

ILLOP - illegal operation.

ILLOP vector - the four word block holding information
pertinent to the current ILLOP; starts at 20 for
processor O, 30 for processor l; contents are: illegal
instruction, status, program counter, address of
service routine.

IMP - Interface Message Processor; the node computer of the
ARPA Network, which performs the basic packet-switching
functions.

Inf ibus - the bus which physically and electrically connects
the cards of a Pluribus system.

interface - a module which allows access and information
flow to and from external equipment.

interrupt - usually a classical interrupt.

interrupt vector - the four word block holding information
pertinent to a given interrupt level; for levels 1-4,
starts at locations 0,8,10,18 respectively; contents
are device number, status, program counter, address of
service routine.

I/O bus - a bus which contains primarily I/O devices.

I/O space - the part
FFBFF; the area
from processor
corresponding
(COOO-FBFF)

of system
which may

address
section

address space from FCOOO to
be accessed via fixed mapping
space; also refers to the
of processor address space

isochronous line - a serial communications scheme wherein
bit timing is derived from a separate clock line, but
characters may be sent at arbitrary intervals and are
bounded by start and stop bits.

jiffy - a 60 Hz. interrupt or l/60th of a second.

JIG - the name of the bus coupler stand-alone test program.

1 1

Report No. 2930 Bolt Beranek and Newman Inc.

K - 1024(decimal}.

key bits - address bits 16 and 17, asserted on
references according to the contents of
register set by the SKEY instruction;
differentiate among the various processors on

LEC - Lockheed Electronics Company.

level 5 interrupt an ILLOP.

level 6 interrupt a QUIT.

processor
a two bit
used to
a bus.

local Host a Host interconnected via a bit serial,
handshook interface, usually over distances of less
than 30 feet.

local memory - memory on a processor bus, as opposed to
common memory.

lock - a data structure (usually a single word) used to
interlock processes; also refers to the act of reading
a lock with a read-clear cycle.

Lockheed Electronics Company - the manufacturer of several
Pluribus parts.

low speed modem interface - a BBN module which interfaces to
a Bell 303 modem at speeds up to 250 Kbaud; consists of
a MLX, MLR, and a DMA.

map value - the 7 bit number that determines which 4K page
of system address space is referred to by accesses in
the associated map segment.

map segment - one of the four 4K regions of processor
address space through which accesses are made to common
memory.

mapping - the act of transforming an address in one address
space to that in another.

master the participant
initiates the access;
accessing memory.

in a bus transaction which
e.g. the processor, when it is

memory - a LEC moau~e, either 4K or 8K by either 16 or 18
bits of random access core memory, consisting of three
cards: TAG, SID, and EXY; also refers to a more generic
collection of the above.

memory bus - a bus which contains primarily common memory.

1 2

Report No. 2930 Bolt Beranek and Newman Inc.

memory space - the part of system address space from 0 to
FBFFF.

message - the unit of data communicated between Hosts;
messages are broken up by IMPs into one or more packets
for transmission in the subnetwork.

M/I bus - a common bus which contains both Memory and I/O.

MHR - a BBN card which forms the Receive half of a
High-speed ground Modem interface.

MHX - a BBN card which forms the transmit half of a
High-speed ground Modem interface.

MLR - a BBN card which forms the Receive half of a Low-speed
ground Modem interface.

MLX - a BBN card which forms the transmit half of a
Low-speed ground Modem interface.

modem - a piece of external equipment which converts digital
signals from the computer to analog signals for
communication and vice versa; also refers to modem
interface.

modem interface - the module which interfaces to a high
speed synchronous modem, either ground or satellite,
low or high speed.

module - a unit consisting of one or more cards which
performs a unified function.

MSR - the BBN card which forms the Receive part of the
Satellite Modem interface.

MST - the BBN card which performs the Timing functions of
the Satellite Modem interface.

MSX - the BBN card which forms the transmit part of the
Satellite Modem interface.

multiprocessor - a system which contains several tightly
coupled processors with some common resources.

Multiwire - a technology for making cards, midway between
printed circuit and wire wrap in the dimensions of cost
and difficulty; consists of a printed circuit card
which carries power and ground, covered by a sticky
insulating layer, in which insulated wires are laid to
form the signal paths.

l 3

Report No. 2930 Bolt Beranek and Newman Inc.

P-cable - a cable which carries primarily power.

packet - the unit of data communicated between IMPs on modem
lines; several packets may form a message; usually on
the order of one or two thousand bits.

packet-switching - a communications scheme in which
of data from many sources are forwarded
destinations along the same line, multiplexing
of the line at a high rate.

packets
to many
the use

page - a 4K region of common memory, or more generally,
system address space.

PAR - I/O PARity; a BBN card which generates parity for
references to I/O devices.

parallel interface - a LEC module that can interface up to
20 parallel bits of information; can be polled or use
classical interrupts; used primarily as the paper tape
reader interface; card type PPB.

parity - the exclusive OR of a collection of data and /or
address bits; also refers to schemes which detect
changes by generating and later checking the parity of
a collection of bits.

parity memory - memory which is 18 bits wide, allowing a
parity bit to be stored for each byte.

passive I/O device
interrupt; cf.

a device which must be polled, does not
active I/O device.

password - a specific combination of data bits which must be
written in order for an action to take place; used for
reliability considerations.

PBI - Panel Bus Interface; a LEC card which forms part of a
control panel.

PCB - Panel Control Board; a LEC card which forms part of a
control panel.

PCD - PreCeDence passer; a BBN card which serves only to
pass the precedence pulse by an empty slot; used for
debugging.

PDU - Power Distribution Unit; usually refers to a BBN
module which accepts site power and distributes it,
with appropriate switches, circuit breakers and
indicators; also refers to a LEC module which provides
two key switches, one for power, the other for
processor selection.

1 4

Report No. 2930 Bolt Beranek and Newman Inc.

PID - Pseudo Interrupt Device, a BBN module which serves as
a hardware pending task queue.

PID level - the number that a device or a processor writes
to the PID to signify that the associated task should
be run.

Pluribus a line of modular, reliable,
multiprocessor/minicomputer systems produced by BBN.

poll - the act of periodically checking a device to see if
some event has occurred, as opposed to the device doing
its own notification when a change in status occurs.

power fail -
before
complete
2.

a classical interrupt which
bus operations are ceased
power loss; occurs on level 4,

occurs 2.5 ms.
preparatory to
device number

power restart
restoration
number 4.

a classical interrupt which occurs on
of local bus power on level 4, device

power sense - an Infibus signal that indicates the condition
of bus power, gives advance notice of a power failure;
also refers to circuitry in the bus coupler that checks
the status of power at each end of the coupler,
allowing one end to disregard signals coming from a
card with inadequate power.

power supply - a LEC module which supplies Inf ibus logic
power and a 60 Hz. signal; comes in two styles:
internal (plug-in, 595l) which takes up 8 of the 24
slots of an Infibus, and external (stand-alone, 5952)
which requires its own bus unit.

PPB - Peripheral Parallel Buffer; parallel interface.

precedence pulse - an Inf ibus signal which is daisy-chained
between cards; used to resolve priority for the
selection of the next bus master.

primary I/O space - the portion of I/O space from FEOOO to
FFBFF.

printed circuit - a technology for fabricating cards which
involves etching away copper-clad epoxy boards to form
the signal paths.

private memory - local memory.

processor a LEC module which executes instructions;
consists of two cards, CPA and either CPB or CPC; three

1 5

Report No. 2930 Bolt Beranek and Newman Inc.

microcode versions exist: standard, business, and
scientific.

processor address space - the address space seen by an
individual processor; 32K words long.

processor bus a bus which contains processors and
(usually) local memory.

processor bus address space - the aggregate of the four
potential processor address spaces on a processor bus;
128 K words long.

pseudo interrupt the act of writing a number to the PID to
indicate that a task associated with that number should
be performed.

PSB - Peripheral Serial Buffer; serial interface.

QUIT - an Infibus signal that indicates abnormal completion;
e.g. non-existent device, malfunctioning device,
parity error, etc.; also refers to the trap that is
taken when a processor-initiated access results in a
QUIT.

QUIT timer - the timer on the bus arbiter which regulates
how long the bus will wait for a DONE before deciding
that the intended slave will not respond and thus
should issue a QUIT, terminating the access; these
timers have different values on different bus types.

QUIT vector - the four word block of memory which records
information pertinent to the most recent
processor-initiated QUIT; contents are: address
referenced, status, program counter, and address of
service routine; located at 28 for processor 0, at 38
for processor 1.

rack - the unit which houses bus units; up to five bus
units, a PDU, and a fantail may be mounted in one rack.

read - an access in which data is transferred from slave to
master.

read-clear - a read-modify-write access in which the written
data is zero.

read-modify-write - an access in which data is read from
memory and then (potentially) different data is written
back to the same address, all within one memory cycle.

real time clock - RTC.

l 6

Report No. 2930 Bolt Beranek and Newman Inc.

reload card - RLD.

remote power fail - a classical interrupt which indicates
that a common bus's power is failing and about 2.5 ms.
of usable power remains; occurs on level l, device
number 1.

remote reset - the low-order bit of a bus coupler's control
register; when cleared, causes a reset to occur on the
bus which the BCP is plugged into.

reset timer - see bus timer.

resource - a part of a system needed by more than one of the
parallel users and therefore a possible source of
contention.

ribbon cable a multiconductor cable made of several
parallel wires bonded together in a flat shape.

run - a state of the processor in which instructions are
being executed, interrupts may be honored, and
registers are not externally accessible.

ribbon - the part of an algorithm associated with a single
PID level; may be one or more strips.

RLD - ReLoaD; a BBN module which allows forced reloads.

round robin - a feature of the bus arbitration scheme which
enforces fairness of access to the bus; when a device
has been granted a bus access that terminates normally,
it is not allowed to request another access until all
those devices on that bus which are currently
requesting access have been granted same.

RTC - Real Time Clock; a BBN card which causes PID levels at
intervals of 25.6 ms. and 1.6 ms., has a program
readable 16 bit counter that increments each 100 us.,
and three 16 bit readable switch registers.

SACK timer - a timer on the bus arbiter which guards against
the case wherein a potential bus master requests an
access, subsequently stops the precedence pulse,
indicating that it will be the next master, but fails
to assert SACK, acknowledging this fact.

satellite modem interface - a BBN module which interfaces to
a satellite ground station transmitter; has features to
enable use of the satellite channel in broadcast mode
such as provision for switching the carrier and
accurate timing of transmission and receipt of packets;
consists of four boards: MSR, MST, MSX, and DMA.

1 7

Report No. 2930 Bolt Beranek and Newman Inc.

scientific processor - the processor module
instruction set, including multiply,
precision, etc.

with extended
divide, double

select cycle - that part of an access which is concerned
with selecting the next master.

self interrupt - a trap.

serial interface a LEC module that interfaces asynchronous
(start/stop) I/O devices; strappable for various
speeds, character sizes, EIA vs. current loop, modem
options, etc.; is half duplex and may either be polled
or use classical interrupts; card type PSB.

service cycle - that part of an access wherein the master
actually transacts with the slave.

SIMP - Satellite Interface Message Processor;
uses broadcast satellite channels as
conununications links.

an IMP which
some of its

simplex - a communications path wherein communication can
take place in only one direction.

slave - the participant in a bus transaction which responds
to the master's request; e.g. the memory, when the
processor is accessing it.

SID - Sense and Inhibit Drivers - a LEC card which forms
part of the memory.

SLI

SMS

Synchronous Line Interface a BBN card which
a passive device interfaces two synchronous lines;

which must be polled.

Synchronous Modem Simulator;
interfaces two synchronous data
appearance that the Pluribus is a
device which must be polled.

a BBN card which
sources, giving the

modem; a passive

SRN - System Release Notice.

status register - a location associated with a module whose
bits report various combinations of the module; in a
processor, register 8; in a serial or parallel
interface, the first register; in a DM.A device, the
fourth and seventh registers.

step - the act of causing a processor to execute a single
instruction and then halt.

18

Report No. 2930 Bolt Beranek and Newman Inc.

start pointer - begin pointer.

STRB - an INFIBUS signal which indicates that a master is
transacting with a slave; used to strobe address and,
on a write, data.

strip - a set of instructions which are executed as a unit
between references to the PID.

SUE - System User Engineered; the name of the line of LEC
parts which make up part of a Pluribus.

SWB - SWitch Board; the front panel of the control panel.

subnetwork - the collection of node computers (IMPs) and
communication lines of a network which perform the
actual routing and transmission of the data.

synchronous - occurring at fixed time intervals.

synchronous line - a communications line where the timing
information is derived from the transitions between
data bits; data is usually sent in blocks.

synchronizer - a device which resolves two asynchronous time
references.

system a.ddress space - the address space of common busses;
seen directly by I/O devices and indirectly by
processors after mapping; 512K words long.

system release notice a document
Pluribus system describing
configuration of each component.

associated with
the location

each
and

TAG - Timing And Gating; a LEC card which forms part of the
memory.

three phase wye - the type of AC power that the Pluribus PDU
requires; there are five wires: one is for protective
(green) ground; one is common for the other three, each
of which has a 117 volt AC potential with the common,
but the phase of the legs is staggered by 120 degrees.

throughput - the rate at which information can be processed.

TI usually refers to Texas Instruments Silent
terminal.

700

timer - a device,· hardware or software, which watches over
the activity of a part of the system; the timer is
periodically reset by the occurrence of an event which
signifies correct operation and which should occur

19

Report No. 29'30 Bolt Beranek and Newman Inc.

periodically; should a specified time interval elapse
without a reset, the timer will "time out" initiating
some remedial action.

TIP - Terminal Interface message Processor; an lMP with
built-in simple Host capabilities which allows users at
terminals access to the network, obviating an external
Host computer.

TOD - Time Of Day; a modification to a pair of PPB boards to
interface a Systron~Donner clock.

trap - either a QUIT or an ILLOP.

very distant Host - a Host connected to the IMP via a
communication link, with associated error detection and
retransmission protocols.

VDH - Very Distant Host.

VISTAR - refers to an Infoton VISTAR terminal.

watchdog timer - cf. timer.

window - one of the four 4K regions of processor address
space which can be mapped onto a page of system address
space.

wire-wrap a technology for making boards wherein
connections are made by wrapping a wire around a pin
located adjacent to the component.

word - the basic element of data; has 16 bits and two parity
bits; there are two bytes in a word.

woven cable - a multiconductor cable constructed by weaving
together several twisted pairs with a nylon thread.

write - a bus transaction where the data flow is from master
to slave.

20

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

PART 4: INDEX

1

Report No. 2930 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 2: SYSTEM HANDBOOK

PART 5: REPRINTS OF PAPERS

1

Reprinted from -

AFIPS - Conference Proceedings
Volume42

© AFIPS PRESS
Montvale, N. J. 07645

A new minicomputer/multiprocessor
for the ARPA network*

byF. E. HEART, S. M. ORNSTEIN, W.R. CROWTHER, and W. B. BARKER

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

Since the early years of the digital computer era, there
has been a continuing attempt to gain processing power
by organizing hardware processors so as to achieve some
form of parallel operation ... , One important thread has
been the use of an array of processors to allow a single
control stream to operate simultaneously on a multiplic­
ity of data streams; the most ambitious effort in this
direction has been the ILLIAC IV project. 3 ·•· Another
important thread has been the partitioning of problems so
that several control streams can operate in parallel. Often
functions have been unloaded from a central processor
onto various specialized processors; examples include
data channels, display processors, front-end communica­
tion processors, on.line data preprocessors-in fact, I/0
processors of all sorts. Similarly, dual processor systems
have been used to provide load sharing and increased
reliability. Still another thread has been the construction
of pipeline systems in which sub-pieces of a single
(generally large) processor work in parallel on successive
phases of a problem.' In some of these pipeline
approaches the parallelism is "hidden" and the user con­
siders only a single control stream.

In recent years, as minicomputers have proliferated,
groups of identical small machines have been connected
together and jobs partitioned quite grossly among them.
Most recently, our group and several others have been
investigating this avenue further, attempting to reduce
the specialization of the processors in order to employ
independent processors with independent control streams
in a cooperative and "equal" fashion. 6 ·7 •8

This paper describes a new minicomputer/ multipro­
cessor architecture for which a fourteen-processor proto­
type is now (February 1973) being constructed. The
hardware design and the software organization include
many novel features, and the system may offer significant
advantages in modularity and cost/performance. The

* This work was sponsored by the Advanced Research Projects Agency
under Contracts DAHCJ5-69-C-0179 and F08606-73-6-0027.

529

system contains an expandable number of identical proc­
essors, each with some "private" memory; an expandable
amount of "shared" memory to which all processors have
equal access; and an expandable amount of 1/0 interface
equipment, controllable by any processor. The system
achieves unusual modularity and reliability by making
all processors equivalent, so that any processor may per­
form any system task; thus systems can be easily config­
ured to meet the throughput requirements of a particular
job. The scheme for interconnecting processors, memo­
ries, and I/0 is also modular, permitting interconnection
cost to vary smoothly with system size. There is no "exec­
utive" and each processor determines its own task alloca­
tion.

A key issue throughout most of the attempts at parallel
organization has been the difficulty of partitioning prob­
lems in such a way that the resulting computer pro­
gram(s) can really take advantage of the parallel organi­
zation. This issue is raised in its most serious form when
the parallel machine is expected to work well on a great
diversity of problems as, for example, in a time-sharing
system. Our machine design has been developed under
the highly favorable circumstances that (1) the initial
application, and a prior software implementation in a
standard machine, was well understood; (2) the initial
application lent itself to fragmentation into parallel struc­
tures; and (3) the design would be deemed successful if it
handled only that one application in a meritorious fash­
ion. However, we now believe that the design is advanta­
geous for many other important applications as well and
that it may herald a broadly useful new way to achieve
increased performance and reliability.

The machine has been designed to serve initially as a
modular switching node for the ARPA Network• and, in
the following section, we briefly describe the ARPA
Network application and the requirements that the net­
work imposed upon the machine design. In subsequent
sections we discuss our choice of minicomputer, describe
our system design in some detail, discuss certain of the
more interesting characteristics of multiprocessor behav­
ior, and summarize our present status and plans for the
near future.

530 National Computer Conference, 1973

ARPA NETWORK REQUIREMENTS

The ARPA Network, a nationwide interconnection of
computers and high bandwidth (50 Kb) communication
circuits, has grown during the past four years to include
over 35 sites, with more than one computer at many sites.·
The computers at each site, called Hosts, obtain access to
the net via a small communications processor known as
an Interface Message Processor or IMP .10 In order to
permit groups without their own computer facility to
access this powerful set of computer resources, a version
of the IMP called a Terminal IMP allows, in addition,
attachment of up to 63 local or remote terminals of a wide
range of types. 11

As a considerable simplification, the job to be handled
by an IMP is that of a communications processor. Arriv­
ing messages must pass through an error control algo­
rithm, be inspected to some degree (e.g., for destination),
and generally be directed out onto some other line. Some
incoming messages (e.g., routing control messages) must
be constructed or digested directly by the IMP. The IMP
must also concern itself with flow control, message assem­
bly and sequencing, performance and flow monitoring,
Host status, line and interface testing, and many other
housekeeping functions. To perform these functions an
IMP requires memory both for program and for message
buffers, processing power for executing the program, and
I/0 units of various sorts for connecting to a variety of
lines and devices. The original IMP, built around a
Honeywell 516 processor with a 1 µs cycle time, could
handle approximately three-quarters of a megabit per
second of full duplex communications traffic. A later,
smaller and cheaper (Honeywell 316) version handles
about two-thirds as much traffic.

As the network has grown and as usage has increased, a
number of demands for improvement have led to the need
for a new "line" of IMP machines. Our intent is to pro­
vide a m~dular arrangement of flexible hardware from
which it will be possible to construct both smaller and less
expensive IMPs as well as far more powerful IMPs. An
important specific objective is to obtain an IMP whose
communications bandwidth could be at least an order of
magnitude greater than the 516 IMP; such a high speed
IMP would permit the direct connection of satellite cir­
cuits or land T-carrier circuits operating at approxi­
mately 1.3 megabits/second.

It is also desirable to improve the present IMP design
in a number of other areas, as follows.

• Expandability of I;O: The present IMPs permit
connection to a total of only seven high-speed circuits
and/or Host computers. We would like to permit a
much greater fanout so that an IMP might be con­
nected to as many as 20 or more Host computers or
to hundreds of terminals. This means that the num­
ber of interface units should be expandable over a
wide range.

• Modularity: A number of groups have wished to
make a network connection from a single Host at a

considerable distance (miles) from the nearest IMP.
We feel that such Hosts should be locally connected
to a very small IMP in order to preserve consistency
and standardization throughout the network. There­
fore, a goal of this new hardware effort is the provi­
sion of a small and inexpensive but compatible lMP
which could serve to connect a single, distant spur
Host.

• Expandability of Memory: The new line of equip­
ment is required for use in connection with satellite
links (or longer faster links in general) and must
therefore be able to expand its memory easily to
provide the much greater buffer storage require­
ments of such links.

• Reliability: The new line of processors should be
more reliable than the existing IMPs and ought to
permit better self-diagnosis and simple isolation and
replacement of failing units.

Of the requirements posed by the ARPA Network
application, the most central was to obtain an order-of­
magnitude traffic bandwidth improvement. We first con­
sidered meeting this requirement with highly specialized
hardware, but the need to allow evolution of the commu­
nications algorithms, as well as the "bookkeeping" nature
of much of the IMP task, militate against hardwired
approaches and require the flexibility of a stored program
computer. Thus we need a machine with an effective
cycle time of 100 nanoseconds, a factor of ten faster than
the present 1 µs IMP. Realizing that a single very fast
and powerful machine would be difficult to build and
would not give us compatible machines with a wide spec­
trum of performance, we began to consider the possibility
of a minicomputer/multiprocessor in order to achieve the
flexibility, reliability, and effective bandwidth required.

With the idea of a multiprocessor in mind we consid­
ered the IMP algorithm to determine which parts were
inherently serial in nature and which could proceed in
parallel. It seemed difficult to process a single message in
a parallel fashion: the job was already relatively short
and intimately coupled to I/ 0 interfaces. However, there
was much less serial coupling between the processing of
separate messages from the same phone line and no cou­
pling at all between messages from different phone lines.
We thus envisage many processors, each at work on a
separate message, with the number of processors carefully
matched to the number of messages we expect to encoun­
ter in the time it takes one processor to deal with one
message. With this simple image there seems to be no
inherent limit to the parallelism we can achieve-the
ultimate limit would be set by the size of the multiproces­
sor we can build.

CHOICE OF THE PROCESSOR

In designing a multiprocessor for the IMP application,
we found ourselves iteratively exploring two related but
distinct issues. First, assuming that the problem of inter­
connection could be solved, what minicomputer would be

A New Minicomputer/Multiprocessor for the ARPA Network 531

a sensible choice from the price/ performance and physi­
cal points of view? Second, and much harder: for any
specific machine, how did the CPU talk to memory, how
would multiple CPUs, memories, and l/0 be intercon­
nected to form a system, and how would the program be
organized?

Since the program for the existing IMPs was well
understood, it was possible to identify key sections of that
program which consumed the majority of the processing
bandwidth. Then, for each sensible minicomputer choice,
we could ask how many CPUs of this type would be
needed to provide an effective 100 nanosecond cycle time;
and given a price list, physical data, and a modest
amount of design effort, we could define the physical
structure and the price of the resulting multiprocessor.
With this general approach, we examined the internal
design of about a dozen machines, and actually wrote the
key code in many cases. Using the fastest available mini­
computers it was possible to arrive at configurations with
only three or four processors; using the slowest choices,
systems with 20 CPUs or more were required.

If we defer the interconnection and contention prob­
lems for a moment, it is interesting to note that "slow and
cheap" may win over "fast and expensive" in this kind of
multiprocessor competition to achieve a stated processing
bandwidth. This is an especially happy situation if, as in
our case, a spectrum of configurations is needed, includ­
ing a very tiny cheap version.

In considering which minicomputer might be most eas­
ily adaptable to a multiprocessor structure, the internal
communication between the processor and its memory
was of primary concern. Several years ago machines were
introduced which combined memory and 1/0 busses into
a single bus. As. part of this step, registers within the
devices (pointers, status and control registers, and the
like) were made to look like memory cells so that they
and the memory could be referenced in a homogeneous
manner. This structure forms a very clean and attractive
architecture in which any unit can bid to become master
of the bus in order to communicate with any other desired
unit. One of the important features of this structure is
that it made memory accessing "public"; the interface to
the memory had to become asynchronous, cleanly isolable
electrically and mechanically, and well documented and
stable. A characteristic of this architecture is that all ref­
erences between units are time multiplexed onto a single
bus. Conflicts for bus usage therefore establish an ulti­
mate upper bound on overall performance, and attempts
to speed up the bus eventually run into serious problems
in arbitration. 12

In 1972 a new processor-the Lockheed SUE 13-was
introduced which follows the single bus philosophy but
carries it an important step further by removing the bus
arbitration logic to a module separate from the processor.
This step permits one to consider configurations embody­
ing multiple processors and multiple memories as well as
1/0 on a single bus. The SUE CPU is a compact, rela­
tively inexpensive (approximately $600 in quantity),
quite slow processor with a microcoded inner structure.

This slowness can be compensated for by simply doubling
or trebling the number of processors on the bus; perform­
ance is limited largely by the speed of the bus. With this
bus architecture it becomes attractive to visualize multi­
bus systems with a "bus coupling" mechanism to allow
devices on one bus to access devices on other busses.

Similar approaches can be implemented with varying
degrees of difficulty in systems with other bus structures,
and we examined several approaches in some detail for
those processors whose cost/performance was attractive.
Rather fortuitously, the minicomputer which exhibited
the most attractive bus architecture also was extremely
attractive in terms of cost/ performance and physical
characteristics. This machine, the Lockheed SUE, would
require fourteen processors to achieve the effective 100
nanosecond cycle time, and we embarked on the detailed
design of our multiprocessor on that basis.

SYSTEM DESIGN

Although our design permits systems of widely varying
size and performance, in the interest of clarity we will
describe that design in terms of the particular prototype
now under construction. Our overall design is represented
in Figure 1. We require fourteen SUE processors to obtain
the necessary processing bandwidth, and we estimate that
32K words of memory will be required for a complete
copy of the operational program and the necessary
communication buffer storage. The 1/0 arrangements
must allow easy connection of all the communications
interfaces, appropriate to the IMP job (modem inter­
faces, Host interfaces, terminal interfaces) as well as
standard peripherals and any special devices appropri­
ate to the multiprocessor nature of the system.

Some of the basic SUE characteristics are listed in
Table I. From a physical point of view, thP SUE chassis
represents the basic construction unit; it incorporates a
printed circuit back plane which forms the bus into which
24 cards may be plugged. From a logical point of view this
bus simply provides a common connection between all

PROCESSORS
AND PRIVATE

MEMORY

MODULAR SWITCH

Figure ! -System structure

SHARED
MEMORY

532 National Computer Conference, 1973

TABLE I-SUE Characteristics

Hl-hit word
8 General Registers
63. 7 µS add or load time
Microcoded
Two words/instruction typical
8-).-:l"Xl9"Xl8" chassis
!l4K hytes addressahle hy a single instruction
~$3K for: 1 CPU +4K Memory+ Power, Rack, etc.
200 ns minimum bus cycle time
850 ns memory cycle time
425 ns memory access time

units plugged into the chassis. We are using these chassis
for the entire system: processor, memory, and I/0. All
specially designed cards as well as all Lockheed-provided
modules plug into these bus chassis. With this hardware,
the terms "bus" and "chassis" are used somewhat inter­
changeably, but we will commonly call this standard
building unit a "bus." Each bus requires one card which
performs arbitration. A bus can be logically extended (via
a bus extender unit) to a ;;econd bus if additional card
space is required; in such a case, a single bus arbiter
controls access to the entire extended bus.

We can build a small multiprocessor just by plugging
several processors and memories (and l/0) into a single
bus. For larger systems we quickly exceed the bandwidth
capability of a single bus and we are forced to multi-bus
architecture. Then, from a construction viewpoint, our
multiprocessor design involves assigning processors,
memories and l/0 units to busses in a sensible manner
and designing a switching arrangement to permit inter­
connection of all the busses. Of course, the superficial
simplicity of this construction viewpoint completely hides
the many difficult problems of multiprocessor system
design; we will try to deal with some of those issues in the
following sections.

Resources

A central notion in a parallel system is the idea of a
"resource," which we define to mean a part of the system
needed by more than one of the parallel users and there­
fore a possible source of contention. The three basic
hardware resources are the memories, the I/ 0, and the
processors. It is useful to consider the memories, further­
more, as a collection of resources of quite different char­
acter: a program, queues and variables of a global nature,
local variables, and large areas of buffer storage.

The basic idea of a multiprocessor is to provide multi­
ple copies of the vital resources in the hope that the algo­
rithm can run faster by using them in parallel. The
number of copies of the resource which are required to
allow concurrent operation is determined by the speed of
the resource and the frequency with which it is used. An
additional advantage of multiple copies is reliability: if a
system contains a few spare copies of all resources, it can
continue to operate when one copy breaks.

It may seem peculiar to think of a processor as a
resource, but in fact in our system the parallel parts of
the algorithm compete with each other for a processor on
which to run. We take the view that all processors shall be
identical and equal, and we go to some trouble to insure
that this is in fact so. As a consequence no single proces­
sor is of vital importance, and we can change the number
of processors at will. A later section will describe how the
processors coordinate to get the job done without a master
of some sort.

Processor busses

A SUE bus can physically and logically support up to
four processors. As more processors are added to a bus,
the contention for the bus increases, and the performance
increment per processor drops; but the effective cost per
processor also drops, since the cost for the chassis, power
supply, bus arbitration, etc., is amortized over the num­
ber of processors.

Roughly speaking, using two processors per bus loses
almost nothing in processor performance, using three
processors per bus loses significant efficiency, and adding
a fourth processor gains less than half an "effective proc­
essor." After careful examination of the logical, economic
and physical aspects of this choice, we decided to use two
processors per processor bus, and we thus require seven
processor busses in our initial multiprocessor system.

The next question was how the processors should access
the program. In our application, some parts of the pro­
gram are run very frequently and other parts are run far
less frequently. This fact allows a significant advantage to
be gained by the use of private memory. When a proces­
sor makes access to shared memory via the switching
arrangement, that access will incur delays due to conten­
tion and delays introduced by the intervening switch. We
therefore decided to use a 4K local memory with each
processor on its bus to allow faster local access to the
frequently run code; these local memories all typically
contain the same code. With this configuration and in our
application, the ratio of accesses to local versus shared
memorv is better than three to one. This not only reduces
contention delays for access to the shared memory but
also cuts the number of accesses which suffer the delays.

The final configuration of a processor bus is shown in
Figure 2(a). The units marked "Bus Coupler" have to do
with our multiprocessor switching arrangement, which
will be discussed below.

Shared memory busses *

The shared memory of our multiprocessor is intended
to contain a copy of the program as well as considerable
storage space for message buffering, global variables, etc.
Application-dependent considerations led us to select a

•The terms "f!O bus" and "memory bu.<" as u.<ed here and henceforth
are not the sa,,;e as conventional I/ 0 and memory bu."·es.

A New Minicomputer/Multiprocessor for the ARPA Network 533

PROCESSOR BUS

ARBITER

PROCESSOR

PROCESSOR

4K MEMORY

4K MEMORY

BUS COUPLER

BUS COUPLER

BUS COUPLER

2(a)

MEMORY BUS

ARBITER

BUS COUPLER

BUS COUPLER

8K MEMORY

8K MEMORY

2 (b)

Figure 2- Bus structures

1/0 BUS

COMMUNICATIONS
INTERFACE

BUS EXTENDER

BUS EXTENDER

COMMUNICATIONS
INTERFACE

CONSOLE

2(c)

32K memory, but it is possible to configure this memory
on a single bus or to divide the memory onto several bus­
ses. We first concluded that four logical memory units
would be appropriate in order to reduce processor conten­
tion to an acceptable level. Then, since the bus is consid­
erably faster than the memories, it is feasible to place two
logical memory elements on a single bus with almost no
interference. Thus, we are planning two memory busses
in the initial multiprocessor; the configuration of a
common memory bus is shown in Figure 2(b).

[10 busses

The I/0 system of the multiprocessor employs stand­
ard SUE busses with standard bus arbitration units on
those busses. Into the bus will be plugged cards for each
of the various types of l/0 interfaces that are required,
including interfaces for modems, terminals, Host comput­
ers, etc., as well as interfaces for standard peripherals.
Our initial system has a single l/0 bus and Figure 2(c)
shows its configuration; the specialized units shown (a
"Clock" and "Pseudo Interrupt Device") are system-wide
resources that are used to control the operation of the
multiprocessor. The l/0 bus will also be the access route
for the multiprocessor console; we plan to use a standard
alphanumeric display terminal which can be driven by
code in any processor, and no cunventional consoles will
be used.

/ntercon11t£ction system

Our prototype multiprocessor is now seen to contain
seven processor busses, two shared memory busses and an
I/0 bm;. To adhere to our requirement that all processors
must be equal and able to perform any system task, these
busses must be connected so that all processors can access
all shared memory, so that l/0 can be fed to and from
shared memory, and so that any of the processors may
control the operation and sense the status of any I/ 0 unit.

A distributed inter-communication scheme was chosen
in the interest of expandability, reliability, and design
simplicity. The atom of this scheme is called a Bus Cou­
pler, and consists of two cards and an interconnecting
cable. In making connections between processors and
shared memory, one card plugs into a shared memory
bus, where it will request cycles of the memory; the' other
card plugs into a processor's bus, where it looks like
memory. When the processor requests a cycle within the
address range which the Bus Coupler recognizes, a
request is sent down the cable to the memory end, which
then starts contending for the shared memory bus. When
selected, it requests the desired cycle of the shared
memory. The memory returns the desired information to
the Bus Coupler, which then provides it to the requesting
processor, which, except for an additional delay, does not
know that the memory was not on its own bus. Note that
the memory access arbitration inherent in any memory
switching arrangement is handled by the SUE Bus Arbi­
ter controlling the shared memory bus, while the Bus
Coupler itself is conceptually straightforward.

One additional feature of the Bus Coupler is that it
does address mapping. Since a processor can address only
64K bytes (Hi bit address), and since we wished to permit
multiprocessor configurations with up to 1024K bytes (20
bit address) of shared memory, a mechanism for address
expam;ion is required. The Bus Coupler provides four
independent SK byte windows into shared memory. The
processor can load registers in the Bus Coupler which
provide the high-order bits of the shared memory address
for each of the four windows.

Given a Bus Coupler connecting each processor bus to
each shared-memory bus, all processors can access all
shared memory. I/ 0 devices which do direct memory
transfers must also access these shared memories. These
I/0 devices are plugged into as many l/0 busses as are
required to handle the bandwidth involved, and bus cou­
plers then connect each l/0 bus to each memory bus.
Similarly, I/ 0 devices also need to respond to processor
requests for action or information; in this regard, the I/ 0
devices act like memories and Bus Couplers are again
used to connect each processor bus to each I/ 0 bus. The
path between processor busses and I/0 busses is also
used in a more sophisticated fashion to allow processors
to examine and control other processors; this subject is
described in a later section.

The resulting system is shown in Figure :1. One is struck
by the number of bus couplers: P*I + I*M + P*M bus
couplers are required for a system with P processor bus-

534 National Computer Conference, 1973

00
• BUS ~·

PSEUDO

OJ COMMUNICATION
INTERRUPT

EXTENDER DEVICE INTERFACE

~ = BUS ~· BUS COUPLER, ~ REAL TIME
ARBITER PROCESSOR ENO CLOCK

PROCESSOR BUSSES(7)

~· IMEMI = MEMORY POWER
~=CENTRAL BUS COUPLER,

SUPPLY
PROCESSOR MEMORY END

POWER
SUPPLY

POWER
SUPPLY

POWER
SUPPLY

POWER
SUPPLY

POWER
SUPPLY

POWER
SUPPLY

110 BUS POWER
SUPPLY

POWER
SUPPLY

POWER
SUPPLY

POWER
SUPPLY

110 BUS
EXTENSION

SK

MEMORY
SUSSES

Figure 3-Prototype system

ses, I 1/0 busses, and M memory busses. In the case of
our initial multiprocessor, 23 are needed.

This modular interconnection approach clearly permits
great flexibility in the number and configuration of bus­
ses, and allows interconnection cost to vary smoothly with
system size. We believe that this modular interconnection
scheme also permits a complex hierarchical arrangement
of busses. Actually the system exhibits a pronounced
hierarchical structure already. A processor accesses the
local memory when it needs instructions or local varia'
bles. Two such processor-memory combinations form a

dual processor, which can be regarded as a unit and
which needs access to shared resources, such as global
variables, free buffers, and I/ 0 interfaces. When one
copy of a resource can only support a limited number of
users, it seems sensible to provide only the corresponding
limited number of connections. If a multiprocessor of this
type were to grow larger, the physical number of bus
couplers as well as increasing contention problems might
not permit the connection of each processor to all of
common memory, but might instead require a multi-level
structure where groups of processors were connected to an

A New Minicomputer/Multiprocessor for the ARPA Network 535

intermediate level bus which was in turn connected to a
centralized common memory. We have not explored this
domain but feel it is an interesting area for future work.

MULTIPROCESSOR BEHAVIOR

Until the processors interact, a multiprocessor is a
number of independent single processor systems: it is the
interaction which poses the conceptual as well as the
practical problems. If the various processors spend their
time waiting for each other, the system degrades to a sin­
gle processor equivalent; if they can usefully run concur­
rently, the processing power is multiplied by the number
of processors. If the failure of a single processor takes the
system down, the system reliability is only the probability
of all processors being up; if working processors can diag­
nose and heal or s.mputate faulty processors and proceed
with the job, the system reliability approaches the proba­
bility of any processor being up. We now consider how to
keep processors running concurrently, and then how to
keep the system running in the case of module failure.

The first problem in making the machines run inde­
pendently is the allocation of runnable tasks to proces­
sors, so that the full requisite power can be quickly
brought to bear on high priority tasks. Our scheme for
doing this rests on four key ideas: (1) We break the job up
into a set of tiny tasks. (2) Our processors are all identi­
cal, asynchronous, and capable of doing any task. (3) We
keep a queue of pending tasks, ordered by priority, from
which each proce&sor at its convenience gets its next task.
(4) For speed and efficiency, we use a hardware device to
help manage the queue.

By breaking the job up into smaller and smaller tasks
until each one runs in under 300 µs, we effectively deter­
mine the responsiveness of our system. Once started, a
task must run to completion, but there will be a reconsi­
deration of priorities at the beginning of each new task.
We have chosen 300 microseconds as the maximmr. task
execution time because this compromise between effi­
ciency and responsiveness is well matched to the execu­
tion time of key IMP functions.

By making the processors identical, we can use the
same program in systems of widely varying size and
throughput capability. Any processor can be added to or
removed from a running system with only a slight change
in throughput. The power of all processors quickly shifts
to that part of the algorithm where it is most needed.

By queuing pending tasks, we keep track of what must
be done while focusing on the most important tasks. By
using a passive queue in which the processors check for a
new task when they are ready, we avoid some nasty tim­
ing problems. Tasks may be entered into the queue at any
time, either by a processor or by the hardware 1/0
devices. This approach is an extremely important depar­
ture which avoids the use of conventional interrupts and
the associated costs of saving and restoring machine state.
Further, this approach neatly sidesteps the problem of
routing interrupts to the proper processor.

We could not afford a software queue both because it
was slow to use and because processors would have been
waiting for each other to get access to the queue. Instead
we use a special hardware device called a Pseudo Inter­
rupt Device (PID), which keeps in hardware a list of
what to do next. A number can be written to the PID at
any time and and it will be remembered. When read, the
PID returns (and deletes) the highest number it has
stored. By coding the numbers to represent tasks, and
keeping the parameters of the tasks in memory, a proces­
sor can access the PID at the end of each task and deter­
mine very rapidly what it should do next.

Contention

Clearly, the PID must give any task to exactly one
processor. This is guaranteed because the PID is on a bus
that can be accessed by only one processor at a time and
because the PID completes each transaction in a single
access. This is an example of the more general problem
that whenever two users want access to a single resource
there must be an interlock to let them take turns. This is
true at many levels, from contention for a bus to proces­
sor contention for shared software resources such as a free
list. When all the appropriate interlocks have been pro­
vided, the performance of the multiprocessor will depend
rather critically on the time wasted waiting at these inter­
locks for a resource to become free. As discussed above,
whenever conflicts become a serious problem one pro­
vides another copy of the resource. We studied our system
behavior carefully, noting areas of conflict, in order to
know how many additional copies of heavily accessed
resources to provide. Table II provides examples of
delays due to various conflicts. Practically speaking, the
curve of delay vs. number of resources has a rather sharp
knee, so that it is meaningful to make such statements as
"a memory bus supports eight processors" or "a free list
supports eight processors." Of course, these statements
are application related and depend on the frequency and
duration of accesses required.

With interlocks, deadlocks become possible (in both
hardware and software). For example, a deadlock occurs

TABLE II-Expected System Slowdown Due to Contention Delays

Slowdown

5.53
33
53

103

1.73

0.153

Cause

Contention for a Processor Bus.
Contention for the Shared Memory Busses.
Contention for the Shared Memories.
Contention for a single system-wide software resource, as­

suming each processor wants the resource for 6 instruc­
tions out of every 120 instructions executed.

Contention for one of two copies of a system-wide software
resource, as above.

Contention for the parameters of a single 1 . 3 megabit
phone line, assuming the parameters will be used for 160
microseconds every 800 microseconds.

536 National Computer Conference, 1973

when each of two processors has claimed one "of two
resources needed by both. Each waits indefinitely for
the otht"!\''s resource to become available. 14 Unless there
is a careful systematic approach to interlocks, deadlocks
interlock, and require that a processor never compete for
a resource when it already owns a higher numbered
resource. It is not always practical or possible to do this,
although we expect to be able to do so with the IMP algo­
rithms.

An interesting example of a deadlock occurs in our bus
coupling. To permit processors to access one another, for
mutual turn on, turn off, testing, etc., the path connecting
each processor bus with the I/0 bus is made bi-direc­
tional. Thus processors access one another via the I/0
bus. In a bi-directional coupler, a deadlock arises when
units obtain control of their busses at each end and then
request access via the coupler to the bus on the other end.
Because the backward path is infrequently used, we
simply detect such deadlocks, abort the backward request
and try agaih.

Reliability

We have taken a rather ambitious stand on reliability.
We plan to detect a failing module automatically, ampu­
tate it, and keep the system running without human
intervention if at all possible. Critical to our approach is
the fact that there are several processors each with pri­
vate memory and thus each able to retreat to local opera­
tion in the face of system problems. To reduce our vulner-
11bility further, power and cooling are provided on a
.modular basis so that loss of a single unit does not jeop.­
ardize system operation. We are only mildly concerned
with the. damage done at the time of a failure, because the
IMP system includes many checks and recovery proce­
dures throughout the network.

The first sign of a failure may be a single bit wrong
somewhere in shared memory, with all units apparently
functioning properly. Alternatively, the failure may strike
catastrophically, with shared memory in shambles and
the processors running protectively in their local memo:
ries. Against this spectrum we cannot hope for a system­
atic defense; instead we have chosen a few defensive
strategies.

So long as a module is failing, recovery is meaningless.
We must run diagnostics to identify the bad module, or
see if cutting a module out at random helps things. We
feel that identifying such a solid failure will be relatively
easy. Since a processor without couplers is completely
harmless, once we identify a malfunctioning processor, we
amputate it by turning off its bus couplers. We consid­
ered the possibility of a runaway processor turning good
processors of'f. This is unlikely to begin with hut we
decided to make it even less likely by requiri:ng a particu­
lar 16-bit password to be used in turning off a coupler. A
runaway processor storing throughout shared memory
would rieed this password in its accumulator to acciden-

tally amputate. Similarly we. require a password for one
processor to get at another's local memory.

Against intermittents we use a strategy of dynamic
reinitialization. Every data structure is periodically
checked; every waiting state is timed out; the code is
periodically checksummed; memory transfers are hard­
ware parity checked; memory is periodically tested; proc­
essors are· periodically given standard tests. Whenever
anything is found wrong, the offending structure is initial­
ized. Using this scheme we may not know what caused a
failure, but its effects will not persist. In the most
extreme cases we will need to reload all the program in
main memory. Fortunately we have a communications
network handy to load from. This technique of reloading
has worked remarkably well in the current ARP A Net­
work. Each processor has a copy of the reload program in
its local memory, thus making loss of reload capability
unlikely.

We might seem to be vulnerable to memory or l/0 fail­
ures, particularly those involving the PID and the clock.
If these modules fail it does indeed hurt us more, but only
because we have fewer modules of these types in our sys­
tem. If we provide redundant modules, the system can
reconfigure itself to substitute a spare module for a failed
one. Our design allows multiple l/0 busses with multiple
PIDs and clocks, and we could even have separate
backup interfaces to vital communication lines on sepa­
rate busses.

To summarize, the mainstay of our reliability scheme is
a system continually aware of the state of things and
quickly responding to unpleasant changes. The second
line of defense consists of drastic actions like amputation
and reloading. Assuming we can make all this work, we
will have quite a reliable system, perhaps even one m
which maintenance consists of periodic replacement of
those parts which the system itself has rejected.

STATUS AND NEAR FUTURE

In February 1973, as this paper is submitted, we are
very much in the middle of our multiprocessor develop­
ment. Much progress has been made and we are increas­
ingly confident of the design, but much work remains to
be done.

The broad design is complete; all Lockheed-provided
units (CPUs, memories, busses, etc.) hl!-ve been delivered;
prototype wire-wrapped versions of the crucial special
modules have been completed, including the Bus Cou­
plers, Pseudo Interrupt Device, clock, and modem inter­
faces; and a multi-bus, multi-processor-per-bus assembly
has been successfully tried with a test program. A sub­
stantial program design effort has been in progress and
coding of the first operational program has been started.
We. are still doing detailed design of some hardware, and
we are still learning about. detailed organizational issues
as the software effort proceeds. An example of such an

Correction (p. 536 of original text, first column, second new sentence):
Unless there is a careful systematic approach to interlocks, deadlocks become almost
a certainty. One technique is to assign a unique number to each resource for which
there is an interlock, and require that a processor never compete for a resource
when it already owns a higher numbered resource.

A New Minicomputer/Multiprocessor for the ARPA Network 537

area is: exactly how is it best for processors to watch each
other for signs of failure?

We currently anticipate the parts cost of the prototype
fourteen-processor system, without communication inter­
faces, to be under$ lOOK.

Hopefully, by the time this paper is presented in June
1973, we will be able to report an operational prototype
multiprocessor system. Beyond that, our schedule calls
for the installation of a machine in the ARPA Network by
about the end of 1973. We also plan to construct many
variant systems out of this kit of building blocks, and to
experiment with systems of varying sizes. As part of this
work, we plan to concentrate on the very smallest version
that may be sensible, in order to provide a minimum cost
IMP for spur applications in the ARPA Network.

As the design has proceeded, our attraction to the gen­
eral approach has increased (perhaps a common malady),
and we now believe that the approach is applicable to
many other classes of problems. We expect to explore
such other applications as time permits, with initial
attention to two areas: (1) certain specialized multi-user
systems, and (2) high bandwidth signal processing.

With our presently planned building blocks, although
we do not yet know what will limit system size, we do not
now see any intrinsic problem in constructing systems
with fifty or a hundred processors. As improvements in
integrated circuit technology occur, and processors and
memories become ,,mailer and cheaper, organization and
connection become the paramount questions in multipro­
cessor design. We expect to see many attempts at multi­
processors, and are hopeful that the ideas embodied in
this design will help to steer that technology. Perhaps
minicomputer/ multiprocessors will soon represent real
competition for the various brontosaurus machines that
now abound.

ACKNOWLEDGMENTS

Our new machine design is a product of many minds. We
gratefully acknowledge the specific design contributions
of M. Kraley. A. Michel, M. Thrope, and R. Bressler.
Helpful criticism and an important idea about the Pseudo
Interrupt Device were contributed by D. Walden. Assist­
ance in planning and in the choice of building blocks was
contributed by H. Rising. Helpful ideas and criticism
were provided by J. McQuillan, B. Cosell. and A.
McKenzie. Assistance with support software was provided
by J. Levin.

We also wish to express appreciation for the support
and encouragement provided by Dr. L. Roberts of the
Advanced Research Projects Agency.

REFERENCES

1. Lehman, M .. "A Survey of Problems and Preliminary Results
Concerning Parallel Processing and Parallel Processors", Proc.
IEEE, Vol. i>4, No. 12, pp. 1889-1901. December. 1966.

2. Lorin, H., Parallelism in Hardware & Software - Real and Appar­
ent Concurrency Prentice-Hall, 1971.

3. Slotnick, J. L., Bork, W. C., McReynolds, R. C., "Solomon".
AFIPS Conference Proceedings, FJCC 1962.

4. Barnes, G. H., et al, "The Illiac IV Computer", IEEE Tran.,. C-17.
Vol. 8, pp. 746-757, August 1968.

5. Anderson, D. W., Sparacio, F. ,J., Tomasulo, R. M., "The IBM
System/ 360 Model 91 - Machine Philosophy and Instruction
Handling", IBM Journal No. 11, January 1967, pp. 8-24.

6. Cohen, E., "Symmetric Multi-Mini-Processors, A Better Way to
Go?" Computer Decision.,·, January 1973.

7. Wulf, W. A., Bell, C. G., "C.mmp - A Multi-Mini Processor",
AF/PS Proceedings, FJCC, Vol. 41, 1972.

8. Cosserat, D. C., "A Capability Oriented Multi-Processor System
for Real-Time Applications", Computer Communication Proc.
/CCC, pp. 282-289, October 1972.

9. Roberts, L. G., Wessler, B. D., "Computer Network Development
to Achieve Resource Sharing" AF/PS Proceeding,, SJCC, Vol. 36,
1970.

10. Heart, F. E., et al, "The Interface Message Processor for the ARPA
Computer Network", AF/PS Proceeding,, SJCC. Vol. 36, 1970.

11. Ornstein. S. M., et al., "The Terminal IMP for the ARPA Com­
puter Network", AF/PS Proceedings, SJCC, Vol. 40, 1972.

12. Chaney, T., Ornstein, S., Littlefield, W., "Beware the Synchroniz­
er", Proc. COMPCON Conference, 1972.

13. SUE Computer Handbook, Lockheed Electronics Company. Los
Angeles. 1972.

14. Holt, R. C., "Some Deadlock Properties of Computer Systems",
ACM Computing Survey,, Vol. 4, No. 3, pp. 179-196, September
1972.

SUPPLEMENTARY BIBLIOGRAPHY

Amdahl, G. M., Engineering Aspects of Large High-Speed Computer
Design - Part II Logical Organization, IBM Tech. Report TR00.1227,
December 1964.
Baskin. H. B., et al, "A Modular Computer Sharing System," CACM,
Vol. 12. No. 10, October 1969, p. 551.
Bell and Newell, Computer Structures, McGraw-Hill, 1971.
Bell, G., et al, C.mmp the CMU Multiminiprocessor Computer, Dept. of
Computer Science, Carnegie Mellon Univ., August 1971.
Burnett. G. J., et al., "A Distributed PROCESSING System for General
Purpose Computing", AF/PS Proceedings, FJCC. Vol. 31, 1967.
Dijkstra, E. W., "Cooperating Sequential Processes", in Programming
Languages, (Gennys, F., ed.), Academic Press, pp. 43-110, 1968.
Flynn, M. J., "Some Computer Organizations and Their Effectiveness",
IEEE Transaction.' on Computers", Vol. C-21, No. 9, September 1972.
Flynn, M. J., "Very High-Speed Computing Systems". Proc. IEEE, Vol.
54, No. 12, pp. 1901-1909. December. 1966.
Holland, J. H., "A Universal Computer Capable of Executing an Arbi­
trary Number of Sub-Programs Simultaneously," AF/PS Proceedings,
F.JCC. pp. 108-113. 1959.
McQuillan, ,J. M., et al, "Improvements in the Design and Performance
of the ARPA Network", AF/PS Proceedings, FJCC, Vol. 41, 1972.
Ornstein, S. M., Stucki, M. J., Clark, W. A., "A Functional Description
ofMacromodules" AF/PS Proceedings, SJCC, Vol. 30, 1967.
Pirtle, M., "Intercommunication of Processors & Memory", AF/PS
Proceedings, FJCC, Vol. 31, 1967.
Randell. B., "Operating Systems - The Problems of Performance and
Reliability", IFIP Congre-'S 71, Ljubljana, North Holland Pub. Co.,
1972, pp. 281-290.
A Description of the Advanced Scientific Computer System, Texas
Instruments, Inc., 1972.
Thornton, J.E., "Parallel Operation in the Control Data 6600", AF/PS
Proceedings, FJCC, Vol. 26, 1964.
Wulf, W., et al, Hydra- A Kernel Operating System for C.mmp, Dept.
of Computer Science, Carnegie Mellon Univ., 1971.

THE BBN MULTIPROCESSOR

S.M. Ornstein, W.B. Barker, R.D. Bressler,
W.R. Crowther, F.E. Heart, M.F. Kraley,
A. Michel, M.J. Thrope

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

This paper appeared in the Computer Nets Supplement
to the Proceedings of the Seventh Hawaii Internat~onal
Conference on System Sciences, January 1974, and is
reproduced with the permission of the publisher,
Western Periodicals Company, California.

THE BBN MULTIPROCESSOR*

S.M. Ornstein, W.B. Barker, R.D. Bressler, W.R. Crowther
F.E. Heart, M.F. Kraley, A. Michel, M.J. Thrope

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

Abstract

The BBN multiprocessor has gone from conception to prototype over
the past year. It is highly modular at several logical and physical
levels and will soon be a new IMP in the ARPA Network. It is very
flexible both in the range of bandwidths it can handle and the
number and type of interfaces it can accommodate.

1. INTRODUCTION

Last year we presented a paper which de­
scribed the multi-processor we were then
setting out to build as a new IMP for the
ARPANET [1,2]. Much has been accomplished
in this past year and we report here on
progress made as well as on some important
features of the system that have evolved.
Familiarity with the earlier paper is
assumed in what follows.

The architecture, as previously described,
is highly modular and allows for IMPs of
greater or lesser processing power than the
present 516/316-based IMPs, as well as for
many more and more varied phone line and
Host interfaces. The hardware consists of
busses joined together by special bus cou-
9lers of our design. There are processor
busses each of 'Whlch contains two proces­
sors, each in turn with its own "prlvate"
4K memory to store frequently run code.
The more processor busses, the greater the
system processing power. There are memory
busses to house the segments of multiported
"common" memory - the more memory busses,
the more memory ports. Finally, there are
I/0 busses which house device and line con­
trollers as well as a special (priority or­
dered) task disburser which replaces the
traditional priority interrupt system. The
latter allows equality among the processors
so that if some fail the rest can continue
to run all system tasks, albeit at reduced
capacity.

2. DESIGN ISSUES

In this section we describe features we
have designed into the system, some of the
more interesting of which relate to reli­
ability issues.

2.1 ADDRESSING & LOCKING

The Lockheed SUE, with a 15-bit word ad­
dress, can address up to 32K words. A
1.5-megabit line running over a 1/2 sec.
round trip satellite channel holds 750,000
bits or about 50,000 words, copies of which
must be held in the IMP for possible re­
transmisslon. Address expansion is thus
inescapable and to allow for several such
lines and be reasonably unbound by address
space, we have allowed for half a million
words. The bus coupler serves as the vehi­
cle for address expansion. 8K of a proces­
sor's address space are used for direct
references to its private memory. (Al­
though we expect to use only 4K, 8K has
been set aside to allow for growth.) An­
other 8K is used principally for addressing
system I/0 (on the up to four I/0 busses).
We assign 8 addresses to each I/0 device
for pointers and status and control regis­
ters; 960 devices can be accommodated in
all.

16K of each processor's address space is
mapped through the couplers to common memo­
ry. At the processor end of each coupler
are four program-settable map registers for
each possible processor on the bus. (We

*This work was supported by the Advanced Research Projects Agency under Contracts
DAHC15-69-C-0179 and F08606-73-C-0027.

expect to use only two processors per bus
but up to four are allowed for.) These map
registers expand a 15-bit address to a 19-
bit system address on the memory busses.
By use of the maps, each processor can thus
access, at any one time, four 4K pages in
system address space. Read accesses
through a particular one of these windows
are turned by the coupler into read-clear
operations, thereby providing the indivisi­
ble test-and-modify operation required for
program interlocking in a multi-processor.
(The processor itself presently lacks such
an instruction.)

2.2 ACCESS ENABLING

The coupler paths that connect processor
busses into memory and I/0 busses have pro­
gram settable enabling switches at their
far (memory and I/0) ends, thus permitting
processors to be cut in and out of the sys­
tem. To allow processors to access one
another and to permit reloading as discuss­
ed below, we have provided reverse paths in
the processor to I/0 couplers which also
have enabling switches. Normally the for­
ward paths to memory and I/O are turned on
and the backward paths are shut off. Since
these paths represent a hazard whereby a
"sick" processor or device could damage
healthy processors, we have arranged that
only by storing a password at the proper
address can a switch be changed. This
greatly reduces the probability that a ber­
serk processor painting memory will affect
the path. A processor can neither enable
nor disable its own access paths but one
processor, deciding that another is sick
and should be eliminated from the system,
can amputate the bus of the offending pro­
cessor. It can be similarly reinstated
later.

The logic upon which amputation decisions
are based is not yet fully understood and
will be worked out as experience grows. We
expect to require all processors to execute
periodic healthiness-proving tasks. A
regular system task, performed by any free
processor, verifies that all processors
have passed their tests and amputates any
unhealthy one(s). Protective embellish­
ments easily suggest themselves and we ex­
pect to do what seems necessary.

2.3 DISCOVERY

The operational program implements the IMP
algorithm with whatever hardware is working
at a particular site at a given time. The
program discovers the hardware configura­
tion as follows: Memory is found by trying
to access it; a failure interrupt results
if Memory is not there. Processors are
found by accessing a register whose re­
sponse indicates if the processor is absent,
running or halted. I/0 Devices are found
by reading the 1st word of every possible

device in I/0 space ~ a failure interrupt
means no Device, a response returns a
unique 16-bit device type. Any parameters
needed to run the devices are available as
status words in the 8-word block. It is
somewhat harder to find where the bus
boundaries are, but they too can be found
by searching for the bus coupler disable
switches. In the event that there is some
property we cannot otherwise discover, we
have set aside 3 registers (associated with
the clock device) to hold this information.
For example, the IMP number (used for net­
work routing) is contained in 8 bits of
these registers.

The Discovery logic is not an initializa­
tion phase; rather the program periodically
runs through the Discovery logic and recon­
figures whenever a change occurs. It thus
automatically adapts the IMP algorithm not
only to the wide variety of possible con­
figurations but also to those which contain
broken components.

2.4 PARITY

At present the memories we are using do not
store parity; however, we have built into
our system design (and into the hardware)
mechanisms to incorporate parity. These
mechanisms have been tested with prototype
parity memory and we have recently ordered
parity memories for our production machines.
We use a novel parity computation based not
only upon the contents of a word but also
on its address. The scheme also detects
both "all ones" and "all zeros" failures.
For writes to common memory, parity is com­
puted at the processor end and fed, via the
coupler, to the memory where it is stored
with the word. Reads from memory fetch
this stored parity, which is compared to a
recomputed parity at the processor end of
the coupler, thus checking both the memory
and coupler paths in both directions. For
units on the I/0 bus, in order to check the
coupler paths, a special card computes and
transmits parity for all words being read
from the I/0 bus by the processors and
checks parity on all words arriving from
processor busses.

2. 5 RELOADING

At present we use paper tape to load the
system. The operator starts a processor
which, from tape, loads its own private
memory, its map registers and thereby any
or all of common memory. It also loads,
using backward coupling, the private memo­
ries on all other processor busses in the
system. After the memory has been loaded,
a startup procedure is executed which fi­
nally turns on the other processors.

Since all crucial switches, parameters,
registers and control flip flops have been
made addressable by reads and writes, load-

ing the system and starting it up can be
done by externally force feeding it with

-'the right set of addresses and data. Al­
though we presently use paper tape in con­
junction with a bootstrap ROM executed b~l a
processor for this purpose, we are planning
to construct a means whereby the system can
be force fed directly from the network.
The mechanism for this is a device on the
I/0 bus which monitors phone lines from ad­
jacent IMPs looking for a special format
which signals arrival of reload informa­
tion. The card then performs the reload by
executing store type bus cycles using the
reload data.

This sort of operation, which looks forward
to elimination of paper tape, switches, and
other operator dependent functions, is ap­
propriate to the IMP job. If a running
system fails, as viewed from the net, the
first step is to send it a regular "for IMP"
message which causes a standard system re­
start to be attempted. If that seems not
to work, the next step is to send another
regular message trying to activate the
reload-from-the-net code in hopes that it
is still intact. Only if that fails would
one attempt to force a full restart from
scratch, in which case the special card de­
scribed above is called into play. The
first data sent halts the processors in or­
der to stop any interfering activity. Then

·the reload-from-the-net code is refreshed
/and finally a processor restarted running

that code which then completes reload via
the normal packet mechanism.

2.6 MECHANICAL MODULARITY

We have settled on a modular mechanical
structure well matched to the modular logi­
cal structure of the system. This struc­
ture is important in that it allows easy
construction of systems of varied size and
permits repair of parts of a system while
the rest of it continues to operate. The
basic unit is a cooling module which houses
either 1) a 16-slot bus complete with its
own power supply, 2) a 24-slot bus without
power, or 3) a power supply for such a 24-
slot bus. These units, each with its own
set of fans, sit on rails in a vertical
tier in a rack, five of them filling a stan­
dard height rack. (The 14-processor system
requires three racks.) Figure 1 shows how
the cooling modules stack. Air flow is from
back to front so that racks placed beside
one another do not directly heat each other.
A tilted pan at the bottom of each module
separates the air flow between stacked mod­
ules, thus eliminating chimney effects.
Cards plug in from the front and all device
and coupler cables also connect on that

~side. An entire unit can be removed to the
~ear for repair or replacement of the bus,

'fans, etc. ~all without disturbing opera­
tion of the remainder of the system.

F
R
0
N
T

SIDE VIEW

Figure 1
Mechanical
Structure

3. THE TEST PROGRAM

The primary design objective of the test
program is to exercise all of the hardware
as intensively and extensively as possible,
detecting all failures and reporting them
precisely and comprehensibly. Extensive
testing implies .a wide variety of test
modules; intensive testing implies permit­
ting the entire computational power of the
system to be focused on individual compo­
nents at times. These objectives led to
the selection of a system based on process­
es, analogous to a time-shared system's
jobs. Processes are not tied to proces­
sors; a given process will switch rapidly
from one processor to another. Nor is a
process in general tied to a specific copy
of code; like time-shared jobs, processes
share a single copy of sections of pure
procedure.

There are four types of processes: the
"system" processes, including the clock,
timeout, and type-out processes; the de­
vice-specific processes, which are tied to
particular I/0 devices, two processes per
device; the "GART" (Get A Random Test)
processes, which select a test at random
from a table of tests to be performed; and
a dummy process, whose sole purpose is to
assure that there is always a runnable
process.

Each GART test is designed to test a par­
ticular element or feature of the system.
These range from standard processor and
memory tests (the latter are also useful
for checking bus couplers) to exercising
the various bus coupler switches and maps.
The I/0 devices are kept busy by circula­
ting various data through them.

4. WHERE WE STAND

Although the system uses Lockheed SUE pro­
cessors, busses, memories, etc., we have so
far designed and built nine BBN card types
for the system: three coupler cards for
each of the three bus types, a full-duplex
memory channel card, a Host interface card

(which operates at speeds up to 1.5 mega­
bit), transmit and receive modem cards, the
pseudo-interrupt card and a clock card.
These designs are virtually all finalized
and many are in production (printed circuit
or similar) form.

We are presently finishing the design of
two other cards: the first of these is the
parity checking card for the I/O bus de­
scribed above under the discussion of par­
ity. The second is a checksum/block-trans­
fer card .which flows a block of memory
through itself computing a checksum as it
goes. This is used to checksum critical
code from time to time [3], to compute
checksums for network end-to-end checking
of messages, and other useful checking pur­
poses. A transfer mode can be enabled so
that it can also be used to move blocks of
information about in memory (checksumming
as it goes if desired). In addition we are
presently embarking on modifications to the
modem transmit and receive cards which will
allow them to deal with 1.5 megabit lines
and design of the special interface which
monitors incoming inter-IMP lines watching
for reload information as described above.

At present we are running several systems.
Two small systems are being used for test­
ing and debugging of the IMP program.
These are sometimes run as separate single
bus IMP systems which are connected togeth­
er with our prototype 516 IMP into a three­
node network. At other times the two bus­
ses are combined into a single system using
a bus coupler. In this case one bus is
used as a dual processor bus and the other
as a combined memory and I/0 bus. This
system then works with the 516 IMP to form
a 2-node net.

The growing prototype 14-processor system
presently consists of three dual processor
busses, two memory busses and one I/O bus.
We have grown up to this system gradually
but it now operates with sufficient reli­
ability under stress (shaking of cables,
margining power supplies, shuffling of
cards, etc.) that we are presently in the
process of building toward the full proto­
type (i.e~, adding the 2nd I/0 bus and the
remaining four processor busses). By mid-
1974 we hope to have two production copies
of this large prototype working in the net­
~ork. During 1974 we plan also to design
satellite modem interface cards and to pro­
duce and deliver three moderate sized sys-
tems with satellite capability [4].

The basic IMP system program is up and run­
ning in multi-processor form, that is, with.
processors picking tasks up via the pseudo­
interrupt system and using locks to prevent
interfering accesses t6 resources. So far
it has been run only with a two-processor
system, but it will shortly be put on the
larger prototype. The inner parts of the

system, store and forward, Host, task, etc.,
seem solid. The work that remains is in im­
plementing the system maintenance, monitor­
ing, and debugging functions (i.e., system
DDT, periodic ~tatus reports, etc.). This
coding is about half done and needs finish­
ing as well ~s debugging. The network er­
ror recovery code ls ready for debugging.
The special reliability code which keeps
the system up when parts of the hardware
fail is being designed.

Much work must be done in the present net­
work to accommodate the advent of the new
line of machines. For example, the whole
reloading mechanism must be changed since
one's neighbor may now be very different
from one's self. The network must there­
fore be able to pass core load images
packet-by-packet to an immediate neighbor
of the machine needing reloading.

Our small IMP is built on a single logical
bus (consisting of two separate physical
busses connected by an extender) which com­
bines memory, processor and I/O. This sys­
tem embodies none of the special reliability
stemming from multiple hardware copies but
is the least expensive version available.
Small reliable systems are another matter
and require~n general, doubling the sys­
tem to provide complete redundancy of parts
to allow for any single failure. Such sys­
tems may prove to be one of the more signif­
icant outgrowths of this development effort.

REFERENCES

1. Heart, F.E. et al, The Interface Mes­
sage Processor for the ARPA Computer
Network, Proceedings AFIPS 1970 SJCC.

2. Heart, F~E. et al, A New Mi~icomputer/
Multiprocessor for the ARPA Network,
Proceedings AFIPS 1973 NCC.

3. Crowther, W.R. et al, Reliability
Issues in the ARPA Network, ACM Data
Communications Symposium, Nov. 1973.

4. Butterfield, S.C. et al, The Satellite
IMP for the ARPA Network, Seventh
Hawaii Int. Conf. on System Sciences,
Jan. 1974.

PLURIBUS ~A RELIABLE MULTIPROCESSOR

by S. M. Ornstein, W. R. Crowther, M. F. Kraley,
R. D. Bressler, A. Michel, and F. E. Heart

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

November 1974

This paper was submitted for review by referees for the 1975
National Computer Conference.

Ornstein

PLURIBUS ~ A RELIABLE MULTIPROCESSOR*

*This work was supported by the Advanced Research Projects Agency

(ARPA) under contracts DAHC15-69-C-0179 and F08606-73-C-0027.

by S. M. Ornstein, W. R. Crowther, M. F. Kraley, R. D. Bressler,

A. Michel, and F. E. Heart

Bolt Beranek and Newman Inc.

Cambridge, Massachusetts

INTRODUCTION

As computer technology has evolved, system architects have

continually sought new ways to exploit the decreasing costs of

system components. One approach has been to pull together collec­

tions of units into multiprocessor systems. 1 Usually the objec­

tives have been to gain increased operating power through paral­

lelism and/or to gain increased system reliability through re­

dundancy.

In 1972, our group at Bolt Beranek and Newman started to de­

sign a new machine for use as a switching node (IMP) in the ARPA

Network. 2 '3 The machine was to be capable of high bandwidth, in

order to handle the 1.5-megabaud data circuits which were then

planned for the network. It was to have a high fanout to Host

computers connected at a node. It was to come in all sizes (of

processing power, memory, I/O) so that one could configure an

1

Ornstein

individual IMP to meet the requirements of its particular location

in the network, and chang~ that configuration easily should the

requirements change. Most of all, it was to be reliable.

The family of machines we have produced which meets these

goals has been named the Pluribus line. The machines are highly

modular at several levels and have a minicomputer/multiprocessor

architecture. Although the largest configuration we have put to­

gether so far contains only 13 processors, we believe there are

no inherent problems with considerably larger systems. The struc­

ture and details of some of the hardware are described in earlier

papers. 4 ' 5 Familiarity with these papers will be helpful in under­

standing the present paper, which focuses on the issue of reli­

ability. We believe that reliability will become an increasingly

common concern as multiprocessors become more commonplace, and we

believe that we have gained some interesting insights into the

solution of this problem.

THE MULTIPROCESSOR ARCHITECTURE

A novel feature of our design is the consistent treatment of

all processors as equal units, both in the hardware and in the

software. There is no specialization of processors for particular

system functions, and no assignment of priority among the proces­

sors, such as designating one as master. We chose to distribute

among the processors not only the application job (the IMP job)

but also the multiprocessor control and reliability jobs, treating

all jobs uniformly. We view the processors as a resource used to

2

Ornstein

advance our algorithm; the identity of the processor performing a

particular task is of no importance. Programs are written as for

a single processor except that the algorithm includes interlocks

necessary to insure multiprocessor sequentiality when required.

The software of our machine consists of a single conventional

program run by all processors. Each processor has its own local

copy of about one quarter of this program and the remaining three

quarters is in commonly accessible memory.

Hardware Structure

Reliability was a main concern in planning the hardware

architecture. Although we tried to build the individual pieces

solidly, our main goal was to provide hardware which could be

exploited by the program to survive the failure of any individual

component.

The hardware consists of busses joined together by special

bus couplers which allow units on one bus to access those on

another. Each bus, together with its own power supply and cool­

ing, is mounted in its own modular unit, permitting flexible

variation in the size and structure of systems. There are

processor busses each of which contains two processors, each in

turn with its own local 4K memory which stores frequently run

and recovery-related code. There are memory busses to house the

segments of a large memory common tc all the processors. Finally,

there are I/O busses which house device controllers as well as

3

Ornstein

certain central resources such as system clocks and special

(priority-ordered) task disbursers which replace the traditional

priority interrupt system. About half of the machine consists

of standard parts from the Lockheed SUE line; the remainder is

of special design.

As emphasized in our initial paper, 4 we were fortunate to

have a very specific job in mind as we designed the system. This

enabled us to place specific bounds on the problems we sought to

solve. For example, the proposed initial setting within a com­

munications network means that outside entities (neighboring

communications processors, Hosts, users, etc.) may help to notice

that things are going wrong. It also means that recovery assist-

ance is potentially available from the Network Control Center

(NCC) through the network. 6'7 The system is designed generally

to avoid reliance upon external help, but upon occasion such help

is useful and therefore we have provided methods for permitting

the system to be forcibly reloaded and restarted via the network.

Software Structure

The problem of building a packet-switching store-and-forward

communications processor (the IMP) lends itself especially well

to parallel solution since packets of data can be treated in-

dependently of one another. Other functions, such as routing

computations, can also be performed in parallel.

4

Ornstein

The program is first divided into small pieces, called

stPips~ each of which handles a particular aspect of the job.

When a task needs to be performed, the name (number) of the ap­

propriate strip is put on a queue of tasks to be run. Each proces­

sor, when it is not running a strip, repeatedly checks this queue.

When a strip number appears on the queue, the next available pro­

cessor will take it off the queue and execute the corresponding

strip. We try to break the program into strips in such a way that

a minimum of context saving is necessary.

The number assigned to each strip reflects the priority of

the task it performs. When a processor checks the task queue, it

takes the highest priority waiting job. Since all processors

access this queue frequently, contention for it is very high.

We therefore built a hardware device called the Pseudo Interrupt

Device (PID) which serves as a task queue. A single instruction

allows the highest priority task to be fetched and removed from

the queue. Another instruction allows a new task to be put onto

the queue. All contention is arbitrated by standard bus logic

hardware.

The length of strips is governed by how long priority tasks

can wait if all the processors are busy. The worst case arises

when all processors have just begun the longest strip. In the

IMP application, the most urgent tasks can afford to wait a maxi­

mum of 400 microseconds. Therefore, strips must not generally be

5

Ornstein

longer than that.

An inherent part of multiprocessor operation is the locking

of critical resources to enforce sequentiality when necessary. 8

A load-and-clear operation provides our primitive locking facility.

To avoid deadlocks, we priority-order our resources and arrange

that the software not lock one resource when it has already locked

another of lower or equal priority.

Status

During the early spring of 1974 a prototype 13-processor

system was constructed. As this paper is being written (in the

fall of 1974) two production copies have been constructed and are

running. Each contains 13 processors, two memory busses, and two

I/0 busses. These machines have been connected intermittently

into the ARPA Network for testing purposes and operational instal­

lation in the network is anticipated shortly. A single processor

has been running on the network for an extended period in order to

validate performance during routine operation. Three Satellite

IMP configurations 9 are presently under construction as well as a

non-IMP configuration designed to provide highly reliable pre­

processing and forwarding of seismic data to processing and storage

centers.

RELIABILITY GOALS

Since the term "reliable system" can have many different meanings,

it is important to establish clearly just what we are and what we are

6

Ornstein

not trying to achieve. We are not trying to build a non-failing

device (as in 10); instead, we are trying to build a system which

will recuperate automatically within seconds, or at most minutes,

following a failure. Furthermore, we want the system to survive

not only transient failures but also solid failures of any single

component. In many cases (such as the IMP job) it is not necessary

to operate continuously and perfectly; it suffices to operate cor-

rectly most of the time so long as outages are infrequent, kept

brief, and fixed without human intervention.

How one copes with infrequent brief outages depends on what

one is trying to do. For tasks not tightly coupled to real-time

requirements (e.g., for many large numerical computations), a

simple device is to choose checkpoints at which to record the

state of the system so that one can always recover by restarting

. 11,12
from the checkpoint just preceding an outage. The IMP sys-

tern happens to be embedded in a larger system which is quite for-

giving. (This is not an uncommon situation.) Thus brief outages

of a few seconds are tolerated easily, and outages of many seconds,

while causing the particular node to become temporarily unusable,

will not in general jeopardize operation of the network as a whole.

Occasionally, despite all efforts, the system will break so

catastrophically that it will be unable to recover. Our goal is

to reduce the probability of such total system failure to the

probability of a multiple hardware failure. We do not try to

7

Ornstein

protect against all possible errors; some of our procedures will

fail to detect errors whose probability of occurrence is suf­

ficiently low. For example, all code is periodically checksummed

using a 16-bit checksum. A failure that does not disturb the

validity of the checksum may not be detected. We do not mind if

a failure renders large sections of the machine unusable or inac­

cessible, providing enough remains to run the system. The presence

of runnable hardware, however, is not sufficient to guarantee that

operation will be resumed; in addition, the software must be able

to survive the transients accompanying the failure and adapt to

the remaining hardware. This may include combating and overcoming

active failures (for example, when an element such as a processor

goes berserk and repeatedly writes meaningless data into memory).

All code is presumed to be debugged -- i.e., all frequently

occurring problems will have been fixed. On the other hand, we

must be able to survive infrequent bugs even when they randomly

destroy code, data structures, etc.

In order to avoid complete system failure, a failed component

must be repaired or replaced before its backup also breaks. The

system must therefore report all failures. The actual repair

and/or replacement will of course be performed by humans, but this

will generally take place long after the system has noted the

failure and reconfigures itself to bypass the failed module. The

ratio of mean-time-to-repair to mean-time-between-failures will

8

Ornstein

determine overall system reliability. It must also be possible

to remove and replace any component while the system continued to

run. Finally, the system should absorb repaired or newly intro­

duced parts gracefully.

STRATEGIES

In order to understand our system it is convenient to con­

sider the strategies used to achieve our goals in two parts which

more or less parallel the traditional division into hardware and

software. The first part provides hardware that will survive any

single failure, even a solid one, in such a way as to leave a

potentially runnable machine intact (potentially in that it may

need resetting, reloading, etc.). The second part provides all

of the facilities necessary to survive any and all transients

stemming from the failure and to adapt to running in the new hard­

ware configuration.

Appropriate Hardware

We have two basic strategies in providing the hardware. The

first is to include extra copies of every vital hardware resource.

The second is to provide sufficient isolation between the copies

so that any single component failure will impair only one copy.

To increase effective bandwidth in multiprocessors, multiple

copies of heavily utilized resources are normally provided. For

reliability, however, all resources critical to running the

algorithm are duplicated. Where possible the system utilizes

9

Ornstein

these extra resources to increase the bandwidth of the system.

It is not sufficient merely to provide duplicate copies of

a particular resource; we must also be sure that the copies are

not dependent on any common resource. Thus, for example, in ad­

dition to providing multiple memories, we also include logically

independent, physically modular, multiple busses on which the

memories are distributed. Each bus has its own power supply and

cooling, and may be disconnected and removed from the racks for

servicing while the rest of the machine continues to run.

All central system resources, such as the real time clock

and the PIC, are duplicated on at least two separate I/O busses.

All connections between bus pairs are provided by separate bus

couplers so that a coupler failure can disable at most the two

busses it is connecting.

Non-central resources, such as individual I/0 interfaces, are

generally less critical. Provision has been made, however, to

connect important lines to two identical interface units (on

separate I/O busses) either of which may be selected for use by

the program.

To adapt to different hardware configurations, the software

must be able to determine what hardware resources are available

to it. We have made it convenient to search for and locate those

resources which are present and determine the type and parameters

of those which are found.

10

Ornstein

To allow for active failures, all bus couplers have a program­

controllable switch that inhibits transactions via that coupler.

Thus, a bus may be effectively "amputated" by turning off all cou­

plers from that bus. This mechanism is protected from capricious

use by requiring ~ particular data word (a password) to be stored

in a control register of the bus coupler. Naturally an amputated

processor is prevented from accessing these passwords.

Finally, although a common reset line is n~rmally considered

essential, we have avoided such a line since a single failure on

its driver could jeopardize the entire system. There is thus no

central point (not even a single power switch) where one can gain

control of the entire system at once. Instead, we rely on reset­

ting a section at a time using passwords.

Software Survival

With the above features, the Pluribus hardware can experience

any single component failure and still present a runnable system.

One must assume that as a consequence of a failure, the program

may have been destroyed, the processors halted, and the hardware

put in some hung state needing to be reset. We now investigate

the means used to restore the algorithm to operation after a fail­

ure. The various techniques for doing this may be classified under

three broad strategies: keep it simple, worry about redundancy,

and use watchdog timers throughout.

Simp li city

It is always good to keep a system simple, for then one

11

Ornstein

has a fighting chance to make it work. We describe here three

system constraints imposed in the name of simplicity.

First, as mentioned above, we insist that all processors

be identical and equal: they are viewed only as resources used

to advance the algorithm. Each should be able to do any system

task; none should be singled out (except momentarily) for a parti-

cular function. The important thing is the algorithm. With this

view it is clear that it is simplest if the algorithm is accessible

to all processors of the system. A consequence of this is that

the full power of the machine can be brought to bear on the part

of the algorithm which is busiest at a given time.

One might argue that for some systems it is in fact simpler

(or more efficient) to specialize processors to specific tasks.

One could, in such a case, then duplicate each different type for

reliability. With that approach, however, one must worry about

the recovery of several different types of units, and all the pos-

sible interactions between them. We consider the recovery problem

for a group of identical machines formidable enough.

One consequence of treating all processors equally is that

a program can be debugged on a single machine up to the point

where the multiple machine interaction matters. Once this has

been done, we have found that processor interaction does not

present a severe additional debugging problem. On the other h..-.. 'V'l,...:J
J.J.0.!J.U.'

finding routine software bugs when a dozen machines are running

12

Ornstein

is a difficult problem.

A second characteristic of our system which arose from a

desire to keep things simple is passivity. We use the terms

active and passive to describe communication between subsystems

in which the receiver is expected to put aside what it is doing

and respond. The quicker the required response, the more active

the interaction. In general, the more passive the communication,

the simpler the receiver can be, because it can wait until a con­

venient time to process the communication. On the other hand

the slower response may complicate things for the sender. We

believe that there is a net gain in using more passive systems.

An example of this is our decision to make the task disbursing

mechanics (the PID) a passive device. Neither the hardware inter­

faces nor other processors tell a processor what to do; rather,

processors ask the PID what should be done next. There are some

costs to such a passive system. The resulting slower responsive­

ness has necessitated additional buffering in some of our inter­

faces. In addition, the program must regularly break from tasks

being executed to check the PID for more important tasks.

The alternatives, however, are far worse. In a more active

system, for example one which uses classical priority interrupts,

it is difficult to decide which processor to switch to the new task.

Furthermore, it is almost impossible to preserve the context of a

processor1 3 while making such a switch because of the interaction

13

Ornstein

with the resource interlocking system. The possibilities for

deadlocks are frightening, and the general mechanism to resolve

them cumbersome. With a passive system a processor finishes one

task before requesting the next, thus guaranteeing that task

switching occurs at a time when there is little context, e.g., no

resources are locked.

Passive systems are more reliable for another reason: namely,

the recovery mechanisms tend to be far simpler than those for ac­

tive systems.

As a third example of simplicity we introduce the notion of

a reliability subsystem. A reliability subsystem is a part of the

overall system which is verified as a unit. A subsystem may in­

clude a related set of hardware, program, and/or data structures.

The boundaries of these reliability subsystems are not necessarily

related at all to the boundaries of the hardware subsystems (pro­

cessors, busses, memories, etc.) described earlier. The entire

system is broken into these subsystems, which verify one another

in an orderly fashion.

The subsystems are cleanly bounded with well-defined inter­

faces. They are self-contained in that each includes a self-test

mechanism and reset capability. They are isolated in that all com­

munication between subsystems takes place passively via data struc­

tures. Complete interlocking is provided at the boundary of every

sub system so that the subsystems can operate asynchronously with

respect to one another.

14

Ornstein

The monitoring of one subsystem by another is performed using

timer modules, as discussed below. These timer modules guarantee

that the self-test mechanism of each subsystem operates, and this

in turn guarantees that the entire subsystem is operating properly.

Redundan_cy

Redundancy is simultaneously a blessing and a curse. It

occurs in the hardware and the software, and in both control and

data paths. We deliverately introduce redundancy to provide relia­

bility and to promote efficiency, and it frequently occurs because

it is a natural way to build things. On the other hand the mere

existence of redundancy implies a possible disagreement between the

versions of the information. Such inconsistencies usually lead to

erroneous behavior, and often persist for long periods.

It was not until we adopted a strategy of systematically

searching out and identifying all the redundancy in every subsystem

that we succeeded in making the subsystems reliable. This process

therefore constitutes one of our three basic strategies for con­

structing robust software.

We use the term redundancy here in a somewhat subtle sense,

not only for cases in which the same information is stored in two

places, but also when two stored pieces of information each imply

a common fact although neither is necessarily sufficient to imply

the other.

There are several methods of dealing with redundancy. The

15

Ornstein

first and best is to eliminate it, and always refer to a single

copy of the information. When we choose not to eliminate it, we

can check the redundancy and explicitly detect and correct any

inconsistencies. It does not really matter how this is done as the

system is recovering from a failure anyway. What is important is

to resolve the inconsistency and keep the algorithm moving. Some­

times it is too difficult to test for inconsistency; then timers

can be used as discussed in the next section.

Let us consider a few examples of redundancy to make these

ideas more concrete.

· A buffer holding a message to be processed, and a

pointer to the buffer on a "to be processed" queue

if the buffer and queue are inconsistent, the buffer will

not be processed. Each buffer has its own timer and if

not processed in a reasonable time, it will be replaced

on the queue.

A device requesting a bus cycle, and a request capturing

flip-flop in the bus arbiter -- if the arbiter and device

disagree, the bus may hang. A timer resets the bus after

one second of inactivity.

One processor seeing a memory word at a particular system

address and another seeing the same word at the same ad­

dress -- The software watches for inconsistencies and when

they occur declares the memory or one of the processors

16

Timers

Ornstein

unusable.

The PID level used by a particular device and the device

serviced in response to that level -- The PID level(s)

used by each device are program-readable. A process periodi­

cally reads them and forces the tables driving the program's

response to agree.

We have adopted a uniform structure for implementing a

monitoring function between reliability subsystems based on watch­

dog timers. Consider a subsystem which is being monitored. We

design such a subsystem to cycle with a characteristic time constant

and insist that a complete self-consistency check be included with­

in every cycle. Regular passage through this cycle therefore is

sufficient indication of correct operation of the subsystem. If

excessive time goes by without passage through the cycle, it implies

that the subsystem has had a failure from which it has not been

able to recover by itself. The mechanism for monitoring the cycle

is a timer which is restarted by every passage through the cycle.

We have both hardware and software timers ranging from five micro­

seconds to two minutes in duration. Another subsystem can monitor

this timer and take corrective action if it ever runs out. To

avoid the necessity for subsystems to be aware of one another's

internal structure, each subsystem includes a reset mechanism which

may be externally activated. Thus corrective action consists

17

Ornstein

merely of invoking this reset. The reset algorithm is assumed to

work although a particular incarnation in code may fail because

it gets damaged. In such a case another subsystem (the code check­

summer) will shortly repair the damage.

Note that we have introduced an active element into our

otherwise totally passive system. These resets constitute the

only active elements and furthermore are invoked only after a

failure has occurred. This approach seems to provide for the

maximum isolation between subsystems.

SYSTEM REL~ABILITY STRUCTURE

In the previous section we described a mechanism whereby

one subsystem can monitor another. Our system consists of a

chain of subsystems in which each subsystem monitors the next

member of the chain. Figure 1 and Table I show this structure in

the system we have built for the IMP. An efficient way to build

ig. 1 such a chain is to have lower subsystems provide and guarantee

some important environmental feature used by higher level systems.

For example, a low level in our chain guarantees the integrity

of code for higher levels which thus assume the correctness of

code. Such a system is vulnerable only at its bottom. (We are

assuming here that we have runnable hardware although it may be

in a bad state, requiring resetting.) The code tester level

(see Figure 1) serves three functions: first, it checksums all

low level code (including itself); second, it insures that control

18

' ' I
IMP~_/ ,, .

/
I
I

CONSENSUS I
I
I
I
I
I
I
I
I
I

NETWORK
CONTROL
CENTER

IND IV I DUALS -+--+--ti-+(+--.__--+-__ .,__..

I I
PROCESSOR +----.J

I I
I I CODE

TESTER I
I
I
I

BUS TIMER e. ----!:----~
60 Hz INTERRUPT \ \ /

\ \ / I ' , __ ,, /

' / '..... _..,/_. ______ __

FIGURE 1 RELIABILITY STRUCTURE

19

Ornstein

I A MONITORS A
TIMER ON B &
RESETS B IF THE
TIMER RUNS OUT

Ornstein

is operating properly, i.e., that all subsystems are receiving a

share of the processors' attention; third, it guarantees that locks

do not hang up. It thus guarantees the most basic features for

all higher levels. These will, in turn, provide further environ­

mental features, such as a list of working memory areas, I/0

devices, etc., to still higher levels. The method by which the

code tester subsystem itself is monitored and reset will be dis­

cussed shortly.

Table I

Major Subsystems and their Functions

IMP SYSTEM: Watches network behavior - will not cooperate

with irresponsible network behavior.

IMP SYSTEM RELIABILITY: Watches IMP SYSTEM (data structures

mostly).

CONSENSUS: Watches IMP SYSTEM RELIABILITY, verifies all Common

Memory Code (via checksum), watches each processor,

finds all usable hardware resources (interfaces,

PIDs, memory, processors, etc.), tests each and

creates a table of good ones. Makes spare copies

of code.

INDIVIDUAL: Watches CONSENSUS, finds all memory and processors

it considers usable, determines where the Consensus

is com.municating and tries to join it.

20

Ornstein

CODE TESTER: Watches INDIVIDUAL, verifies all Local Memory Code

(via a checksum), guarantees control and lock

mechanisms.

BUS TIMER + 60Hz INTERRUPT: Watches CODE TESTER, guarantees bus

activity.

The mechanisms we have described ensure that the separate

processor subsystems have a satisfactory local environment in

which to work. Before they can work together to run the main sys­

tem it is necessary that a common environment be established for

all processors. We call the process of reaching an agreement

about this environment "forming a consensus", and we dub the group

of agreeing processors the Consensus. The work done by the Con­

sensus is in fact performed by individual processors communicating

via common memory, but the coordination and discipline imposed on

Consensus members make them behave like a single logical entity.

An example of a task requiring consensus is the identification of

usable common memory and the assignment of functions (code, vari­

ables, buffers, etc.) to particular pages. The members of the Con­

sensus will not in general agree in their view of the environment,

as for example when a broken bus coupler blinds one member to a

segment of common memory. In this case the Consensus, including

the processor with the broken coupler, will agree to run the main

system without that processor.

21

Ornstein

The Consensus maintains a timer for every processor in the

system, whether or not the processor is working. The Consensus

will count down these timers in order to eliminate uncooperative

or dead processors. In order to join the Consensus, a processor

need merely register its desire to join by holding off its timer.

Within the individual processors it is the code tester subsystem

which holds off the timer.

The Consensus, then, acting as a group, provides the monitor­

ing mechanism for the individuals as shown by the feedback monitor­

ing path in Figure 1. This monitoring mechanism run by the Con­

sensus includes the usual reset capability which in this case

means reloading the individual's local memory and restarting the

processor. Since all of the processors have identical memories,

reloading is not difficult. We provide (password protected) paths

whereby any processor can reset, reload, and restart any other

processor. This reliance on the Consensus is indeed vulnerable to

a simultaneous transient failure of all processors. However, the

Network Control Center has access to these same reset and reload

facilities and these enable it to perform the reload function re­

motely (a path also shown in the figure).

Thus the Consensus and/or Network Control Center are the

ultimate guarantors of the lowest level subsystem. While this

process is sufficient it is sometimes slow. For many cases in

which the Consensus is disabled (as for example when all of the

22

Ornstein

processors halt), a simpler reset without reloading will suffice.

For this reason we have provided a simpler and more immediate (if

redundant) mechanism in each processor for resetting the control

and lock systems. We implement this mechanism in software with

the assistance of a 60Hz interrupt and a one-second timer on the

bus. Together these provide a somewhat vulnerable but much quicker

alternative to the more ponderous NCC/Consensus resets.

There is a problem about what area of common memory the

processors should use in which to form the Consensus, since

failures may make any predetermined system address inaccessible.

To allow for this, sufficient communication is maintained in all

pages of common memory to reach agreement both as to which proces­

sors are in the Consensus and where further communication is to

take place.

To protect itself from broken processors, the Consensus ampu­

tates all processors which do not succeed in joining it. There is

a conflict between this need to protect itself and the need to

admit new or healed processors into the Consensus. The amputation

barrier is therfore lowered for a brief period each time the Con­

sensus tries to restart a processor. This restart is in fact the

reset based on the timer held off by the code tester subsystem,

as discussed above. In the c~se of certain active failures, even

this brief relaxation may cause trouble. In these cases the Con­

sensus will decide to keep the barrier up continuously.

23

Ornstein

Certain active failures may prevent the formation of a con-

sensus. In such a situation each processor will behave as if it

were a Consensus (of one) and will try to amputate all other proces-

sors. At the point when the actively failing component is ampu-

tated, the remaining processors will be able to form a consensus.

From this point the system behaves as described above.

Further up in the figure there is another joining of inde-

pendent units, namely IMPs joining to form the network. The

analogy here is incomplete because the ARPA Network was not built

with these concepts in mind. There is collective behavior, e.g.,

routing, and individual behavior which accepts collective

decisions only after they pass reasonability tests. However, the

reliability features of the network are concentrated in the Net-

work Control Center, which depends on the continual presence of

human operators for successful operation. It is correspondingly

powerful, resourceful, and erratic in its behavior.

SOME EXAMPLES OF FAILURES

In order to explain in more practical terms some of the

reliability mechanisms, we now discuss a number of specific failures

and describe the methods which detect and repair the resulting

damage. In each case, we focus on the component that failed and

the particular mechanism that takes care of that failure. Deriva-

tive failures may well take place 3 and other mechanisms .,.,,r-ill ha"""\V"l~l,-..
vv -L ...L..L !J.Cl.llU. ...LC

these, since all mechanisms operate all the time.

24

Ornstein

These examples are set in the context of the IMP application and

the severity of their direct consequences rated on the following

scale:

1. Momentary slowdown - no data loss

2. Loss of data (a network message)

3. Temporary loss of some IMP function (a network link)

4. Momentary total IMP outage with local self-recovery

5, Outage requiring reloading via the network

6 Failure requiring human insight for debugging.

Example 1. Suppose first that a bus coupler experiences a transient

failure on a single reference to common memory, which leaves one

word of common memory with the wrong contents but correct parity.

Suppose further that the failure is subtle, in the sense that there

is no obvious ill effect on processor control, like halting or

looping, which will be caught by lower level mechanisms. We will

focus first on examples which cause minimal disruption and where

detection and gentle recovery are the primary concerns. We con­

sider four examples of transient memory failures:

Example l.a Suppose that a word of text in one of the messages

we are deliverying becomes smashed. There is a checksum on all

messages and the network will notice at one of its checkpoints that

the message has gone bad. The source will be prompted to send a

new copy. (Severity 2)

25

Ornstein

Example l.b Near the heart of our system is a queue of unused

buffers called the free list. Suppose the failure is in the struc­

ture of this queue. The system explicitly tests for both a looped

queue and wrong things on the queue. A more subtle form of error

occurs when some buffers which should be on the queue are missing

from it. Our system is designed so that a buffer should be removed

from the free list for at most two minutes at a time. A timer is

maintained on each buffer, which is restarted whenever the buffer

returns to the free list. Should any timer ever run out, its

buffer is forced back onto the free list. The result of this

failure will be a degradation of system performance as it attempts

to run with fewer buffers for a short while, followed by complete

recovery within two minutes. The IMP will stay up and no messages

will be lost. (Severity 1)

Example l.c Suppose that one of the locks on a resource is

broken so that it wrongly locks the resource. Any subsystem which

tries to use the resource will put a processor into a tight loop

waiting for the resource to become free. In about 1/15 sec. this

will cause the processor's timer, driven off its 60Hz clock inter-

rupt, to run out. Upon investigation, the program will notice that

the subsystem is waiting for a locked resource, and arbitrarily

unlock it. Aside from the 1/15 sec. pause, the system will be

unaffected by the transient. (Compare the simplicity of this scheme

with 14 .) (Severity 1)

26

Ornstein

Example l.d Suppose now that a failure strikes common memory

holding code, and that the trouble is subtle -- either the code

is not run often or the change has no immediate drastic effect.

In a few seconds the processors will begin to notice that the

checksum on that piece of code is bad and stop running it. Shortly

the whole Consensus will agree, and will switch over to use the

memory holding the spare copy of that code. Unless the broken

code has already caused some other trouble, the problem is thereby

fixed, with only momentary slowdown. (Severity 1)

Example 2. Suppose a processor fails by suddenly and permanently

stopping. The immediate effect will be that some task will be left

half done, with a high probability that some resource is locked.

This looks to the system like a data failure, as in examples l.a,

l.b, and l.c above. The recovery will be identical. In a few

seconds the Consensus will notice that the processor has dropped

out and processor recovery logic will be invoked. Since the

processor is solidly broken the recovery will be unsuccessful, and

the system will settle into a mode where every so often recovery

is retried. Eventually a repairman will fix the processor, at

which time recovery will proceed and the processor will rejoin Con­

sensus. It is hard to predict whether the IMP system will momen­

tarily go down because of the failure; experience indicates that

it usually stays up, but our experience is limited to lightly

loaded machines. (Severity 2-4)

27

Ornstein

Example 3. Suppose a power supply for a processor bus breaks.

This is similar to the failing processor described above except

that both processors on the bus are affected and the processors

are given a hardware warning sufficiently far in advance that they

can halt cleanly. The system will surely stay up through this

failure. (Severity 1)

Example 4. Now consider a case in which some page of common memory

ceases to answer when referenced. Each processor will get a hard­

ware trap when it tries to use that memory, forcing it directly to

the code which routinely verifies the environment. As a result, the

failing memory will be deleted from the memory list by the Consensus

and another module will be pressed into service to take its place.

If the failed page contained code, a spare copy will normally

be available and a new spare copy will be made if possible. If

it contained data, an unused page will be pressed into service.

In either case, the system will be reinitialized, momentarily

bringing the IMP system down. If the failed page contained the

Consensus communication area, a new Consensus must be formed and

thus recovery will take a little longer. (Severity 4)

Example 5. Let us now consider a failure of the PID. Suppose that

the PID reports a task not previously set. When invoked, each strip

checks to make sure that it is reasonable for the strip to be run.

If not, another task is sought. Suppose instead that the PID "drops"

a task. A special process periodically sets all PID flags inde­

pendent of what needs to be done. This causes no harm, because

28

Ornstein

superfluous tasks will be ignored (as described above), and serves

to pick up such dropped tasks. Thus we have both a consistency

check on redundant information and a timer built into our use of

the PID. If a PID fails solidly, another PID will be switched in

to operate the system. Transient failures cause slowdown; switch­

over may momentarily bring down the IMP system. (Severity 1, 4)

All of this leads to a slightly different image of the PID.

Instead of being the central task disburser, with all processors

relying on it to tell them what to do, the PID is a guide, sug­

gesting to processors that if they look in a certain place, they

will probably find some useful work to do. The system would in

fact run without a PID, albeit much more slowly and inefficiently.

Example 6. Suppose a halt instruction somehow gets planted in

common memory and that all processors execute it and stop. There

is thus no Consensus left to come to the rescue. Furthermore,

60Hz interrupts are ineffective in a halted processor. After one

second of inactivity, the bus arbiter timer will reset the proces­

sors, making them once more eligible for 60Hz interrupts which will

restart them. Before the broken code is run, it will be checksummed,

the discrepancy found, and a spare copy used. (Severity 2-4)

Example 7. Let us consider now what happens when, in common memory,

an end test for a storing loop is destroyed, causing each processor

to wipe out its 60Hz interrupt code in local memory. In this case

not only are there no processors left to help, but the 60Hz inter­

rupt will not help either, since the interrupt code itself is

29

Ornstein

broken. This is a case in which the machine is incapable of res­

cuing itself and will go off the network as a work~ng node. When

the Network Control Center notices that the IMP is no longer up,

it will commence an external reload, restoring the IMP to operation.

(Severity 5)

Example 8. Consider the case of a processor whose hardware is

solidly broken such that it repeatedly stores a zero into a loca­

tion in common memory. Mechanisms described above will repeatedly

fix the changed location, but it is desirable to eliminate the

continuing presence of this disrupting influence. The Consensus

will notice that one of its number has dropped out and will endeavor

to help the errant processor. After a few tries, a longer timer

will run out, and the Consensus will take a more drastic action:

final amputation. In this case there will be a rather lengthy

IMP outage but the system will recover without external help.

(Severity 4)

Example 9. One failure from which there is no recovery, either

automatic or remote, is a program which impersonates normal behavior

but is still somehow incorrect. That is, it holds off the right

timers, has a valid checksum, and simulates enough normal behavior

so that higher levels (e.g., the NCC) are satisfied. For example,

if it were not for the fact that the NCC explicitly checks the

version vumber of the program running in each IMP; a previous,

compatible, but obsolete version of the program would exhibit this

behavior. (Severity 6)

30

Ornstein

Example 10. Another class of failures which is hard to isolate

and deal with is low-frequency intermittents. Consider the case

of a single processor which is broken such that its indexed shift

instruction performs incorrectly. Since this instruction only

occurs in some infrequently executed procedures, the failure only

manifests itself, on the average, once every period t. If t is

large, for instance one year, then we can safely disregard the error,

since its frequency is in the range of other failures over which

we have no control. If t is small, say 100 milliseconds, then the

Consensus will isolate the bad processor and excise it. At some

intermediate frequency, however, the Consensus will fail to cor­

relate successive failures and will instead treat each as a separate

transient. The system will repeatedly fail and recover until some

human intervenes. (Severity 6)

RESULTS AND CONCLUSIONS

Some strategies and techniques for building a reliable multi­

processor have been described above. We have, in fact, actually

built and programmed such a machine using these strategies. We

have found this machine straightforward to debug, both in hardware

and software. Furthermore, the system continues to operate when

individual power supplies are turned off, when memory locations

are altered, when cables and cards are torn out, and through a

variety of other failures. We have yet to establish field per­

formance (which must be measured both in rate of recoverable

31

Ornstein

incidents and in rate of unrecoverable failures), but we expect to

start gathering this information shortly~

We believe there are many important problems in the world

today which could benefit from the principles described here.

While we have discussed these principles in terms of a specific

application (the IMP), most of the concepts are application inde­

pendent. We have been able to separate the application code from

the reliability subsystems intact in another application of the

Pluribus machine.

ACKNOWLEDGEMENTS

Many people in addition to the authors have contributed to

the ideas described herein, notably Benjamin Barker, John Robinson,

David Walden, John McQuillan, and William Mann. In addition,

there is a long list of those who helped to bring these machines

into existence. Foremost among these are Martin Thrope, David

Katsuki and Steven Jeske. The work reported here would not have

been possible without the continued support of the ARPA/IPT office.

Finally, a word of thanks to Robert Brooks and Julie Moore, who

helped to prepare the manuscript.

32

Ornstein

REFERENCES

1. W. B. Riley, "Minicomputer Networks -- A Challenge to

Maxicomputers?" Electronics, March 29, 1971, pp. 56-62

2. F. E. Heart, R. E. Kahn, S. M. Ornstein, W. R. Crowther,

and D. C. Walden, "The Interface Message Processor for the

ARPA Computer Network," AFIPS Conference Proceedings,

Vol. 36, June 1970, pp. 551-567; also in Advances in Com­

puter Communications, W. W.Chu (ed.), Artech House Inc.,

1974, pp. 300-316

3. L. G. Roberts and B. D. Wessler, "Computer Network Develop­

ment to Achieve Resource Sharing," AFIPS Conference Proceed­

ings, Vol. 36, June 1970, pp. 543-549.

4. F. E. Heart, S. M. Ornstein, W. R. Crowther, and W. B. Barker,

"A New Minicomputer/Multiprocessor for the ARPA Network,"

AFIPS Conference Proceedings, Vol. 42, June 1973, pp. 529-537;

also in Selected Papers: International Advanced Study Insti­

tute, Computer Communication Networks, R. L. Grimsdale and

F. F. Kuo (eds.) University of Sussex, Brighton, England,

September 1973; also in Advances in Computer Communications,

W. W. Chu (ed.), Artech House Inc., 1974, pp. 329-337.

5. S. M. Ornstein, W. B. Barker, R. D. Bressler, W. R. Crowther,

F. E. Heart, M. F. Kraley, A. Michel, and M. J. Thrope,

"The BBN Multiorocessor,n Proceedings of the Seventh Annual

Hawaii International Conference on System Sciences, Honolulu,

33

Ornstein

Hawaii, January 1974, Computer Nets Supplement, pp. 92-95.

6. W. R. Crowther, J. M. McQuillan, and D. C. Walden,

"Reliability Issues in the ARPA Network, " Proceedings of

the ACM/IEEE Third Data Communications Symposium, November

1973, pp. 159-160.

7. A. A. McKenzie, B. P. Cosell, J.M. McQuillan, and M. J.

Thrope, "The Network Control Center for the ARPA Network,"

Proceedings of the First International Conference on Com-

puter Communication, Washington, D.C., October 1972, pp.

185-191.

8. E. W. Dijlcstra, "Cooperating Sequential Processes," in

Programming Languages, ed. F. Genuys, Academic Press, London

and New York 1968, pp. 43-112.

9. S. C. Butterfield, R. D. Rettberg, and D. C. Walden, "The

Satellite IMP for the ARPA Network, " Proceedings of the

Seventh Annual Hawaii International Conference on System

Sciences, Honolulu, Hawaii, January 1974, Computer Nets

Supplement, pp. 70-73.

10. A. L. Hopkins, Jr., "A Fault-Tolerant Information Processing

Concept for Space Vehicles," IEEE Transactions on Computers,

Volume C-20, Number 11, November 1971, pp. 1394-1403.

11. A. Avizienes, G. C. Gilley, F. P. Mathur, D. A. Rennels,

I. A. Rohr, and D. K. Rubin, "The STAR (Self-Testing

Repairing) Computer: An Investigation of the Theory and

34

Ornstein

Practice of Fault-Tolerant Computer Design," IEEE Trans­

action~ on Computers, Volume C-20, Number 11, November 1971,

pp. 1312-1321.

12. IBM Corporation, "OS Advanced Checkpoint/Restart," IBM

Manual GC28-6708.

13. R. J. Gountanis and N. L. Viss, "A Method of Processor

Selection for Interrupt Handling in a Multiprocessor System."

Proceedings of the IEEE, Vol. 54, No. 12, December 1966,

pp. 1812-1819.

14. L. Lamport, "A New Solution of Dijkstra's Concurrent Pro­

gramming Problem," Communication of the ACM, Volume 17,

Number 8, August 1974, pp. 453-455.

35

