o 1 \\\‘V A /});fw

N\

\WEN

WU P%w\gj@\»u =

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

April 1975

Sponsored by:

Advanced Research Projects Agency
ARPA Order No. 2351

Contract No. F08606-73-C-0027 and
Contract No. F08606-75-C-0032

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PREFACE

"Pluribus Document 5: Advanced Software" is one of a set of
nine which, taken together, provide complete documentation of
the Pluribus line of computer systems. In the present document,
Part 1, entitled "Lockheed System Software," is a brief overview
of some of the programs available fér the SUE* minicomputer, the
processing element of the Pluribus. Parts 2 and 3 are manuals
for two cross assemblers used to generate Pluribus code. Part

2 describes the version for the PDP-1d EXECIII system; Part 3
describes the version which runs on a PDP-10 TENEX system.

Part 4, entitled "System Reliability Package," describes the
standard software package which performs many of the Pluribus
reliability functions.

Of the four parts of "Pluribus Document 5," parts 1, 2, and 3
are presently included here; part 4 is in production and will

be added when it becomes ready.

*SUE is a trademark of the Lockheed Electronics Company.

iii

Report No. 2931 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

PREFACE

Part 1: Lockheed System Software . .« « ¢« ¢ ¢ ¢ ¢ o o« o o o &

Part 2: Pluribus Assembly Language
and Operating Procedures PDP-1
(PDP-1d Cross Assembler Version) . . « o« « « o« « o & Assembler

Part 3: Pluribus Assembly Language
and Operating Procedures PDP-10
(PDP-10 TENEX Cross Assembler Version) Assembler

Reliability

Part 4: System Reliability Package . . « ¢ ¢ ¢ ¢ o o o o o &

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PART 1: LOCKHEED SYSTEM SOFTWARE

Report No. 2931 Bolt Beranek and Newman Inc.

Update History:

Lockheed material printed July 1973 (see footnotes on following
page) . ' :

Report No. 2931 Bolt Beranek and Newman Inc.

Following is a description* of some of the software written
for the SUE** minicomputer available from Lockheed. While these
programs were not written with the Pluribus architecture in mind,
they can be used on Pluribus systems with at most minor modifica-
tions.

SUE software helps the user develop application programs.
The programmer can write in assembly language, assemble, debug,
and run on a variety of available machines. SUE system software
features are:

Programs that run on SUE with 4K words of memory and an
ASR-33 Teleprinter:

A comprehensive one-pass assembler that produces re-
locatable object code.

A relocating Link Loader that produces an executable
translation of a main program and links external sub-
routines to 1t.

A Basic Loader that loads the output from the Link
Loader into memory for execution.

A conversational debug program for on-line test and
modification of assembled programs.

An I/0 control system for communication between pro-
grams and peripheral devices.

Operator utllity routines that interface between the
program and the operator.

Test and maintenance programs for fast field analysis
and repair of faults.

*Reproduced with the permission of the Lockheed Electronics Com-
pany from SUE Computer Handbook, edition of July 1973, copyright
Lockheed Electronics Co., Inc.

**SUE is a trademark of Lockheed Electronics Company.

Report No. 2931 Bolt Beranek and Newman Inc.

Programs that run on an IBM 360 or a Lockheed Electronics'
MAC 16:

- SUE Cross Assembler for listings and assembled code output
identical to the SUE assembler.

SUE Link Loader that builds relocatable binary-formatted
output for loading by the Basic Loader on the SUE pro-
cessors.

Programs written in FORTRAN to run on a variety of machines:

SUE simulator for execution and testing of SUE-assembled
object code on the IBM 360 computer or any large-scale
computer with a ANSI-standard-FORTRAN Corpiller.

SUE ASSEMBLER (LAP-2)

The assembler operates on a SUE computer with 4K words of
memory and an ASR-33 Teletypewriter. An expanded version of the
assembler that has additional features and operates additional
peripherals can be used on machines of increased memory capacity.
All assemblers for SUE are one pass, producing object code for
the Link Loader. If additional peripherals are available an
assembly listing 1s produced on the same pass; if not, then a
listing pass 1is required. A Diagnostic Only option provides a
listing of those statements in error.

Two cross assemblers are avallable for SUE. One operates on
the Lockheed Electronics' MAC 16 Computer, the other on IBM 360
computers. Cross assemblers provide the user with assembly capa-
bility on readily-accessible processors having high-speed peri-
pherals. These cross assemblers function identically to the SUE
assembler and produce the same listing and object code.

An expanded assembler has many features not normally found
in a minicomputer assembler. Some of these are

Full macro capability.

Fixed-point decimal conversion, single and double precision.

Floating-point decimal conversion, single and double precision.

Conditional assembly directives.

Listing formatting directives (EJECT, SPACE, etc.).

New operation definition capability (to allow assembling
special op-codes implemented in a customized control ROM).

Report No. 2931 Bolt Beranek and Newman Inc.

SUE LINK LOADERS

The SUE Link Loader is a relocating loader capable of build-
ing a core load by linking a main program and external subroutines.
The loader accepts the output from the SUE assembler and generates
output for loading by the Basic Loader. The operator may enter a
relocation constant for changing the memory location of the linked
program. Options include forcing the Link Loader to completion
when external references remalin undefined but are not necessary
for the initial test runs; printing a memory map of the core load
to provide the programmer with a reference for easy access of
program modules; and defining externals not included in the sub-
routines.

The Cross Link Loaders that run on the MAC 16 and IBM 360
processors combine with the cross assemblers to provide a complete
program generation system. The output can be loaded into the
SUE computer for execution or loaded into the simulated memory of
the SUE Simulator for execution and test.

SUE BASIC LOADER (BLOD-2)

The SUE Basic Loader loads the output generated by the Link
Loaders into memory for execution. Record-by-record checking is
performed with error detection causing an immediate halt to the
system. Both Load and Gec or Load and Halt operations are pro-
vided.

SUE BASIC OPERATING SYSTEM (BOS)

BOS serves as an off-line aid to the programmer when testing
a new program. Some features included:

Change a word or byte in memory.

Execute a selected portion of the program.
Search the program for a key bit pattern.

Dump memory to the printer.

Dump memory in Basic Loader format to the punch.

SUE INPUT/OUTPUT CONTROL SYSTEM (IOCS)

IOCS provides a centralized I/0 package that frees the user
from details of dealing directly with peripheral devices. IOCS
allows concurrent I/0 operation of multiple devices and provides
device independence to the user through assignment of device
logical unit numbers to the various I/0 devices at execution time.

Report No. 2931 Bolt Beranek and Newman Inc.

The user calls IOCS from a calling sequence that uses a parameter
list to define the requested operation. The parameter 1list offers
several options to the programmer such as wait or no-wait for I/0
completion and, upon device error, re-try or don't re-try the
request. - At the completion of any requested operation IOCS re-
turns to the calling function for further processing.

SUE OPERATOR UTILITY INTERFACE PACKAGE (OUIP)

OUIP provides program-to-operator and operator-to-program
communication. This package operates in conjunction with IOCS
and provides the following functions to the user:

Input data from keyboard

Fetch name

Fetch numeric

Print message

Print numeric

Print carriage return/line feed
Print space

Print character

Input symbolic source line
Input binary formatted record
Output symbolic source line
Output binary formatted record
Program return

The user program can call any of these routines for ease 1in
communicating with I/0 devices. All symbolic and binary routines
are interrupt driven and double-buffered. Each allows operator
assignment of the desired peripheral for flexibility.

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PART 2: PLURIBUS ASSEMBLY LANGUAGE
AND OPERATING PROCEDURES
(PDP-1d Cross Assembler Version)

1
Q
Q
£
[V}
)
@
<

Report No. 2931 Bolt Beranek and Newman Inc.

Update History:

Originally written as part of Hospital Computer Project memorandum
Six-E, BBN Report No. 1422, May 1966, and extensively revised by
W. Mann, S. Jeske, and D. Walden - January 1975.

ii

Report No. 2931 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

1. THE PLURIBUS MIDAS ASSEMBLY SYSTEM. « . « « . .pagf
1.1 The Midas Source Language€. . . . « « « « « o « « 2
1.1.1 The Character Sets.+ « « « o . 2
1.1.2 Legal Strings . . . ¢« v ¢ ¢« ¢ « o« o« o« o o & 3
1.1.2.1 Basic Strings. . . ¢« « ¢ « « « < . 3
1.1.2.2 Complex Strings. . . « « « « « « . 4
1.1.2.2.1 Language Units. 4
1.1.2.2.2 Combining Operators . . 5
1.2 The Assembly Program . . . « ¢« o« ¢ o o o o o o o & 7
1.2.1 The Current Location Counter. 7 .
1.2.2 The Symbol Table. . . « « « « « v « « « « . 8 Eig
1.2.3 The Radix Indicator 8 gg
1.3 Defining Symbols 8 <
1.3.1 Address Tags. . « .« .« 9
1.3.2 Variable Names. « « « « o . « e . 9
1.3.3 Assigned Parameters 10
1.4 The Use of Expressions 10
1.4.1 Storage Words 10
1.4.2 Constants 10
1.4.3 Location Assignments. 11
1.5 Instruction Format« e e . 11
1.5.1 Arithmetic Instructions 12
1.5.2 Jump Instructions e« o« « . 13
1.5.3 Branch Instructions 13
1.5.4 shift Instructions. 14
1.5.5 Operate Instructions. 15
1.5.5.1 Special Functions. 15
1.5.5.2 Memory Reference 16

1.6 Source Program Format

-
[e)}

iii

Report No. 2931 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS (cont'd)
page
2. PSEUDO-INSTRUCTIONS. . « ¢ o ¢ 4 o o o o o o o o « o 19
2.1 OCTAL and DECIMAL . v « + o o o o o o s o « o o 4 19
2.2 JASCII. . ¢ v ¢« o o o o o o s o o o o o o o o o 19
2.3 CONSTANTS . &« ¢ ¢ o o o o o o o o o o o o o o o @ 20
2.4 VARIABLES . &+ &« ¢ o o o o o o o o o o o o o o o = 21
2.5 DIMENSION . &« &« &« ¢ o o o o o s o o o o o o o o = 22
2.6 EQUALS and OPSYN. . . ¢ ¢ ¢ o « o o « o o « o o = 22
2.7 NULL. « ¢ o o o o o o o o o o o o o o s o s o o = 23
2.8 OFFSET. ¢« + v ¢ v o o o o o o o o o o o« o« o o« « 23
2.9 REPEAT. ¢ v ¢ ¢ ¢ ¢ o o o o o o o o o o o o« o o & 24
2.10 START . ¢ ¢ ¢ v o o o o o o o s o o o o o o o« o« = 25
2.11 EXPUNGE . . &+ ¢ ¢ ¢« v o o o o o o o o o o« o o o = 26
2.12 WORD &+ & v v ¢ &« o o o o o o o o o o o« o o o o 26
2.13 PIF and 1IF . . ¢ + ¢ ¢ ¢ o o o o o e e e e e . 26
2.14 PRINT, PRINTX, PNTNUM . . « +v ¢ o & « o o o o o & 28
2.15 STOP. . v v ¢ v & 4« o o o o o o o o e e e e e e 28
2.16 VERNUM. . . &+ v v ¢« o o o o o o o o o o o« o « o =« 29
2.17 BT, BF, RET, STM, MTS, RTM, MTR 29
2.18 Other Pseudo-Instructions <« « .« ¢« + . . 29
2.19 Sample Program Section« ¢ ¢ ¢« « « o « o . 29
2.19.1 Ssample Page of Program - Octal Listing . . 30
2.19.2 Sample Page of Program - Hexadecimal Listing 31
3. MACRO-INSTRUCTIONS
3.1 Macro-Definitions. « + ¢ « ¢« ¢« ¢ ¢ + o . . 32
3.1.1 Basic Format.« ¢ ¢ + & « « « ¢« « o . 32
3.1.2 Dummy Arguments . . « .+ « .« +« ¢ ¢ o o « o o 33
Macro Calls. . « ¢ & ¢ ¢« ¢ o« o« o & o« o o o« « « « « 35
3 Storage of Macro-Instructions. 36

3.4 Nested MAaCYOS. « « « o « o o o o o o o o o o« o« « « 36

iv

Report No. 2931 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS (cont'd)

page
3.5 The Pseudo-Instructions IRP and IRPC. 39
4. OPERATION OF THE MIDAS ASSEMBLY SYSTEM . . . « « « .« 43
4.1 Preparation of a Source-Language Program 43
4.2 Performing an Assembly. ¢ ¢« « ¢ ¢« « « o . 43
4.2.1 1Initial Procedure.« +¢ ¢ ¢ « « o o 43

4.2.2 The Control Language . . . + « & « o « o« = 43

5. BINARY OUTPUT FORMAT . . . ¢ ¢ o o o o o o o o« o o o« = 49
6. ERROR CHECKING. . . . e e o s+ e o v e o e e & o 2 . e 50
APPENDIX A. Midas Character Set « « « « . . 55 b
A.1 Alphabetic . . . ¢ . ¢ ¢ ¢ o ¢ 4 e e e e e e e . 55 Z'g
A.2 Punctuation+ ¢ ¢ 4 e 4 e e e e e e e e 55 g §
A.3 Combining Operators. . . .« « ¢« ¢ « « « o o« o o+ 56 <
A.4 Tllegal. . o ¢ o v ¢ v v v e e e e e e e e e e 56
A.4.1 Generally Illegal+ ¢« ¢ « « « o 56

A.4.2 TIllegal Except Within a Macro-instruction
or an IRP. + + ¢« v o ¢« « o o o 57
A.5 Ignored Except Within a Macro-instruction or an IRP 58
APPENDIX B. Symbols in Permanent Midas Vocabulary. . . . 59
B.1l Pluribus Instruction Symbols « «. . . 59
B.1.1 Symbols Associated with Memory Reference
Instructions ¢« « « « « .« <« « « 59
B.1.2 Symbols Associated with Branch Condition,
Shifts and Jumps « . « « .« « . . 60
B.1.3 Symbols Associated with Control (Class f#)
Instructions « . « <« « <« « « . . 61
B.1.4 Symbols Associated with Register Selection
B.1.5 Symbols Associated with the Scientific

Instruction Set . . v v ¢ ¢ ¢« v « o « « « . 62

Report No. 2931 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS (cont'd)

page
B.1.6 SUE to Pluribus Instruction
Equivalence. . . . +« ¢ ¢ ¢ + < o« . 64
B.2 Pseudo-Instructions.+ ¢ ¢ + ¢« ¢ ¢ o « o 65
APPENDIX C. Teletype Code Conversion. . . « « « « o« + « & 69
C.1l Characters with 6-bit Internal Representation . . 69

C.2 Characters with 12-bit Internal Representation. . 71

vi

Report No. 2931 Bolt Beranek and Newman Inc.

1. THE PLURIBUS MIDAS ASSEMBLY SYSTEM

The assembly system described in this report was adapted
from the Bolt Beranek and Newman PDP-1 Midas assembly system
which in turn was adapted from the Midas Assembler originally
written for the PDP-1 at Massachusetts Institute of Technology.
Throughout the remainder of this report we use "Midas" alone to
stand for "Pluribus Midas".

The Midas Assembly Program, while offering all the normal
assembly features, belongs to a class of extended assembly
programs referred to as macro-assemblers. Macro-assemblers
such as Midas provide an extensive set of control operations
(called pseudo-instructions) which, in principle, make it
possible for the assembly program to perform computations
analogous to those of any object program it can produce.

Most notable in this respect are the Midas macro-instruction
features, which permit the programmer to define a special
purpose abbreviative language to suit his own needs. Using
pseudo-instructions provided for that purpose, a user can name
a complex coding sequence and provide for varying parameters.
Other pseudo-instructions available in Midas provide means
for performing assembly-time list processing, symbol manipula-
tion, and loop termination as well as for changing the course
of assembly in resronse to certain conditions.

Formal constraints on the construction and manipulation
of symbols are few, so the programmer may, within the range of
processor capabilities, vary formats to suit particular programs.
The programmer is free to ignore any of the special features
and use Midas as a simple mnemonic code translator.

The formal rules of the Midas source language and basic
processor references are described in this Section. Section 2
describes the functions and formats of all system pseudo-in-
structions. Section 3 explains the use of macro-instructions.
Section 4 provides instructions for performing an assembly.
Error conditions that are detected during an assembly and
associated error messages are listed in Section 5.

The notation used in this volume includes some special
symbols. —p represents carriage-return/line-feed. -3 represents
a tab. Quotation marks indicate the pressing of the Control key
on the Teletype keyboard. The symbols < > are used to enclose
text that might normally be set off by quotation marks. Unless
otherwise noted, all integers appearing in the text are octal
integers.

1
o
e}
£
)
@
7]
<

Report No. 2931 Bolt Beranek and Newman Inc.

1.1 The Midas Source Language

A Midas source program is a string of alphanumeric and
operational characters. From this string the Midas assembly
program produces the words that make up the object program,
located properly in memory. In order to accomplish this, the
assembler must interpret the source program as a series of
meaningful strings. In most cases, a string that is meaningful
to the assembler represents a word in the object program. 1In
other cases, the string may direct the assembler to produce
several or no words in the object program.

This section describes the mechanics of creating legal
Midas character strings, the references that the assembly program
uses in associating character strings with binary values, the
conventions that instruct Midas as to the type of value or
actual value a string is to represent, and the overall source
program format requirements.

The source program, described above as a single string of
characters is, more precisely, a system of arbitrary strings,
each of which consists of individual characters juxtaposed
according to formal conventions. The construction of legal
strings is hierarchical in nature. The lowest level consti-
tuent strings are formed from the alphabetic members of the
character set. Higher level constituent strings are constructed
from previously defined constituent strings using those
members of the character set which function as combining
operators. The type of object a constituent string represents
is indicated by punctuation characters.

l1.1.1 The Character Set

The complete character set from which the source language
is constructed is included in Appendix A. It consists of all
characters on the Teletype keyboard not specified as illegal.

The character set is generally divided into the following
categories:

alphanumeric characters: The letters A-Z and the
character, <.> (pericd) ¥,
which may be constituents of
symbols; and the digits @-9,
which may be constituents of
symbols or integers.

*The character <.> also denotes a decimal number (as in <1@.>)
and may also be used to represent the value of the current
location.

Report No. 2931 Bolt Beranek and Newman Inc.

combining operators: Single characters representing
fixed arithmetical or logical
operations to be performed by
Midas.

punctuation characters: These serve as string delimiters.
A string-delimiting character
may serve a variety of pur-
poses depending on its use.
String delimiters in general
identify individual strings
and often indicate the manner
in which a string is to be
interpreted. See Appendix A
for a complete listing. The
most generally used delimiters
are space, tab, and carriage-
return/line-feed.

e
9
T Qa
a £
g2
D-U)
2§

1.1.2 Legal Strings

1.1.2.1 Basic Strings

The minimum character strings required to represent
values in the source program are symbols or integers, formed
as follows:

Integers

An integer is a string of digits (#,1,....9)
that is evaluated as octal or decimal according
to the radix prevailing at its appearance.

The integer value is its representation as

an 18.~bit binary number which restricts
integer values to 777777 if the radix

is set for octal and to 262143 for decimal.

An integer above these limits will be

evaluated modulo (2!8°-1).*

* The Pluribus Midas assembler described here uses 18.-bit
quantities internally as a result of its derivation from
an assembler for the PDP-1, an 18.-bit machine. At load
time the 18.-bit quantities are reduced to 1l6.-bit quan-
tities suitable for the Pluribus according to rules given
in a later section.

Report No. 2931 Bolt Beranek and Newman Inc.

Sngols

A symbol is defined as a string of characters,
the first six of which must distinguish it
from all other symbols.

Letters, numbers, and periods may be used as
symbol constituents, but at least one must be
a letter, or the first must be a period.

Longer symbols, useful for mnemonic or docu-
mentary purposes, may be used, since Midas
ignores any character except a terminator

in excess of six.

Symbols for macro names and pseudo-instructions are
subject to the same restrictions as symbols for numerical
values.

Note that the symbols <READIN> and <READINTAPE> are
both legal symbols; if used in the same source program, they
both will appear to the assembler as <READIN> and will be
used interchangeably. If distinct symbols are desired, care
must be taken to differentiate symbols within their first
six characters.

1.1.2.2 Complex Strings

1.1.2.2.1 Language Units

Complex strings may be formed from basic strings by use of
characters that are provided as combining operators. Although
integers and symbols are the only basic strings in the Midas
language that are formed by purely alphanumeric concatenations,
a complex string may be bracketed and function in the same
way as a basic string in a new combination. In discussing
the construction of complex strings, language units will be
called either syllables or expressions as defined below:

Syllable

A syllable is any component string of an
expression whose value is independent of

its use in the expression. An expression
enclosed in brackets may be used as a syl-

lable to form other expressions. In addi-

tion, the pseudo-instruction <.> is used to
represent the current value of the location
counter modulo (2!®+) and functions as a syllable.

Report No. 2931 Bolt Beranek and Newman Inc.

Expression

An expression is a string consisting of
one or more syllables separated by com-
bining operators.

1.1.2.2.2 Combining Operators

The characters listed below according to function, are the
Midas combining operators. Quotation marks denote that the
Control key must be pressed while typing the character.

Product Operators Function
B Folder integer multi-
plication
"x" Logical disjunction

(exclusive OR)

"g" Logical union
(inclusive OR)

"a" Logical intersection
(AND)

"Q" Quotient

"R" Remainder

Additive Operators Function
+ or space Addition, mod 2!%.-1

- (minus) Addition of the one's

complement

Note that <A"T"B> results in an 18.-bit quantity equal to the
sum of the unsigned magnitudes of the high and low order
halves of the 36.-bit product produced by regular multiplica-
tion of the two 18.-bit gquantities A and B. If both A and B
are small encugh, this function produces the ordinary product.
When evaluating expressions, Midas performs operations from
left to right, all product operations preceding ordinary
additive ones. An additive operator which occurs with no
syllable before it is processed first. Minus complements the
syllable to its right, while plus and space are ignored.

D
2
T o
a £
o2
CLU)
<

Report No. 2931 Bolt Beranek and Newman Inc.

When an expression is punched on paper tape to be loaded
into the PLURIBUS, it is converted to 16.-bit two's complement
as follows: If negative, one is added to the expression, then
it is truncated to 1l6.-bits. (Note: =@ is converted to zero
in two's complement.)

Although this conversion process is ordinarily transparent
to the programmer the following pitfall exists: When writing
expressions which include logical operators, the programmer
must bear in mind that Midas performs its internal arithmetic
in one's-complement, then converts. For example, if TBITS=5

<AND Al L TBITS"X"-1>

will not work as might be expected. Minus one (-1) is 777776 in
one's complement, and 5"X"777776=777773; as this is negative

(in 18.-bit notation) it is ultimately converted to 177774.

What was expected was probably TBITS"X"177777=177772. Using

~@ will not help either: 5"X"-@=777772 which is converted to
177773. While

<AND Al L -TBITS-1>
works, it is not recommended since it relies on an obscure
characteristic of the assembler; instead set ONES=177777 and

write

<AND Al L TBITS"X"ONES>
or <AND Al L TBITS"X"FFFF.>

Examples: In the following examples, various equivalent
expressions are shown, and their component syllables listed:

a)* Expressions: ENB 18 14 ENB 4919
Syllables: <ENB>,<1@> <1@>,<ENB> <4g1@>

b) Expressions: ENB I INH 4200
Syllables: <ENB>, <I> <INH> <4288>

* Assume that ENB=4ggg@, I=20@, and INH=4208

Report No. 2931

Bolt Beranek and Newman Inc.

c) Expressions: 7-2"U"3 6-2 4
Syllables: <7>,<2>,<3> <6>,<2> <4>

d) Expressions: +A A 2"T"A-A
Syllables: <A> <A> <2>,<A>

e) Expressions: A+B"T"C A+[B"T"C]
Syllables <A>,,<C> <A>,<[B"T"C]>

Note that the expression [A+B]"T"C is not equivalent to those
of (e).

1.2 The Assembly Program

In order to interpret symbols and integers and to assign
them to memory locations, Midas must make references to the
Current-Location Counter, the Symbol Table, and the Radix
Indicator, which are described below.

1.2.1 The Current Location Counter

The assembler assigns assembled words to be stored in
sequential locations, 2 bytes per location, starting from any
given even location. A register in the assembly program,
referred to as the Current Location Counter, is incremented
by 2 whenever a word 1s assigned, and indicates the location
which will be assigned to the next word assembled. It is
initially set at 11§ and counts upward modulo (2!®.). Conven-
tions are provided in the source language so that the program-
mer may assign a numerical value to the current location
counter, thus specifying the first location in which a segquence
will be stored.

A symbol may be defined as the current, specific value of
the location counter at any time during the assembly and used
throughout the source program. In addition, the pseudo-instruc-
tion <.> always has as its value the current location counter.
The pseudo-instruction OFFSET, described below, allows code
assembled to run at one location to be loaded into a different
location. 1In this case an offset is added to the value of the
current location counter before it is used for purposes other
than actually assigning the word to a location in core.

D
92
T Qa
a £
¥
o'(/)
<<

Report No. 2931 Bolt Beranek and Newman Inc.

Some programmers might tend to think of symbols for
addresses and symbols for words as quite different entities.
However, in the Pluribus Assembler, there is no difference.

For example, if a computation to be performed requires the
number 1ff in accumulator Al we might <LDA Al L> the number
rather than provide a register containing it, and if the number
198 is represented by the symbol <A>, we can <LDA Al L-JA>
whenever we need 1ff in accumulator Al whether <A> derived its
value as an address tag or as a parameter.

1.2.2 The Symbol Table

Symbols, when associated with a value, are entered in the
Midas Symbol Table, which is used as a reference by the assembler.
Mnemonic symbols for Pluribus instruction codes are part of the
initial contents of the symbol table. (A list of these is
included in Appendix B). These, and programmer defined symbols
which stand for numerical values, are "substantive" symbols.
Two other symbol types are included in the symbol table:
pseudo-instruction names and macro names. These are referred
to as "operational" symbols; there is no single address or
single 18.-bit number with which they are synonymous. All
pseudo-instruction names are included initially in the symbol
table, defined by a reference to an assembler routine. A
macro name is entered in the symbol table when a macro-instruc-
tion is defined.

Midas assembles a source program in two passes; that is,
two complete scans of the source program are required to produce
an object program. This allows symbols to be associated with
values at any point in the source program, without restricting
their use prior to definition.

1.2.3 The Radix Indicator

Integers are interpreted as octal or decimal according to
the radix prevailing when they are encountered by Midas. A
register in Midas, called the current radix indicator, is
initially set to accept octal integers. The pseudo-instructions
DECIMAL and OCTAL may be used to alter and reset this indicator.

1.3 Defining Symbols

The Midas symbol table, described earlier, functions as a
dictionary during the translation process. Each symbol intro-
duced by the programmer is inserted together with its value

Report No. 2931 Bolt Beranek and Newman Inc.

into the symbol table during Pass 1. The value of a symbol is
referred to as its definition. Numerical definition of a

symbol may be accomplished by its appearance as an address tag,

a variable name, or in a parameter assignment. Symbols may

also be defined as macro-instruction names or in terms of other
symbols. Macro name symbols are discussed in the section on
macro-instructions. The establishment of symbol synonyms is
discussed in Section 2 in connection with the pseudo-instructions
EQUALS and OPSYN.

The three basic formats that Midas allows for assigning a
numerical value to a symbol are described below.

1.3.1 Address Tags

A symbol is identified as an address tag if it is terminated
by a comma or a colon. An address tag is equated with the
value of the location counter plus the offset. The value is
entered into the symbol table modulo (2!®+). A symbolic address
tag identifies a line in the source program text and is required
only for lines referenced within the text.

An expression, such as <A+4>, terminated by a comma or
colon, is checked by Midas to make sure that it is equal to the
current location counter plus the offset. Since relative
addressing using address arithmetic is possible, any untagged
word might be referenced by such an expression. If a previously
defined symbol occurs as an address tag, the symbol is not
redefined; its value is checked and must agree with
that of the current location counter plus the offset. These
checks provide the programmer a facility for verifying that
the location counter is properly set or that a symbol is
properly defined. They also detect multiple uses of a single
symbol.

1.3.2 Variable Names

A programmer may direct the Midas assembler to reserve a
sequence of storage words for variable quantities produced by a
computation. Symbols may be substituted for these locations
before they are known. The assembly program classifies such
symbols as "undefined variables" and assigns them provisional
relative values. A string is classified as an undefined variable
by the inclusion of the character <#> in some occurrence of the
identifying string itself. The symbol is stored in the symbol
table without the <#> and may be referred to with or without it.

.
92
e
a £
S8
Q'U)
<

Report No. 2931 Bolt Beranek and Newman Inc.

Actual values are assigned for all variables still undefined at
the appearance of the pseudo-instruction VARIABLES. The follow-
ing are legal variable names: <ABC#>, <#ABC>, <AB#C>. The
second form listed is preferred.

1.3.3 Assigned Parameters

A programmer may assign any numerical value to a symbol
with a parameter assignment statement. The format is

SYMBOL=EXPRESSION
The symbol to the left of the equals sign is entered in the
symbol table, and the value of the expression to the right is
entered as its definition. If no value can be obtained for the
expression, the symbol is not defined.

1.4 The Use of Expressions

The rules for forming expressions were given earlier. The
evaluation of an expression depends on its context in the source
program as well as on the value of its component syllables.
Contexts in which Midas evaluates expressions are described below.

1.4.1 Storage Words

An expression terminated by a tab or carriage return is a
storage word. A storage word, when encountered by Midas, is
evaluated and assigned to the memory location equal to the
value of the current location counter. The contents of a
storage word may ultimately be used as an instruction and/or
operated on by an instruction, depending on the use of the
word in the object program.

l.4.2 Constants*

Constant values required by a program need not be introduced
as storage words in the source program. The constant expression
desired, enclosed in parentheses, may appear literally as the
operand of an instruction.

For example, an instruction to subtract 1gf. from accumu-
lator Al could be written as <SUB Al-(1g@g.)>. Midas will

* This feature is rarely used.

10

Report No. 2931 Bolt Beranek and Newman Inc.

generate a word containing the value 1f§@. The string <(1gg.)>
is called a constant syllable, and the address of the word
containing <1g@.> is substituted for it. Note that (1g8.),
(54.+58.), or (A+25.), where A=75. are equivalent constant
syllables and will all refer to the same location.

Constants may appear within constants to any depth, as in
LDA Al I ((AB)) (1)

The right parenthesis of a constant syllable may be omitted if
the constant is followed by a word terminator. For example,

LDA Al I-{((AB 2 (2)

is equivalent to (1) above. Omission of the right parenthesis
in

LDA Al I-)((AB)-Z 2 (3)
would, however, change the meaning.

1.4.3 Location Assignments

A location assignment is an expression immediately followed
by a slash. When Midas encounters a location assignment, the
expression is evaluated, and the location counter is set to
this value (rounded down if odd). If an expression that is used
to assign a location contains any undefined symbols when en-
countered by Midas on Pass 1, the current location becomes
indefinite. This means that the definition of address tags is
inhibited, and the value of <.> is undefined, until a defined
location assignment occurs, and at that time the counter again
becomes definite. On Pass 2, an undefined symbol in a location
assignment will cause an error message (USL). The undefined
symbol is taken as zero, and the location remains definite.

The Midas command "E", discussed in Section 4, permits the
programmer to arrange for Midas to type a message if the loca-
tion becomes indefinite on Pass 1.

1.5 Instruction Format

Basic Pluribus instructions come in five major classes
(Arithmetic, Jump, Branch, Shift, Operate), each of which will
be considered separately below. The scientific processor
instruction set is listed in appendix B.

11

D
Q
o)

£

]

o

@
<

Report No. 2931 Bolt Beranek and Newman Inc.

1.5.1 Arithmetic Instructions:

Typical Example FOO: ADD A3 X1 -3 DOG
Complex Examples FOO: ADD A3 X1 AB I M =-3DOG
FOO: ADD A4 X7 D B X

This type of instruction features an op code (one of 9),
an Accumulator (one of 8), an Index register (one of 8), five
separate mode switches (2-5 options each) and an address.

The recommended listing format is in the following order:
<op code> space <Accumulator> space <Index register> space
<MODE 1 switch> space <MODE 2 switch> space <MODE 3 switch>
space <MODE 4 switch> space <MODE 5 switch> Tab <address>.

Of course, it doesn't actually matter what order is used,
since Midas is just adding up predefined values.
OP codes: LbaA, SuUB, ADD, AND, IOR, EOR, CMP, TST, STA

AcCC : A@, Al, A2, A3, A4, A5, A6, A7
Index : X@, X1, X2, X3, X4, X5, X6, X7
MODE 1 : W, A, D

MODE 2 : B

MODE 3 : I

MODE 4 : M, L, E, R

MODE 5 : X

The Op codes, ACC, and index are pretty straightforward
after reading the SUE computer handbook. (STA is the same as
LDA M.) The modes are a little more complex. W (for Word) can
be used anywhere to make listing formats line up in columns
(W=g). A and D specify Auto Increment and Auto Decrement,
respectively. B specifies halfword (byte) operation. I
specifies Indirect addressing. M specifies "To Memory". L
specifies the address field is to be used as a Literal. E
specifies the 4 bit field where the index usually lives is a
literal. R means the operand is the contents of the specified
index register. X specifies a single word instruction--what
the SUE handbook calls "indexed" (not "direct address"), i.e.,

addressed through an index register only. Note: not all possible

12

Report No. 2931 Bolt Beranek and Newman Inc.

combinations of modes are legal Pluribus instructions; in parti-
cular, L, E and R cannot have other mode options.

More Examples

LDA A3 L 2177 /put 77 in AC 3
LDA A3 B 7 /put 7 in AC 3
ADD A3 M -3 DOG /add AC3 to DOG, result in DOG

1.5.2 Jump Instructions:

Examples: JMP -3 FOO
JSB A7 -3 FOO
JMP X1 —3{ FOOTAB
JSB A7 Xl —3{ FCOTAB
JMP I =31 FOO
JMP X3 X

JSB A2 X3 X

1.5.3 Branch Instructions:

Examples: BT EQ, DOG
BF EQ, DOG

BT and BF are "Branch" pseudo-instructions. EQ is one of
a set of thirteen branch conditions. DOG is the location to
branch to. BT stands for Branch if True. BF stands for Branch
if False. The Branch Conditions, their meanings, and how they
are set are listed in the following table:

Condition Meaning Set By
TR True Lockheed (always)
EQ Equal last CMP
GT Greater Than last CMP
ov Overflow ADD, SUB, some shifts
CY Carry ADD, SUB, some shifts

13

-
2
Q
S
O
(]
2]
<

Report No. 2931

Bolt Beranek and Newman Inc.

Condition Meaning Set By
Fl Flag 1
F2 Flag 2 special instructions
F3 Flag 3
LP Loop Complete last AUTO INC/DEC
oD odd last Arithmetic (except CMP)
ZE Zero last Arithmetic (except CMP)
NG Negative last Arithmetic (except CMP)

If an undefined branch
generated by the assembler.
(D>127o or D<-1280) a "DOR"

1.5.4 shift Instructions

condition is used, a "UBR" error is
If the displacement is out of range
error is generated.

The Pluribus basically has 16 shift instructions. The
sixteen are highly bit coded, and can be formed by combining
two symbols, each of which can take four forms.

Examples: LI
LX
RI

RX

AO

LL

1O

LC

A3

A3

A3

A3

6

X2

5

X1

The first symbol specifies shift direction and size. The
second specifies one of four shift types.

AO Arithmetic Open
LL Logical Linked
LO Logical Open

LC Logical Closed

.
.

.
.

use carry - off end - sign extend
use carry - rotate
no carry - off end

no carry - rotate

14

Report No. 2931 Bolt Beranek and Newman Inc.

LI Left by IMMEDIATE
LX Left by INDEX Register (last 4 bits)
RI Right by IMMEDIATE
RX Right by INDEX Register (last 4 bits)

1.5.5 Operate Instructions

These come in two varieties, called special function and
memory reference.

1.5.5.1 Special Functions

Defined instructions are:

HLT halt 3
RST reset status bits 5
SST set status bits §
ENB enable interrupt levels "
INH inhibit interrupt levels

ENW enable and wait

INW inhibit and wait

In the inhibit/enable instructions, bits 3-f indicate levels.
E.g., to enable levels 1 and 3 use the instruction

ENB 5
or to inhibit level 4 and wait for an interrupt use the
instruction

INW 8

In the status bit instructions, bits 6-f are set for bits in
the status word to set or reset; e.g., to clear the three
program flags, use the instruction

RST 168

15

Report No. 2931 Bolt Beranek and Newman Inc.

Bit Octal Coding Hex Coding Status Bit
'] 1 E = Equal
1 2 G = Greater than
2 4 V = Overflow
3 19 8 C = Carry
4 20 19 F1 = Program flag 1
5 49 20 F2 = Program flag 2
6 199 49 F3 = Program flag 3
1.5.5.2 Memory reference
Defined instructions are:
RET Return from interrupt
STM Status to memory
MTS Memory to status
RTH Registers to memory
MTR Memory to registers

These are implemented as pseudo-instructions. If the
value of the argument is 255.o0r less, a reference to "executive
core" is generated; otherwise a displacement is computed. A
"DOR" error is possible here.

1.6 Source Program Format

Midas begins processing a source program after it encounters
a title. A title may be any string of characters terminated
by a carriage return. Initial carriage returns are ignored.
The end of the source program is indicated by the appearance of
the START pseudo-instruction.

The portion of the source program which is to be assembled,

referred to as the body, is composed of character strings. These
strings are processed by Midas sequentially.

16

Report No. 2931 Bolt Beranek and Newman Inc.

Comments may be entered throughout the source program. Any
string of text characterized as a comment will be ignored by
the assembler. A comment is introduced by a slash and must be
preceded and terminated by either a tab or carriage return.

Two sample programs follow for solving the equation:
Z=70+V/2 for Q=4g, V=6f.

The two symbolic programs produce identical machine language pro-
grams as given below:

Sample Program 1

1gp!/-{LDA Al 3{Q
LI AO Al 3
SUB Al -3 Q
LDA A2 -V
RI AO A2 1 /Good Thing V is even
ADD Al R X2
STA Al -AZ

E S
Q9
T Qa
o £
92
CL(I)
L~ ¢

HLT
z, =09
Q: -H4p /either : or , works
v, =360

START 188!

Sample Program 2

198'/-A1.DA A1l —3{(49)
LI AO Al 3
SUB Al —3{(4p0)
LDA A2 -3 (6f)
RI AO A2 1
ADD Al R X2
STA Al -{#Z
HLT

VARIABLES
CONSTANTS
START 199! 17

Report No. 2931 Bolt Beranek and Newman Inc.

Resulting Machine Language

4pp BIpB3p
492 pPP4a32
4g4 121223
496 B7p430
41p g9p4a32
412 g79p58

414 pBP4A34
416 123241
420 2450922

422 g3p038
424 299438
426 popeppR
430 pepaPR
432 gppRLp
434 pgppep

It should be noted here that the above examples were
primarily pedagogical in nature. The second example, in
particular, totally ignored the ability to have literal fields
as part of the instruction. The strings <CONSTANTS>, <VARIABLES>,
<START> in the sample programs are pseudo-instructions, which
will be discussed in the following section.

18

Report No. 2931 Bolt Beranek and Newman Inc.

2. PSEUDO-INSTRUCTIONS

Pseudo-instructions are source-language expressions that
serve to direct the assembly process. A pseudo-instruction
statement consists of a pseudo-instruction symbol terminated
by a delimiter and followed by arguments as required. Unless
otherwise noted, a pseudo-instruction statement is terminated
by a tab or a carriage return. Pseudo-instruction symbols,
like all other symbols, are identified by no more than six
characters. Thus, pseudo-instruction symbols composed of more
than six characters may always be abbreviated. For example,
DIMENSION may be shortened in use to DIMENS. The pseudo-instruc-
tion repertoire is described below with regard to format and
function.

2.1 Octal and Decimal

When integers are encountered, they are interpreted as octal
or decimal according to the value of the prevailing radix indi-
cator. The pseudo-instructions OCTAL and DECIMAL reset the
radix indicator, which is set by Midas to OCTAL at the beginning
of each pass. An integer syllable followed directly by a period
will be interpreted as a decimal number regardless of the current
radix and will not change the radix value. Likewise, any
syllable followed directly by an exclamation point will be
interpreted as a hexadecimal number, regardless of radix.

2.2 JASCII

The pseudo-instruction .ASCII is used to assemble a string
of characters, two per word, into successive words in the
object program. .ASCII may not be used in constants or in other
contexts where an expression is required.

An .ASCII statement consists of the symbol <.ASCII> termina-
ted by a delimiter and followed by a string of characters.
The first character in the string is used as a delimiter of
the text string itself; it is not stored as part of the text
string, and its reappearance terminates code storage. Thus, if
given the string <.ASCII /MESSAGE/>, Midas will store character
code for the word, MESSAGE. A l12.-bit code character* should
not be used as a text delimiter. Only six bits at either end
of a string are interpreted as delimiters, so the remaining six
bits of a 12.-bit character would be included in the stored
text somehow.

* See Appendix C.

19

e
9
T Qa
a E
S8
Qtl)
<

Report No. 2931 Bolt Beranek and Newman Inc.

If the character <#> is used in the argument of .ASCII,
it is handled in an exceptional way; it is stored as end-of-
message (ASCII g) rather than as its own ASCII Code Configura-
tion, 243. Consequently, there is no provision for entering
<#> as actual text. Note that adding <#> to the end of an
even number of characters will force a full word (two bytes) of
P after the last character. An odd number of characters will
cause the unused (odd) byte of the last word (after the last
character) to be fg.

Three pseudo-instructions--CONSTANTS, VARIABLES, and
DIMENSION--are provided to direct automatic storage assignment
of words for constant and variable data. Variable data words
may be generated individually by reference or as fixed length
arrays obtained with the DIMENSION pseudo-instruction. Constant
data words are generated to accommodate literal references.

2.3 CONSTANTS

The pseudo-instruction CONSTANTS effects the allocation of
constant syllables to storage words containing constant values,
beginning at a location whose value is equal to that of the
current location counter at the appearance of CONSTANTS. When
a constant sylliable is allocated, its address (plus its offset)
is substituted for it at all references. If different express-
ions enclosed within parentheses have the same value, they are
considered to be the same constant syllable and are associated
with only one location. The pseudo-instruction CONSTANTS may
be used no more than 8. times in the same program. The number
of distinct constants on pass 1 in any one constants area is
limited to 64..

Since storage space for constants is allocated on Pass 1
when some expressions may not be definite, the number of
registers reserved in the constants area may exceed the number
Midas needs when all references have been consolidated; thus,
a gap of unused registers may arise between a constants area
and any subsequent portion of the object program. The pseudo-
instruction UNCON has as its value the size of the most recent
of these gaps. It is zero on pass 1.

The following examples show symbol prints following Pass 1
and Pass 2 for the same program.

CONSTANT AREA RESERVED, INCLUSIVE
FROM TO
326 332

20

Report No. 2931 Bolt Beranek and Newman Inc.

indicates registers reserved during Pass 1. At the completion
of Pass 2, the printout

CONSTANTS AREA, INCLUSIVE
FROM TO
326 332

indicates those registers actually containing constants.
2.4 VARIABLES

The value of the current location counter at the appearance
of the pseudo-instruction VARIABLES on Pass 1 marks the begin-
ning of the storage area allocated to variables. All variable
names classified as undefined are assigned locations at this
time. The relative value assigned to an undefined variable is
added to the value of the first location in the sequence (plus
the offset) and the result obtained entered as its address.

Each variable is assigned by Midas to a storage word, whose
initial contents are unspecified.

When a variables area has been completely allocated, the
value of the current-location counter is that of the next
location at which a storage word will be assembled. If VARIABLES
appears when the location counter is indefinite, it is inadmis-
sible. The Midas command "E" (described in Section 4) can be
used to help locate the problem if the location is indefinite
on Pass 1 when VARIABLES is used.

In the current version of Midas the pseudo-instruction
VARIABLES may be used no more than 8. times. If the maximum
is exceeded, the error comment TMV (too many variables) is
typed. The number of defined variables, however, is limited
only by the capacity of the symbol table.

At the occurrence of VARIABLES on Pass 2, Midas compares
the value of the current location counter with the value which
was associated with that variables area on Pass 1. A disagree-
ment is noted by the error message VLD (variables location
disagrees), which indicates that errant symbol definitions or
macroexpansions have altered the sequence of assembled words.

21

5
i £
Q.

53
O-UJ
<

- Report No. 2931 Bolt Beranek and Newman Inc.

2.5 DIMENSION

The pseudo-instruction DIMENSION reserves space in the
variables storage area, which may be referenced relative to a
symbolic address. DIMENSION is used to set up fixed-length
arrays. The pseudo-instruction and the name and extent of any
number of arrays constitute a DIMENSION statement, according
to the following format:

DIMENSION NAME1 (LGTH1) ,NAME 2(LGTH2)

The entire statement is terminated by a tab or carriage return
and requested blocks are separated from one another by commas.
The array name must be a legal symbol that has not been
previously defined. The extent must be stated as an expression
whose syllable values are known when the DIMENSION statement

is encountered on Pass 1. It is given in bytes.

2.6 EQUALS AND OPSYN

The pseudo-instructions EQUALS and OPSYN permit a user to
establish symbol synonyms, representing the same value. .The
format is

EQUALS SYNONYM,SYMBOL

Or
OPSYN SYNONYM,SYMBOL

where <SYNONYM> must be a legal symbol string and the <SYMBOL>
with which it is identified must be previously defined. <SYNONYM>
is assigned the same numerical or operational value as <SYMBOL>,
and the two are thereafter synonymous. OPSYN operates on Pass 1
only; EQUALS, on both passes. The following example illustrates
the difference between the two.

Let us say, for example, that a programmer wanted to use
the macro-instruction facilities to redefine a pseudo-instruction
such that the new instruction was a function of the old. The
original pseudo-instruction would have to be represented by a
different symbol; otherwise, its appearance in the definition
would act as a macro call, resulting in a closed loop.

For example, if one writes
EQUALS OCT,OCTAL

and then defines a macro-instruction OCTAL in terms of OCT,

22

Report No. 2931 Bolt Beranek and Newman Inc.

which now calls the pseudo-instruction, on Pass 2 OCT will again
be made equivalent to OCTAL, which has been redefined. OCT

then no longer references the pseudo-instruction, and the loop
avoided on Pass 1 will occur anyway on Pass 2. If one uses
OPSYN, however, OCT will be associated with OCTAL as desired

on Pass 1 only and retain its identity with the original pseudo-
instruction on Pass 2.

2.7 NULL

The NULL pseudo-instruction performs no action, but can be
used as a substitute for symbols no longer needed in a program.

Some programs are required to be compatible with various
environments (different machines, data bases, etc.), and a
function performed frequently in one usage may not be performed
at all in another. For example, a symbolic program may contain
complex macro-definitions that need not be assembled in one
instance but must be available for other processings. In this
case, the macro names may simply be equated with NULL, as in

EQUALS MACRO,NULL

Another case in which NULL is useful arises in connection
with macro-table storage space and the "garbage collector."
When the amount of space available for the storage of macro-
definitions is exhausted, the garbage collector will search the
table for definitions which no longer have a reference in the
symbol table and will recover such space by consolidating the
remaining table entries. The symbol-table reference to a macro
that has been redefined is automatically transferred to the
latest definition. In the case of macros that have not been
redefined but are simply no longer needed, the reference must
be suppressed in order to notify the garbage collector of the
available space. EXPUNGE can also be used for this function.

2.8 OFFSET

The pseudo-instruction OFFSET is used to set the value of
the offset count, whose relation to the current location counter
was described in connection with symbol definition. The pseudo-
instruction format is

OFFSET EXPRESSION

where the value of the expression (positive or negative) is
stored as the offset count. When the offset count is any value

23

L.
Q2
T a
a £
S8
CLU)
P ¢

Report No. 2931 Bolt Beranek and Newman Inc.

other than zero, a symbol value derived as an address tag will
not equal the core location of the storage word at which it
is loaded. For example, the coding:

OFFSET 6
ABC,~{LDA Al L -3 1gg¢
JMP —3{ ABC

occurring when the current location counter contains 188 will
be assembled as:

188/ -5LDA AL L - 1gp
JMP ~>{ 106

A portion of the object program that was assembled under
these conditions is not executable at the location it occupies
if storage word expressions use these symbols as referents. The
offset capability is, however, useful in creating a body of
data independent of its core location, yet internally consistent.

The effect of one OFFSET declaration is terminated by the
appearance of another. If a return to the normal sequence is
desired, the programmer must set the offset count to zero.
OFFSET is used in connection with memory "renaming" and in
constructing item maps.

2.9 REPEAT

REPEAT instructs Midas to assemble a specified portion of
the source program a specified number of times and thus relieves
the programmer of the necessity for source language repetition
of a repetitive object program sequence. The format is

REPEAT EXPRESSION, TEXT

where EXPRESSION is the count of the REPEAT, specifying the
number of iterations desired, and the TEXT is the source pro-
gram section to be iterated, called the range of the REPEAT.
The count must be defined when Midas encounters the REPEAT on
Pass 1l; otherwise, the range is ignored and the error print
<USR> occurs.

A carriage return is used to terminate the entire instruc-
tion; tabs may be used to denote storage words. Brackets may
be used to enclose portions of the range or the entire range;
this allows carriage returns or nested brackets to be included.

24

Report No. 2931 Bolt Beranek and Newman Inc.

Since a REPEAT merely serves to reproduce a string, the
range may include any elements of the source language, including
other REPEATS and macro calls. (An internal REPEAT, unless it
is at the end of the range, must be bracketed; otherwise its
terminating carriage return would also terminate the first
REPEAT.)

In the following example, the statement

REPEAT 2, LDA Al ~>A —3ADD Al 3B -3 STA Al -3cC
will generate for assembly the coding equivalent to

LDA Al =>A
ADD A1 3B
STA A1l =J{C
LDA Al =3{A
ADD A1l -3 B
STA A1l =3{cC

If the count of a REPEAT is zero or negative the range is

not processed.

2.10 START

The START pseudo-instruction directs Midas to stop reading
characters. START must appear at the end of every source-
language file and may take as an argument an expression denoting
the starting address of the object program. The format is

START EXPRESSION
At the end of Pass 2 in response to command "J", (Section 4),

Midas appends to the binary output a one word Jump Block
containing the argument of the last START processed.

25

e
QL
i g
Q.

g2
Q-(I)
<

Report No. 2931 Bolt Beranek and Newman Inc.

2.11 EXPUNGE

The pseudo-instruction EXPUNGE removes symbols from the
symbol table. The format is

EXPUNGE SYM1l,SYM2,SYMN

where the argument is a list of symbols, separated by commas
and terminated by a tab or carriage return. Any type of symbol
may be expunged. Midas ignores undefined symbols in the list.
If any member of the list is not a legal symbol, Midas ignores
the rest of the list. An expunged variable will not be defined
unless it appears again with <#> after the EXPUNGE; <#> itself
may not appear in the argument list.

2.12 WORD

The pseudo-instruction WORD appends 18.-bit computer words,
specified by the argument(s) of the pseudo-instruction, to a
block of binary output. The format is

WORD EXPRESSION
or
WORD EXPR1, EXPR2, ...EXPRN

The appended words are not necessarily part of the object
program; their values are selected to produce special binary
formats when needed. For example, words might be appended in
order to accommodate a particular loader or to insert jump
blocks before the end of assembly. Normal binary output format
is discussed in Section 4.

2.13 QIF and 1IF

A programmer may find it useful, particularly when handling
complex macro-instructions, to be able to test the value of
an expression and to condition part of the assembly on the
result. Such testing is effected by the pseudo-instructions
PIF and 1IF, in conjunction with symbols called qualifiers,
which represent tests available. The tests are as follows:

Qualifier Condition is true if:
VP the evaluated expression
is greater than or equal
to *f

26

Report No. 2931 Bolt Beranek and Newman Inc.

VZ the evaluated expression
is equal to *#

P Pass 2 is being performed

D the expression tested is
completely defined

N the argument contains no

characters (usually a dummy
symbol of a macro or IRP)

The format of conditional statements 1is

JIF VP EXPRESSION
1IF VZ EXPRESSION
PIF D EXPRESSION
1IF N SYMBOL
where the test requires an argument, and otherwise, @IF P.

The value of 1IF is 1 if the condition is true, @ if false;
the value of @IF is # if the condition is true, 1 if false.

A conditional statement may be terminated by tab, carriage
return,],), or comma. A conditional value may be used as a
syllable; in this case the conditional must be terminated by
a slash. For example:

LDA Al L -} gIF VP X/+3

is equivalent to
LDA Al L -3 or LDA Al L —3{4

while
LDA Al L -{f#IF VP X+3

is equivalent to ~
LDA Al L =38 or LDA Al L -1

PIF and 1IF are often used to obtain a zero or one as the
count of a REPEAT. For example:

END: @
REPEAT @IF VP 7776-END, PRINTX /OVERFLOWED CORE/ (1)

27

e
Q
T o
a £
29
Q(IJ
<<

Report No. 2931 Bolt Beranek and Newman Inc.

The address assigned to END is subtracted from 7776. If 7776
is greater, the test is true, and the value of @IF will be f#;
thus, the count of the REPEAT will be @ and the message will

not be printed.

REPEAT 1IF P, EXPUNGE TYO0,TY1l,ONE (2)

Example (2) will on Pass 2 direct Midas to expunge the listed

symbols.

2.14 PRINT, PRINTX, PNTNUM

The psuedo-instructions PRINT, PRINTX, and PNTNUM effect
an on-line printout by Midas during assembly. These instruc-
tions are particularly useful for obtaining information during
the processing of complex macro-instructions. The format of
the first two is

PRINT TEXT
or
PRINTX TEXT

where the argument may be text of the form used with the pseudo-
instruction .ASCII or, if used in a macro-instruction, dummy
symbols.

PRINT will cause Midas to type a line in the same format
as the first three columns of an error listing (described in’
the section on error checking). The code PNT is substituted
for an error code in the first column and is followed by the
argument and a terminal line feed.

PRINTX cause Midas to type only the argument. Since both
pseudo-instructions are effective on both passes, a repetitive
printout can be avoided only if conditioned, using @IF or 1lIF,
with the qualifier P. For example, in response to

REPEAT @IF P, PRINT /TEXT/
Midas will print only on Pass 1.

PNTNUM causes the value of an expression to be typed as
an octal number. The format is

PNTNUM EXPRESSION

2.15 STOP

The pseudo-instruction STOP is used when the programmer
wishes to arrest the expansion of a macro-instruction, an IRP,

28

Report No. 2931 Bolt Beranek and Newman Inc.

or the range of a REPEAT. In any other context, STOP is ignored
by Midas. '

When used within a macro or an IRP, STOP will suppress
subsequent coding until the occurrence of the next TERMINATE
or ENDIRP. Within the range of a REPEAT, STOP will halt the
expansion of all subsequent text in the repeat. 1In addition
if the expansion of the REPEAT occurs within a macro-instruction
or an IRP, the expansion will be stopped as well.

STOP may be used conditionally as in the following:

REPEAT 3, [REPEAT 1IF VZ A-B,STOP
A=A-B]

The text A=A-B will appear for processing up to three times.
However, if A=2 and B=1 at the start, the count of the inner
REPEAT, which generates the STOP, will have the value one before
the second appearance, and the expansion of the first REPEAT
will be arrested. STOP may also be supplied as an argument

for an IRP or a macro call.

2.16 VERNUM

The VERNUM pseudo-instruction has as its value the version

number of the text file currently being assembled. It is used
to identify which particular version of the program was used
to assemble a binary tape. (See Section 4.1)

2.17 BT, BF, RET, STM, MTS, RTM, MTR

These pseudo-instructions are used to generate two byte
SUE instructions as described in Sections 1.5.3 and 1.5.5.2.
They are terminated by tab, carriage return, 1,), /., or
comma. They may be used as syllables by enclosing them in
brackets.

2.18 OTHER PSEUDO-INSTRUCTIONS

The remaining pseudo-instructions--DEFINE, TERMINATE, IRP,
IRPC and ENDIRP--are described in the section on macro-instruc-
tions.

2.19 SAMPLE PROGRAM SECTION

A page of listing is included in both hexadecimal and octal.
It pretends to be neither complete nor correct.

29

} -
9
T Q
a £
g2
CLU)
<

Report No. 2931 : Bolt Beranek and Newman Inc.

2.19.1 Sample Page of Program - Octal Listing

1888/

BOFI2M=72
2o1pp8 P7£P3F LOOP: LDA Al PID
pPLEP2 PPL376
2p1994 P4ag211 JMP X1 I BASE
ggLppe PPLARR
gP1919 Q44438 I2M: SUB Al L BOFI2M
geLgL2 pEgL1P
gg1g14 g7g@s1 LDA A2 X1 HOLDI 2M
gg1916 pPLAp?2
gg1g2g 115376 BT ZE, .-2
gp1g22 @7g1s1 LDA A6 X1 I2MNXT
pg1p24 pPlLApA
gg1g26 @7gP51 LDA A2 X1 PLEASEFLUSH
peL1p38 pPLAP6
gP1g32 115824 BT ZE, I2MNOF
pgg1934 P4glL7g JSB A7 FLUSH
291936 PPL4LP
geLBAR B850 LDA A2 NSF
gP1942 @P1412
gg1P4a4 115376 BT ZE,.-2
gplgse Pade4l SUB A2 E 1
gp1gsg @g3pPsg STA A2 NSF
gp1g52 pP1412
pgLP54 11g912 BT TR, I2MTRY
Pgg1g56 @3g351 I2MNOF: STA A6 X1 I ERETQ
pgpLgep ppL4la
gg1g62 @30151 STA A6 X1 ERETQ
gglges @P1414
gP1p66 P7PP51 I2MTRY: LDA A2 X1 SLT
geL1e7g Pp14l6 |
gg1g72 115726 BT NG, I2MQUT /HOLDING LINE DEAD

30

Report No.

2.19.2

g2p9
g2p2
g2p4
B2p6
2298
22gA
g2pcC
P29E
g219
§212
g214
g216
p218
g21A
g21c
g21E
p22¢
§222
$224
9226
g228
g22a
g22c
§22E
223p
8232
g234
$236
9238
023A

2931

Bolt Beranek and Newman Inc.

Sample Page of Program - Hexadecimal Listing
1888/
BOFI2M=72
7818 LOOP: LDA Al PID
f2FE
4989 JMP X1 I BASE
B399
4918 I2M: SUB Al L BOFI2M
ppas
7629 LDA A2 X1 HOLDI2M
p3g2
9AFE BT ZE, .-2
7069 LDA A6 X1 I2MNXT
#3094
7929 ILDA A2 X1 PLEASEFLUSH
#2386
9Al14 BT ZE, I2MNOF
4978 JSB A7 FLUSH
p308
7828 LDA A2 NSF
g3gA
9AFE BT ZE, .-2
49A1 SUB A2 E 1
3428 STA A2 NSF
23pA
9ggA BT TR, I2MTRY
30E9 I2MNOF: STA A6 X1 T ERETQ
g3gc
3969 STA A6 X1 ERETQ
g3pC
7829 I2MTRY: LDA A2 X1 SLT
B3PE
9BD6 BT NG, I2MQUT /HOLDING LINE DEAD

31

£
K
T Qa
a £
S9
Q'U)
<

Report No. 2931 Bolt Beranek and Newman Inc.

3. MACRO-INSTRUCTIONS

A macro-instruction is any legitimate source-language text
that a programmer names and sets up so that when the name
appears in the subsequent source program, Midas will assemble
the text. The text and macro name are established by a macro-
definition, whose format is described below. Where the text
includes parameters that may differ with each occurrence of the
macro-instruction, these parameters may be represented by dummy
symbols.

3.1 Macro-Definitions

A macro-definition is initiated by the pseudo-instruction
DEFINE, delimited by any terminator. DEFINE is followed by a
macro name. A macro name must be a legal symbol, which, if
previously defined, will be redefined. The macro name is fol-
lowed by a list of dummy symbols, if needed, and terminated by
a tab or carriage return. If symbols that appear in the text
of the macro-instruction are not listed after the macro name,
Midas will treat them as ordinary symbols. After a macro name
Midas interprets the first character other than space as the
first member of the argument list. The argument list is dis-
cussed in greater detail later. Midas considers all text
following the name and argument line to be the body of the macro-
instruction. Midas stores this text until the appearance of
the pseudo-instruction TERMINATE, which signals the end of the
definition. The body of the macro may include any element of
the source language, including other macro-definitions or calls.
Any dummy symbol from the list may appear as a syllable in the
body of a macro-definition.

3.1.1 Basic Format

The basic format of a macro-definition is illustrated by
the following examples.

DEFINE
NEGATE (MACRO NAME))
Al L -1
EOR = (BODY OF THE MACRO)
ADD A1 E 1
TERMINATE

32

Report No. 2931 Bolt Beranek and Newman Inc.

The macro name, <NEGATE>, subsequently serves as a macro
call in the source program. Midas will assemble the body of
the macro (<.EOR Al IL-»-1> and <ADD Al E 1>) into the object
program at each appearance of the macro call.

DEFINE

SuM A, B, C
LDA Al =3 A (2)
ADD Al —3{B

STA Al =2 C

TERMINATE

(The character # must be the first character if it is used
in a dummy symbol string.)

The macro call <SUM ZORG,ZINC,XMAX> will cause the follow-
ing sequence to be assembled.

LDA Al —3{ ZORG
ADD Al =2{ZINC
STA Al —3{ #XMAX

3.1.2 Dummy Arguments

A programmer may use up to 20. distinct symbols as dummy
arguments in a macro-definition as long as each appears in the
dummy argument list. Members of the argument list are usually
separated from one another by commas. The position of an
argument in the list is the model for the order of arguments
supplied at a macro call.

Some syllables, although they are referenced only within
the body of the macro, will represent a different value at each
call. Such syllables may be represented by dummy symbols and
specified in the argument list as generated arguments, for
which Midas will automatically provide a symbol. A list of
those dummy arguments for which Midas must generate symbols
is preceded by a slash and follows the list of arguments which

33

t
2
el
£
@
®
)
<

Report No. 2931 Bolt Beranek and Newman Inc.

the programmer must supply as shown below:
DEFINE MACROSYM A,B/C,D,E
or
DEFINE MACROSYM /A,B,C
where all symbols are to be generated.

Symbols generated and inserted by Midas are of the form
<...A@g1l>, <...A@2>, <...A@3>, etc. If at a macro call the pro-
grammer supplies a real argument in a list position correspond-
ing to that of a generated symbol, Midas will accept the sup-

plied symbol rather than generate one. A generated symbol may
be used to define variables, address tags, etc.

The following examples give an idea of the use of generated
arguments.

1) DEFINITION CALL: CLEAR TAB, 140
DEFINE CLEAR A,N/B EXPANSION
LDA Al L —>{A LDA Al L —3{ TAB
LDA A2 L =N LDA A2 L {100
STA Al ~>{ B+2 STA Al —>{...A01+2
LDA A1 E @ LDA Al E #

B, ->{STA Al X2 D -3
BF LP,B

TERMINATE

2) DEFINITION

DEFINE SAVEAC /A
STA Al —3{ #A
JSB Al ~3 SUBR
LDA Al —3{A

TERMINATE

34

..Afl -3 STA Al X2 D -3 0

BF LP,...AfQ1

CALL: SAVEAC

EXPANSION
STA Al —3{ #...AQ01
JSB Al —3{ SUBR

LDA Al - ...AQ1

Report No. 2931 Bolt Beranek and Newman Inc.

If an argument is supplied at the call, as in <SAVEAC TEMP>,
STA Al-H{4TEMP
JSB Al-3{SUBR
LDA Al-3TEMP
Midas, when scanning the body of a macro-definition for
dummy arguments, compares each legal symbol in the text with the
symbols in the dummy argument list. Those symbols that cor-

respond to any dummy symbol are stored in a special way, as
described in Section 3.3, Storage of Macro-Instructions.

If the programmer wishes to represent only a part of a
symbol by a dummy argument, he may use an apostrophe to denote
this in the body of the macro definition.

<BT FA,.+6>

In the pseudo-instruction the string <FA> satisfies the
requirements for a legal symbol. During the dummy symbol scan,
Midas would interpret <FA> as a single symbol unless an apostro-
phe is used to indicate that the <A> alone is a dummy symbol,
as in

DEFINE MACRO A

BT F'A,.+6
The apostrophe is deleted when the macro-instruction is defined.
In the case of a nested macro-definition, apostrophes are also
deleted at the time of definition; that is, when the higher

level macro is called.

3.2 Macro Calls

A macro call consists of a macro name followed by a list
of arguments separated by commas. The call is terminated by a
tab or carriage return.

The arguments of a macro call may include any character

string (including an empty string) with the following restric-
tions. Since comma terminates an argument and tab or carriage

35

e
Q
T
o £
89
o‘cn
<

Report No. 2931 Bolt Beranek and Newman Inc.

return terminates the list, these may be included only in argu-
ments enclosed by brackets. Brackets must be used in pairs and
may be used within other brackets. Midas will consider all

" but the outermost pair to be part of the argument.

At the appearance of the macro call, Midas processes the
body of the macro (stored in the macro table) as though it had
appeared in sequence. At this time Midas substitutes for the
corresponding dummy arguments and creates the correct number
of generated arguments.

If the programmer supplies extra arguments at a macro call
and the definition specified generated arguments, the extra
supplied arguments will take the place of generated ones. 1If,
however, arguments are supplied in excess of the total number
(supplied and generated), the excess arguments are ignored.
Note that Midas will not generate a symbol when a programmer
fails to supply one that has been specified in the definition.

3.3 Storage of Macro-Instructions

After the occurrence of the DEFINE pseudo-instruction,
Midas saves the name of the following macro-definition and
scans the list of dummy arguments, keeping count both of the
total number of arguments and the number of these arguments
that are to be generated. While storing the body of the macro
in the macro table, Midas scans the text for dummy symbols.
When Midas encounters a symbol that matches a symbol from the
dummy argument list, the list position of the corresponding
dummy argument is stored in place of the symbol in the text
and is distinguished by a code prefix.

Macro-definitions within the body of the macro are stored
literally and defined only when the instruction containing
them is called.

When Midas encounters the final TERMINATE, the number of
words that were required to store the definition is deposited
in the first macro-table register preceding the text. The
macro name and the table location of the definition are entered
in the symbol table.

3.4 Nested Macros

It is convenient when discussing nested macro-instructions
to think of DEFINEs and TERMINATEs as if they were parentheses,
the outermost pair constituting the highest level macro-definition.

36

Report No. 2931 Bolt Beranek and Newman Inc.

When the programmer calls the highest level macro-definition,
Midas stores the second level definition in the macro table,
and so on. Internal macro-definitions may contain dummy
arguments of higher level ones. These arguments will be
replaced by supplied arguments when the higher level definition
is called. Pairs of DEFINEs and TERMINATEs must count out.

To ensure that they do, the programmer may use the macro name
as the argument of a TERMINATE instruction. Then if the DEFINE
associated with that TERMINATE refers to another macro name, the
error message <MND> (macro name disagrees) will inform the
user of a "mispairing" of DEFINEs and TERMINATEs.

A series of examples of nested macros follows. Note in
example 1 the use of apostrophe and the insertion of a supplied
argument into a nested definition.

EXAMPLE 1

DEFINE FLOAT INSTR
OPSYN OLD'INSTR,INSTR
DEFINE INSTR X
IDA A1l L -3X
JSB A2 = F*INSTR
TERMINATE INSTR
TERMINATE FLOAT
If FLOAT MUL appears, the expansion will be
OPSYN OLDMUL,MUL
DEFINE MUL X
ILDA A1 L. X
JSB A2 =2 FMUL
TERMINATE MUL
This macro-instruction may be used to change Pluribus instruc-

tions to subroutine calls. Their original meanings could be
restored by

EXAMPLE 2
DEFINE UNFLOAT INSTR

INSTR=CLD'INSTR
TERMINATE

37

T
K
T a
o £
g8
n-(l)
<

Report No. 2931 Bolt Beranek and Newman Inc.

DEFINE MACRO X,Y
LDA Al =3 X

DEFINE MAC2 Y
ADD A1 Y

TERMIN

TERMIN

The call <MACRO ONE,TWO> will generate
LDA Al —3{ONE
DEFINE MAC2 TWO
ADD Al —3{ TWO
TERMIN
The argument supplied for <Y> at the call of MACRO must be a

symbocl, since it will be inserted as a dummy argument in the
definition of MAC2.

EXAMPLE 3. It is usually safer to use rather meaningless
symbols as dummy arguments to avoid duplication of real
arguments. For example,

DEFINE MACRO X
LbAa A1 L X
DEFINE MAC2 COUNT
ADD A1 L =3X+3
STA Al —3{ COUNT
TERMIN
TERMIN
If COUNT is also a program symbol that the programmer inadver-
tently supplies at the call of MACRO, the result would be
LDA Al —>{ COUNT
DEFINE MAC2 COUNT
ADD A1l L —3{ COUNT+3

STA Al —3{ COUNT
TERMIN

38

Report No. 2931 Bolt Beranek and Newman Inc.

. EXAMPLE 4. The following example illustrates a macro-
instruction that redefines itself when first called.
DEFINE INCREM
LDA Al E @
STA Al -3 XYZ

DEFINE INCREM
LDA Al L -2 190
ADD Al M -3 XYZ
TERMIN
TERMIN

At the first call of INCREM the following text is generated:

LDA Al E #

STA Al —{XY?2
DEFINE INCREM

LDA Al L —A 190

ADD A1 M - XYZ
TERMIN

Subsequent calls will generate

LDA AL L. =3 109
ADD Al M =3 XYZ

3.5 The Pseudo-Instructions IRP and IRPC

The pseudo-instruction IRP (indefinite repeat) generates
sequential iterations of text a number of times determined by
analysis of its arguments. A different set of arguments is
substituted at each iteration.

An IRP statement consists of the <IRP> symbol followed by
a list of arguments, each enclosed in brackets, terminated by
a tab or carriage return. Following the argument list is the
body of the IRP. 1It, like the body of a macro-definition, may
include any source language elements, including other IRP's

39

} .
2
T Qa
a £
S8
&(I)
<<

Report No. 2931 Bolt Beranek and Newman Inc.

and macro calls or definitions. The body of an IRP is delimited
by the pseudo-instruction ENDIRP. .

Each argument of the IRP is itself a list of subarguments
separated by commas or carriage returns. The first two
members of a subargument list are dummy arguments, and each may
be used in the body of the IRP. The remaining members of the
list are the "real" arguments of the IRP. Upon encountering
an IRP, Midas processes the body of the IRP repeatedly, with
different symbolic equivalents substituted for the dummy
arguments each time according to the following procedure.
Midas begins by substituting the first member of the real
argument list for the first dummy symbol and the remainder
of the real argument list for the second dummy symbol. The
remainder of the real argument list is then treated as the real
argument list in subsequent processings, until all lists are
exhausted.

IRPC operates exactly as does IRP but on a different
type of list. Elements of an IRP subargument list are separated
by commas and may include a text string or a bracketed expression.
Real arguments of an IRPC subargument list are not separated
by commas; each character in the string is treated as an
individual list member.

The following examples illustrate the use of IRP and IRPC.
Note that the dummy symbols may be omitted if not referenced.
although their positions must be indicated by a comma. The
second dummy symbol is omitted below:
IRP [NAME,,MAPS,MAP2,MAP]1,MAP3],[VALUE,#,4,2,6]
NAME=176g8@8+VALUE
ENDIRP

This IRP will create symbol table entries for the listed map
symbols and their corresponding addresses.

The following example shows use of an IRPC within a macro-
definition. The digit supplied at the macro call will, during
the expansion process, be compared with each digit in the sub-
argument list until its equal is found and printed.

DEFINE TYPE DIGIT
IRPC [NUM,,0123456789]
REPEAT 1IF VZ [DIGIT]-NUM, PRINTX /NUM/~>STOP
ENDIRP

TERMINATE

40

Report No. 2931 Bolt Beranek and Newman Inc.

The next example illustrates how to use the second dummy symbol,
which represents a list.
DEFINE MACRO LIST
IRP [X,Y,LIST]
REPEAT @IF D X, [MAC2 [Y]]
ENDIRP
TERMINATE

The list obtained for Y in the first IRP repetition is used as
a supplied list for another macro-instruction.

The next example shows a series of nested IRP's used to
define a macro-instruction that, given the list <X1,X2,...XN>,
will set up a matrix of the form:

o
e
X1,X2, e00ess XN g
X2,X3,...XN, X1 ﬁ
X3’.........X2)
XN

DEFINE MATRIX LIST
LGTH=f
IRP [,,LIST]
LGTH=LGTH+1
ENDIRP
IRP [X@,LIST2,LIST]
COUNT=1
xg
IRP [XN,,LIST2]
COUNT=COUNT+1
XN
ENDIRP
IRP [X@g2,,LIST]

41

Report No. 2931 Bolt Beranek and Newman Inc.

REPEAT 1IF VZ COUNT-LGTH,STOP
Xg2
ENDIRP
ENDIRP
TERMINATE
The first IRP gets the length of the list. The second gets the
next (initially first) member. The third processes the remainder

of the list. The fourth goes back to the beginning of the
list and takes each element until COUNT = length of text.

42

Report No. 2931 Bolt Beranek and Newman Inc.

4. OPERATION OF THE MIDAS ASSEMBLY SYSTEM

4.1 Preparation of a Source-Language Program

The programmer prepares his source-language program on-
line via a Teletype terminal, using TECO, for example, to type
in and edit text and to store the program in a file. The file
is accessible to Midas by name, version number, and index.?*

4.2 Performing an Assembly

4.2.1 1Initial Procedure

English files to be processed must be on the PDP-1d's
Fastran drum for access by Midas. Midas runs under DDT control
and is called in the following way. First, the user types
C"F"PMIDAS to start the version of Midas which assembles Pluribus
programs. When called, Midas responds with a <#> to signal that
it is ready to accept a typed command. The condition of Midas
when it is first brought into core is as follows. The current
location counter is set to 11f and the radix indicator to OCTAL.
The macro table is empty. The symbol table contains all pseudo-
instructions and a minimal list of Pluribus instructions (these
are listed in Appendix B).

4.2.2 The Control Language

A command to Midas is a character string terminated by an
Altmode. The first character of the string designates the func-
tion to be performed, such as <1> to do Pass 1, and <C> to con-
tinue the present pass. Some of the commands require arguments,
such as the name and version number of the file to be processed.
Arguments, when required, are typed after the command character.
Spaces, line feeds, and "control" characters are ignored; and
rubout and backslash have their usual meanings.

*Some of this section assumes knowledge of the EXEC III operating
system on BBN's PDP-1d computer.

43

1
2
T Qa
a £
g9
o'(l)
R

Report No. 2931 Bolt Beranek and Newman Inc.

Midas performs each command immediately upon receiving the
Altmode terminating the input string. If the command is syn-
tactically incorrect, or if an argument contains a file name and
version that is not found in the current index, a question mark
is typed and the command is completely ignored.

It is possible to type in a list of commands and have the
assembler perform them one after the other without further at-
tention from the user. The command <L> sets the assembler to
listen to a series of commands, separated by carriage-returns,
and is finally terminated by an Altmode. When typing in commands,
rubout rubs out the current line, backslash rubs out the last
character, and rubout at the beginning of a line terminates the
whole type-in unsuccessfully, causing an error printout. When
the Altmode is typed Midas leaves the type-in mode and begins
processing the commands that have been entered.

The command characters and argument requirements are listed
on the following pages.

44

Report No. 2931

Control Characters

Bolt Beranek and Newman Inc.

Function

Required Arguments

1 Begin Pass 1 Name of English file
followed by a comma
and the version
number
2 Begin Pass 2 Same as for 1
C Continue present Name and version num-
pass on additional ber of additional file,
file. as for 1

I Initialize symbol None
and macro tables.

E The argument of E An octal number

represents a bit
setting. Certain
bit settings in-
form Midas to per-
form a special
function during
assembly. The bit
settings and their
associated func-
tions are listed
below.

Bit 1l7--continue
processing com-

e
Q@
i B
Q

S g
Qtl)
<

mands after a fatal
error. <El1>

Bit 16--print all char-
acters processed. <E2>

Bit 15--print an error
comment on Pass 1 if
the location goes
indefinite. <E4>

Bit l1l4--define unde-

fined symbols as § on
Pass 2. <E1@>

45

Report No. 2931

Control Characters

Bolt

Function

Bit 13--suppress
DOR errors. <E28>

Add a jump block
to assembled bi-
nary program.
Selects address
following last
START encountered.

Halt Midas.

Connect to an
index.

List constants
areas.

Listen for a se-
ries of commands.

Type EOT and wait
a specified (octal)
number of minutes
before proceeding.

Set up an indexed
file of binary
output in pro-
grammer's index.

Set up indexed
file of symbol
table and macro
table in pro-
grammer's index.

Load symbol and
macro table into
Midas.

Beranek and Newman Inc.

Required Arguments

None

None

Name of programmer's
index

None

None. Commands are
typed after altmode
following the <L>

Octal number

®

Name and version number
as required for file
access

Name and version number
as required by general
filing

Name and version number
under which the table is
filed

A simple assembly of a symbolic program consisting of a file in
the Index IMP would be accomplished by the following sequence of

commands.

46

Report No. 2931

X IMP

Bolt Beranek and Newman Inc.

1 PROGRAMX,1

B

H

A more complex example might be —

#X IMP

#1 PARAMS, 412
IMPJOB 4.12 PARAMS - PASS

#C PART1,413
IMPJOB 4.13 PART 1 - PASS

#C PART2,413

IMEJOB 4.13 PART 2 - PASS
#C PART3,413

IMFJOB 4.13 PART 3 - PASS
#2 PART1,413

IMPJOB 4.13 PART 1 - PASS
#C PART2,413

IMPJOB. 4.13 PART 2 - PASS
#C PART3,413

IMPJOB 4.13 PART 3 - PASS
PNT 5546 FOO

#J

Connect to IMP index

Start Pass 1

(Underlined part is title line
of file)

Continue (Pass 1)

Continue (Pass 1)

Continue (Pass 1)

Start Pass 2%

Continue (Pass 2)

Continue (Pass 2)

(Result of the PNT
pseudo-instruction -
see language descrip-
tion.)

Terminate binary with a
jump block

*The parameters file generates no binary code; therefore it does

not require a second pass.

g
Q
Q
S
Q
)
7
<

Report No. 2931 Bolt Beranek and Newman Inc.

#B BIG413,1 File binary as BIG413,
version 1

#S BIG413,1 File symbol table

#A Give alphabetic symbol

CONSTANTS AREA, INCLUSIVE print

FROM TO

5424 5540

#H Halt Midas

4.3 Order of Operations

The commands 1, 2, C, and J represent functions that must
be performed in a certain order. The other commands represent
functions that the programmer may select at various times during
an assembly.

48

Report No. 2931 Bolt Beranek and Newman Inc.

5. BINARY OUTPUT FORMAT

All blocks, with the exception of the single-word jump block,
begin with two words that indicate position and length and end
with a checksum word. The maximum block length is 1@3s words.

The number of data words in a block is derived by subtracting the
first word from the second. The checksum word contains the sum
modulo (2'®:-1) of all other words in the block, including the
first two.

The first word contains, in addition to the type-indicating
bits, the address in core where the first data word is to be
stored; the second, the address following storage of the last
word in a block.

The pseudo-instruction WORD may be used to fabricate special
formats or to insert jump blocks without stopping the assembly.
When Midas encounters a WORD pseudo-instruction, it terminates
the current block with a checksum. The arguments of WORD are
appended directly to the binary output.

49

P
9
T
a £
S 2
Q(I)
<

Report No. 2931 Bolt Beranek and Newman Inc.

6. ERROR CHECKING

If Midas encounters an error in source-language coding, the
assembly is interrupted and a descriptive error message printed.
Depending on the severity of the error, assembly may or may not
continue. The format of an error message is exemplified as fol-
lows:

(1) (2) (3) (4) (5) (6)
USW 1999 149¢@¢ ALPHA+2 REPEAT GAMMA
Column (1) contains a descriptive error code; (2), the octal

address at which the error occurred; column (3), the (non-zero)
offset count; (4), the symbolic address stated in terms of the
last address tag seen. Column (5) contains the last pseudo-
instruction symbol or macro name Midas encountered. Column (6),
used only in errors involving symbol definition, contains the
offending symbol. Midas omits any column that is not pertinent.

The error codes and the conditions with which they are

associated are listed on the following pages, indicating what
action Midas takes.

50

Report No. 2931 Bolt Beranek and Newman Inc.

Error Condition Action on
Designation Causing Error Continuation

Undefined symbols

USa Undefined symbol (a in- All undefined
dicates where found): symbols are
evaluated as
zero.

B Branch address
C in a constant
D in size of dimension

array
F in OFFSET count 5

o)
I in argument of @IF or 1IF g
[%)]

L in a location assignment b2
0] in argument of EQUALS

or OPSYN
p in a parameter assignment
R in the count of a REPEAT
S in the argument of a start
T in a multi-syllabic address

tag
W in a storage word

UWD undefined symbol in argument

of a WORD pseudo-instruction

51

Report No. 2931

Error

Designation

Bolt Beranek and Newman Inc.

Condition
Causing Error

Undefined symbols

UBR

UDP

UPA

UNC

Undefined branch condition

BT, BF

Undefined displacement
to RET,STM,etc.

Undefined PNTNUM argument

Constant is undefined,
as no valid CONSTANTS
area was defined

Multiple Definitions

MDT

MDV

MDD

Other Errors

MND

Multiply defined tag

Multiply defined vari-
able (a symbol previ-
ously defined as other
than a variable appears
with a #)

Multiply defined dimen-
sion (a previously de-

fined symbol used as an
array name)

Macro name disagrees
(the argument of a
TERMINATE disagrees with
the name being defined)

52

Action on
Continuation

assumes TR

assumes @

no print occurs

tries anyway

Original def-
inition re-
tained

Original def-
inition re-
tained

Original def-
inition re-
tained

First name
used

Report No. 2931 Bolt Beranek and Newman Inc.

Error Condition Action on
Designation Causing Error Continuation

Other Errors

ICH Illegal character The character
is ignored

ILF Illegal format Characters are
ignored until
the next tab
Oor carriage re-

turn
IPA Improper parameter as- The assignment
signment. (The expres- is ignored
sion to the right of
the equals sign is 5
inadmissible.) T8
55
VLD Variables location dis- Condition a2
agrees. (The pseudo- ignored <
instruction VARIABLES
has appeared on Pass 2
at a different location
than on Pass 1.)
LGI Location gone indefinite If the appro-

priate bit is

set (by Midas

control <E>),

LGI is printed
on Pass 1

DOR Destination out of range - tries anyway
BT, BF, etc.

PNT Not an error. Result
of PRINT pseudo -
instruction

In the event of the following error conditions, assembly cannot
continue.

CLD Constants location disagrees.
The pseudo-instruction CONSTANTS

53

Report No. 2931

Error
Designation

Bolt Beranek and Newman Inc.

Condition
Causing Error

Other Errors cont.

TMC

TMP

T™V

SCE

EOF

has appeared on Pass 2
in a location different
from Pass 1. All con-
stants syllables have
been assigned incorrect
values.

Too many constants (The
pseudo-instruction
CONSTANTS has been used
too many times in one
program)

Too many parameters (The
storage reserved for
macro-instruction

arguments has been exceeded)

Too many variables (the
pseudo-instruction
VARIABLES has been used
more than 8 times in one
program)

Storage capacity exceeded
(symbol table or macro table
full, or too many constant
words used)

No START pseudo-instruction

54

Action on
Continuation

Report No. 2931

APPENDIX A.
A.1 Alphabetic

Letters (A-7)
Digits (g-9)

A.2 Punctuation
Character

, (comma)

(colon)

/ (slash)

()
L]

#

carriage-return-line-
feed, tab, and line feed

(period)

Bolt Beranek and Newman Inc.

Midas Character Set

Function (s)

a) indicates address tag mod (2'°®)
b) separates elements of a List
c) terminates count of a REPEAT

indicates address tag mod (2'°%-)

equates symbol to the left with
expression to the right

a) terminates location assignment

b) introduces comment

c) introduces list of macro-
instruction arguments to be
generated

d) terminates a conditional

enclose a literal

expression enclosed specified for
syllable function

denotes symbol as a variable

a) word terminators
b) varying meanings according to
context

a) as first character of a symbol
is a letter

b) as an entire symbol is a
pseudo-instruction giving the
value of the location counter

c) in a number has the value of
the digits to its left taken
in base 12 (decimal)

55

T
Q2
T Qo
a £
X
Q_(/)
<<

Report No. 2931

A.2 Punctuation - Cont'd
Character

' (explanation)

A.3 Combining Operators

Product Operators

wpn
-
-~
"o
uR"

Additive Operators

+ or space
- (minus)
A.4 TIllegal
A.4.1 Generally Illegal
break
rubout
\ (backslash)

Altmode

Bolt Beranek and Newman Inc.

Functions (s)

has the value of the letters and
digits to its left in base 20
(hexadecimal)

folded integer multiplication
logical disjunction (exclusive OR)
logical union (inclusive OR)
logical intersection (AND)
quotient

remainder

Addition, mod 218'—1

Addition of the one's complement

56

Report No. 2931 Bolt Beranek and Newman Inc.

A.4.2 TIllegal Except Within a Macro-instruction or an IRP

HBII

"C"

00

wru

"F"

"G“

l|Hll

T
9
T
a £
92
‘Q_m
<<

* (or ~ (hat))

< (or - (underscore))
vert. tab

ng

NG

lloll

57

Report No. 2931 Bolt Beranek and Newman Inc.

A.4.2 Cont'd

nrHn

-

ngn
nyn
"
nyn
ngn
A.5 Ignored Except Within a Macro-instruction or an IRP

$

EOT
formfeed

carriage return

58

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX B. Symbols in Permanent Midas Vocabulary
B.1l Pluribus Instruction Symbols

B.1.1 Symbols Associated with Memory Reference Instructions

LDA

19918 (7988:)
SUB = 7g41% (7198!)
AND = 7141g (73¢8!)
EOR = 72418 (75@8!)
TST = 73419 (7788!)
STA = 30g18 (39@98!)
ADD = 71p1@ (7208!)

S
2
T Qa
a £
89
Q_U)
<

IOR = 72@1@ (7498!)
CMP = 73g18 (76@8!)
W=y
M = -40008 (-40898°)
E = -2361g (-2788!)
X = -1g (-81)
B = 4ggp (898!)
A = -100898 (-1p98:)
L = -24p9¢ (-28¢¢!)
R = -24g1f (-2888!)
I = 209 (8g!)
D = -20p08 (-2p98:)
FCL = 31 (6#8!)

59

Report No. 2931 Bolt Beranek and Newman Inc.

B.1.2 Symbols Associated with Branch Condition, Shifts and Jumps

TR = @

EQ = 409 (198:)
GT = 1008 (298:)
oV = 14g¢ (388%)
CY = 2009 (498:)
Fl1 = 2449 (509%)
F2 = 3p09 (608:)
F3 = 34090 (7901)
LP = 4008 (8g9:)
OD = 4499 (9g@%)
ZE = 5088 (pgg:)
NG = 5400 (BEY!)
LT = 6008 (cggr)

BF = 14gg08 (89@g@!) / effected with a pseudo-instruction

BT = 1190808 (9¢@@!) / effected with a pseudo-instruction
LI = 12@2¢88 (A@g8g!)

RI = 122289 (n48Q!)

LX = 128080 (nppPP:)

RX = 122¢p9 (n4gg:)

AO = p

LL = 499 (1g9!)

LO = 19898 (2g8!)

LC = 1499 (3g9°)

60

Report No. 2931 Bolt Beranek and Newman Inc.

Symbols Associated with Branch Conditions, Shifts

and Jumps - Cont'd

JMP = 40@glg (4998!)
JSB = 4fg1lp (4898!)
NOP = 10@0@p (8980:)

B.1.3 Symbols Associated with Control (Class @) Instructions
HLT = ¢
RST = 1988 (200°)
SST = 1288 (28g')
ENB = 4008 (889:)
INH = 42098 (889!)

S
Q
T a
a £
2 3
n'(l)
<

ENW = 4100 (84g!)

INW = 4399 (8cg!)

KEY = 4028 (819!)
SKEY = 4@g20 (81@)

RET = 2000 (49@!) /effected with a pseudo-instruction
STM = 4080 (198:) /effected with a pseudo-instruction
MTS = 2499 (508) /effected with a pseudo-instruction
MTR = 3408 (798:) /effected with a pseudo-instruction

RTM 1499 (388') /effected with a pseudo-instruction

61

Report No. 2931 Bolt Beranek and Newman Inc.

B.1.4 Symbols Associated with Register Selection

Xp =g
X1 =1
X2 = 2
X3 = 3
X4 = 4
X5 =5
X6 = 6
X7 =7
Ag =g
Al = 2g¢ (1g!)
A2 = 48 (20%)
A3 = 6§ (38%)
A4 = 10f (49%)
A5 = 12§ (58!)
A6 = 149 (60!)
A7 = 168 (78%)

B.1.5 Symbols Associated with the Scientific Instruction Set

RBIT = 4g49@ (41gg!)
SBIT = 41@@@ (4288')
CBIT = 4149¢ (43gg!)

62

Report No.

2931

Bolt Beranek and Newman Inc.

Symbols Associated with the Scientific Instruction Set

(cont'd)
IBIT = 420990
TSBT = 42409
TBIT = 43990
MOVT = 434pp
MOVO = 43418
MOVP = 43600
MOVN = 43618
SLAN = 120910
SLLN = 121014
SRAN = 122g1¢
SRIN = 123819
DLAN = 124918
DLILN = 125019
DRAN = 126g1g
DRLN = 127¢1¢
DRX = 126004
DRI = 126208
DLX = 1249¢9
DLI = 124200
MUL = 131419

(4498°%)
(4508°)
(4600°')
(4788:)
(4798:)
(4780:)
(4788:)
(Ap@8:)
(A288!)
(A4g81)
(A608:)
(A8@8!)
(AAPS8)
(AC@8!)
(AE@8!)
(ACPg:)
(AC8@!)
(ABQQ:)
(A88M1:)

(B3g8!)

63

D
92
T
a £
S8
&U)
<<

Report No.

2931

Bolt Beranek ahdiewman Inc.

Symbols Associated with the Scientific Instruction Set

(cont'd)

DIV = 132018
DLDA = 132418
DSTA = 134418
DADD = 131¢189
DSUB = 13g41p9
JKEY = 4038
LCPU = 4p4p
LKEY = 4060

EE = 208
EL = 14
ER= #

SUE to Pluribus
BRUN = BT TR,
DSBL = INH
DSBW = INW
HALT = HLT
JUMP = JMP
JSBR = JSB
MREG = MTR

(B4p8 1)
(B508 1)
(BRA8)
(B2g8)
(B1g8)
(8181:)
(820:)
(8382)
(8g:)
(82)

Instruction Equivalence

64

Report No. 2931 Bolt Beranek and Newman Inc.

SUE to Pluribus Instruction Equivalence

(cont'd)
MSTS = MTS
NOPR = NOP
REGM = RTM
RETN = RET
RSTS = RST
SETS = SST
ENBL = ENB
g
ENBW = ENW T a
a £
oo
STSM = STM a Qe
<

65

Report No. 2931 Bolt Beranek and Newman Inc.

B.2 Pseudo-Instructions

Symbol Function

BF and BT compile branch instructions

CONSTANTS specifies storage areas for
constant words

DECIMAL classifies integers as decimal
numbers

DEFINE initiates macro-definition

DIMENSION allocates storage area for arrays

ENDIRP end an indefinite repeat

EQUALS establishes symbol equivalence

EXPUNGE erases symbols from symbol table

IRP and IRPC initiates indefinite repeat

MTR

MTS

NULL no operation

OCTAL classifies integers as octal
numbers

OFFSET assigns address tags as current

location counter and sets an
expression whose value is the
offset count

OPSYN same as EQUALS; Pass 1 only

PNTNUM prints its argument's value in
octal during assembly

66

Report No. 2931 Bolt Beranek and Newman Inc.

B.2 Pseudo-Instructions (cont'd)

PRINT generates symbolic location print-
out and prints comment during
assembly

PRINTX prints comment during assembly

REPEAT generates iterative source-

language text

RET
RTM
START denotes end of source program
and specifies starting address b
T3
STM & &
s ¢
STOP ends expansion of IRP's, macro's <
and REPEAT's ’
TERMINATE ends macro-definition
UNCON has the value of the number of
unused constants in the previous
constants area (Pass two only)
VARIABLES reserves space for variables and
arrays
VERNUM has the version number of the
English input file being processed
WORD appends word(s) to binary output
block
@gIF tests an expression; if true,

value if zero; if false, one

67

Report No. 2931 Bolt Beranek and Newman Inc.

Pseudo-Instructions (cont'd)

1IF if true, value is one; if false,
zero
. (period) has the value of the current

location; is "undefined" if
the location or offset is
indefinite

.ASCII inserts ASCII code for character
string

68

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX C. Teletype Code Conversion
("X" means control-X)

C.1l Characters with 6-bit internal representation

ASCII CHARACTER

gag SPACE
g41 :

g42 "

243
g4a4
g45
246
g47

859
g51
g52
#53
g54
#55
$56
g57

pgeg
961
962
963
264
965
266
967

274
971
972
973
974
g75
p76
877

-2 o0 N H=

+ ¥ —

T
Q2
4 B
Q.

g2
CL(I)
<

NV WN S N~

\© 00

o)V " /A Se e

69

Report No. 2931 . Bolt Beranek and Newman Inc

APPENDIX C - Cont'd

ASCII " CHARACTER

198
191
192
193
194
185
196
197

119
111
112
113
114
115
116
117 (OH)
129
121
122
123
124
125
126
127

S<cHOIOW OZRIHHRuHITm QEHEHOOQWIP®

139
131
132
133
175,176,933
135
g15-g12 CARRIAGE RETURN-LINE FEED

OM

HEHmN KX

70

Report No. 2931 Bolt Beranek and Newman Inc.

C.2 Characters with 12-bit Internal Representation

ASCII CHARACTER

ggﬂ NULL or BREAK or "@"
1 npw

gﬂz an

gﬂ3 nCn

284 EOT

285 "E" or WRU

296 "F" or RU

287 "G" or BELL

ﬂlﬂ nHu

g11 TAB

712 LINE FEED

213 "K" or VT

g14 "L" or FORM FEED

215 CARRIAGE RETURN (Output Oonly)

ﬂl6 "N"

ﬂl? nou

gzg "P"

ﬁZl nQn

g22 "R" or TAPE

923 "S" or RDR OFF

g24 "T"

ﬂ25 "U"

ﬂ26 nVn

ﬂ27 nwn

ﬂ3g an

g3l "Y"

g32 "Z"

ﬂ33 n[n

934 SHIFT "L"

ﬂ35 n]u

ﬂ36 "1*"

ﬂ37 nen

134 BACKSLASH

136 4 (or hat)

137 < (or underscore)

177 RUBOUT

71

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PART 3: PLURIBUS ASSEMBLY LANGUAGE
AND OPERATING PROCEDURES
(PDP-10 TENEX Cross Assembler Version)

]
TE
1
2%
53
<

The Pluribus Assembler executes under
TENEX and assembles code for the processors of
the BBN Pluribus multiprocessor. This program
is a modified version of the PALl11lX assembler
which was authored by L. McGowan and submitted

as DECUS 10-31. It has subsequently been
rewritten by M.I.T. Project MAC, and modified
by BBN. The present modification was made by

C.R.Morgan at BBN.

Report No. 2931 Bolt Beranek and Newman Inc.

Update History:
Originally written by C.R.Morgan - December 1974

11

Report No. 2931 Bolt Beranek and Newman Inc.

PREFACE

This document describes the Pluribus Assembly Language and how
a source program written in this language can be assembled on TENEX
and loaded and run on a BBN Pluribus multiprocessor.

Part 1 contains a comprehensive description of the Pluribus
language. The processors for the Pluribus are Lockheed SUE
processors. It is assumed that the reader is familiar with the
contents of the SUE Computer Handbook.

Part 2 describes the complete operation of assembling a
Pluribus source program on TENEX. The assembled program can then be
punched on paper tape and run on a Pluribus. It is assumed that the
reader is familiar with TENEX.

The following terms and symbols are used throughout this
document.

Term or 7-bit Octal
Symbol Meaning ASCII Code
byte An 8-bit quantity
word A 16-bit quantity
Blank or space 040
tab Horizontal tab 011
Line feed 012
FF Form feed 014
! Apostrophe 047
" Quote 042
: Colon 072
; Semicolon 073
RO - R7 Registers 0 - 7

PC Program counter, register 0

)
TE
J
2%
54
<

Report No. 2931 Bolt Beranek and Newman Inc.

CONTENTS

Page
PART 1. THE PLURIBUS ASSEMBLY LANGUAGE 1
l . l A SOURCE STATEMENT L] L] L] L] . L] L] Ll L] L] L] L] L] L] l
l L] l L] l Labels L] . . . L] . L3 . . . L] L] L] L] . L] . L3 l
l. l. 2 operators L] L] . . L] L] L] L] L] . . L] L] L] . L] 2
1.1.3 OperandsS « « o« « o o o o o o o o o o o o 3
l . l . 4 Com]nents L] . . L] L] L] . e L] . L] L] L] L] Ll L] . 3
1.1.5 Format Control . . . ¢ ¢ ¢« ¢ ¢ ¢« o« o o o & 3

SYMBOLS L] L] L] - . . > L] . . . - L] L] L] L] L]
Permanent Symbols., . . .
User-Defined Symbols

e e
DN
DW=

Direct Assignment. . .
Register Symbols . . .

.

.
e e o o

L]

.
e e o o o
e e o o o
e e o o o
~NSNovtoton

1.3 EXPRESSTIONS . &« & o e o s o s o o o o o o o o 9
1.3.1 Expression Operators . . « « o« o« o o o o @ 9
1.3.2 Numbers. . « « ¢ ¢« o o o o o o o o o o o o« 10
1.3.3 ASCII Text GeneratioN., . . v ¢ o o o o o o 11

ol
1.4 THE LOCATION COUNTER., &+ v ¢ ¢ o o o o o o o o @ 12 Z-g
1.4.1 Reserving Blocks of Storage. 12 ol
o g
1.5 ADDRESSING MODES. . . ¢ ¢« « o o o o o o o o o 14
1.5.1 Control Class with 8 Bit Field , 14
1.5.2 Control Class with 4 Bit Field , 15
1.5.3 Control Class with Address . . ¢ ¢ o o o o 15
1.5.4 Rotate and Shifts . . . ¢ ¢ ¢ ¢ ¢« o o o = 15
1.5.5 Branch InstructionsS . . . o v o o o o s o 16
1.5.6 General Class Instructions « « .« . 17
1.5.7 Subroutine Call Instruction, 17
1.5.8 JUMP . & v ¢ & o o o o o o o o o o o o o 17

Report No. 2931 : Bolt Beranek and Newman Inc.

Page

1.6 ASSEMBLER DIRECTIVES . & ¢ 2 o o o o o o o o 18
l1.6.1 cBYTE & & ¢ ¢« ¢ ¢ o o o o o o o o o o @ 18
1.6.2 SWORD ¢ ¢ v ¢ ¢ ¢ ¢ o o o o o o o o o o & 19
1.6.3 .BLKB and .BLKW . « & « o« o o« o o o« o o o« 20
1.6.4 JASCIT and .ASCIZ . v &4 o o o o o o o o 20
1.6.5 .EVEN and .ODD . & & « o o o o o o o o = 21
1.6.6 CEND 0 0 i it s e e e e e e e e e e e 22
1.6.7 B L 22
1.6.8 LTITLE and .STITL . ¢ v v o o o o o o o 22
1.6.9 SRADS50 . . i . i et e e e e e e e e e 23
1.6.10 cIE L e e e e e e e e e e e e e e e e 24
1.6.11 CIIF and ‘LIF |, . v v v o o o o o o o o W 26
1.6.12 Special Listing and Output Actions ., . . 27
1.6.13 COFFSET & 0 4 4 4 6 ¢ 4 ¢ o o o o o o o 28
1.6.14 <INSRT . & 4 & 4 ¢ o o o e o o o o o o o 28
1.6.15 .REPT and .IRP and .IRPC ., ., . . . « . . 28
1.6.16 T 5) 2 29
1.6.17 cENTRY . 0 0 i v 4 6 6 e o o o o o o o 30
1.6.18 cRADIX . 4 v v v e ¢ e e o o e e e o o 31
1.7 MACROS ¢ o o o « o o o o o e o o o o o s o o » 32
1.7.1 Defining a MacCroO « « « o o s o s o o o o 32
1.7.2 Calling a MaCro « « + o o o o o o o s o o« 32
1.7.3 Concatenation « « « o « o o o o o o o o @ 32
1.7.4 MACRO-Argument SCan « « « « « o o o o o o 33
1.7.5 JMEXIT ¢ o o o o o o o o o o o o o o o o 34
1.7.6 JTTYMA ¢ o ¢ o o o o o o o o o o o o o o 34
1.8 VALUE-RETURNING PSEUDO-0OPS ¢« &« « o o o o o o o 35
1.8.1 ADRMD « &« o o o o o o s o o o o o o o o 35
1.8.2 LENGTH o o ¢ o o o o o o o o o o o o o = 35
1.8.3 cFIRST & & o o o o o o o o o s s o o s 35
1.8.4 ADDRE . & & o o o o o o o s o o o o o 35

SPECIAL SYMBOLS =« ¢ o o o o s o o o o o o o o 36
.1 Pre-Defined Symbols 37

=
O WO

1.10 RELOCATION ¢ o o o o o o o o o o o o o o o o o 40

Vi

Report No. 2931 Bolt Beranek and Newman Inc.

Page
PART 2. OPERATING PROCEDURES . . v v 4 o o o o o 47
2.1 RUNNING THE ASSEMBLER ¢ ¢ ¢ ¢ ¢ o o o o o o o 42
2.1.1 Initial DialoguUe . ¢« ¢ v v o o o o o o o 42
2 1.1.1 Command String . ¢« o o o o« o o o o o o o 42
2.1.1.2 Command Files . . v v v v ¢ o o o o o o 44
2.1.2 Closing DialoguUe . v v v v « & o o o « o = 44
2.1.3 Cross Reference Listing ., « . . . 45
2 - 2 OUTPUT . (] [] L] . L] . L] L] . L] . [] L] L] L] . L] L] L) 46
202' l LiSting Format L3 46
2.2.1.1 Binary Output ¢ ¢ v e e e e e 47
2.2.1.2 Loading Programs . . . o o o o o o o o o o 48
2.2.2 Error MesSsages . . ¢« & o« o o o o s o o o 48
2 - 3 CHARACTER SET L] .o L] . L] L] L] L] L] L] . L) L] L) . L] L] 49
APPENDICES

A Special Characters . . . « v ¢ ¢ o o o« « & 50

B General Class Address Mode Syntax 53 o:g

=

C INStructions « v ¢« v ¢ ¢ + 4 o o o o o o . 55 &9

-
D Assembler Directives . . ¢ ¢ v ¢ ¢ o o o o 58
E Initial Symbol Table « . « . 63
F Lockheed SUE Opcode Equivalents . ., ., . . 68

G Additions and Limitations . « « ¢ o« o o o 70

vii

Report No. 2931 Bolt Beranek and Newman Inc.

THE PLURIBUS ASSEMBLY LANGUAGE

The Pluribus Assembly Language, described herein, is a machine
language for the BBN Pluribus multiprocessor. A source program
written in Pluribus can, however, be assembled on TENEX as explained
in Part 2 of this document.

1.1 A SOURCE STATEMENT

A source program consists of a series of source statements.
Each statement 1is terminated by either a carriage-return/line-feed
or carriage-return/form-feed sequence. A source statement may
contain only printable characters (ASCII* wvalues 040 - 175
inclusively) plus the blank, tab, carriage return, 1line-feed and
form-feed characters. Null (000) and rubout (177) characters are
ignored by the assembler. Lower-case alphabetics (141 - 172) are
converted to upper-case except in .ASCII and .ASCIZ statements, and
after " or '.

A source statement may have up to four fields. These fields,
if present, must appear in the following order:

label operator operands comments

Each field is defined primarily by its order of appearance
within the source statement, and secondarily by a specific
delimiting or terminating character (see Appendix A4).

1.1.1 Labels

A label defines a symbolic address in the program being
assembled, and the assembler equates that label with the current
value and relocation of the assembler's location counter at the
point where the label is encountered. Thus, a symbol defined in a
label field may be used to refer to the address of the associated
memory location.

A storage word is never generated for a label. (Binary output
in symbol table is generated.)

The following rules apply to the 1label field of a source
statement:

a. A label must be terminated by a colon(:). (If the label is
terminated by two colons then it 1is said to be
"half-killed", or suppressed - i.e. not available for DDT
typeout, as with == in MACRO.)

*ASCII stands for American Standard Code for Information
Interchange.

o
%
o
54
<

Report No. 2931 Bolt Beranek and Newman Inc.

A label, if present, must be encountered within the first
field of a source statement.

A source statement may contain no labels, one, or multiple
labels. If multiple labels appear, each label is defined
as being equivalent to the current value and relocation of
the location counter.

Blanks and/or tabs may precede a label or follow a label,
even to the extent of separating the label from the label
terminator (:).

The rules for the formation of a label are as specified for
symbols; see section 1.2.2.

Therefore, embedded blanks and/or tabs within a label are
not permitted. e.g. AB CD:

Example:

If the location counter currently contains 100 ,
the source statement

ABCD: LDA S,N
will equate the label ABCD with the address 100 .
Under the same conditions, the statement

ABC: DDD: $777: LDA A,B

will equate each of the three labels ABC, DDD,
and $777 with address 100 .

1.1.2 Operators

The operator field normally contains a mnemonic belonging to
any one of the following classes:

a.

A machine instruction mnemonic contained in the permanent
symbol table.

Example: label operator operands
ABCD: LDA X,Y
An assembler directive (see section 1.6).

Example: label op<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>