

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

April 1975

Sponsored by:

Advanced Research Projects Agency
ARPA Order No. 2351
Contract No. F08606-73-C-0027 and
Contract No. F08606-75-C-0032

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PREFACE

"Pluribus Document 5: Advanced Software" is one of a set of

nine which, taken together, provide complete documentation of

the Pluribus line of computer systems. In the present document,

Part 1, entitled "Lockheed System Software," is a brief overview

of some of the programs available for the SUE* minicomputer, the

processing element of the Pluribus. Parts 2 and 3 are manuals

for two cross assemblers used to generate Pluribus code. Part

2 describes the version for the PDP-ld EXECIII system; Part 3

describes the version which runs on a PDP-lO TENEX system.

Part 4, entitled "System Reliability Package," describes the

standard software package which performs many of the Pluribus

reliability functions.

Of the four parts of "Pluribus Document 5," parts 1, 2, and 3

are presently included here; part 4 is in production and will

be added when it becomes ready.

*SUE is a trademark of the Lockheed Electronics Company.

iii

Report No. 2931 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

PREFACE

Part 1: Lockheed System Software ••••••••••••••

Part 2: Pluribus Assembly Language
and Operating Procedures
(PDP-1d Cross Assembler Version)

Part 3: Pluribus Assembly Language
and Operating Procedures

.

(PDP-10 TENEX Cross Assembler Version) • • • • • • •

Part 4: System Reliability Package •.•••••••••••

v

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PART 1: LOCKHEED SYSTEM SOFTWARE

Report No. 2931 Bolt Beranek arid Newman Inc.

Update History:

Lockheed material printed July 1973 (see footnotes on following
page) .

Report No. 2931 Bolt Beranek and Newman Inc.

Following is a description* of some of the software written
for the SUE** minicomputer available from Lockheed. While these
programs were not written with the Pluribus architecture in mind,
they can be used on Pluribus systems with at most minor modifica­
tions.

SUE software helps the user develop application programs.
The programmer can write in assembly language, assemble, debug,
and run on a variety of available machines. SUE system software
features are:

Programs that run on SUE with 4K words of memory and an
ASR-33 Teleprinter:

A comprehensive one-pass assembler that produces re­
locatable object code.

A relocating Link Loader that produces an executable
translation of a main program and links external sub­
routines to it.

A Basic Loader that loads the output from the Link
Loader into memory for execution.

A conversational debug program for on-line test and
modification of assembled programs.

An I/O control system for communication between pro­
grams and peripheral devices.

Operator utility routines that interface between the
program and the operator.

Test and maintenance programs for fast field analysis
and repair of faults.

*Reproduced with the permission of the Lockheed Electronics Com­
pany from SUE Computer Handbook, edition of July 1973, copyright
Lockheed Electronics Co., Inc.

**SUE is a trademark of Lockheed Electronics Company.

1

Report No. 2931 Bolt Beranek and Newman Inc.

Programs that run on an IBM 360 or a Lockheed Electronics'
MAC 16:

SUE' Cross Assembler for listings and assembled code output
identical to the SUE assembler.

SUE Link Loader that builds relocatable binary-formatted
output for loading by the Basic Loader on the SUE pro­
cessors.

Programs written in FORTRAN to run on a variety of machines:

SUE simulator for execution and testing of SUE-assembled
object code on the IBM 360 computer or any large-scale
computer with a ANSI-standard-FORTRAN C0'~piler.

SUE ASSEMBLER (LAP-2)

The assembler operates on a SUE computer with 4K words of
memory and an ASR-33 Teletypewriter. An expanded version of the
assembler that has additional features and operates additional
peripherals can be used on machines of increased memory capacity.
All assemblers for SUE are one pass, producing object code for
the Link Loader. If additional peripherals are available an
assembly listing is produced on the same pass; if not, then a
listing pass is required. A Diagnostic Only option provides a
listing of those statements in error.

Two cross assemblers are available for SUE. One operates on
the Lockheed Electronics' MAC 16 Computer, the other on IBM 360
computers. Cross assemblers provide the user with assembly capa­
bility on readily-accessible processors having high-speed peri­
pherals. These cross assemblers function identically to the SUE
assembler and produce the same listing and object code.

An expanded assembler has many features not normally found
in a minicomputer assembler. Some of these are

Full macro capability.
Fixed-point decimal conversion, single and double preclslon.
Floating-point decimal conversion, single and double precision.
Conditional assembly directives.
Listing formatting directives (EJECT, SPACE, etc.).
New operation definition capability (to allow assembling

special op-codes implemented in a customized control ROM).

2

Report No. 2931 Bolt Beranek and Newman Inc.

SUE LINK LOADERS

The SUE Link Loader is a relocating loader capable of build­
ing a core load by linking a main program and external subroutines.
The loader accepts the output from the SUE assembler and generates
output for loading by the Basic Loader. The operator may enter a
relocation constant for changing the memory location of the linked
program. Options include forcing the Link Loader to completion
when external references remain undefined but are not necessary
for the initial test runs; printing a memory map of the core load
to provide the programmer with a reference for easy access of
program modules; and defining externals not included in the sub­
routines.

The Cross Link Loaders that run on the MAC 16 and IBM 360
processors combine with the cross assemblers to provide a complete
program generation system. The output can be loaded into the
SUE computer for execution or loaded into the simulated memory of
the SUE Simulator for execution and test.

SUE BASIC LOADER (BLOD-2)

The SUE Basic Loader loads the output generated by the Link
Loaders into memory for execution. Record-by-record checking is
performed with error detection causing an immediate halt to the
system. Both Load and Go or Load and Halt operations are pro­
vided.

SUE BASIC OPERATING SYSTEM (BOS)

BOS serves as an off-line aid to the programmer when testing
a new program. Some features included:

Change a word or byte in memory.
Execute a selected portion of the program.
Search the program for a key bit pattern.
Dump memory to the printer.
Dump memory in Basic Loader format to the punch.

SUE INPUT/OUTPUT CONTROL SYSTEM (IOCS)

IOCS provides a centralized I/O package that frees the user
from details of dealing directly with peripheral devices. IOCS
allows concurrent I/O operation of multiple devices and provides
device independence to the user through assignment of device
logical unit numbers to the various I/O devices at execution time.

3

Report No. 2931 Bolt Beranek and Newman Inc.

The user calls IOCS from a calling sequence that uses a parameter
list to define the requested operation. The parameter list offers
several options to the programmer such as wait or no-wait for I/O
completion and, upon device error, re-try or don't re-try the
request. At the completion of any requested operation IOCS re­
turns to the calling function for further processing.

SUE OPERATOR UTILITY INTERFACE PACKAGE (OUIP)

OUIP provides program-to-operator and operator-to-program
communication. This package operates in conjunction with IOCS
and provides the following functions to the user:

Input data from keyboard
Fetch name
Fetch numeric
Print message
Print numeric
Print carriage return/line feed
Print space
Print character
Input symbolic source line
Input binary formatted record
Output symbolic source line
Output binary formatted record
Program return

The user program can call any of these routines for ease in
communicating with I/O devices. All symbolic and binary routines
are interrupt driven and double-buffered. Each allows operator
assignment of the desired peripheral for flexibility.

4

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PART 2: PLURIBUS ASSEMBLY LANGUAGE

AND OPERATING PROCEDURES

(PDP-ld Cross Assembler Version)

Report No. 2931 Bolt Beranek and Newman Inc.

Update History:

Originally written as part of Hospital Computer Project memorandum
Six-E, BBN Report No. 1422, May 1966, and extensively revised by
W. Mann, S. Jeske, and D. Walden - January 1975.

ii

Report No. 2931 Bolt Beranek and Newman Inc.

1.

TABLE OF CONTENTS

THE PLURIBUS MIDAS ASSEMBLY SYSTEM.

1.1 The Midas Source Language

1.1.1 The Character Sets.. . ..

1.1.2 Legal Strings

1.1.2.1 Basic Strings ..•..

1.1.2.2 Complex Strings ..

1.1.2.2.1 Language Units.

1.1.2.2.2 Combining Operators

page
1

2

2

3

3

4

4

5

1.2 The Assembly Program. 7

1.2.1 The Current Location Counter. 7

1.2.2 The Symbol Table. 8

1.2.3 The Radix Indicator. 8

1.3 Defining Symbols

1.3.1 Address Tags ..

1.3.2 Variable Names ..

1.3.3 Assigned Parameters.

1.4 The Use of Expressions.

1.5

1.4.1 Storage Words

1.4.2 Constants

1.4.3 Location Assignments ..

Instruction Format

1.5.1 Arithmetic Instructions.

1.5.2 Jump Instructions.

1.5.3

1.5.4

1.5.5

Branch Instructions .

Shift Instructions ..

Operate Instructions.

1.5.5.1 Special Functions.

1.5.5.2 Memory Reference.

1.6 Source Program Format

iii

8

9

9

10

10

10

10

11

11

12

13

13

14

15

15

16

16

Report No. 2931 Bolt Beranek and Newman Inc.

2.

TABLE OF CONTENTS (cont'd)

PSEUDO-INSTRUCTIONS ••.

2.1 OCTAL and DECIMAL.

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

.ASCII. . .

CONSTANTS .

VARIABLES .

DIMENSION .

EQUALS and OPSYN ..

NULL ..

OFFSET ..

REPEAT.

2.10 START ..

2.11 EXPUNGE • .

2.12 WORD

2.13 ~IF and 1IF .

2.14 PRINT, PRINTX, PNTNUM ..•..•.

2.15 STOP. . . . • • . .

2.16 VERNUM.

2.17 BT, BF, RET, STM, MTS, RTM, MTR .

2.18 Other Pseudo-Instructions ..•..•.

page

19

19

19

20

21

22

22

23

23

24

25

26

26

26

28

28

29

29

29

2.19 Sample Program Section•.• 29

2.19.1 Sample Page of Program - Octal Listing 30

2.19.2 Sample Page of Program - Hexadecimal Listing 31

3. MACRO-INSTRUCTIONS

3.1 Macro-Definitions ..

3.1.1 Basic Format. · · · · .
3.1.2 Dummy Arguments . · · · ·

3.2 Macro Calls. · · · · .
3.3 Storage of Macro-Instructions ..

3.4 Nested Macros•.

iv

. · · ·
· · · . · · ·

· · ·
· · ·
· · ·

·
·
·

32

32

33

35

36

36

Report No. 2931 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS (cont'd)

3.5 The Pseudo-Instructions IRP and IRPC.

page

39

4. OPERATION OF THE MIDAS ASSEMBLY SYSTEM .••... 43

5.

4.1 Preparation of a Source-Language Program. • .. 43

4.2 Performing an Assembly.•.. 43

4.2.1 Initial Procedure. 43

4.2.2 The Control Language

BINARY OUTPUT FORMAT . .

6. ERROR CHECKING

43

49

50

APPENDIX A. Midas Character Set 55

55

55

56

56

56

A.l Alphabetic

A.2 Punctuation

A.3

A.4

Combining Operators

III egal.

A.4.1 Generally Illegal.•.

A.4.2 Illegal Except Within a Macro-instruction

or an IRP 57

A.5 Ignored Except Within a Macro-instruction or an IRP 58

APPENDIX B. Symbols in Permanent Midas Vocabulary. . 59

B.l Pluribus Instruction Symbols 59

B.l.l Symbols Associated with Memory Reference

Instructions 59

B.l.2 Symbols Associated with Branch Condition,

Shifts and Jumps 60

B.l.3 Symbols Associated with Control (Class ~)

Instructions • 61

B.l.4 Symbols Associated with Register Selection

B.l.5 Symbols Associated with the Scientific

Instruction Set 62

v

Report No. 2931 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS (cont'd)

B.l.6 SUE to Pluribus Instruction

Equivalence .•

B.2 Pseudo-Instructions

page

64

65

APPENDIX C. Teletype Code Conversion. 69

C.l Characters with 6-bit Internal Representation 69

C.2 Characters with l2-bit Internal Representation.. 71

vi

Report No. 2931 Bolt Beranek and Newman Inc.

1. THE PLURIBUS MIDAS ASSEMBLY SYSTEM

The assembly system described in this report was adapted
from the Bolt Beranek and Newman PDP-l Midas assembly system
which in turn was adapted from the Midas Assembler originally
written for the PDP-l at Massachusetts Institute of Technology.
Throughout the remainder of this report we use "Midas" alone to
stand for "Pluribus Midas".

The Midas Assembly Program, while offering all the normal
assembly features, belongs to a class of extended assembly
programs referred to as macro-assemblers. Macro-assemblers
such as Midas provide an extensive set of control operations
(called pseudo-instructions) which, in principle, make it
possible for the assembly program to perform computations
analogous to those of any object program it can produce.

Most notable in this respect are the Midas macro-instruction
features, which permit the programmer to define a special
purpose abbreviative language to suit his own needs. Using
pseudo-instructions provided for that purpose, a user can name
a complex coding sequence and provide for varying parameters.
Other pseudo-instructions available in Midas provide means
for performing assembly-time list processing, symbol manipula­
tion, and loop termination as well as for changing the course
of assembly in response to certain conditions.

Formal constraints on the construction and manipUlation
of symbols are few, so the programmer may, within the range of
processor capabilities, vary formats to suit particular programs.
The programmer is free to ignore any of the special features
and use Midas as a simple mnemonic code translator.

The formal rules of the Midas source language and basic
processor references are described in this Section. Section 2
describes the functions and formats of all system pseudo-in­
structions. Section 3 explains the use of macro-instructions.
Section 4 provides instructions for performing an assembly.
Error conditions that are detected during an assembly and
associated error messages are listed in Section 5.

The notation used in this volume includes some special
symbols. 7 represents carriage-return/line-feed.. ~ represents
a tab. Quotation marks indicate the pressing of the Control key
on the Teletype keyboard. The symbols < > are used to enclose
text that might normally be set off by quotation marks. Unless
otherwise noted, all integers appearing in the text are octal
integers.

I

Report No. 2931 Bolt Beranek and Newman Inc.

1.1 The Midas Source Language

A Midas source program is a string of alphanumeric and
operational characters. From this string the Midas assembly
program produces the words that make up the object program,
located properly in memory. In order to accomplish this, the
assembler must interpret the source program as a series of
meaningful strings. In most cases, a string that is meaningful
to the assembler represents a word in the object program. In
other cases, the string may direct the assembler to produce
several or no words in the object program.

This section describes the mechanics of creating legal
Midas character strings, the references that the assembly program
uses in associating character strings with binary values, the
conventions that instruct Midas as to the type of value or
actual value a string is to represent, and the overall source
program format requirements.

The source program, described above as a single string of
characters is, more precisely, a system of arbitrary strings,
each of which consists of individual characters juxtaposed
according to formal conventions. The construction of legal
strings is hierarchical in nature. The lowest level consti­
tuent strings are formed from the alphabetic members of the
character set. Higher level constituent strings are constructed
from previously defined constituent strings using those
members of the character set which function as combining
operators. The type of object a constituent string represents
is indicated by punctuation characters.

1.1.1 The Character Set

The complete character set from which the source language
is constructed is included in Appendix A. It consists of all
characters on the Teletype keyboard not specified as illegal.

The character set is generally divided into the following
categories:

alphanumeric characters: The letters A-Z and the
character, <.> (period)*,
which may be constituents of
symbols; and the digits ~-9,
which may be constituents of
symbols or integers.

*The character <.> also denotes a decimal number (as in <l~.»
and may also be used to represent the value of the current
location.

2

Report No. 2931

combining operators:

punctuation characters:

1.1.2 Legal Strings

1.1.2.1 Basic Strings

Bolt Beranek and Newman Inc.

Single characters representing
fixed arithmetical or logical
operations to be performed by
Midas.

These serve as string delimiters.
A string-delimiting character
may serve a variety of pur-
poses depending on its use.
String delimiters in general
identify individual strings
and often indicate the manner
in which a string is to be
interpreted. See Appendix A
for a complete listing. The
most generally used delimiters
are space, tab, and carriage­
return/line-feed.

The minimum character strings required to represent
values in the source program are symbols or integers, formed
as follows:

Integers

An integer is a string of digits (~,1, •••• 9)
that is evaluated as octal or decimal according
to the radix prevailing at its appearance.
The integer value is its representation as
an l8.-bit binary number which restricts
integer values to 777777 if the radix
is set for octal and to 262143 for decimal.
An integer above these limits will be
evaluated modulo (2 1S o-l).*

* The Pluribus Midas assembler described here uses l8.-bit
quantities internally as a result of its derivation from
an assembler for the PDP-I, an l8.-bit machine. At load
time the l8.-bit quantities are reduced to l6.-bit quan­
tities suitable for the Pluribus according to rules given
in a later section.

3

Report No. 2931 Bolt Beranek and Newman Inc.

Symbols

A symbol is defined as a string of characters,
the first six of which must distinguish it
from all other symbols.

Letters, numbers, and periods may be used as
symbol constituents, but at least one must be
a letter, or the first must be a period.

Longer symbols, useful for mnemonic or docu­
mentary purposes, may be used, since Midas
ignores any character except a terminator
in excess of six.

Symbols for macro names and pseudo-instructions are
subject to the same restrictions as symbols for numerical
values.

Note that the symbols <READIN> and <READINTAPE> are
both legal symbols; if used in the same source program, they
both will appear to the assembler as <READIN> and will be
used interchangeably. If distinct symbols are desired, care
must be taken to differentiate symbols within their first
six characters.

1.1.2.2 Complex Strings

1.1.2.2.1 Language units

Complex strings may be formed from basic strings by use of
characters that are provided as combining operators. Although
integers and symbols are the only basic strings in the Midas
language that are formed by purely alphanumeric concatenations,
a complex string may be bracketed and function in the same
way as a basic string in a new combination. In discussing
the construction of complex strings, language units will be
called either syllables or expression~ as defined below:

Syllable

A syllable is any component string of an
expression whose value is independent of
its use in the expression. An expression
enclosed in brackets may be used as a syl-
lable to form other expressions. In addi-
tion, the pseudo-instruction <.> is used to
represent the current value of the location
counter modulo (2 16 .) and functions as a syllable.

4

Report No. 2931 Bolt Beranek and Newman Inc.

Expression

An expression is a string consisting of
one or more syllables separated by com­
bining operators.

1.1.2.2.2 Combining Operators

The characters listed below according to function, are the
Midas combining operators. Quotation marks denote that the
Control key must be pressed while typing the character.

Product Operators

"T"

"x"

"u"

"P-. "

"Q"

UR"

Additive Operators

+ or space

- (minus)

Function

Folder integer multi­
plication

Logical disjunction
(exclusive OR)

Logical union
(inclusive OR)

Logical intersection
(AND)

Quotient

Remainder

Function

Addition, mod 2 18 .-1

Addition of the one's
complement

Note that <A"T"B> results in an lB.-bit quantity equal to the
sum of the unsigned magnitudes of the high and low order
halves of the 36.-bit product produced by regular multiplica­
tion of the two lB.-bit quantities A and B. If both A and B
are small enough, this function produces the ordinary product.
When evaluating expressions, Midas performs operations from
left to right, all product operations preceding ordinary
additive ones. An additive operator which occurs with no
syllable before it is processed first. Minus complements the
syllable to its right, while plus and space are ignored.

5

Report No. 2931 Bolt Beranek and Newman Inc.

When an expression is punched on paper tape to be loaded
into the PLURIBUS, it is converted to l6.-bit two's complement
as follows: If negative, one is added to the expression, then
it is truncated to l6.-bits. (Note: -~ is converted to zero
in two's complement.)

Although this conversion process is ordinarily transparent
to the programmer the following pitfall exists: When writing
expressions which include logical operators, the programmer
must bear in mind that Midas performs its internal arithmetic
in one's-complement, then converts. For example, if TBITS=5

<AND Al L TBITS"X"-l>

will not work as might be expected. Minus one (-1) is 777776 in
one's complement, and 5"X II 777776=777773; as this is negative
(in lS.-bit notation) it is ultimately converted to 177774.
What was expected was probably TBITS II XII177777=177772. Using
-~ will not help either: 5I1X"-~=777772 which is converted to
177773. While

<AND Al L -TBITS-l>

works, it is not recommended since it relies on an obscure
characteristic of the assembler; instead set ONES=177777 and
write

<AND Al L
or <AND Al L

TBITS"X"ONES>
TBITS"X"FFFF!>

Examples: In the following examples, various equivalent
expressions are shown, and their component syllables listed:

a)* Expressions: ENB l~ l~ ENB

Syllables: <ENB>,<l~> <l~>,<ENB>

b) Expressions: ENB I INH

Syllables: <ENB>,<I> <INH>

* Assume that ENB=4~~~, I=2~~, and INH=42~~

6

42~~

<42~~>

Report No. 2931 Bolt Beranek and Newman Inc.

c) Expressions: 7-2"U"3 6-2 4

Syllables: <7>,<2>,<3> <6>,<2> <4>

d) Expressions: +A A 2"T"A-A

Syllables: <A> <A> <2>,<A>

e) Expressions: A+B"T"C A+[B"T"C]

Syllables <A>,,<C> <A>,<[B"T"C]>

Note that the expression [A+B]"T"C is not equivalent to those
of (e).

1.2 The Assembly Program

In order to interpret symbols and integers and to assign
them to memory locations, Midas must make references to the
Current-Location Counter, the Symbol Table, and the Radix
Indicator, which are described below.

1.2.1 The Current Location Counter

The assembler assigns assembled words to be stored in
sequential locations, 2 bytes per location, starting from any
given even location. A register in the assembly program,
referred to as the Current Location Counter, is incremented
by 2 whenever a word is assigned, and indicates the location
which will be assigned to the next word assembled. It is
initially set at ll~ and counts upward modulo (2 16 .). Conven­
tions are provided in the source language so that the program­
m~r may assign a numerical value to the current location
counter, thus specifying the first location in which a sequence
will be stored.

A symbol may be defined as the current, specific value of
the location counter at any time during the assembly and used
throughout the source program. In addition, the pseudo-instruc­
tion <.> always has as its value the current location counter.
The pseudo-instruction OFFSET, described below, allows code
assembled to run at one location to be loaded into a different
location. In this case an offset is added to the value of the
current location counter before it is used for purposes other
than actually assigning the word to a location in core.

7

Report No. 2931 Bolt Beranek and Newman Inc.

Some programmers might tend to think of symbols for
addresses and symbols for words as quite different entities.
However, in the Pluribus Assembler, there is no difference.
For example, if a computation to be performed requires the
number l~~ in accumulator Al we might <LDA Al L> the number
rather than provide a register containing it, and if the number
l~~ is represented by the symbol <A>, we can <LDA Al L~A>
whenever we need l~~ in accumulator Al whether <A> derived its
value as an address tag or as a parameter.

1.2.2 The Symbol Table

Symbols, when associated with a value, are entered in the
Midas Symbol Table, which is used as a reference by the assembler.
Mnemonic symbols for Pluribus instruction codes are part of the
initial contents of the symbol table. (A list of these is
included in Appendix B). These, and programmer defined symbols
which stand for numerical values, are "substantive" symbols.
Two other symbol types are included in the symbol table:
pseudo-instruction names and macro names. These are referred
to as "operational" symbols; there is no single address or
single IS.-bit number with which they are synonymous. All
pseudo-instruction names are included initially in the symbol
table, defined by a reference to an assembler routine. A
macro name is entered in the symbol table when a macro-instruc­
tion is defined.

Midas assembles a source program in two passes; that is,
two complete scans of the source program are required to produce
an object program. This allows symbols to be associated with
values at any point in the source program, without restricting
their use prior to definition.

1.2.3 The Radix Indicator

Integers are interpreted as octal or decimal according to
the radix prevailing when they are encountered by Midas. A
register in Midas, called the current radix indicator, is
initially set to accept octal integers. The pseudo-instructions
DECIMAL and OCTAL may be used to alter and reset this indicator.

1.3 Defining Symbols

The Midas symbol table, described earlier, functions as a
dictionary during the translation process. Each symbol intro­
duced by the programmer is inserted together with its value

8

Report No. 2931 Bolt Beranek and Newman Inc.

into the symbol table during Pass 1. The value of a symbol is
referred to as its definition. Numerical definition of a
symbol may be accomplished by its appearance as an address tag,
a variable name, or in a parameter assignment. Symbols may
also be defined as macro-instruction names or in terms of other
symbols. Macro name symbols are discussed in the section on
macro-instructions. The establishment of symbol synonyms is
discussed in Section 2 in connection with the pseudo-instructions
EQUALS and OPSYN.

The three basic formats that Midas allows for assigning a
numerical value to a symbol are described below.

1.3.1 Address Tags

A symbol is identified as an address tag if it is terminated
by a comma or a colon. An address tag is equated with the
value of the location counter plus the offset. The value is
entered into the symbol table modulo (2 16 .). A symbolic address
tag identifies a line in the source program text and is required
only for lines referenced within the text.

An expression, such as <A+4>, terminated by a comma or
colon, is checked by Midas to make sure that it is equal to the
current location counter plus the offset. Since relative
addressing using address arithmetic is possible, any un tagged
word might be referenced by such an expression. If a previously
defined symbol occurs as an address tag, the symbol is not
redefined; its value is checked and must agree with
that of the current location counter plus the offset. These
checks provide the programmer a facility for verifying that
the location counter is properly set or that a symbol is
properly defined. They also detect mUltiple uses of a single
symbol.

1.3.2 Variable Names

A programmer may direct the Midas assembler to reserve a
sequence of storage words for variable quantities produced by a
computation. Symbols may be substituted for these locations
before they are known. The assembly program classifies such
symbols as "undefined variables" and assigns them provisional
relative values. A string is classified as an undefined variable
by the inclusion of the character <#> in some occurrence of the
identifying string itself. The symbol is stored in the symbol
table without the <#> and may be referred to with or without it.

9

Report No. 2931 Bolt Beranek and Newman Inc.

Actual values are assigned for all variables still undefined at
the appearance of the pseudo-instruction VARIABLES. The follow­
ing are legal variable names: <ABC#>, <#ABC>, <AB#C>. The
second form listed is preferred.

1.3.3 Assigned Parameters

A programmer may assign any numerical value to a symbol
with a parameter assignment statement. The format is

SYMBOL=EXPRESSION

The symbol to the left of the equals sign is entered in the
symbol table, and the value of the expression to the right is
entered as its definition. If no value can be obtained for the
expression, the symbol is not defined.

1.4 The Use of Expressions

The rules for forming expressions were given earlier. The
evaluation of an expression depends on its context in the source
program as well as on the value of its component syllables.
Contexts in which Midas evaluates expressions are described below.

1.4.1 Storage Words

An expression terminated by a tab or carriage return is a
storage word. A storage word, when encountered by Midas, is
evaluated and assigned to the memory location equal to the
value of the current location counter. The contents of a
storage word may ultimately be used as an instruction and/or
operated on by an instruction, depending on the use of the
word in the object program.

1.4.2 Constants*

Constant values required by a program need not be introduced
as storage words in the source program. The constant expression
desired, enclosed in parentheses, may appear literally as the
operand of an instruction.

For example, an instruction to subtract l~~. from accumu­
lator Al could be written as <SUB Al~(l~~.». Midas will

* This feature is rarely used.

10

Report No. 2931 Bolt Beranek and Newman Inc.

generate a word containing the value l~~. The string «l~~.»
is called a constant syllable, and the address of the word
containing <l~~.> is substituted for it. Note that (l~~.),
(5~.+5~.), or (A+25.), where A=75. are equivalent constant
syllables and will all refer to the same location.

Constants may appear within constants to any depth, as in

LDA Al I~ ((AB)) (1)

The right parenthesis of a constant syllable may be omitted if
the constant is followed by a word terminator. For example,

LDA Al I~((AB 7 (2)

is equivalent to (1) above. Omission of the right parenthesis
in

LDA Al I~ «AB) -z 7 (3)

would, however, change the meaning.

1.4.3 Location Assignments

A location assignment is an expression immediately followed
by a slash. When Midas encounters a location assignment, the
expression is evaluated, and the location counter is set to
this value (rounded down if odd). If an expression that is used
to assign a location contains any undefined symbols when en­
countered by Midas on Pass 1, the current location becomes
indefinite. This means that the definition of address tags is
inhibited, and the value of <.> is undefined, until a defined
location assignment occurs, and at that time the counter again
becomes definite. On Pass 2, an undefined symbol in a location
assignment will cause an error message (USL). The undefined
symbol is taken as zero, and the location remains definite.
The Midas command "E", discussed in Section 4, permits the
programmer to arrange for Midas to type a message if the loca­
tion becomes indefinite on Pass 1.

1.5 Instruction Format

Basic Pluribus instructions come in five major classes
(Arithmetic, Jump, Branch, Shift, Operate), each of which will
be considered separately below. The scientific processor
instruction set is listed in appendix B.

11

Report No. 2931

1.5.1 Arithmetic Instructions:

Typical Example

Complex Examples

Faa:

Faa:

Faa:

Bolt Beranek and Newman Inc.

ADD A3 Xl ~ DOG

ADD A3 Xl A B I M ~ DOG

ADD A4 X7 D B X

This type of instruction features an op code (one of 9),
an Accumulator (one of 8), an Index register (one of 8), five
separate mode switches (2-5 options each) and an address.
The recommended listing format is in the following order:
<op code> space <Accumulator> space <Index register> space
<MODE 1 switch> space <MODE 2 switch> space <MODE 3 switch>
space <MODE 4 switch> space <MODE 5 switch> Tab <address>.

Of course, it doesn't actually matter what order is used,
since Midas is just adding up predefined va.lues.
OP codes: LDA, SUB, ADD, AND, lOR, EaR, CMP, TST, STA

ACC A~, AI, A2, A3, A4, AS, A6, A7

Index X~, Xl, X2, X3, X4, X5, X6, X7

MODE 1 W, A, D

MODE 2 B

MODE 3 I

MODE 4 M, L" E, R

MODE 5 X

The Op codes, ACC, and index are pretty straightforward
after reading the SUE computer handbook. (STA is the same as
LDA M.) The modes are a little more complex. W (for Word) can
be used anywhere to make listing formats line up in columns
(W=~). A and D specify Auto Increment and Auto Decrement,
respectively. B specifies halfword (byte) operation. I
specifies Indirect addressing. M specifies "To Memory". L
specifies the address field is to be used as a Literal. E
specifies the 4 bit field where the index usually lives is a
literal. R means the operand is the contents of the specified
index register. X specifies a single word instruction--what
the SUE handbook calls "indexed" (not "direct address"), i.e.,
addressed through an index register only. Note: not all possible

12

Report No. 2931 Bolt Beranek and Newman Inc.

combinations of modes are legal Pluribus instructions; in parti-
cular, L, E and R cannot have other mode options.

More ExamEles

LDA A3 L ~77 /put 77 in AC 3

LDA A3 B 7 /put 7 in AC 3

ADD A3 M ~DOG /add AC3 to DOG, result in DOG

1.5.2 Jump Instructions:

Examples: JMP ~FOO

JSB A7 ~FOO

JMP Xl ~ FOOTAB

JSB A7 Xl ~ FOOTAB

JMP I ~FOO

JMP X3 X

JSB A2 X3 X

1.5.3 Branch Instructions:

Examples: BT EQ, DOG

BF EQ, DOG

BT and BF are "Branch" pseudo-instructions. EQ is one of
a set of thirteen branch conditions. DOG is the location to
branch to. BT stands for Branch if True. BF stands for Branch
if False. The Branch Conditions, their meanings, and how they
are set are listed in the following table:

Condition ~leaning Set By

TR True Lockheed (always)

EQ Equal last CMP

GT Greater Than last CMP

OV Overflow ADD, SUB, some shifts

CY Carry ADD, SUB, some shifts

13

Report No. 2931 Bolt Beranek and Newman Inc.

Condition Meaning Set By

Fl Flag 1
F2 Flag 2 special instructions
F3 Flag 3

LP Loop Complete last AUTO INC/DEC

OD Odd last Arithmetic (except

ZE Zero last Arithmetic (except

NG Negative last Arithmetic (except

If an undefined branch condition is used, a "UBR" error is
generated by the assembler. If the displacement is out of range
(D>127. or D<-128.) a "DOR" error is generated.

1.5.4 Shift Instructions

The Pluribus basically has 16 shift instructions. The
sixteen are highly bit coded, and can be formed by combining
two symbols, each of which can take four forms.

Examples: LI AO A3 6

LX LL A3 X2

RI LO A3 5

RX LC A3 Xl

The first symbol specifies shift direction and size. The
second specifies one of four shift types.

CMP)

CMP)

CMP)

AO Arithmetic Open use carry - off end - sign extend

LL Logical Linked use carry - rotate

LO Logical Open no carry - off end

LC Logical Closed no carry - rotate

14

Report No. 2931 Bolt Beranek and Newman Inc.

LI Left by IMMEDIATE

LX Left by INDEX Register (last 4 bits)

RI Right by IMMEDIATE

RX Right by INDEX Register (last 4 bits)

1.5.5 OEerate Instructions

These come in two varieties, called special function and
memory reference.

1.5.5.1 Special Functions

Defined instructions are:

HLT halt

RST reset status bits

SST set status bits

ENB enable interrupt levels

INH inhibit interrupt levels

ENW enable and wait

INW inhibit and wait

In the inhibit/enable instructions, bits 3-~ indicate levels.
E.g., to enable levels 1 and 3 use the instruction

ENB 5

or to inhibit level 4 and wait for an interrupt use the
instruction

INW 8

In the status bit instructions, bits 6-~ are set for bits in
the status word to set or reset; e.g., to clear the three
program flags, use the instruction

RST 16~

15

Report No. 2931 Bolt Beranek and Newman Inc.

Bit Octal Codin9: Hex Codin9: Status Bit

~ 1 1 E = Equal
1 2 2 G = Greater than
2 4 4 V = Overflow
3 1~ 8 C = Carry
4 2~ 1~ F1 = Program flag 1
5 4~ 2~ F2 = Program flag 2
6 1~~ 4,fJ F3 = Program flag 3

1.5.5.2 Memory reference

Defined instructions are:

RET Return from interrupt

STM Status to memory

MTS Hemory to status

RTl-1. Registers to memory

MTR Memory to registers

These are implemented as pseudo-instructions. If the
value of the argument is 255.or less, a reference to "executive
core" is generated; otherwise a displacement is computed. A
"DOR" error is possible here.

1.6 Source Program Format

Midas begins processing a source program after it encounters
a title. A title may be any string of characters terminated
by a carriage return. Initial carriage returns are ignored.
The end of the source program is indicated by the appearance of
the START pseudo-instruction.

The portion of the source program which is to be assembled,
referred to as the body, is composed of character strings. These
strings are processed by Midas sequentially.

16

Report No. 2931 Bolt Beranek and Newman Inc.

Comments may be entered throughout the source program. Any
string of text characterized as a comment will be ignored by
the assembler. A comment is introduced by a slash and must be
preceded and terminated by either a tab or carriage return.

Two sample programs follow for solving the equation:

Z=7Q+V/2 for Q=4~, V=6~.

The two symbolic programs produce identical machine language pro­
grams as given below:

Sample Program 1

1,0,0 ! /~ LDA Al ~ Q

LI AO Al 3

SUB Al ~Q

LDA A2 ~V

RI AO A2 1

ADD Al R X2

STA Al ~Z

HLT

Z, ~,09

Q: ~4jJ

V, ~6jJ

START 1~~!

Sample Program 2

l~~ !/~J~DA Al ~ (4~)

"GI AO Al 3

SUB Al -;)f (4,0)

LDA A2 -)i t 6~)
RI AO A2 1

ADD Al R X2

STA Al ~#Z

HLT

VARIABLES
CONSTANTS
START 1~~:

/Good Thing V is even

/either or , works

17

Report No. 2931 Bolt Beranek and Newman Inc.

Resulting Machine Language

4~~ ~7~~3~
4~2 ~~~432
4~4 121223
4~6 f67f643~
4116 ~~f6432
412 ~7~~5~
414 ~~f6434
416 123241
4216 f645~22
422 ~3~~3~
424 ~~~43~
426 ~f6~f6~~
43~ f6~~~f6f6
432 ~~f6~4~
434 f6~f6~6f6

It should be noted here that the above examples were
primarily pedagogical in nature. The second example, in
particular, totally ignored the ability to have literal fields
as part of the instruction. The strings <CONSTANTS>, <VARIABLES>,
<START> in the sample programs are pseudo-instructions, which
will be discussed in the following section.

18

Report No. 2931 Bolt Beranek and Newman Inc.

2. PSEUDO-INSTRUCTIONS

Pseudo-instructions are source-language expressions that
serve to direct the assembly process. A pseudo-instruction
statement consists of a pseudo-instruction symbol terminated
by a delimiter and followed by arguments as required. Unless
otherwise noted, a pseudo-instruction statement is terminated
by a tab or a carriage return. Pseudo-instruction symbols,
like all other symbols, are identified by no more than six
characters. Thus, pseudo-instruction symbols composed of more
than six characters may always be abbreviated. For example,
DIMENSION may be shortened in use to DlMENS. The pseudo-instruc­
tion repertoire is described below with regard to format and
function.

2.1 Octal and Decimal

When integers are encountered, they are interpreted as octal
or decimal according to the value of the prevailing radix indi­
cator. The pseudo-instructions OCTAL and DECIMAL reset the
radix indicator, which is set by Midas to OCTAL at the beginning
of each pass. An integer syllable followed directly by a period
will be interpreted as a decimal number regardless of the current
radix and will not change the radix value. Likewise, any
syllable followed directly by an exclamation point will be
interpreted as a hexadecimal number, regardless of radix.

2.2 .ASCII

The pseudo-instruction .ASCII is used to assemble a string
of characters, two per word, into successive words in the
object program. .ASCII may not be used in constants or in other
contexts where an expression is required.

An .ASCII statement consists of the symbol <.ASCII> termina­
ted by a delimiter and followed by a string of characters.
The first character in the string is used as a delimiter of
the text string itself; it is not stored as part of the text
string, and its reappearance terminates code storage. Thus, if
given the string <.ASCII./MESSAGE/>, Midas will store character
code for the word, MESSAGE. A 12.-bit code character* should
not be used as a text delimiter. Only six bits at either end
of a string are interpreted as delimiters, so the remaining six
bits of a 12.-bit character would be included in the stored
text somehow.

* See Appendix C.

19

Report No. 2931 Bolt Beranek and Newman Inc.

If the character <#> is used in the argument of .ASCII,
it is handled in an exceptional way; it is stored as end-of­
message (ASCII ~) rather than as its own ASCII Code Configura­
tion, 243. Consequently, there is no provision for entering
<#> as actual text. Note that adding <#> to the end of an
even number of characters will force a full word (two bytes) of
~ after the last character. An odd number of characters will
cause the unused (odd) byte of the last word (after the last
character) to be ~.

Three pseudo-instructions--CONSTANTS, VARIABLES, and
DlMENSION--are provided to direct automatic storage assignment
of words for constant and variable data. Variable data words
may be generated individually by reference or as fixed length
arrays obtained with the DIMENSION pseudo-instruction. Constant
data words are generated to accommodate literal references.

2.3 CONSTANTS

The pseudo-instruction CONSTANTS effects the allocation of
constant syllables to storage words containing constant values,
beginning at a location whose value is equal to that of the
current location counter at the appearance of CONSTANTS. When
a constant syllable is allocated, its address (plus its offset)
is substituted for it at all references. If different express­
ions enclosed within parentheses have the same value, they are
considered to be the same constant syllable and are associated
with only one location. The pseudo-instruction CONSTANTS may
be used no more than 8. times in the same program. The number
of distinct constants on pass 1 in anyone constants area is
limited to 64 ••

Since storage space for constants is allocated on Pass 1
when some expressions may not be definite, the number of
registers reserved in the constants area may exceed the number
Midas needs when all references have been consolidated; thus,
a gap of unused registers may arise between a constants area
and any subsequent portion of the object program. The pseudo­
instruction UNCON has as its value the size of the most recent
of these gaps. It is zero on pass 1.

The following examples show symbol prints following Pass 1
and Pass 2 for the same program.

CONSTANT AREA RESERVED, INCLUSIVE

FROM TO

326 332

20

Report No. 2931 Bolt Beranek and Newman Inc.

indicates registers reserved during Pass 1. At the completion
of Pass 2, the printout

CONSTANTS AREA, INCLUSIVE

FROM

326

TO

332

indicates those registers actually containing constants.

2 • 4 VARIABLES

The value of the current location counter at the appearance
of the pseudo-instruction VARIABLES on Pass 1 marks the begin­
ning of the storage area allocated to variables. All variable
names classified as undefined are assigned locations at this
time. The relative value assigned to an undefined variable is
added to the value of the first location in the sequence (plus
the offset) and the result obtained entered as its address.
Each variable is assigned by Midas to a storage wor~whose
initial contents are unspecified.

When a variables area has been completely allocated, the
value of the current-location counter is that of the next
location at which a storage word will be assembled. If VARIABLES
appears when the location counter is indefinite, it is inadmis­
sible. The Midas command IIEII (described in Section 4) can be
used to help locate the problem if the location is indefinite
on Pass 1 when VARIABLES is used.

In the current version of Midas the pseudo-instruction
VARIABLES may be used no more than 8. times. If the maximum
is exceeded, the error comment TMV (too many variables) is
typed. The number of defined variables, however, is limited
only by the capacity of the symbol table.

At the occurrence of VARIABLES on Pass 2, Midas compares
the value of the current location counter with the value which
was associated with that variables area on Pass 1. A disagree­
ment is noted by the error message VLD (variables location
disagrees), which indicates that errant symbol definitions or
macroexpansions have altered the sequence of assembled words.

21

Report No. 2931 Bolt Beranek and Newman Inc.

2.5 DIMENSION

The pseudo-instruction DIMENSION reserves space in the
variables storage area, which may be referenced relative to a
symbolic address. DIMENSION is used to set up fixed-length
arrays. The pseudo-instruction and the name and extent of any
number of arrays constitute a DIMENSION statement, according
to the following format:

DIMENSION NAMEl(LGTHl),NAME2(LGTH2)

The entire statement is terminated by a tab or carriage return
and requested blocks are separated from one another by commas.
The array name must be a legal symbol that has not been
previously defined. The extent must be stated as an expression
whose syllable values are known when the DIMENSION statement
is encountered on Pass 1. It is given in bytes.

2.6 EQUALS AND OPSYN

The pseudo-instructions EQUALS and OPSYN permit a user to
establish symbol synonyms, representing the same value. .The
format is

EQUALS SYNONYM, SYMBOL

Or
OPSYN SYNONYM,SYMBOL

where <SYNONYM> must be a legal symbol string and the <SYMBOL>
with which it is identified must be previously defined. <SYNONYM>
is assigned the same numerical or operational value as <SYMBOL>,
and the two are thereafter synonymous. OPSYN operates on Pass 1
only; EQUALS, on both passes. The following example illustrates
the difference between the two.

Let us say, for example, that a programmer wanted to use
the macro-instruction facilities to redefine a pseudo-instruction
such that the new instruction was a function of the old. The
original pseudo-instruction would have to be represented by a
different symbol; otherwise, its appearance in the definition
would act as a macro call, reSUlting in a closed loop.

For example, if one writes

EQUALS OCT,OCTAL

and then defines a macro-instruction OCTAL in terms of OCT,

22

Report No. 2931 Bolt Beranek and Newman Inc.

which now calls the pseudo-instruction, on Pass 2 OCT will again
be made equivalent to OCTAL, which has been redefined. OCT
then no longer references the pseudo-instruction, and the loop
avoided on Pass 1 will occur anyway on Pass 2. If one uses
OPSYN, however, OCT will be associated with OCTAL as desired
on Pass I only and retain its identity with the original pseudo­
instruction on Pass 2.

2.7 NULL

The NULL pseudo-instruction performs no action, but can be
used as a substitute for symbols no longer needed in a program.

Some programs are required to be compatible with various
environments (different machines, data bases, etc.), and a
function performed frequently in one usage may not be performed
at all in another. For example, a symbolic program may contain
complex macro-definitions that need not be assembled in one
instance but must be available for other processings. In this
case, the macro names may simply be equated with NULL, as in

EQUALS MACRO,NULL

Another case in which NULL is useful arises in connection
with macro-table storage space and the "garbage collector."
When the amount of space available for the storage of macro­
definitions is exhausted, the garbage collector will search the
table for definitions which no longer have a reference in the
symbol table and will recover such space by consolidating the
remaining table entries. The symbol-table reference to a macro
that has been redefined is automatically transferred to the
latest definition. In the case of macros that have not been
redefined but are simply no longer needed, the reference must
be suppressed in order to notify the garbage collector of the
available space. EXPUNGE can also be used for this function.

2.8 OFFSET

The pseudo-instruction OFFSET is used to set the value of
the offset count, whose relation to the current location counter
was described in connection with symbol definition. The pseudo­
instruction format is

OFFSET EXPRESSION

where the value of the expression (positive or negative) is
stored as the offset count. When the offset count is any value

23

Report No. 2931 Bolt Beranek and Newman Inc.

other than zero, a symbol value derived as an address tag will
not equal the core location of the storage word at which it
is loaded. For example, the cOding:

OFFSET 6

ABC,~LDA Al L
JMP

occurring when the current location counter contains l~~ will
be assembled as:

l~~/ ~ LDA Al L ~ l~~
JMP ~1~6

A portion of the object program that was assembled under
these conditions is not executable at the location it occupies
if storage word expressions use these symbols as referents. The
offset capability is, however, useful in creating a body of
data independent of its core location, yet internally consistent.

The effect of one OFFSET declaration is terminated by the
appearance of another. If a return to the normal sequence is
desired, the programmer must set the offset count to zero.
OFFSET is used in connection with memory "renaming" and in
constructing item maps.

2.9 REPEAT

REPEAT instructs Midas to assemble a specified portion of
the source program a specified number of times and thus relieves
the programmer of the necessity for source language repetition
of a repetitive object program sequence. The format is

REPEAT EXPRESSION, TEXT

where EXPRESSION is the count of the REPEAT, specifying the
number of iterations desired, and the TEXT is the source pro­
gram section to be iterated, called the range of the REPEAT.
The count must be defined when Midas encounters the REPEAT on
Pass 1; otherwise, the range is ignored and the error print
<USR> occurs.

A carriage return is used to terminate the
tion; tabs may be used to denote storage words.
be used to enclose portions of the range or the
this allows carriage returns or nested brackets

24

entire instruc­
Brackets may

entire range; ,
to be included.

Report No. 2931 Bolt Beranek and Newman Inc.

Since a REPEAT merely serves to reproduce a string, the
range may include any elements of the source language, including
other REPEATS and macro calls. (An internal REPEAT, unless it
is at the end of the range, must be bracketed; otherwise its
terminating carriage return would also terminate the first
REPEAT.)

In the following example, the statement

REPEAT 2, LDA Al ~ A ~ ADD Al ~ B ~ STA Al -?oj C

will generate for assembly the coding equivalent to

LDA Al ~A

ADD Al ~B

STA Al ~C

LDA Al --7iA

ADD Al ~B

STA Al ~C

If the count of a REPEAT is zero or negative the range is

not processed.

2.10 START

The START pseudo-instruction directs Midas to stop reading
characters. START must appear at the end of every source­
language file and may take as an argument an expression denoting
the starting address of the object program. The format is

START EXPRESSION

At the end of Pass 2 in response to command "J", (Section 4),
Midas appends to the binary output a one word ~ump Block
containing the argument of the last START processed.

25

Report No. 2931 Bolt Beranek and Newman Inc.

2.11 EXPUNGE

The pseudo-instruction EXPUNGE removes symbols from the
symbol table. The format is

EXPUNGE SYMl,SYM2,SYMN

where the argument is a list of symbols, separated by commas
and terminated by a tab or carriage return. Any type of symbOl
may be expunged. Midas ignores undefined symbols in the list.
If any member of the list is not a legal symbol, Midas ignores
the rest of the list. An expunged variable will not be defined
unless it appears again with <#> after the EXPUNGE; <#> itself
may not appear in the argument list.

2.12 WORD

The pseudo-instruction WORD appends lS.-bit computer words,'
specified by the argument(s) of the pseudo-instruction, to a
block of binary output. The format is

WORD EXPRESSION
or

WORD EXPRl,EXPR2, ••• EXPRN

The appended words are not necessarily part of the object
program; their values are selected to produce special binary
formats when needed. For example, words might be appended in
order to accommodate a particular loader or to insert jump
blocks before the end of assembly. Normal binary output format
is discussed in Section 4.

2.13 ~IF and lIF

A programmer may find it useful, particularly when handling
complex macro-instructions, to be able to test the value of
an expression and to condition part of the assembly on the
result. Such testing is effected by the pseudo-instructions
~IF and lIF, in conjunction with symbols called qualifiers,
which represent tests available. The tests are as follows:

Qualifier

VP

Condition is true if:

26

the evaluated expression
is greater than or equal
to ±J'

Report No. 2931 Bolt Beranek and Newman Inc.

VZ

P

D

N

the evaluated expression
is equal to ±~

Pass 2 is being performed

the expression tested is
completely qefined

the argument contains no
characters (usually a dummy
symbol of a macro or IRP)

The format of conditional statements is

~IF VP EXPRESSION

lIF VZ EXPRESSION

~IF D EXPRESSION

lIF N SYMBOL

where the test requires an argument, and otherwise, ~IF P.
The value of lIF is 1 if the condition is true, ~ if false;
the value of ~IF is ~ if the condition is true, 1 if false.

A conditional statement may be terminated by tab, carriage
return,],), or comma. A conditional value may be used as a
syllable; in this case the conditional must be terminated by
a slash. For example:

LOA Al L ~ ~IF VP X/+3

is equivalent to
LOA Al L ~ 3 or LOA Al L ~ 4

while
LDA Al L ~~IF VP X+3

is equivalent to
LDA Al L ~,fl or LDA Al L ~ 1

,flIF and lIF are often used to obtain a zero or one as the
count of a REPEAT. For example:

END: ~

REPEAT ,flIF VP 7776-ENO, PRINTX /OVERFLOWED COREl (1)

27

Report No. 2931 Bolt Beranek and Newman Inc.

The address assigned to END is subtracted from 7776. If 7776
is greater, the test is true, and the value of ~IF will be ~;
thus, the count of the REPEAT will be ~ and the message will
not be printed.

REPEAT lIF P, EXPUNGE TYO,TYl,ONE (2)

Example (2) will on Pass 2 direct Midas to expunge the listed
symbols.

2.14 PRINT, PRINTX, PNTNUM

The psuedo-instructions PRINT, PRINTX, and PNTNUM, effect
an on-line printout by Midas during assembly. These instruc­
tions are particularly useful for obtaining information during
the processing of complex macro-instructions. The format of
the first two is

PRINT TEXT
or

PRINTX TEXT

where the argument may be text of the form used with the pseudo­
instruction .ASCII or, if used in a macro-instruction, dummy
symbols.

PRINT will cause Midas to type a line in the same format
as the first three columns of an error listing (described in'
the section on error checking). The code PNT is substituted
for an error code in the first column and is followed by the
argument and a terminal line feed.

PRINTX cause Midas to type only the argument. Since both
pseudo-instructions are effective on both passes, a repetitive
printout can be avoided only if conditioned, using ~IF or lIF,
with the qualifier P. For example, in r,esponse to

REPEAT ~IF P, PRINT /TEXT/

Midas will print only on Pass 1.

PNTNUM causes the value of an expression to be typed as
an octal number. The format is

PNTNUM EXPRESSION

2.15 STOP

The pseudo-instruction STOP is used when the programmer
wishes to arrest the expansion of a macro-instruction, an IRP,

28

Report No. 2931 Bolt Beranek and Newman Inc.

or the range of a REPEAT. In any other context, STOP is ignored
by Midas.

When used within a macro or an IRP, STOP will suppress
subsequent coding until the occurrence of the next TERMINATE
or ENDIRP. Within the range of a REPEAT, STOP will halt the
expansion of all subsequent text in the repeat. In addition
if the expansion of the REPEAT occurs within a macro-instruction
or an IRP, the expansion will be stopped as well.

STOP may be used conditionally as in the following:

REPEAT 3, [REPEAT lIF VZ A-B,STOP
A=A-B]

The text A=A-B will appear for processing up to three times.
However, if A=2 and B=l at the start, the count of the inner
REPEAT, which generates the STOP, will have the value one before
the second appearance, and the expansion of the first REPEAT
will be arrested. STOP may also be supplied as an argument
for an IRP or a macro call.

2.16 VERNUM

The VERNUM pseudo-instruction has as its value
number of the text file currently being assembled.
to identify which particular version of the program
to assemble a binary tape. (See Section 4.1)

2.17 BT, BF, RET, STM, MTS, RTM, MTR

the version
It is used
was used

These pseudo-instructions are used to generate two byte
SUE instructions as described in Sections 1.5.3 and 1.5.5.2.
They are terminated by tab, carriage return,],), I, or
comma. They may be used as syllables by enclosing them in
brackets.

2.18 OTHER PSEUDO-INSTRUCTIONS

The remaining pseudo-instructions--DEFINE, TERMINATE, IRP,
IRPC and ENDIRP--are described in the section on macro-instruc­
tions.

2.19 SAMPLE PROGRAM SECTION

A page of listing is included. in both hexadecimal and octal.
It pretends to be neither complete nor correct.

29

Report No. 2931 Bolt Beranek and Newman Inc.

2.19.1 ,Sam~le Page of Program - Octal Listing
1J1J1J1/
BOFI2M=72

J1J11~~~ ~7~~3$J LOOP: LDA Al PID

J1J11JJ2 JJ1376

J1161J1164 16416211 JMP Xl I BASE

1616116166 J1J614$JJ1
J6J11J61J6 164443J1 12M: SUB Al L BOFI2M

~~11612 1616161116
16161$J14 Jl7161651 LDA A2 Xl HOLD I 2M

161611616 161614162
16161$J216 115376 BT ZE,.-2

J6$J1J122 167$J151 LDA A6 Xl I2MNXT

161611624 16$J14164

16161$J26 167161651 LDA A2 Xl PLEASEFLUSH

1616116316 161614166

16J61~32 1151624 BT ZE, I2MNOF

161611634 164161716 JSB A7 FLUSH

~161J636 J6$J14116
J6161J14J1 J1716J65J1 LDA A2 NSF

161611642 16161412

J6J61J144 115376 BT ZE,.-2

JlJ611646 1644641 SUB A2 E 1

J6J11J15J6 1631616516 STA A2 NSF

Jl1611652 J1J11412
J11611654 11161612 BT TR, I2MTRY

161611656 16316351 I2MNOF: STA A6 Xl I ERETQ

1616116616 16161414
161611662 16316151 STA A6 Xl ERETQ

161611664 16161414
I

J6161J166 167161651 12MTRY: LDA A2 Xl SLT

1616116716 16161416

161611672 115726 BT NG, I2MQUT /HOLDING LINE DEAD

30

Report No. 2931 Bolt Beranek and Newman Inc.

2.19.2 SamEle pa7e of Program - Hexadecimal Listins
l~~~
BOFI2M=72

~2~~ 7~18 LOOP: LDA Al PID

~2~2 ~2FE

~2~4 4~89 JMP Xl I BASE

~2~6 ~3~~

~2~8 4918 12M: SUB Al L BOFI2M

~2~A ~~48

~2~C 7~29 LDA A2 Xl HOLDI2M

~2~E ~3~2

~2l~ 9AFE BT ZE, .-2

,0212 7,069 LDA A6 Xl 12MNXT

~2l4 ~3,04

~2l6 7~29 LDA A2 Xl PLEASEFLUSH

~2l8 ,03~6

~21A 9A14 BT ZE, 12MNOF

~21C 4~78 JSB A7 FLUSH

~21E ~3~8

~22~ 7~28 LDA A2 NSF

J8222 J83J8A

~224 9AFE BT ZE, .-2

~226 49Al SUB A2 E 1

~228 3~28 STA A2 NSF

J822A J83J8A

~22C 9J8~A BT TR, 12MTRY

~22E 3.0E9 12MNOF: STA A6 Xl I ERETQ

.023~ ~3J8C

.0232 3J869 STA A6 Xl ERETQ

J8234 J83~C

,0236 7~29 12MTRY: LDA A2 Xl SLT

,0238 ~3J8E

023A 9BD6 BT NG, 12MQUT /HOLDING LINE DEAD

31

Report No. 2931 Bolt Beranek and Newman Inc.

3. MACRO-INSTRUCTIONS

A macro-instruction is any legitimate source-language text
that a programmer names and sets up so that when the name
appears in the subsequent source program, Midas will assemble
the text. The text and macro name are established by a macro­
definition, whose format is described below. Where the text
includes parameters that may differ with each occurrence of the
macro-instruction, these parameters may be represented by dummy
symbols.

3.1 Macro-Definitions

A macro-definition is initiated by the pseudo-instruction
DEFINE, delimited by any terminator. DEFINE is followed by a
macro name. A macro name must be a legal symbol, which, if
previously defined, will be redefined. The macro name is fol­
lowed by a list of dummy symbols, if needed, and terminated by
a tab or carriage return. If symbols that appear in the text
of the macro-instruction are not listed after the macro name,
Midas will treat them as ordinary symbols. After a macro name
Midas interprets the first character other than space as the
first member of the argument list. The argument list is dis­
cussed in greater detail later. Midas considers all text
following the name and argument line to be the body of the macro­
instruction. Midas stores this text until the appearance of
the pseudo-instruction TERMINATE, which signals the end of the
definition. The body of the macro may include any element of
the source language, including other macro-definitions or calls.
Any dummy symbol from the list may appear as a syllable in the
body of a macro-definition.

3.1.1 Basic Format

The basic format of a macro-definition is illustrated by
the following examples.

DEFINE

NEGATE

EOR Al L ~-l

ADD Al E 1

TERMINATE

(MACRO NAME)
(1)

} (BODY OF THE MACRO)

32

Report No. 2931 Bolt Beranek and Newman Inc.

The macro name, <NEGATE>, subsequently serves as a macro
call in the source program. Midas will assemble the body of
the macro «.EOR Al L~-l> and <ADD Al E I>) into the object
program at each appearance of the macro call.

DEFINE

SUM A, B, C

LDA Al ~A

ADD Al ~B

STA Al ~C

TERMINATE

(2)

(The character # must be the first character if it is used
in a dummy symbol string.)

The macro call <SUM ZORG,ZINC,XMAX> will cause the follow­
ing sequence to be assembled.

LDA Al ~ ZORG

ADD Al ~ZINC

STA Al ~ #XMAX

3.1.2 Dummy Arguments

A programmer may use up to 20. distinct symbols as dummy
arguments in a macro-definition as long as each appears in the
dummy argument list. Members of the argument list are usually
separated from one another by commas. The position of an
argument in the list is the model for the order of arguments
supplied at a macro call.

Some syllables, although they are referenced only within
the body of the macro, will represent a different value at each
call. Such syllables may be represented by dummy symbols and
specified in the argument list as generated arguments, for
which Midas will automatically provide a symbol. A list of
those dummy arguments for which Midas must generate symbols
is preceded by a slash and follows the list of arguments which

33

Report No. 2931 Bolt Beranek and Newman Inc.

the programmer must supply as shown below:

DEFINE MACROSYM A,B/C,D,E

or

DEFINE MACROSYM /A,B,C

where all symbols are to be generated.

Symbols generated and inserted by Midas are of the form
< ••• A~l>, < ••• A~2>, < ••• A~3>, etc. If at a macro call the pro­
grammer supplies a real argument in a list position correspond­
ing to that of a generated symbol, Midas will accept the sup­
plied symbol rather than generate one. A generated symbol may
be used to define variables, address tags, etc.

The following examples give an idea of the use of generated
arguments.

1) DEFINITION

DEFINE CLEAR A,N/B

LDA Al L ~A

LDA A2 L ~N

STA Al ~B+2

LDA Al E fJ

B, ~STA Al X2 D -)ifJ

BF LP,B

TERMINATE

2) DEFINITION

DEFINE SAVEAC /A

STA Al~#A

JSB Al -7i SUBR

LDA Al~A

TERMINATE

34

CALL: CLEAR TAB,lfJfJ

EXPANSION

LDA Al L -)i TAB

LDA A2 L ~ IfJfJ

STA Al ~ ... AfJl+2

LDA Al E fJ

.•. AfJl -)I STA Al X2 D ~fJ

CALL:

EXPANSION

BF LP, •.. AfJl

SAVEAC

STA Al ~ # ... AfJl

JSB Al ~ SUBR

LDA Al -)i ... AfJl

Report No. 2931 Bolt Beranek and Newman Inc.

If an argument is supplied at the call, as in <SAVEAC TEMP>,

STA Al-~#TEMP

JSB Al~SUBR

LDA Al~TEMP

Midas, when scanning the body of a macro-definition for
dummy arguments, compares each legal symbol in the text with the
symbols in the dummy argument list. Those symbols that cor­
respond to any dummy symbol are stored in a special way, as
described in Section 3.3, Storage of Macro-Instructions.

If the programmer wishes to represent only a part of a
symbol by a dummy argument, he may use an apostrophe to denote
this in the body of the macro definition.

<BT FA,.+6>

In the pseudo-instruction the string <FA> satisfies the
requirements for a legal symbol. During the dummy symbol scan,
Midas would interpret <FA> as a single symbol unless an apostro­
phe is used to indicate that the <A> alone is a dummy symbol,
as in

DEFINE MACRO A

BT F'A,.+6

The apostrophe is deleted when the macro-instruction is defined.
In the case of a nested macro-definition, apostrophes are also
deleted at the time of definition: that is, when the higher
level macro is called.

3.2 Macro Calls

A macro call consists of a macro name followed by a list
of arguments separated by commas. The call is terminated by a
tab or carriage return.

The arguments of a macro call may include any character
string (including an empty string) with the following restric­
tions. Since comma terminates an argument and tab or carriage

35

Report No. 2931 Bolt Beranek and Newman Inc.

return terminates the list, these may be included only in argu­
ments enclosed by brackets. Brackets must be used in pairs and
may be used within other brackets. Midas will consider all
but the outermost pair to be part of the argument.

At the appearance of the macro call, Midas processes the
body of the macro (stored in the macro table) as though it had
appeared in sequence. At this time Midas substitutes for the
corresponding dummy arguments and creates the correct number
of generated arguments.

If the programmer supplies extra arguments at a macro call
and the definition specified generated arguments, the extra
supplied arguments will take the place of generated ones. If,
however, arguments are supplied in excess of the total number
(supplied and generated), the excess arguments are ignored.
Note that Midas will not generate a symbol when a programmer
fails to supply one that has been specified in the definition.

3.3 Storage of Macro-Instructions

After the occurrence of the DEFINE pseudo-instruction,
Midas saves the name of the following macro-definition and
scans the list of dummy arguments, keeping count both of the
total number of arguments and the number of these arguments
that are to be generated. While storing the body of the macro
in the macro table, Midas scans the text for dummy symbols.
w~en Midas encounters a symbol that matches a symbol from the
dummy argument list, the list position of the corresponding
dummy argument is stored in place of the symbol in the text
and is distinguished by a code prefix.

Macro-definitions within the body of the macro are stored
literally and defined only when the instruction containing
them is called.

When Midas encounters the final TERMINATE, the number of
words that were required to store the definition is deposited
in the first macro-table register preceding the text. The
macro name and the table location of the definition are entered
in the symbol table.

3.4 Nested Macros

It is convenient when discussing nested macro-instructions
to think of DEFINEs and TERMINATEs as if they were parentheses,
the outermost pair constituting the highest level macro-definition.

36

Report No. 2931 Bolt Beranek and Newman Inc.

When the programmer calls the highest level macro-definition,
Midas stores the second level definition in the macro table,
and so on. Internal macro-definitions may contain dummy
arguments of higher level ones. These arguments will be
replaced by supplied arguments when the higher level definition
is called. Pairs of DEFINEs and TERMINATEs must count out.
To ensure that they do, the programmer may use the macro name
as the argument of a TERMINATE instruction. Then if the DEFINE
associated with that TERMINATE refers to another macro name, the
error message <MND> (macro name disagrees) will inform the
user of a "mispairing" of DEFINEs and TERMINATEs.

A series of examples of nested macros follows. Note in
example 1 the use of apostrophe and the insertion of a supplied
argument into a nested definition.

EXAMPLE 1

DEFINE FLOAT INSTR

OPSYN OLD'INSTR,INSTR

DEFINE INSTR X

LDA Al L ~ X

JSB A2 ~ F ' INSTR

TERMINATE INSTR

TERMINATE FLOAT

If FLOAT MUL appears, the expansion will be

OPSYN OLDMUL,MUL

DEFINE MUL X

LDA Al L ~ X

JSB A2 ~FMUL

TERMINATE MUL

This macro-instruction may be used to change Pluribus instruc­
tions to subroutine calls. Their original meanings could be
restored by

EXAMPLE 2
DEFINE UNFLOAT INSTR

INSTR=OLD'INSTR

TERMINATE

37

Report No. 2931

DEFINE MACRO X,Y

LDA Al ~ X

DEFINE MAC2 Y

ADD Al ~Y

TERMIN

TERMIN

Bolt Beranek and Newman Inc.

The call <MACRO ONE,TWO> will generate

LDA Al ~ONE

DEFINE MAC2 TWO

ADD Al ~TWO

TERMIN

The argument supplied for <Y> at the call of MACRO must be a
symbol, since it will be inserted as a dummy argument in the
definition of MAC2.

EXAMPLE 3. It is usually safer to use rather meaningless
symbols as dummy arguments to avoid duplication of real
arguments. For example,

DEFINE MACRO X

LDA Al L ~X

DEFINE MAC2 COUNT

ADD Al L ~X+3

STA Al

TERMIN

TERMIN

~ COUNT

If COUNT is also a program symbol that the programmer inadver­
tently supplies at the call of MACRO, the result would be

LDA Al ~ COUNT

DEFINE MAC2

ADD Al L

STA Al
TERMIN

38

COUNT

~COUNT+3

~COUNT

Report No. 2931 Bolt Beranek and Newman Inc.

EXAMPLE 4. The following example illustrates a macro­
instruction that redefines itself when first called.

DEFINE INC REM

LDA Al E J!J

STA Al -)i XYZ

DEFINE INCHE~l

LDA Al L ~ IJ!JJ!J

ADD Al M -7f XYZ

TERMIN

TERMIN

At the first call of INCHEH the following text is generated:

LDA Al E J!J

STA Al

DEFINE INCREM

LDA Al L

ADD Al M

TERMIN

Subsequent calls will generate

LDA Al L

ADD Al IJl

~ lyJyJ

~XYZ

3.5 The Pseudo-Instructions IRP and IRPC

The pseudo-instruction IRP (indefinite repeat) generates
sequential iterations of text a number of times determined by
analysis of its arguments. A different set of arguments is
substituted at each iteration.

An IRP statement consists of the <IRP> symbol followed by
a list of arguments, each enclosed in brackets, terminated by
a tab or carriage return. Following the argument list is the
body of the IRP. It, like the body of a macro-definition, may
include any source language elements, including other IRP's

39

Report No. 2931 Bolt Beranek and Newman Inc.

and macro calls or definitions. The body of an IRP is delimited
by the pseudo-instruction ENDIRP.

Each argument of the IRP is itself a list of subarguments
separated by commas or carriage returns. The first two
members of a subargument list are dummy arguments, and each may
be used in the body of the IRP. The remaining members of the
list are the "real" arguments of the IRP. Upon encountering
an IRP, Midas processes the body of the IRP repeatedly, with
different symbolic equivalents substituted for the dummy
arguments each time according to the following procedure.
Midas begins by substituting the first member of the real
argument list for the first dummy symbol and the remainder
of the real argument list for the second dummy symbol. The
remainder of the real argument list is then treated as the real
argument list in subsequent processings, until all lists are
exhausted.

IRPC operates exactly as does IRP but on a different
type of list. Elements of an IRP subargument list are separated
by commas and may include a text string or a bracketed expression.
Real arguments of an IRPC subargument list are not separated
by commas; each character in the string is treated as an
individual list member.

The following examples illustrate the use of IRP and. IRPC.
Note that the dummy symbols may be omitted if not referenced.
although their positions must be indicated by a comma. The
second dummy symbol is omitted below:

IRP [NAME"MAP~,MAP2,MAPl,MAP3],[VALUE,~,4,2,6]

NAME=176~~~+VALUE

ENDIRP

This IRP will create symbol table entries for the listed map
symbols and their corresponding addresses.

The following example shows use of an IRPC within a macro­
definition. The digit supplied at the macro call will, during
the expansion process, be compared with each digit in the sub­
argument list until its equal is found and printed.

DEFINE TYPE DIGIT

IRPC [NUM,,0123456789]

REPEAT lIF VZ [DIGIT]-NUM, PRINTX /NUM/ ~ STOP

ENDIRP

TERMINATE

40

Report No. 2931 Bolt Beranek and Newman Inc.

The next example illustrates how to use the second dummy symbol,
which represents a list.

DEFINE MACRO LIST

IRP [X,Y,LIST]

REPEAT ~IF D X, [MAC2 [Y]]

ENDIRP

TERMINATE

'I'he list obtained for Y in the first IRP repetition is used as
a supplied list for another macro-instruction.

The next example shows a series of nested IRP's used to
define a macro-instruction that, given the list <Xl,X2, ••• XN>,
will set up a matrix of the form:

Xl, X2, •••••. XN

X2, X3, .•• XN, Xl

X3,•.. . X2

XN

DEFINE MATRIX LIST

LGTH=~

IRP [" LIST]

LGTH=LGTH+l

ENDIRP

IRP [X~,LIST2,LIST]

COUNT=l

X~

IRP [XN, ,LIST2]

COUNT=COUNT+l

XN

ENDIRP

IRP [X~2" LIST]

41

Report No. 2931

ENDIRP

ENDIRP

TERMINATE

Bolt Beranek and Newman Inc.

REPEAT 1IF VZ COUNT-LGTH,STOP

X~2

The first IRP gets the length of the list. The second gets the
next (initially first) member. The third processes the remainder
of the list. The fourth goes back to the beginning of the
list and takes each element until COUNT = length of text.

42

Report No. 2931 Bolt Beranek and Newman Inc.

4. OPERATION OF THE MIDAS ASSEMBLY SYSTEM

4.1 Preparation of a Source-Language Program

The programmer prepares his source-language program on­
line via a Teletype terminal, using TECO, for example, to type
in and edit text and to store the program in a file. The file
is accessible to Midas by name, version number, and index.*

4.2 Performing an Assembly

4.2.1 Initial Procedure

English files to be processed must be on the PDP-ld's
Fastran drum for access by Midas. Midas runs under DDT control
and is called in the following way. First, the user types
C"F"PMIDAS to start the version of Midas which assembles Pluribus
programs. When called, Midas responds with a <#> to signal that
it is ready to accept a typed command. The condition of Midas
when it is first brought into core is as follows. The current
location counter is set to 11% and the radix indicator to OCTAL.
The macro table is empty. The symbol table contains all pseudo­
instructions and a minimal list of Pluribus instructions (these
are listed in Appendix B) .

4.2.2 The Control Language

A command to Midas is a character string terminated by an
Altmode. The first character of the string designates the func­
tion to be performed, such as <1> to do Pass 1, and <C> to con­
tinue the present pass. Some of the commands require arguments,
such as the name and version number of the file to be processed.
Arguments, when required, are typed after the command character.
Spaces, line feeds, and "control" characters are ignored~ and
rubout and backs lash have their usual meanings.

*Some of this section assumes knowledge of the EXEC III operating
system on BBN's PDP-ld computer.

43

Report No. 2931 Bolt Beranek and Newman Inc.

Midas performs each command immediately upon receiving the
Altmode terminating the input string. If the command is syn­
tactically incorrect, or if an argument contains a filename and
version that is not found in the current index, a question mark
is typed and the command is completely ignored.

It is possible to type in a list of commands and have the
assembler perform them one after the other without further at­
tention from the user. The command <L> sets the assembler to
listen to a series of commands, separated by carriage-returns,
and is finally terminated by an Altmode. When typing in commands,
rubout rubs out the current line, backslash rubs out the last
character, and rubout at the beginning of a line terminates the
whole type-in unsuccessfully, causing an error printout. When
the Altmode is typed Midas leaves the type-in mode and begins
processing the commands that have been entered.

The command characters and argument requirements are listed
on the following pages.

44

Report No. 2931 Bolt Beranek and Newman Inc.

Control Characters Function Required Arguments

1 Begin Pass 1 Name of English file
followed by a comma
and the version
number

2

C

I

E

Begin Pass 2

Continue present
pass on additional
file.

Initialize symbol
and macro tables.

The argument of E
represents a bit
setting. Certain
bit settings in­
form Midas to per­
form a special
function during
assembly. The bit
settings and their
associated func­
tions are listed
below.

Bit 17--continue
processing com­
mands after a fatal
error. <EI>

Same as for I

Name and version num­
ber of additional file,
as for I

None

An octal number

Bit 16--print all char­
acters processed. <E2>

Bit 15--print an error
comment on Pass I if
the location goes
indefinite. <E4>

Bit 14--define unde­
fined symbols as ~ on
Pass 2. <EI~>

45

Report No. 2931

Control Characters

J

H

x

A

L

w

B

S

T

Bolt Beranek and Newman Inc.

Function

Bit 13--suppress
DaR errors. <E2~>

Add a jump block
to assembled bi­
nary program.
Selects address
following last
START encountered.

Halt Midas.

Connect to an
index.

List constants
areas.

Listen for a se­
ries of commands.

Type EaT and wait
a specified (octal)
number of minutes
before proceeding.

Set up an indexed
file of binary
output in pro­
grammer's index.

Set up indexed
file of symbol
table and macro
table in pro­
grammer's index.

Load symbol and
macro table into
Midas.

Required Arguments

None

None

Name of programmer's
index

None

None. Commands are
typed after altmode
following the <L>

Octal number

Name and version number
as required for file
access

Name and version number
as required by general
filing

Name and version number
under which the table is
filed

A simple assembly of a symbolic program consisting of a file in
the Index IMP would be accomplished by the following sequence of
commands.

46

Report No. 2931 Bolt Beranek and Newman Inc.

A more complex

#X IMP

#1 PARAMS,412
IMP JOB 4.12

#C PARTl,413
IMPJOB 4.13

#C PART2,413
IMFJOB 4.13

#C PART3,413
IMFJOB 4.13

#2 PARTl,413
IMPJOB 4.13

#C PART2,413
IMPJOR 4.13

#C PART3,413
IMP JOB 4.13
PNT 5546

#J

X IMP

1 PROGRAMX,l

2

J

B

H

example might be

PARAMS - PASS 1

PART 1 - PASS 1

PART 2 - PASS 1

PART 3 - PASS 1

PART 1 - PASS 2

PART 2 - PASS 2

PART 3 - PASS 2
FOO

Connect to IMP index

Start Pass 1
{Underlined part is title
of file}

Continue (Pass 1)

Continue {Pass l}

Continue {Pass l}

Start Pass 2*

Continue {Pass 2}

Continue {Pass 2}

(Result of the PNT
pseudo-instruction -
see language descrip­
tion.)

Terminate binary with a
jump block

line

*The parameters file generates no binary code; therefore it does
not require a second pass.

47

Report No. 2931

#B BIG413,1

#S BIG413,1

#A
CONSTANTS
FROM
5424

AREA, INCLUSIVE
TO
554~

Bolt Beranek and Newman Inc.

File binary as BIG413,
version 1

File symbol table

Give alphabetic symbol
print

#H Halt Midas

4.3 Order of Operations

The commands 1, 2, C, and J represent functions that must
be performed in a certain order. The other commands represent
functions that the programmer may select at various times during
an assembly.

48

Report No. 2931 Bolt Beranek and Newman Inc.

5. BINARY OUTPUT FORMAT

All blocks, with the exception of the single-word jump block,
begin with two words that indicate position and length and end
with a checksum word. The maximum block length is 1~38 words.
The number of data words in a block is derived by subtracting the
first word from the second. The checksum word contains the sum
modulo (2 18 ._1) of all other words in the block, including the
first two.

The first word contains, in addition to the type-indicating
bits, the address in core where the first data word is to be
stored; the second, the address following storage of the last
word in a block.

The pseudo-instruction WORD may be used to fabricate special
formats or to insert jump blocks without stopping the assembly.
When Midas encounters a WORD pseudo-instruction, it terminates
the current block with a checksum. The arguments of WORD are
appended directly to the binary output.

49

Report No. 2931 Bolt Beranek and Newman Inc.

6. ERROR CHECKING

If Midas encounters an error in source-language coding, the
assembly is interrupted and a descriptive error message printed.
Depending on the severity of the error, assembly mayor may not
continue. The format of an error message is exemplified as fol­
lows:

(1)
usw

(2)

l~~~
(3)

14~~~~
(4)

ALPHA+2
(5)
REPEAT

(6)
GAMMA

Column (1) contains a descriptive error code; (2), the octal
address at which the error occurred; column (3), the (non-zero)
offset count; (4), the symbolic address stated in terms of the
last address tag seen. Column (5) contains the last pseudo­
instruction symbol or macro name Midas encountered. Column (6),
used only in errors involving symbol definition, contains the
offending symbol. Midas omits any column that is not pertinent.

The error codes and the conditions with which they are
associated are listed on the following pages, indicating what
action Midas takes.

50

Report No. 2931

Error
Designation .

Bolt Beranek and Newman Inc.

Condition
Causing Error

Action on
Continuation

Undefined symbols

usa.

B

C

D

F

I

L

o

P

R

S

T

W

UWD

Undefined symbol (a. in­
dicates where found):

Branch address

in a constant

in size of dimension
array

in OFFSET count

in argument of ~IF or lIF

in a location assignment

in argument of EQUALS
or OPSYN

in a parameter assignment

in the count of a REPEAT

in the argument of a start

in a multi-syllabic address
tag

in a storage word

undefined symbol in argument
of a WORD pseudo-instruction

51

All undefined
symbols are
evaluated as
zero.

Report No. 2931 Bolt Beranek and Newman Inc.

Error
Designation

Condition
Causing Error

Undefined symbols

UBR

UDP

UPA

UNC

Undefined branch condition
BT, BF

Undefined displacement
to RET,STM,etc.

Undefined PNTNUM argument

Constant is undefined,
as no valid CONSTANTS
area was defined

Multiple Definitions

MDT

MDV

MDD

Other Errors

MND

Multiply defined tag

Multiply defined vari­
able (a symbol previ­
ously defined as other
than a variable appears
with a #)

Multiply defined dimen­
sion (a previously de­
fined symbol used as an
array name)

Macro name disagrees
(the argument of a
TERMINATE disagrees with
the name being defined)

52

Action on
Continuation

assumes TR

assumes ~

no print occurs

tries anyway

Original def­
inition re­
tained

Original def­
inition re­
tained

Original def­
inition re­
tained

First name
used

Report No. 2931

Error
Designation

Other Errors

ICH

ILF

IPA

VLD

LGI

DaR

PNT

Bolt Beranek and Newman Inc.

Condition
Causing Error

Illegal character

Illegal format

Improper parameter as­
signment. (The expres­
sion to the right of
the equals sign is
inadmissible.)

Variables location dis­
agrees. (The pseudo­
instruction VARIABLES
has appeared on Pass 2
at a different location
than on Pass I.)

Location gone indefinite

Destination out of range -
BT, BF, etc.

Not an error. Result
of PRINT pseudo­
instruction

Action on
Continuation

The character
is ignored

Characters are
ignored until
the next tab
or carriage re­
turn

The assignment
is ignored

Condition
ignored

If the appro­
priate bit is
set (by Midas
control <E>),
LGI is printed
on Pass 1

tries anyway

In the event of the following error conditions, assembly cannot
continue.

CLD Constants location disagrees.
The pseudo-instruction CONSTANTS

53

Report No. 2931

Error
Designation

Bolt Beranek and Newman Inc.

Condition
Causing Error

Action on
Continuation

Other Errors cont.

TMC

TMP

TMV

SCE

EOF

has appeared on Pass 2
in a location different
from Pass 1. All con­
stants syllables have
been assigned incorrect
values.

Too many constants (The
pseudo-instruction
CONSTANTS has been used
too many times in one
program)

Too many parameters (The
storage reserved for
macro-instruction
arguments has been exceeded)

Too many variables (the
pseudo-instruction
VARIABLES has been used
more than 8 times in one
program)

Storage capacity exceeded
(symbol table or macro table
full, or too many constant
words used)

No START pseudo-instruction

54

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX A. Midas Character Set

A.1 Alphabetic

Letters (A-Z)
Digits (~-9)

A.2 Punctuation

Character

(comma)

(colon)

=

/ (slash)

()

[]

carriage-return-1ine­
feed, tab, and line feed

(period)

Function(s)

a) indicates address tag mod (216)
b) separates elements of a List
c) terminates count of a REPEAT

indicates address tag mod (2 16 .)

equates symbol to the left with
expression to the right

a) terminates location assignment
b) introduces comment
c) introduces list of macro­

instruction arguments to be
generated

d) terminates a conditional

enclose a literal

expression enclosed specified for
syllable function

denotes symbol as a variable

a) word terminators
b) varying meanings according to

context

a) as first character of a symbol
is a letter

b) as an entire symbol is a
pseudo-instruction giving the
value of the location counter

c) in a number has the value of
the digits to its left taken
in base 12 (decimal)

55

Report No. 2931

A.2 Punctuation - Cont'd

Character

(explana tion)

A.3 Combining Operators

Product Operators

"T"

"X"

"U"

"A"

"Q"

"R"

Additive Operators

+ or space

- (minus)

A.4 Illegal

A.4.l Generally Illegal

break

rub out

\ (backslash)

Altmode

Bolt Beranek and Newman Inc.

Functions(s}

has the value of the letters and
digits to its left in base 20
(hexadecimal)

folded integer multiplication

logical disjunction (exclusive OR)

logical union (inclusive OR)

logical intersection (AND)

quotient

remainder

Addition, mod 2 18 ._1

Addition of the one's complement

56

Report No. 2931 Bolt Beranek and Newman Inc.

A.4.2 Illegal Except Within a Macro-instruction or an IRP

"

"B"

"e"

%

wru

&

"F"

"G"

"H"

*

<

>

?

@

t (or A (ha t))

+ (or - (underscore»

vert. tab

"K"

"N"

"0"

57

Report No. 2931 Bolt Beranek and Newman Inc.

A. 4 • 2 Con t ' d

"~"

"S"

"V"

"W"

"Y"

"Z"

A.5 Ignored Except Within a Macro-instruction or an IRP

$

EDT

formfeed

carriage return

58

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX B. Symbols in Permanent Midas Vocabulary

B.l Pluribus Instruction Symbols

B.l.l Symbols Associated with Memory Reference Instructions

LDA = 7Jf,HJ (7JJ8!)

SUB = 7$J41$J (71$J8!)

AND = 7141$J (73$J8!)

EOR = 7241$J (75/IJ8!)

TST = 7341$J (77/IJ8!)

STA = 3 JJ 1$J (3$J$J8!)

ADD = 71JlJ (72/IJ8!)

lOR = 72JlJ (74/IJ8!)

CMP = 73JlJ (76$J8!)

W = $J

M = -4JJ$J~ (-4$JJJ!)

E = -2361$J (-2788!)

X = -1$J (-8!)

B = 4JJ$J (8$J.0!)

A = -1JJJJ (-1/IJ~$J!)

L = -24JJ$J (-28$J$J!)

R = -24$J1$J (-28.08!)

I = 2$J.0 (8$J!)

D = -2.0JJ$J (-2.0$J$J!)

FCL = 3.01.0 (6.08!)

59

Report No. 2931 Bolt Beranek and Newman Inc.

B.l.2 Symbols Associated with Branch Condition, Shifts and Jumps

TR = ff

EQ = 4ffff (lffff!)

GT = Iffffff (2ffff!)

OV = 14ffff (3ffff!)

Cy = 2ffffff (4ffff!)

FI = 24ffff (5ffff!)

F2 = 3ffffff (6ffff!)

F3 = 34~~ (7~~!)

LP = 4ffffff (8ffff!)

OD = 44ffff (9ffff!)

ZE = 5ffffff (Affff!)

NG = 54ffff (Bffff!)

LT = 6ffffff (Cffff!)

BF = Iffffffffff (8ffffff!) / effected with a pseudo-instruction

BT = Ilffffffff (9ffffff!) / effected with a pseudo-instruction

LI = I2ff2ffff (Aff8ff!)

R~ = I222fffX (A48ff!)

LX = I2,k1JJjjjj (AfJfJfJ!)

RX = I22ffffff (A4ffff!)

AO = fJ

LL = 4ffff (Iffff!)

LO = Iffffff (2ffff!)

LC = I4ffff (3ffff!)

60

Report No. 2931 Bolt Beranek and Newman Inc.

Symbols Associated with Branch Conditions, Shifts

and Jumps - Cont'd

JMP = 4~Jn~ (4~~8!)

JSB = 4~~1~ (4.0~8!)

NOP = l~~~.0.0 (8.0.0~:)

B.lo 3 Symbols Associated with Control (Class ~) Instructions

HLT = ~

RST = l.0~.0 (2.0.0!)

SST = l2~~ (28~!)

ENB = 4.0~~ (8.0~:)

INH = 42~.0 (88.0:)

ENW = 4l~~ (8 4~ !)

INW = 43.0~ (8C~!)

KEY = 4~2.0 (8l~ :)

SKEY = 4.02~ (8l.0!)

RET = 2.0~~ (4~~!) /effected with a pseudo-instruction

STM = 4~~ (l~~!) /effected with a pseudo-instruction

MTS = 24~~ (5~.0:) /effected with a pseudo-instruction

MTR = 34~~ (7~.0!) /effected with a pseudo-instruction

RTM l4~~ (3~.0:) /effected with a pseudo-instruction

61

Report No. 2931 Bolt Beranek and Newman Inc.

B.l. 4 Symbols Associated with Register Selection

X~ = l'

Xl = 1

X2 = 2

X3 = 3

X4 = 4

X5 = 5

X6 = 6

X7 = 7

A1' = l'

A1 = 21' (11' !)

A2 = 41' (2.0!)

A3 = 6.0 (3.0!)

A4 = 1.0.0 (4.0!)

AS = 12.0 (5.0!)

A6 = 141' (61'!)

A7 = 16.0 (7.0!)

B.l. 5 Symbols Associated with the Scientific Instruction Set

RBIT = 4.04.0.0 (41.0.0!)

SBIT = 41.0.0.0 (42.0.0!)

CBIT = 414.0.0 (43.0.0!)

62

Report No. 2931 Bolt Beranek and Newman Inc.

Symbols Associated with the Scientific Instruction Set
(cont'd)

IBIT = 42~~~ (44~~!)

TSBT = 424~~ (45~~!)

TBIT 43~~~ (46~~')

MOVT = 434910 (47~~!)

MOVO = 4341,0 (47.08:)

MOVP = 436~.0 (478~:)

MOVN = 4361~ (4788:)

SLAN = 12.0.01.0 (A.0~8:)

SLLN = 121.01.0 (A2~8 !)

SRAN = 122.01.0 (A4.08!)

SRLN = 123.01.0 (A6.08:)

DLAN = 124.01~ (A8.08:)

DLLN = 125.01~ (AA.08:)

DRAN = 126.01~ (AC.08!)

DRLN = 127.01.0 (AE.08!)

DRX = 126~.0~ (AC.0.0:)

DRI = 1262.0~ (AC8.0:)

DLX = 124.0.0.0 (A8~.0:)

DLI = 1242.0.0 (A88.0!)

MUL = 13141~ (B3~8 !)

63

r

Report No. 2931 Bolt Beranek and) Newman Inc.

Symbols Associated with the Scientific Instruction Set
(cont'd)

II

" DIV = 132.01,0 (B4,08 !)

13241,0 (BS,08 !) '\ DLDA = i

DSTA = 13,0,01,0 (B,0,08 !)

DADD = 131,01,0 (B2,08!)

DSUB = 13,041,0 (B1,08 !)

JKEY = 4,03,0 (818!)

LCPU - 4,04,0 (82,0 !)

LKEY = 4,06,0 (83,0!)

EE = 2,0~ (8,0!)

EL = 1.0 (8 !)

ER = ,0

B.1.6 SUE to Pluribus Instruction Equivalence

BRUN = BT TR,

DSBL = INH

DSBW = INN

HALT = HLT

JUMP -- JMP

JSBR = JSB

MREG = MTR

64

Report No. 2931 Bolt Beranek and Newman Inc.

SUE to Pluribus Instruction Equivalence
(cont'd)

MSTS = MTS

NOPR = NOP

REGM = RTM

RETN = RET

RSTS = RST

SETS = SST

ENBL = ENB

ENBW = ENW

STSM = STM

65

Report No. 2931

B.2 Pseudo-Instructions

Symbol

BF and BT

CONSTANTS

DECIMAL

DEFINE

DIMENSION

ENDIRP

EQUALS

EXPUNGE

IRP and IRPC

MTR

MTS

NULL

OCTAL

OFFSET

OPSYN

PNTNUM

Bolt Beranek and Newman Inc.

Function

compile branch instructions

specifies storage areas for
constant words

classifies integers as decimal
numbers

initiates macro-definition

allocates storage area for arrays

end an indefinite repeat

establishes symbol equivalence

erases symbols from symbol table

initiates indefinite repeat

no operation

classifies integers as octal
numbers

assigns address tags as current
location counter and sets an
expression whose value is the
offset count

same as EQUALS; Pass 1 only

prints its argument's value in
octal during assembly

66

Report No. 2931 Bolt Beranek and Newman Inc.

B.2 Pseudo-Instructions (cont'd)

PRINT

PRINTX

REPEAT

RET

RTM

START

STM

STOP

TERMINATE

UNCON

VARIABLES

VERNUM

WORD

.0IF

generates symbolic location print­
out and prints comment during
assembly

prints comment during assembly

generates iterative source­
language text

denotes end of source program
and specifies starting address

ends expansion of IRP's, macro's
and REPEAT's

ends macro-definition

has the value of the number of
unused constants in the previous
constants area (Pass two only)

reserves space for variables and
arrays

has the version number of the
English input file being processed

appends word(s) to binary output
block

tests an expression; if true,
value if zero; if false, one

67

Report No. 2931 Bolt Beranek and Newman Inc.

Pseudo-Instructions (cont'd)

lIF

(period)

.ASCII

if true, value is one; if false,
zero

has the value of the current
location; is "undefined" if
the location or offset is
indefinite

inserts ASCII code for character
string

68

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX C. Teletype Code Conversion
("X" means control-X)

C.l Characters with 6-bit internal representation

ASCII

~4~
~41
~42
~43
~44
~45
~46
~47

~5~
~51
~52
~53
~54
~55
~56
~57

~6~
~61
~62
~63
~64
~65
~66
~67

~7~
~71
~72
~73
~74
~75
~76
~77

69

CHARACTER

SPACE

"

$
%
&

(
)

*
+

/

~
1
2
3
4
5
6
7

8
9

<
=
>
?

Report No. 2931

APPENDIX C - Cont'd

ASCII

1.0.0
1.01
1.02
1.03
1.04
1.05
1.06
1.07

11.0
III
112
113
114
115
116
117

12.0
121
122
123
124
125
126
127

13.0
131
132
133
175,176,.033
135
.015-.012

70

. Bolt Beranek and Newman Inc

CHARACTER

@

A
B
C
D
E
F
G

H
I
J
K
L
M
N
0 (OH)

P
Q
R
S
T
U
V
W

X
y

Z
[
EOM
]
CARRIAGE RETURN-LINE FEED

Report No. 2931 Bolt Beranek and Newman Inc.

C.2 Characters with 12-bit Internal Representation

ASCII CHARACTER

~fJfJ NULL or BREAK or II@II

fJ~1 "A"
fJfJ2 "B"
~fJ3 "c"
~~4 EaT
~fJ5 "E" or WRU
fJfJ6 "F" or RU
~~7 "G" or BELL

~1~ "H"
~ll TAB
~12 LINE FEED
~13 "K" or VT
~14 "L" or FORM FEED
~15 CARRIAGE RETURN (au tpu t Only)
~16 "N"
~17 "0"

~2~ "P"
~21 "Q"
~22 "R" or TAPE
~23 "s" or RDR OFF
~24 "T"
~25 "u"
~26 "V"
~27 "w"

~3~ "X"
~31 "Y"
~32 "Z"
~33 lI[n

~34 SHIFT "L"
~35 IIJ"
~36 "t"
~37 "-+-"

134 BACKSLASH
136 t (or hat)
137 -+- (or underscore)
177 RUBOUT

71

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PART 3: PLURIBUS ASSEMBLY LANGUAGE

AND OPERATING PROCEDURES

(PDP-lO TENEX Cross Assembler Version)

The Pluribus Assembler executes under
TENEX and assembles code for the processors of
the BBN Pluribus multiprocessor. This program
is a modified version of the PALIIX assembler
which was authored by L. McGowan and submitted
as DECUS 10-31. It has subsequently been
rewritten by M.I.T. Project MAC, and modified
by BBN. The present modification was made by
C.R.Morgan at BBN.

Report No. 2931 Bolt Beranek and Newman Inc.

Update History:
Originally written by C.R.Morgan - December 1974

i i

Report No. 2931 Bolt Beranek and Newman Inc.

PREFACE

This document describes the Pluribus Assembly Language and how
a source program written in this language can be assembled on TENEX
and loaded and run on a BBN Pluribus multiprocessor.

Part 1
language.
processors.
contents of

contains a comprehensive description
The processors for the Pluribus
It is assumed that the reader is

the SUE Computer Handbook.

of the Pluribus
are Lockheed SUE

familiar with the

Part 2 describes the complete operation of assembling a
Pluribus source program on TENEX. The assembled program can then be
punched on paper tape and run on a Pluribus. It is assumed that the
reader is familiar with TENEX.

The following terms and symbols are used throughout this
document.

Term or
Symbol

byte
word

tab

FF

"

RO - R7
PC

Meaning

An 8-bit quantity
A l6-bit quantity
Blank or space
Horizontal tab
Line feed
Form feed
Apostrophe
Quote
Colon
Semicolon
Registers 0 - 7
Program counter,

iii

7-bit Octal
ASCII Code

register 0

040
011
012
014
047
042
072
073

Report No. 2931 Bolt Beranek and Newman Inc.

PART 1.

1.1
1.1.1
1.1. 2
1.1.3
1.1. 4
1.1. 5

1.2
1. 2.1
1. 2.2
1. 2.3
1.2.4

1.3
1.3.1
1. 3. 2
1. 3.3

1.4
1. 4.1

1.5
1. 5.1
1.5.2
1. 5.3
1. 5.4
1. 5.5
1. 5.6
1.5.7
1. 5.8

CONTENTS

THE PLURIBUS ASSEMBLY LANGUAGE

A SOURCE STATEMENT • • •
Labels • •
Operators
Operands • • • • • •
Comments ••

· .
· . . .

· . .
· . · .

Format Control · . . .
SYMBOLS • • • • • • • • •• •• • • • •

Permanent Symbols. • • • • • • • •
User-Defined Symbols • ••••••••
Direct Assignment. • • • • • • • • • •
Register Symbols • •• •• • • • • • •

EXPRESSIONS . · · · · · · · · · · · · Expression Operators · · · · · · · · Numbers. · · · · · · · · · · · · · · ASCII Text Generation. · · · · ·
THE LOCATION COUNTER. • • • • • • • • • •

Reserving Blocks of Storage. •

ADDRESSING MODES. · · · · · · · · · · · · Control Class with 8 Bit Field · · · Control Class with 4 Bit Field · · · Control Class with Address · · · · · Rotate and Shifts · · · · · · · · · Branch Instructions · · · · · · General Class Instructions · · · · · Subroutine Call Instruction. · Jump . . · · · · · · · · · · ·

v

· · · · · · · · · · · ·
· . .

· · · · · · · · · · · · · · · · ·

Page

1

1
1
2
3
3
3

5
5
5
6
7

9
9

10
11

12
12

14
14
15
15
15
16
17
17
17

Report No. 2931 Bolt Beranek and Newman Inc.

1.6
1. 6.1
1. 6.2
1.6.3
1. 6.4
1. 6.5
1. 6.6
1. 6.7
1. 6.8
1.6.9
1. 6.10
1. 6.11
1.6.12
1. 6.13
1. 6.14
1. 6.15
1.6.16
1.6.17
1. 6 .18

1.7
1. 7.1
1. 7.2
1. 7.3
1.7.4
1. 7.5
1. 7.6

1.8
1. 8.1
1. 8. 2
1. 8.3
1. 8.4

1.9
1. 9.1

1.10

ASSEMBLER DIRECTIVES • •
. BYTE ••••••••
• WORD. ••••••••••
.BLKB and .BLKW ••••••••
· ASCII and . ASCIZ • • • • • • •
.EVEN and .ODD • •• • •••
• END • •• •••••••
· EDT •••••••••• •••
.TITLE and .STITL ••••
• RAD50 •••
.IF • • ••
.IIF and .LIF • • ••••••••••
Special Listing and Output Actions • • •
• OFFSET • • • • • • • • •
· INSRT • • •• •••• • •
.REPT and .IRP and .IRPC
. EXTRN
. ENTRY
· RADIX • • • • • • • • • • • • • • • •

MACROS • •
Defining a Macro
Calling a Macro • • . • •
Concatenation • • •
MACRO-Argument Scan
.MEXIT • • •
.TTYMA ••••

VALUE-RETURNING PSEUDO-OPS •
.ADRMD • • • •
.LENGTH ••••••
.FIRST • • •
· ADDRE • • • •••

SPECIAL SYMBOLS
Pre-Defined Symbols

RELOCATION • • •

vi

Page
18
18
19
20
20
21
22
22
22
23
24
26
27
28
28
28
29
30
31

32
32
32
32
33
34
34

35
35
35
35
35

36
37

40

Report No. 2931 Bolt Beranek and Newman Inc.

PART 2.

2.1
2.1.1
2 1.1.1
2.1.1.2
2.1. 2
2.1. 3

2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.2

2.3

OPERATING PROCEDURES • • • • • • • • • • •

RUNNING THE ASSEMBLER • • •
Initial Dialogue •
Command String • •
Command Files ••••
Closing Dialogue • • •
Cross Reference Listing

. . . .
.

OUTPUT • • • • • • • •• • • • • • • • • •
Listing Format • • • •
Binary Output • • • • • • • • • • • • • •
Loading Programs • • • • •
Error Messages • • . . .

CHARACTER SET • • • • • • • • • • • • • • • • •

APPENDICES

A Special Characters • • • •

B General Class Address Mode Syntax

C Instructions • • • •
D Assembler Directives •

E Initial Symbol Table •

F Lockheed SUE Opcode Equivalents

G Additions and Limitations

vii

Page

42

42
42
42
44
44
45

46
46
47
48
48

49

50

53

55

58

63

68

70

Report No. 2931 Bolt Beranek and Newman Inc.

THE PLURIBUS ASSEMBLY LANGUAGE

The Pluribus Assembly Language, described herein, is a machine
language for the BBN Pluribus multiprocessor. A source program
written in Pluribus can, however, be assembled on TENEX as explained
in Part 2 of this document.

1.1 A SOURCE STATEMENT

A source program consists of a series of source statements.
Each statement is terminated by either a carriage-return/line-feed
or carriage-return/form-feed sequence. A source statement may
contain only printable characters (ASCII* values 040 - 175
inclusively) plus the blank, tab, carriage return, line-feed and
form-feed characters. Null (OOO) and rubout {177} characters are
ignored by the assembler. Lower-case alphabetics (141 - 172) are
converted to upper-case except in .ASCII and .ASCIZ statements, and
after " or '

A source statement may have up to four fields.
if present, must appear in the following order:

These fields,

label operator operands comments

Each field is defined primarily by its order of
within the source statement, and secondarily by
delimiting or terminating character (see Appendix A).

1.1.1 Labels

appearance
a specific

A label defines a symbolic address in the program being
assembled, and the assembler equates that label with the current
value and relocation of the assembler's location counter at the
point where the label is encountered. Thus, a symbol defined in a
label field may be used to refer to the address of the associated
memory location.

A storage word is never generated for a label.
in symbol table is generated.}

(Binary output

The following rules apply to the label field of a source
statement:

a. A label must be terminated by a colon(:). (If the label is
terminated by two colons then it is said to be
"half-killed", or suppressed - i.e. not available for DDT
typeout, as with == in MACRO.)

*ASCII stands for
Interchange.

American Standard

1

Code for Information

Report No. 2931 Bolt Beranek and Newman Inc.

b. A label, if present, must be encountered within the first
field of a source statement.

c. A source statement may contain no labels, one, or multiple
labels. If multiple labels appear, each label is defined
as being equivalent to the current value and relocation of
the location counter.

d. Blanks and/or tabs may precede a label or follow a label,
even to the extent of separating the label from the label
terminator (:>.

e. The rules for the formation of a label are as specified for
symbols; see section 1.2.2.

f. Therefore, embedded blanks and/or tabs within a label are
not permitted. e.g. AB CD:

Example:

If the location counter currently contains 100 ,
the source statement

ABCD: LOA S,N

will equate the label ABeD with the address 100 .

Under the same conditions, the statement

ABC: DOD: $777: LOA A,B

will equate each of the three labels ABC, DOD,
and $777 with address 100 .

1.1.2 Operators

The operator field normally contains a mnemonic belonging to
anyone of the following classes:

a. A machine instruction mnemonic contained in the permanent
symbol table.

Example: label operator operands

ABCD: LOA X,Y

b. An assembler directive (see section 1.6) •

Example: label oEerator oEerands

2

Report No. 2931 Bolt Beranek and Newman Inc.

ABCD: • WORD 10

All instruction mnemonics are listed in Appendix C and
assembler directives are listed in Appendix D.

The following rules apply to operators:

a. The operator may be preceded by a label.

b. Leading blanks and/or tabs in the operator field are
ignored.

c. The operator is terminated by a space, tab, or any delimiter
which can start the operand field, if no other legal
terminator exists. If there are no operands, the terminator
may be CR/LF, CR/FF or semicolon. All terminators are
listed in Appendix A.

1.1.3 Operands

The contents of the operand field are dependent on the contents
of the operator field.

1. The operand field must contain only symbols, expressions,
address specifications, or data.

2. Multiple operands are separated by
tabs adjacent to terminators in
ignored.

commas. Blanks and/or
the operand field are

3. The operand field is terminated by either a semicolon
(indicating the beginning of the comment field) or a source
statement terminator (carriage return/line-feed or carriage
return/form feed characters) .

1.1.4 Comments

The comments field is optional. If it is present, it must be
preceded by a semicolon character, contain any valid ASCII
characters, and terminate with a source statement terminator.

Example

Label
LABEL:

Operator
LDA

1.1.5 Format Control

Operand
A,B

Comment
iTHIS IS A COMMENT.<CR/LF>

Formatting of the source program is controlled by the space and
tab characters. They have no effect on the assembling process of
the source program unless they are embedded within a symbol, number,

3

Report No. 2931 Bolt Beranek and Newman Inc.

or ASCII texti or are used as the operator field terminator. Thus,
they can be used to provide a neat, readable program. A statement
can be written:

LABEL:LDA A,TAGiGET TAG

or, using formatting characters, it can be written:

LABEL: LDA A,TAG iGET TAG

which is much easier to read.

Page size of the assembly listing is controlled by the form
feed character. A page of n lines is created by inserting a form
feed (CTRL/FORM keys on the keyboard) after the nth line. If no
form feed is present, a page is terminated after 56 lines. The
number of lines on a page can be changed by the Iv option in the
command line to the assembler.

4

Report No. 2931 Bolt Beranek and Newman Inc.
\

1.2 SYMBOLS

A symbol represents a numerical quantity or memory address.

1. A symbol defined by a label represents a memory address.
2. A symbol defined by a direct assignment statement may

represent either a numerical constant or a memory address.

The assembler recognizes two categories of symbols, permanent and
user-defined. Permanent symbols are the operator mnemonics and
assembler directive names (LOA, ADD, JSB, .ASCII, etc.). These
symbols are a permanent part of the assembler's symbol table and
need not be defined by the user (see Appendix E). User-defined
symbols are those symbols defined by the user via labels or direct
assignment statements. These symbols are added to the symbol table
as they are encountered during the assembly process. A user-defined
symbol may be the same as a permanent symbol. In this case, the
selection of value for the duplicated symbol is as described below.

1.2.1 Permanent Symbols

The value associated with a permanent symbol is dependent upon
its usage.

1. A permanent symbol encountered in the operator field is
associated with its corresponding machine op code.

2. If a permanent symbol in the operand field is also
user-defined, then the user's value is associated with the
symbol. If the symbol is not found to be user-defined,
then the corresponding permanent symbol value is
associated with the symbol.

1.2.2 User-Defined Symbols

User symbols are defined by using them as labels or in direct
assignment statements.

The rules for the formation of a symbol are (same for predefined):

1. A symbol is composed of from one to six characters. A
symbol can be longer than six characters, but only the
first six characters are considered by the assembler.

2. The first character within a symbol must be either a
letter A through Z, or a letter a through z, or one of the
characters $. or %.

3. The remaining characters in a symbol may be upper or lower
case letters, digits, or the characters $. %.

5

Report No. 2931 Bolt Beranek and Newman Inc.

Caution should be taken when using the $ and. since they are in
system reserved names (e.g., .ASCII, .END). Lower and upper case
letters are equivalents (e.g. table and TABLE are equivalent) .

Example

Valid Symbols would be:

A

$34

SYS ...

Invalid Symbols would be:

6$
AB CD
AA(I)
TABLE [1

1.2.3 Direct Assignment

First character must be A-Z
Embedded blank
() are invalid characters
[is an invalid character

A direct assignment statement associates a symbol with a value,
relocation, externalness (see Relocation 1.12) and register-ness
(see 1.2.4). When a direct assignment statement introduces a symbol
for the first time, that symbol is added to the assembler's symbol
table and the specified value, relocation and externalness is
associated with that symbol. When. a direct assignment statement
specifies a symbol that has previously been introduced, then the
specified value, relocation and externalness replaces the previous
value associated with the symbol except if a permanent symbol, in
which case both are retained. The general format for a direct
assignment statement is:

1.

Symbol = Expression

An equal sign (=) must separate the symbol from
expression defining the value to be associated with
symbol. (If two equal signs separate the symbol from
defining expression, the symbol is said" to
"half-killed" or suppressed, i.e. not available for
typeout, as in MACRO) .

the
the
the
be

DDT

2. A direct assignment statement may be preceded by a label
and may be followed by comments.

3. Only one symbol can be defined within a direct assignment
statement.

6

Report No. 2931 Bolt Beranek and Newman Inc.

4. The symbol itself must conform to the rules given under
"Symbols" (section 1.2.2).

5. Blanks and/or tabs are ignored.

6. Only one level of forward referencing is allowed.

Example

X=y
Y=Z
Z=l

iUnresolved on pass 2
iResolved on pass 2
iResolved on pass 1

Since X will still be undefined at the end of pass 2 of
the assembler, all references to X during pass 2 will be
flagged as an error and all references to Y before it on
pass 2 will also be flagged as an error.

A storage word is never allocated for a direct assignment statement.

A = 1

B = r A&MASKLOW

c: D = 3

E: LDA A,D

Examples

iThe symbol A is equated with
ithe value 1
;The symbol B is equated with the value
;of the expression (see section 1.3)
;The labels C and E are equated
iwith the numerical memory address
iwhere the LDA command will be
istored. The symbol D is equated
iwith 3.

1.2.4 Register Symbols

The eight general registers of the processor are numbered 0
through 7. These registers may be referenced by use of a register
symboli that is, a symbolic name for a register. A register symbol
is one of the symbols %0 through %7 or is defined by means of a
direct assignment, where the defining expression contains at least
one of the symbols %0 through %7 or at least one term previously
defined as a register symbol. In addition, the defining expression
of a register symbol must be absolute. For example:

RO=%O iDEFINE RO AS REGISTER 0

R3=RO+3 iDEFINE R3 AS REGISTER 3

R4=1+%3 ;DEFINE R4 AS REGISTER 4

THERE=%2

7

Report No. 2931 Bolt Beranek and Newman Inc.

It is important to note that all register symbols must be
defined before they are referenced. A forward reference to a
register symbol will generally cause phase errors (Section 2.2.3).

The % may be used in any expression, thereby indicating a
reference to a register. Such an expression is a register
expression. Thus, the statement:

LDA %6,=0

will clear register 6 while the statement:

LDA 6,=0

is illegal and will generate an error message.

8

Report No. 2931 Bolt Beranek and Newman Inc.

1.3 EXPRESSIONS

An expression is a combination of terms joined together by a
specified set of operators. Expressions are evaluated using l6-bit
quantities and 16-bit operators, and produce a 16-bit result. (See
Section 1.12 on relocation for rules regarding combination of
relocatable and external values.)

A term may be any of the following:
a. A symbol, permanent or user-defined (see section 1.2) .
b. A number (see section 1.3.2).
c. ASCII text (see section 1.3.3).
d. A special symbol (see section 1.8) .
e. A register symbol (see section 1.2.4) .

1.3.1 Operators

An operator may be any of the following:
a. + Arithmetic addition or unary plus
b. Arithmetic subtraction or unary minus
c. ~ Logical OR
d. ? Logical exclusive OR
e. & Logical AND
f. Logical SHIFT
g. "* Signed Multiplication
h. / Signed Division
i. \ Remainder

The evaluation of an expression proceeds from left to right.
All operaters have equal precedence. Grouping is allowed using "<"
and ">" as parentheses.

Examples

STA %1,A+2

The contents of register 1 will be moved to the location whose
address is A+2. (See sect. 1.2.4 for explanation of %).

BR .-2

Branch to the location 2 bytes before the current location.
(See sect. 1.4 for explanation of .).

STA %1,A+<2*140>

The contents of register 1 will be moved to the location whose
address is A+300 (A+(2*140».

9

Report No. 2931 Bolt Beranek and Newman Inc.

1.3.2 Numbers

All unsigned numbers are treated as positive values; all
negative numbers must be preceded by a unary minus (-) character.
Numbers must be composed of a radix specifier followed by digits and
letters in the range specified by the radix specifier. The possible
radix specifiers are AD, AO, AH, and nothing (literally the
character A followed by D, 0, or H). These specifiers indicate
decimal, octal, hexadecimal, or the current radix as specified by
the .RADIX assembly directive. All illegal numbers are set to value
of zero.

Octal Numbers

All numbers preceded by a AO are treated as octal numbers.
Such a number can be composed only of the digits 0 through 7.

Decimal Numbers

All numbers preceded by a AD are treated as decimal numbers.
Such a number can only be composed of the digits 0 through 9.

Hexadecimal Numbers

All numbers preceded by a AH are treated as hexadecimal
numbers. Such a number can only be composed of the digits 0 through
9 and the letters A through F.

Numbers without specifier

Any number not preceded by a AD, AO, or AH is a number in the
current radix specified by the .RADIX assembly directive. This
radix is octal at the beginning of each pass of the assembler. The
number must begin with a digit 0 through 9. Subsequent digits may
be in the range 0 through 9 or A through Z depending on the radix
being used. Only those characters less than the radix may be used
in either the first or subsequent positions of the number. The
characters are ordered by 0 being the Oth digit and A being the
immediate successor of 9.

Numbers exceeding the storage space provided them will be
truncated and an error will be generated.

Example

Will result in octal 10, octal 12, 3, octal 17 being stored in
consecutive memory words. (See 1.6.2 for a description of
. WORD)

10

Report No. 2931 Bolt Beranek and Newman Inc.

1.3.3 ASCII Text Generation

ASCII text may be generated three ways. Strings of text
consisting of any number of characters are generated with the .ASCII
or .ASCIZ assembly directive (see section 1.6.4). Single and double
ASCII characters may be generated for use as operands with the
apostrophe and quote operators. The apostrophe causes the next
physically encountered character to be considered as text. The
quote causes the next two characters to be text.

Examples (see Sect. 1.5.5 for explanation of #)

CMPB

CMP

• BYTE

• WORD

LDA

Rl,#IM ;Compare Rl with the octal value
ifor the ASCII M character

Rl, #"MN i Compare Rl with the octal value
ifor the ASCII pair MN.

lA, IB, IC, ID iEquivalent to .ASCII IABCDI

"AB, "CD- iEquivalent to .ASCII IABCDI

Rl, I A i Load location 301

11

Report No. 2931 Bolt Beranek and Newman Inc.

1.4 THE LOCATION COUNTER

The Location Counter, referenced symbolically by"."
represents the address of the assembled object code. When used in
the operand field of a machine instruction, "." represents the
address of the first word of the instruction. When used in the
operand field of an assembly directive it represents the address of
the current byte or word. The value of the location counter can be
relocatable (see below) .

Examples

A: BR

LDA Rl, #.

iEquivalent to A: BR A

iMove the address of this LDA
iinstruction to register 1.

iAssume the location counter contains 200

.WORD .,.,.+2 iGenerates 3 words containing
ithe values 200, 202, 206.

The assembler sets the location counter to relocatable zero
before each pass. Throughout a pass, consecutive memory locations
are assigned to each byte of object code generated for the user's
program. The location counter is updated as the object data is
generated.

The value of the location counter, and hence the location where
the object data is stored, may be changed by a direct assignment of
the form

= Expression

This sets the location counter to the value and relocatability
of the expression. The expression must contain no forward
reference, undefined symbols, or external references. Any such
statement will be flagged as an error and the statement will be
printed on the command device (usually on pass 1) .

1.4.1 Reserving Blocks of Storage

Blocks of storage for data areas or buffers may be reserved by
altering the location counter. For example, if 100 bytes of storage
are required, the location counter should be advanced 100 locations
from its current location.

1 2

Report No. 2931

Examples

.=1000

BUFA: .=.+100

BUFB: • =BUFB+I0

Bolt Beranek and Newman Inc.

i5et the location counter to 1000

iBUFA is assigned the value 1000
iand then 100 bytes are reserved.
i • now represents 1100 •

iBUFB is assigned the value 1100
iand 10 bytes are reserved.

Assembler directives are also available for reserving storage.
(See section 1.6.3).

1 3

Report No. 2931 Bolt Beranek and Newman Inc.

1.5 ADDRESSING MODES

Instructions may have no, one, or two operand fields specifying
operands, operand addresses, or special f~elds within the
instruction itself. All allowable operand fields will be defined in
this section. The legal usage of these fields will be specified in
the following sections.

Definitions and Conventions

a. Let E be a Simple expression as defined in section 1.3.

b. Let R be a Register expression. This is a simple
expression containing a term preceded by a % symbol or a
term previously equated to a register expression (see
section 1.2.3) .

Examples

RO=%O
Rl=RO+l
R2=1+%1

;Register 0
; Register 1
; Register 2

c. Let ER be a register expression or a simple expression in
the range 0 to 7.

The processor instruction set is divided into 8 groups of
instructions:

1. Control class instructions with 8 bit field
2. Control class instructions with 4 bit field
3. Control class instructions with absolute or

relative addressing
4. Rotate and shift instructions
5. Branch instructions
6. General class instructions
7. Subroutine call instruction
8. Jump instruction

Each of these classes has its own addressing structure. Each class
will be discussed in order.

1.5.1 Control Class with 8 Bit Field

The control class instructions which have an eight bit field are the
HLT, RST, and SST instructions. Each of these instructions uses the
first byte of the instruction for the opcode. The second byte
specifies the status bits (in RST and SST) to be changed or a signal
to the programmer (in HLT). The instruction format is the opcode
followed by one or more spaces or tabs followed by an expression E.

14

Report No. 2931 Bolt Beranek and Newman Inc.

RST E ; RESET FLAGS SPECIFIED BY E

If the expression is absent 0 is assumed. If the value of the
expression requires more than 8 bits, it is truncated to eight bits
and an error message is generated.

1.5.2 Control Class with 4 Bit Field

The control class instructions which have a 4 bit field are the KEY,
ENB, ENW, INH, and INW instructions. Except for the KEY instruction
each of these instructions interrogates or changes the interrupt
system of the processor. The instruction format is the opcode
followed by one or more spaces or tabs followed by an expression E.

INH E ; INHIBIT INTERRUPTS GIVEN BY E

If the expression is absent 0 is assumed. If the value of the
expression requires more than 4 bits, it is truncated to four bits
and an error message is generated.

1.5.3 Control Class with Absolute or Relative Addressing

This group of control class instructions includes RET, STM, MST,
MTR, and RTM. Each of these instructions specifies an even address
for one of several reasons. The address is encoded into 8 bits plus
a flag by the following device. If the address is even and less
than (octal) 1000, then bit 11 of the instruction is cleared to
i.ndicate absolute addressing and the address is divided by 2 and
stored in the low order byte of the instruction. If this fails, the
present location is subtracted from the desired address. If the
result is even and can be stored as a 9 bit two1s complement number
then the result is divided by 2 and stored in the low order byte of
the instruction. Bit 11 is set to indicate relative addressing.

The form of the instruction is opcode followed by a sequence of
spaces or tabs followed by an expression E.

RET E RETURN FROM INTERRUPT VECTOR E

1.5.4 Rotate and Shift Instructions

The rotate and shift instructions are SLA, SRA, RLA, RRA, SLL, SRL,
RLL, and RRL. These instructions function to move bits in the
registers. The instruction names can be remembered by the following
device. Those instructions which move bits off the end of a
register and forget them are called shifts and begin with an S.
Those instructions which never lose bits are called rotates and
begin with an R. The second letter specifies right (R) or left (L).
If the carry bit is involved in the instruction the instruction is
called arithmetic and ends with an A. If the carry bit is not
involved the instruction is called logical and ends with an L. The

15

Report No. 2931 Bolt Beranek and Newman Inc.

rotate and shift instructions allow the programmer to specify either
an absolute number of bits to move or to specify a register whose
low four bits will indicate the number of bits to move. The
assembler will recognize which type of instruction is desired by
whether the count expression is a register expression or not and
will assemble the correct version of the rotate or shift.

'-
The form of the instruction is opcode followed by a sequence of
spaces or tabs followed by a register expression R followed by a
comma and an expression E.

RRL R,E ; ROTATE RIGHT E BITS

The register expression R and the comma must be present. If E is
absent a 0 is assumed. If the expression E is not a register and
requires more than 4 bits it is truncated to four bits and an error
message is generated.

1.5.5 Branch Instructions

The branch instructions check some specified condition and transfer
either on the truth or falsity of that condition. The address to
transfer control to is specified by the low order byte of the
instruction. The programmer specifies the instruction as an opcode
(indicating condition and whether to branch on truth or falsity)
followed by a sequence of spaces or tabs followed by an expression E
indicating the address to transfer to.

BR E ; BRANCH UNCONDITIONALLY TO E

The instruction names can be remembered by the following device.
Unconditional branch is BR and Unconditional don't branch is NOP.
All other branch opcodes begin with a B. If the branch is on the
falsity of the condition the B is followed by an N. The opcode is
completed by appending the condition name to the end. The condition
names are as follows:

C CARRY
E EQUALS
Fl FLAG 1
F2 FLAG 2
F3 FLAG 3
G GREATER THAN
L LESS THAN
LP LOOP COMPLETE
M MINUS
o ODD
OV OVERFLOW
Z ZERO

16

Report No. 2931 Bolt Beranek and Newman Inc.

The address is encoded into the instruction as follows. The current
location is subtracted from the address E. If the result is even
and can be expressed as a 9 bit two's complement number then the
result is divided by two and stored in the low order byte of the
instruction. Otherwise, an error message is generated. If the
expression E is absent, the current location is assumed for E.

1.5.6 General Class Instructions

The most important group of processor operations is this class. It
includes the LDA, ADD, SUB, lOR, EOR, AND, CMP, and TST instructions
together with their variations. The programmer specifies the
instruction by giving an opcode followed by a sequence of spaces or
tabs, followed by a register expression R, followed by an address.

LDA R,ADDR LOAD R WITH CONTENTS OF ADDR

The opcodes are specified by giving the root opcode as above with
the following characters following if desired. If the instruction
is to be a byte instruction a B immediately follows the root opcode.
If the direction of the instruction is to memory an M immediately
follows the opcode. Thus LDAB is a load byte instruction and ADDBM
is add register to byte of memory. The various forms of addressing
include all the various forms of addressing allowable on the
processor. They are summarized with exact formats and code
generated in APPENDIX B.

1.5.7 Subroutine Call Instruction

The subroutine call or JSB instruction has format exactly
general class instructions. The difference is that
following addressing forms are allowed:

JSB R,E
JSB R,E(ER)
JSB R, (ER)
JSB R,@E
JSB R, @E (ER)
JSB R,@(ER)

1.5.8 Jump Instructi.on

like
only

the
the

The absolute jump instruction or JMP again has form similar to the
general class instructions and the JSB. It uses no register
specification and can only use those addressing modes that JSB can.
Thus it can have only the following forms:

JMP E
JMP E (ER)
JMP (ER)
JMP @E
JMP @E (ER)
JMP @ (ER)

1 7

Report No. 2931 Bolt Beranek and Newman Inc.

1.6 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops) direct the
assembly process and may generate data.

Assembler directives may be preceded by a label and followed by
a comment. The assembler directive occupies the operator field.
Only one directive may be placed in anyone statement. One or more
operands may occupy the operand field or it may be void -- allowable
operands vary from directive to directive.

1.6.1 .BYTE

The .BYTE assembler directive is used to generate bytes of
data. The forms of the .BYTE directive are:

Label Operator Operand

LABEL: • BYTE E ifills one byte

.BYTE E , E ifills consecutive bytes

a. The mnemonic .BYTE occupies the operator field.
field can appear preceding the operator field.

A label

b. The expression must conform to the rules given in Section
1.3, and must be absolute.

c. Multiple expressions (generating multiple bytes) are
separated by commas.

d. Only the low-order eight bits of the expression are
stored. If the high order byte is not all O's or alII's,
an error is generated.

Example

. BYTE 3,4,5

will store 3,4,5 in consecutive bytes.

• BYTE 1000,4,5

will store 0,4,5 in consecutive bytes and an
error is generated for the first byte •

. BYTE , , is equivalent to .BYTE 0,0,0

Note that the statement .BYTE 100000+100000 will generate
a byte of all O's and will not generate an error because

1 8

Repo rt No. 2931 Bolt Beranek and Newman Inc.

the resulting expression, 000000, fits in one byte.

1.6.2 .WORD

The .WORD assembler directive is used to generate words of
data. The forms of the .WORD directive are:

Label Operator Operand

LABEL: . WORD E iFills one word

LABEL: . WORD E, E . . . iFills consecutive words

LABEL: E iFills one word

LABEL: E,E, i Fills consecutive words

1. A label field is permitted.

2. The .WORD directive may optionally appear in the operator
field.

3. The expression must conform to the rules given in section
1.3.

4. Multiple expressions are separated by commas.

5. Only the low order 16 bits of the resultant of the
expression are stored.

6. If the operator field is absent, the first encountered term
(other than the label field) in the first expression must
not be a recognizable machine mnemonic or assembler
directive unless it is preceded by an expression operator
(+ - ± ? &).

7. If the location counter is odd it is rounded up to the next
higher even address before storing the data. However, if a
label preceded the directive the value of the label will be
the original odd value. Thus words of data will be stored
at even addresses.

Example

. WORD 500, 1000

Will store 500 and 1000 in consecutive words.

19

Report No. 2931 Bolt Beranek and Newman Inc.

• WORD LDA, 3000

Will store 40000, 3000 in consecutive words. Since .WORD
is present, no leading operator is required before LDA.

+LDA, LDA

Will store 40000, 40000 in consecutive words. The leading
+ is required to keep the first LDA from being recognized
as an operator.

Note that preceding the first term with & or ± or is
interpreted as follows:

-LDA ; Equivalent to 0-LDA=140000

±LDA ; Equivalent to 0±LDA=040000

&LDA ; Equivalent to O&LDA=OOOOOO

1.6.3 .BLKB and .BLKW

Two directives are available which cause uninitialized storage
locations to be reserved. They are:

.BLKB N ;reserves N bytes of storage

and

.BLKW N iadvances location counter to next

;even location, then reserves N words

;of storage

1.6.4 .ASCII and .ASCIZ

~he assembler directive .ASCII and .ASCIZ is used to generate
8-bit ASCII text. The form of this directive is:

.ASCII Ixxx ... xl

or

Both
assembled
the two is
beyond the

.ASCIZ Ixxx ... xl

these directives cause successive ASCII characters to be
into successive bytes of memory. The difference between
that ASCIZ causes an additional zero byte to be assembled
end of the string.

20

Report No. 2931 Bolt Beranek and Newman Inc.

1. The mnemonic .ASCII occupies the operator field. A label
field can appear preceding the operator field. A space or
tab must follow the .ASCII mnemonic.

2. ASCII text must not include nulls, rubouts, line or form
feed.

3. The delimiting character (represented by / in the format
above) may be any printable ASCII character except colon,
equals or any character appearing within the text. This
delimiter must appear both immediately preceding and
immediately following the userls text.

4. In the operand field of .ASCII and .ASCIZ, lower case
letters ~ distinguished from upper case letters.

Examples of the use of the .ASCII directives are:

A: .ASCII /HELLO/ iStores the ASCII represen­
jtations of H,E,L,L, and 0
jinto consecutive memory
ibytes.

B: .ASCII AEND OF JOB A jStores the ASCII represen­
jtations of E,N,D, ,O,F, ,
iJ,O, and B into consecu­
jtive memory bytes.

Note that the terminating character cannot appear within the text.

Example:

B: .ASCII AERROR ON TAPEA

("PEA" is ignored and error message given)

1.6.5 .EVEN and .ODD

The .EVEN assembler directive causes the assembler IS location
counter to be incremented by one if it is odd. If the location
counter is already even, the .EVEN directive does nothing.

The .ODD assembler directive causes the assemblerls location
counter to be incremented by one if it is even. If the location
counter is already odd, the .ODD directive does nothing.

1. The .EVEN or .ODD may be preceded by a label or followed by
a comment. A label, if present, is assigned the value of
the location counter before any modification takes place.

21

Report No. 2931 Bolt Beranek and Newman Inc.

2. Any operand will be treated as a comment.

1.6.6 .END

The form of this directive is:

.END optional start address

The .END assembler directive performs two functions:

1. Indicates the logical end of the source program.

2. Optionally specifies the program's entry point. The
absolute loader will transfer control to the entry point
after a successful load. If no entry point is specified,
the loader will halt.

The rules governing the .END directive are:

1. The mnemonic .END occupies the operator field. A label
field may appear preceding the operator field. A space, or
tab, must separate .END from the entry point specification.

2. The'expression E must not contain any external references
and must conform to the rules given in Section 1.3.

Example

.END A

identifies the starting address of the program as the value
of symbol A.

1.6.7 .EOT

The .EOT assembler directive is used to indicate the physical
end of the source input medium. For example, it might be used at
the end of each strip of paper tape (except the last) when a source
program resides on more than one strip of tape. The last strip
would terminate with an .END directive.

Example

.EOT
Any operand will be treated as a comment.

1.6.8 .TITLE and .STITL

The .TITLE directive is used to name the object module. The
name assigned is the first symbol following the directive. If there
is no .TITLE statement the default name assigned is ".MAIN". If

22

Report No. 2931 Bolt Beranek and Newman Inc.

there is more than one .TITLE directive, only
encountered is operative. The title is typed on the
appears on the first line of each header .

the last
terminal

one
and

. STITL sets the subtitle to the remainder of the line
following the directive. The subtitle lists on the second line of
each heading. If the .STITL is the first line of a page, it takes
effect on that page; if not, it takes effect on the next page.

1.6.9 .RAD50

Systems programs can handle symbols in a specially coded form
called RADIX 50 (this form is sometimes referred to as MOD40 or
SQUOZE). This form allows successive groups of 3 characters to be
packed into successive words; therefore, any 6-character symbol can
be held in two words. The form of the directive is:

.RAD50 ICCCI

The single operand is of the form ICCCI where the slash (the
delimiter) can be any printable character except for n=n and n:n.

The delimiters enclose the characters to be converted which may be A
through Z, 0 through 9, dollar ($), dot (.), percent (%), and space
(). If there are fewer than 3 characters they are considered to be
left justified and trailing spaces are assumed. If there are more
than three characters, successive groups of 3 are assembled in
successive words.

Examples:
.RAD50 IABCI ; PACK ABC INTO ONE WORD

.RAD50 IABI ; PACK AB (SPACE) INTO ONE WORD

.RAD50 II iPACK 3 SPACES INTO ONE WORD

The packing algorithm is as follows:

A. Each character is translated into its RADIX 50 equivalent
as indicated in the following table:

Character

(space)
A-Z
$

%
0-9

RADIX 50 Equivalent (octal)

o
1-32
33
34
35
36-47

23

Report No. 2931 Bolt Beranek and Newman Inc.

B. The RADIX 50 equivalents for characters 1 through 3
(C1,C2,C3) are combined as follows:

RESULT=«Cl*50)+C2)*50+C3

NOTE: the character translation for Pluribus RADIX50 is not the
same

as that for PDP10 RADIX50.

1.6.10 .IF

Conditional assembly directives provide the programmer with the
capability to conditionally include or not include portions of his
source code in the assembly process. If the condition is met, all
statements up to the matching .ENDC are assembled. Otherwise, the
statements are ignored until the matching .ENDC is detected. The
general form of the conditional directive is:

. IF Condition

The conditions fall into several classes:

1) Arithmetic Conditionals - .IF C EXPRESSION

Condition True if

Z Expression equal to Zero
LT Expression less than Zero
LE Expression less than or equal to Zero
GT Expression greater than Zero
GE Expression greater than or equal to Zero
NZ Expression not equal to Zero

2) String Comparison - .IF C ARGl, ARG2

Condition

DIF
IDN

True if

ARG1 Different from (not equal to) ARG2
ARGI Identical to (equal to) ARG2
(ARG1 and ARG2 are MACRO-TYPE args)
(See Sect .1.7 .4)

3) String Comparison with NULL - .IF C ARG

Condition

B
NB

True if

ARG (MACRO-TYPE ARG) is blank
ARG is not blank

24

Report No. 2931 Bolt Beranek and Newman Inc.

4) Testing Definition - .IF C EXPRESSION

Condition True if

DF All symbols in Expression are defined
NDF Some symbols in Expression are not defined

5) Testing PASS Assembler is in

Condition

PI
P2

True if

Assembler is in pass one
Assembler is in pass two

All conditionals must end with the .ENDC directive. Anything
in the operand field of .ENDC is ignored. Nesting is permitted.
Labels are permitted on conditional directives, but the scan is
purely left to right.

For example:

.IF Z 1

A: .ENDC

A is ignored.

A: .IF Z 1

.ENDC

A is entered in the symbol table.

If an .END is encountered while inside a satisfied conditional,
the directive will still be processed normally. If more .ENDC's
appear than are required, an error occurs on the extras.

25

Report No. 2931 Bolt Beranek and Newman Inc.

In addition, there are three subconditional assembly directives
which may appear only in a conditional. They are

.IFF

.IFT

.IFTF

if conditional is false
if conditional is true
assemble whether conditional is true or false

.IFF switches the sense of the conditional for the code that
follows, so it will be assembled only if the conditional failed •
. IFT restores the original sense of the conditional for the code
that follows. .IFTF forces assembly of the following code
independent of the state of the conditional. This is different from
ending the conditional because a .IFT may appear later (but before
the .ENDC) and make assembly conditional again.

Example:

.IF LT A - B
A'= B

. IFF
A = A+1

.WORD B

.IFT

.WORD A

; If B ~ A, increment A and assemble B

i If B> A, set A to B and assemble it
.ENDC

1.6.11 .IIF and .LIF

Two alternative forms of conditional assembly directives are
available which cause conditional assembly of a single statement
only, and which therefore require no .ENDC terminator. They are
the "IIF" group and "LIF" group. The conditions are treated in the
same fashion as the "IF" group enumerated above.

The form is:

.IIF Condition, Statement

The statement is assembled under the condition specified. This
is equivalent to:

. IF Condition

Statement

.ENDC

26

Report No. 2931 Bolt Beranek and Newman Inc.

The second form of single-statement condition assembly is the
"LIF" group. The form is:

.LIF Condition

Statement

This assembles the statement only if the specified condition is
true. If the condition is false, the statement on the next line is
listed but not assembled.

1.6.12 Special Listing and Output Actions

There are two assembler directives which control whether or not
the following code appears on the output listing. They are:

.LIST

Decrements the "XLIST" count if it is greater than o. This
count is initially set to O. Listing action takes place only if the
XLIST count is O. The ".LIST" directive itself is listed only if
the XLIST count was O •

. XLIST

Increments the XLIST count and thus prevents the following code
from being listed.

Another directive causes the listing to skip to a new page:

. PAGE

Three other assembler directives are used to signal some
special condition during assembly .

. PRINT /TEXT/

When the .PRINT directive is encountered the first character
following it which is not a space or tab is located. All source
characters following this character up to (not including) the next
occurrence of the same character constitues the string to be
printed. The string is printed on the terminal and inserted into
the error file if the error file is open .

. ERROR MSG

.MSG MSG

The .ERROR and .MSG directives provide similar features. Each
uses the whole line of source text as an error message. This error
message is processed exactly like an error message generated by the

27

Report No. 2931 Bolt Beranek and Newman Inc.

assembler. The PC, line, page, and error message are printed on the
terminal and inserted in the error file. If the directive is .ERROR
the error count is incremented. If the directive is .MSG the error
count is not incremented.

Another directive affects the CREF listing produced:

.XCREF A, B, C

prevents CREF output from being generated for symbols A, B, and C.

1.6.13 .OFFSET

The directive .OFFSET EXP sets the offset to EXP. This causes
the sum of this offset and the real location counter to be used for
the symbol "." in relative addressing and label definition. The
offset is zero at the beginning of an assembly pass. The offset
must not be relocatable or external.

1.6.14 .INSRT

The directive .INSRT FILSPC pushes the current source file
and/or repeat macro etc. and starts reading from the specified
file. After the end of that file, the file or macro containing the
INSRT will be resumed starting with the next line.

The characters "/@. II are passed as part of the file name. If
the specified file is- not found, a non-fatal error occurs and
assembly of the file containing the .INSRT continues. %FNAM2 is
set to the extension of the .INSRT'ed file and remains set after
the file is finished (unless that file has done an .INSRT, of
course) .

This facility is used, for example, to permit a family of
separately-assembled modules to include a common head file of global
parameter and macro definitions. Each module merely declares
".INSRT Headfile" to perform this linkage.

1.6.15 .REPT and .IRP and .IRPC

Repeat statements are of the form:
.REPT EXP

TEXT

.ENDR

The text enclosed by .REPT and .ENDR may be of any length. The
number of times it is repeated is determined by the value of the
expression which follows .REPT: that is, 0, 1, or N times depending
upon whether EXP is < 0, 1, or >1. Repeats can be nested to any

28

Report No. 2931 Bolt Beranek and Newman Inc.

level and enclose or be a part of macros.

Two other forms of repeat are available for iterating over a
set of objects or over the characters in a string .

. IRP DUMMY, <AI, A2, A3>

repeats all the following text up to the matching .ENDM substituting
Al for DUMMY the first time, A2 for DUMMY the second time, etc. The
stuff following the comma is treated as a macro argument, and might
be delimited by ¢/ ... / instead .

. IRPC DUMMY, STRING

repeats the text up to a matching .ENDM once for each character in
STRING, each time substituting that character for DUMMY. DUMMY must
be a symbol; STRING is read in as a macro argument.

1. 6 .16 .EXTRN

It is often convenient to reference subroutines or symbols
defined in another assembly (a subroutine library, for instance).
This can be done using the .EXTRN pseudo-op. The statement

.EXTRN SYMI,SYM2, ... ,SYMN

declares that the symbols SYM1,SYM2, etc. are defined in another
assembly and hence that their values cannot be known at assembly
time, only at load time. Because of this the use of external
symbols has the following restrictions:

1) Two external symbols cannot be referenced in the same
expression.

2) External symbols cannot be operated on by the operators
*,/, ,&,?,\ - , and ± •

3) External symbols cannot occur on the right-hand side of
the operator.

4) External symbols cannot be defined elswhere in the
assembly.

5) Register symbols cannot be external.

6) External symbols cannot be used where a value must be
known (REPT, .= for example) or with the .END pseudo-op.

29

Report No. 2931 Bolt Beranek and Newman Inc.

Aside from the above restrictions external symbols can be used
like any other symbols.

Examples:
. EXTRN TCO,A,B

x = A + 7
Y = X - 3 iY = A + 4
z = B

JSB R7,TCO TYPE A CHARACTER

1.6.17 .ENTRY

The statement

.ENTRY SYMl,SYM2, .•• ,SYMN

declares that the symbols SYMl,SYM2, etc. are defined in this
assembly and that their values are to be made available to other
assemblies (requested via • EXTRN) at loadtime. There are no
restrictions on the use of .ENTRY symbols.

Example:
.ENTRY A,B,C,TCO

A = 100

B: 123

C: .ASCIZ "Title:"

TCO: LOA Rl,TPS iTeletype Ready?

TST Rl,=TTFLAG

BGE TCO iNo-wait for it.

STAB R2,TPB iYes, type character.

JMP (R7) iReturn

30

Report No. 2931 Bolt Beranek and Newman Inc.

1.6.18 .RADIX

Numbers which are not preceded by a A D, A 0, or A H are converted
as numbers in the radix specified by the assembler. This radix is
initially octal at the beginning of each pass but can be changed by
the directive .RADIX:

. RADIX EXPRESSION

The expression must be greater than one and less than thirty-seven.
For all numbers without radix specifiers following this directive
until the completion of the next .RADIX directive or end of the
pass, the number will be converted in the radix specified by the
current expression. Such numbers must begin with a digit in the
range allowable by this radix and be followed by a digit or letter
in the range allowed by this radix. The letter A is the direct
successor of the digit 9 in the counting order.

31

Report No. 2931 Bolt Beranek and Newman Inc.

1.7 MACROS

A macro is a string of text which, at any time after its
definition, can be invoked by the use of its associated symbol. In
addition, varying arguments can be transmitted at invocation time.

1.7.1 Defining a Macro

.MACR
LDA
LDA

.ENDM

LOADGO VALUE,ADDR
%3,VALUE
%O,ADDR

.MACR and .ENDM are assembly directives, LOADGO is the
symbol which will invoke the macro, and VALUE and ADDR are dummy
arguments. They serve no purpose other than to indicate where
actual arguments are to be substituted.

The directive .MACRO is equivalent to .MACR.

1.7.2 Calling a Macro

LOAD GO
would generate:

LDA
LDA

#100,#123

%3,#100
%0,#123

1.7.3 Concatenation

Another feature of the Macro facility is concatenation, that
is, the ability to join character strings into a single symbol or
name. The single quote (or apostrophe) is used in a Macro to denote
concatenation, which is used to concatenate a Macro argument with
some other character string(s) by delimiting the Macro argument in
single quotes. When the concatenation is to take place at one end
of a string, only one of the quotes is required.

Example

iDEFINE THE MACRO

.MACR TEST A,B,C,E

LDA MEM'A,MEM'B'

LDA'E MEM'C'A,#C'MEM'B'P

.ENDM

iCALL

32

Report No. 2931 Bolt Beranek and Newman Inc.

TEST X, Y, Z,B

iGENERATES

LOA MEMX,MEMY

LOAB MEMZX,#ZMEMYP

iCALL

TEST AGl,AG2,AG3

iGENERATES

LOA MEMAGl,MEMAG2

LOA MEMAG3AGl,#AG3MEMAG2P

Macros and Repeats can be used in any configuration and to any
depth of nesting provided they are properly nested.

1.7.4 MACRO-Argument Scan

If the first character read when a macro-arg is expected is A,
the next character is used as the delimiter and all successive
characters up to the next appearance of the delimiter go in the
macro argo After that, spaces are skipped, and a comma, CR or i
should follow.

If the first
the matching >
macro argo After
should follow.

character seen is <, all characters between it and
(not including the <and> themselves) go in the
the >, spaces are skipped and a comma, CR or

If the first character is \, an expression is read in and its
value is converted to a string in base 8, which becomes the macro
argument. After the expression, spaces are skipped, etc.

Otherwise, all characters up to but not including the first
command, CR or go in the macro arg, except that trailing spaces
and tabs before a i will be ignored.

If the scan of the argument stopped on a CR or i, there are no
more arguments. Any more arguments wanted will be made null. The
CR or i will remain to be re-read after the expansion of the macro.
If the scan stopped on a comma, the next argument's scan will start
with the character after the comma.

33

Report No. 2931 Bolt Beranek and Newman Inc.

1.7.5 .MEXIT

A macro is exited upon falling through the .ENDM directive, or
by encountering the directive

.MEXIT

anywhere inside
immediately pop
.IRPC.

the macro. This directive causes assembly to
out of the innermost macro call, .REPT, .IRP, or

1.7.6 .TTYMA

A variant of the macro call permits the arguments to be
collected from the controlling terminal at assembly time:

.TTYMA A,B,C

reads a line from the TTY, then defines A,B, and C
using the macro argument scanning rules. Within
.TTYMAC (up to the matching .ENDM) A,B, and C will
the strings obtained by scanning what was read from

34

from that line
the scope of the
be replaced by
the TTY.

Rerpot No. 2931 Bolt Beranek and Newman Inc.

1.B VALUE-RETURNING PSEUDO-OPS

Value-returning pseudo-ops may be used anywhere
symbol may be used. Such a pseudo will usually skip
following its last argument. If there is anything on
the pseudo's last arg, the comma should be used, e.g.

an ordinary
over any comma
the line after

FOO==.LENGTH¢/ABCDEF/,+l

1.B.l .ADRMD

.ADRMD ADDR

sets FOO to 7

A value-returning pseudo-op whose value is the
addressing mode of ADDR. The addressing mode of ADDR
is the 16 bit quantity which is inclusive or'ed with
the basic instruction and accumulator to form the
first word of a general class instruction. If you
want to follow this construction with an arithmetic
operator, put a comma in betwen, otherwise the
operator may be included in ADDR.

1.B.2 .LENGTH

.LENGTH String String is read as a macro argument, and the

1.B.3 .FIRST

number of characters in String is returned as a value
which can be used in arithmetic expressions. (A
comma should be used after String and before any
following arithmetic operators.)

.FIRST Statement The statement is translated into binary. The
first word of the statement is returned as the value
of .FIRST. No storage is allocated for the statement
translated. As many characters as are necessary are
used to translate the statement, thus care must be
used in including .FIRST as a term in an expression.

1.B.4 .ADDRE

.ADDRE Statement The statement is translated into binary. The
second word of the statement is returned as the value
of .ADDRE. No storage is allocated for the statement
translated. As many characters as are necessary are
used to translate the statement, thus care must be
used in including .ADDRE as a term in an expression.

35

Report No. 2931 Bolt Beranek and Newman Inc.

1.9 SPECIAL SYMBOLS

May be used as normal symbols, or set with n=n.

%.

% FNAM 2

%NARG

%OFFSE

%XCREF

%XLIST

• RPCNT

• IRPCN

%RADIX

The location counter (including offset) •
• always equals %.+%OFFSET.
Setting .=A is equivalent to
%.=A-%OFFSET

The unoffset location counter
(where code will actually be loaded) •

The result of taking the current source file's
version number, and turning it into a decimal number,
ignoring non-digits.

The number of args given to the innermost
macro invocation.

The value of the offset.

Stops CREFfing if not O.

The value of the XLIST count.

Normally 0 except in repeats •

Then, is 0 the 1st time through, 1 the next, etc.

Like .RPCNT but for IRPs instead of repeats •

The current radix for numbers without specifiers.

36

Report No. 2931 Bolt Beranek and Newman Inc.

1.9.1 PRE-DEFINED SYMBOLS

The following symbols are pre-defined.

Octal
Symbol Value

Hex.
Value

Processor Registers

Description

%0
%1
%2
%3
%4
%5
%6
%7

o
1
2
3
4
5
6
7

o
1
2
3
4
5
6
7

Register 0 (Program Counter)
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Status Register, RST, and SST Names

%A
%C
%E
%Fl
%F2
%F3
%G
%Ll
%L2
%L3
%L4
%LP
%N
%0
%V
%Z

.Ll

.L2

.L3

.L4

4000
10

1
20
40

100
2

10000
20000
40000

100000
200

2000
400

4
1000

1
2
4

10

800
8
1

10
20
40

2
1000
2000
4000
8000

80
400
100

4
200

1
2
4
8

Processor ACTIVE
CARRY bit
EQUALS bit
Flag 1
Flag 2
Flag 3
GREATER bit
Level 1 interrupt
Level 2 interrupt
Level 3 interrupt
Level 4 interrupt
Loop Complete
NEGATIVE bit
ODD bit
OVERFLOW bit
ZERO bit

Level 1 interrupt
Level 2 interrupt
Level 3 interrupt
Level 4 interrupt

Low Core Interrupt Vector Addresses

%ABRTO 50 28 Abort for processor
%ABRTI 70 38 Abort for processor
%ABRT2 110 48 Abort for processor
%ABRT3 130 58 Abort for processor
%ILOPO 40 20 Illegal Instruction

37

0
1
2
3
for processor 0

Report No. 2931 Bolt Beranek and Newman Inc.

%ILOPI 60 30 Illegal instruction for processor 1
%ILOP2 100 40 Illegal Instruction for processor 2
%ILOP3 120 60 Illegal Instruction for processor 3
%LOW 400 100 First location after low core
%LVLl 0 0 Level 1 interrupt
%LVL2 10 S Level 2 interrupt
%LVL3 20 10 Level 3 interrupt
%LVL4 30 lS Level 4 interrupt

Relative Addresses of Components of Interrupt Vectors

%CURPC 4 4 Storage for interrupted PC
%DEVNO 0 0 Interrupting Device Number
%PSTAT 2 2 Storage for interrupted STATUS
%SERVC 6 6 Address of service routine
%BDADR 0 0 QUIT Bad Address
%BDINS 0 0 Illegal Instruction Bad Address

Addresses of Register Block for each Processor -----
%CPUO 177400 FFOO Registers for processor 0
%CPUl 177440 FF20 Registers for processor 1
%CPU2 177500 FF40 Registers for processor 2
%CPU3 177540 FF60 Registers for processor 3

Relative Addresses of ~egisters in Register Block

%REGO 0 0 Register 0
%REGI 2 2 Register 1
%REG2 4 4 Register 2
%REG3 6 6 Register 3
%REG4 10 S Register 4
%REG5 12 A Register 5
%REG6 14 C Register 6
%REG7 16 E Register 7
%STAT 20 10 Status Register
%INST 22 12 Instruction Register
%LADR 24 14 Address of Last instruction
%CTRL 36 IE Control Register

High Core Addresses

%AREGI 177600 FFSO Address Register for console 1
%AREG2 177604 FFS4 Address Register for console 2
%AREG3 177610 FFSS Address Register for console 3
%AREG4 177614 FFSC Address Register for console 4
%DREG1 177602 FFS2 Data Register for console 1
%DREG2 177606 FFS6 Data Register for console 2
%DREG3 177612 FFSA Data Register for console 3
%DREG4 177616 FFSE Data Register for console 4

38

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS Registers

%MAPO 176000 FCOO Map Register for Page 0
%MAP1 176002 FC02 Map Register for Page 1
%MAP2 176004 FC04 Map Register for Page 2
% MAP 3 176006 FC06 Map Register for Page 3

39

Report No. 2931 Bolt Beranek and Newman Inc.

1.10 RELOCATION

Relocatable programs are assembled as if they were to be loaded
at location 0, but in fact they can be loaded anywhere. This is
useful for such things as separately assembled subroutine libraries
which may be used by wany different programs and hence may be loaded
into many different places. Because the assembler doesn't know
where the program will eventually be loaded, it must mark all
symbols which represent addresses as "relocatable". Their actual
value is the value the assembler assigned (assuming the program
would load at 0) plus the address where the program actually loads.
For example, if Y is address 100, and the program loads at 1000, the
actual value of Y is 1100. In general the actual value of a symbol
A representing address a, is A = a + r, where r is the address where
the program will be loaded, called the relocation constant.

When the assembler evaluates expressions containing relocatable
values, it keeps track of a relocation count, or the number of times
r must be added to the value to yield the final value, as well as
the value. For example in the expression A + B + C, the relocation
count is 3. (A+B+C = (a+r)+(b+r)+(c+r) = a+b+c+3*r). Expressions
not inside parentheses must have a relocation count of 0 or 1.
Expressions with a relocation count of zero are said to be absolute.

The following table shows how relocation counts are computed.

OPERATOR
OPERANDS +

A A o o

A R r2 -r2

R A r1 rl

R R r1+r2 rl-r2

where A stands for an absolute quantity,
with a non-zero relocation count, rn is
n'th operand, and the table entries
relocation count.

* /

o o

a*r2 illegal

a*rl r1/a

illegal illegal

R stands for any quantity
the relocation count of the
represent the resultant

NOTE: The opera tor s ±, &, \, ?, and
values.

cannot be used on relocatable

40

Report No. 2931 Bolt Beranek and Newman Inc.

EXAMPLES:

(lowercase represents absolute, uppercase represents relocatable)

A+x-y is relocatable
2*A-B is relocatable
A+B is illegal (relocation count is 2)
A-B is absolute
A+B+C-<D+E> is relocatable

41

Report, No. 2931 Bolt Beranek and Newman Inc.

PART 2

OPERATING PROCEDURES

The Pluribus Assembler can be used to assemble Pluribus source
programs on TENEX. It provides the user with the power of a
time-sharing system for assembly of programs. These may then be
punched on paper tape and run on a Pluribus multiprocessor.

The source code may come from any TENEX file.

2.1 RUNNING THE ASSEMBLER

2.1.1 Initial Dialogue

Once the assembler has been started it will respond by
n*n and wait for the user to provide operating instructions
appropriate command string. Blanks are not allowed in the
string.

2.1.1.1 COMMAND STRING

The general form of the command string is:

typing
via the
command

Binary Output, Listing Output, Error Output = Source Input,
Source Input, ••• Source Input

1. The source files are effectively concatenated and
assembled. If the binary spec is empty, no binary file is
generated. If the listing spec is empty, a listing file
is generated with default names. If no listing is
desired, the comma should be omitted as well. The error
file is treated similarly.

An abbreviated form of command string which produces
only a binary file is:

Source Input, Source Input, ..• Source Input

Each input/output designator consists of the group:
DEV:FILNAM.EXT

a. DEV is
DSK for disk
PTP for high speed punch
PTR for high speed reader
DTAn for DEC tape n
TTY for the user terminal
TTYn for terminal number n

42

Report No. 2931 Bolt Beranek and Newman Inc.

If not specified the device is assumed to be the
disk for the binary, listing, and first source
files. For successive source files, it is
assumed to be the same device as the first source
file.

b. FILNAM is the filename of the appropriate file. The
name of the first source file is the default filename
supplied (when not specified) for the binary,
listing, and error files.

c. EXT is the filename extension for that file. If
it is not specified, the assumptions are:

BINARY OUTPUT: .BIN
LISTING OUTPUT: .LST (.CRF if IC switch is on)
ERROR OUTPUT: .ERR
SOURCE INPUT: .PLR

2. Special Options.

If special features of the assembler are to be used,
then the indicated characters preceded by a slash must be
typed in the command string.

a. IB- suppress binary.

b. IC- produce a CREF (cross reference) listing. Must
be used in the listing field and it is recommended
that no device, file, or extension be specified. The
assumed name will be CREF.TMP if none is specified.
If only a filename is specified, the extension .CRF
will be assumed. Forces IL.

c. ID- give,back TTY and run detached.
finished. Forces IE.

Logout when

d. IE- force error file to be written.

e. IH- hexadecimal error and
generated.

listing files are

f. 11- double size of symbol table for each II seen.

g. IL- output listing even if no listing spec.
with abbreviated format).

(Useful

h. IM- suppress the listing of lines generated by
MACROS.

i. IN- suppress error messages to the Teletype. Forces
IE.

43

Report No. 2931 Bolt Beranek and Newman Inc.

j. /0- addresses in listing include offset.

k. /T- cause terminal formatted listing to other
listing device, or wide format listing to TTY.

1. /v- the following number is to be used as number of
lines per page in the listing.

Command Language Examples

u. *DSK:BETA.BIN, LPT:/N=DSK:BETA.PLR
Assemble file BETA.PLR from the disk. Binary to disk
file BETA.BIN, listing on the line printer. Suppress
error messages to the console.

b. *BETA,LPT:/N=BETA
Same as example a. above.

c. *,PTP:=DTA3:ALPHA
Assemble file ALPHA (or, ALPHA.PLR) from DECtape No.
3. Output a paper tape containing the listing file.

2.1.1.2 Command files

If "@FILSPEC" is placed in a command string, the contents of
the file FILSPEC are effectively inserted in the command string,
surrounded by spaces.

The character following "@FILSPEC" is lost, and should be a
comma unless "@FILSPEC" is at the end of the command string, when
the same carriage return that ends the command string will end
" @FILSPEC" •

Carriage returns and 1inefeeds in the file are treated as
spaces. Contro1-L or Contro1-C terminates the file. Command files
may refer to other files to a depth limited by the size of the
pushdown stack.

Command files default independently to device DSK:. They have
no effect on the defaulting of other file names.

The character Contro1-Q cancels an entire command string, just
as a sufficient number of Contro1-A's would.

2.1.2 Closing Dialogue

When the Assembler has completed a run it will print the number
of errors detected and the amount of processor time used. If the
previous command line was terminated with a carriage return another
*. is typed. If another program is to be assembled, the command
string may be typed. If the previous command string was terminated

44

Report No. 2931 Bolt Beranek and Newman Inc.

by an ESC or ALT MODE the Assembler automatically returns to the
monitor on completion of the assembly.

2.1.3 Cross Reference Listing

If a IC option had been typed for a cross reference listing,
the assembler generates a modified listing file. This file contains
the listing and indicator marks for uses of all symbols. The file
can be converted into a listing with cross references by the
following sequence:

1. Type "'c and wait for n@n.
2. Type CREF to load CREF program.
3. CREF responds with *.
4. Type the RETURN key if listing is to go on line printer

or TTY:= and RETURN key if it is to go to the terminal.
5. When CREF types *, type "'c to return to the Monitor.

Refer to the decsysteml0 assembly language handbook for
more details.

45

Report No. 2931 Bolt Beranek and Newman Inc.

2.2 OUTPUT

The initial dialogue determines which output is generated by
the assembler. This usually includes binary output and listing
output.

2.2.1 Listing Format

The assembler can generate either of two listing formats. One
is designed for a terminal and the other is for a line printer. The
assembler assumes the line printer format unless the listing device
is specified as a terminal in the command string.

Line Printer Format - Each page is headed by a title line as
follows:

PLURIBUS Vnnn Date Time Page n

The version number, Vnnn, is the assembler version. The date is
given as XX-YYY-ZZ where XX is the day, YYY is the month and ZZ is
the year. The time is of the form XX:YY where XX is the hour and YY
is the minute. The page number is a simple number (e.g., PAGE 5) or
a simple number trailed by a dash and another number (e.g., PAGE
5-1). The first form is used when the new page is started because
of a form feed in the source. The second form indicates that a new
page was started because 55 lines were printed without a form feed.
The format of the listing consists of, left to right:

a. Location Counter

b. Object Fields

c. Source Image

The error flags are printed here.

The location counter for the in­
struction or data is printed as
6 octal digits.

Up to 3 fields containing the
object code. The first field
is the instruction word. Addi-
tional words are printed to the right.

The input source image is printed
to the right of the third object
field.

Certain statements are printed with slight variations of the above.
For example, on a direct assignment only the value of the expression
is printed in the first object field with the other fields blank.
Numbers followed by a ' are relocatable, those followed by a * are
external references, and those followed by a ! are both.

46

Report No. 2931 Bolt Beranek and Newman Inc.

Terminal Format - Each page is headed exactly like the line printer
format. The listing is like the line printer format except that the
object field is only one field wide. The extra object fields are
printed by themselves on successive lines below the object field of
the first line.

2.2.1.1 Binary Output

The binary output produced is a TENEX file consisting of 8 bit
bytes of data. Each byte is the image of one frame of paper tape.
The format of the binary is standard SUE loader format. This
consists of a sequence of blocks of data. Each block has one of two
forms. The data blocks consist of 4 components. The first
component is a byte giving the number of data bytes in this block.
This count must be less than or equal to 254 (decimal) . The next
item is an address consisting of 2 bytes, higher order part followed
by low order part. This is the address of the first byte where the
block of data is to be stored. Following the address are the data
bytes in order of increasing address. Following the data bytes is a
two byte checksum. The checksum is calculated by taking the sum of
all previous bytes in the block.

The second form of block is the JUMP block. This is normally
the last block on the tape and indicates to the loader both to stop
loading the tape and to transfer to the location specified by the
JUMP block. This block has three components. The first component
is a byte containing the decimal number 255 which indicates a JUMP
block. The second component is a two byte address indicating the
address to transfer to. If this address is 0 the loader halts
rather than starting the program. The third component is a two byte
checksum, calculated by taking the sum of the previous bytes in the
block.

The standard Lockheed loader and the BBN loader differ in one
respect. The Pluribus needs certain registers to be loaded as words
rather than bytes. The BBN loader therefore loads all data as words
rather than bytes, requires an even number of bytes in each data
block, and requires an even starting address for each block. This
can be accomplished by requiring that each change in the location
counter that immediately precedes a data-generating directive or
instruction be a change to an even address, and that each sequence
of consecutive directives generate an even number of bytes.

47

Report No. 2931 Bolt Beranek and Newman Inc.

2.2.1.2 Loading ~rograms

The binary file generated can be copied to the paper tape punch
with the system copy command. This paper tape can then be loaded in
the paper tape reader of a Pluribus multiprocessor. Once the paper
tape is inserted and the reader turned on, the user may press ATTN
and LOAD to start the ROM loader. The loader will read the tape and
halt or transfer to the start of the program depending on the .END
directive at the end of the program.

2.2.2 Error Message Format

An error message has the following components:

REL-LOCTR ABS-LOCTR PAGE LINE DESCRIPTIVE-MESSAGE,

The REL-LOCTR has the form LABEL+DISP.

It gives the value of the unoffset location counter, relative to the
most recently defined label. It does not appear if no labels have
yet been defined (tabs are printed instead). The ABS-LOCTR is the
unoffset location counter in octal. The PAGE and LINE numbers are
in the source file. In addition, on the first error in a source
file other than the first file, the message

FILE SUCH-AND-SUCH

will be printed.

If an error involving a direct assignment statement of the form

= Expression

is encountered, the assembler unconditionally outputs the source
line onto the Teletype printer (normally during pass 1) and into the
listing file. An error of this type normally renders the object
program useless.

48

Report No. 2931 Bolt Beranek and Newman Inc.

2.3 CHARACTER SET

TAB (Oll) , SPACE (040), and the printing characters
(041-137) are treated as text information by the assembler.
Lowercase a1phabetics (141-172) are converted to uppercase (101-132)
by the assembler, except inside .ASCII or .ASCIZ, or after a I or "

CR (015) signals the end of a line.

FF (014) causes a listing page to be ejected.

NULL (000), LF (012), VT (013), EOF (032) , and
rubout (177) are ignored.

All other characters are illegal and will cause an error.

49

Report No. 2931

Character

form feed

line feed

carriage return

=

%

tab

space

@

(

)

, (comma)

;

+

- (minus)

&

?

*
/

\

APPENDIX A

SPECIAL CHARACTERS

Function

Bolt Beranek and Newman Inc.

source line terminator

source line terminator

source statement terminator

Label terminator

Direct assignment indicator

Register term indicator

Field and Item terminator

Field and Item terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment field indicator

Arithmetic addition operator

Arithmetic subtraction operator

Logical AND operator

Logical OR operator

Logical exclusive OR operator

Signed multiplication operator

Signed division operator

Arithmetic remainder operator

50

Report No. 2931

(underscore)

II

I (quote)

Bolt Beranek and Newman Inc.

Arithmetic left shift operator

Double ASCII character indicator

Single ASCII character indicator

Assembly location counter

Indicates Macro brackets or
Explicit number radix

51

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX B

GENERAL CLASS ADDRESS MODE SYNTAX

R is a register expression. E is an expression. ER is either a
register expression or an expression in the range 0 to 7. N is the
value of the ER. C is an expression in the range 0 to 15 (decimal) •

Format

E

E(ER)

E (-ER)

E(ER)+

R

(ER)

(-ER)

(ER)+

@E

Address
Mode
Name

Absolute

Indexed

Autodecrement

Auto increment

Register

Indexed

Autodecrement

Auto increment

Indirect

Address
Mode
Number Meaning

030010 E is the address of the
operand.

0300lN E plus the contents of the
register specified, ER, is
the address of the operand.

OlOOlN The contents of register ER
are decremented before contents
of ER are added to E to give
address of the operand.

0200lN The contents of the register
specified by ER are incremented
after the contents of ER
are added to E to give the
address of the operand.

00400R Register R contains the op­
erand.

03000N The contents of ER give the
address of the operand.

OlOOON The contents of register ER
are decremented before being
used as the address of the
operand.

02000N The contents of the register
specified by ER are increment­
ed after being used as the
address of the operand.

030210 E specifies the address

52

of the memory location giving
address of the operand.

Report No. 2931

@E (ER)

@E (-ER)

@E(ER)+

@(ER)

@(-ER)

@(ER)+

=C

=E

=E(ER)

#E

Indirect
Indexed

Indirect
Autodecrement

Indirect
Auto increment

Indexed
Indirect

Indirect
Autodecrement

Indirect
Auto increment

Short
Constant

Long
Constant

Long
Constant

Long
Constant

Bolt Beranek and Newman Inc.

03021N E plus the contents of the
register specified, ER, is
the address of the operand.

01021N The contents of register ER
are decremented before the
contents of ER are added to E
to give the address of a
location containing the
address of the operand.

02021N The contents of the register
specified by ER are incremented
after the contents of ER
are added to E to give the
address of a memory location
containing the address of the
operand.

03020N The contents of ER give the
address of a location con­
taining the address of the
operand.

01020N The contents of register ER
are decremented before ER
is used as the address of a
location containing the
address of the operand.

02020N The contents of the register
specified by ER are incremented
after the contents of ER
is used to specify the location
containing the address of the
operand.

00420C The operand is C.

004010 If E is an expression outside
range 0 to 15, the value
of the operand is E.

00401N The value of the operand is E
plus the contents of ER.

00401N The value of the operand is E.

53

Report No. 2931

#E (ER) Long
Constant

Bolt Beranek and Newman Inc.

0040lN The value of the operand is E
plus the contents of ER.

54

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX C

INSTRUCTIONS

The instructions which follow are grouped according to the operands
they take and the bit patterns of their instruction formats. There
are 8 groups of instructions:

1. Control class instructions with 8 bit field
2. Control class instructions with 4 bit field
3. Control class instructions with absolute or

relative addressing
4. Rotate and shift instructions
5. Branch instructions
6. General class instructions
7. Subroutine call instruction
8. Jump instruction

Octal Hex.
Op-code Value Value Group Description

ADD 041000 4200 6 Add to Register
ADDB 045000 4AOO 6 Add Byte to Register
ADDBM 005000 OAOO 6 Add Byte to Memory
ADDM 001000 0200 6 Add to Memory
AND 041400 4300 6 And to Register
ANDB 045400 4BOO 6 And Byte to Register
ANDBM 005400 OBOO 6 And Byte to Memory
ANDM 001400 0300 6 And to Memory
BC 112000 9400 5 Branch if Carry
BE 110400 9100 5 Branch if Equals
BEV 104400 8900 5 Branch if Even
BFl 112400 9500 5 Branch if Flag 1 set
BF2 113000 9600 5 Branch if Flag 2 set
BF3 113400 9700 5 Branch if Flag 3 set
BG 111000 9200 5 Branch if Greater
BL 116000 9COO 5 Branch if Less than
BLE 101000 8200 5 Branch if Less than or Equals
BLP 114000 9800 5 Branch if Loop complete
BM 115400 9BOO 5 Branch if Minus
BNC 102000 8400 5 Branch if Not Carry
BNE 110400 8100 5 Branch if Not Equals
BNFI 102400 8500 5 Branch if Flag 1 off
BNF2 103000 8600 5 Branch if Flag 2 off
BNF3 103400 8700 5 Branch if Flag 3 off
BNG 101000 8200 5 Branch if Not Greater
BNL 106000 8COO 5 Branch if Not Less than
BNLP 104000 8800 5 Branch if Loo p Not complete
BNM 105400 8BOO 5 Branch if Not Minus
BNO 104400 8900 5 Branch if Not Odd
BNOV 101400 8300 5 Branch if Not Overflow

55

Report No. 2931 Bolt Beranek and Newman Inc.

BNZ 105000 8AOO 5 Branch if Not Zero
BO 114400 9900 5 Branch if Odd
BOV 111400 9300 5 Branch if Overflow
BR 110000 9000 5 BRanch unconditionally
BZ 115000 9AOO 5 Branch if Zero
CMP 043000 4600 6 Compare memory with register
CMPB 047000 4EOO 6 Compare Byte with register
CMPBM 00700 OEOO 6 Compare Register with Memory Byte
CMPM 00300 0600 6 Compare Register with Memory
ENB 004000 0800 2 Enable interrupts
ENW 004100 0840 2 Enable interrupts and Wait
EOR 042400 4500 6 Exclusive OR to Register
EORB 046400 4DOO 6 Exclusive OR Byte to Register
EORBM 006400 ODOO 6 Exclusive OR to Byte of Memory
EORM 002400 0500 6 Exclusive OR to Memory
HLT 000000 0000 1 Halt
INH 004200 0880 2 Inhibit interrupts
INW 004300 08cO 2 Inhibit interrupts and Wait
lOR 042000 4400 6 Inclusive OR to Register
IORB 046000 4COO 6 Inclusive OR Byte to Register
IORBM 006000 OCOO 6 Inclusive OR to Byte of Memory
IORM 02000 0400 6 Inclusive OR to Memory
JMP 040000 4000 8 Jump
JSB 040000 4000 7 Jump to Subroutine
KEY 004020 0810 2 Set Key Register
LDA 040000 4000 6 Load Register
LDAB 044000 4800 6 Load Byte to Register
LDABM 004000 0800 6 Load Byte to Memory
LDAM 000000 0000 6 Load to Memory
MOV 040000 4000 6 Move to Register
MOVB 044000 4800 6 Move Byte to Register
MOVBM 004000 0800 6 Move Byte to Memory
MOVM 000000 0000 6 Move to Memory
MTR 003400 0700 3 Memory to Registers
MTS 002400 0500 3 Memory to Status
NOP 100000 8000 5 No OPeration
RET 002000 0400 3 Return from interrupt
RLA 120400 AI00 4 Rotate Left Arithmetic
RLL 121400 A300 4 Rotate Left Logical
RRA 122400 A500 4 Rotate Right Arithmetic
RRL 123400 A700 4 Rotate Right Logical
RST 001000 0200 1 Reset Status
RTM 001400 0300 3 Register to Memory
SLA 120000 AOOO 4 Shift Left Arithmetic
SLL 121000 A200 4 Shift Left Logical
SRA 122000 A400 4 Shift Right Arithmetic
SRL 123000 A600 4 Shift Right Logical
SST 001200 0280 1 Set Status
STM 000400 0100 3 Status to Memory
SUB 040400 4100 6 Subtract
SUBB 044400 4900 6 Subtract Byte

56

Report No. 2931 Bolt Beranek and Newman Inc.

SUBBM 004400 0900 6 Subtract Byte from Memory
SUBM 000400 OlOO 6 Subtract from Memory
TST 043400 4700 6 Test
TSTB 047400 4FOO 6 Test Byte
TSTBM 007400 OFOO 6 Test Byte with Memory
TSTM 003400 0700 6 Test with Memory

57

Report No. 2931 Bolt Beranek and Newman Inc.

Menmonic

• ADORE

.ADRMD

.ASCII

.ASCIZ

.BLKB

.BLKW

• BYTE

. END

.ENDC

.ENDM

.ENDR

APPENDIX D

ASSEMBLER DIRECTIVES

Operand Stands for

Statement Address word

ADDR Address Mode

Ixxx . • • xl ASCII

ITEXTI

N Block of bytes

N Block of words

°Eeration

Returns second word
statement

Returns 16 bit address
field for ADDR

Generates a-bit ASCII
characters for text enclosed
by delimiters.

Same as .ASCII but a
zero byte is appended to the
text string.

Reserve (assemble) a block
of N uninitialized bytes

Starting on an even address
(advance one byte if necessary)
reserve a block of N
uninitialized words.

E, E, •.. BYTE Generates bytes of data

E

none

END

END of
Conditional

End Macro

End Repeat

Indicates the physical end of
the program and optionally
specifies the transfer
address (E).

Terminates the range of a
conditional directive.

Terminates a .MACR or .TTYMA

Terminates a .REPT

.ENTRY NAME Entry Entry to routine
Makes a routine entry
point accessible to separately
assembled programs.

58

Report No. 2931

.EOT none End of Tape

• ERROR MSG Error

• EVEN none EVEN

. EXTRN NAME External Name

.FIRST Statement First Word

Bolt Beranek and Newman Inc.

Indicates the physical end of
the source input medium.

Causes an error whose message
is just the source line ".ERROR
MSG". As with other errors,
the PC, page, and line are
printed.

Insures that the assembly
location counter is even
by adding 1 if it is odd.

Declares a request for a routine
in a separatelt assembled program.

Returns first word
of statement

.IF CONDITION Conditional Assembly

The Conditions are:

1) Arithmetic Conditionals

TEST EXP

Assemble lines up to
the following .ENDC only if
condition is true.

Where test can be LE,LT,GE,GT,NZ,Z
and any expression can be used. e.g., .IF Z x-y

2) String Comparison:

DIF ARGl.ARG2
IDN ARGl,ARG2

Where argl and arg2 are macro-type args.

3) String Comparison with Null String.

B ARG

NB ARG

4) Definition Testing

DF EXP

NDF EXP

True if arg (a macro-type arg) is
null.
True otherwise.

True if all syms in exp are
defined.
The opposite.

59

Report No. 2931 Bolt Beranek and Newman Inc.

5) Pass Number Testing
PI True on pass ~

True on pass ,2 P2

.IIF CONDITION

.INSRT FILSPC

STMT
Conditional assembly

Assemble STMT only if CONDITION
is true. See .IF for description
of conditions.

Insert a file Pushes the current source file
andlor REPEAT, MACRO, etc. and
starts reading from the specified
file. The file or MACRO
containing the .INSRT will be
resumed starting with the next
line •

• IRP DUMMY, " (AI ,A2 ,A3")

• IRPC DUMMY

.LENGTH STRING

Repeated Substitution

STRING

Repeats all the following text up
to the matching .ENDM substituting
Al for DUMMY the first time, A2
for DUMMY the second time, etc.
The stuff following the comma is
a macro-arg and might also be
delimited by 1 ... 1, for example •

Repeated Char Substitution
Repeats the text up to a matching
.ENDM once for each character in
STRING, each time substituting
that character for DUMMY. DUMMY
must be a symbol; STRING is read
in as a macro-argument.

Number chars Returns the number of characters
in STRING, which is read in as a
macro-argument. When used in an
arithmetic expression, a comma
should appear after STRING and
before any following arithmetic
operator .

• LIF CONDITION Conditional assembly
STMT-ON-NEXT-LINE Assembles the next line only if

CONDITION is true. If CONDITION
fails, list next line but do
nothing with it. See .IF for
description of conditions.

60

Report No. 2931 Bolt Beranek and Newman Inc.

.LIST Enable listing Decrement XLIST count if not
already O. Listing takes place
only if XLIST count equals O.

.MACRO M A,B,C

.MEXIT

.MSG LINE

.000

. OFFSET EXP

. PAGE

. PRINT /TEXT/

• RADIX N

.RAD50 /XXX/

.REPT EXP

.STITL LINE

Macro Def

Leave macro

Define M as a MACRO with arguments
named A,B, and C. The MACRO
definition is on the following
lines, up to the matching .ENDM.
(Intervening matching. MACR's and
.ENDM's go into the MACRO being
defined.)

Pops out of the innermost
.REPT, macro-call, .IRP,
or .IRPC.

List message Like .ERROR LINE but doesn't
increment the error count.

Odd Address

Offset the PC

New Page

Type out

Set Radix

RADix 50

Repeat

Subtitle

Moves to next odd address.
Sarr~ as .=.+1-<.&1>

When "." is used in relative
addressing or label definitions
the offset is added to the real
location counter. Offset is
zero at the beginning of
each pass.

Starts a new page in listing .

Prints the text on TTY.

Change radix to N

Generates the RADIX 50
representation of the ASCII
characters in delimiters.

Assembles text up to the
matching .ENDR EXP times.

LINE is listed on the 2nd

61

Report No. 2931

. TITLE

.TTYMA

• WORD

.XCREF

.XLIST

name

A,B,C

E, E, •••
E, E, •••

A,B,C

Bolt Beranek and Newman Inc.

line of each header. If .STITL
is on the first line of a page,
it takes effect on that page,
otherwise on the next page.

TITLE Generates a name for the object
module.

Teletype macro

WORD
(the void
operator)

Don't CREF

Don't list

Reads a line from the TTY,
defines A,B, and C from
that line using the macro­
arg scanning rules.
Within the scope of the
.TTYMAC (up to a matching
.ENDM) A,B,C will be
replaced by scanning what
was read from TTY.

Generates words of data
Generates words of data

Prevents CREF output from
being generated for symbols
A,B,C.

Increments XLIST count. Listing
is done only if XLIST count
is zero.

62

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX E

INITIAL SYMBOL TABLE

The following symbols are pre-defined for programming
I/O devices etc.

SYMBOL OCTAL VALUE HEX. VALUE

%A 004000 0800
%ABRTO 000050 0028 -
%ABRTI 000070 0038
%ABRT2 000110 0048
%ABRT3 000130 0058
ADD 041000 4200
ADDB 045000 4AOO
ADDBM 005000 OAOO
ADDM 001000 0200
AND 041400 4300
ANDB 045400 4BOO
ANDBM 005400 OBOO
ANDM 001400 0300
%AREGl 177600 FF80
%AREG2 177604 FF84
%AREG3 177610 FF88
%AREG4 177614 FF8C
.ASCII PSEUDO-OP
.ASCIZ PSEUDO-OP
BC 112000 9400
%BDADR 000000 0000
%BDINS 000000 0000
BE 110400 9100
BEV 104400 8900
BFl 112400 9500
BF2 113000 9600
BF3 113400 9700
BG 111000 9200
BL 116000 9COO
BLE 101000 8200
.BLIrn PSEUDO-OP
.BLKW PSEUDO-OP
BLP 114000 9800
BM 115400 9BOO
BNC 102000 8400
BNE 100400 8100
BNFl 102400 8500
BNF2 103000 8600
BNF3 103400 8700
BNG 101000 8200
BNL 106000 8COO

63

Report No. 2931 Bolt Beranek and Newman Inc.

BNLP 104000 8800
BNM 105400 8BOO
BNO 104400 8900
BNOV 101400 8300
BNZ 105000 8AOO
BO 114400 9900
BOV 111400 9300
BR 110000 9000
• BYTE PSEUDO-OP
BZ 115000 9AOO
%C 000010 0008
CMP 043000 4600
CMPB 047000 4EOO
CMPBM 007000 OEOO
CMPM 003000 0600
%CPUO 177400 FFOO
%CPUI 177440 FF20
%CPU2 177500 FF40
%CPU3 177540 FF60
%CTRL 000036 001E
%CURPC 000004 0004
%DEVNO 000000 0000
%DREGI 177602 FF82
%DREG2 177606 FF86
%DREG3 177612 FF8A
%DREG4 177616 FF8E
%E 000001 0001
ENB 004000 0800
. END PSEUDO-OP
• ENTRY PSEUDO-OP
ENW 004100 0840
EOR 042400 4500
EORB 046400 4DOO
EORBM 006400 ODOO
EORM 002400 0500
.EOT PSEUDO-OP
• ERROR PSEUDO-OP
• EVEN PSEUDO-OP
• EXTRN PSEUDO-OP
%FNAM2 PSEUDO-OP
%F1 000020 0010
%F2 000040 0020
%F3 000100 0040
%G 000002 0002
HLT 000000 0000
.IF PSEUDO-OP
.IFF PSEUDO-OP
%ILOPO 000040 0020
%ILOP1 000060 0030
%ILOP2 000100 0040
%ILOP3 000120 0060

64

Report No. 2931 Bolt Beranek and Newman Inc.

INH 004200 0880
.INSRT PSEUDO-oP
%INST 000022 0012
INW 004300 08CO
lOR 042000 4400
IORB 046000 4COO
IORBM 006000 OCOO
IORM 002000 0400
.IRP PSEUDO-OP
.IRPC PSEUDO-OP
.IRPCN PSEUDO-OP
JMP 040000 4000
JSB 040000 4000
KEY 004020 0810
%LADR 000024 0014
LDA 040000 4000
LDAB 044000 4800
LDABM 004000 0800
LDAM 000000 0000
.LIF PSEUDO-OP
.LIST PSEUDO-OP
% LOW 000400 0100
%LVLl 000000 0000
%LVL2 000010 0008
%LVL3 000020 0010
% LVL4 000030 0018
.L1 000001 0001
%Ll 010000 1000
.L2 000002 0002
%L2 020000 2000
.L3 000004 0004
%L3 040000 4000
.L4 000010 0008
%L4 100000 8000
%LP 000200 0080
% MAP 0 176000 FCOO
%MAPI 176002 FC02
%MAP2 176004 FC04
% MAP 3 176006 FC06
MOV 040000 4000
MOVB 044000 4800
MOVBM 004000 0800
MOVM 000000 0000
.MSG PSEUDO-OP
MTR 003400 0700
MST 002400 0500
%NARG PSEUDO-OP
%N 002000 0400
NOP 100000 8000
%0 000400 0100
• ODD PSEUDO-OP

65

Report No. 2931 Bolt Beranek and Newman Inc.

%OFFSE PSEUDO-OP
• OFFSET PSEUDO-OP
• PAGE PSEUDO-OP
• PRINT PSEUDO-OP
.RAD50 PSEUDO-OP
%REGO 000000 0000
%REGI 000002 0002
%REG2 000004 0004
%REG3 000006 0006
%REG4 000010 0008
%REG5 000012 OOOA
%REG6 000014 OOOC
%REG7 000016 OOOE
.REPT PSEUDO-OP
RET 002000 - 0400
RLA 120400 AI00
RLL 121400 A300
.RPCNT PSEUDO-OP
RRA 122400 A500
RRL 123400 A700
RST 001000 0200
RTM 001400 0300
%SERVC 000006 0006
SLA 120000 AOOO
SLL 121000 A200
SRA 122000 A400
SRL 123000 A600
SST 001200 0280
%STAT 000020 0010
.STITL PSEUDO-OP
STA 000000 0000
STAB 004000 0800
STM 000400 0100
SUB 040400 4100
SUBB 044400 4900
SUBBM 004400 0900
SUBM 000400 0100
• TITLE PSEUDO-OP
TST 043400 4700
TSTB 047400 4FOO
TSTBM 007400 OFOO
TSTM 003400 0700
%V 000004 0004
• WORD PSEUDO-OP
%XCREF PSEUDO-OP
.XCREF PSEUDO-OP
.XLIST PSEUDO-OP
%XLIST PSEUDO-OP
%0 000000 0000
%1 000001 0001
%2 000002 0002

66

Report No. 2931

%3
%4
%5
%6
%7

000003
000004
000005
000006
000007

67

Bolt Beranek and Newman Inc.

0003
0004
0005
0006
0007

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX F

SUE Opcode Equivalents

The Lockheed LAP-2 assembler, the PDP-Id PMIDAS assembler and this
assembler all use different names for the processor operations. The
LAP-2 assembler also differentiates the direction of data movement
from the syntax of the statement. The Pluribus and PMIDAS assemblers
do not. Tke following table gives the equivalent names in the three
assemblers. A asterisk (*) following a name indicates that the
direction of data movement is to memory.

LAP-2

ADDB
ADDW
ANDB
ANDW
CMPB
CMPW
EORB
EORW
IORB
IORW
MOVB
MOW
SUBB
SUBW
TSTB
TSTW

JSBR
JUMP

NOPR
BRUN
BEQT
BGTT
BLTT
BZET
BNGT
BLPT
BODT
BOVT
BCYT

Opcode PLURIBUS Opcode PMIDAS Opcode

General Register Instructions

ADDB, ADDBM*
ADD , ADDM*
ANDB, ANDBM*
AND , ANDM*
CMPB, CMPBM*
CMP , CMPM*
EORB, EORBM*
EOR , EORM*
IORB, IORBM*
lOR , IORM*
LDAB, STAB *
LDA , STA*
SUBB, SUBBM*
SUB , SUBM*
TSTB, TSTBM*
TST , TSTM*

Jump Instructions

JSB
JMP

ADDB" ADDBM*
ADD, ADDM*
ANDB, ANDBM*
AND, ANDM*
CMPB, CMPBM*
CMP, CMPM*
EORB, EORBM*
EOR, EORM*
IORB, IORBM*
lOR, IORM*
LDAB, STAB*
LDA, STA*
SUBB, SUBBM*
SUB, SUBM*
TSTB, TSTBM*
TST, TSTM*

JSB
JMP

Branch Conditional Instructions

NOP NOP
BR BT TR
BE BT EQ
BG BT GT
BL BT LT
BZ BT ZE
BM BT NG
BLP BT LP
BO BT OD
BOV BT OV
BC BT Cy

68

Report No. 2931 Bolt Beranek and Newman Inc.

BFIT BFl BT Fl
BF2T BF2 BT F2
BF3T BF3 BT F3
BEQF BNE BF EQ
BGTF BNG BF GT
BLTF BNL BF LT
BZEF BNZ BF ZE
BNGF BNM BF NG
BLPF BNLP BF LP
BODF BNO BF OD
BOVF BNOV BF OV
BCYF BNC BF CY
BFIF BNFI BF Fl
BF2F BNF2 BF F2
BF3F BNF3 BF F3

Shift Instructions

SLAO SLA LI AO, LX AO
SLLO SLL LI LO, LX LO
SLLC RLL LI LC, LX LC
SLLL RLA LI LL, LX LL
SRAO SRA RI AO, RX AO
SRLO SRL RI LO, RX LO
SRLC RRL RI LC, RX LC
SRLL RRA RI LL, RX LL

Control Instructions

RETN RET RET
STSM STM STM
REGM RTM RTM
MSTS MTS MTS
MREG MTR MTR
HALT HLT HLT
DSBL INH INH
DSBW INW INW
ENBL ENB ENB
ENBW ENW ENW
SETS SST SST
RSTS RST RST
SKEY KEY KEY, SKEY

69

Report No. 2931 Bolt Beranek and Newman Inc.

APPENDIX G

Additions and Limitations

The relocatable code format for the Pluribus is not yet implemented.
The following additions will be made to the language later: symbol
generation feature; an .EXPUNGE command to eliminate symbols; a
branching assembler directive which determines if an address is
within range or outside range and generates either a branch or a
branch over a jump accordingly; a remote code feature which allows
code to be specified at one point but assembled at another.

70

Report No. 2931 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 5: ADVANCED SOFTWARE

PART 4: SYSTEM RELIABILITY PACKAGE

j

