
Report No. 3001 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 4: BASIC SOFTWARE

December 1975

Update edition of September 19?8

Sponsored by:

Defense Communications Agency
Contract No. DCA200-C-616

Report No. 3001 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 4: BASIC SOFTWARE

PREFACE

"Pluribus Document 4: Basic Software" is one of a series which

taken together provides complete documentation of the Pluribus

line of computer systems. In the present document, Part 1

specifies the instruction set of the processor. Part 2, entitled

"Introduction to Assembly Language," introduces the assembly lan­

guage currently used. Part 3 is a manual for DDT, the system

debugging program.

iii

Report No. 3001 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

PREFACE

Part 1: Processor Instruction Set •..•..••.••••.

Part 2: Introduction to Assembly Language ..•..•..••

Part 3: DDT • • • • • • . • • • • . • . • . • • • •

v

Intro to
Assembly
Language

Report No. 3001 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 4: BASIC SOFTWARE

PART 1: PROCESSOR INSTRUCTION SET

Report No. 3001 Bolt Beranek and Newman Inc.

Update History:

Reproduced with the permission of the Lockheed Electronics
Company from the SUE Processor Instruction Set, edition of
May 1973, copyright Lockheed Electronics Co~Inc.

SUE is a trademark of Lockheed Electronics Company.

ii

SUE 03

SUE PROCESSOR INSTRUCTION SET

GENERAL SYSTEM BULLETIN 03

Third Edition

This bulletin supercedes
SUE Processor Instruction Set

General System Bulletin 03, Rev. A
dated June 197 2

Bulletin GB13020009103
May 1973

©Copyright 1973 by Lockheed Electronics Company
Los Angeles, California All rights reserved

821

GB13020009103

EFFECTIVE PAGES

New pages introduced in this third edition include Processor

Instruction Sets for SUE 11 lOA/B, l lllA/B, 1112A/B, and

Appendices D and E.

Changes in the second edition, which included Processor

Instruction Set SUE 1110, and Appendices A through C, are

indicated by a heavy line in the outer margin of the changed

page.

SUE G3 GB13020009103

CONTENTS

Tltle

SUE 1110 INSTRUCTION SET

Introduction ..
Word Formats .

Data Words

Address Words

.

Instruction Words

Fields

.

Addressing

1

2

2

3

4

5

6

Byte-Word Addressing · · ..•• • · · · •. · · . · · · .. • · · · • • 6

Absolute and Relative Addressing .
Extended Addressing.
Indexing •.••..... ...
Auto Incrementing and Decrementing •

Indirect Addressing

.

Register, Immediate and Literal Operands •••.••......•.•••

Combination Addressing Modes ••.••.•.•........•.•..•••

Special Addresses .
Status Indicators
Instruction Descriptions .

General Register Instructions

General Operations • . ..
General Register Instruction Word Formats

General Register Instruction Tlmes
Branch Conditional Instructions

Branch Conditions
Branch Instruction Word Formats

Branch Instruction Times ...
May 73

6

6

7

7

7

8

8

10

11

12

12

12

13

18

20

21

22

23

iii

GB13 02 0009103 SUE G3

CONTENTS (continued)

Title Page

Shift Instructions . • 24

Shift Instruction Word Formats • • • . • • • • • • • • • • • • • • • • 25

Shift Instruction Timing
Control Instructions • • • • • ••

Control Instruction Word Formats • • • • . . • • • • •

Control Instruction Times • • • . . . • . . • • • • • • . ••••••••

Unimplemented Instructions. • • • • • • • • • • • . • • • . . • • • . . • • • . . • • •

Input/Output Instructions • • • • • . • • • • • • • • • • • • • • • • • • ••••••

SUE lllOA INSTRUCTION SET

Introduction • • • . . • • • • . • .

Store Key Instruction • • . . • • .

SUE lllOB INSTRUCTION SET

Introduction • . • • • • • • • • • . • •.•

Fetch and Clear Instructions • • .
Fetch and Clear Operation

SUE llllA INSTRUCTION SET

Introduction • • • . • • . • • • . . • .

Temporary Storage • • • • •

Instruction Format ..••••...

Decimal Data Format • . . .

Character Data Format • • • • .

Symbolic Coding for Operands •...

Instructions . • • •

SUE llllB INSTRUCTION SET

Introduction . • • • . • . . • •

Fetch and Clear Instructions • • . ..

Fetch and Clear Operations •.

iv

.
.

........

27

28

28

33

34

34

35

35

37

37

38

39

39

40

41

41

42

42

46

46

46

May 73

SUE G3 GB13020009103

CONTENTS (continued)

Title

SUE 1112A INSTRUCTION SET

Introduction . 49

Double Precision Data Format • • • • . • . • • . . . • • 49

Instruction Times . 50

Bit Manipulation Instructions • . • • . • • . . . • . • . . • • • • . . . • . . • . . . • 50

Bit Manipulation Instruction Formats • • • . • • • . • • . • • . • . • • . • 51

Bit Manipulation Operations. • . . • • • • . • • • • • . . • • . • • 52

Move Instructions . 52

Move Instruction Format. . • . . • • . • • • • • • • • . • 52

Move Operations . 53

Normalize and Count Instructions • . . • . . . • • • • . . . • . . • • 53

Normalize and Count Instruction Format • • . . . • • • . • • • • 53
,

Normalize and Count Operations • • . . • • • • . . • • . • • • • • • • 53

Double Length Shift Instructions • . . • • . • . . • • • • 56

Double Length Shift Instruction Format' • • • . . . • • 57

Double-Length Shift Operations • • . • . • • . . . • • • • 57

Class B Instruction Set . 60

Class B Instruction Format • • • . . • 60

Accumulator Registers • • • • • • . . • . . • . • 60

Single-Precision Fixed Point Instructions • • • • • 60

Addressing Modes . 60

One-Word Operand Format • • • • • • • • • • 61

Single Precision Fixed- Point Operations • • • • . . • . • • • . . • • . • • 61

Double Precision Fixed-Point Instructions • • • • . . • • 62

Addressing Modes . 62

Double Precision Fixed Point Operations • . • • • . . • • • . . • . • . • • 63

Control Instructions . 63

Control Instruction Formats . • • . . . • • • 64

May 73 v

GB13020009103 SUE G3

CONTENTS (continued)

SUE 1112B INSTRUCTION SET

Introduction . • . 65

Fetch and Clear Instructions • • • . • . • • . • • • • • • • • • . . • • • • • • • • • • 65

Fetch and Clear Operation • • . • . . • . . • • . • • • • . . • • • • • 66

APPENDIX A, INSTRUCTION TTh'IES

Single Shift Instruction Timing for SUE 1110 (Basic), lllOA/B,
llllA/B, 1112A/B • . • • • . • • • • . • . • . . . • . • . • . • • A-3

SUE llllA/B CLASS C INSTRUCTION TTh'IES
DECTh'IAL AND CHARACTER INSTRUCTIONS

Decimal Add and Subtract Timing • • • • . • • . • • • • • • • • • • • • • • • • • • A-5

Decimal Shift Timing A-10

Move Timing . A-11

Compare-Field Timing . A-11

Decimal Compare Timing • • . • . . • . . • • • •. • • . • • • • • . • • • • • • . • • • A-13

APPENDIX B, INSTRUCTION SUMMARY AND INDEX

SUE 1110 (Basic) Instructions Summary • • . . . • • • . . • • • • • . • • • • • • B-1

SUE 1110 (Basic) Instruction Index • . . • • • • • • • • • • • • • • • . • . . • . . • B-2

APPENDIX C, INPUT/OUTPUT ADDRESSES

APPENDIX D, SELF-INTERRUPT AND SYSTEM INTERRUPT
EXECUTIVE SPACE

APPENDIX E, USASCII CHARACTER SET AND HEXADECTh'IAL CODES

vi May 73

SUE G3 GB13020009103

LIST OF TABLES

Table Title

1 Combination Addressing Modes . 9

2 Special Addresses • • • • • . • • • . . . • • • 10

3 General Register Instruction Word Formats • • . . • • • 14

4 SUE 1110 (Basic) General Register Instruction Times • • • • • 19

5 Branch Instruction Times • . . • • • . • . . • . . • . . . • . • . . • • 24

6 SUE 1110 (Basic) Control Instruction Times • • . . • • . • . • • • 33

A-1 SUE 1110 (Basic) General Register Instruction Times ••••• A-1

A-2 SUE lllOA/B, llllA/B, and 1112A/B General Register
Instruction Times . A-2

A-3 SUE 1110 (Basic), lllOA/B, llllA/B and 1112A/B
Control Instruction Times • • • • • • • . . . • . • • . • • . • . • . • • A-3

A-4 SUE 1110 (Basic) Branch Instruction Times • • . . • • • • . • • • A-4

A-5 SUE lllOA/B, llllA/B and 1112A/B Branch Instruction
Times . A-4

A-6 Decimal Shift Timing Chart • • • • . . • • . . . • . • . . . • A-10

A-7 SUE 1112A/B Instruction Times • • . • • • • • • • • . • • • • • • • • A-18

A-8 SUE 1112A/B Single- and Double-Precision Fixed-Point
Instruction Times . A-20

C-1 Input-Output Device Addresses • . . • • • . • . • C-1

May 73 vii

GB13020009103 SUE G3

PREFACE

This bulletin contains instructions to program seven types of SUE processors:

SUE 1110 (basic)

SUE 1110A

SUE 1110B

SUE 1111A, Decimal Arithmetic

SUE 1111B, Decimal Arithmetic

SUE 1112A, Scientific Double Precision

SUE 1112B, Scientific Double Precision

Number of Instructions

108

109

111

118

120

144

146

SUE 1110 basic is the first instruction set described in this bulletin. SUE 1110A

performs the basic instruction set and one additional instruction, Store Key

(SKEY). Both SUE 1111A and 1112A processors have the speed and capabilities

of SUE 1110A, and each has an extended instruction set. Descriptions of these

extended instructions follow the description of the SUE 1110B. Instruction

times for all instructions are summarized in Appendix A.

Processors SUE lllOB, 1111B, and 1112B perform the same instructions as

the respective A-series processors, and two additional instructions Fetch and

Clear Word (FCLW), and Fetch and Clear Byte (FCLB). These two instruc­

tions can be used in multiprocessor systems as a synchronizing mechanism.

Instructions in this bulletin are described in machine language for the system

user possessing a background in digital computer terminology and operation.

Additional information on the basic instruction set is contained in the LAP-2

Assembler manual. Operation and maintenance of SUE processors is contained

in the respective reference and maintenance bulletins designated by the processor

model number.

viii May 73

SUE G3 GB13020009103

SUE 1110 INSTRUCTION SET

INTRODUCTION

SUE 1110 instruction set includes 108 basic instructions exclusive of 16 address-
.

ing modes. Many of these instructions operate on either 16-bit data or 8-bit

byte formats. Other instructions test one or more of the 16 status indicator

bits. This bulletin presents a detailed description of word formats, addressing

modes, and status indicators followed by a definition of each instruction

operation.

The 108 instructions are divided into eleven classes according to type of

instruction function. Seven of these classes are grouped as general register

instructions. They contain arithmetic, logical, move, compare and test func­

tions that involve the eight general registers of the processor. Two classes

represent the branch instructions. They contain unconditional and conditional

branch functions on the true or false condition of status indicators. The shift

class contains full 15-bit shlft capabilities with eight different operations and

two address modes. The· control class contains system control functions such

as load/store of all general registers, load/store of status indicators and

control of interrrupt operations.

The eleven instruction classes are:

May 73

Class Code

1
2
3
4

5
6
7

Description

Accumulator to Memory with Auto Decrement
Accumulator to Memory with Auto Increment
Accumulator to Memory
Data to Accumulator, Jump to Subroutine, Jump,

and Register to Register
Memory to Accumulator with Auto Decrement
Memory to Accumulator with Auto Increment
Memory to Accumulator

1

I

GB13020009103

8
9

A

0

Branch False and No Operation
Branch True and Unconditional

Shift

Control

SUE G3

Class codes are speclfied ln the instruction word format by the four-blt C field.

(Fields are defined later under instruction words in this bulletin). Five class

codes are not defined for the basic instruction set. They have been reserved

for specification of additional general purpose instructions in the SUE llllA, B

and 1112A, B Processors; or, for special purpose instructions in future SUE

processors with expanded ROM control memories.

SUE 1110 Processor contains eight, 16-bit general reglsters including the

program counter. Seven of these registers may be used as accumulators

or index registers. The arithmetic-logic unit processes 16-bit operands but

I memory data may be 8-bit bytes or 16-bit words.

Memory addresses are 16-bit numbers that select up to 60k (k = 1024) bytes.

Addresses 60k to 64k are used to directly address reglsters within system

modules other than program memory modules.

WORD FORMATS

Blt posltions within a word are numbered right to left starting wlth O. Bit 0 is

the least slgnlficant bit of the word and bit 15 is the most significant.

DATA WORDS

Two data word formats can be processed, an 8-bit byte and a 16-bit word. The

most signlficant bit (15) represents the algebraic sign of numeric data. A ONE

in bit posltion 15 represents a negative number, and a ZERO represents a posi­

tive number. Negative numbers are in twos complement form.

2 May 73

SUE G3

Byte Format

15

Left Byte
(even address}

Right Byte
(odd address)

Word Format

S Sign
1 negative (-)
0 positive (+)

Number

GB13020009103

0

In byte operations, the entire selected 16-bit register is used in the operation

with the byte operand. In register-to-memory instructions (byte mode), the

right byte of the register operates on the designated byte in memory. In

memory-to-register instructions (byte mode), the designated byte in meµiory

operates on the full 16-bit register as though the memory operand has a left

byte equal to ZERO attached to it. In either type of operation, arithmetic oper­

ations occur in a 16-bit register and carry and overflow are detected out of a

16-bit register.

ADDRESS WORDS

The 16-bit address represents a byte address. Bit zero selects the left or right

byte of a 16-bit word. On word addresses, bit zero is used to specify more than

one level of indirect addressing.

May 73 3

GB13020009103 SUE G3

Byte Address

Value 'i • 1
15

Blt 0 - Byte
O left
1 right

Word Address

15

Blt O - Addresslng
O address direct
1 indirect

INSTRUCTION WORDS

Instruction words are constructed to facilitate encoding and decoding of the

machine language code. The words are defined so that the fields of the instruc­

tion do not overlap the four hexadecimal digits represented by Hl, H2, H3, and

H4. Those fields that are subsets of a hexadecimal digit are right-justified,

wlth the high-order bit used to indicate the less common condition.

15 ·r 'I' ·r 1 I Hl H2 H3 H4

Digit

Hl Class Designation O through 15

H2 Operation Designator (usually)

H3 Accumulator Designator (usually)

H4 Index Designator (usually)

4 May 73

SUE G3 GB13020009103

FIELDS. - A variety of word formats are interpreted by the processor. All of

the fields used, and their positions, are defined below in a composite drawing.

Functions of a given field may vary according to the instruction.

15 14 13 12 11 10 9 8 7 6 5 4 J'.I 2 1 0

T D

F
c

B OP I K
AR El XR

NOTE: Several fields have more than one function depending on the instruction
that contains them. In the field definitions below, any function common
to several instructions is defined. For descriptions of other functions,
refer to corresponding instruction descriptions.

Field Definitions

May 73

Symbol

c

T

D

B

OP

Description

Class Indicator (4 bits) - Specifies 1 of 16 classes or divisions of the
instruction set. Classes indicate the type of function.

Test Operation (4 bits) - Defines operation codes for the Control and
Branch classes.

Displacement Address (8 bits) - Direct address (+or-) to words
relative to the address of the instruction. May be expressed as P
(Program Counter) +D, where D is the range, -128 through +127. An
exception, if the absolute-address mode of a Control instruction is
specified, then D directly addresses the first 256 words in memory.

Byte Indicator (1 bit) - Specifies whether the memory operand is a
word (B=O) or a byte (B=l). Field of a Control instruction
specifies the Relative (B=l) or Absolute (B=O) address mode.

Operation Indicator (3 bits) - Defines 1 of 8 operations available to
certain classes. Several classes use the same set of operations, as
explained in greater detail under Instruction Descriptions.

I Indirect Addressing Indicator (1 bit) - Specifies first level of indirect
addressing if I=l.

AR Accumulator Register Designator (3 bits) - Designates 1 of 8 general
registers as an. A-Register during instruction execution.

E Extended-Address Indicator (1 bit) - Indicates (when 1) that the word
following the instruction will be accessed as an extended-address part
of the instruction.

XR Index Register Designator (3 bits) - Designates 1 of 7 general registers
as an X-Register during instruction execution.

K

F

Constant (4 bits) - Designates length of a Shift command, or an im­
mediate constant. Also used to enable interrupts.

Status Bit-Pattern (7 bits) - Comprises the bit pattern for changing
control states for certain Control instructions.

5

GB13020009103 SUE G3

ADDRESSING

SUE 1110 Processor develops a 16-bit operand address based on the mode that

ls selected by the instruction class code and other fields of the instruction word

format.

BYTE-WORD ADDRESSING

A blt (B) in the instruction word specifies if the operand ls to be a byte (8 bits)

or a word (16 blts) ln general register instructions. If B = 1 and bit zero of

the effective operand address is ZERO, the left byte (bits 15 through 8) ls used;

the right byte (bits 7 through 0) is used if bit zero ls ONE. If B = 0, a word

operand ls requested and the address of the word ls treated as an even-numbered

byte address.

ABSOLUTE AND RELATIVE ADDRESSING

Branch instructions use the relative displacement method to develop the branch .
address. The D field of the instruction is an 8-blt (7 bits plus sign) number

I that specifies a branch within +127 or -128 words (not bytes) from the current

location. Negative numbers are represented in twos complement form.

Control Instructions use the relative displacement as well as the absolute

addressing modes. Bit B of the instruction word, when set to a ONE, selects

the relative mode and, when ZERO, selects the absolute mode. In the absolute

address mode the D field of the instruction is an 8 bit number that specifies

I direct address of the first 256 words (not bytes) of memory.

EXTENDED ADDRESSING

When the E bit of the instruction is a ONE, the word following the instruction

becomes the base address and is used to develop the operand address. When

E = O the base address is ZERO.

6 May 73

SUE G3 GB13020009103

INDEXING

Content of one of the seven general registers may be selected as an index register.

The XR field of the instruction selects the register. When the XR field is all

zeros, no indexing is specified. If neither extended addressing nor indexing is

called for (i.e. bits 3-0 all ZEROs) then no address is specified and an unimple­

mented instruction trap is generated.

Two types of indexing are used:

Base Relative Indexing (indexing relative to the base address of the
computer or user program). - In this type of indexing, the index
register contains the complete address of the desired memory
location. Base relative indexing together with autoincrement or
autodecrement provide generalized push down and pop up stack
processing capabllitles.

Table Indexing (indexing relative to the base address of a table).
- In this type of indexing the index register contains the variable
n to fetch the quantity located at TABLE + n.

AUTO INCREMENTING AND DECREMENTING

Within the general register instructions, separate class codes are used to provide

the option for automatic increment or decrement of the index register selected

by the XR field of the instruction. When autodecrement is specified, the con-

tent of the index register is decremented before the operand address is generated.

When autoincrement is specified, the content of the selected index register is

incremented after the operand address is generated.

ONE is subtracted or added to the content of the index register when the instruc­

tion specifies a byte operand with autodecrement or autoincrement. TWO is

subtracted or added when the instruction specifies a word operand with auto­

decrement or autoincrement.

INDIRECT ADDRESSING

If indirect bit I of the instruction is set to a ONE, the address developed by the

processor points to the address of the operand.

May73 7

I

I

I

G B13 020009103 SUE G3

Multi-level indirect addressing is provided in the word mode only. The processor

tests the least significant bit of the indirect address. If this bit is a ONE, and

the word mode is speclfled, the word pointed-to is also treated as an indirect

address. If the least significant bit of the address is a ZERO, the processor

stops the multi-level indirect addressing for this instruction. If the processor

counts up to 16 levels of indirect addressing, an unimplemented instruction

self-interrupt is generated and the instruction is trapped.

Only single level indirect addressing ls available in the byte mode because the

least slgnlflcant bit of the operand address specifies left or right byte.

REGISTER, IMMEDIATE AND LITERAL OPERANDS

The data-to-accumulator (class code 4) general instruction provides for selec­

tion of register, literal or immediate operands. The register operand ls the

register specified by the XR field, and can be the program counter if XR = o.
The literal operand may be the 16-blt word following the instruction or the

. 16-bit word following the instruction plus the contents of XR. An immediate

operand is the 4-bit value in the instruction's K field.

COMBINATION ADDRESSING MODES

In most general register instructions, combinations of addressing modes may

be specified to yield fourteen useful functions for memory operand selection.

The processor develops addresses in combinations of the following in the

sequence shown:

Extended Address
Autodecrement the Index
Indexed
Indirect
Autoincrement the Index

Autodecrement and autolncrement functions apply to the contents of the general

register selected by the XR field of the instruction.

8 May 73

SUE G3 GB13020009103

On autodecrement the content of the index register is decremented by one for

byte addresses or by two for word addresses before the index register contents

is used as an index value. On autoincrement the content of the index register is

incremented by one or two after it is used as an index value.

If the XR field of an instructions is all ZEROs, no indexing is specified. However,

auto-increment or auto-decrement specified with a ZERO XR field affects the

program counter.

Table 1 contains a summary of the fourteen combinational addressing modes.

May73

Table 1. Combination Addressing Modes

Address Mode

Extended

Extended, Indexed

Extended, Indexed, Autoincrement

Extended, A utodecrement, Indexed

Indexed

Indexed, Autoincrement

Autodecrement, Indexed

Extended, Indirect

Extended, Indexed, Indirect

Extended, Indexed, Autoincrement, Indirect

Extended, Autodecrement, Indexed, Indirect

Indexed, Indirect

Indexed, Autoincrement, Indirect

Autodecrement, Indexed, Indirect

NOTES: A - 16-bit word following instruction

M
Effective
Address

A

A+X

A+X

A+X-e

x

x

X-e

[A]

[A+~

(A+~

[A+x-e]

[x]

[x]
[x - e]

XR
Assembler Index
Mnemonic Register

- A

- A(R)

X+e A(R+)

X- e A(-R)

- (R)

X+e (R+)

X-e (-R)

- *A

- *A(R)

X+e *A(R+)

X-e *A(-R)

- *(R)

X+e *(R+)

x-e *(-R)

X - Content of General register selected by XR field

e - A ONE if byte address, a TWO if word address

[] - 16-bit word at address specified in brackets.

9

GB13020009103 SUE G3

SPECIAL ADDRESSES

Even addresses 61, 440 to 65, 534 (hexadecimal FOOO to FFFE) are reserved for

addressing of system hardware registers within SUE system modules. The

odd numbered addresses in this range are not used. Each system module is

assigned a set of even (word) addresses as shown in table 2.

Addressing a system register for either a read or write function is allowed by

master modules. The slave module always transmits or receives 16 data bits.

If the selected register ls less than 16 bits in length, the data is transmitted in

the least significant bit positions and the most significant; unused, bit pos.itions

are ZEROs.
Table 2. Special Addresses

Addresses
Module Assignment

(Hexadecimal)

FOOO-F7FE Reserved for spefial memory assignments

F800 I/O Device Controller #1, Status Register
F802 1/0 Device Controller #1, BTA Address Register
F804 I/O Device Controller #1, BTA Block Length Register
F806 I/O Device Controller # 1, Control Register
F808 I/O Device Controller #1, Data Register
F80A-F80E Reserved for I/O Device Controller #1
F810-F81E I/O Device Controller #2 as in #1
F820-FAFE Reserved for I/O Device Controllers as in #1.

(see Appendix C)

FBOO-FBFE Auto Load Memory
FCOO-FEFE Reserved for Auto Load

FFOO Central Processor (#0) Register 0, (Program
Counter)

FF02-FFOE Central Processor (#0), General Registers 1-7
FFlO Central Processor (#0), Status Indicators
FF12 Central Processor (#0), Instruction Register
FF14-FF1C Reserved for Central Processor #0
FFlE Central Processor (#0), Control Flip-Flops
FF20-FF3E Processor #1, same set as #0
FF40-FF5E Processor #2, same set as #0
FF60-FF7E Processor #3, same set as #0

FF80 Control Panel #1 Address Register-Attention Interrupt
FF82 Control Panel #1 Data Register
FF84-FF86 Control Panel #2 as in #1
FF88-FF8A Control Panel #3 as in #1
FF8C-FF8E Control Panel #4 as in # 1

FF90-FFFF Reserved for other System Modules to be assigned.

10 May 73

SUE G3 GB13020009103

STATUS INDICATORS

SUE 1110 Processor has a 16-blt status indicator register. Status indicators

may be affected by execution of general register and shift instructions. This is

indicated by their symbol in INSTRUCTION DESCRIPTIONS. The status indica­

tors may also be set or reset with special control instructions.

The status bit position withitrthe status register, symbol, name, and descrip­

tion are as follows:

May 73

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Symbol

EQ

GT

ov

CY

;~l
F3

LP

OD

ZE

NG

A

Ml\ M2

M3

M4

Name and Description

Equal - In a compare operation, the source operand
equals the target operand.

Greater-Than - In a compare operatlon, the source
operand ls greater than the target operand.

Overflow - Set during Add, Subtract, or Arlthmetlc
Left Shlft lf the Carry out of bit 15 ls different than
the Carry ln to bit 15. If the set condition ls not
caused, V remalns unchanged.

Carry - Receives the Carry out of bit 15 during an
Add, Subtract, Arithmetic Left Shift, or Left Linked
Shift. Reset durlng an Arithmetic Right Shift.
Recelves bit 0 shifted out from a Right Linked Shift.

Flags 1, 2, or 3 - Programmable flag blts.

Loop Complete - Set if content of register selected
by XR field equals ZERO at the completion of an
Autoincrement or Autodecrement instruction. Reset
if content of XR ls NOT ZERO.

Odd - For all general reglster lnstructions except
Compare, the Odd indicator receives the least signi­
ficant blt of the result.

Zero - For all general register instructions except
Compare, set if the result is ZERO and reset if
NOT ZERO.

Negative - Recelves the most significant bit of the
result of any general register instruction except
Compare.

Active - Indicates that the processor is executing
lnstructions. A is set unless the processor is
quiescent.

Interrupt Mask - Blts Ml through 1\14 correspond to
system interrupts 1 through 4. When any bit is set
or reset, respectively, the Bus Controller is requested
to ignore or allow interrupt requests for the corres­
ponding vector.

11

GB13020009103 SUE G3

INSTRUCTION DESCRIPTIONS

GENERAL REGISTER INSTRUCTIONS

Cl ass codes 1 through 7 specify the general register instructions. They are

all two-operand lnstructlons wlth one set of elght general operations. In the

deflnltlons of these operations, the terms target (T) and source (S) are used.

The target ls the register or memory cell to be modlfied, the source ls the

register or memory cell used as an operand that ls to remaln unchanged.

GENERAL QPERA TIONS. - The OP field of the lnstructlon selects the operation

for each class of general reglster instruction as follows:

Status

OP Code Indicators

(Hexadecimal Operation Description Affected

0 MOVe Transfer the source operand to NG,ZE,OD
\

the target operand.
(S) (T)

1 SUBtract Subtract the source operand from CY,OV, NG, ZE,
the target operand and store the OD
result in the target operand.
-(S) + (T) (T)

2 ADD Form the sum of the source (S) CY, OV, NG, ZE,
and target (T) operands and OD

store l~ (T).
(S) + (T) (T)

3 AND Form the logical product of the NG,ZE,OD
source and target operands and
store the result in the target
operand.
(S). AND. (T) (T)

4 Inclusive Form the logical sum of the NG,ZE,OD
OR source and target operands and

store in the target operand.
(S). OR. (T) (T)

12 May 73

SUE G3

5

6

7

Exclusive
OR

Form the logical difference of the
source and target operands and
store in the target operand.
(S). EOR. (T) - (T)

CoMPare Compare logical, the source
operand to the target operand.
Register contents and memory
contents are not affected.

If (S) < (T)

If (S) = (T)

If (S) > (T)

NOTE

GT ~

0

0

1

0

1

0

Bit 15 of each word is considered a magnitude
bit, not a sign bit. The compare result is
unsigned based on the 16-bit magnitude.

TeST Form the logical product of the
source and target operands.
Register and memory contents
are not affected.

GB13020009103

NG,ZE,OD

GT,EQ

NG,ZE,OD

If (S). AND. (T) = 0, SET ZE, RESET NG, OD

If (S) . AND. (T) i 0, RESET ZE

If (S) . AND. (T) is odd, SET OD (odd implles
blt O is set)

If (S) . AND. (T) is negative, SET NG (negative
implies bit 15 is set)

GENERAL REGISTER INSTRUCTION WORD FORMATS. - The instruction word

formats used for the general register instructions is shown in table 3.

May73 13

I

GB13020009103 SUE GS

Table 3. General Register Instructlon Word Formats

General Register Classes* Hl H2 H3 H4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Accumulator Auto Decrement C=l B OP I AR E XR
To Auto Increment C=2 B OP I AR E XR
Memor_y C=3 B OP I AR E XR
Jum....Q_ to Subroutine C=4 0 0 I AR E XR
Jum....Q_ C=4 0 0 I 0 E XR
Data to J.L iteral/Re~ster C=4 1 OP 0 AR E XR
Accumulator Immediate Data C=4 1 OP 1 AR K
Memory ruto Decrement C=5 B OP I AR E XR
To Auto Increment C=6 B OP I AR E XR
Accumulator C=7 B OP I AR E XR

NOTES:

c Class Codes 1-7

OP Operation Code: 0 MOV Move
1 SUB Subtraction
2 ADD Addition
3 AND Logical Product
4 IOR Logical Inclusive OR
5 EOR Logical Exclusive OR
6 CMP Compare
7 TST Test

B Word when O, Byte when 1

I Indirect when 1

AR Accumulator Register designator (0-7)

E Extended or two-word instruction when 1

XR Index Register designator (0-7), no indexing when 0

K 4-bit Immediate data constant

For E=O and XR-1 O, XR provides the entire operand address. If no index
register is selected (XR=O), and E=O, an instruction trap occurs, except
for class 4, Register, where the PC is the source operand.

For E=l, XR==O, the next word provides the entire operand address. If E=l
and XR ~o, indexing operation is specified. In this case, the content of (XR)
is added to the next word to produce the effective address of the memory
operand or an indirect address.

*SUE 1112 Instruction Set contains more instructions in class code 4.

14 May 73

SUE G3 GB13020009103

The following additional symbols are used in the instruction definitions:

() Contents of

M effective operand address

PC Program Counter, general register O.

P Current instruction address

General Register Instruction Definitions

ACCUMULATOR TO MEMORY, AUTO DECREMENT

1 IJ AR

XR c

I)
0 15

Extended Address I
(AR) operates on (M). (XR) is decremented before use.

ACCUMULATOR TO MEMORY, AUTO INCREMENT

c

I),
OP

IJ
AR

I,'!,
XR

2

15 0

Extended Address I
(AR) operates on (M). (XR) is incremented after use.

May 73 15

I

I

I

GB13020009103 SUE G3

ACCUMULATOR TO MEMORY

c D. OP IJ AR I) XR J 3

15

Extended Address

(AR) operates on (M). (XR) is not affected.

JUMP TO SUBROUTINE JSBR

c

4·

15

Extended Address

P + 2 replaces (AR) for E = O and P +4 replaces (AR) for E = 1.
(M) operates on PC (content of general register 0). Thus, the return
address is stored in AR and R:: is set to the jump-location address.

JUMP JUMP

16

c

I

OP

:: 110 •
IJ : I) XR 0

4

15

Extended Address

(M) operates on PC, setting it to the jump-location address. The
jump function is the same as a MOV (M) to PC, but does not affect
status indicators.

May 73

SUE G3 GB13020009103

DATA TO ACCUMULATOR, INDEX REGISTER

c

4 n. OP

XR AR

0 15

A register-to-register instruction. (XR) operates on (AR).

DATA TO ACCUMULATOR, LITERAL

c XR

4

15 7 6 3 2 0

Literal (Source)

The word following the instruction is the literal source operand. It
operates on (AR). If XR is not O, then (XR) is added to the literal
before operating on (AR).

DATA TO ACCUMULATOR, IMMEDIATE

c K

4

15 0

K operates on (AR). K is the 4-bit immediate constant operand.

MEMORY TO ACCUMULATOR, AUTO DECREMENT

c

1.1
OP

IJ
AR n XR

5

15 0

Extended Address

(M) operates on (AR). (XR) is decremented before ttse. ·

May 73 17

I

I

I

GB13020009103 SUE G3

MEMORY TO ACCUMULATOR, AUTO INCREMENT

c I). OP IJ AR l:t XR J
!.

6

Extended Address

(M) operates on (AR). (XR) is incremented after use.

MEMORY TO ACCUMULATOR

c

7

15

Extended Address

(M) operates on (AR). (XR) is not affected.

GENERAL REGISTER INSTRUCTION TIMES. - Instruction execution times

depend on:

Operand addressing modes
General operation code
Program memory access and cycles
INFIBUS availability

Table 4 contains a summary of typical general register instruction times assum­

ing the INFIBUS is available to the processor and a SUE 3311 Core Memory is

used for instruction and data storage. A memory cycle time of 850 nanoseconds,

read access time of 750 nanoseconds, and a write access time of 550 nanosec­

onds is used. Access is the total time to access both the bus scheduler and

memory. Microprogram step~ of 160 nanoseconds are used for arithmetic

operations and 130 nanoseconds for non-arithmetic operations.

18 May73

SUE G3 GB13020009103

Table 4. SUE 1110 (Basic) General Register Instruction Times

Time IMicrosecoiiQSI
General Instruction

Indexed
Auto- Auto-

Increment Decrement
ACCUMULATOR TO MEMORY T Class Codes 3 2 1

Logical: MOV, AND, IOR, EOR
Op Codes: 0 3 4 5 3,94 4.81 4.81

A rlthmetlc: SUB, ADD
Op Codes: 1 2 4.03 4.90 4.90
Compare: CMP
Op Code: 6 3,70 4.57 4.57

Test: TST
Op Code: 7 3.35 4.22 4.22

Address Modes:
For Extended, add 0.13
For Indirect, add 1.14 for first level, add 1.01

for each additional level
For Extended, Indirect, add 1.40 for first level,

add 1.01 for each additional level

JUMP, JUMP TO SUBROUTINE 1 Class Code 4 - -

Instruction: JUMP, JSBR
Op Code: 0, AR = 0, AR # 0 2.79 - -

Address Modes:
For Extended, add 0.06 2.85 - -
For Indirect, add 1.14 for first level, add 1.01 3.93 - -

for each additional level
For Extended, Indirect add 1.33 for first level, 4.12 - -

add 1.01 for each additional level

DATA TO ,~CCUMULATOR T Class Code 4 - -
Logical: MOV, AND, IOR, EOR

Op Codes: 0 3 4 5 Register to 2.50 - -
Arithmetic: SUB, ADD Register or

Op Codes: 1 2 Immediate 2.79 - -
Compare: CMP
Op Code: 6 2,69 - -

Test: TST
Op Code: 7 2.50 - -

Address Modes:
For Literal add 0.68
For Literal Indexed add 0.84

MEMORY TO ACCUMULATOR 1 Class Codes 7 6 5

Logical: MOV, AND, IOR, EOR
Op Codes: 0 3 4 5 3.35 4.09 4.09

A rlthmetic: SUB, ADD
Op Codes: 1 2 3.64 4.38 4.38
Compare: CMP
Op Code: 6 3,67 4.41 4.41

Test: TST
Op Code: 7 3.35 4.09 4.09

Address Modes:
For Extended add 0.13
For Indirect add 1.14 for first level, add 1.01 for

each additional level
For Extended, Indirect add 1.40 for first level,

1.01 for each additional level

NOTE: All times are in microseconds.

May 73 19

GB13020009103 SUE G3

To compute the actual instruction execution time, it is necessary to add the

time increments shown in Table 4 for each selected addressing mode. The

minimum times shown in the table assume an indexed addressing mode. A

more complete table of general instruction tlmes ls given In Appendix A.

For example, an ADD register-to-register instruction requires 2. 79 micro­

seconds with the SUE core memory. An ADD memory-to-accumulator instruc­

tion requires 3. 64 microseconds when the operand address is held in an index

register. If the address is located in the next word location (extended instruc­

tion mode), the time is 3. 77 microseconds. Indexing the extended address

does not add time to the instruction. Indirect addressing adds 1.14 micro­

seconds for the first level and 1. 01 for each subsequent level.

BRANCH CONDITIONAL INSTRUCTIONS

Thirteen conditions can be tested by branch condltlonal (TRUE or FALSE)

instructions. Each condition can be tested to produce a branch or a fall­

through to the next instr!-lction for either state (TRUE for class code 9 and

FAISE for class code 8). The condition status is determined by testing the

status indicators and programmable flags affected by the last operation.

20 May 73

SUE G3 GB13020009103

BRANCH CONDITIONS. - Following is a list of the 13 branch conditions and
thelr meaning when TRUE.

T Fleld Conditlon Symbol Meaning (TRUE Condition)

0 Unconditional UN The branch is made unconditionally.

1 Equal EQ The latest compare operatlon found the
two operands to be equal to each other.

2 Greater-Than GT The latest compare operation found the
source operand to be greater than the
target operand.

3 Overflow ov An add, subtract, or shift operation

I produced a result outside of the range
-215 ::; R ::5 + (215 - 1) since overflow
was last reset.

4 Carry CY The latest add, subtract, or shift opera-
tion produced a carry out of the most
significant end of the arithmetic unit.

5 Flag 1 Fl These three programmable flags can be
6 Flag 2 F2 set or reset by a set or reset status
7 Flag 3 F3 lnd lcator instruction.

8 Loop Complete LP This indicator is set if the result of the
latest autoincrement or autodecrement
of any index register equals zero; other-
wise it is reset.

9 Odd OD The result of the latest general operation
(except compare), or shift operation is
an odd number (Bit O = 1).

A Zero ZE The latest general operation (except
compare), or shift operation results in
all zeros.

B Negative NG Result of the latest general operation
(except compare), or shift operation is
a negative number (Bit 15 = 1).

c Less-Than LT In the latest compare operation, the
source operand was less than the target
operand.

D,E,F Cause an unimplemented instruction I trap.

May 73 21

GB13020009 l03 SUE G3

BRANCH INSTRUCTION WORD FORMATS. -

H1 Hz

15 14 13 12 11 10 9
No Operation C= 8 0
Branch Unconditional C= 9 0 D
Branch False C= 8 T D

Branch True C= 9 T D

D Displacement word address in twos complement form.

T The T-Field specifies each Branch test. That ls, which processor
status indicator (if any) ls to be tested. A llst of each lndlcator, the
corresponding value for T, and the operator assembler-mnemonics
follows (z = T for true and F for false):

T
(hexadecimal)

1
2
3
4
5
6
7
8
9
A
B
c
D,E,F,

Branch Instruction Definitions

NO OPERATION

c

8

15 11

T

0

Indicator

Equal
Greater Than
Overflow
Carry
Flag 1
Flag 2
Flag 3
Loop Complete
Odd
Zero
Negative
Less Than
(Instruction is trapped)

NOPR

Assembler
Mnemonic

xx

u
BEQz
BGTz
BOVz
BCYz
BFlz
BF2z
BF3z
BLPz
BO Dz
BZEz
BNGz
BLTz

A one-word NO-OP which does not affect status indicators.

22 May73

SUE G3 GB13020009103

BRANCH UNCONDITIONAL BRUN

c T

9 0 I,
D

15 0

An wiconditional (no testing) branch ts made to the relative address
specified by D. PC + 2 x D replaces PC. Dis in twos complement
form with sign extended to represent a 16 bit number.

BRANCH FALSE BxxF

c T D

8

Ill 0 15

A Branch is made to the relative address specified by D if the indicator
specified by Tis false, or O; otherwise, the next instruction in sequence
is accessed.

BRANCH TRUE BxxT

c T

I,
D

9

Ill 0 15

A Branch is made to the relative address specified by D if the indicator
specified by Tis true, or l; otherwise, the next instruction in sequence
is accessed.

BRANCH INSTRUCTION TIMES. - Branch instruction execution times depend

on whether or not the branch occurs, or the next instruction in sequence is

executed. The branch-on-less-than operation (T = C) has different timing

than the branch on other status bits. The branch instruction times are shown

in Table 5.

May 73 23

GB13020009103 SUE G3

Table 5. Branch Instruction Times

Time (microseconds)

Instruction
Assembler Next Word Branch
Mnemonic

1110 All 1110 All
Basic Others** Basic Others**

No Operation NOPR 1. 78 1.75 - -
Branch Unconditional BRUN - - 2.72 2.82

Branch True BxxT* 1. 78 1.75 2.72 2.82

Branch False BxxF* 1. 78 1.75 2.72 2.82

Branch Less Than True BLTT 1. 75 1. 75 3.08 3.21

Branch Less Than False BLTF 1.88 1.88 3.08 3.21

*where xx= EQ, GT, OV, CY, Fl, F2, F3, LP, OD, ZE, NG.
**includes Processors lllOA and B, 111 lA and B, and 1112A and B.

SHIFT INSTRUCTIONS

Class code A (hexadecimal) specifies a shift instruction. Up to 15 bit-position

shifts may be specified in a single shift instruction. Two formats are provided to

allow an option on the location of the shift count. When bit 7 of the instruction

is a ZERO, the least significant four bits of the general register selected by XR,

contains the shift count. When bit 7 is a ONE, the K field of the instruction word

specifies the shift count.

24 May 73

SUE G3 GB13020009103

SHIFT INSTRUCTION WORD FORMATS. -

Two single-word formats are used. The formats illustrated are for the shift

count defined by (XR) or K, respectively.

AR
K
XR
OP

May 73

Shift Indexed
Shift Immediate

H1

15114113112

Al6

Al6

H2

11 101918
0 OP

0 OP

H3 H4

7 6IsI4 3I2J1Jo

0 AR oT XR

1 AR K

Accumulator Register designator (to be shifted).
Shift Count
Shift Count Source Register.
Shift Operation Code:

OP
10

Bits
9 8

Operation

0 0 0 0 Single Left Arithmetic Open

1 0 0 1 Single Left Logical Linked

2 0 1 0 Single Left Logical Open

3 0 1 1 Single Left Logical Closed

4 1 0 0 Single Right Arithmetic Open

5 1 0 1 Single Right Logical Linked

6 1 1 0 Single Right Logical Open

7 1 1 1 Single Right Logical Closed

NOTE

SUE 1112 Processor provides double length
shifts and also normalize instructions in
addition to these basic single shifts.

I

25

GB13020009103 SUE G3

Shift Instruction Definitions

SINGLE LEFT ARITHMETIC OPEN SLAO

OP=O ~ -§-48 I I AR r- o
~u-1 .. ,4-1~u--~~~~~~~~~~~---l#o

- - - - -- - - L _J

(AR) bits are shifted left out of (AR)15 to the carry (CY) and zeros are
shifted to (AR)o· If any (AR)i4 bit is different than (AR)15 preceding a
shift, then the overflow indicator, OV, is set. Operation affects status
indicators: CY, OV, NG, ZE, OD.

SINGLE LEFT LOGICAL LINKED SLLL

OP= 1 ~~~~~l~~,t-s~~~_-A_R~~~----.io~
Carry (CY) is shifted into (AR)o and (AR)is is shifted into CY. If any
(AR) 14 bit is different than (AR)i5 preceding a shift, then the overflow
indicator, OV, ls set. Operation affects status indicators: CY, OV, NG,
ZE, OD.

SING LE LEFT LOGICAL OPEN SLLO

OP= 2 -is I
15

AR ~o
.0

(AR) is shifted left. For each bit shifted, (AR)i5 is lo~t and (AR)o equals
o. Operation affects status tndlcators: NG,_ ZE, OD.

SINGLE LEFT LOGICAL CLOSED SLLC

26

OP= 3 ~~:~l~~~~-:R~~~~~tJ
(AR) is shifted left. (AR)15 is shifted into (AR)o· Operation affects
status lndlcators: NG, ZE, OD.

May73

SUE G3 GB13020009103

SINGLE RIGHT ARITHMETIC OPEN SRAO

OP= 4

(AR) is shifted right. (AR)15, the sign bit, remains the same and is
shifted into (AR) 14• (AR)o bits shifted out are lost. Carry (CY) is
reset. Operation affects status indicators: CY, NG, ZE, OD.

SINGLE RIGHT LOGICAL LINKED SRLL

OP~5 ~~~-1~~~~~.-A-R~~~~---.:o~
Carry (CY) is shifted into (AR)15,and (AR)o is shifted into CY. Operation
affects status indicators: CY, NG, Z E, OD.

SING LE RIGHT LOGICAL OPEN SRLO

0 -is I AR r
~,5 ~~~~~~~~~~~~~~-0

OP= 6

(AR) is shifted right. For each bit shifted, (AR}0 is lost and (AR)15
equals o. Operation affects status tndlcators: NG, ZE, OD.

SINGLE RIGHT LOGICAL CLOSED SRLC

OP= 7 r..,,...i..-,~ ' --:-R -----.:h
(AR) is shifted right. (AR)o is shifted into (AR)15. Operation affects
status indicators: NG, ZE, OD.

SHIFT INSTRUCTION TIMING. - Shift instruction execution times depend on

the number of single bit shifts (N) specified in either the K field (immediate) or

the selected register, XR. The time is calculated by the formula:

where N = 0, 1, •.• , 15.

May 73

T = 2. 76 + (0. 26)N
s

27

I

I

I

GB13020009103 ,SUE G3

CONTROL INSTRUCTIONS

Class code o1 specifies a group of instructions that provide control of processor

operation in a system. The instructions provide control of system interrupts,

and storing and restoring status indicators and general registers.

CONTROL INSTRUCTION WORD FORMATSo -

Formats

IS 14 13 12 11 10 9 8

C= 0 0
C= 0 2

C= 0 2
C= 0 8 0 K ,,.
C= 0 8 4 K

C= 0 8 8 K

C= 0 8 c K

C= 0 8 4C 0
C= 0 B D

C= 0 B D

C= 0 B 4 D

C= 0 B s D

C= 0 B 7 D

Notes:

Shaded areas are ignored.

Assembler
Mnemonic

HALT
RSTS
SETS
ENBL
ENBW
DSBL

DSBW
WAIT
STSM
REGM
RETN
MSTS
MREG

Instructions

Halt
Reset Programmable Status Indicators
Set Programmable Status Indicators
Enable Interrupts
tiiat>1-e·1nd waff --
Disable Interrupt

Disable and Wait
Wait
Status to Memory
Registers to Memory
Return from Interrupt
Memory to Status
Memory to Registers

F - Programmable status bits to be reset (RST) or set (SET) (bit positions
correspond wlth status reglster).

K - Interrupt mask bits to be reset (ENBL) or set (DSBL) (corresponding
mask bits in status register).

B - Address mode, absolute when 0 or relative when 1.

D - Address field (words), twos complement form for relative.

lMore instructions in class code 0 are described under SUE 1110A and B, and
1112A and B Instruction Sets.

28 May 7:l

SUE G3 GB13020009103

Control Instruction Definitions

HALT HALT

0

Ill
0

c T

15

Further instruction execution ceases. Execution resumes if the RUN
switch on the control panel is pressed or if RUN is enabled by another
processor. Return from a HALT is to the next instruction in sequence.
Interrupts cause no resumption.

RESET PROGRAMMABLE STATUS INDICATORS RSTS

0

I,'
2

F c T

Mask

15 0

F is a mask for resetting status indicators. For each corresponding
bit of F and the least significant seven bits of the status indicator word,
if F is ONE, the indicator is reset to ZERO.

SET PROGRAMMABLE STATUS INDICATORS SETS

c T

0

'"

2

F

Mask

15 0

F is a mask for setting status indicators. For each corresponding bit
of F, and the least significant seven bits of the status indicator word,
if F is ONE, the indicator is set to ONE.

May73

F bits set

0
1
2
3
4
5
6

F Bits for RSTS and SETS

Status Indicators

EQ EQUAL
GT GREATER THAN
ov OVERFLOW
CY CARRY
Fl FLAG 1
F2 FLAG 2
F3 FLAG 3

29

GB13020009103

NOTE

In the following five interrupt control instruc­
tions, the K field (bits 3 through O) corresponds
to status register bits 15 through 12 that enable
or disable interrupts 4 through 1, respectively.

ENABLE INTERRUPTS ENBL

c K

Ill : I, I.
0 0

15 0

Each ZERO in the K field is ignored, each ONE in the K field
enables the corresponding interrupt.

ENABLE and WAIT ENBW

30

c K T

Ill
4

I. 0 I. 0 8

15

Each ZERO in the K field ls ignored, each ONE in the K field
enables the corresponding interrupt. The processor enters
the WAIT state until an enabled interrrupt occurs. If the
enabled interrupt is 4, the interrupt is processed in the
normal manner. If the enabled interrupt is 1, 2, or 3,
execution continues at the next instruction in sequence.
If no interrupts are enabled an instruction trap occurs.

SUE G3

May 73

SUE G3 GB13020009103

DISABLE INTERRUPTS DSBL

c K T

Ill
8 8

0

0

15

Each ZERO in the K field ts lgnored, each ONE causes an interrupt
disable for the corresponding lnterrupt.

DISABLE and WAIT DSBW

WAIT

c K T

t. I . 8 c

15 0

Each ZERO in the K field ts ignored, each ONE ln the K field
disables "the corresponding interrupt. The processor enters
the WAIT state until a non-disabled interrupt occurs. If the
enabled interrupt is 4, the interrupt will be processed in the
normal manner. If the interrupt is 1, 2, or 3, execution
continues at the next instruction tn sequence. If no interrupts
are enabled, an instruction trap occurs.

WAIT

c T K I 4/C I, Ill I . 8 0

15 0

When the K-field ts zero, no interrupt masking takes place, and the
processor enters the WAIT state until an interrupt occurs. If the
interrupt is level 4, it will be taken. The normal return after a
level 4 interrupt is to the WAIT instruction.

If the interrupt level is 1, 2, or 3, execution continues at the
next instruction in sequence. If no interrupts are enabled, an
instruction trap occurs.

May73 31

I

GB13020009103 SUE G3

STATUS TO MEMORY STSM
c

I}.
OP

I,
D

0 1

15 0

The content of the status Indicator register replaces M. Relative
(B = 1) or absolute (B = 0) addressing ls used to determine M.

REGISTERS TO MEMORY REGM

0 I}. 7 t
D c

15 0

The general registers 1, 2, 3, 4, 5, 6, and 7 are stored into memory
ln words M, M + 2, ••. , M + 12. Relative (B = 1) or absolute (B = 0)
addressing ls used to determine M.

RETURN FROM INTERRUPT RETN

c D

0

15 0

(M) replaces the status indicator register, and M + 2 replaces the Pro­
gram Counter, PC. Relative (B = 1) or Absolute (B = 0) addressing is
used to determine M.

MEMORY TO STATUS MSTS

32

c D

I 0

15 0

(M) replaces the content of the status indicator register. Relative
(B = 1) or absolute (B = 0) addressing ls used to determine M.

May 73

SUE G3 GB13020009103

ME MORY TO REGISTERS MREG

c D

0

15 0

General registers 1, 2, 3, 4, 5, 6, and 7 are loaded from memory, from
words M, M + 2, ••• , M + 12. Relative (B = 1) or absolute (B = O)
addressing is used to determine M.

CONTROL INSTRUCTION TIMES. - Table 6 contalns a llst of the lnstructlon

execution tlmes for control Instructions.

Table 6. SUE 1110 (basic) Control Instruction Times

Instruction
Assembler

Time (microseconds)
Mnemonic

Halt HALT 1. 01 + time to restart

Reset Programmable RSTS 1. 59
Status Indicators

Set Programmable Status SETS 1.72
Indicators

Enable Interrupts ENBL 1. 85

Enable and Wait ENBW 2. 80 + time to interrupt

Disable Interrupts DSBL 1. 98

Disable and Wait DSBW 2. 80 + time to interrupt

Wait WAIT 2. 80 + time to interrupt

Status to Memory STSM 2. 14 Absolute, 2.46 Relative

Registers to Memory REGM 7. 24 Absolute, 7. 56 Relative

Return from Interrupt RETN 4. 26 Absolute, 4. 58 Relative

Memory to Status MSTS 2. 47 Absolute, 2. 79 Relative

Memory to Registers MREG 7. 93 Absolute, 8. 25 Relative

May 73 33

GB13020009103 SUE G3

UNIMPLEMENTED INSTRUCTIONS

Instruction class codes Bl6 to Fl6 (11-15) have not been implemented for

SUE 1110 Processors. They are reserved for instruction set expansion, and

some have been expanded to accommodate Processors SUE llllA and B, and

1112A and B, as described in the last four sections of this bulletin. Use of these

class codes for SUE 1110 causes the instruction to be trapped for software

interpretation of the instruction. Trapping an instruction refers to the action

taken on unimplemented instructions. When an unimplemented bit combination

is detected, a transfer is made to an interpretive subroutine that can either

simulate the instruction execution or perform some specialized system functions.

INPUT/OUTPUT INSTRUCTIONS

There are no dedicated input-output instructions. The upper 4K addresses

(out of a total 64K) are reserved for device addresses, control words, status

words, etc. Input/ output functions may be accomplished by ordinary general

instructions, and status checking by test instructions.

34 May 73

SUE G3 GB13020009103

SUE lllOA INSTRUCTION SET

INTRODUCTION

Processor SUE lllOA, an improved design of SUE 1110, provides the capability

to set the key bits of the address bus. The SUE 1 llOA instruction set includes

all of the instructions for SUE 1110 (basic) plus the Store Key, SKEY,

instruction.

STORE KEY INSTRUCTION

A subclass of class code O, the Store Key instruction has the following format:

c T

0

I,'
8

K

1

0 15

K - A two bit value to be stored into the key bits.

Refer to Appendix A for instruction times.

May 73 35/36

SUE G3 GB13020009103

SUE lllOB INSTRUCTION SET

INTRODUCTION

SUE lllOB Instruction Set includes all of the instructions performed by Processors

SUE 1110 (basic), and lllOA, and the two Fetch and Clear (word or byte)

instructions described below. Refer to Appendix A for instruction times.

FETCH AND CLEAR INSTRUCTIONS

A subclass of class code O, Fetch and Clear allows implementation of multi­

processor systems with shared resources.

FETCH AND CLEAR INSTRUCTION WORD FORMAT

FCLW
FCLB

15

c

0

XR

0

r--------- --- -----,
I Extended Address 1
I I
L..- - - - - - - - - - - - - - - -.l

B - Word when 0 (FCLW), byte when 1 (FCLB)

I - Indirect when 1

AR - Accumulator register designator (0-7)

E - Extended or two-word instruction when 1

XR - Index register designator (0-7), no indexing when 0

May 73 37

GB13020009103 SUE G3

FETCH AND CLEAR OPERATION

This instruction reads and clears the designated memory word or byte and

places the previous contents into the designated register. In particular, it

allows a processor to read a memory operand without allowing another pro­

cessor to read the same memory operand before it has been cleared by the

first processor.

38

NOTE

Both the memory cell and the designated
register are cleared by these instructions
when performed by SUE lllOA, llllA and
1112A processors. SUE 1110 (basic) pro­
cessor traps on this instruction.

May 73

SUE G3 GB13020009103

SUE llllA INSTRUCTION SET

INTRODUCTION

The SUE llllA Instruction Set includes all instructions described for processors

SUE 1110 (basic), SUE lllOA, and instructions described in this section under

SUE llllA. Processor SUE llllA can perform the.following decimal arithmetic

instructions:

Operation
Instruction Mnemonic Code Description

Zero and Add ZADD 2 Move dee imal field

Add Decimal ADDD 3 Add decimal fields

Subtract Decimal SUBD 4 Subtract decimal fields

Compare Decimal CMPD 5 Compare decimal fields

Shift Right SFTR 8 Shift decimal field right

Move Right MOVR 9 Move field right to left

Shift Left SFTL A Shift decimal field left

Move Left MOVL B Move field left to right

Compare Field COMP c Compare fields

TEMPORARY STORAGE

The decimal instructions implemented in SUE 1111 use the storage locations

associated with the unimplemented instruction trap as temporary storage.

For example, locations 20, 22, and 24 for the CPU have the contents of regis­

ters 5, 6, and 7 during and after completion of a decimal instruction. If an

unimplemented instruction routine is to use a decimal instruction, it must save

and restore these locations.

May 73 39

GB13 020009103 SUE G3

INSTRUCTION FORMAT

All decimal instructions except Shift Right (SFTR) and Shift Left (SFTL) are

accommodated by one standard format as follows:

Word 0

Word 1

Hl
15l14]_13l12

c
Ll

H2
1111019 l 8 7

OP 0

L2 0

H3 H4
61514 3 21110

Rl 0 R2

Xl 0 X2

A modification of this format accommodates SFTR and SFTL instructions:

Word 0

Word 1

40

c
OP

Rl

R2

Ll

L2

s
Xl

X2

Hl H2 H3 H4
15J 14l 13 l 12 111101 9 l 8 7 6 Is J 4 3121110

c OP 0 Rl 0

Ll s 0 Xl 0 l X2

Class Code - All instructions use class code c16

Operation Codes 216 through 516 and 816 through C 16
(see instruction description)

Register designator (1-7) for address of the most significant byte
of the source field

Register designator (1-7) for the address of the most significant
byte of the destination field

Source field length, minus 1 (bytes)

Destination field length, minus 1 (bytes)

Number of decimal digit positions to be shifted.

Index register, content of which is appended to the Ll field,
(only if Xl is non-zero). Length is then Ll + (Xl) + 1.

Index register, content of which is appended to the L2 or S field,
(only if X2 is non-zero). Length is then L2 + (X2) + 1. For Shift
instructions the content of X2 is appended to the S field. The
total digit positions shifted is then S + (X2).

May 73

SUE G3 GB13020009103

NOTES

All seven general registers may be used as
the source for parameters. If zero is specified
as the register for Xl or X2, then only the L
or S field is used. Rl and R2 cannot be zero.

The target field must be large enough to hold
each operation result, else the result is trun­
cated without overflow status being set.

DECIMAL DATA FORMAT

Decimal data is formatted with two digits (4 bit fields or nibbles) per byte with

the right-most nibble taken as a sign. The valid decimal digits are O to 916

with A16 to F 16 giving invalid results. Valid signs are C for plus and D for

minus.

Two examples of decimal data format required for operation codes 2, 3, 4, 5,

8, and A follow:

Example 1 0 1 3 8 5 c
Byte 1 Byte 2 Byte 3

Example 1 represents the number +1385.

Example 2 3 5 5 7 3 D

Example 2 represents the number -35573.

CHARACTER DA TA FORMAT

The character data format used with operation codes 9, B, and C follow:

A B c
Byte 1 Byte 2 Byte 3

May 73 41

GB13020009103 SUE G3

SYMBOLIC CODING FOR OPERANDS

Symbolic coding of the operand field for all instructions except Shift is: (Rl),

Ll(Xl), (R2), L2(X2). For Shift instructions, SFTR and SFTL, the coding is:

(Rl), L(Xl), S(X2).

INSTRUCTIONS

ZERO AND ADD

OP= 2

ZADD

Zero And Add moves the source field to the destination field. If the destination

field is longer than the source field, the excess high-order bytes are filled with

zeros. If the destination field is shorter than the source field, the excess data

is truncated. The move takes place from the right end first so that truncated

data is in the most significant portion of the field.

ADD

OP= 3

ADDD

Add Decimal numerically adds the signed source field to the signed destination

field with the sum placed into the destination field. If the sum is larger than the

destination field, the excess high-order bytes are truncated. If the sum is

smaller than the destination field, the excess high-order destination field bytes

are filled with zeros.

Addition occurs from right to left one byte at a time. The sum contains the

correct sign following the normal rules of algebra. If the result of the addition

is zero, the result has the same sign as the original destination field.

SUBTRACT

OP= 4

SUBD

Subtract Decimal numerically subtracts the signed source field from the

destination field with the difference placed into the destination field. If the

difference is larger than the destination field, the excess high-order bytes are

truncated. If the difference is smaller than the destination field, the excess

high-order destination field bytes are filled wit~ zeros.

42 May 73

SUE G3 GB13 020009103

Subtraction occurs from right to left one byte at a time. The difference contains

the correct sign following the normal rules of algebra. If zero, the difference

has the same sign as the original destination field.

COMPARE DECIMAL

OP= 5

CMPD

Compare Decimal numerically compares the signed source field with the signed

destination field. Status bits EQ (bit 0) and GT (bit 1) indicate the results of the

compare. The status bits are affected as follows:

Source = Destination

Source > Destination

Source < Destination

GT fill
0

1

0

1

0

0

Commensurate with the rules of order, positive and negative zeros are equal by

the Decimal Compare instruction, and large negative numbers are smaller than

small negative numbers.

The source and destination fields need not be the same length. The numeric values

of the two fields are compared and leading zeros are ignored. Neither the source

nor the destination field ls altered by this instruction. To provide a faster decision

algorithm, comparison is made first on the sign and units digits, then on digits

in order of most significance.

SHIFT RIGHT

OP= 8

SFTR

Shift Right performs a decimal digit shift to the right. Digit positions on the left

end of the field are filled with zeros as shifting proceeds. Digits on the right end

are shifted out around the sign and lost, leaving the sign unchanged. Note that

the number of shifts refers to the digit positions shifted and not the number of
!

bytes. Also note that the true number of shifts is given and not the number

minus 1. Therefore, zero shifts can be specified causing no operation to be

performed. Shift Right provides a fast way to divide by a power of ten, and can

be used for decimal point alignment, etc.

May 73 43

GB13020009103

MOVE RIGHT

OP= 9

SUE G3

MOVR

Move Right transfers the source field to the destination field. The right-most

byte (units/sign byte in decimal field) is moved first. Then, the move proceeds

to the left one byte at a time.

If the source field ls smaller than the destination field, the remaining left end

of the destination field ls unchanged. If the destination field is smaller than the

source field, the move proceeds to the left until the destination field is full; then

the move aborts so that all right-end bytes are transferred correctly. The

source field is left unchanged unless it overlaps the destination field.

SHIFT LEFT

OP =A

SFTL

Shift Left performs a decimal digit shift to the left. Digit positions on the right

end of the field, except the sign position, are filled with zeros as shifting pro­

ceeds. The sign i~ not shifted and left unaltered. Digits on the left end are

shifted out and lost.

Note that the number of shifts refers to the digit positions shifted and not the

number of bytes. Also note that the true number of shifts is given and not the

number minus 1. Therefore, zero shifts can be specified causing no operation

to be performed. Shift Left provides a fast way to multiply by a power of ten,

and can be used for decimal point alignment, etc.

MOVE LEFT

OP= B

MOVL

Move Left transfers the source field to the destination field. The left-most byte

is moved first, then the move proceeds to the right one byte at a time.

If the source field is smaller than the destination field, the remaining right end

of the destination field is left unchanged. If the destination field ls smaller than

the source field, the move proceeds to the right until the destination field is

44 May 73

SUE G3 GB13020009103

full; then the move aborts so that all left-end bytes are transferred correctly.

The source field is left unchanged unless it overlaps the destination field.

COMPARE FIELD

OP= C

COMP

Compare Field compares the source field with the destination field. The compare

operates from left to right. If either field is shorter than the other, the shorter

field is considered to be extended to the right with ASCII blanks (AO) during the

compare operation. Status bits EQ (bit 0) and GT (bit 1) indicate the compare

results and are affected as follows:

Source = Destination

Source > Destination

Source < Destination

GT m
0

1

0

1

0

0

The compare assumes the collating sequence of ASCII (i.e. binary values of

8-bit characters as stored internally in core).

May 73 45

GB13020009103 SUE G3

SUE 1111B INSTRUCTION SET

INTRODUCTION

The SUE 1111B Instruction Set includes all instructions performed by processors

SUE 1110 (basic), 1110A, and 1111A, and the two Fetch and Clear instructions

described below. (Fetch and Clear, described for SUE 1110B and 1112B

processors, is repeated here for programmer convenience.)

Refer to Appendix A for instruction times.

FETCH AND CLEAR INSTRUCTIONS

A subclass of class code O, Fetch and Clear allows implementation of multi­

processor systems with shared resources.

FETCH AND CLEAR INSTRUCTION WORD FORMAT

XR

FCLW
FCLB

: IB ~p l,I AR IE
15 :..1.. 6 J 0

r-------------------1
I

: Extended Address ,
'- - - - - - - - - - - - - - - - - - _...J

B - Word when 0 (FCLW), byte when 1 (FCLB)

I - Indirect when 1

AR - Accumulator register designator (0-7)

E - Extended or two-word instruction when 1

XR - Index register designator (0-7), no indexing when 0

FETCH AND CLEAR OPERATIONS

This instruction reads and clears the designated memory word or byte and

places the previous contents into the designated register. In particular it

46 May73

GB13020009103 SUE G3

allows a processor to read a memory operand without allowing another proces­

sor to read the same memory operand before it has been cleared by the first

processor.

May 73

NOTE

Both the memory cell and the designated
register are cleared by this instruction when
performed with SUE lllOA, llllA, and 1112A
processors. SUE 1110 (basic) processor
traps on this instruction.

47/48

SUE G3 .GB13020009103

SUE 1112A INSTRUCTION SET

INTRODUCTION

The SUE 1112A Double Precision Processor performs all instructions described

in this bulletin for SUE 1110 (basic), lllOA, and the extended instructions

described in this section.under SUE 1112A. Following is a list of the 1112A

extended instructions and their class codes:

Instruction

Bit Manipulation

Move

Normalize and Count

Double-Length Shift

Single Precision Fixed Point

Double Precision Fixed Point

Control

DOUBLE PRECISION DATA FORMAT

Class Codes
·(Hexadecimal)

4

4

A

A

B

B

0

Double-precision data operations are accommodated by the following format:

Word 0

Word 1

s
S'
15 14

Data (AR, even)

Data (AR+l, odd)
0

Word O - Most significant fifteen bits of the fixed-point number

Word 1 - Least significant fifteen bits of the fixed-point number

Range - - (230) ~ Number< + (230)

May 73

S - Sign bit of the 32-bit twos complement fixed-point number

S' - Sign bit extension in the least significant word

49

GB13020009103

Upon termination of all

double-length arithmetic normalize,

double-length arithmetic shift, and

double-precision add, subtract, and multiply

SUE G3

instructions, sign S' is adjusted to reflect sign S unless bits 14 through 0 of

word 1 are all zeros. In that event, sign S' also is zero. Also, on these

double-length instructions, and double-length Load And Store: the zero indi­

cator (ZE) reflects the condition of both words, the sign indicator (NG) reflects

the sign of the most significant word, and the odd indicator (OD) reflects the

value of the least significant bit of the least significant word.

NOTE

To take the two's complement of a double
precision number, use the following proce­
dure: If the least significant word is not
zero, take the two's complement of the least
significant word and the one's complement of
the most significant word. If the least signifi­
cant word is zero, take the two's complement
of the most significant word.

INSTRUCTION TIMES

Refer to Appendix A for timing of SUE 1112A arithmetic instructions.

BIT MANIPULATION INSTRUCTIONS

Bit Manipulation Instructions use a subclass of class code 4. Each of six

operations in the bit manipulation instructions may alter status indicators NG,

ZE, OD, and CY, for subsequent testing by Branch Conditional instructions.

OV is unaffected. CY= O indicates the designated bit or bits are all ZEROs.

50 May73

SUE G3 .GB13020009103

BIT MANIPULATION INSTRUCTION FORMATS

Three instruction word formats are used by bit manipulation instructions:

Single Blt Addressed by (XR)

c OP

7 6 3 2 0

I 1-6 I 4
15

OP - Operation code 1-6

AR - Accumulator register (0-7) that contains the operation result

XR - Index register of which the least significant four bits contain the
bit number to be tested and modified.

Single Bit Exolicitly Designated by K

c OP K

4 I 1-6
0 15

OP - Operation code 1-6

AR - Designator (0-7) for the accumulator register that contains the
operation result

K - A four-bit value that specifies the bit number to be tested.

Multiple Bits Selected by the Mask and (XR)

c

I .. ::
XR

4

15 7 6 3 2 0

Mask

OP - Operation code 1-6

AR - Designator (0-7) for the accumulator register that contains the
operation result

Mask - Second word of extended instruction to select the bits for testing
and modification.

XR - If O, only the mask field is used to determine the bits to be tested;
if 1-7, the mask is ANDed with the content of XR to select the
bits to be tested and modified.

May 73 51 .

GB13020009103 SUE G3

BIT MANIPULATION OPERATIONS

Following are bit manipulation operations. Each of the operations (OP codes 1-6)

tests the designated bit or bits and sets CY if any are not zero; resets CY if all

are zero.

Operation
Code Mnemonic

1 RBIT

2 SBIT

3 CBIT

4 IBIT

5 TSBT

6 TBIT

MOVE INSTRUCTIONS

Description

Make the designated bit or bits ,a O,
all others unchanged

Make the designated bit or bits a 1,
all others unchanged

Change the designated bit or bits,
all others unchanged

Isolate the designated bit or bits,
all others reset to 0

Test the designated bit or bits and
shift (AR) left one. The bit shifted
out of (AR) 15 is lost and a zero is
shifted into (AR)o

Only test the designated bit or bits

Another subclass of class code 4 is used by the Move instructions. There are

four operations, each of which may alter status indicators NG, ZE, and OD for

subsequent testing by Branch Conditional instructions. CY and OV are unaffected.

MOVE INSTRUCTION FORMAT

52

c

4

15 7 6 3 2

AR - Destination register designator

XR - Source register designator

XR

0

May 73

SUE G3 GB:;.3020009103

MOVE OPERATIONS

Following are Move instruction operations:

1-J
Codes

I=O, J=O

I=O, J=l

I=l, J=O

I=l, J=l

Mnemonic

NEGT

CPLM

MOVP

MOVM

Description

Move the twos complement value of register
XR to register AR. The content of XR is
unchanged unless XR =AR.

Move the ones complement value of register XR
to register AR. !rhe content of XR is unchanged.

Move the positive magnitude of register XR to
register AR. The content of XR is unchanged.

Move the negative magnitude of register XR to
register AR. The content of XR is unchanged.

NORMALIZE AND COUNT INSTRUCTIONS

A subclass of class A (Shift) instructions is used by the Normalize And Count

instructions. There are 8 instructions, 4 single-, and 4 double-length.

NORMALIZE AND COUNT INSTRUCTION FORMAT

c XR

A16

15 11 10 7 6 2 0

B - 0 = single length shift, 1 = double length shift

AR - Designator of register to be shifted

XR - Designator of register to be incremented by shift count

NORMALIZE AND COlTNT OPERATIONS

Following are Normalize And Count operations:

Operation Code

Single Length
0
2
4
6

May 73

Mnemonic

SLAN
SLLN
SRAN
SRLN

Description

Single left arithmetic normalize
Single left logical normalize
Single right arithmetic normalize
Single right logical normalize

53

GB13 020009103

Operation Code

Double Length
0
2
4
6

Mnemonic

DLAN
DLLN
DRAN
DRLN

SUE G3

Description

Double left arithmetic normalize
Double left logical normalize
Double right arithmetic normalize
Double right logical normalize

The register (AR), or pair of registers, (AR and AR+l, where AR is even) is

shifted in the direction indicated until the requested condition is met. The count

of positions shifted is added to (XR). A maximum shift of 15 (31 for double) may

occur. If the register or registers indicated for normalize contain zero, the

instruction sets only the status bits; AR and XR are not altered. Also, on

double arithmetic normalize, the sign position of the odd register is ignored by

the zero test; but the position is set to the sign of the even register, or it is

cleared if the odd register bits 14 to 0 are all ZERO. Double-length arithmetic

format is described under INTRODUCTION at the beginning of this section.

SINGLE LEFT ARITIIMETIC NORMALIZE SLAN

OP= o --isl I AR 11-o
15 14 0

[shift stops when bits (AR)15 and (AR)14 are different]

If any (AR)14 is the same as (AR) 15, shift until these bits differ. Then add the

shift count to (XR). ZEROs are shifted into (AR)o and bits shifted out of (AR)15

are lost. Status bits NG, ZE, OD are affected accordingly. CY and OV are

unaffected.

SINGLE LEFT LOGICAL NORMALIZE SLLN

OP= 2 -1sl AR 11-o
~ 0

[shift stops when (AR)15 = 1]

(AR) 15 is tested for a set condition; if not set, (AR) is shifted left. Zero is

shifted into (AR)o• When (AR) 15 is set, the operation terminates and the shift

count is added to (XR). Status bits NG, ZE, and OD reflect the shift result.

CY and OV are unaffected.

54 May 73

SUE G3 GB13020009103

SINGLE RIGHT ARITHMETIC NORMALIZE SRAN

OP= 4 Gsf1 AR I~
15 14 0

[shift stops when (AR)o = 1]

(AR)o is tested for a set condition. If not set, (AR) is shifted right. (AR)15,

the sign bit, remains the same and is shifted into (AR)14. When (AR)o is set,

the operation terminates and the shift count is added to (XR). Status bits NG,

ZE, OD reflect the shift result. CY and OV are unaffected.

SINGLE RIGHT LOGICAL NORMALIZE SRLN

OP= 6 o-Jsl AR I~
15 0

[shift stops when (AR)o = 1]

(AR)o is tested for a set condition. If not set, (AR) is shifted right. Zero bits

are shifted into (AR) 15• When (AR)o is set, the operation terminates and the

shift count is added to (XR). Status bits NG, ZE, and OD reflect the shift

result. CY and OV are unaffected.

DOUBLE LEFT ARITHMETIC NORMALIZE DLAN

OP ~ 2 -1srl- H - - ~~ H n -, ~ -il=r-----_o _A_R_+l ___ , J-o
1514 0 14 6

[Shift stops when bits (AR)15 and (AR)14 are different]

If any (AR)14 is the same as (AR)15, shift until these bits differ. Then add the

shift count to (XR). ZEROs are shifted into (AR+l)o and (AR+1) 14 is shifted into

(AR)o• When shift stops: (AR+l)15 = 0 if (AR+lh4-0 = O; if not, (AR+l)15 =

(AR) 15• Status bits NG, ZE, and OD are affected accordingly. CY and OV are

unaffected.

May 73 55

GB13 020009103

DOUBLE LEFT LOGICAL NORMALIZE

OP= 2

SUE G3

DLLN

-isl AR 11- I~ AR+l I l-o
o ~15,.._~~~~~~~~~o 15

[shift stops when AR 15 = 1]

(AR) 15 is tested for a set condition; if not set, (AR) is shifted left. ZEROs are

shifted into (AR+l)0• (AR+l) 15-is shifted into (AR)o. When (AR)15 is set, the

operation terminates and the shift count is added to (XR). Status bits NG, ZE,

and OD reflect the shift result. CY and OV are unaffected.

DOUBLE RIGHT ARITHMETIC NORMALIZE DRAN

OP =4 qri- -- -A~ - -- - -1-,--31 1--A-R-+l--........ 1 r--
15 0 14 0

[shift stops when (AR+l)o = 1]

(AR+l)o is tested for a set condition. If not set, (AR) and (AR+l) are shifted

right. (AR)i5, the sign bit, remains the same and is shifted into (AR)14.

(AR)o is shifted into (AR+l)14. When (AR+l)o is set, the operation terminates.

Upon termination, (AR+l)15 is adjusted to reflect the sign of the even register.

DOUBLE RIGHT LOGICAL NORMALIZE DRLN

OP= 6

o-lsl AR 11 -jsj AR+l 1r
15 0 15 0

[shift stops when (AR+l)o = ~

Zero is shifted into (AR)15• (AR+l)o is tested for a set condition. If not set,

(AR) and (AR+l) are shifted right and (AR)o is shifted into (AR+1) 15• When

(AR+l)o is set~' the operation terminates and the shift count is added to XR.

Status bits NG, Z E, and OD reflect the shift result. CY and OV are unaffected.

DOUBLE LENGTH SHIFT INSTRUCTIONS

A subclass of class A (Shift) instructions is used by the Double-Length Shift

Instructions. There are 8 instructions, corresponding to the 8 single-length

shifts.

56 May 73

SUE G3 GB13020009103

DOUBLE-LENGTH SHIFT INSTRUCTION FORMAT

Two formats are shown below. The shift count is contained either in the

register designated by XR (bit 7 = 0), or in instruction bits 4 through O,

designated by K (bit 7 = 1).

Shift Indexed

Shift Immediat

15 1 1312 11 1 9 8

Al6 1 OP

1 OP

7 6 5

0 AR

1 AR

3 2 1 0

0 XR

K
--~~~--~---~~-----~~......_~~~~--

AR - Designates the register pair (2, 3; 4, 5; or 6, 7) to be shifted

XR - Designates register containing the shift count

K - Shift count for immediate. Note that the field contains 5 bits,
extending into bit position 4 (which is not used by AR).

OP - Shift operation code

DOUBLE-LENGTH SHIFT OPERA TIO NS

The double-length shift operations are similar to the single-length shift subclass,

and are defined as follows:

Operation
Code

0

1

2

3

4

5

6

7

Mnemonic

DLAO

DLLL

DLLO

DLLC

DRAO

DRLL

DRLO

DRLC

Operation

Double Left Arithmetic Open

Double Left Logical Linked

Double Left Logical Open

Double Left Logical Closed

Double Right Arithmetic Open

Double Right Logical Linked

Double Right Logical Open

Double Right Logical Closed

On arithmetic shifts, the inter-register shift coupling ls between bit 0 of the

even register and bit 14 of the odd register.

May 73 57

GB13020009103 SUE G3

DOUBLE LEFT ARITHMETIC OPEN DLAO

OP :fil-1 sff-----:R------, ~ --1-~ _,_--o __ A_R_+ l---1 r-- O

15 14 0 14 0

§1--U
(AR) and (AR+l) are shifted left. (AR) 15 is shifted to carry (CY), and zeros are

shifted into (AR+l) 0• If any (AR) 14 bit shifted is different than (AR)i5, overflow

indicator, OV, is set. When shift stops: (AR+l)15 = O if (AR+l) 14_0 = O; if not,

(AR+l)i5 = (AR)15. Operation affects status indicators CY, OV, NG, ZE, OD.

DOUBLE LEFT LOGICAL LINKED

OP= 1

~-~l~ ___ A_R ___ J0~

DLLL

-~51 ___ AR_+_l __ lh
Carry (CY) is shifted into (AR+l)0• (AR) 15 is shifted into CY. Operation

affects status indicators: CY, NG, ZE, OD. (OV cannot set as in SLLL.)

DOUBLE LEFT LOGICAL OPEN

OP= 2

--isl AR
15

DLLO

I~
0

(AR) and (AR+ 1) are shifted left. For each bit shifted, (AR) 15 is lost and

(AR+ 1)0 equals o. Operation affects status indicators: NG, ZE, OD.

DOUBLE LEFT LOGICAL CWSED

OP= 3

DLLC

c""""1~l ___ A_R __ __...,,.J J~ • ...,,.ijJ ___ A_R_+_l ---...1.IJ
(AR) and (AR+ 1) are shifted left. (AR) 15 is shifted into (AR+ l)o• Operation

affects status indicators: NG, ZE, OD.

58 May73

SUE G3 GB13020009103

(AR+ 1) and (AR) are shifted right. Sign bit (AR) 15 remains the same and is

shifted into (AR)14. (AR+ l)o bits shifted out are lost. When shift stops:

(AR+ 1)15 = 0 if (AR+ lh4-0 = O; if not, (AR+ 1)15 = (AR)15. Operation affects

status indicators: NG, ZE, OD.

DOUBLE RIGHT LOGICAL LINKED

OP= 5

DRLL

~-~j--~~-A_R~~--~-0j~ ----l~~j--~~A_R_+_1~~~1.~

Carry (CY) is shifted into (AR)i5• (AR+ 1)0 is shifted into CY. Operation

affects status indicators CY, NG, ZE, OD.

DOUBLE RIGHT LOGICAL OPEN

OP= 6

DRLO

0 --lsl AR I f
~u,..__~~~~~~~--~a

·_&•l __ A_R_+l __ .._.I ~
u 0

(AR) and (AR+ l) are shifted right. For each bit shifted, (AR+ 1)0 is lost, and

(AR) 15 equals o. Operation affects status indicators: NG, ZE, OD.

DOUBLE RIGHT LOGICAL CLOSED

OP= 7

DRLC

c-~l ___ A_R __,.101 :-'~i _____ AR_+_1 --'I]
(AR) and (AR + 1) are shifted right. (AR+ l)o is shifted into (AR) 15• Operation

affects status indicators: NG, ZE, OD.

May 73 59

GB13020009103 SUE G3

CLASS B INSTRUCTION SET

The Class B instruction set contains two sets of arithmetic instructions: single­

precision fixed point and double-precision fixed point.

CLASS B INSTRUCTION FORMAT

AR

Bl6

15 3 2 0

M

OP - Operation code

I - Indirect address indicator

AR - Accumulator register pair for fixed point instructions (See
definition below)

E - Extended address indicator

XR - Index register designator

M - Extended address (if required)

ACCUMULA 10R REGISTERS

A register pair beginning with an even-numbered register, such as (R2, R3),

(R4, R5) or (R6, R7) are defined as one accumulator for some single-precision

and all double-precision fixed point instructions. An attempt to use RO or Rl

as an accumulator causes a level-5 interrupt.

SINGLE-PRECISION FIXED POINT INSTRUCTIONS

Three single-precision fixed point instructions supplement the basic in~truction

set. These extended instructions have a one-word memory operand and a two­

register accumulator operand.

ADDRESSING MODES. - Standard memory-to-register addressing is permitted

within this subclass. The accumulator registers are designated as a pair of

registers addressed by the even-numbered register of the pair. The even­

numbered register contains the most significant data.

60 May 73

SUE G3 GB13020009103

ONE-WORD OPERAND FORMAT. - Following is the one-word operand format:

M

15 14 0

S - Sign bit of the 16-bit twos complement fixed point number

M - Remaining 15 bits of the fixed point number

-(215) ~NUMBER< +(215)

Format for double-length word is described under INTRODUCTION to this section.

SINGLE-PRECISION FIXED-POINT OPERATIONS

Three single-precision operations are described as follows:

Opera- Mnemonic Status
ti on and Indicators
Code AR O:eeration Descri:etion Affected

3 2,4,6 MLTA Multiply the data in the odd- NG, ZE, OD, CY
(Multiply, numbered register by the
Add) effective operand, and add

the contents of the even-
numbered register. A two-
word product is formed in
the combined registers.

3 3, 5, 7 MULT Multiply the data in the odd- NG, ZE,OD
(Multiply) numbered register by the

effective operand to form a
two-word product in the
even-odd register pair.

4 2-3, DIVD Divide the data in the two- OV, NG, ZE, OD
4-5, (Divide) register accumulator by the
6-7 effective operand. A pro-

perly-signed quotient
results in the odd-numbered
register, with the remainder
(in the even-numbered regis-
ter) having the same sign as
the original dividend.

May73 61

GB13020009103

NOTES

a. If register 0 or 1 is specified as AR, the instruc­
tion traps as an unimplemented instruction.

b. A multiplier or divisor of 8000 (i. e., - 65, 536,
the most negative number) has the same effect as
if zero; results in setting OV on divide.

c. A multiplicand or addend of 8000 is treated as
-65, 536.

d.' A dividend of 8000 0000 (i.e. , most negative
double-precision number) causes a divide check
result.

DOUBLE PRECISION FIXED-POINT INSTRUCTIONS

SUE G3

Four double-precision, fixed-point instructions are provided in the extended

instructions. Each has a two-word memory operand and a two-register

accumulator operand. Format for double precision fixed point words is

described under INTRODUCTION to this instruction set.

ADDRESSING MODES. - Standard memory-to-register addressing is permitted

within the extended class. No other addressing modes are permitted. The

effective memory address is the address of two consecutive memory words,

the first containing the most significant data. The accumulator registers are

designated as a pair of registers, addressed by the even-numbered register of

the pair (e.g. R2 of the R2, R3 pair). The even-numbered register contains

the most significant data.

62 May 73

SUE G3 GB13020009103

DOUBLE PRECISION FIXED POINT OPERATIONS

Four operations are described as follows:

Opera- Mnemonic
ti on and Status Indicators
Code AR O:Eeration Descri:Etion Affected

5 2,4,6 DLOD Move the contents of the NG, ZE,OD
(Double two consecutive words
Load) located at the effective

address to the combined
registers.

0 2,4,6 DSTA Move the contents of the NG,ZE,OD
'(Double two registers to the two

Store) consecutive words located
at the effective address.

2 2,4,6 DADD Add the contents of the CY,OV,NG, ZE,OD
(Double consecutive words located
Add) at the effective address to

the two registers.

1 2,4,6 DSUB Subtract the contents of CY,OV,NG, ZE,OD
(Double the two consecutive words
Subtract) located at the effective

address from the two
registers.

\11

NOTE

If register O is specified as AR, the instruc­
tion traps as an unimplemented instruction.

CONTROL INSTRUCTIONS

Four control instructions (mnemonics SKEY, JKEY, LCPU, LKEY) are in­

cluded in the SUE 1112A Instruction Set. Instruction Store Key (SKEY),

described in the SUE lllOA Instruction Set, is repeated here for programming

convenience.

May 73 63

GB13 020009103 SUE G3

CONTROL INSTRUCTION FORMATS

A subclass of class code O, the control instructions use the following format:

SKEY
JKEY

IS

c

0 l.

E - See description below

T

8 1

3 2 1 0

Jump Address

K - A two-bit value to be stored into the key bits of the address bus

Mnemonic E Description

SKEY O Store the value K into the key bits

JKEY 1 Store the value K into the key bits
and the jump address into the
program counter (i.e. jump)

c

Ill
T

I,
OP

l0 I
XR

LCPU

I 0 I LKEY 8 2-3
15 3 2 0

OP - Operation code 2-3

XR - Index register designator

Operation

64

Code Mnemonic Description

2 LCPU Load the processor number into (XR) 5, 6;
all other bits in (XR) are cleared.

3 LKEY Load the Lkey value into (XR) right justified.

May73

SUE G3 GB13020009103

SUE 1112B INSTRUCTION SET

INTRODUCTION

SUE 1112B Instruction Set includes all of the instructions performed by processors

SUE 1110 (basic), lllOA, 1112A and the two Fetch and Clear (word or byte)

instructions described below. The Fetch and Clear Instructions, described

also in the SUE lllOB and llllB Instruction Sets, are repeated here for pro-

grammer convenience.

FETCH AND CLEAR INSTRUCTIONS

A subclass of class code O, Fetch and Clear allows implementation of multi­

processor systems with shared resources.

FETCH AND CLEAR INSTRUCTION WORD FORMAT

FCLW
FCLB

c
0 IB OP II AR IE

II llO G : ' 1, : , I,
XR

IS 0

r-- --------------1
! Extended Address 1

L-------- - -- - -------1

B - Word when 0 (FCLW), byte when 1 (FCLB)

I - Indirect when 1

AR - Accumulator register designator (0-7)

E - Extended or two-word instruction when 1

XR - Index register designator (0-7), no indexing when 0

May 73 65

GB13020009103 SUE G3

FETCH AND CLEAR OPERATION

This instruction reads and clears the designated memory word or byte and

places the previous contents into the designated register. In particular it

allows a processor to read a memory operand without allowing another proces­

sor to read the same memory operand before it has been cleared by the first

processor.

66

NOTE

Both the memory cell and the designated
register are cleared by this instruction when
performed with SUE lllOA, llllA and 1112A
processors. SUE 1110 (basic) processor
traps on this instruction.

May 73

~
ll'

'<:
-.:i
~

>
I
~

General Instruction Class

ACCUMULATOR TO MEMORY, AUTO
DECREMENT

ACCUMULATOR TO MEMORY, AUTO
INCREMENT

ACCUMULATOR TO MEMORY

DATA TO ACCUMULATOR

MEMORY TO ACCUMULATOR, AUTO
DECREMENT

MEMORY TO ACCUMULATOR, AUTO
INCREMENT

MEMORY TO ACCUMULATOR

Table A-1. SUE 1110 (Basic) General Register Instruction Times

Class
Address Mode

Assembler
MOV

Code Mnemonic
OP= 0

1 Indexed R,(-R) 4.81
Extended Indexed R tli-lll_ 4.94
Indexed Ind I re ct R ~-l!l_ 5.95
Extended Indexed Indirect R *~l!l.. 6.23

2 Indexed R J":R+J 4.81
Extended Indexed R A_J!l+J.: 4.94
Indexed Indirect R ~R:':.l_ 5.95
Extended Indexed Indirect R *AJ.R:':l 6.23

3 Indexed R ,1fil 3.94
Extended RA 4.07
Extended Indexed R tlil!l.. 4.07
Indexed...._ Indirect R ~RJ. 5 08
Extended Indirect R *A 5.34
Extended Indexed Indirect R *Afil 5.34

4 R'!i\ster to R'!i\&ter R R 2.50
Immediate to RU[ster •H)X,R 2.50
Literal to R'!i\ster =l!J.XXXX R 3,18
Literal Indexed to R~ster =f!l_XXXX___IBL R 3.34

5 Indexed _l-l!L R 4.09
Extended Indexed AJ.-fil R 4.22
Indexed Ind I re ct ~-1!1 R 5.23
Extended Indexed Indirect *AJ.-1!1..R 5.49

6 Indexed J::R-tJ.::R 4.09
Extended Indexed AJ:R.;l: R 4,22
Indexed Indirect ".i!El: R 5.23
Extended Indexed Indirect *&R+1R 5.49

7 Indexed _Jfil R 3.35
Extended AR 3.48
Extended Indexed A.J!!L..R 3.48
Indexed Indirect ~RJ...R 4.49
Extended Indirect *AR 4.75
Extended Indexed Indirect ·~R 4.75

SUB
OP= 1

4.93
5.06
6.07
6.33
4.93
5.06
6.07
6.33
4,06
4.19
4.19
5.20
5.46
5.46
2.79
2.79
3.47
3.63
4.38
4.51
5.52
5.78
4.38
4.51
5.52
5.78
3.64
3.77
3.77
4.78
5 04
5.04

Operation Word or Byte, Time In Microseconds

ADD
OP= 2

4.90
5.03
6.04
6.30
4.90
5.03
6.04
6.30
4.03
4.16
4.16
5.17
5.43
5.43
2. 79
2.79
3.47
3.63
4.38
4.51
5.52
5. 78
4.38
4.51
5.52
5.78
S.64
3.77
3.77
4. 78
5.04
5.04

AND !OR EOR
OP=3 OP= 4 OP= 5

4.81
4.94
5.95
6.23
4.81
4.94
5.95
6.23
3.94
4.07
4.07
5.08
5.34
5.34
2.50
2.50
3.18
3.34
4.09
4.22
5.23
5.49
4,09
4.22
5.23
5.49
3,35
3,48
8.48
4.49
4.75
4.75

4.81 4.81
4.94 4.94
5.95 5 95
6.23 6.23
4.81 4.81
4.94 4.94
5.95 5.95
6.23 6.23
3.94 3.94
4.07 4.07
4.07 4.07
5.08 5.08
5.34 5.34
5.34 5.34
2.50 2.50
2.50 2.50
3.18 3.18
3,34 3.34
4.09 4.09
4.22 4.22
5.23 5.23
5.49 5.49
4.09 4.09
4.22 4.22
5.23 5.23
5.49 5.49
3.35 3.35
3.48 3.48
3.48 3.48
4.49 4.49
4,75 4.75
4.75 4.75

Instruction
Set

CMP
OP= 6

4.57
4.70
5 71
5.97
4.57
4.70
5.71
5.97
3.70
3.83
3.83
4.84
5.10
5.10
2.69
2.69
3,37
3.53
4.41
4.54
5.55
5.81
4.41
4.54
5.55
5.81
3.67
3.80
3.80
4.81
5,07
5.07

TST
OP= 7

4.22
4.35
5~36

6.21
4.22
4.35
5.36
6.21
3.35
3.48
3.48
4.49

:i:34
5.34
a.so
2.50
3,18
3.34
4.09
4.22
5.23
5.49
4.09
4.22
5.23
5.49
3.35
3 48
3.48
4.49
4. 75
4.75

-~
;3 >
c:: 1-"C
n 1-"C
~ t:j

o~ z-
~ ><
~>
t:j
00

C'IJ c::
t:j

0
c.:i

0
tJ:I
~
c.:i
0
l>:)
0
0
0
co
~
0
c.:i

>
I

N>

~
Ill
<
-.:i
~

General lnstruchon Clase;

ACCUMULATOH TO MEMOHY,
AUTO DECHEMENT

ACCUMULATOH TO MEMOHY,
AUTO INCHEMENT

ACCUMULATOH TO MEMO!!Y

ACCUMULATOH/EXPLICIT
DATA TO ACCUMULATOR

MEMOHY TO ACCl'MULATOH,
AUTO DECREMENT

MEMORY TO ACCUMl:LATOH,
AUTO INCREMENT

MEMORY TO ACCt:Ml:I..ATOH

JUMP OR CALL SUBROUTINE

FETCH AND CLEA!!

Table A-2. SUE lllOA/B, llllA/B, and 1112A/B General Register Instruction Times

Assembler Operation Word or ~ Tlme in Microseconds
Class

Address Mode
Mnemomcs MOY (W/B) SUB (W/B) ADD (W/B) AND (W/B) !OR (W/B) EOR (W/B) CMP (W/B)

Code
OP l Operands

OP~ 0 OP= 1 OP= 2 OP= 3 OP= 4 OP= 5 OP= 6
Code Result.S Result>

l Hegister Address (Indexed) ---- H,(-R) 4. 73 4. 86 4. 76 4. 73 4. 73 4.73 4.34 4.43
Extended (with/without Indexing) ---- H,A(-H) 4. 73 4. 89 4.79 4. 76 4.76 4. 76 4.37 4.46
Hegister Address, Indirect (Woro)I ---w H,*(-R) 6. 71 6. 87 6. 77 6. 74 6. 74 6.74 6. 35 6.44

(Byte) ---B H,*(-H) 5. 96 6. 12 6. 02 5. 99 5. 99 5.99 5.60 5. 69
Extended, Indirect (Word)! ---w H, *A(-H) 6. 32 6.48 6.38 6.35 6. 35 6. 35 5. 96 6. 05

(Byte) ---B R, *A(-H) 5. 70 5. 86 5. 76 5. 73 5. 73 5. 73 5,34 5,43
2 Hegi ster Address (lndexeilj ---- H,(H+) 4. 73 4.86 5. 76 4. 73 4. 73 4. 73 4.34 4.43

Extended (with/without Indexing) ---- R,A(H+) 4. 80 4.96 4. 86 4. 86 4. 86 4.86 4.44 4. 53
Hegister Address, Indirect (Word)l ---W R,*(H+) 6. 71 6. 87 6. 77 6.74 6. 74 6. 74 6. 35 6.44

(Byte) ---B R,*(R+) 5.96 6.12 6,02 5. 99 5.99 5,99 5. 60 5. 69
Extended, Indirect (Word)1 ---w R, *A(Rr) 6. 39 6,55 6.45 6.42 6. 42 6.42 6. 03 6.12

..illl'.!!&. ---B R *~R~ 5. 77 5. 93 5.83 5. 80 5. BO 5.BO 5. 41 5. 50
3 Hegister Address (Indexed) ---- H,(H) 3. 76 4.22 4.12 4. 09 4.09 4,09 3. 70 3. 79

Extended (with/without Indexing) ---- H,A(R) or R,A 3.83 4, 16 4.06 4. 03 4.03 4.03 3. 64 3. 73
Regtster Address, Indirect (Worcl)l ---w R, '(R) 5. 74 6. 07 5. 97 5.94 5.94 5.94 5. 55 5.64

(Byte) ---B R,*(R) 4. 99 5.32 5. 22 5. 19 5.19 5.19 4.80 4. 89
Extended, Indirect, (Word)l ---w R,*A(R) orR, *A 5.42 5. 75 5.65 5.62 5. 62 5.62 5.23 5. 32

(w /wo Indexing) (Byte) ---B R, *A(R) or R, *A 4.80 5.13 5,03 5. 00 5.00 5. 00 4. 61 4.70
4 Register to Register ---- R,R 2.24 2. 66 2.53 2.24 2.24 2.24 2.40 2,49

Indexed, Literal ---- =H)XXXX,R 3. 12 3. 54 3.41 3.12 3. 12 3.12 3. 28 3.37
Literal (Full Word) ---- =H)XXXX(R), R 2.96 3. 38 3. 25 2. 96 2. 96 2. 96 3. 12 3. 21
Immediate (Four-bits) ---- =H)X,R 2.24 2.66 2.53 2.24 2.24 2,24 2.40 2,49

5 Heg1ste r Address (Indexed) ---- (-R), R 4. 05 4.47 4.34 4. 05 4.0S 4.05 4. 21 4.30

Extended (w1th/w1thout Indexing) ---- A(-R),R 4. 08 4.50 4. 37 4. 08 4.08 4. 08 4.24 4.33
ilegister Address, Indirect (Word)! ---w *(-R), R 6. 06 6.48 6,35 6. 06 6.06 6. 06 6. 22 6. 31

(Byte) ---B *(-R),R 5. 31 5. 73 5,60 5. 31 5. 31 5.31 5. 47 5. 56
Extended, Indirect (Word)l ---w *A(-R), R 5, 67 6. 09 5,96 5.67 5. 67 5. 67 5. 83 5. 92

...i!!Y!~ ---B *~fil...R 5. 05 5. 47 5,34 5.05 5. 05 5. 05 5.21 5.30

6 Heg1ster Address (Indexed) ---- (R+),R 4. 05 4,47 4.34 4.05 4.05 4.05 4. 21 4. JO

Extended (with/without Indexing) ---- A(R+),R 4. 15 4. 57 4.44 4.15 4.15 4.15 4.31 4.40

Hegister Address, Indirect (Word)l ---w *(H+), R 6. 06 5.48 6.35 6. 06 6. 06 6.06 6.22 6. 31

[Byte) ---B *(R+),R 5. :n 5. 73 5.60 5. :n 5. 31 5. 31 5.47 5. 36
Extended, Indirect (Word)l ---w *A(R+),il 5.74 6. 16 6. 03 5.74 5. 74 5. 74 5. 90 5.99

...i!!Y!tl. ---B ·~:':Lil 5. 12 5. 54 5,41 5. 12 5.12 5.12 5.28 5.37

7 Reg1ster Address (in::lexed) ---- (R),R 3. 54 3.96 1. 83 3. 54 3. 54 3.54 J. 70 3,79

Extended (with/without Indexing) ---- A(R), R or A, H 3. 48 3.90 3,77 3,48 3,48 3,48 3.64 3. 73
ilegister Address, Indirect (Word)l ---w *(R), R 5. 39 5. 81 5. 68 5. 39 5,39 5. 39 5. ;;5 5.64

(Byte) ---B *(R), H 4.64 5. 06 4. 93 4.64 4.64 4.64 4. 80 4. 89
Extended, Indirect, (Word)l ---w *A(R), R or *A, R s. 07 5.49 5. 36 5. 07 5. 07 5. 07 5. 23 5.32

(w /wo lnd<•xing) (Byte) ---B *A(R), R or *A, R 4.45 4. 87 4. 74 4.4S 4.45 4.45 4.61 4. 70

4 Register Address (Indexed) Jl'MP R
JSBR R,R 3. 01

Extended ("1th/without Indexing) JUMP A or A(R)
NOTE

JSBH A, R or A(R), R :!.04
lleg1stPr Address, Indirectl ,JUMP *H 1 Add 1. 01 microseconds for each additional level of in<lirect.

JSBR "'R,R s. 02
Extended, Ind! reel 1(w /wo Indexing) JUMP *A or *A(il)

JSBR *A, Hor *A(R),R 4. 63
0 Rep;1st<•r Addri•ss (Indexed) ---- (il),R 5. 02

F.xtended (with/without Indexing) ---- A(il),RorA,R 4.96
Hegisl<'r Address, lndlrect(Word)I FCLW *(II), R 6. 87

(Byte) FCl.B *(R), il 6. 12
~.xtenrll'i, lndlrPct (Word) I FCLW *A(R),Ror•A,~ 6. 55

(B.vte) FCLB *A(R),Ror*A,r~ 5. 9:1

TST (W/B)
OP= 7

4.31
4.34
6. 32
5. 57
5. 93
5. 31

4.31
4.41
6. 32
5. 57
6. 00
5 38
3.67
3. 61
5.52
4.77
5.20
4.58
2.24
3, 12
2.96
2.24
4.05
4. 08
6.06
5. ~l
5. 67
5. 05
4.05
4, 15
6.06
5. 31
5.74
5. 12
3,54
J.48
5.39
4.64
;;. 07
4,45

0
to
~
0
N>
0
0
0
c.o
0
~

~
t"l

8

SUE G3 GB13020009103

Table A-3. SUE 1110 (Basic), lllOA/B, llllA/B and 1112A/B
Control Instruction Times

Instruction
Assembler

Time (microseconds)
Mnemonic

Halt HALT 1. 01 + time to restart

Reset Programmable RSTS 1.59
Status Indicators

Set Programmable Status SETS 1.72
Indicators

Enable Interrupts ENBL 1. 85

Enable and Wait ENBW 2. 80 + time to interrupt

Disable Interrupts DSBL 1. 98

Disable and Wait DSBW 2. 80 + time to interrupt

Wait WAIT 2. 80 + time to interrupt

Status to Memory STSM 2. 14 Absolute, 2. 46 Relative

Registers to Memory REGM 7. 24 Absolute, 7. 56 Relative

Return from Interrupt RETN 4. 26 Absolute, 4. 58 Relative

Memory to Status MSTS 2. 47 Absolute, 2. 79 Relative

Memory to Registers MREG 7. 93 Absolute, 8. 25 Relative

Store Key SKEY* 2.6

*Not available in SUE 1110 (Basic) Processor

SINGLE SHIFT INSTRUCTION TIMING FOR SUE 1110 (Basic), lllOA/B,
llllA/B, 1112A/B

Shift instruction execution times depend on the number of single bit shifts

specified in either the K field (immediate) or the selected register, XR. The

time is calculated by the formula:

where N = 0, 1, ... , 15.

May 73

T = 2. 76 + (0. 26)N
s

A-3

G B13 02 O 009103 SUE G3

A-4

Table A-4. SUE 1110 (Basic) Branch Instruction Times

Assembler
Time (microseconds)

Instruction
Mnemonic

Next Word

No Operation NOPR 1.78

Branch Unconditional BRUN -

Branch True BxxT* 1.78

Branch False BxxF* 1. 78

Branch Less Than True BLTT 1. 75

Branch Less Than False BLTF 1. 88

*where xx= EQ, GT, OV, CY, Fl, F2, F3, LP, OD, ZE, NG.

Table A-5. SUE lllOA/B, llllA/B and 1112A/B
Branch Instruction Times

Branch

-

2.72

2.72

2.72

3. 08

3.08

Assembler
Time (microseconds)

Instruction
Mnemonic

Next Word Branch

No Operation NOPR 1.75 -
Branch Unconditional BRUN - 2.82

Branch True BxxT* 1. 75 2.82

Branch False BxxF* 1.75 2.82

Branch Less Than True BLTT 1. 75 3. 21

Branch Less Than False BLTF 1.88 3. 21

*where xx= EQ, GT, OV, CY, Fl, F2, F3, LP, OD, ZE, NG.

May 73

SUE G3 GB13020009103

SUE llllA/B CLASS C INSTRUCTION TIMES

DECll\/IAL AND CHARACTER INSTRUCTIONS

DECIMAL ADD AND SUBTRACT TIMING

Both the decimal add and subtract operations are started with a sign analysis to

determine whether true addition (ADDD with like signs or SUBD with unlike

signs), or true subtraction (ADDD with unlike signs or SUBD with like signs)

is to occur. Timing for both situations can be calculated using the following

case formats and procedures:

TRUE ADDITION CASE FORMATS

a. Propagate
if final carry
out of L

May 73

lxxlxx I <991=991~~
DL>SL=L

A-5

GB13020009103 SUE G3

TRUE ADDITION TIMING PROCEDURES

For Case Conditions Times
Step Formats (Times in Microseconds) (Microseconds)

1 a, b, c, d Start with the basic time of 10. 70 and 10. 70
go to Step 2.

2 a, b, c, d For each digit pair to be added (in- 3. 21L
eluding units and signs) add in 3. 21
and go to Step 3.

3 a, b, c, d STOP if no final carry from the sum- +O
mation; otherwise take Step 4.

4 c,d Add in O. 26 and STOP if SL t!' DL; + 0.26
otherwise take Step 5.

5 a,b For each digit pair in the extension 2. 70P
field (i.e. where DL >SL or P > 0) that
equals 99, add in 2. 7 until a non-99
pair is encountered (take Step 6), or the
extension field runs out (take Step 8).

6 a Add in 2. 30 and STOP if the LSD of an +2.30
extension pair is not 9; otherwise take
Step 7.

7 a Add in 2. 33 and STOP when the MSD of +2.33
an extension pair is not 9.

8 b Add in O. 26 and STOP when the exten- +O. 26
sion field runs out (i. e. only 99 is
encountered).

Example

I 07 I 99 I 7 4 I 3 + I minus j 42 I 6-1
f-_ L_j

equals

L=2,

I 08 I oo I 16 I 9+ I
~p~ P=l,

time = 10. 70 basic
3 x 3. 21 summation

2. 70 propagate carry
+ 2. 30 terminate carry

22. 12 microseconds total

Case format: a

A-6 May73

SUE G3 GB13020009103

TRUE SUBTRACTION CASE FORMATS

L
e. Propagate I= I xx! >O t ~o~ DL -1 if final borrow

out of L SL

P~O DL>SL=L

L
f. Propagate and

~o;~ DL recomplement
if final borrow SL
out of L

DL-SL=P 0 DL>SL=L

L
g. No propagate and

DL
recomplement
if final borrow SL
out of L

P=O DL=SL=L

L
h. No propagate and DL

recomplement
if final borrow SL
out of L

P=O SL >DL= L

RECOMPLEMENT CASE FORMATS

j. Units digit :f O,
start nine's complement

k. Short ten' s
complement

1. Extended ten's
complement

May 73

1:
DL

1>0±1
_j N=DL-1

i--------- DL -----------i

l xxl xxlxxjxxlxxlxxlxxlxxlxxl >O I O± I
~ N=DL-2 ~

i-------- DL~-----------1

I xxlxxlxxlxxlxxlxxlxxl>oJ oo I oo IO± I
1... N=DL-2-T .. 1 ~ T --1

A-7

GB13020009103 SUE G3

TRUE SUBTRACTION TIMING PROCEDURE

For Case Conditions Times
Step Formats (Times in Microseconds) (Microseconds)

1 e, f, g, h Start with the basic time of 10. 99 and 10.99
go to Step 2.

2 e, f, g, h Add in 3. 21 for each digit pair to be 3. 21L
subtracted (including units and signs)
and go to Step 3.

3 e, f, g, h STOP if there is no final borrow from +O
the subtraction process; otherwise
take Step 4.

4 g,h Go to Step 7 if SL~ DL; otherwise
take Step 5.

5 e,f Add in 2. 01 for each digit pair in the 2. OlP
extension field (i.e. where DL >SL or
P > 0) until a non-zero is encountered
(take Step 6), or the extension field runs
out (take Step 7).

6 e Add 2. 01 and STOP when a non-zero +2.01
digit is encountered in the extension
field.

7 j, k, 1 Add 2. 43 (for first step of recomple- 2.43
ment); go to Step 10 if the units digit
is not zero; otherwise go to Step 8.

8 1 Add 1. 33 for each digit pair in the + 1. 33T
destination field that is zero until a
non-zero pair is encountered, then go
to Step 9.

9 k,l Add 2. 14 if the LSD of a digit pair is 2.14
not zero; add 2. 40 if the LSD is zero 2.40
and the MSD of a digit pair is not zero.
Go to Step 10.

10 j, k, 1 Add 1. 75 for each remaining digit pair + 1. 75N
in the destination field and STOP.

A-8 May73

SUE G3 GB13 020009103

Four Examples of Subtract Timing.

1. No Borrow:

plus I 1s l 2+)

j__ L--1
equals

L=2
Case format: e, f, g, or h

time = 1 O. 99 basic
2 x 3. 21 subtraction

+ o. 00 no borrow
17. 41 microseconds total

2. Borrow Without Recomplement:

I 02 I oo i 22 I 641 5+ I
-IP~ P=l

minus I 721 70 I 5+ I
~L~

equals .1 01j 99 j 99 j 94 j O+ I

L=3

time = 10. 99 basic
3 x 3. 21 subtraction

2. 01 propagate borrow
+ 2. 01 terminate borrow

24. 64 microseconds total

Case format: e

3. Recomplement:

minus I 00 I 01 j 09 j 23 I 5-1 equals I 00 I 02 j 00 I 041

L"" 4 N = 1, T = 1 ~ N I- .l T I-

time = 10. 99 basic
Case format: g or h

4 x 3. 21 subtraction
2. 43 tens complement units and sign
1. 33 tens complement zero
2. 14 tens complement

+ 1. 7 5 nines complement
31. 48 microseconds total

4. Borrow and Recomplement:

May 73

time = 10. 99
3 x 3. 21
2 x 2. 01

2.43
+4x 1.75

34. 07

plus I 00 In I 8- I equals I 00 I 00 I 00 I 00 I 9-1

~L~ 1. N -l
basic
subtraction
propagate borrow

L = 3, N = 4, T = 0
Case format: f

tens complement units and sign
nines complement
microseconds total

A-9

Shift
Count

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I

Note:

GB13 020009103 SUE G3

DECIMAL SHIFT TIMING

Table A-6 lists times for Shift Left (SFTL) and Shift Right (SFTR) instructions.

Table A-6. Decimal Shift Timing Chart

Shift Left Time in Microseconds Shift Right Time in Microseconds

Field Length
Shift

Field Length

1 2 3 4 5 6 7 Count 1 2 3 4 5 6 7
I I I I I I T . 11.14 0 11.64

I 16. 51 18.27 20. 03 21. 79 23.55 25.31 1 • 17.06 19.17 21.28 23.39 25. 50 27.61

15.30 19.34 21.10 22.86 24.62 26.38 2 16.38 18.37 20.13 21.89 23. 65 25.41

I 17.36 19.12 20. 88 22.64 24.40 3 • 17.91 20.02 22.13 24.24 26.35

16.15 20.19 21. 95 23.71 25.47 4 17.23 19.22 20.98 22. 74 24.50

l
18.21 19,97 21, 73 23.49 5 ' 18,76 20,87 22. 98 25. O!l

17. 00 21. 04 22.80 24.56 6 18.08 20.07 21. 83 23,59

1
19,06 20.82 22.58 7

1
19, 61 21. 72 23,83

13.43

I
17.85'

13, 14
21. 89 23.65 8 18.93 20. 92 22,68

14,28 13.99

r
19,91 21.67 9

1
20,46 22.57

15.13 14. 84

l
18.70 22.74 10 19. 78 21. 77

15.98 15.69

j
i 20.76 11

1
i

21. 31
16.83 16. 54

19. 55 12

l
20,63

1
17.68 17, 39

1
18. 53 13

1
18,24

' 18. 53 14 • • • 18. 24

Extrapolation Formulae:

Add O. 85 for each additional shift in zero character.

Add 1, 76 for each additional left-shifted character.

Add 1. 76 for each additional right-shifted character when shift count is even.

Add 2, 11 for each additional right-shifted character when shift count is odd.

Field length (SL) is in actual number of characters (i, e, digit pairs) and will be 1 greater than the length specified
value in the instruction.

CLASS C NON-IMPLEMENTED OP-CODES

All SUE llllA and llllB, class C instructions (Operation Codes O, 1, 6, 7, D,

E and F) trap. Time to trap takes 16. 28 microseconds.

A-10 May 73

SUE G3 GB13020009103

MOVE TIMING

Time (T) for MOVR, MOVL, and ZADD is calculated using the following

formulae:

Mnemonic

MOVR or MOVL

ZADD

Formula

T = 11.36 + 1.76N

T = 11.36 + 1.76N + 0.85Z

where:

N is the number of characters (i.e. DL or SL, whichever is smaller)

Z is the number of zeros (Z = DL - SL if DL >SL).

COMPARE-FIELD TIMING

The following general format applies to Compare-Field timing calculations.

l B L xi :_r
I bXK4 I SL or DL
I

"T I I
I

I DL or SL
I I
I I I I I

~BK--1

where:

May 73

SL = Source Length

DL = Destination Length

X = Difference in Length in characters, SL- DL

B = Length of the shorter field, SL or DL

XK = Number of leading blank characters (v) in the extension field (X)
before a non-blank character is encountered.

BK= Number of character pairs in the two body fields that are in
corresponding positions, before a non-equal pair is encountered.

A-11

GB13 020009103 SUE G3

COMPARE FIELD TIME CALCULATIONS

Time (T) in microseconds can be calculated for the six distinct cases as follows:

A-12

Body Fields Equal, SL= DL

~ B--f

~
~

Unequal Pair in Body Scan

B
BK--i

z y x
z y A

w
B

---,--.,
I I
I I ------·

X=XK=O
B=BK > 0

B >BK ~O

T=ll.35+2.4B

T=l3.72+2.4BK

Body Fields Equal, SL > DL, or SL< DL, Extension Field Blank

B=BK >O
X=XK >0

SL >DL:
T = 11. 64 + 2. 4 B + 1. 2X

SL< DL:
T= 11. 51+2.4B+1. 2X

Body Fields Egual, SL >DL or SL< DL, Non-blank in Extension Field

SL >DL:
r-B ·1· xl T= 13. 39+2.4B+1. 2XK

I
A

I
B IXKr- B=BK >0 SL <DL:

A B:blnl X >XK~ 0 T= 13. 26+ 2.4B+ 1. 2XK

May 73

SUE G3 GB13020009103

DECIMAL COMPARE TIMING

Decimal comparison is done in a manner to provide the fastest comparison

result. The fields are scanned in the following order of significance: signs and

units digits, extension fields, body fields. The extension field (of length X) is

the most significant portion of the longer comparand and includes all digits of

more significance than the most significant digit of the shorter comparand. The

body fields (of length B) are those portions of the comparands remaining (i. e.

not units or signs, or extension). Comparison may take one of four basic

formats based on the relative lengths of the fields:

1. Source length = destination length = 1
(both fields are units digits and signs).

~
~

2. Source length I- destination length, but one field = 1
(one comparand is units and sign).

I ~ : I
3. Source length = destination length > 1

(both fields are equal length and more than units and sign).

I~ : I
--~~~~~~~~ B~~~~~~~-+

4. Source length I- destination length; both fields > 1
(not equal length but both fields are more than units and sign).

where:
X is the difference in field lengths in characters (digit pairs).
B is the length of the shorter field minus one.

XK is the number of leading zero characters in the extension field.

May 73

BK is the number of leading characters in the body fields which are
equal in corresponding positions (or are both zero in the case of
Zero Scan), before non-equal (or non-zero) pair is encountered.

A-13

GB13020009103 SUE G3

DECIMAL COMPARE TIME CALCULATIONS

Time (T) in microseconds can be calculated for three cases as follows:

A-14

Case 1 - The signs are not equal and the units digits are not both zero.

:-------fBjc
L----r---

1 2 D .__ ---
X ~XK ~O
B ~BK ~O

T = 13. 08

Case 2 - The signs are not alike and both units digits are zero. A zero
scan is evoked.

Case 2 Formats:

a.

b.

c.

d.

e.

00 00 00 oc

L OD
X---t

00 00 00 00 OD

I ,r ~oo oo oc
~B~

00 00 05 oc

t:xKX OD

00 00 00 10 OD

I __ ~02 oo oc

~B~

X=XK=B=BK=O

X=XK>O
B=BK=O

X=XK?O

B =BK >O

X>XK>O

B=BK=O

X=XK~O

B >BK ~O

May 73

SUE G3 GB13020009103

DECIMAL COMPARE TIMING PROCEDURE FOR CASE 2

For Case Conditions Times
Step Formats (Times in Microseconds) (Microseconds)

1 a, b, c, d, e Start with basic time of 14. 40 and go 14.40
to Step 2.

2 a, b, c, d, e Add o. 13 if destination comparand sign 0.13
is pos1tive, and go to Step 3.

3 b, c, d, e Add O. 03 if SL >DL, and go to Step 4. 0.03

4 b, c, d, e Add 1. 17 for each leading zero char- 1.17 XK
acter in the extension field and go to
Step 5.

5 d Add 1. 69 and STOP (Note 1) if there +1. 69
is a non-zero character in the exten-
sion field; otherwise go to Step 6.

6 a, b Add O. 42 and STOP (Note 2) if B = 0 +0.42
(i.e. no body) and if either the exten-
sion field is all zero ([X] = 0) or there
is no extension field (X= O); otherwise
go to Step 7.

7 c, e Add 2. 53 for each pair of leading zero 2. 53BK
characters in the body field. Go to
Step 8.

8 e Add 3. 18 and STOP (Note 1) for the +3.18
first non-zero character encountered
in either body field; otherwise go to
Step 9.

9 c Add O. 81 and STOP (Note 2) if both body +o. 81
fields are all zero (i. e. + 0 and - 0).

Note 1 - The result is Greater-Than or Less-Than depending upon
the signs.

Note 2 - The result is Equal (and specifically a positive zero equals
a negative zero).

May 73 A-15

GB13020009103

Case 3 - The signs are alike. A compare scan is evoked.

Case 3 Formats:

f.

g.

h.

j.

k.

A-16

lmJ
§]

00 00 00 2C

l--x·
00 02 37 5C

02 37 4C

1-X+-B-l

00 90 73 SD

_JxKI- SD
i.::=-x---1

[oo 02 39 7D

~ 02 30 2D

x4~K~~

X=XK=B=BK=O

X=XK >B=BK=O

X=XK~O

B=BK>O

X>XK~B=BK=O

X=XK~O

B>BK~O

SUE G3

May 73

SUE G~ GB13020009103

DECIMAL COMPARE TIMING PROCEDURE FOR CASE 3

For Case Conditions Times
Step Formats (Times in Microseconds) (Microseconds)

1 f, g, h, j, k Start with basic time of 14. 01 and go 14.01
to Step 2.

2 f, g, h, j, k Add O. 13 if the destination comparand 0.13
sign is positive and go to Step 3.

3 g, h, j, k Add O. 03 if SL >DL and go to Step 4. 0.03

4 g, h, j, k Add 1. 17 for each leading zero char- 1.17XK
acter in the extension field and go to
Step 5.

5 j Add 1. 98 and STOP (Note 3) if there is +1.98
a non-zero character in the extension
field; otherwise go to Step 6.

6 f, g Add O. 42 and STOP (Note 4) if B = 0 +o.42
(i.e. no body) and if either the exten-
sion field is all zero ([X] = 0) or there
is no extension field (X= O); otherwise,
go to Step 7.

7 h,k Add 2. 40 for each corresponding equal 2.40BK
pair of leading characters in the body
field and go to Step 8.

8 k Add 4. 34 and STOP (Note 5) for the +4.34
first corresponding un-equal character
pair in the body field; otherwise go to
Step 9.

9 h Add O. 81 and STOP (Note 4) if all +0.81
corresponding characters in the body
fields are equal.

Note 3 - Not equal: compare based on sign and which field is longer.
Note 4 - Compare based on units and signs only
Note 5 - Not equal: compare based on sign and un-equal body characters.

May 73 A-17

GB13 020009103 SUE G3

Table A-7. SUE 1112A/B Instruction Times

Instruction Execution Time
in Microseconds

Bit Manipulation
Selected qy

XRorK Maskw/woXR

RBIT Make the designated bit a zero 3.24 3.30

SBIT Make the designated bit a one 3.24 3.30

CBIT Change (complement) the designated bit 3.24 3.30

IBIT Isolate (extract) the designated bit 3.24 3.30

TSBT Test the designated bit and shift left 3.27 3.33

TBIT Only test the designated bit 3.24 3.30

Move
Operand Value

Positive Negative

NEGT Move the twos complement valve 2.49 2.49

CPLM Move the ones complement value 2.49 2.49

MOVP Move the positive magnitude 2.75 2.88

MOVN Move the negative magnitude 2. 75 2.88

Normalize and Count

SxxN Single Normalize, AC= 0 2.82

SLAN Single Left Arithmetic Normalize 3. 24 + O. 32 per shift

SLLN Single Left Logical Normalize 2. 95 + o. 29 per shift

SRAN Single Right Arithmetic Normalize 2. 95 + o. 29 per shift

SRLN Single Right Logical Normalize 2. 95 + o. 29 per shift

DxxN Double Normalize, both AC's = 0 3.89

DLAN Double Left Arithmetic Normalize 5. 21 + o. 61 per shift

DLLN Double Left Logical Normalize 4. 89 + o. 48 per shift

DRAN Double Right Arithmetic Normalize 5. 18 + o. 97 per shift

DRLN Double Right Logical Normalize 4. 31 + o. 81 per shift

A-18 May 73

SUE G3 GB13020009103

Table A-7. SUE 1112A/B Instruction Times (continued)

Instruction
Execution Time
in Microseconds

Double-Length Shift

DLAO Double Left Arithmetic Open 5. 08 + o. 61 per shift
With Zero Count 3.95

.
DLLL Double Left Logical Linked 4. 50 + o. 32 per shift

With Zero Count 3.89

DLLO Double Left Logical Open 3. 95 + O. 48 per shift

DLLC Double Left Logical Closed 4. 11 + O. 64 per shift

DRAO Double Right Arithmetic Open 4. 11 + o. 97 per shift

DRLL Double Right Logical Linked 3. 89 + o. 81 per shift

DRLO Double Right Logical Open 3. 50 + o. 81 per shift

DRLC Double Right Logical Closed 3. 76 + 1. 07 per shift

-·

May 73 A-19

GB13 020009103 SUE G3

Table A-8. SUE 1112A/B Single- and Double-Precision
Fixed-Point Instruction Times

Store Load Add Sub Multiply Divide
_(_See notesl _(_See notes

DSTA DLOD DADD DSUB MLTA MULT

Register Addres~
(Indexed) 5.06 4.44 5.96 5.96 ~16. 87 ~15.35

Extended
(w /wo Indexing) 5. 13 4.54 6.06 6.06 ~16. 97 ~15. 45

Register Address,
Indirect* 7.04 6.45 7.97 7.97 ~18.88 ~17. 36

Extended,
Indirect* 6.72 6. 13 7.65 7.65 ~is. 56 ~17. 04

Notes:

*Add 1. 01 for each additional level of indirect

DIVIDE

1. Assumes divisor is positive and quotient is positive and even

2. Time is 4. 10 if divide check occurs

3. Add O. 29 if divisor is negative

4. Subtract O. 06 if quotient is negative

5. Subtract O. 13 if quotient is odd

6. Total range (except divide check) for extended direct divide is 15. 68
to 15. 20

MULTIPLY

7. Assumes typically seven 'one' bits in the absolute value of the
multiplier; if more (or less) add (or subtract) N x O. 03 to the time,
where N is the additional number of significant multiplier bits.

8. Add O. 19 if the product is negative

9. Total range for extended direct multiply (w/o accumulate) is 15. 24
to 15. 88

DIVD

~15. 29

~15. 39

~17. 30

~16. 98

A-20 May 73

SUE G3 GB13020009103

APPENDIX B

INSTRUCTION SUMMARY AND INDEX

SUE 1110 (BASIC) INSTRUCTIONS SUMMARY

St1tu1 Regl11er

15 14 13 12 11 10 7 6 5 4

L4 L3 L2 c 1 A N Z 0 LP F3 F2 F1 C V G E

Control Instructions - Class 0

15141312 11 10 9 8 7 6 5 4 3 2 1 0 MNEMONIC ----
0 0 x x x x

0 2 0 F3 F2 F1

0 2 1 F3 F2 F1

0 8 0

0 8 4

0 8 8
0 8 c
0 fl 1

0 ti 3

0 B 4

0 13 5

0 p 7

B - 0 1f Abs'Jlute, 1 1f Relative

x x x x

c v G E

c v G E

L4 L3 L2 L1
L4 L3 L2 L1
L4 L3 L2 L1

L4 L3 L2 L1

D

D

D

D

D

HALT

RSTS

SETS

ENBL

ENBW

DSBL

DSBW

STSM

REGM

RETN

MSTS

MREG

D - Address field (words), two's complement form for Relative.

General Register Instructions - Classes 1·7

15 14 13 12 11 10 9 8 7

Accumulatoi 1--Auto Decrement
To l.~Auto Increment
Memory

Jump

1

2

3

4

4

B

B

B

0

0

OP I

OP I

OP I

0 I

0 I Jump to Subroutine

Data to [
Accumulator

4 1 OP 0

Memory
To

r- Auto Decrement

L..Auto Increment

Accumulator
Sequence· · , E. XR. I, B, +

OP - Operation Code 0 MOV
1 SUB
2 ADD
3 AND
4 IOR
5 EOR
6 CMP
7 TST

B Word mode 1f 0, byte mode 1f 1
I Indirect when 1

4 1 OP

5 B OP

6 B OP

7 B OP

Move
Subtraction
Add1t1on
Logical Product
Logical Inclusive Or
Logical Exclusive Or
Compare
Test

AR Accumulator Register designator (0-7)
E Extend1Jd or two word mstructlon 1t 1
XR Index F-~eg1ster designator (1-7), no mdexmg 1f O
K 4 bit l1t·:iral constant data

May 73

1

I

I

I

6 5 4 3 2 1 0

AR E XR

AR E XR

AR E XR

0 E XR

AR E XR

AR E XR

AR K

AR E XR

AR E XR

AR E XR

Branch Instructions - ClasHS 8-9

No Operation

Branch Unconditional

Branch False

Branch True

15141312

8

9

8

9

1110 9

0

0

T

T

8 7 6 5 4 3 2

x x x x x x

D

D

D

O - Displacement word address in two's complement form

1 0

x x

T INDICATOR MNEMONIC

1 ~ BEQx
2 Greater Than BGTx
3 Overflow BOVx
4 Carry BCYx
5 Flag 1 BF1x
6 Flag 2 BF2x
7 Flag 3 BF3x
8 Loop Complete BLPx
9 Odd BODx
A Zero BZEx
B Negative BNGx
c Less Than BLTx
D,E, F, Unimplemented

X=T or F

Shift Instructions - Class A

15 14 13 12 11 10 9 8 7

A B L/R OP 0 AR X XR

A B L/R OP AR K

B o = smgte length, 1 =double length (not implemented on 1110).
AR Accumulator Register designator {to be shifted).
K Shift Count
XR Shift Count Source Register.
L/R Left (L) when O, Right (R) when 1.

OP Shift Operation Code: 00 = Anthmetic
01 =Logical Linked
1 O =Logical Open
11 =Logical Closed

B-1

GB13020009103 SUE G3

§YE 1110 (BASIC) INSTRUCTION INDEX

A. GENERAL REGISTER INSTRUCTIONS

ADDB
SUBB
CMPB
ANDB
IORB
EORB
TSTB
MOVB
ADDW
~UBW

CMPW
ANDW
IORW
EORW
TSTW
MOVW

Add byte . 12
Subtract byte • • • . • • • • • • • • • • • . • • • • • • • . 12
Compare byte . 13
Logical Product byte (and) • • • • • • • • . • • . • • • • 12
Logical_ sum byte (inclusive or). • • • • • • • • • • • . 12
Logical difference byte (exclusive or) . • • • • • • • 13
Test byte . 13
Move byte . 12
Add word . 12
Subtract word . 12
Compare word . 13
Logical product word (and) • • • • • • . • • . • • • • • 12
Logical sum word (inclusive or) • • • • • • . • • • • . 12
Logical difference word (exclusive or) • • • . • • • . 13
Te st word · . 13
Move word, . 12

B. JUMP INSTRUCTIONS

JSBR
JUMP

Jump to subroutine · • • • • • . . • • • • . • • . • . • . . 16
Jump to location . . • • • • • • . . • • • • . • • • • • . . 16

C. BRANCH CONDITIONAL INSTRUCTIONS

B-2

NOPR
BRUN
BEQT
BGTT
BLTT
BZET
BNGT
BLPT
BODT
BOVT
BCYT
BFlT
BF2T
BF3T

No operation · . 22
Branch unconditional • . . • • • • • • • . • • • • • • . • 23
Branch if equal true . • • . • • • • • • • • . . • • • • . . 21
Branch if greater than true . . • • • • . . • • • • . . . 21
Branch if less than true • • • • • . • • • • • • • • • • • 21
Branch if zero true • • • • • • • • • • • • • • • • . • • • 21
Branch if negative true ••••••••••.•• -. • • • . 21
Branch if loop true •••.••••• , , • • . • . • . . • 21
Branch if odd true • • • . • • • • • • • • • • • • • • • • • 21
Branch if overflow true •• , ••••• ''. . • • • • • • • . 21
Branch if carry true. • • • • . • • • • . • . . • . • . • • 21
Branch if flag 1 true • • • • . • . • • • • . . • . • . . • • 21
Branch if flag 2 true • . • . • . . • . . . • • • • • 21
Branch if flag 3 true . • . • • . , . • . . . • • ~ . . • • • 21

May 73

SUE G3

BEQF
BGTF
BLTF
BZEF
BNGF
BLPF
BODF
BOVF
BCYF
BFlF
BF2F
BF3F

GB13020009103

Branch if equal false
Branch if greater than false ••••••••••••••
Branch if less than false ••••••••••••••••
Branch if zero false •••••••••••••••••••
Branch if negative false ••••••••••••••••

21
21
21
21
21

Branch if loop false • • • • • • • • • • • • • • • • • • • 21
Branch if odd false • • • • • • • • • • • • • • • • • • • 21
Branch if overflow false • • • • • • • • • • • • • • • • 21
Branch if carry false • • • • • • • • • • • • • • • • • • 21
Branch lf flag 1 false • • • • • • • • • • • • • • • • • • 21
Branch if flag 2 false • • • • • • • • • • • • • • • • • • 21
Branch if flag 3 false • • • • • • • • • • • • • • • • • • 21

D. SHIFT INSTRUCTIONS

SLAO
SLLO
SLLC
SLLL
SRAO
SRLO
SRLC
SRLL

Single left arithmetic open
Single left logical open • • • • • • • • • • • • • • • • •
Single left logical closed ••••••••••••••••

26
26
26

Single left logical linked • • • • • • • • • • • • • • • • 26
Single right arithmetic open • • • • • • • • • • • • • • 27
Single right logical open • • • • • • • • • • • • • • • • 27
Single right logical closed • • • • • • • • • • • • • • • 27
Single right logical linked • • • • • • • • • • • • • • • 27

E. CONTROL INSTRUCTIONS

May 73

RETN
STSM
REGM
MSTS
MREG
HALT
WAIT
DSBL
DSBW
ENBL
ENBW
SETS
RSTS

Return from interrupt • • • • • • • • • • • • • • • • • 32
Status to memory • 32
Registers to memory . • • • • • • • • • • • • • • • • • 32
Memory to status • 32
Memory to registers •••••••••••••••••• 33

29 Halt the computer .
Wait for interrupt • 31
Disable interrupts • 31
Disable interrupts and wait • • • • • • • • • • • • • • 31
Enable interrupts • 30
Enable interrupts and wait. • • • • • • • • • • • • • • 30
Set programmable status indicators • • • • • • • • 29
Reset programmable status indicators • • • • • • • 29

B-3

GB13 020009103 SUE G3

SUE lllOA INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic) and the
following:

SKEY Store Key • • . . • . • • • • • • • • • • . • . • • • • 3 5

SUE lllOB INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), llllA, and
the following:

FCLW
FCLB

Fetch and Clear Word • • • • •••••• · ••••• • • • 37
Fetch and Clear Byte. • • • • • • . • . • • • • • • • • • • 37

SUE llllA INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), lllOA, and
the following:

ZADD
ADDD
SUBD
CMPD
SFTR
MOVR
SFTL
MOVL
COMP

Zero and Add . : • • . . • • • • . . 42
Add • • . . . • . 42
Subtract . • . . • 42
Compare Decimal • . . • • • • . • . • . • • • . • . • • • • 43
Shift .Right . • . 43
Move Right. 44
Shift Left. 44
Move Left 44
Compare Field . 45

SUE llllB INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), lllOA,
11 llA and the following:

B-4

FCLW
FCLB

Fetch and Clear Word • • • • . • • • • • • . • . . • . • • 46
Fetch and Clear Byte . • • . • • • • . • • . . • • . . • • 46

May 73

SUE G3 GB13020009103

SUE 1112A INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), lllOA,
and the following:

A. BIT MANIPULATION INSTRUCTIONS

RBIT
SBIT
CBIT
!BIT
TSBT
TBIT

Make the Designated Bit a Zero • • • • • • • • • • • • 52
Make the Designated Bit a One • • • • • • • • • • • • • 52
Change (Complement) the Designated Bit • • • • • • 52
Isolate (Extract) the Designated Bit • • • • • • • • • • 52
Test the Designated Bit and Shift Left • • • • • • • • 52
Only Test the Designated Bit • • • • • • • • • • • • • • 52

B. MOVE INSTRUCTIONS

NEGT
CPLM
MOVP
MOVN

Move the Twos Complement Value. • • • • • • • • • • 53
Move the Ones Complement Value. • • • • • • • • • • 53
Move the Positive Magnitude • • • • • . • • • • • • • • 53
Move the Negative Magnitude • • • • • . • • • • • • • • 53

C. NORMALIZE AND COUNT INSTRUCTIONS

SLAN Single Left Arithmetic Normalize ••••••••••• 54
SLLN Single Left Logical Normalize 54
SRAN Single Right Arithmetic Normalize 55
SRLN Single Right Logical Normalize • • • • • • • • • •••• 55
DLAN Double Left Arithmetic Normalize 55
DLLN Double Left Logical Normalize ••••••••••••• 56
DRAN Double Right Arithmetic Normalize 56
DRLN Double Right Logical Normalize 56

D. DOUBLE LENGTH SHIFT

May 73

DLAO
DLLL
DLLO
DLLC
DRAO
DRLL
DRLO
DRLC

Double Left Arithmetic Open • • • • • • • • • • • • • • 58
Double Left Logical Linked • • • • • • • . • • • • • • • 58
Double Left Logical Open • • • • • • • • • • • . • • • • 58
Double Left Logical Closed • • • . • • • • • • • • • • • 58
Double Right Arithmetic Open • • • • • • • • • • • • • 59
Double Right Logical Linked. • • • • • • • • • • • • • • 59
Double Right Logical open • • • • • • • • • • • • • • • • 59
Double Right Logical Closed • • • • • • • • • • • • • • 59

B-5

GB13 020009103 SUE G3

E. SINGLE PRECISION FIXED POINT

MLTA
MULT
DIVD

Multiply and Add • • • . • • • • • • • . • • . • • • • • • • 61
Multiply (no add) • • • • • . • • • • • • • • • . • . • • • • 61
Divide . 61

F. DOUBLE PRECISION FIXED POINT

DLOD
DSTA
DADD
DSUB

Double· Load Accumulator • • • • • • • • . • • • • • • • 63
Double Store Accumulator • • • • • • • . • • • • • • • • 63
Double Add . 63
Double Subtract • . . • • • • • • • • • . • • • • • • • • • • 63

G. CONTROL INSTRUCTIONS

SKEY
JKEY

LCPU
LKEY

Store Value (K) in Key Bits • • • • • • . • • • . • • • • 64
Store Value (K) in Key Bits and Address M
into Program Counter • • • • • • • • • • • • • • • • • • 64
Load !>rocessor)Number into (XR) Bits 5 and 6. • 64
Load Key Bits into (XR) • • • • • • • • • • • • • • • • • 64

SUE 1112B INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), lllOA,
ll 12A, and the following:

B-6

FCLW
FCLB

Fetch and Clear Word • . . . • • . • • • • . . . • • • • 65
Fetch and Clear Byte . • • • . • • • • • . • • • . • . • • 65

May 73

SUE G3 GB13020009103

APPENDIX C

INPUT/OUTPUT ADDRESSES

Table C-1. Input-Output Device Addresses*

Address (Hex) Input/Output Device Controller

FSOO
F810
F820
F830
F840
F850
F860
F870
F880
F890
FSAO
FSBO
FSCO
FSPO
FSEO
FSFO
F900
F910
F920
F930
FAOO
FAlO

FAFO
FF90
FFAO

Teletypewriter No. 1
Teletypewriter No. 2
High Speed Paper Tape Reader No. 1
High Speed Paper Tape Punch No. 1
High Speed Paper Tape Reader No. 2
High Speed Paper Tape Punch No. 2
Card Reader No. 1
Card Reader No. 2
Card Punch No. 1
Card Punch No. 2
Line Printer No. 1
Line Printer No. 2
Magnetic Tape No. 1 (handles 4 Drives)
Magnetic Tape No. 2 (handles 4 Drives)
Bulk File No. 1 (Fixed Head)
Bulk File No. 2 (Fixed Head)
Disk File Unit No. 1 (Fixed and Removable)
Disk File Unit No. 2 (Fixed and Removable)
Cassette No. 1
Cassette No. 2
CRT Display, Alphanumeric No. 1
CRT Display, Alphanumeric No. 2

CRT Display, Alphanumeric No. 16
Input Keyboard No. 1, Business System
CRT Display No. 1, Business System

*Note: Device address assignment is variable by jumper wires
connected on each controller. The addresses shown are
recommended and are subject to change.

May 73 C-1

SUE G3 GB13020009103

APPENDIX D

SELF-INTERRUPT AND SYSTEM INTERRUPT
EXECUTIVE SPACE

ADDRESS THAT ABORTED SERVICE ROUTINE
CAUSED ABORT STATUS INSTRUCTION VECTOR

ADDRESS
ADDROO 0028 ADDRIO 0048 ADDROO 002A ADDRIO 004A ADDROO OOIC ADDR!O 004C ADDROO 002E ADDRlO 004E
ADDROl 0038 ADDRll OOH ADDROl 003A ADDRll OOSA ADDROl 003C ADDllll OO&C ADDROl 003E ADDRll 005E

UN IMPLEMENTED UN IMPLEMENTED SERVICE ROUTINE
INSTRUCTION STATUS INSTRUCTION VECTOR ADDRESS

ADDROO 0020 ADDRlO 0040 ADDROO 0022 ADDRIO 0042 ADDROO 0024 ADDRlO 0044 ADDROO 0016 ADDRIO 0046
ADDROI 0030 ADDRll 0050 ADDROI 0032 ADDRll ~ l.,yn>ROl 0034 ADDRll 0054 "ADDROl 0036 ADDRll OOS6

4
MODULE PROGRAM SERVICE

STATUS
COUNTER ROUTINE ADDRESS

001.A_ O!!!&_
VECTOR

0018 OOlE

MODULE PROGRAM
SERVICE

ADDRESS
STATUS ROUTINE

COUNTER
0010 oo;· O!!li_

VECTOR
0016

MODULE PROGRAM SERVICE

ADDRESS
STATUS

COUNTER ROUTINE

0008 004!!._ ClOOC
VECTOR oogj

MODULE PROGRAM SERVICE
STATUS

COUNTER ROUTINE ADD RESS
0000 0002 0004

VECTOR
0006

1110-R03-72

May 73 D-1

SUE G3 GB13 020009103

APPENDIX E

USASCII CHARACTER SET AND HEXADECIMAL CODES

HEX CHARACTER HEX CHARACTER

AO space Cl A
Al ! C2 B
A2 !1 C3 c
A3 # C4 D
A4 $ C5 E
A5 % C6 F
A6 & C7 G
A7 ' (apostrophe) cs H
AS (C9 I
A9) CA J
AA * CB K
AB + cc L
AC , (comma) CD M
AD CE N
AE • (period) CF 0
AF I DO p

BO 0 Dl Q
Bl 1 D2 R
B2 2 D3 s
B3 3 D4 T
B4 4 D5 u
B5 5 D6 v
B6 6 D7 w
B7 7 DS x
BS s D9 y
B9 9 DA z
BA DB [left bracket
BB DC \back slash
BC < less than DD] right bracket
BD = DE tup arrow
BE > greater than DF +- left arrow
BF ?
co @ S7 bell

SA line feed
SD carriage return

May 73 E-1

Report No. 3001 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 4: BASIC SOFTWARE

PART 2: INTRODUCTION TO ASSEMBLY LANGUAGE

i

Report No. 3001 Bolt Beranek and Newman Inc.

Update History:

Originally written by S. Jeske, November 1975,

Revised by R. Hinden, August 1978,

ii

Report No. 3001 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 INSTRUCTION SETS

2.1 Memory Reference Instructions .. .

2.2

2.1.1 Word Mode

2.1.2 Byte Mode

2.1.3 Indexed Mode

2.1.4 Indexed-Extended Mode

2.1.5 Indirect Mode

2.1.6 Indexed-Indirect Mode .

2.1.7 Extended-Indexed-Indirect Mode

2.1.8 Auto-Increment Mode

2.1.9 Auto-Decrement Mode

2.1.10 Complex Example ..

2.1.11 Multilevel Indirect Mode

Program Transfers

2.2.1 The Jump Instruction

2.2.2

2. 2. 3

2.2.1.1 Jump Direct ...

2.2.1.2 Jump Indirect

2.2.1.3 Jump Indexed .

2.2.1.4 Exotic Jumps .

The Jump-to-Subroutine Instruction

Branches

2.3 Register-to-Register Instructions

2.4

2.5

2.6

Immediate Operands . .

Shift Instructions . .

Control Instructions

2 . 6 . 1 Halt

2.6.2 Immediate Operand Control Instructions

2.6.3 Address Operand Control Instructions

iii

page

1

1

1

1

2

3

3
4
4

5
5

6

6

7

7
7

7
7
8
8

8

9
11

11

12

12

12

13

13

Report No. 3001 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS (cont'd)

3.0 ASSEMBLER COMMANDS .

3.1 Numbers
3.1.1 Radix .. .
3.1.2 Auxiliary Information

3.2

3.3
3.4
3.5

3.6
3.7

3.8

Numeric Operations

Program Locations .

Current Location

General Location

3.5.1 Implicit .

3.5.2 Explicit .

General Assignment

Data

3.7.1
3. 7. 2

3.7.3

General Data

Byte Data

Character Data

Program Termination .

3.9 Macros

3.10 Macro Packages

3.11 Format· · · · · • · ·

iv

page

14

14
14
14

15
15
16
16
16
17
17
17
17
18
18
18
18
19
19

Report No. 3001 Bolt Beranek and Newman Inc.

INTRODUCTION TO ASSEMBLY LANGUAGE

1.0 Introduction

The assembler used to translate source code for the Pluribus
multiprocessor into executable machine code is called PLURIBUS
and runs on any TENEX system. This paper is not intended to be
the definitive reference on this assembler, but rather to impart
a general familiarity to the extent that a program listing could
be examined and mostly understood. While familiarity with the
PLURIBUS assembler is not assumed, it will be helpful if the
reader has knowledge of some assembler, or at least the
concepts of one. Also, some knowledge of the SUE instruction set
is assumed (see the G3 Reference Manual). The interested reader
is referred to the assembler Reference Manual in Pluribus
Document 5 for more detailed information than that presented
here, especially for the more uncommon commands which are not
discussed here at all.

2.0 Instruction Sets

2.1 Memory Reference Instructions

2.1.1 Word Mode

By far the most common types of instructions are those that
reference memory locations. There are six classes (1 ,2,3,5,6,7)
distinguished by the left four bits of the instruction. Each of
the six has one of eight possible operation codes Move,
Subtract, Add, Logical And, Logical Inclusive Or, Logical
Exclusive Or, Compare, and Test.

For instance, an instruction to add the 16-bit contents of
location 100 to Register 1 would appear:

ADD R1,100

The machine language product would be: 0111001000011000 in the
first word (of 2) in memory, and the address (the 100) in the
second. For convenience, the binary machine language is hardly
ever referred to, and the more convenient numerical
representation is used. The PLURIBUS assembler normally outputs
listings in octal, where the 7218 would instead appear as 071030,
but there is a command option to select hex listings. As to what
actual address the number 100 in the above example refers, that
is more variable than you would expect, and will be covered

1

Report No. 3001 Bolt Beranek and Newman Inc.

later. It is not important usually, since most programs use
symbolic addresses.

If the programmer, by methods which will be covered later,
caused the symbol XYZ to have the value 100, he would probably
write the above example as:

ADD R1,XYZ

If he wanted instead to add the 16-bit contents of Register
1 to the 16-bit contents of XYZ, with the new answer replacing
the old value in XYZ, he would have:

ADDM R1,XYZ

The above instruction would assemble as 3218 (hex) in the first
word, and 100 in the second. Note that the direction of data
movement is given by the presence or absence of an "M".

The above convention is true for six of the other seven op
codes. For SUB, AND, IOR, EOR, CMP, and TST, the "M" is made
part of the op code. For the Move operation it is still
technically possible to have MOV and MOVM, but most often the
mnemonic LDA is used for the memory-to-register direction, and
STA for the register-to-memory direction.

2.1.2 Byte Mode

If, instead of adding 16-bit words, we wish to subtract an
8-bit data byte found in memory location XYZ from Register 1, we
have:

SUBB R1 ,XYZ

This instruction would be assembled as 7918 (hex) in the first
word and the address in the second. An interesting thing to note
is that now XYZ could be 101 or any other odd location, whereas
for word operations the address must always be even.

If we wish to subtract the low order 8-bit data byte in
Register 1 from the 8-bit contents at location XYZ, we have:

SUBBM R1,XYZ

The instruction would be assembled as 3918 (hex) in the first
word, and the address in the second.

2

Report No. 3001 Bolt Beranek and Newman Inc.

All of the following addressing modes have their byte mode
counterparts in the above manner, therefore, we will not mention
each one explicitly.

2.1.3 Indexed Mode

It is not necessary to have an explicit address (the XYZ in
the above examples). You could have the address in an index
register; this has the advantages of less required program
storage and faster execution time. The index register is any
one of the seven general registers that has been loaded
previously with the number of the desired address location. If
we want to AND the contents of memory location 100 into Register
3, and Register 2 has the number 100 in it, we can write:

AND R3,(R2)

This instruction would be assembled as 7332 (hex)

If we want to AND the contents of Register 3 into memory
location 100, and Register 2 has the number 100 in it, we can
write:

ANDM R3,(R2)

This instruction would be assembled as 3332 (hex). Note that in
either case the whole instruction would take up only one word of
memory, as the second word for the explicit address is not
needed.

2.1.4 Indexed-Extended Mode

It is possible to combine the basic mode (with the explicit
address) and the indexed mode (with the address in an index
register). In this case, the contents of the index register are
added to the explicit address to obtain the effective address.
If XYZ has a value of 100, Register 4 has a 42 in it, and we wish
to EOR the contents of location 142 into Register 5, we can
write:

EOR R5,XYZ(R4)

This would be assembled as 755C (hex) with a 100 in the next
word.

3

Report No. 3001 Bolt Beranek and Newman Inc.

If we wish the results of the EOR to end up in memory, we
have:

EORM R5,XYZ(R4)

This would be assembled as 355C (hex) with a 100 in the second
word, and would EOR into location 142.

2.1.5 Indirect Mode

If
100
can

It is possible to address the memory locations indirectly.
we wish to IOR the contents of 150 into Register 6, location
has a 150 in it, and the symbol XYZ has a value of 100, we
write:

IOR R6,@XYZ

This would be assembled as 74E8 (hex) with a 100 in the next
word.

If we wish to IOR to memory, it looks like this:

IORM R6,@XYZ

and is assembled as 34E8 (hex) with the 100 in the next word. It
would IOR into location 150.

2.1.6 Indexed-Indirect Mode

It is possible to combine the indexed mode with the indirect
mode. If we want to load the contents of 200 into Register 7,
location 300 has a 200 in it, and Register 3 has a 300 in it, we
can write:

LDA R7,@(R3)

This would be assembled as 70F3 (hex). Note the order: the
indexing happens first, then the indirecting.

If we want to go the other way, it is:

STA R7,@(R3)

This would be assembled as 30F3 (hex).

4

Report No. 3001 Bolt Beranek and Newman Inc.

2.1.7 Extended-Indexed-Indirect Mode

It is possible to combine the explicit address mode with the
indexed-indirect mode. If we wish to CMP the contents of
Register 4 with the contents of location 340, location 240 has a
340 in it, Register 2 has a 140 in it, and the symbol XYZ has a
value of 100, we write:

CMP R4,@XYZ(R2)

This would be assembled as 76CA (hex), with a 100 in the second
word. Note that, as always, the indexing happens first, then the
indirecting.

If we wish to compare in the other order we write:

CMPM R4,@XYZ(R2)

This would be assembled as 36CA (hex), with 100 in the second
word. Note that the only difference, in the case of the CMP, is
which flags get set if they are unequal. Similarly, there is no
difference between a TST register-to-memory, and a TST
memory-to-register.

2.1.8 Auto-Increment Mode

In all the above cases
is possible to automatically
register after they are used
be incremented by one if
mode. If the example in
auto-increment mode it would

AND R3,(R2)+

where an index register is used, it
increment the contents of the index
in the address calculation. It will
in byte mode, and by two if in word
Section 2.1.3 were done in

look like this:

and would be assembled as 6332 (hex). Register 2, which started
the instruction with 100 in it, would end up with 102 in it. The
contents of 100 would still be AND-ed into Register 3, since the
incrementation happens after the effective address calculation is
done.

The other direction of movement would look like:

ANDM R3,(R2)+

5

Report No. 3001 Bolt Beranek and Newman Inc.

and would be assembled as 2332 (hex). Register 3 would be AND-ed
into 100, and Register 2 would still end up with a 102 in it.

2.1.9 Auto-Decrement Mode

Similar to the auto-increment mode, in all cases where an
index register is used, it is possible to have the contents of
the index register automatically decremented before they are used
in the effective address calculation. They will be decremented
by one if in byte mode, and by two if in word mode. If the
example in Section 2.1.4 were done in auto-decrement mode it
would look like this:

EOR R5,XYZ(-R4)

This would be assembled as 555C (hex), with a 100 in the next
word. But note that a different memory word would be EOR-ed into
Register 5 than was the case in Section 2.1.4. If XYZ has a
value of 100, and Register 4 has a 42 in it before the
instruction is executed, after the instruction is executed
Register 4 would have a 40 in it, and we would have EOR-ed into
Register 5 the contents of the memory word 140, because the
auto-decrement happens before the address calculation.

If we want to EOR to memory, we write:

EORM R5,XYZ(-R4)

This is assembled as a 155C (hex), with a 100 in the next word.
We would EOR the contents of Register 5 into location 140, and
Register 4 would have 40 in it after the instruction.

2.1.10 Complex Example

If we wish to have the maximum number of addressing modes
present at once we can write:

ADDBM R1,@XYZ(R2)+

This is assembled as 2A9A (hex), with a 100 in the second word,
assuming XYZ has a value of 100. If Register 2 had a 40 in it
before the instruction was executed, it would have a 41 in it
after the instruction was executed. If address 140 had a 201 in
it, the right byte of Register 1 would be added to the data byte
at location 201.

6

Report No. 3001 Bolt Beranek and Newman Inc.

2.1.11 Multilevel Indirect Mode

One addressing mode you will h~rdly ever see is that of the
multilevel indirect address. This mode is available only in word
mode, not byte mode, and is available in every mode that uses
indirect addressing. It causes the processor to continue to
indirect down an address chain if the low-order bit of the word
fetched is on. If we wish to store the contents of Register 4
into location 350, location 100 contains 150+1 or 151, location
150 contains 250+1 or 251, location 250 contains a 350, and XYZ
has a value of 100, we can write:

STA R4,@XYZ

This would be assembled as 30C8 (hex), with a 100 in the
following word.

2.2 Program Transfers

2.2.1 The Jump Instruction

2.2.1.1 Jump Direct

In normal program flow the instruction immediately after the
one currently being executed will be executed next. It is
possible to alter this normal flow, however, such that the next
instruction is somewhere else; and one way is by use of the Jump
instruction. If we wish to have the next instruction executed
be the one at location 100, and XYZ has a value of 100, we
write:

JMP XYZ

This is assembled as 4008 (hex) in the first word, with a 100 in
the second word.

2.2.1.2 Jump Indirect

If we wish to Jump to location 140, location 100 has a 140
in it, and XYZ has a value of 100, we write:

JMP @XYZ

This is assembled
the second word. It
indirect Jump.

as 4088 (hex) in the first word, with 100 in
is also possible to have a multilevel

7

Report No. 3001 Bolt Beranek and Newman Inc.

2.2.1.3 Jump Indexed

If we wish to Jump to location 240, and Register 2 has a 240
in it, we write:

JMP (R2)

This is assembled as 4002 (hex).

2.2.1.4 Exotic Jumps

As in the case of the memory reference instructions, we can
combine the indexed mode with either direct or indirect
addressing. For instance, if we want to Jump to location 250,
Register 3 has a 50 in it, location 150 a 250, and XYZ has a
value of 100, we write:

JMP @XYZ(R3)

This is assembled as 408B (hex) in the first word, with a 100 in
the second word.

2.2.2 The Jump-to-Subroutine Instruction

Frequently it is desirable to be able to return to the
instruction after a Jump and continue the normal program flow.
The Jump-to-Subroutine instruction allows this by loading a
specified Register with the address of the next instruction, and
then jumping to the desired address. It has all the same
addressing modes as the Jump instruction, the only difference
being that now a Register is specified. The example in Section
2.2.1.1 appears as follows, if we want to load Register 7 with
the "return address" first:*

JSB R7,XYZ

It is assembled as 4048 (hex) in the first word, with the 100 in
the second word. The address of the word after the second word
of the instruction would be in Register 7 after the instruction
is executed.

* By convention, most subroutines written for the Pluribus make
use of R7 as a linkage register.

8

Report No. 3001 Bolt Beranek and Newman Inc.

The example in Section 2.2.1.2 would appear:

JSB R7,@XYZ

It would be assembled as 40C8 (hex) in the first word, with the
100 in the next word.

The example in Section 2.2.1.3 would appear:

JSB R7,(R2)

and would be assembled as 4042 (hex).

The complex example in Section 2.2.1.4 would appear:

JSB R7,@XYZ(R3)

This would be assembled as 40CB (hex) in the first word, with 100
in the second word.

In all the above cases the instructions jump to exactly the
same addresses as their Jump counterparts. The only difference
is that first Register 7 is loaded with the address of the next
instruction. Note that the address will be the address
immediately after the JSB if there is no extended address word
(e.g., no XYZ). Multilevel indirect Jump-to-Subroutine
instructions also work.

2.2.3 Branches

The Jump and the Jump-to-Subroutine instructions are both
unconditional program transfers in that they always will transfer
program control to their target address. It is possible to
conditionally transfer control to the target address based on the
state of several internal flags. These flags are bits in the
Status Register, and are set or cleared by various instructions,
under various circumstances; all of which are described
explicitly in the aforementioned G3 Reference Manual. The
instructions which conditionally transfer, depending on the
current state of these flags, are called Branches, and there are
twenty-six different types, each branching under different
conditions. A constraint on Branches is that the target address
must be near the Branch. It must be no more than -128 (-80 hex)
or +127 (+7F hex) words away. This is equivalent to -256 (-100
hex) or +254 (+FE hex) bytes away, but you can only transfer to a
word, or even byte, address. Two of the twenty-six are

9

Report No. 3001 Bolt Beranek and Newman Inc.

degenerate cases, one of which always branches, the other of
which never branches.

BR XYZ

will always branch to XYZ. The following one will never branch

NOP

The assembled value of all Branches has three parts. The
left-most four bits will be either a 1000 if it is going to
branch if the tested condition is true, or a 1001 if it is going
to branch if the tested condition is false. The next four bits
select which condition will be tested. The right byte contains
the target address information, in the form of an address
displacement from the address of the Branch. That displacement,
treated as a signed number, is a word displacement (since
instruction addresses are always word addresses), and is
multiplied by two to turn it into a byte displacement, whereupon
it is added to the (in effect, byte) address of the Branch to
determine the target address.

If our always-Branch instruction is located at 100, and XYZ
has a value of 140, it is assembled as 9020 (hex) and will branch
to 140. If the Branch is located at 140, and XYZ has a value of
100, it will be assembled as 90AO (hex) and will Branch to 100.

If we want to Branch to XYZ, assuming it is within range of
the Branch, if the last CMP compared two equal things, we can
write:

BE XYZ

If we want to Branch and they are not equal, we can write:

BNE XYZ

For more detail and a complete list of all branch instructions
see the assembler reference manual in Pluribus Document 5.

10

Report No. 3001 Bolt Beranek and Newman Inc.

2.3 Register-to-Register Instructions

The eight general register operations that may be done in a
memory reference instruction may also be done without referencing
memory. In this case, rather than one operand being in a memory
location, it is in a Register. If we wish to subtract the
contents of Register 1 from Register 2, we write:

SUB R2,R1

It is assembled as 4921 (hex).

2.4 Immediate Operands

Rather than taking the second operand of a general register
instruction from memory (see Section 2.1) or from another
Register (see Section 2.3), it is possible to take it from part
of the instruction itself. This is known as an immediate
instruction, or a literal instruction.

If the number is less than sixteen, the instruction is
normally written to take up only one word. If we wish to CMP the
contents of Register 5 with 7, for instance, it looks like this:

CMP R5,=7

It is assembled as 4ED7 (hex).

If the number is sixteen or greater, the instruction has to
take up two words. If we wish to ADD the number 1234 to the
contents of Register 3, we write:

ADD R3,#1234

It is assembled as 4A38 (hex) in the first word, and 1234 in the
second. Note that, as in the case of our first example (in
Section 2.1.1), the 1234 might not mean the same thing in each
case. Also, the "#" could have been an "="; in that case the
assembler would check the operand to see if it would fit in a
one-word instruction, and if so, do so; the "#" says put it in
the second word no matter how big or small it is.

A variant of
index register.
added, no matter
contents of the

the two-word type is one which also uses an
In this case the number in the second word is

what the instruction operation is, to the
index register, and the result is the second

1 1

Report No. 3001 Bolt Beranek and Newman Inc.

operand of the instruction. If we wish to subtract the number
140 from the contents of Register 2, and Register 6 contains a
40, we write:

SUB R2,#100(R6)

This is assembled as 492E (hex) in the first word, and 100 in the
second.

2.5 Shift Instructions

There are various instructions which cause the word in a
register to be moved around. It is possible to shift the word
left or right, paying attention to the carry bit or not, losing
bits or not, wrapping around or not, etc. See the Pluribus
manual for full information. For example, if we wish to shift
the contents of Register 2 left six bits, with the carry bit
shifted in on the right, we write:

RLA R2,6

This will be assembled as A1A6 (hex).

If, instead, we want to shift it, ignoring the carry bit and
lost data bits, the number of bits that are indicated by the low
order four bits of the contents of Register 3, we write:

SLL R2,R3

This is assembled as A223 (hex).

These two examples are typical of the two main types of
shifts. For the others the only difference is the mnemonics.

2.6 Control Instructions

2.6.1 Halt

This instruction halts the processor. It is indicated by a
left byte of O; the right byte may have anything in it, and is
essentially ignored. It looks like this:

HLT

12

Report No. 3001 Bolt Beranek and Newman Inc.

2.6.2 Immediate Operand Control Instructions

This sub-class takes the operand that tells it on what bits
to perform its operation from the instruction itself. For
example, the right seven bits in instructions which set or reset
the Status Register bits (the ones the Branch instructions test)
or the right four bits of instructions that enable or disable
interrupts. If we wish to enable the computer for interrupts on
levels one and three, we write:

ENB 5

This is assembled as 0805 (hex).

2.6.3 Address Operand Control Instructions

This sub-class, which does housekeeping tasks that are
useful in serv1c1ng interrupts, references at least one memory
location in the process. This (first) memory location is
determined by the right byte of the instruction, which is
interpreted in either of two ways. If the fifth bit from the
left in the whole instruction is on, the byte is interpreted as
a relative word displacement, exactly the same as in the Branch
instructions. If that fifth bit is off, the byte is interpreted
as an absolute word address in low memory.

If, for instance, we wish to move the Status Register to the
memory word at 1000, and the instruction is located at 1002, we
write:

STM 1000

It will be assembled at 09FF (hex).

If we are still located at 1000, but wish to load the Status
Register from the word at location 2, we write:

MTS 2

It will be assembled as 0501 (hex).

13

Report No. 3001 Bolt Beranek and Newman Inc.

3.0 Assembler Commands

Section 2 concerns itself with the actual instructions
executed by the processing unit in a running Pluribus computer.
This section, on the other hand, deals with the assembler and
assembly process itself, especially the assembly language
conventions and assembler pseudo-operations (or directives).

3.1 Numbers

As mentioned earlier, numbers are interpreted by the
assembler as having different values, depending on two things.
One is the prevailing radix, and the other is auxiliary
information with the number proper.

3.1.1 Radix

Pluribus is initialized to have a radix of 8(octal). You
can change to radix n (1<n<37) by a

.RADIX n

command. In the assembler a number with no auxiliary information
is interpreted according to the prevailing radix. Note that with
a radix greater than 10, all numbers must begin with 0-9 in order
to be noticed as numbers (assuming no auxiliary information).
After a

.RADIX 20

instruction, the radix would be 16 (or 20 octal) and OABCD would
be a number, whereas ABCD would be a symbol.

3.1.2 Auxiliary Information

In
radix, it
auxiliary
number.

the Pluribus
is possible
information

assembler, no matter what the prevailing
to override this assumed radix with

that explicitly gives the radix for that

The two characters AO preceding a number explicitly declare
it as octal, the two characters AD declare it to be decimal, and
the two characters AH declare it to be hexadecimal.

14

Report No. 3001 Bolt Beranek and Newman Inc.

For example, the decimal number 254 could be written as:

"D254
376
"0376
"HFE

assuming, that the assembler's radix is in its initial state.

3.2 Numeric Operations

In the Pluribus assembler, there are various operations that
can be done to numbers and their equivalents. They are
summarized here; if more information is needed, the Pluribus
manual in Document 5 should be consulted.

These are the more common operators and operations:

OPERATOR

+

*
I
?
!
&
<
>

OPERATION

arithmetic addition
arithmetic subtraction
arithmetic multiplication
arithmetic division
logical exclusive OR
logical inclusive OR
logical AND
o~erator precedence begin
operator precedence end

Note that PLURIBUS treats all operators equally and does them
from left to right (unless grouped).

3.3 Program Locations

Most programs want to be assembled to reside in specific
memory locations, rather than wherever the assembler would put
them. Sometimes data tables must be in particular locations so
that all programs using them know where they will be. For these
and similar reasons, it is possible to direct the assembler to
assemble the next statement into a particular place.

This is done by preceding the number or numeric expression
with the two characters period-equals.

15

Report No. 3001 Bolt Beranek and Newman Inc.

For example, if we wanted the next word to be assembled at
hexadecimal 200, we might say:

There are also two pseudo-ops available which effect a
location change:

.ODD

will cause the next byte (not word) to be placed in the next odd
byte address location if the current byte address is not odd.
Similarly, the pseudo-op

.EVEN

will cause the next word or byte to be assembled into the next
even byte address if the current one is not.

3.4 Current Location

It is often handy to be able to conveniently refer to the
location of the current word, or perhaps the following word,
without knowing the exact location. This "location counter" or
"self-reference indicator" is a period. If we, for instance,
want to kill some time by subtracting 1 from the number in
Register 3 until it is 0 we might write:

SUB A3,=1
BNZ .-2

If we wish the next word to always have an address that is
evenly divisible by 16, we might write:

3.5 General Location

3.5.1 Implicit

For many reasons it is desirable to be able to refer to a
location symbolically, without needing to know what the
location's address really is. This is done by putting nothing
before the symbol on a line, and following it with a colon. This
symbol for a location is called a label or a tag.

16

Report No. 3001 Bolt Beranek and Newman Inc.

3.5.2 Explicit

Besides such implicit tag definitions, it is also possible
to explicitly define a tag. This is done by putting the symbol
to the left of an equals-point. For example:

HERE = .

3.6 General Assignment

A general assignment statement associates a symbol with a
value. The general format for a general assignment statement is:

Symbol = Expression

This will cause the value of the "Expression" to be assigned to
the "Symbol". Examples are:

3.7 Data

A = 1 000
B = 'A&MASKLOW

= • +7

3.7.1 General Data

Tf an address should be initialized to a certain
the data expression can be written just as any other
An ex pl ic it pseudo-op, . WORD, is provided which does
thing. Also, .WORD can have more than one operand:

.WORD 1,2,3,4

constant,
statement.
the same

with each separated by commas. This will put 1,2,3,4 in
succeeding words. Or the .WORD pseudo-op might be implied:

1,2,3,4

17

Report No. 3001 Bolt Beranek and Newman Inc.

3.7.2 Byte Data

Pluribus can generate byte data with its .BYTE.
is exactly like the word pseudo-ops.

3.7.3 Character Data

Operation

Arbitrary strings of characters are converted to their ASCII
equivalent by the ASCII pseudo-op, which may have any delimiter
not in the string itself. The pseudo-ops .ASCIZ will always pad
with a zero byte. Strings may be multi-line. Note also that
there are two special operators for one- and two-character
strings; the apostrophe (for one character) and the quote mark
(for two characters). Thus, the following are identical:

"XY

.ASCII /XY/

as far as the data that they generate.

3.8 Program Termination

The end of the source program is signalled by a .END
pseudo-op. An optional argument may be given which is where the
program will be started when it is loaded.

3.9 Macros

A discussion of what macros are, and how they are used, is
beyond the scope of this document, but let it be said that if
you see what looks like an unfamiliar instruction or pseudo-op,
it may be a macro "call". To check this, look previously in the
program for a macro "definition" which will appear in these
forms:

.MACRO MNAME

.ENDM

with the MNAME being the "name" of the newly-defined macro.

18

Report No. 3001 Bolt Beranek and Newman Inc.

3.10 Macro Packages

In the process of programming the Pluribus IMP, the PTIP and
related systems, a number of software mechanisms have been
developed which are adaptable to more general applications. Many
of these tools take the form of macro definitions for the
PLURIBUS assembler that provide a convenient syntactic form for
some common operation. Larger subroutines and run-time support
packages have also been designed which can serve as a foundation
for user code. A brief description of each of the packages is
given below as an overview.

RATMAC The RATMAC package defines several higher-level
language forms (such as IF/THEN/ELSE and REPEAT/UNTIL)
to encourage structured programming in the assembler
language environment.

PAGE The PAGE macros allow the definition of logically
distinct program pages and control the assembly on each
page. The PAGE macros allow logically connected code
and data to be assembled into different memory regions.

STRUCT The STRUCT macro package allows the definition of data
structure formats in a highly readable, easily modified
form.

TRANSFER The transfer macros are defined in a number of systems
and provide a conditional control transfer facility
which does not have the branch range limitation.

QUTPAT The QUTPAT macro, together with the patterned quit
handler, allows the user to specify the appropriate
action in the case of failed bus access operations
(QUITs).

3.11 Format

PLURIBUS expects that its source programs will consist of
rigidly-defined "statements", one per line. A statement can have
up to four "fields", each in order, and each with its specific
definitions:

label: operator operands ;comments

19

Report No. 3001 Bolt Beranek and Newman Inc.

The label is mentioned in Section 3.5; the operator is separated
from its operands by at least one space or tab, while the comment
field starts with a semicolon. Thus, only relative position is
important, with the colon and semicolon removing any ambiguity.

20

Report No. 3001 Bolt Beranek and Newman Inc.

PLURIBUS DOCUMENT 4: BASIC SOFTWARE

PART 3: DDT

i

Report No. 3001 Bolt Beranek and Newman Inc.

Update History:

Originally written by M.F. Kraley, November 1975.

Revised by R. Hinden, August 1978.

ii

Report No. 3001 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

DDT . . • . • • • • . . • • • •

Addresses, opening and closing

Type out modes .

Other type out commands

Type in .

Address spaces

Control . . .

Miscellaneous commands

Special locations

Control structure of DDT

Debugging environment of DDT

Exceptional conditions

User Teletype I/O

Entry points

Assembly

iii

page

1

1

2

3
4

5

7
8

8

9

9
10

10

10

11

Report No. 3001 Bolt Beranek and Newman Inc.

DDT

DDT is a program which basically provides a mechanism for
inspecting and changing registers of the machine. In a broader
sense, however, it can be viewed as a simple operating system
which controls the starting and stopping of processors and
handles extraordinary conditions (QUIT and ILLOP). This manual
is not intended as a tutorial; some knowledge of how other DDTs
work (see, for example, the PDP-10 DDT manual) may be helpful.

Pluribus DDT comes in many flavors and shapes for different
configurations and applications, which will be discussed later.
Regardless of the internal structure, all versions appear
basically the same to the user. DDT requires a controlling
device, like a Teletype or VISTAR, which we will call the TTY.
In its simplest form, a single processor runs DDT, either
"stand-alone" or in conjunction with a user program. These and
other control structures are described below.

We begin by describing the various commands the user may
type. A number is represented by "nn", and <altmode> (or
<escape>) is represented by "$". A dollar-sign character is
indicated by "<dollar>". A caret or uparrow "A" followed by a
letter indicates a control character. The character caret (or
uparrow) is indicated "<uparr>". The underscore or backarrow
character is indicated by "<backarr>". The carriage return
character is denoted "<er>", and linefeed "<lf>". The word
"register" generally means a location in address space; a
"processor register" is just that. Numbers are followed by "!"
to indicate that they are hexadecimal (base 16).

Addresses, opening and closing

Whenever a register is "opened", its contents are typed out
in the current mode (except as noted for certain commands). When
a register is "closed", the last value typed in while open, if
any, will be written to that register. If nothing or <delete> is
typed in, nothing is written.

nn/

<er>

<lf>

opens register nn.

closes current register, if any open.

closes current register, if
opens next "instruction",
out mode is symbolic (see

1

any open, and
that is, if type
below) and the

Report No. 3001

$<lf>

<uparr>

$<uparr>

I

$/

Type out modes

Bolt Beranek and Newman Inc.

current register is a
instruction, skip one register.

same as
register,
skipped.

<If> but always opens
that is, a register

double-word

the
is

next
never

closes current register, if any open, and
opens the previous one.

like <uparr> but goes up two registers, not
one.

by itself, is the value of the address of the
current register, if any open; if none, then
the last current register.

types out the contents of the register
addressed by the current register but does
not open it or change " " The address used
is the second word operand address if in
symbolic mode or the second word register
contents otherwise.

closes the current
register addressed
as in "/".

register and opens the
by the current register,

There are two orthogonal type out modes. One controls the
radix of type out:

numbers are typed out in hex (base 16) - the
default.

numbers are typed out in octal (base 8).

The other controls how register contents are interpreted:

type out symbolically, that is, try to
interpret as an instruction, including next
word if a two-word instruction code.

(Konstant) type out as a number.

2

Report No. 3001 Bolt Beranek and Newman Inc.

"A type out as two ASCII characters.

Other type out commands

=

$=

nn=

>

nn"

$"

"
nn\

$\

\

nn[

retypes out the current register in the
alternate mode as follows:

current
symbolic
constant
ASCII

alternate
constant
symbolic
constant

retypes out the current register in the
alternate mode, as in "=", and changes the
current mode to the alternate mode.

When preceded by a number or an expression,
types out the value of that expression. The
result of such expression arithmetic is not
considered a value to be written to an open
register when closed.

retypes out the current register as two ASCII
characters, but does not change the mode.

opens location nn, but does not type out
contents; remains in this mode until I or \
is typed.

analogous to $/

analogous to I

opens location nn, but the address type out
is suppressed on succeeding lines until I or
" is typed.

analogous to $/

analogous to I

opens location nn, but types out contents in
the alternate mode (see=, above); does not
change current mode.

3

Report No. 3001

$[

[

Type in

symbols

nn

nn.

nn'

Bolt Beranek and Newman Inc.

analogous to $/

analogous to I

DDT contains symbols with predefined values
to facilitate type in of symbolic data. All
of the op codes and other instruction
components of the Pluribus assembler are
appropriately defined. By using <space>
and/or <tab>, instructions may be entered in
virtually the same format as the assembler
expects. Type in routines correctly
interpret displacements in branch
instructions. Malformed instructions result
in the type out " ", and all current type in
is cancelled. There is presently no facility
for user defined symbols. ~

NOTE: The characters <comma>, "="," ", "+",
"-","(",and")" have special meaning within
an instruction type in, as do the symbols RO,
R1, ••• R7. Refer to BBN Report No. 3001,
Pluribus Document 4, Basic Software, Part 2,
for a description of the Pluribus assembler
format.

Typed in numbers are generally interpreted
according to the current type out radix,
except that numbers containing letters A-F
are always hexadecimal. Note that some
numbers look just like symbols; e.g., ADD,
ADDB, BC, BE, BF1, BF2, and BF3. These are
treated as symbols unless they are explicitly
denoted as numbers by a leading zero or by an
"!" after the number. It is a good habit to
precede all hexadecimal numbers beginning
with the letters A-F by a leading O.

a decimal number

an octal number

4

Report No. 3001

nn!

<delete>

+

<space>

=

<backarr>

<comma>

Address Spaces

nn:

Bolt Beranek and Newman Inc.

a hex number

echoes as "#" and cancels current input, that
is, it is as if whatever is being typed in
was never typed.

addition

addition

subtraction

when preceded by an expression, types out the
value of that expression. The result of such
expression arithmetic is not considered a
value to be written to a register when
closed.

has the value of the last quantity typed out
as a result of examining a register. This
would be the value of second word of a
two-word instruction when in symbolic mode.
If the value of the first word is desired,
use "=" followed by <backarr>.

is used to input two words at a time as in an
instruction. Typing <comma> after the first
value saves that value until the terminator
is typed after the second value, then both
values are written to memory. The value of
" " is not changed. A <delete> typed after
the <comma> aborts the entire input. If
nothing is typed before the <comma>, only the
second word will be changed.

sets the number of the current processor
address space. The processor number is
specified according to the Pluribus
convention that assigns coupler addresses to
indicate the physical processor position in
the machine. If set to other than the
processor currently running DDT (the "local"
processor), all references will be
transformed into accesses in that processor's

5

Report No. 3001 Bolt Beranek and Newman Inc.

address space (on its bus and with the
appropriate key bits). If on another bus,
BBC will be used; if the other processor on
the same bus (the "buddy" processor), the
local processor will run in the buddy's
registers to examine or change the location.
If the buddy is running, he will be stopped,
context saved and restored, and restarted. A
negative argument to ":" implies the local
processor; zero means the buddy. Specifying
a non-existent processor (really the control
register of the bus coupler from that bus to
the AV I/O bus - see below) causes a "I" type
out. Note that when a processor on another
bus is selected, attempting to reference a
register on the bus being used for BBC (the
AV bus) will result in a QUIT. Use "nnAV" to
choose another bus for BBC.

sets the base address of the I/O bus to be
used for BBC to nn. The default is EOOO!. A
null argument resets to the default.

sets the map value of the memory page to be
referenced when examining addresses in the
first mappable segment (4000! - 6000!) to nn,
regardless of current map values. This
feature is enabled only when the "local"
processor is selected. The procedure used is
to transform an access in the 4000! 6000!
window to one in the 8000! - AOOO! window.
The third map (FC04!) is set to the current
AF value and the access performed. The map
is then restored per the contents of location
F4! in which the user program should keep a
copy of the desired map value. An argument
of -1 will disable this feature: no address
transformation nor map changing will occur.
Note that when using a common memory DDT and
AF is disabled, references in the 4000! -
6000! range will access the DDT code page
itself, since the code is executed through
the first window.

6

Report No. 3001

Control

Bolt Beranek and Newman Inc.

starts the selected processor at nn.

starts the selected processor at the address
last specified by a AG command. DDT
remembers two independent "last AG
addresses": one for the local processor and
one for all others. If no argument is given
and no address has been specified previously,
a "#" will print and nothing else will
happen.

stops the selected processor if running and
types out the contents of the program
counter. If not running, types out "HALTED".
For the local processor, "stops" means stop
executing the user program and return control
to stand-alone DDT. For processors on other
busses, repeatedly tries to stop processor if
QUITs occur (usually due to the BBC reference
being aborted in favor of a forward access)
and reports "FAILED" after 100 unsuccessful
tries.

if the local processor is selected, it causes
it to "proceed" from where it was last AXed
(per RO). For other processors, start
running without changing the current value of
their program counter.

steps the selected processor one
and types that instruction;
processor cannot be stepped.

instruction
the local

like AZ but does not type the instruction.

like AZ but first sets the program counter to
nn.

7

Report No. 3001 Bolt Beranek and Newman Inc.

Miscellaneous commands

Rnn

Special locations

references register nn of the selected
processor. For the local processor, the
values of registers 0-8 are saved whenever
control is returned to DDT and Rnn r~fers to
the memory locations where they are saved.
For other processors, refers directly to the
registers themselves; the processor must be
halted before registers can be examined. The
processor number will be echoed.

copies contents of the local processor's
private memory to the corresponding locations
of the private memory of the currently
selected processor. The two arguments give
the inclusive bounds on the addresses to be
copied. Omitting arguments will reuse the
last value previously specified for that
field; if none exists, a "I" will be echoed
and no copy takes place.

DDT maintains several fixed lo~ations in the private memory
of the local processor to communicate with user programs:

FO! F4!

F8!

FA!

FC!

FE!

Map O and Map 2 respectively, are the values
to which the maps will be restored when DDT
finishes using them. Map O is used by common
memory DDTs to execute code. Map 2 is used
to examine common memory.

the map value of the page in which a common
memory DDT resides (should be set up by the
user before a common memory DDT is loaded).

DDT option version (see section on Assembly,
below).

location of TTY interface.

the number
processor.

8

of the currently selected

Report No. 3001 Bolt Beranek and Newman Inc.

Control structure of DDT

DDT either runs "stand-alone" or in conjunction with a user
program. When stand-alone, DDT is the only program running and
thus mostly idles, waiting for a command from the TTY. When DDT
starts up a program (e.g., via ~G) it transfers control to that
program and expects to have control periodically returned to it
so that it can sample the TTY for input, perform any commands
requested, and continue any output in progress. This return of
control can be accomplished in several different ways:

1. By an explicit call of DDT from the user program. A
call to the polling entry (see below) should be executed
periodically.

JSB R7,0RIGIN+15

Control will be returned to the address contained in R7
at the time of the call.

2. By using the line frequency interrupt to call DDT. This
requires such interrupts to be enabled for the processor
which is to run DDT.

3. By using the TTY interrupt to wake up DDT only when
there is actual data flowing to and from the TTY. This
requires the TTY to be on the same bus as the processor.

Specification of these options is done when the particular
version of DDT is assembled. DDT preserves the contents of
registers 1-7, the programmable flags, and enabled interrupt
levels across an invocation.

Debugging Environment of DDT

DDT attempts to maintain a "logical" debugging environment
similar to the environment the programmer is coding in when
he/she is writing the program. In particular, DDT assigns
special meanings to such hardware features as the memory map
registers (and their effects) and the processor registers. The
debugger can thus simulate step-by-step the action of a
particular routine by changing the contents of these hardware
registers in DDT. DDT, of course, does not change the actual
registers, since it is using the registers for its own purposes.
Instead, the registers and (in the case of the maps) their
side-effects are simulated by DDT.

9

Report No. 3001 Bolt Beranek and Newman Inc.

Exceptional Conditions

As part of its role as "mini-operating system", DDT makes
provision for handling QUITs and ILLOPs. DDT assembly parameters
specify whether the user or DDT will initially handle these
events. DDT assumes (and uses) the standard "expected QUIT"
format: a "password" (80FEI} two words after the beginning of
the instruction which may cause a QUIT and the address where
control should be transferred after a QUIT four words after the
instruction. Any "unexpected QUITs" (i.e., those without a
password), which DDT's QUIT handler intercepts, will print "QUIT
@<program counter>" on the TTY and enter stand-alone mode.
Similarly, ILLOPs will print "ILLOP @<program counter>" and also
enter stand-alone. DDT does no interpretation of ILLOPs. If the
user program fields these events, it can have DDT give these type
outs via the appropriate entry points (see below}. When DDT gets
a QUIT as a result of inspecting or changing registers, it will
type out "QUIT". QUITs while executing other DDT functions may
result in "FAILED", "RUNNING", or "WHO?" messages, as
appropriate.

User Teletype I/O

In normal operation DDT owns the teletype. It is possible
for a user program to use DDT to do teletype I/O. The functions
are as follows:

- Poll just TTY handler

- In Character Subroutine

- Out Character Subroutine

The user program can call these routines by using DDT Entry
points. These are described in the next section.

~ntry points

Given here are some of the addresses to which control may be
passed to cause various DDT functions. ORIGIN is a parameter set
at assembly time to show where the DDT code begins.

ORIGIN

ORIGIN + 4

normal restart - DDT enters stand-alone mode.

ILLOP entry - prints "ILLOP @FOO" and enters
stand-alone.

10

Report No. 3001

ORIGIN + 8

ORIGIN + C!

ORIGIN + 10!

ORIGIN + 14!

ORIGIN + 18!

ORIGIN + 1C!

Bolt Beranek and Newman Inc.

QUIT entry - prints "QUIT @FOO" and enters
stand-alone.

cold start - clears output buffers and enters
stand-alone -- DDT starts here when the paper
tape is loaded.

polling entry - checks for and performs any
work for DDT to do, then returns via R7.

poll teletype handler only (if user program
wants character I/O).

subroutine to get next input character.

subroutine to send next output character.

When DDT is initialized,
"normal restart", all bus coupler
are set to the default state of
disable.

either by a "cold start" or a
control registers on the AV bus

forward enable and backward

Assembly

DDT has several parameters set at assembly time to specify
such things as the addresses of the various pieces of code and
variables, the machine environment, the type and location of TTY,
method of control transfer, special features (e.g., 1112
processor set), and so forth. There are several collections of
these parameters which contain appropriate settings for-some
configurations of interest. The number of the desired collection
is specified at assembly time. More information is given in the
source files. The values used for these parameters are printed
at the beginning of the DDT listing. The selected option version
is stored in location FA! by DDT.

1 1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When De1e Entered)

r READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
If. REPORT NUMBER r· GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. Tl TL E (end Sublllle) s. TYPE OF REPORT 6 PERIOD COVERED .
PLURIBUS DOCUMENT 4: BASIC SOFTWARE Technical

6. PERFORMING ORG. REPORT NUMBER

BBN Report No. 3001
7. AUTHOR(•) a. CONTRACT OR GRANT NUMBER(•)

M. F. Kraley et al. DCA200-C-616

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA 6 WORK UNIT NUMBER~ Bolt Beranek and Newman Inc.

50 Moulton Street
Cambridge, Massachusetts 02138

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

September 1978
Defense Communications Agency 13. NUMBER OF PAGES

Washington, D.C. 20305 148
14. MONITORING AGENCY NAME 6 ADDRESS(ll dlllerent from Controlllnl Office) IS. SECURITY CLASS. (of thle report)

Defense Commercial Communications Office Unclassified

Scott Air Force Base I Se. DECLASSIFICATION/DOWNGRADING
Illinois 62225 SCHEDULE

16. DISTRIBUTION STATEMENT (of thl• Report)

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the ebetrect entered In Bloclc :JO, II dlllerent from Report)

I~ SUPPLEMENTARYNOTES

19. KEY WORDS (Continue on reverse aide If neceaaery end ldentlly by bloclc number)

multiprocessor computer architecture
Pluribus fault tolerant computation
reliable computer multiprocessor design
parallel processor

20. ABSTRACT (Continue on reveree •Ide II neceeaary end Identity by bloclc number)

The Pluribus is a reliable, expandable, high bandwidth line of multi-resource
computers originally developed for use as a switching node in the ARPA com-
puter network. It can be configured with arbitrary amounts of memory and I/O
tailored to suit the application; it is designed to survive failures and con-
tinue operation without human intervention even while repairs are in progress
This report, one of a set of nine volumes documenting the Pluribus line, spec-1
ifies the instruction set of the processor, introduces the assembly language
~rrentlY. _y_s_e_d_.. and ..12.l.:IDLideB a manu,::tl
DD FORM

I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

for tll@ -8YSJ:em_ d@hmHdn_a _oro_g_ram_.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

UNCLASSIFIED
Sl!CURITY CLAllll'ICAT10N 01' TMtt ~AeS,.._ ~

UNCIASSIFIED

