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1 INTRODUCTION AND OVERVIEW 

The Microprogrammable Building Block (MBB} is a general 

purpose, easily microprogrammable, powerful computer which can be 

used for a variety of applications. This manual attempts to 

completely describe the MBB's hardware elements and their 

function from the microprogrammer's point of view. 

Although the MBB can be programmed directly in its 

microlanguage for a specific application we envision that in most 

application, the MBB will be emulating some other machine, either 

existing or invented. Accordingly, we begin with a discussion of 

emulation, which also introduces some terms which will be used 

throughout this document. We then describe some of the physical 

characteristics of the machine and give an overview of its 

logical structure. 

1.1 MPMs and Emulation 

Because they allow close program 

action, microprogrammable 

emulating other computers. 

computers 

When used for 

control over hardware 

are often suited for 

such emulation, the 

microprogrammable machine (MPM} is called the "micromachine" or 

"microcomputer"; its code is "microcode", its instructions are 

"microinstructions", the execution of a microinstruction is a 

"microcycle", and so on. (We are not using "microcomputer" to 
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mean a very small computer, as is sometimes done.) The emulated 

machine is called the "macromachine", its code is "macrocode", 

and so on. 

To emulate the macrocomputer's execution of a given 

macroprogram, the microcomputer needs that program loaded as 

data. The microcomputer's microprogram reads macroinstructions 

one at a time, decoding each one and emulating its execution. 

For example, a macroprogram branch corresponds to the 

microprogram's breaking out of sequence in its examination of 

macro instructions. 

Emulating a macroinstruction is often straightforward. 

Macro instructions generally deal with macroregisters, 

macromemory, and macro-I/O (including interrupts); and the 

macromachine's data operations generally consist of unary and 

binary operations such as NOT and ADD. The microcomputer 

generally contains registers which the microprogram uses as 

images of macroregisters. 

is maintained to have 

program counter, and 

For example, one of the microregisters 

its contents reflect the macromachine's 

is used to determine the next 

macro instruction to be emulated. Normally, emulating the 

execution of a macroinstruction would involve increasing that 

register by one; emulating the execution of a macro-JUMP command 

would involve setting that register to reflect the new 

macromachine's execution address. Other microregisters would 

2 
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mirror the macromachine's accumulators and index registers. A 

macroinstruction to clear an accumulator, for example, would be 

emulated by clearing the corresponding microregister. 

The microcomputer also generally has a memory area which the 

microprogram uses as a direct image for macromemory. This area 

holds the macromachine's program and data. To fetch the next 

macroinstruction to be executed, the microprogram simply reads 

from this area at an address indicated by its image of the 

macromachine's program counter. To emulate a macroinstruction to 

clear a memory cell, the microprogram simply clears the 

corresponding location in its image of macromemory. 

Further, the microcomputer has, in general, an Arithmetic 

and Logic Unit (ALU) which can perform the macrocomputer's data 

operations such as NOT and ADD. To simulate a macroinstruction 

to add memory contents to an accumulator, the microprogram uses 

its ALU to add the contents of its image of the memory cell to 

the contents of its image of the accumulator and stores the 

result in its image of the accumulator. 

Because the macromachine's registers, memory, and data 

operations have direct representations, emulating their functions 

is easy. In contrast, the macromachine's I/O system often is not 

replicated. For example, the macrocomputer may have many 

priority-ordered interrupt levels, while the microcomputer may 

make available only one; the macrocomputer's I/O instructions may 

3 
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send signals down an I/O bus which has no 

microcomputer; or the macrocomputer may 

hardware which lets it initiate a block 

equivalent in the 

have sophisticated 

transfer with one 

instruction, while the microcomputer lacks such hardware and must 

transfer each word separately under microcode control. When I/O 

hardware is not mirrored precisely, emulating I/O functions can 

be difficult. Generally, the micromachine's system I/O handlers 

interact with microcode which emulates I/0-related 

macroinstructions such as instructions to request an interrupt or 

to initiate a block transfer. 

In addition to I/0 hardware, certain other specialized 

hardware may not be mirrored. For example, the micromachine may 

lack the macromachine's hardware logic for decoding 

macroinstructions or performing memory mapping. In all of these 

cases, the microcode assumes the burden of emulating the 

macromachine's specialized hardware. The microcode's close 

control over the microcomputer's hardware is usually important 

for efficient emulation. 

An MPM used for emulation may offer two advantages over the 

macrocomputer it emulates. First, the MPM may be cheaper, since 

it can use simple, inexpensive. regularly structured hardware, 

using microcode to mimic the macromachine's expensive specialized 

hardware features. Second, it may be easy to change the 

microcode to enhance the macrocomputer's configuration, primitive 

4 
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operation, or efficiency. For example, it might be easy to 

expand macromemory, to add new macroinstructions, or to optimize 

the emulation of frequently executed macrocode. 

1.2 Physical Description 

Before discussing the detailed logical design of the MBB we 

will describe the MBB's physical structure. Figures 1.1a through 

1.1c show various views of a minimum MBB configuration. The 

exact configuration is dependent on the intended application. 

The housing is a box approximately 12" high and 20" deep, 

mountable in a standard 19" rack. A smoked plexiglass front lets 

display lights shine through. Inside, four printed circuit (PC) 

cards rest between guide rails; one is for the power supply, two 

are for the basic MBB processor/memory system, and one is 

available for I/O circuitry. (The power supply card has some 

logic circuitry in addition to fans, power supply, and other 

bulky units. For convenience it too is called simply a "card".) 

Because the cards are fairly wide (about 14"), each has a 

transverse stiffener to prevent bowing. 

Each card has a metal bulkhead mounted at the rear. The 

cards use L-shaped electrical connectors, one end soldered to the 

card and the other mounted in the bulkhead. All electrical 

5 
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connections from one card to another are made with cables which 

attach to the connectors mounted on the bulkhead. The bulkhead 

is wider than the card, and it transfers the force of connector 

mating to the side rails of the box. The bulkhead screws into 

the box to keep the card still. The bulkhead, like the 

transverse stiffener mentioned above, helps to prevent bowing. 

The MBB's side walls extend past the rear; the overhang 

protects the connectors mounted on the bulkheads. 

Since the box has no internal wiring or edge connectors, 

tight tolerances are not needed for placement of cards in the 

box. 

PC cards are spaced rather widely to ease cooling, relax 

mechanical tolerances, and provide sufficient area for 

connectors. Spacing is not uniform; the power card, containing 

two fans, needs considerable space while an I/0 card may need a 

wide bulkhead to accommodate many connectors. 

Power consumption is only about 350 watts at the AC plug, so 

two fans easily provide adequate cooling. Figure 1.1c shows air 

flow viewed from the rear. Air flows in at the bottom left rear. 

across the left half of the power board, up and across the other 

boards from left to right, down and across the right half of the 

power board, and out the bottom right rear. A baffle, reaching 

from the power board up to the next higher board, prevents 

"short-circuit" air flow between the inlet and outlet sides. The 

9 
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power board has its logic elements on the left side to be cooled 

by incoming air, and its heavy heat dissipaters on the right side 

to be at the end of the airflow. 

A battery on the power board provides one minute of backup 

power. Our experience suggests that such a battery will enable 

the MBB to withstand a large majority of external power outages. 

The battery will recharge automatically and will require no 

regular maintenance; under normal conditions it should last 3-5 

years. 

The MBB's hardware is divided into a "standard" or "system" 

part, which is present in every MBB system, and an "application" 

part, which is peculiar to the particular application. The 

standard part consists of the housing, the power card, and two PC 

cards for processor/memory. The processor/memory logic is 

designed to permit two inserts: small PC cards called the MIR 

and MAR daughterboards. These daughterboards are custom designed 

for each MBB application. 

1.3 Processor Design 

1.3.1 Basic Data Loop 

Figure 1.2 shows the logical structure 

paths. The ALU is the heart of the machine. 

the ALU are the source and destination 

10 
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registers. This loop is referred to as the "processor", and is 

shown in more detail in Figure 2.1. The source and destination 

busses are driven by "tri-state" logic: that is, the hardware 

selects one source of data at a time to drive them, holding the 

other possible sources in a neutral state. A typical 

microinstruction determines the ALU's two inputs, an ALU 

operation, and destinations for the ALU's output. The ALU's "A" 

input comes from one of the ALU's scratch pad registers. The 

ALU's "B" input comes from one of the possible inputs to the 

source bus. The ALU operation may be ADD, SUBtract (scratch 

register minus source bus), EXOR, OR, AND, PASS source bus, and 

NOT source bus. The ALU's output may be written to any one 

register driven by the destination bus: it may also be written 

back to the same scratch pad register which supplied the "A" 

input. 

The data paths of the MBB are 20 bits wide. While only 16-

bit paths are needed for a straightforward emulation of a 16-bit 

machine, the only significant price paid for the extra bits is 

the PC board space consumed by the extra data paths: the 

processor's internal ICs to populate them cost very little. (In 

contrast, the extra bits for the ALU scratch registers and main 

memory are reasonably expensive, and are also easier to 

optionally omit.) The potential use of the extra 4 bits seems 

well worth the price. These bits could be used to expand the 

instruction set and address space of a 16-bit machine. Such an 

11 
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expansion would involve changing the emulation microcode 

(maintaining compatibility with existing macrocode), and probably 

could be performed in easy steps. 

A software-controlled system status bit specifies whether 

the machine performs arithmetic operations (such as adding and 

shifting) and records ALU status based on either 16-bit or 20-bit 

data words. 

The basic microcycle time of a 16-bit MBB is 125 nsec. If 

an MBB uses the full 20-bit data width, the microcycle time must 

be increased from 125 nsec to 135 nsec to accommodate a longer 

ALU carrying propagation time. To effect this change, a 

different crystal is used to control the system clock signal. 

A microprogram counter, the UPC, controls the fetching of 

microinstructions from microcode memory. The UPC can be loaded 

from the destination bus to effect a program branch; therefore, 

the machine's full data computation power may be used to direct 

the flow of program execution. The microinstruction being 

executed is held in the microinstruction register (UIR) for 

decoding. 

Microcode is contained in both PROM and RAM. PROM is read­

only and non-volatile. RAM is writable, and its contents are 

lost on power failure. PROM code is intended for such tasks as a 

system bootstrap or a mini-DDT; code size is kept small, but code 
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speed is not an issue. For RAM code, in contrast, size is less 

important and speed is more important. 

The ALU with its scratch registers, and the microcode memory 

coupled with instruction fetching and decoding, provide a basic 

computing capability. Further power is supplied by other major 

components, which we now describe. 

1.3.2 MIR and Dispatch 

A macroinstruction to be emulated may be loaded into the 

macroinstruction register (MIR) • The MIR daughterboard CMIRDB) , 

custom designed for each macromachine to be emulated, assists in 

macroinstruction decoding. Some simple, application-dependent 

hardware in the MIRDB can free the microcode from some 

cumbersome, frequently required calculations which would 

seriously slow the machine. The MIRDB has three principal 

functions: 

1. to ease macroregister selection 

2. to facilitate dispatching to microroutines based on the 
macro instruction 

3. to provide a specific transformation of the macro­
instruction 

For register selection, bits from the MIR may be used (under 

microinstruction control) to select the scratch pad register that 

feeds the ALU's "A" input. This feature is intended for 
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macromachines whose macroinstructions have a field specifying 

which of several macroregisters to use. These different 

macroregisters would be mirrored by a block of ALU scratch pad 

registers, and a macroinstruction's register specification field 

would automatically cause the MBB to access the corresponding 

microregister. 

The second function of the MIRDB is to assist the 

microprogram in dispatching to the proper routines for emulating 

the various macroinstructions. Bits from the microinstruction 

CUIR), the macroinstruction (MIR), and the system status register 

(MISC) are combined in an application-dependent manner to produce 

a 10-bit "dispatch address". This dispatch address is not itself 

an address of a microcode routine; such a situation would have 

required a complicated MIRDB, as well as fixed routine addresses. 

Instead, these 10 bits address a cell in a lK x 12-bit "dispatch 

memory"; this cell holds the microcode address to which to 

branch. A microinstruction may load this microcode address into 

the UPC to effect the branch. (Because of memory timing 

constraints, this address is loaded directly onto the destination 

bus rather than being loaded onto the source bus and passed 

through the ALU.) Dispatch memory is easily rewritten, so that 

locations of emulation routines need not be fixed. 
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1.3.3 MAR and Main Memory 

Another major MBB component is the main memory and 

associated logic. Main memory is intended to include the 

macroaddress space (containing the macroprogram's code and 

variables), plus an area reserved for microcode use. In general, 

main memory is used, as are the ALU scratch registers, for 

read/write data. Compared with the scratch register memory, main 

memory is much larger, but slower <as discussed shortly). 

The memory address register (MAR) controls main memory 

access. When a microinstruction loads the MAR, certain 

microinstruction bits specify whether to initiate a main memory 

transfer, an I/0 tcansfer, or neither; whether the transfer is a 

read or a write; and for main memory transfers, whether the 

reference is "macro" (using an address supplied by an MAR 

daughterboard, as explained below) or "physical" (using the 

address in the MAR directly) • 

Compared with the MBB's internal processing, the main memory 

access is rather slow; reading from a main memory cell takes 

three microcycles. The first microcycle is used to load the MAR 

with the address desired. The next two cycles may be used 

freely, except that they may not write to the MAR or to the 

memory buffer register (MBR) • At the start of the following 

cycle, the contents fetched from main memory are available in the 

MBR. Writing to main memory proceeds similarly. The MBR must be 
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set up beforehand with the data to be written, the MAR is loaded 

to specify the memory address, and the two cycles following the 

MAR load may not alter the MAR or the MBR. 

The main memory address selected may be passed directly from 

the MAR to main memory; or it may instead, under microinstruction 

control, pass through an MAR daughterboard (MARDB) for 

translation and validity checking. Main memory references which 

emulate macromemory references will pass through the MARDB to 

undergo any address translation and validity checking 

characteristic of the macromachine. An illegal address detected 

by the MARDB prevents any memory access and sets a status bit. 

Since valid addresses are properly translated and illegal 

addresses prevent access, an emulation of a macromachine memory 

operation cannot access the area reserved for private microcode 

use. This private area can only be accessed by a "physical" read 

or write, in which the address is passed directly from the MAR to 

the memory. 

Like the MIRDB, the MARDB is tailored for each application; 

here again, a simple piece of hardware may greatly speed up 

emulation by freeing the microcode from some tedious, frequently 

required calculations. 

On some machines, I/0 transfer instructions. look like 

memory reference instructions; the hardware traps references to 

certain addresses as really referring to certain I/0 devices. To 

17 
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emulate such a machine, the MARDB would treat such addresses as 

illegal, preventing access and setting an easily testable status 

bit. The microcode could then test this bit and branch to an 

appropriate routine. 

I/O devices are read and written much like main memory. The 

MAR specifies an I/O address, and the MBR serves as a data 

buffer. I/0 transfers differ from main memory transfers in two 

ways. First, while main memory transfers take three cycles 

(including the MAR load), I/0 transfers take either two or four, 

depending on the device. Second, while for main memory the 

intervening cycles after the MAR load may be used rather freely, 

for I/O these cycles (one or three, depending on the device) must 

be devoted to supporting the transfer. 

1.3.4 Other Features 

Figure 2.1 shows certain other MBB features worth 

mentioning. To facilitate byte operations, two byte-swapped 

forms of the MBR are available as sources, one for 8-bit bytes, 

and one for 10-bit bytes. The MBR was chosen because many of the 

byte operations desired will probably deal with data bytes read 

from main memory or I/0 devices. To support shift operations, 

the MAR and MBR form a double-length shift register; one 

microinstruction may shift their contents right or left one bit 

(end off, 0 shifted in). We decided not to add more shifting 
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hardware to handle multiple-position shifts and different shift 

types (rotate, arithmetic). Such hardware, while it would have 

speeded emulation of shifts for some machines, seemed too 

specialized and thus not worth the cost. The microcode, aided by 

our simple shift hardware, assumes the burden of emulating the 

various types of shift instructions. 
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2 PROCESSOR 

Now that we have had an overview of the processor structure, 

\we can examine the pieces of the MBB in more detail (see Figure 

2 .1} • 

Bits in registers and on busses are numbered starting from 

O, the low order bit. All numbers are decimal, unless otherwise 

specified. 

2.1 Basic Data Flow 

Data flow centers around the Arithmetic Logic Unit (ALU}. 

The ALU has two inputs. Its "A" input is from a scratch pad 

register file (1024 words * 20 bits}. Its B input is from a 20-

bit "source bus". All drivers of the source bus, plus Dispatch 

memory, are called "sources". A 20-bit "destination bus" is 

driven by the ALU's output (or Dispatch memory, see below}. All 

registers which can be driven from the destination bus, except 

the ALU's scratch pad registers, are called "destinations". 

Selecting the ALU's two inputs, performing an arithmetic or 

logic operation, and storing the result are the main events in a 

microcycle. A microinstruction specifies a source to drive the B 

input, a scratch pad register to drive the A input, an ALU 

operation, and a single destination to receive the output. (If 

Dispatch memory is the source, it drives the destination bus 
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directly, and the ALU is not used.) The ALU's output may 

optionally be written back to the same scratch pad register which 

fed the A input. 

Some sources are less than 20 bits wide. When they are read 

onto the >source bus, the bus is padded with high order O's. When 

registers less than 20 bits wide are written from the destination 

bus, the high order bits on the bus are ignored. 

The seven available ALU operations are: 

ADD 
SUBTRACT (scratch register minus source bus) 
AND 
Inclusive OR 
Exclusive OR. 
PASS source bus 
NOT source bus (bitwise complement) 

The eighth possible ALU operation is undefined. The ALU is 

c'ombinatorial only: it has no storage. To pass a scratch pad 

register, the assembler uses the ADD operation with a constant of 

0 driving the source bus: we may think of passing a scratch 

register as an available "operation". 

2.2 Register Selection 

There are 1024.registers: only 32 are accessible at any 

given time. Sixteen global registers are always acce~sible: ~ 

"window" of 16 registers is movable within the lK address space 
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depending on the contents of a register called BASE. 

may also be selected on the basis of the contents of 

detail: 

Registers 

MIR. In 

A five-bit microinstruction field selects the scratch pad 

register for the ALU's input. Let R be the field's value. For R 

= 0 through 15, the contents of the 10-bit BASE register 

determines the window of addresses available; BASE is inclusive 

ORed with R to select the desired register. (This inclusive OR 

function allows several uses of BASE. If BASE is a multiple of 

16, then the local register block is a full sized 16 register 

block. With the appropriate choice for BASE, the local register 

block can be half, quarter or eighth sized. If local register 0 

is selected, then BASE serves as a direct 10 bit address into the 

register file.) The set of registers addressable at any moment 

with R = O through 15 is called the current "local register 

block". Registers 0-13, the "global" registers, are always 

accessible, using R = 16 through 29. For R = 30 or 31, BASE 

again sets the window; the particular register in the local block 

is determined by the Macroinstruction Register daughterboard 

(MIRDB) in an application-dependent manner. Two different 

registers may be selected using R = 30 and R = 31. Register 

addresses supplied by the MIR are also ORed with the contents of 

BASE, so the registers are always within the current "local" 

block. The MIR may not be used for register selection on any 

cycle immediately following a load of the MIR. 
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In summary, the register address is determined as follows: 

~alue Qf B 

0-15 
16-29 
30,31 

~esiate~ 

R!{BASE} (locals) 
R-16 (globals) 
MIR function}!{BASE} 

If BASE is loaded from the destination bus in cycle N, its 

new value takes effect for register selection in cycle N+l. The 

value of BASE when referenced as a source, however, does not 

change until cycle N+2. This special one cycle delay permits the 

old value of BASE to be saved in the new local register block. 

2.3 ALU Status 

Each microinstruction may optionally latch the ALU status. 

If the microinstruction specifies latching, the following ALU 

bits and conditions are latched into the ALU Status Register 

(ALUST) : 

high bit of A input 
high bit of B input 
high bit of output 
low bit of output 
ALU result zero 
carry 

The "high" bits are bit 19 or 15, depending on whether the 

machine's data width mode specifies 20 or 16 bits respectively. 

The "ALU result zero" status bit is set when the ALU result is 

zero; in 16-bit mode, only the low 16 bits matter. The carry, 
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also dependent on the data width mode, reflects the traditional 

"carry-out" on addition, and the complement of "borrow-in" on 

subtraction; the "carry" status bit is set as follows on addition 

and subtraction: 

high bit of A input 1 1 1 1 0 0 0 0 
high bit of B input 1 1 0 0 1 1 0 0 
high bit of output 1 0 1 0 1 0 1 0 

carry on addition 1 1 0 1 0 1 0 0 
carry on subtraction 0 1 1 1 0 0 0 1 

The "carry" bit for other operations is meaningless. 

These ALU status bits provide primitives for computing 

various status bits set by arithmetic and logical operations in a 

macromachine. In emulating macromachine operations which set 

status bits, the microcode would latch the ALU status on the 

appropriate microcode operation and then save the value of ALUST 

in a register or in main memory. If later the macromachines's 

status bits must then be tested, the saved value of ALUST can be 

decoded. 

2.4 Program Control 

Program execution is controlled by the Microcode Program 

Counter (UPC} and the Microinstruction Register CUIR}. The UIR 

holds the instruction being executed, while the UPC holds the 

address of the instruction being fetched into the UIR for 
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execution during the next cycle. In detail, suppose the UPC has 

value X at the start of microcycle M. During cycle M, the 

microcode instruction at address X is fetched into the UIR. Then 

during cycle M + 1, this instruction is decoded and executed. 

The hardware normally increments the UPC at the start of 

each cycle, so that sequential instructions are fetched and 

executed. To effect a program branch, however, the microcode can 

load the UPC as a destination. {When the microcode specifies 

loading the UPC, actually both the UPC and another register, 

RAMADDR, are loaded. Section 2.10 explains RAMADDR.) Because 

microinstruction fetching is pipelined as described above, the 

transfer of control takes two cycles: on the second cycle 

following the UPC load, the instruction at the new address will 

be executed. To clarify, suppose that in cycle M the machine 

executes a microinstruction at address X which loads Y into the 

UPC. The following table then gives the contents of the UPC and 

UIR at the beginning of cycles M, M+l, and M+2: 

C.;ic.le. UEC UIB 

M X+l instruction at x {Y -> UPC) 
M+l y instruction at X+l 
M+2 Y+l instruction at y 

The intervening instruction at X+l, executed before control 

transfers to address Y, may be any otherwise legal 

microinstruction, including another transfer of control. In the 

above example, if the instruction at X+l transfers control to 
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address z, the machine behaves as follows: 

C.~c.le. 

M 
M+l 
M+2 
M+3 

uec. 
X+l 
y 
z 
Z+l 

instruction 
instruction 
instruction 
instruction 

UlB 

at x (Y -> UPC) 
at X+l (Z -> UPC) 
at y 
at z 

If further Z = X+2, then the code has spliced an execution of the 

statement at Y into an otherwise sequential execution sequence. 

Because the UPC may be loaded as a destination, the full 

data computation power of the machine is available for computing 

transfers of control. 

Execution must never "fall through" from the lower BK 

addresses to the upper BK; Section 2.10 explains why. 

2.5 Conditional Execution 

Every microinstruction has a field for 

execution. The following conditions are available: 

always true} 
ALU status: result zero 
ALU status: result odd Clow bit on) 
ALU status: result negative (high bit on) 
interrupt pending 
mode flag 0 on 
MAR condition 

conditional 

The ALU status conditions refer to the appropriate bits in the 

ALU Status Register. The "interrupt pending" condition is true 
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if a microinterrupt request (Section 5) other than the 

programmable request is pending, and may change at any time. 

Mode flag O, controlled by the application software, is a bit in 

the MISC register. The MAR condition is determined by the 

application-dependent MAR daughterboard. 

The microinstruction may specify execution either when the 

selected condition is true or when it is false. By selecting the 

"always true" condition the instruction may specify either 

unconditional execution or unconditional non-execution. 

When non-execution is specified, ALU performs the indicated 

operation on the indicated inputs, but the result goes nowhere: 

the hardware prevents writing to any destination or ALU scratch 

register, and also prevents latching the ALU status in ALUST. 

Conditional execution is useful not only for program jumps 

but also for in-line execution. 

2.6 Constants 

The microinstruction may specify an explicit constant value 

to drive the source bus. Because the microinstruction field 

which specifies the constant is kept to a reasonable size, not 

all 20-bit constants may be specified. The instruction may 

specify any one of three 8-bit fields and can then choose only 

all O's or all 1's for the other bits. The three fields are: 
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bits 0-7 <right), bits 8-15 (middle), and bits 12-19 Cleft). In 

addition to these six possibilities, the instruction may specify 

an "extended constant". In this case, bits 0-13 may be set as 

desired and the other bits are O. Since the microcode address 

space only has 14 bits Cl6K words), loading an extended constant 

into the UPC can effect a program branch to any microcode 

address. When an extended constant is used, the ALU always does 

a PASS operation. 

The assembler automatically encodes permitted constants into 

one of these seven forms, flagging illegal constants. 

Any 20-bit constant C can be built in at most three cycles. 

Let 

Cl = C AND 377 
C2 = C AND 177400 
C3 = C AND 3600000 

and let R be an ALU scratch pad register. Then the instruction 

sequence 

provides constant C. 

load Cl into R 
load (C2 OR R) into R 
load CC3 ORR) into ••• 
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2.7 Certain Coding Awkwardnesses 

It is not possible to copy one scratch pad register to 

another, or to perform an ALU operation involving two scratch pad 

registers in a single microinstruction. Such operations take two 

cycles, requiring a register for temporary storage which is both 

a source and a destination. TEMP is often used for this purpose. 

Let R and S be registers. To copy the contents of R into S: 

load R into TEMP 
load TEMP into s 

To add the contents of R and S: 

load R into TEMP 
load (S PLUS TEMP) into ••• 

It is also not possible to combine two sources in a single 

microcycle. Such a combination takes two cycles, requiring a 

scratch pad register for temporary storage. For example, to add 

MIR to TEMP, a scratch pad register R is used as follows: 

load MIR into R 
load (TEMP PLUS R) into ••• 

It is possible to subtract a source from a scratch pad 

register in one cycle, but not vice versa. To subtract a 

register R from a source S various techniques are possible, 

depending on where the result must go, whether R and S may be 

overwritten, and what constants are available in registers. For 

example, if the constant 0 is in some scratch pad register z, and 
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the result is to go to some register D (possibly S itself) which 

is both a source and a destination, the following two-cycle 

sequence works: 

load (R MINUS S) into D 
load (Z MINUS D) into D 

2.8 MIR Daughterboard and Dispatch Memory 

The Macroinstruction Register (MIR) is designed to hold 

macroinstructions. An application-dependent MIR daughterboard 

(MIRDB) helps to interpret the macroinstruction held in the MIR 

(see Figure 2.2). 

The MIRDB can free the software from some cumbersome, 

frequently required calculations. As inputs to its computations, 

the MIRDB has: the 20 MIR bits, the four Mode Flags in MISC, and 

the microinstruction's eight-bit constant field. 

The MIRDB has four functions. First, it provides a source, 

MIRFIELD, which is usually a modified form of the MIR. In 

emulating the SUE or PDP-11, for example, a good use for MIRFIELD 

might be to provide displacements on branch instructions. These 

machines compute the displacements by sign extending the low 

order byte and then shifting left one bit. In emulating these 

machines, performing such a calculation in software on every 

branch instruction would be tedious; some simple logic in the 
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MIRDB, however, could provide the displacement in MIRFIELD. 

Second, the MIRDB, under microcode control, can select ALU 

scratch pad registers. Values of 30 and 31 in the 

microinstruction's Register field indicate register selection by 

the MIRDB; the daughterboard generates two four-bit fields, 

corresponding to register values 30 and 31. When one of these 

two registers is selected, the register address supplied by the 

MIRDB is inclusive ORed with the contents of BASE to determine a 

scratch pad register address. This feature is useful for 

emulating macromachines whose instructions have fields specifying 

which of several macroregisters to use (such as index registers 

or accumulators) • The macroregisters would be mirrored in a 

block of ALU scratch pad registers, and the macroinstruction's 

macroregister selection field would be used by the MIRDB to 

determine the corresponding ALU scratch pad register address. 

The application specific MIRDB helps solve the problem that these 

register fields are in different bit positions in different 

processors' instruction sets. 

performed frequently, and 

The register selection function is 

should be relatively efficient. 

Because of timing constraints, the MIR must not be used to select 

a register in the cycle immediately following an MIR load. 

Third, the MIRDB can control the machine's data width mode 

(16 or 20 bits). This control is enabled when the DWIDTHCTRL bit 

in the MISC register is on. This feature might be useful for 
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simultaneously emulating the instruction sets of a 16-bit machine 

and a 20-bit machine, or for providing an extension to the 

instruction set and memory of a 16-bit machine. 

Fourth, the MIRDB, together with Dispatch memory, permits 

easy dispatching to the proper microcode routine to emulate 

different macroinstructions. When a microinstruction selects 

Dispatch as a source, the daughterboard calculates a 10-bit 

address. Dispatch memory is then interrogated at this address; 

the contents read are passed directly to the destination bus, and 

may be loaded into the UPC to effect a program branch. 

The address computed depends on the contents of the MIR, the 

microinstruction's Constant field, and the Mode Flags in MISC. 

The MIRDB can let the microcode dispatch to an emulation routine 

which depends on the macroinstruction (MIR contents). Further, 

the microinstruction's Constant field lets the microcode specify 

different kinds of dispatches. For example, a macroinstruction's 

first dispatch might take all memory reference instructions to a 

common routine to calculate the effective address; memory 

reference instructions may then dispatch again, this time to 

separate routines to perform the indicated operation. The Mode 

Flags in MISC could reflect macromachine state bits which affect 

macroinstruction interpretation; the microcode could then 

dispatch to different macroinstruction emulation routines as 

appropriate. In the H316 emulation, for example, Mode Flag 0 
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gives the addressing mode ("normal" 

instructions JST, STA, IMA, and 

routines depending on the flag. 

Bolt Beranek and Newman Inc. 

or "extended") , and the 

IRS have different emulation 

Dispatch memory is 1024 words by 12 bits. Its contents 

drive the destination bus directly because there is not enough 

time to send them through the ALU. The 12-bit value fetched from 

Dispatch memory is right justified in the destination bus. The 

MIRDB can specify the next two bits, allowing the memory values, 

when interpreted as microcode addresses, to reach all locations 

in the microcode address space. 

Dispatch memory is itself loadable, permitting easy 

relocation of instruction emulation routines. Dispatch loading 

is enabled only when the LOADDISP bit in MISC is on. As long as 

the LOADDISP bit is on, any microinstruction which references an 

"odd" ALU scratch pad register (see next paragraph) risks loading 

a Dispatch location <even if it specifies conditional execution 

with a condition not satisfied); otherwise, the LOADDISP bit does 

not affect machine behavior. The low 12 bits of TEMP specify the 

data contents to be loaded. The MIR, the Mode Flags, and the 

microinstruction's Constants field specify the address to be 

loaded, in the same way that they specify the address to be read 

when Dispatch is selected as a source. To load a location, 

execute three microinstructions in a row. The first and third 

must reference an "even" register and the second must reference 
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an "odd" register (see next paragraph). All three instructions 

must have the appropriate Constants field. Otherwise, these 

three instructions may be freely specified. (They may even 

specify conditional execution with a condition not satisfied.) 

Every microinstruction specifies an ALU scratch pad register 

address in its Register field. We say that the instruction 

references an "even" or "odd" register according to whether the 

register address specified, befQ~e an~ magginQ b~ UAS~, is even 

or odd. Usually, bit 11 in the microinstruction (the low order 

bit of the Register Number subfield) determines this evenness or 

oddness: 0 for even, 1 for odd. However, if the Register field 

has value 30 or 31, specifying register selection by the MIR 

daughterboard, then the crucial bit is the low order bit of the 

four-bit field generated by the MIR daughterboard: again, 0 for 

even and 1 for odd. 

To simplify loading, the MIR daughterboard should permit one 

value of the microinstruction's Constant field to specify a 

"transparent" mapping, in which the MIR's low 10 bits give the 

Dispatch address. By convention, a Constant field value of 0 

will specify this transparent mapping. The current system 

software assumes this convention in the DDT code to examine and 

change Dispatch memory. 
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2.9 Shifting 

The MAR and MBR form a double precision shift register, with 

the MAR on the left Chigh order). When the MAR is referenced as 

a source, the low two bits of the microinstruction's Constant 

field specify a shift operation: 

00 no shift 
01 shift right one bit 
10 shift left one bit 
11 undefined 

Independent of the operation specified, the value of the MAR 

before shifting is loaded onto the source bus. The MAR and MBR 

shift only one bit per microinstruction, and 0 is shifted into 

the vacated bit: the burden of more complicated shift operations 

is on the microcode. 

As shown in Figure 2.3, shifting respects the data width 

mode. In 20-bit mode, the MAR and MBR act as two 20-bit 

registers: in 16-bit mode, the MAR and MBR act as two 16-bit 

registers. Actually, the only difference is in driving MAROO 

(bit 0 of the MAR) on left shifts, and in driving MARIS and MBR15 

on right shifts. In 16-bit mode, the top 4 bits of the MAR and 

MBR themselves shift, though they do not drive any other bits. 
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MAR MBR 
SHIFT LEFT, 16-BIT MODE 

19 18. 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 19 18 17 16 16 14 13 12 11 10 09 08 01060604 03 02 01 00 

0-fffffffffffffffff fff-1 -Ff ffffffffffffffffff I 
MAR MBR 

SHIFT RIGHT, 20-BIT MODE 

19 18 17 16 15 14 13 12 11 10.09 08 07 06 06 04 03 02 01 00 19 18 17 16 15 14 13 12 11 10 09 08 07 06 06 04 03 02 01 00 

0+£ff' t Ff Ff ff ff Ff fffFEI I l·fff 11 Ff fffEfffffffffl 
o MAR - - MBR 

SHIFT RIGHT, 16-BIT MODE 

Figure 2.3: Shifting 
Picture 7 
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2.10 Loading and Reading Microcode 

The upper 8K of the 16K microcode address space may be 

loaded by the microcode, provided that the physical memory itself 

is loadable CRAM rather than PROM) • To load the upper 8K, the 

program must be executing in the lower BK. The low 16 bits of 

TEMP contains the contents to be loaded, and the 14-bit register 

RAMADDR (located on the microcode daughterboard) must contain the 

address to be loaded. Writing a 1 into the M2.LOADUH bit of 

MISC2 loads the high 16 bits of the microcode word; writing a 1 

into the M2.LOADUL bit loads the low 16 bits. (Writing both of 

these bits at once loads both halves of the microcode word, each 

with the same contents.> If the bit is written in cycle m, then 

in cycle m+l the memory's contents are indeterminate; by cycle 

· m+2 the new contents are present. Further, cycle m+l must not 

change the value of TEMP or RAMADDR. 

Between writing the load address to RAMADDR and loading the 

microcode, the program must not load the UPC. (This restriction 

extends through the cycle after writing M2.LOADUH or M2.LOADUL.) 

RAMADDR must not be loaded while executing in the upper BK 

of the microcode address space. Further, the program must never 

"fall through" to the upper BK of memory; any entry to the upper 

BK must be by an explicit load of the UPC. 
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The hardware structure that imposes these restrictions is as 

follows. There are two 14-bit registers, UPC and RAMADDR. 

Specifying UPC as a destination loads both; specifying RAMADDR as 

a destination loads only RAMADDR. The high bit of UPC determines 

whether to fetch an instruction from the lower or upper BK. If 

the lower half is used, the low 13 bits of the UPC give the rest 

of the address; if the upper half is used, the low 13 bits of 

RAMADDR give the rest of the address. Execution in the upper BK 

increments both UPC and RAMADDR; execution in the lower BK 

increments only UPC. When executing in the lower half, RAMADDR, 

not being incremented, is free to be used for specifying a 

loading address. The M2.LOADUH and M2.LOADUL bits enable 

loading, which takes two cycles. Since loading the UPC would 

overwrite any load address in RAMADDR, loading the UPC must be 

avoided during microcode loading. Execution must never "fall 

through" to the upper BK since RAMADDR would not be in step with 

the UPC. 

The microcode parity bit must be explicitly loaded as 

desired Cto give the word odd parity) , as part of the low 16 

bits. The hardware does not generate parity. 

Reading microcode memory also uses RAMADDR. Only the upper 

BK may be read, and the reading must be executed in the lower BK. 

If RAMADDR contains address x at the start of cycles m and m+l, 

then in cycle m+l the sources URAMH and URAML yield the contents 
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of the high and low 16 bits, respectively, of the 

address x. Thus, the standard reading sequence 

RAMADDR, wait one cycle, and read URAMH or URAML Cor 

the other) • 

2.11 Miscellaneous Features 

location at 

is: load 

one after 

To ease byte operations, two byte-swapped forms of the MBR 

(called Sl6MBR and S20MBR) are available as sources. When Sl6MBR 

is specified, the low 8 bits are exchanged with the middle 8 bits 

(the order within each byte staying the same); the top 4 bits 

stay in place. When S20MBR is specified, the low 10 bits are 

exchanged with the high 10 bits. The MBR was chosen because it 

is a read/write register which serves as a data buffer for main 

memory and I/0 operations, and desired byte operations will 

likely deal with data transferred to or from main memory or I/O 

devices. 

A "serial number" source yields a fixed 16-bit constant. 

The low order 12 bits, determined by cuts in PC board etchings, 

hold the machine's unique serial number. The high order 4 bits, 

determined by solder wire jumpers on the PC boards, represent the 

assembly revision level of the machine. 
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2.12 Handling Exceptional Conditions 

On detecting various exceptional conditions, the hardware 

traps microcode execution to address O. The PROM memory starting 

at address 0 should have an appropriate handler. The conditions 

detected include new power, microcode parity error, uncorrectable 

main memory error, and button pushed. 

When power is restored, the hardware forces execution to 

address 0 and holds it there for roughly a half second to let the 

hardware settle. 

Microinstructions should have odd parity. When an 

instruction with even parity is fetched, the hardware detects an 

error and signals for a trap to address o. Subject to the caveat 

below on trap multiplexing, the trap is timed so that execution 

branches to 0 after the instruction following the instruction 

with the bad parity. 

If the main memory Error Detection and Correction CEDAC) 

option is present, the hardware senses certain uncorrectable 

errors in main memory (Section 4). If EDAC trapping is enabled, 

the EDAC logic will then signal for a trap to address O. Subject 

to the caveat below on trap multiplexing, the trap is timed so 

that execution branches to 0 after the second cycle in which the 

fetched value is available. (Section 3 discusses memory access 

timing, including when fetched values becomes available.) 
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A manual push-button is located on the processor card. When 

the button is pushed, the hardware signals for a trap to address 

o. This is used to unilaterally enter the microcode DDT. 

The conditions of microcode parity error, uncorrectable main 

memory error, and button being pushed are actually multiplexed to 

one trap generator. The trap is generated by the rising edge of 

the inclusive OR of the microcode parity error condition, the 

main memory error condition, and the button being pushed. The 

microcode parity error and main memory error conditions are 

asserted for only one microcycle on each error, but the button 

condition is asserted as long as the button is pushed; as long as 

the button remains pushed, microcode parity errors and main 

memory errors cannot cause traps. The trap's mechanism is to 

force the microprogram counter to 0 for several cycles. (The 

power-up trap uses the same mechanism, but it forces the 

microprogram counter to 0 for much longer.> 

Various status bits let the handler at address 0 determine 

what conditions have occurred. A bit in register MISC2 reflects 

whether the button is being pushed; other bits in MISC2 are 

latched upon new power, a microcode parity error, and an 

uncorrectable main memory error. 
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3 MAIN MEMORY 

Main memory, like the ALU scratch pad register file, holds 

read/write data. Compared with the ALU register file, main 

memory is much larger but somewhat slower. Main memory is 

intended to contain the macromachine's address space, holding 

the macromachine's program and data. Main memory may also store 

information for the microcode's private use. 

Main memory is implemented with dynamic RAMs. These are 

much larger than the static RAMs used elsewhere in the MBB, and 

have a much longer access time. Dynamic RAMs have special 

constraints which must be accommodated by the microcode, such as 

refreshing and power up "priming". These are discussed later. 

The Memory Buffer Register CMBR) buffers data, and the 

Memory Address Register (MAR) specifies the memory address (see 

Figure 3.1). Whenever the MAR is loaded, a four-bit transfer 

field is latched into an auxiliary "memory operation" register 

(called MAROP). The value latched specifies whether or not to 

initiate a memory or I/O transfer and, if so, whether to read or 

write and whether to use "physical" or "macro" access (discussed 

below). 
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3.1 Read and Write Paradigms 

By convention, cycles are numbered starting with the cycle 

after the MAR load. The read paradigm for a "physical" memory 

access is as follows: 

load address in MAR (Transfer code says "read") 
[l] don't change MAR, MBR unchanged 
[2] don't change MAR, MBR unchanged 
[3] memory contents in MBR, MAR may be changed 

Cycles [11 and [21 may be used freely, provided the MAR is 

unchanged. In cycles [11 and £21, the MBR retains its old 

contents. In cycle [31, the MBR contains the fetched memory 

contents, and the MAR may be loaded to initiate another memory 

operation. 

The write paradigm for a "physical" memory access is as 

follows: 

load contents into MBR 
••• 
load address into MAR (transfer code says "write") 

[11 don't change MAR or MBR 
[2] don't change MAR or MBR 
[31 main memory has been changed 

Again, cycles [l] and [21 may be used freely except to write the 

MAR or MBR, and cycle [3] may start a new transfer. Any number 

of cycles may intervene between the MBR load and the MAR load. 
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3.2 Memory Timing 

Main memory transfers take more than a single microcycle. 

When nested as closely as possible, transfers in general take N 

cycles each; with the current hardware, N is 3. To change the 

paradigm to fit a memory where N is greater than 3,* simply ex-

pand cycles [11 and [21 into N-1 cycles, with the same constraints 

on each one. The fetched contents on reads are then available in 

cycle [NJ. In the general case, an uncorrectable main memory 

error detected by the optional Error Detection and Correction 

CEDAC) logic will trap to execute at microcode address 0 during 

cycle [N+21. Section 2.12 discusses traps to address O, and 

Section 4 discusses EDAC. 

3.3 Memory Access Modes 

On each read and write, the transfer code latched into MAROP 

specifies an access mode. Access may be "physical" or "macro". 

For a "physical" access, the address is passed directly to the 

memory from the MAR. For a "macro" access, the address is 

obtained from the application-dependent MAR daughterboard 

CMARDB), as shown in Figure 3.1. The daughterboard may perform 

memory address translation, either simple schemes (like byte-

*For example, the overhead of the UNIX memory management MARDB 
adds one microcyle to every "macro" main memory access; here N is 
4. 
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word) or full scale memory mapping. Further, the MARDB may treat 

some values in the MAR as specifying illegal addresses, and 

prevent any memory operation from occurring. In addition, the 

MARDB can control a condition MARCOND, which the microcode can 

test with conditional execution (Section 2.5). 

The "physical" access is intended for handling the 

microcode's private data area, while the "macro" access is 

intended for emulating a macromachine's memory operations. The 

MAR daughterboard can emulate the macromachine's memory mapping, 

and can ensure that macromachine operations never reference the 

microcode's reserved area of main _memory. As input for its 

decisions, the MARDB has the 20 MAR bits, the four MAROP bits, 

and the four Mode Flags in MISC. (In the H316 emulation, one 

Mode Flag bit indicates "normal" or "extended" addressing mode, 

and a second bit indicates "upper" or "lower" bank if in "normal" 

mode; the MAR daughterboard uses both flags.) 

In some machines (such as the SUE), the same instruction 

codes reference memory and I/O devices; some addresses simply 

point to I/O devices rather than to actual memory. To emulate 

such a machine, memory reference macroinstructions must be 

handled differently depending on the address. The MAR 

daughterboard could help by setting the MARCOND condition 

according to whether the address loaded in the MAR indicates 

memory or I/O. (Presumably the MARDB would also prevent main 
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memory access if the address indicated I/O.) 

By providing 

capabilities, the 

some basic application-dependent hardware 

MAR daughterboard can free the microcode from 

common, tedious calculations. 

3.4 Special Considerations 

Main memory uses dynamic RAMs, which must be periodically 

"refreshed" to maintain their contents. For the MBB, this 

refreshing consists of reading the memory. The scope of reading 

needed depends on the chip size. If a chip contains 2N bits of 

addressing, the low N bits are called the "row" bits and the high 

N bits are called the "column" bits. For every combination of 

row bits, that combination must occur in a main memory read at 

least every 2 milliseconds. Currently 16K (14-bit address) RAMs 

are used, so there are 2**7 (128) reads to perform. (The total 

number of chips used does not matter, since all chips are 

refreshed in parallel.) 

After power-up, the dynamic RAMs must 

read or written) a minimum of eight 

function properly. This "priming" of 

automatically by the system PROM microcode. 
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4 MAIN MEMORY ERROR DETECTION AND CORRECTION (EDAC) 

The MBB uses dynamic semiconductor memory devices for its 

main memory. Because these devices may give occasional bit 

errors, the MBB provides special error detection and correction 

logic (EDAC) as an option. If the EDAC option is present, main 

memory and the MBR are 26 instead of 20 bits wide. The extra 6 

bits, called "check" or "syndrome" bits, provide redundant 

information used to detect and correct bit errors. All single 

bit errors can be corrected; all double bit errors can be 

detected; errors in more than two bits are generally either not 

detected or improperly corrected. We first describe the 

algorithm used to detect 

algorithm's 

into the 

operation. 

correctness; 

MBB. Figure 

4.1 The EDAC Data Paths 

and correct errors, and prove the 

we then explain how EDAC is integrated 

4.1 summarizes EDAC data paths and 

Both main memory and the MBR are 26 bits wide: 20 data 

bits, plus 6 check bits. When a word is written from the MBR to 

memory or read from memory to the MBR, the data bits are passed 

without change. 

When a word is written from the MBR 

"write check pattern" is computed and 
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location's check bits. When a word is read from memory into the 

MBR, the memory's check bits are copied into the MBR7 a 6-bit 

"read check pattern" is then computed to detect and correct bit 

errors. Both the write check pattern and the read check pattern 

are functions (described below> of the 26 bits in the MBR1 

essentially the same logic is used to compute the two patterns. 

4.2 The EDAC Algorithm 

Two "boundary conditions" are assumed for memory use: no 

memory word is read without having first been written, and before 

a write the MBR's check bits all have value 1. In this section 

these conditions will enter our proof at peripheral points1 in 

the next section their "physical meaning" will be discussed. 

The check bits' values in the MBR and memory, as well as 

the read and write check patterns, can be represented 6-bit 

strings such as "011111". From left to right, these bits will be 

called the "parity" bit P and the "syndrome" bits S4, S3, S2, Sl, 

and so. The data bits in the MBR and memory are labeled Dl9 

through DOO (DOO is the low order bit). Lower case p and s 

denote bit values while upper case P and S denote the bits 

themselves. 

The check pattern computation functions can be determined 

from Table 4.1. Each column is associated with a certain check 
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bit, and each row is associated with a certain check or data 

bit in the MBR (or is "unused"). For any check bit R, define 

c(R) (the set of bits "covered" by R) as the set of check and 

data bits B such that the entry in R's column and B's row is an 

"*"• Define c' (R) to be just the data bits in c(R). Thus, for 

example, c(P) is the set of all 26 bits, since P's column 

contains all *'s; and c' (P) is the set of all data bits. 
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p S4 S3 S2 Sl so 

* p 

* * so 
* * Sl 
* * * unused 
* * S2 
* * * unused 
* * * unused 
* * * * unused 
* * S3 
* * * unused 
* * * unused 
* * * * Dl9 
* * * Dl8 
* * * * Dl7 
* * * * Dl6 
* * * * * DlS 
* * S4 
* * * Dl4 
* * * Dl3 
* * * * Dl2 
* '* * Dll 
* * * * DlO 
* * * * D09 
* * * * * DOS 
* * * D07 
* * * * D06 

* * * * DOS 
* * * * * D04 
* * * * D03 
* * * * * D02 
* * * * * DOl 
* * * * * * DOO 

Table 4.1: EDAC Check Bit Computation 

The check bits are computed in the same way for the read and 

write check patterns. The value for a check bit Sn Cn=0,1,2,3,4) 

in the check pattern is the complement of the EXOR of the values 

in the MBR of all bits in c(Sn). 
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Similarly, the value for P in a read check pattern is the 

complement of the EXOR of the values in the MBR of all bits in 

c(P). The value for P in the write check pattern, however, is 

the EXOR of the value of P in the MBR, the values of the bits in 

c'(P) in the MBR, and the values of the check bits in the ~~ite 

QheQk ~atte~n itaelf. 

Since c(P) includes all 26 bits and P has value 1 in the MBR 

before a write, we can restate the computation of P in the check 

patterns as follows. In the write check pattern, P gives the 

word written (data plus check bits) an odd parity. In the read 

check pattern, P reflects the parity of the word read: 1 for 

even parity, 0 for odd parity. 

We will study first the check patterns generated according 

to these rules. Later we will analyze the effect of hardware 

errors. 

We will show that, if a word is written into memory and then 

read back without error, the read check pattern is always 

011111. Let p, s4, s3, s2, sl, and sO be the values of the bits 

in the read check pattern; let p', s4', s3', s2', sl' and sO' be 

the values of the bits in the write check pattern (which are 

stored in memory during the write); and let p", s4", s3", s2", 

sl", and sO" be the values of the check bits in the MBR before 

the write. Cp", s4", s3", s2", sl", and sO" are normally l's, 

but we defer using this assumption in order to make our result 
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more general for later use. Since all data bits have the same 

value throughout the transfer, we need not define separate 

symbols for their values before the write, after the write, and 

after the read.) If a and b are bit values, let a * b denote a 

EXOR b and let a denote the complement of a; if A is a set of 

bits, let *A denote the EXOR of the values of all bits in A. 

We can express succinctly with equations the rules given 

above in prose for calculating the read and write check patterns. 

The read check pattern is computed from values in memory as 

follows: 

(1) 

(2) 

p = 

sn = 

<C*c' (p)) * p' * sO' * Sl' *s2' * s3' * s4') 

(*c'(Sn) * sn'). 

(We use n to stand for O, 1, 2, 3 or 4. Thus, the second 

equation is really five equations, one for each check bit. 

Equation (2) holds because Sn covers itself but no other check 

bit; equation (1) holds because P covers every check bit.) The 

write check pattern is computed from the values in the MBR as 

follows: 

(3) p' = C*c'(P)) * p" * sO' * sl' * s2' * s3' * s4' 

(4) sn' = «*c' (Sn)) * sn"). 

We can substitute (3) and (4) into (1) and (2) to yield the read 

check 

MBR. 

pattern values as functions of the original values in the 

Substituting (3) into (1) yields 
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(5) p = (p") 

and substituting (4) into (2) yields 

(6) sn = sn". 

Thus, the read check pattern depends only on the initial check 

bit values in the MBR, not on the data bits. We are assuming an 

initial pattern of 111111; (5) and (6) thus yield a read check 

pattern of 011111. 

So far, we have shown that an error-free "round trip 

transfer" from 

check pattern 

MBR 

011111. 

to memory 

We will 

and back to MBR yields the read 

now examine the read check 

patterns caused by various hardware errors. 

Our model of a hardware error is that in memory, between the 

write and the read, one or more bits change value. P's behavior 

on errors is easy to analyze. P in the read check pattern 

reflects the parity of the word read. In the absence of errors, 

P in the read check pattern is O, reflecting the memory word's 

correct odd parity. In general, P in the read check pattern 

reflects the number of bits in error in memory: P is 0 if the 

number of errors is even (including none), and 1 if the number of 

errors is odd. 

Having completely analyzed P's behavior with errors, we now 

consider that of the check bits. If only one bit in memory is in 
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error, just those check bits which cover the erroneous bit will 

appear as 0 in the read check pattern instead of the normal 1. 

For example, if Dl9 is in error, since just S3, Sl, and SO of the 

check bits cover Dl9, the check bits will appear as 10100 in the 

read check pattern. From this example, we see that the bit in 

error can be read from Table 4.2 by matching the parity and check 

bits in the read check pattern. (The EDAC.BANK field of the EDAC 

register must be examined to uniquely determine the failing 

memory chip.) 

If exactly two bits are in error, then, since the two bits 

cannot be covered by exactly the same syndrome bits, the syndrome 

bits in the error pattern will not be 11111. 

We can summarize the read check patterns for zero, one, and 

two errors: 
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Read Check Bit in Physical 
eat.te.r.n ~I.I.QI. LQcat.iQn 

100000 MBROO Ml, M27 
100001 MBROl Ml3, M39 
100010 MBR02 Ml4, M40 
100011 MBR03 M26, MS2 
100100 MBR04 M2, M28 
100101 MBROS Ml2, M38 
100110 MBR06 MlS, M41 
100111 MBR07 M2S, MS! 
101000 MBR08 M3, M29 
101001 MBR09 Mll, M37 
101010 MBRlO Ml6, M42 
101011 MBRll M24, MSO 
101100 MBR12 M4, M30 
101101 MBR13 MlO, M36 
101110 MBR14 Ml 7, M43 
101111 S4 M20, M46 
110000 MBRlS M23, M49 
110001 MBR16 MS, M31 
110010 MBR17 M9, M3S 
110011 MBR18 M18, M44 
110100 MBR19 M22, M48 
110111 S3 M21, M47 
111011 S2 Ml9, M4S 
111101 Sl MB, M34 
111110 so M6, M32 
111111 p M7, M33 

Table 4.2: Read check pattern following a single-bit error 
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011111 
lxxxxx Cxxxxx gives bit in error) 
Oxxxxx Cxxxxx is not 11111) 

Single errors can be detected by P being 1, and corrected using 

the check bits' value. Double errors can be detected by both P 

and at least one check bit being zero. The EDAC logic interprets 

any read check pattern as no error, a single error, or a double 

error. If more than two bits are in error, an odd number of 

errors will be interpreted as a single error, and an even number 

of errors will be interpreted as no error or a double error. 

Since no memory location is read without first having been 

written, every read from memory is the second half of a "round 

trip transfer". Therefore, the EDAC logic can safely perform 

this error analysis on every read. 

4.3 Integrating EDAC into the MBB 

The discussion of the EDAC algorithm assumed that the MBR's 

check bits were all l's before a write to memory. When the MBR 

is loaded from the destination bus, the check bits are loaded 

from the 6-bit EDAC.PREP field of the EDAC register {Section 

7.4). For normal operation, this field should be set to 111111. 

For hardware debugging, it may be given another value. When the 

MBR is loaded by a memory or I/0 fetch, the check bits generally 
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are loaded with different values. CA memory fetch, of course, 

copies the check bits from memory. An I/0 fetch loads the check 

bits randomly.) Therefore, before any main memory write, the last 

load of the MBR must be from the destination bus. In the 

following memory-to-memory transfer sequence, the statement 

"MBR->MBR" copying the MBR to itself through the ALU, is needed 

for this reason. 

LOCl->MAR(R) 
• • • 
• • • 
MBR->MBR 
LOC2->MAR{W) 

• • • 
• • • 

; read main memory at address LOCI 

; fix MBR's check bits 
; write value to main memory 

at address LOC2 

Equations (5) and (6) of the last section show that in the 

error-free case, toggling any EDAC.PREP bit in the EDAC register 

simply toggles the corresponding bit in the read check pattern. 

For example, having 010111 instead of 111111 in the EDAC register 

produces a read check pattern in the absence of hardware errors 

of 110111 instead of 011111. This would be detected as an error 

by the EDAC hardware. {Errors will work much as before, changing 

bits in the read check pattern away from their values in the 

error-free case.) 

The discussion of the algorithm also considered only those 

reads which follow writes. In fact, the EDAC logic would be 

confused on reading a location which had never been written, 
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since the check bits in memory would be random. Therefore, as 

part of the initialization after power-up, all main memory 

locations should be written. (Such writing must be preceded by 

the eight memory cycles required to prime main memory.) 

On detecting errors after reads, the EDAC logic affects MBB 

operation in three ways. First, various status conditions and 

error data are latched. On detecting any error, the "M2.MEMERR" 

bit in MISC2 is set. On detecting any double (uncorrectable) 

error, the "M2.UCERR" bit in MISC2 is set. On detecting any 

single (correctable) error, the read check pattern and the memory 

bank from which the erroneous data came are saved in the EDAC 

register. Thus, faulty bits in individual chips may be 

identified. 

Second, if enabled, EDAC corrects single data errors. On 

detecting a single data error, EDAC steals two microcycles to fix 

the indicated bit in the MBR. EDAC does not eliminate the error 

in memory, so every subsequent fetch would require the same 

fixing. (The program should eventually eliminate the error by 

rewriting the corrected data to memory.) Setting the "EDAC.FIX" 

bit in the EDAC register enables the cycle stealing and MBR 

fixing; clearing the bit disables them.* 

*Note that if fixing is not enabled, the read check pattern is 
UQt latched in the EDAC register on an error. 
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Third, if enabled, EDAC traps to microcode address 0 on 

detecting a double error. Setting the "EDAC.TRAP" bit in the 

EDAC register enables this feature; clearing the bit disables the 

feature. 

The current system software (see Chapter 8) leaves fixing 

enabled always, but leaves traps enabled only when running 

application code. The program listing gives details. 
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5 I/0 and INTERRUPTS 

5.1 I/O Design Issues 

Before discussing the details of I/0 access and operation, a 

brief description of some facets of MBB I/O philosophy is in 

order. 

5.1.1 Hardware/Software Tradeoffs 

A key goal of the MBB design is to minimize the hardware 

devoted to I/0 interfaces. MBB I/0 hardware performs only very 

basic tasks such as handshaking, electrical level conversion, 

serial-parallel conversion, and requesting a microinterrupt after 

transferring a unit of data. The microcode then has 

responsibility for such functions as maintaining the finite state 

machine for the line, transfer of data to or from memory CDMA), 

status reporting, word assembly/disassembly, padding, and 

checksumming. Such microcode is considerably cheaper and easier 

to supply and change than the corresponding hardware. 

I/O emulation is not a trivial demand on the micromachine. 

In a communications application, such as the MBB IMP, half of the 

processor bandwidth is nominally budgeted to support the I/O 

system, leaving the other half for instruction emulation. This 

bandwidth tradeoff is, of course, "dynamically allocated based on 

the instantaneous I/O processing requirements of the machine. 
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As an example, it is helpful to consider the actions 

involved in the receipt of a data character on a communications 

line ("modem") interface. When the interface shifts in 8 bits, a 

microinterrupt is generated. When this interrupt is serviced, 

the microcode reads the data byte from the interface and 

references that device's status block in register memory. This 

area contains: 

- finite state machine state 
- residual characters 
- checksum 
- DMA pointers 
- error and status indicators 

If the state information indicates the interface is idle, 

the character is checked to see if it is a DLE (the transparency 

escape character) • If the interface is in data mode, the 

checksum calculation is updated via table lookup <using tables 

stored in reserved main memory). Then this character is combined 

with the previous one (saved in the status block) to form a word. 

The DMA pointers are updated and the word written to memory. 

Control of the micromachine then passes to the next task. This 

action continues for the remainder of the packet, with the 

microcode detecting the end of message sequence and checking the 

checksum. Status information is updated and the completion 

macrointerrupt is requested. 
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5.1.2 The Microinterrupt System 

The I/0 service request system of the MBB is a hybrid of 

classic polling mechanisms, classic vectored interrupt systems 

and the Pluribus PID. The interrupts do not in fact "interrupt" 

the processor; rather, the processor must periodically poll in 

order to service any pending interrupt. Hardware is provided, 

however, to synchronize interrupt requests, to perform priority 

ordering, and to generate an interrupt vector. It is the 

microprogrammer's responsibility to access this hardware often 

enough to meet latency requirements. If no interrupt request is 

pending, the interrupt vector takes. the MBB to the start of 

emulation of the next macroinstruction. 

This approach has several advantages over real interrupts. 

First, the hardware is simpler and overhead is lessened since it 

is not necessary to automatically save and restore the UPC and 

other micromachine context. Second, it eliminates the mechanism 

of enabling and disabling microinterrupts. This would require at 

least one extra bit in the microinstruction since it would be too 

expensive to execute many enable and disable microinstructions. 

Finally, this approach should considerably simplify the design of 

the microcode since interrupts are more readily controlled. 
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5.2 I/O Access and Data Transfer 

As explained earlier, I/O devices are accessed much like 

main memory. The MAR specifies the address, microinstruction 

bits determine the nature of the transfer {I/0 or memory; read or 

write), and the MBR serves as a data buffer. 

As shown in Figure 5.1, the "I/O Bus" signals include an I/O 

address bus with qualifying bits, and a data bus with control 

signals. The address bus has 16 bits and is driven from the MAR. 

The address qualifying bits are the bits from the 

microinstruction mentioned above. The data bus is tri-state and 

bi-directional. On output, the MBR drives the bus with data for 

a device; on input a device drives the bus with data for the MBR. 

Paths are provided for 20 bits. For devices which use fewer than 

20 bits, high order MBR bits are ignored on output and O's are 

placed in the MBR on input. To ease character-oriented 

manipulation of received data, data loaded from devices into the 

MBR can be gated subsequently onto the processor's source bus in 

regular or byte-swapped form. 

The control aspect of interfacing to I/O is intended to be 

flexible; we must allow for a large variety of devices to be 

connected and still provide an efficient coupling with the 

micromachine. One significant variation is the response time of 

various devices: An interface constructed of TTL can generally 

respond to a request within one cycle while typical LSI devices 
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(e.g., a USART or floppy disk controller) have required input 

pulse widths and data access times which amount to several MBB 

cycles. 

The resultant control mechanism has four signals. The 

first, driven by the MBB, says whether the access is read or 

write. This bit, called IOWRITE, controls the bidirectional I/0 

data bus drivers and is sourced by bit 1 of MAROP. 

The second signal, called IOSTROBE and driven by the MBB, 

says "do it!". After loading the MAR with an I/O address and Cif 

a write) the MBR with the data, IOSTROBE is asserted for N 

consecutive cycles, where N is dependent on the time constants of 

the actual device being addressed. IOSTROBE is asserted by 

setting the M2.IOS bit in MISC2. Note that this bit does not 

need to be explicitly cleared; IOSTROBE is on for the length of a 

cycle if, and only if, M2.IOS was set by the previous 

microinstruction. 

The third signal is driven by each I/O board. It is used 

only by the hardware; the microcode cannot directly discover its 

state. It is asserted on a read to say that the data on the I/0 

Bus is valid. The MBB uses this to latch the data into the MBR. 

The I/O board generates this signal at the appropriate time, 

relative to IOSTROBE, knowing the time constants involved for the 

device addressed. 
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It is the microcode's responsibility to know the time 

constants for the devices it accesses, both the number of cycles 

IOSTROBE must be asserted and in which cycle the read data will 

be valid. 

The fourth signal, IOVALID, resets all I/0 devices, either 

at power-up or when the bit M2.IORESET is set in MISC2. (Note 

that M2.IORESET only affects I/O devices actually on I/0 boards; 

the "standard" devices are reset only by power-up.) It is the 

responsibility of every I/0 board designer to insure that each 

I/O board can be reset to a known state by removing IOVALID for a 

single clock cycle. 

5.3 I/O Address Space 

I/O devices* have 16 bit addresses. The high order three 

bits of an address denote the I/O board on which the device 

resides (see figure 5.2). I/O boards are numbered by their 

physical position in the box. The devices on the MBB's memory 

board (the "standard" devices) are considered to be on board 

zero; the I/0 board cabled to the memory board is board onet etc. 

(There is thus a maximum of seven I/O boards in any MBB system) • 

The other 13 bits of a device address have no a priori meaning; 

*A "device" may be a communications interface, a control and 
status register, or some other unit which can either supply data 
to or accept data from the micromachine. 
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each I/O board has its own specific assignments. 

5.4 Standard MBB I/O Devices 

The MBB provides two communications paths, suitable for a 

terminal, a cassette loader, or a computer port. The standard 

I/O devices include these two interfaces (called individually the 

"console" and "loader" interfaces and collectively the "terminal" 

interfaces), a (read-only) switch register, and an Interrupt 

Enable Register. (The current system software controls these 

devices, as explained below, in Section 10.1, and in the program 

listing.) 

The two terminal interfaces are each built around a USART 

(Signetics 2651) which handles 8-bit transfers to and from the 

processor. (For more detail than that given here, see the 

listing and the USART's data sheet.) The current system software 

configures these USARTs to function as full duplex, asynchronous 

interfaces. The MBB's processor may access four different 

registers in the USART; the "device's internal register" field in 

the I/0 address specifies which of the USART's registers to use. 

(The MBB's addressing mirrors the USART's internal numbering.) 

See Figure 5.2. 

Writing to Register 0 gives the USART data to transmit; 

reading from Register O reads the USART's received data. Writing 
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to Register 1 sets line protocol synchronization characters, 

necessary only if the USART is configured as a synchronous 

interface: reading from Register 1 reads status such as ready and 

overrun conditions for transmission and reception. Register 2 is 

used to read and write configuration information such as 

synchronous/asynchronous operation, baud rate, and treatment of 

data parity. Register 3 is used to read and write command 

information such as enabling of transmission and reception, and 

data looping. 

5.4.1 Local Interrupts 

The USART buffers one byte in each direction in addition to 

the byte being transmitted or received. It sends interrupt 

signals to the processor when it is ready to provide more 

received data or to accept more data to transmit. The microcode 

can disable the transmit and receive interrupts by disabling the 

USART's transmitter and receiver respectively. (The current 

system software disables the transmitter when it has nothing to 

send: the software can leave the receiver enabled without 

interruption, since it is always ready for a receive interrupt.) 

Since the receive and transmit interrupts indicate 

respectively received data ready and room for data to transmit, 

reading received data and supplying data to transmit will turn 

off these interrupts. When a byte is read or written there is a 
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delay before the processor senses that the interrupt request is 

turned off. To ensure sufficient time for the request to drop, 

eight additional cycles should intervene between the last 

"IOSTROBE" (setting of bit M2.IOS to effect the I/0 transfer) and 

a query of the interrupt system. 

5.4.2 Interrupt Enable Register 

The microcode can also disable the interrupt requests from 

the two USARTs with a mask in a 4-bit Interrupt Enable Register 

(IER). The IER holds four interrupt mask bits, corresponding to 

the transmit and receive interrupts from each USART: 

0 receive, device 0 (console) 
1 transmit, device 0 (console} 
2 receive, device 1 (loader) 
3 transmit, device 1 (loader) 

Setting a bit enables the interrupt1 clearing a bit disables 

the interrupt. The low order 4-bits of the IER are read/write 

bits1 the high order 4 bits are always read as O's and cannot be 

written. (The current system software does not use the IER's 

mask bits to disable interrupts.) 
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5.4.3 Switch Register 

The fourth I/O device is an 8-bit switch register located on 

the MBB's memory board. The contents of these switches may be 

read from device 6 on board 0 (see figure 5.2). Writing to this 

location does nothing. The low 4 switches are used by the system 

software to select the console terminal's baud rate. The high 4 

switches are currently unused. 

5.5 Interrupt System 

It is important not to confuse the microinterrupt system 

with the mechanism for handling exceptional conditions (also 

referred to as "traps"). Exceptional conditions are discussed in 

Section 2.12. 

Microinterrupts, such as those for device transfer 

completions, are queued by the interrupt system as service 

requests. Such requests are serviced only when polled by the 

microprogram. The hardware supplies a "vector address" 

corresponding to the highest priority pending request. 

(Transferring control to that address would service the request.> 

If no interrupt request is pending, the hardware supplies an 

address "MAIN" corresponding to the microprogram's main task. 

This task is usually used to emulate macroinstructions; 

transferring control to "MAIN" would cause the next 
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macroinstruction to be emulated. To dismiss and transfer control 

to the handler for the highest priority pending request <or to 

"MAIN" if no requests are pending), the microcode loads the 

hardware-supplied vector address into the UPC. Interrupt vectors 

are located in RAM code, so that service routines may be changed 

easily. 

Microcode routines are thus free from being interrupted 

(except by traps). Code is divided into strips, each of which 

dismisses by loading the interrupt vector into the UPC. Strips 

must be short enough to provide response to I/O interrupts within 

the latency constraints of the various interfaces. 

5.5.1 Device Priority and Vectors 

The priority of interrupt requests is governed by an 

interrupt chain which begins on the memory board, goes "up" the 

I/0 boards (from lowest numbered board to highest), comes "down" 

the I/O boards, and finishes on the memory board. Thus any I/0 

board may have both "high priority" devices, by inserting them in 

the "up" chain, and/or "low priority" devices, by inserting them 

in the "down" chain. The last I/0 board must have a jumper cable 

to connect the "up" and "down" interrupt chains. 

The MBB's standard I/0 devices include both high priority 

and low priority devices, and, in fact, since the chain begins 
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and ends on this board they are respectively the highest and 

lowest priority interrupts. Besides interrupts from the above­

mentioned communications interfaces, standard interrupts include 

one which is generated every 100 microseconds and a programmable 

interrupt. 

The 100 microsecond interrupt is used, among other things, 

to cause the refresh of main memory and to drive a timing 

"service", which allows users' microcode to be called at 

specified intervals. The programmable interrupt can be set and 

cleared by the microprogram. It has the lowest priority save 

that of "MAIN". Thus it is useful for tasks which should proceed 

before the next macroinstruction but should yield to I/0 service. 

One example is tracing of macroinstructions, in which some state 

is recorded before each macroinstruction is executed. Another 

use is to allow long microprogram strips to be broken up to meet 

I/O latency requirements. 

Each interrupt has an associated vector. Vectors are 

located at the start of the upper 8K (the loadable half) of 

microcode. Vectors are spaced 4 addresses apart, to permit 

context saving and branching. Vector addresses have eight bits 

of significance, three to denote the I/0 board of their origin 

and five to indicate the device within the I/0 board (see Figure 

5.3). Vector addresses thus range from 20000 to 21774. 
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If an I/0 board has fewer than 32 devices or there are fewer 

than seven I/0 boards in a system, some of the microcode address 

space in the reserved vector area will not be used for vectors. 

This space is then available for any other microcode. 

Interrupt priority, from highest to lowest, along with the 

vector addresses of the core devices, is as follows: 

vector address (octal) 

20004 
20020 
20024 
20030 
20034 

20040 
20050 

100 microsecond clock 
console interface, receiving side 
console interface, sending side 
loader interface, receiving side 
loader interface, sending side 

<other devices in the high priority chain> 

<other devices in the low priority chain> 

microprogrammable interrupt 
MAIN (instruction emulation) 

5.5.2 Servicing Interrupt Requests 

The interrupt vector source (called "INTS") gives the vector 

of the highest requested interrupt. Since loading the interrupt 

vector into the UPC transfers control to the vector, the 

microcode can easily dismiss to permit priority-ordered interrupt 

service. The interrupt system works by polled requests rather 

than actual interrupts so there is no need to "lock out" 

interrupts. The "MAIN" request is always asserted; its vector 

should branch to the machine's background level task, such as 
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emulating the next macroinstruction. 

We recommend reserving 20000 as an illegal vector, since 

various hardware and software malfunctions can transfer control 

there. Two such observed malfunctions have been broken hardware 

in the interrupt chain and improper dispatching (Section 2.8) 

through a cleared Dispatch memory cell. 

Servicing a request does not automatically clear the 

request; the microcode handler must explicitly clear it. The 

clock sets its request every 100 microseconds; writing a 1 to the 

M2.CLKINT bit in MISC2 clears the request. (When read, M2.CLKINT 

reflects the clock interrupt request state: 1 for on, 0 for off.) 

The console and loader interfaces assert requests when ready to 

supply received data or accept data for transmission; the 

requests are turned off by reading or writing data, or by 

disabling transmission or reception. (These requests can also be 

disabled by mask bits in the Interrupt Enable Register.) The 

programmable interrupt is requested by the M.PROGINT bit in MISC. 

Setting the bit sets the request; clearing the bit clears the 

request. 

5.5.3 Interrupt Timing Constraints 

There is a delay between events which set or clear requests 

and the reflection of the new state in the INTS source. The 
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interrupt hardware periodically samples the states of the various 

interrupt service request lines, and places on the interrupt bus 

the vector address corresponding to the highest priority device 

requesting service. Because of timing considerations in 

determining the highest priority request, the interrupt system is 

controlled by a special clock signal which runs at half the speed 

of the main MBB system clock; interrupt requests are thus sampled 

every two microcycles. 

To be sure of updated information, some number of 

microcycles must intervene between the program's setting or 

clearing a request and the program's sampling the INTS source. 

This number of cycles is dependent on each I/O board's 

implementation. For the core devices, four cycles suffice for 

the 100 microsecond clock and the programmable interrupt. After 

clearing a console or loader interface interrupt by reading, 

writing, or disabling transmission or reception, a wait of eight 

cycles (instead of four) should intervene between the last 

IOSTROBE cycle and sampling the INTS source. 
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6 MICROINSTRUCTION FORMAT 

Figure 6.1 shows the microinstruction format. We now 

explain each field in detail. The decimal bit numbers of each 

field and subfield are given below in parentheses. Field and 

subfield values are given in hexadecimal. The mnemonics listed 

are known to the assembler and the Control and Debugging Package. 

The fields and subfields which control writing (Latch 

Control, Map Control, Register Load Control, Destination Type, 

and Destination Register) are interpreted so that a value of 0 

avoids writing anywhere. Thus, a microinstruction with value 1 

Call bits 0 except for the Parity bit to maintain odd parity) 

acts as a "no-op". 

6.1 Source Field (UIR 31 - 20) 

The Source field controls driving of the source bus. (It 

also controls whether to drive the destination bus from the ALU 

output or from Dispatch memory: see code 4 below.) The source bus 

is 20 bits wide. The Source Type subfield (31-28) makes the 

primary selection as follows: 
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0-3 Use a source given in the Source Subtype field. 
Pad the high order bits of the source bus with O's 
for sources less than 20 bits according to width 
of source as follows: 

0 don't pad 
1 pad top 4 bits 
2 pad top 8 bits 
3 pad top 12 bits 

(20 bit source} 
(16 bit source} 
(12 bit source} 
(8 bit source} 

4 Place 0 on the source bus, but drive the 
destination bus from Dispatch memory instead of 
from the ALU output. The assembler mnemonic for 
this is DISP. (The Constant subfield may be used 
by the Dispatch address selection logic on the 
MIRDB.} 

5 Place 0 on the source bus. (The assembler never 
uses this code.} 

6-9 Use an "extended constant" of 14 bits. Drive the 
source bus's bottom 8 bits from the Constant 
subfield; the next 4 bits from the ALU field; the 
next 2 bits from the Source Type code: 

6 10 
7 11 
8 00 
9 01 

The top 6 bits will be O's. The ALU is forced to 
perform a "pass" operation, and ALU status will 
not be latched. 
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A-F Use a "regular constant". The source bus will 
have 8 contiguous bits driven from the Constant 
subfield, with the other bits either all O's or 
all l's, determined by the Source Type code as 
follows: 

CJlde gla~ement gadding 

A 15-8 l's 
B 15-8 O's 
c 19-12 l's 
D 19-12 O's 
E 7-0 l's 
F 7-0 O's 

The following table summarizes the effect of the Source Type 

subfield: 

Source Bus 

Type Bits Bits Bits Bits Bits 
CSlde l9.-l6. l5.-l2. ll-a. 1-4. 3.-0. u.ae 

0 * * * * * 20-bit source 
1 0 * * * * 16-bit source 
2 0 0 * * * 12-bit source 
3 0 0 0 * * 8-bit source 
4 0 0 0 0 0 Dispatch 
5 0 0 0 0 0 <unused) 
6 0 "2" ALU M L extended constant 
7 0 "3" ALU M L extended constant 
8 0 "O" ALU M L extended constant 
9 0 "l" ALU M L extended constant 
A l's M L l's l's regular constant 
B 0 M L 0 0 regular constant 
c M L l's l's l's regular constant 
D M L 0 0 0 regular constant 
E l's l's l's M L regular constant 
F 0 0 0 M L regular constant 

* => source specified in Source Subtype subfield 
ALU => ALU field (bits 19-16) 

L => low 4 bits, source field (bits 23-20) 
M => middle 4 bits, source field (bits 27-24) 
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The Source Subtype (bits 27-24) specifies source as follows: 

Source 
Type 
CQae 

0 
0 
0 
1 
3 
1 
1 
1 
1 
1 
1 
0 
0 
0 
2 
0 

Source 
Subtype 

CQae 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
c 
D 
E 
F 

S.Qu.t.~e 

Memory Address Register 
Memory Buffer Register 
Temp 
Interrupt Vector 
ALU Status 
Serial Number 
MISC 
MISC2 
EDAC 
Micro-RAM, low bits 
Micro-RAM, high bits 
Macroinstruction Register 
Macroinstruction Field 
Swapped MBR (8 bit bytes) 
Base 
Swapped MBR (10 bit bytes) 

MAR 
MBR 
TEMP 
INTS 
AL UST 
SN 
MISC 
MISC2 
EDAC 
URA ML 
URAMH 
MIR 
MIRFLD 
Sl6MBR 
BASE 
S20MBR 

Source 
Niatb 

20 
20 
20 
16 
08 
16 
16 
16 
16 
16 
16 
20 
20 
20 
16 
20 

The Source Type code must specify padding appropriate to the 

source's width. (The assembler assembles the appropriate code 

automatically.) The source's contents are right justified on the 

source bus, and the padding of O's drives the high order bits. 

If padding is improperly specified, so that some bits on the 

source bus are driven by both the padding and the source, the 

If the MAR is specified as the source, bits 21 and 20 

specify the MAR/MBR shift, if any: 
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!UR Ac.tiQn MnemQnic. 

0 no shift MAR 
1 shift right MAR (SR) 
2 shift left MAR (SL) 
3 undefined (none) 

6.2 ALU Field (UIR 19 - 16) 

The ALU field controls the ALU. The Operation subfield (19 

-17) specifies an ALU operation as follows: 

CQde 

0 
1 
2 

. 3 
4 
5 
6 
7 

Q~et.atiQn 

AND 
ADD 
INclusive OR 
PASS bus 
Complement bus 
(undefined) 
EXclusive OR 
SUBtract (register minus bus) 

MnemQnic. 

& 
+ 

NOT 

? 

If the Latch Control bit (16) is on, the ALU status is latched 

into the ALU status register: if this bit is off, the ALU status 

is not latched. 

If the Source field calls for an extended constant, the ALU 

automatically does a pass operation; the ALU field is then used 

to help specify the constant. Note that the ALU status cannot be 

latched during an extended constant instruction. 
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6.3 Register Field (UIR 15 - 11) 

The Register field specifies the ALU scratch register input 

to the ALU. If the Map Control bit (15) is on, the Register 

Number subfield (14-11) gives the register address. (If, 

however, the Register field has value 30 or 31, then the MIR 

daughterboard supplies a four-bit register number which, when 

inclusive ORed with the contents of BASE, gives the register 

address.) If the Map Control bit is off, the Register Number 

subfield, inclusive ORed with the contents of BASE, gives the 

register address. 

6.4 Destination Field (UIR 10 - 5) 

The Destination field specifies which register is loaded 

from the destination bus. (The Destination bus itself is driven 

by the ALU output unless dispatch memory is used as a source, in 

which case the bus is driven directly from Dispatch memory.) If a 

destination register has fewer than 20 bits, the high order bits 

of the bus are not used. 

If the Register Load Control bit (10) is on, the ALU result 

is written to the scratch register specified in the Register 

field. (Thus, the same register that was used as the ALU' s "A" 

input is written.) 
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If the Destination Type bit ( 9) is off, the Destination 

Register field (8-5) selects a destination as follows: 

CQde Oes.tinatiQn MnemQnic. 

0 (none) 
1 MBR MBR 
2 TEMP TEMP 
3 MIR MIR 
4 RAMADDR RAMADDR 
5 UPC and RAMADDR UPC 
6 MISC MISC 
7 MISC2 MISC2 
8 EDAC control EDAC 
9 ALU status AL UST 
A BASE BASE 

If the Destination Type bit is on, the Destination is the MAR. 

The Transfer subfield (8-5) then specifies the memory or I/0 

operation (MAROP), if any. Defined codes are as follows: 

CQde l'.I.ans.f e.I. MnemQnic. 

0 None (just load MAR) 
2 write I/O WIO 
3 read I/0 RIO 
A read physical RP 
B write physical WP 
c read macro R 
D write macro w 

(The low order bit is a "read/write" bit. For memory operations, 

0 means read and 1 means write. For I/0 operations, 0 means 

write and 1 means read.) 
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6.5 Condition Field (UIR 4-1) 

The Condition field specifies conditional execution. The 

Sense bit (4) gives the sense of the condition. A 0 means to 

execute the instruction only if the condition is true; a 1 means 

to execute the instruction only if the condition is false. The 

Condition Tested subfield specifies a condition as follows: 

CQde CQnditiQn MnemQni~ 

0 (always true) TRUE 
1 ALU result zero ZERO 
2 ALU result negative NEG 
3 ALU result odd ODD 
4 MAR condition (from the MARDB) MARCO ND 
5 interrupt pending INTP 
6 mode flag 0 is on MODEFO 
7 (always false, not used) 

The ALU conditions refer to the appropriate bits in the ALU 

Status Register. The MAR condition is controlled by the MAR 

daughterboard. The "interrupt pending" condition is true if any 

microinterrupt request other than the software-controlled request 

is pending. Mode flag O, a bit in MISC, is controlled by the 

microprogram. 

6.6 Parity (UIR 0) 

The Parity bit gives the instruction odd parity. 
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6.7 Special Considerations for Using Dispatch as a Source 

When Dispatch memory is used as a source (Source Type code 

4), the destination bus is driven by Dispatch memory instead of 

by the ALU output. The ALU operation subfield is not useful; and 

if the Latch Control bit is on, the ALU status register is 

latched with random values. The Register field· can specify a 

scratch register to be driven from the destination bus (the Load 

Register bit must be on as usual), and the Destination field 

selects a destination as usual. 
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7 BIT ASSIGNMENTS IN CERTAIN REGISTERS 

We will discuss the bit assignments for various registers: 

ALUST, MISC, MISC2, and EDAC. As in Section 6, the mnemonics 

listed are known to the assembler and the Control and Debugging 

Package. The symbols' values are masks for the indicated bits or 

fields. 

7.1 ALUST 

The ALUST register may be loaded directly from the 

destination bus. Normally, however, it is used to record the ALU 

status. When the ALU status· is latched, the ALU status register 

is loaded as follows: 

~it Meaning 

0 {on if ALU result is zero} 
1 low bit of ALU result 
2 (always latched as 0) 
3 (always latched as 0) 
4 ALU "carry" 
5 high bit of ALU result 
6 high bit of source bus input to the ALU 
7 high bit of scratch register input to the ALU 

The "high bit" is bit 15 or 19, depending on whether the machine 

is in 16-bit or 20-bit data width mode. For determining whether 

the ALU result is zero, the high four bits are ignored in 16-bit 

mode. Bits O, 1, and 5 of ALUST determine the conditions ZERO, 

ODD, and NEG respectively for conditional execution. The ALU 
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"carry" is defined in Section 2.3. 

7.2 MISC 

The MISC register controls various micromachine functions. 

Like most MBB registers, MISC "holds" bit values: bits' values 

written may be read back intact. The bits are assigned as 

follows: 

Ilit F.un~tiQn MnemQni~ 

0 mode flag 0 M.MODEFO 
1 mode flag 1 M.MODEFl 
2 mode flag 2 M.MODEF2 
3 mode flag 3 M.MODEF3 

4 programmable interrupt M.PROGINT 

5 Data Width Mode M.DWMODE 
6 Data Width Control M.DWCTRL 

7 Load Dispatch M.LOADDISP 

8 Light 0 M.LITEO 
9 Light 1 M.LITEl 

10 Light 2 M.LITE2 
11 Light 3 M.LITE3 

Mode flag 0 is one of the testable conditions for 

conditional execution. The four mode flags have no pre-assigned 

meaning in the MBB; they are for use by the application-dependent 

MIR and MAR daughterboards. (For the H316 emulation, for 

example, flag 0 on indicates "extended" addressing mode, and flag 

1 on indicates "upper bank" when in "normal" addressing mode. 

The MIR daughterboard uses flag O, and the MAR daughterboard uses 
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both flags.) When M.PROGINT is on, the programmable interrupt is 

requested; the request must be explicitly cleared by resetting 

the M.PROGINT bit. 

The MISC register controls the data width used for shifting 

and determining ALU status conditions. If M.DWCTRL is on, the 

machine's data width mode is controlled by the MIR daughterboard. 

If M.DWCTRL is off, the machine's data width mode is controlled 

by the M.DWMODE of MISC: 0 for 16 bits, 1 for 20 bits. 

M.LOADDISP must be set to load Dispatch memory (Section 

3.6). The lights bits drive LEDs on the memory board which are 

visible from the front of the MBB. A 1 corresponds to the light 

on. When looking at the front panel, light 0 is on the right. 

7.3 MISC2 

MISC2 and the EDAC register, unlike most registers, do not 

"hold" written values in the conventional sense; their "read" and 

"write" values need not be obviously related. Here are the bits 

in MISC2: 
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1Ut ~r.ite. Re.ad Mne.mQnic. 

0 (clear) new power M2.NEWPWR 
1 (clear) microcode parity M2.UPERR 

error 
2 IO RESET button being M2.BUTTON 

pushed M2.IORESET 
3 IO STROBE 0 M2.IOS 
4 load URAM low 0 M2.LOADUL 
5 load URAM high 0 M2.LOADUH 
6 AC power ok M2.ACOK 
7 battery fully charged M2.BATOK 
8 (clear) any main memory error M2.MEMERR 
9 (clear) uncorrectable main M2.UCERR 

memory error 
10 (clear) clock interrupt M2.CLKINT 
11 MBR parity M2.MBRPAR 

12-15 MAROPO - MAROP3 M2.MAROP 

M2.NEWPWR, M2.UPERR, M2.MEMERR, and M2.UCERR behave in a 

"write-to-clear" manner. Normally, these bits are read as O. 

After the associated condition occurs, the bit will be read as 1. 

Writing a 1 to the bit in question clears the condition 

indication; the bit will then be read again as O until the 

condition next occurs. (When the condition indication is off, 

writing a 1 to the bit does nothing.) 

The clock interrupt bit behaves the same way, but this bit 

also controls the interrupt request. Every 100 microseconds, the 

clock asserts its interrupt request and sets the "read" side of 

M2.CLKINT. Both the interrupt request and the "read" side of 

M2.CLKINT will stay on until a 1 is written to M2.CLKINT. 

(Writing a 1 when the request is off does nothing.) 
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M2.IORESET and M2.BUTTON share a single bit in MISC2. 

M2.IORESET is used to reset I/0 devices. When this bit is set, 

the IOVALID signal is not asserted, and all I/O devices are 

reset, eKQe~t the standard I/O devices discussed in Section 5.4. 

M2.BUTTON is off unless the button is currently being pushed. 

M2.IOS controls the IOSTROBE signal, which is used to 

initiate I/0 transfers. This signal is described in Section 5.2. 

Writing a 1 to M2.LOADUL or M2.LOADUH loads microcode RAM. 

TEMP contains the contents, and RAMADDR contains the address; 

M2.LOADUL loads the low 16 bits in the specified address, and 

M2.LOADUH loads the high 16 bits. Section 2.10 explains further. 

M2.ACOK is on when the AC line voltage is within acceptable 

operating limits for the MBB's power supply, and off when the 

battery is being used to supplement inadequate AC power. 

M2.BATOK is on whenever the battery is fully charged. 

M2.MBRPAR gives the odd parity of the MBR. If the EDAC 

option is installed, this parity includes the MBR's check bits. 

(After an explicit load of the MBR from the destination bus, all 

six check bits are normally set to l; so the check bits should 

not alter the parity.) 

M2.MAROP reflects the machine's MAROP field, which is a 

copy of the Transfer field (bits 8-5) of the microinstruction 

which last loaded the MAR. 
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7.4 The EDAC Register 

Like MISC2, the EDAC register has independent "read" and 

"write" sides. This register deals with the optional main memory 

Error Detection and Correction (EDAC} logic described in Section 

4. The field assignments are: 

13.its. Wr.:ite. Be.ad Mne.mQni~ 

0-5 check bit values read check pattern EDAC.PREP 
to load on last error 

6 enable fixing 0 EDAC.FIX 
7 enable traps 0 EDAC.TRAP 

8-11 memory bank EDAC.BANK 
12-15 MAR type from MARD EDAC.MAR 

Writing EDAC.PREP sets the values which are loaded into the MBR's 

check bits when the MBR is loaded from the destination bus. 

(This field must be set to all l's for normal operation.> This 

field's "read" side gives the read check pattern latched on the 

last correctable error when fixing was enabled. (Between power-

up and the first correctable error, the value is random.> The 

EDAC.FIX bit being on enables correction of single bit errors. 

The EDAC.TRAP bit enables trapping to microcode address 0 on 

double <uncorrectable) errors. When a single error occurs with 

fixing enabled, the number of the physical memory bank being 

referenced is latched in EDAC.BANK. The EDAC.PREP and EDAC.BANK 

fields together identify the individual memory chip which caused 

the error <see Chapter 4). Application-dependent information 

from the MAR daughterboard can be referenced via the 4 bit 
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EDAC.MAR field. 
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8 THE MBB's SYSTEM SOFTWARE 

This section describes the MBB's current system software. 

The system uses the two terminal interfaces to support loading, 

DDT, and application-dependent traffic; handles exceptional 

conditions; and otherwise provides a friendly environment for 

application software. The program listing (pointed to in Section 

8.4) gives details omitted here. 

8.1 The Terminal Handlers 

The system software centers around two terminal handlers. 

They are independent twin processes, sharing reentrant code and 

using different data areas in the ALU register file. 

Each terminal handler independently multiplexes its traffic 

among three routines: a micro-DDT (UDDT), a loader, and the 

application software. UDDT receives and responds to commands 

from the external device. (Section 9 discusses UDDT commands.> 

The loader loads the MBB's memories from an external device. The 

application software may use the terminal interface for 

application-dependent purposes. The terminal handler switches 

control among these routines based on commands received from the 

external device; only one routine controls the interface at a 

time. The "terminal handler" denotes the hardware server plus 

these three routines behind the server. 
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In principle, the MBB can be completely 

either of its two terminal interfaces. 

kind of control exercised may be limited by 

controlled through 

In fact, however, the 

the nature of the 

external device. Generally, a terminal might not be suited for 

loading and a cassette might not be suited for UDDT. A terminal 

with cassette, or another computer, could be suited for both UDDT 

and loading. 

The two 

example, one 

other handles 

terminal handlers are truly independent. For 

handler can support application traffic while the 

UDDT commands. Or both handlers can perform 

loading at once; if they both want to load the same area, the 

second will overwrite what the first has previously written. 

The UDDT and loader routines are partly in PROM and partly 

in RAM. Until the RAM portion is loaded, some UDDT commands are 

unavailable. 

8.2 'Running' and 'Not Running' States 

The system software distinguishes two states of the MBB: 

"running" the application software (such as macrocode emulation) 

and "not running". When "not running", the microcode executes a 

tight loop with three coroutines: one routine which refreshes 

main memory, plus the two terminal handlers. Each terminal 

handler sleeps (returns) when waiting for character input or 
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output. Thus, the interfaces are 

microinterrupt system is not used 

"INTS->UPC" is never executed). 

Bolt Beranek and Newman Inc. 

continually polled. The 

(that is, the instruction 

Before the MBB enters the "running" state, the RAM-resident 

system software must be loaded. The "G" command to UDDT sets the 

running state. (UDDT sets the system's "running" flag and calls 

the application program's initialization routine.) When the MBB 

is "running", program flow is different. All routines regularly 

dismiss with the microinstruction "INTS->UPC", and interrupts 

<serviced by system and application code in RAM) drive the MBB's 

processes. When any input or output interrupt occurs on either 

standard interface, both terminal handlers are awakened. 

(Awakening both handlers, though not necessary, is the easiest 

thing to do.) As before, each terminal handler sleeps (returns) 

when waiting for I/O. After both handlers return, an "INTS->UPC" 

is executed, dismissing until the next interrupt. The clock 

interrupt handler takes over the refreshing of main memory. (The 

clock interrupt handler also offers a wake-up service for the 

application program.) The system software services only the 

clock interrupt and the terminal I/0 interrupts~ the application 

software services MAIN, the programmable interrupt (which it 

controls), and any interrupts for application-dependent I/O. 

The MBB stays in the "running" state until UDDT processes a 

halt command C"H") or an exceptional condition causes the system 

101 



Report No. 4268 Bolt Beranek and Newman Inc. 

to reinitialize. 

8.3 Exceptional Conditions and Initialization 

Various exceptional conditions cause the system to 

reinitialize. On sensing such a condition, the system stops 

running application code, saves the readable registers (such as 

MAR and TEMP) in a block of ALU scratch registers, initializes 

both terminal handlers, and sends out through both interfaces a 

character code for the type of error. The condition may be 

hardware-detected, trapping through microcode address O, or 

software-detected, branching through a UDDT breakpoint routine. 

The character codes for the different conditions are: 

n 
b 
p 
m 
j 

* 
t 

New power 
Button pushed 
Parity error in microcode 
uncorrectable Main Memory error 
wild Jump to address 0 (no apparent reason) 
microcode breakpoint 
macrocode trap or breakpoint 

All except "*" and "t" indicate hardware-detected conditions 

which trapped to address O. 

Certain of these errors necessitate some extra 

initialization beyond that described above. On new power, all 

non-PROM memories (microcode RAM, Dispatch, main memory, ALU 

scratch registers) are cleared. When the button is pushed, 

102 



Report No. 4268 Bolt Beranek and Newman Inc. 

before letting the terminal handlers run, the microcode stays in 

a tight loop (which includes a main memory refresh) until the 

button is released. (One reason for this wait is to avoid 

suppression of traps. As explained in Section 2.12, as long as 

the button is pushed, microcode parity errors and main memory 

errors cannot cause traps.) When the loader port has a boot 

device attached, the MBB will automatically load itself on all 

exception conditions except button pushed and microbreakpoint. 

Unfortunately, when an exceptional condition occurs, the UPC 

cannot be saved for inspection. 

8.4 Source File 

The system software source is in two files: a PROM resident 

section and a URAM resident section. The files currently reside 

in <MBB> as USYS-PROM.MIC and USYS-URAM.MIC. 
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9 THE MBB's UDDT COMMANDS 

This section discusses the micro-DDT (UDDT) commands, as 

well as one command to transfer control from the application 

software to UDDT. This section assumes familiarity with DDTs in 

general and does not precisely describe all formats, conventions, 

and shortcuts. The letter commands given below must be entered 

in upper case. In this section, "n" represents an octal number. 

The MBB prompts with carriage return and line feed followed 

by n I II . . 
The commands "nU", "nM", "nD", and "nR" examine address "n" 

in microcode memory, main memory, Dispatch memory, and the ALU 

scratch registers respectively. An MIR daughterboard must be 

installed before Dispatch memory can be accessed. The MBB 

responds to these commands with the value in the location 

specified. The lower 8K of microcode memory may not be accessed. 

Main memory is accessed in the "physical" mode; similarly, 

Dispatch memory and the registers are accessed by absolute 

addresses without mapping. (Dispatch is interrogated with the 

microinstruction constant field containing O; the MIR 

daughterboard is then presumed to effect a "transparent" map, as 

described in Section 2.8.) 

Terminating characters act as with many other DDTs. A 

carriage return closes the current location; a line feed closes 
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the current one and opens the next; and an 

current one and opens the previous one. 

up-arrow closes the 

A number, if entered 

before the terminating character, is stored as the new value in 

the open location. 

Commands "nJ", "nG", and "H" control program execution. 

"nJ" transfers microcode execution to address "n". This command 

is useful for branching to hardware test programs. The code 

called by the "J" command may return to the system software by 

branching to "pdt.int"; in this case, UDDT will still control the 

terminal interface. (To run a test program repeatedly in 

parallel with the system software, one can put the test program 

at the MAIN interrupt vector. The test program is then the 

"application" program, and it may be started by the "G" command 

discussed in the next paragraph. The test program should dismiss 

with "INTS->UPC".) 

"nG" starts the application software. The argument "n" is 

used by the application software, perhaps as a macrocode starting 

address; the argument may also be missing, in which case the 

application software is so informed. "H" halts the application 

software. 

of the 

incoming 

passed to 

On receiving the command "E", UDDT releases control 

interface to the application software. Further 

characters (except control-N and control-E) are then 

the application software, and the application software may then 
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send characters to the external device. "E" is legal only if the 

application software is running. A control-N returns terminal 

control to UDDT. 

Control-E switches the character echoing state. (Control-E 

has this effect whether UDDT or the application software is in 

control.) Initially, the terminal handler echoes received 

characters. A control-E inhibits echoing; a second control-E 

reenables echoing; and so on. 

Figure 9.1 summarizes the transfer of control among UDDT, 

the loader, and the application software. 

Rubout echoes "X" and makes UDDT forget the latest typein. 

Spaces are ignored, and input characters not yet discussed is 

illegal. On receiving an illegal input, the UDDT closes any 

open location and types "?" followed by a prompt. 

Table 9.1 summarizes the commands. Certain commands' 

handlers are in RAM; these commands, marked in the table by '*', 

are allowed only when UDDT's RAM extension is loaded. 
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Figure 9.1: Control of the Terminal Interface 
Picture 14 
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nu 
nM 
no 
nR 

(n)<carriage return> 

(n)<line feed> 

*(n) <uparrow> 

nJ 

*Cn)G 
*H 

*E 

control-N 
control-E 

<rubout> 

<space> 

Bolt Beranek and Newman Inc. 

examine microcode memory 
examine Main memory 
examine Dispatch memory 
examine Registers 

close location (inserting new 
value if supplied) 
close location (inserting new 
value if supplied) and open 
next one 
close location (inserting new 
value if supplied) and open 
previous one 

Jump to microcode address 

Start application software (Go) 
Halt application sof~ware 

Exit DDT (connect the terminal 
to the 
application pro"gram) 
return terminal control to UDDT 
change Echo state 

close any open location, and 
echo "X" 
ignored 

*=>allowed only if UDDT RAM microcode is loaded 

( ) indicates an optional argument 

Table 9.1: The MBB's UDDT Commands 
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10 THE CONTROL AND DEBUGGING PACKAGE 

The Control and Debugging Package (CDP) runs on TENEX and 

TOPS-20. It communicates with the MBB's system software (Section 

8) through a PTIP port connected to one of the MBB's terminal 

interfaces. The CDP user can issue DDT commands to the MBB 

either in an uninterpreted manner or in an interpreted (symbolic) 

manner. The user can also load the MBB from a local file. 

Further, the user can activate a simulated MBB with special 

features such as breakpoints; the user interacts with the 

simulated MBB in much the same manner as he interacts with the 

real MBB. 

Lower case letters typed to the CDP are converted to upper 

case on input. In this section, •$• denotes •escape". 

We will shortly describe the CDP in some detail, considering 

the CDP's internal states and the associated internal states of 

the MBB's terminal handler. The CDP functions in a complicated 

manner, so this description will be complicated. For the naive 

user, however, the CDP can be easy to use; some of the CDP's 

internal complexity even stems from the effort to ease the naive 

user's way. Some key commands work as follows: "$Gn starts the 

application microcode. Control-N returns the user's terminal to 

the top level (just as it does with the MBB's UDDT). Control-X 

halts whatever can be halted, and returns the user's terminal to 

top level. •$p• proceeds from any interruption, undoing a 
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previous control-N or control-X. 

Whether interacting with the real or simulated MBB, the CDP 

hides complexity from the user. A single command from the user 

may cause several interactions between the CDP and the MBB, 

including unobvious items such as echo control. 

In studying the CDP's functioning, it is easier at first to 

consider interactions with the real MBB only. Much of what we 

say will apply also to the simulated MBB; later we will treat the 

similarities and differences. 

10.1 The CDP's Modes 

The CDP has four modes or levels: command, loading, 

application, and system. The first three modes correspond to the 

controller of the MBB's terminal handler (Section 8.1). In 

command mode, the CDP talks to the MBB's UDDT; the CDP translates 

between the user's symbolic command language (described below) 

and UDDT's command language (descried in Section 9). In loading 

mode, the CDP talks to the MBB's loader in order to load a file. 

In application mode, the CDP talks to the MBB's application 

software; the CDP cooperates with the MBB's terminal handler to 

pass characters directly between the user and the MBB's 

application software. In system mode, as in command mode, the 

CDP talks with UDDT; in this case, however, the CDP passes 

110 



Report No. 4268 Bolt Beranek and Newman Inc. 

characters without interpretation between the user and UDDT. The 

user may thus use directly the MBB's UDDT commands discussed in 

Section 9. 

We now describe the rather tricky rules for switching 

between modes, summarized in Figure 10.1. 

Certain events always cause the CDP to enter command mode. 

On receiving notice from the MBB of an exceptional condition, the 

CDP prints an appropriate message and enters command mode. As 

discussed in Section 10.3, the MBB sends a character code for 

each exceptional condition. The messages typed for each code are 

as follows: 

n 
b 
p 
m 
j 

* 
t 

Power on 
Button 
Microcode parity error 
Main memory error 
Jumped to zero 
Program aborted 
Instruction trap 

If the user at any time types five control-X characters in a row, 

the CDP does a "panic" return to command level. This panic 

return may leave things in a funny state. For example, if the 

panic return skipped the step of turning off echoes from the MBB, 

the CDP will be confused by unexpected incoming echoes. 

At command level, ";L" tells the CDP to enter loading mode. 

After the user specifies a file, the CDP uses UDDT commands to 
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Figure 10.1: The CDP's States 
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load a small bootstrap. When loaded, the bootstrap starts 

running and loads in the real loader. The real loader 

automatically starts running after being loaded. The CDP then 

sends the file to the real loader. When done, the CDP sends the 

loader an "end-of-file" block, causing the loader to release 

control back to UDDT. The CDP then reenters command level to 

accept further commands. During a load, control-X tells the CDP 

to quit. The CDP immediately sends the MBB's loader an "end-of­

file" block, causing it to release control to UDDT, and the CDP 

reenters to command level. 

Most commonly, the CDP is in either command or application 

mode. The CDP starts out in command mode. From command mode, 

"$G" and "$P" enter application mode. (These commands also have 

other effects described below.) In application mode, control-N 

and control-X reenter command mode. CControl-X also has other 

effects described below; control-N has no other effect.> 

System mode is normally used only to debug the MBB's system 

code. At command level, ";D" enters system mode. Actually, 

system and application modes are not distinguished by the CDP. 

In both modes, characters are passed transparently between the 

user and the MBB; the only difference is in the MBB itself. We 

say that the CDP is in "system" mode if it is talking with UDDT 

while we say that the CDP is in "application" mode if it is 

talking with the MBB's application software. 
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If the CDP is in system mode and the user types "E", UDDT, 

on receiving the character, will release control to the 

application software; the CDP is now in application mode! Even 

though a control-N, if received at -the MBB, would restore control 

of the MBB's interface to UDDT, the CDP user cannot return to 

system mode simply by typing control-N. Indeed, control-N is not 

sent to the·MBB but intercept~d by the CDP as a command to return 

to command mode. Following the control-N with ";D" will reenter 

system mode. 

In system and application modes, a special feature is 

available by typing control-R. After the user specifies a file, 

the CDP simply sends the raw file to the MBB. This feature 

permits sending a "paper tape" file to the application software, 

and it generally would be used only in application mode. After 

the file has been sent, the user is still in system or 

application mode. 

10.2 The CDP's Command Mode 

This section describes the commands available within the 

command level, and also those which return to command level from 

application mode. Many of these commands cause the CDP to 

interact with the MBB's terminal handler. With some of the 

commands, we will sketch this interaction. These sketches will 

ignore subtle timing considerations, such as the need for the CDP 
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to suppress MBB echoing or to wait for a response from the MBB. 

10.2.1 Examining and Changing Locations 

To examine and change locations is straightforward. Where n 

is a number, "n U/", "n Ml", "n D/", and "n R/" examine location 

n in microcode memory, Main memory, Dispatch memory, and the ALU 

scratch registers respectively. (The CDP sends UDDT an "nU", 

"nM", "nD", or "nR" command.) The CDP remembers a "current 

address space", which is one of these four memories. Examining a 

location in a given memory sets the current address space to that 

memory. The command "; C" followed by "U", "M", "D", or "R" also 

sets the current memory space. Typing "n/" examines location n 

in the current space. 

Terminating characters act as with many other DDTs. A 

carriage return closes the current location; a line feed closes 

the current one and opens the next; and an up-arrow closes the 

current one and opens the previous one. A number, if entered 

before the terminating characters, is stored as the new value in 

the open location. 

10.2.2 Symbols 

Numbers need not be octal. The prevailing radix may be set 

to any value m, 2<m<l6, by "m$R". Cm is interpreted as a decimal 
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number.) Initially, 8 C0 octal 0 ) is used. 

On startup, the CDP loads the MBB assembler's symbols; and 

whenever the CDP loads a file into the MBB it retains that file's 

symbols. (MBB binary files prepared by the assembler include a 

symbol table.) In general, one may use symbols whenever one could 

use numbers. One may even use well formed arithmetic 

expressions; expressions are evaluated by some MBB assembler 

routines invoked by the CDP. 

Internally, the CDP represents the four memory spaces as 

part of one huge space. Microcode starts at 30000000, main 

memory at 50000000, dispatch at 60000000, and ALU scratch 

registers at 70000000. Thus, location 5 in main memory is 

represented as 30000005. If a symbol is used as a label, the 

high order bits of the symbol's value are set according to the 

address space. Since the CDP can thus associate address spaces 

with symbols, the user can use an abbreviated format for 

examining locations defined by labels. For example, to examine 

the microcode at address label "start", one may type "start/"; 

this command both opens the proper microcode address and sets the 

current address space to microcode memory. 

The symbol "." has a value equal to the "current location". 

The "current location" normally represents the last location 

examined; however, after a 0 ;C 0 command, the current location's 

high order bits are changed to reflect the new address space. 
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Values of locations in microcode memory are typed out, and 

read in, as microcode source statements. For example, changing 

the statement at label "FOO" from "O->L3" to "l->L3" might 

involve the typescript: 

EQQL O->L3 l->Ll<~etu~n> 

To enter an explicit constant, one can use the assembler 

pseudo-op EXP (Section 11.4): 

EOOL l->L3 exe l<~etu~n> 

Various commands manipulate symbols. "=" asks the CDP to 

express numerically the last value typed in or out1 "$=" asks the 

CDP to express the last value typed in or out with a symbol if 

possible. Here are some uses of "=": 

2.0.0.0.l UI 

2.0.0.0.0. UI 

S.'.J:AB'.J: = 

40->BASE 

RO&MAR 

30020455 

= 36201400500 

= 0 

A microcode word of all zeroes is interpreted as the instruction 

"RO&MAR". "START" is a label at microcode address 204551 the 

high order 3 identifies the microcode memory space. 

If "s" is a symbol, "s$K" half-kills "s" (suppresses its use 

in type-out) and "s:" defines s as a label at the current 

location. 
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The CDP assigns special meaning to the 

the MBB's working registers (MAR, MBR, 

symbols 

etc.) • 

designating 

UDDT has no 

command to examine these registersi however, their values are 

saved in a block of ALU scratch registers when an exceptional 

condition occurs. Typing "MAR/" will examine the associated ALU 

scratch registeri similarly with "MBR/" and so on. Thus, a 

snapshot of the micromachine's state at the last failure may be 

examined easily. 

10.2.3 Controlling MBB Program Execution 

We now consider the commands to control the MBB's program 

execution. Let e be an expression, and let n be the octal 

representation of its value. "e$G" starts the application 

software. When the user types "e$G", the CDP sends the MBB "nG". 

The CDP then sends the MBB "E" to make UDDT release control of 

the terminal interface to the application software. The CDP then 

enters application mode, in which it passes characters 

transparently between the user and the MBB; the user can then 

talk with the application software. 

Typing control-X halts the application software. The CDP 

sends the MBB a control-N to regain the attention of UDDT, sends 

"H" to halt the application software, and reenters command level. 

(The CDP might already be in command level when control-X is 

typed, since the user may have just typed control-N to return the 
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CDP to command level. In that case, the CDP sends just "H" to 

the MBB.) 

Typing "$P" proceeds after control-X or control-N. If the 

application software had been halted, the CDP wakes it up by 

sending "G", sends "E", and reenters application mode. If the 

user had not halted the application software, but merely returned 

with control-N to command level, the CDP simply 

application mode. 

reenters 

Command level has some editing characters: control-A or 

control-H for character delete, and rubout for word delete. 

";I" inputs a prepared file of commands. 
";H" halts the CDP (returns to the monitor). 

The CDP's miscellaneous error message is "XXX". 

10.3 The Simulated MBB 

Even while the CDP interacts with the real MBB, it keeps a 

simulated MBB in the background. Files loaded into the real MBB 

are also loaded into the simulator. If the user asks to examine 

the lower 8K of microcode memory, the CDP fetches the value from 

the simulator since this area cannot be read in the real MBB. 

When the contents of any memory are changed, the new value is 

entered into the simulator as well as the real MBB. 
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The ";O" command brings the simulator out of the background. 

The CDP enters a "simulator only" state, in which it 

communicates with the simulator only and it activates the 

simulator to execute microcode on command. A second ";O" 

deactivates the simulator and restores communication to the real 

MBB. More generally, each ";O" toggles the "simulation" state 

between using the real MBB and using the simulator. (The CDP can 

also be started up to always use the simulator only, by initially 

telling the CDP not to open a connection to the real MBB. 

Section 10.6 gives examples.) 

The simulator provides debugging facilities not available on 

the real MBB, such as breakpoints, single-step execution, 

tracing, and the ability to examine the machine's complete 

internal state. On the other hand, the simulator has some 

disadvantages: it is slow, it does no I/0 except for one of the 

terminal interfaces, and subtle timing considerations are 

different. 

The CDP talks with the simulator much the way it talks with 

the real MBB. All of the modes and commands available with the 

real MBB are also available with the simulator. Some of these 

commands are implemented in the same way, by "sending" the same 

DDT commands to the simulator. For example, "e$G" still causes 

the CDP to send "nG" followed by "E" where n is the octal 

representation of the value of e. (If the simulator is not 
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already running, the CDP first starts the simulator at microcode 

address O, yielding a "Jumped to zero" message.> Other commands, 

from necessity or expediency, are implemented with short cuts by 

poking directly into the simulator's memory. For example, ";L" 

loads the simulator's memory directly from the file specified. 

As one would expect, ";D" now lets the user talk directly 

with the simulator's DDT. 

Certain commands have slightly different meanings. 

Control-X now halts the simulator completely, and "$P" resumes 

simulator execution after control-X or a breakpoint. Since the 

MBB's working registers (such as MAR) can now be examined 

directly, the CDP no longer looks in an ALU register block for 

the saved values. Control-R does not work with the simulator. 

Breakpoints in the simulated MBB work as follows: 

The command "y$B" sets a breakpoint at location y. Before 

the instruction at y is executed, the CDP types "BPT@y", halts 

execution, and returns to command level. If the command format 

"x<y$B" is used, the value of location x is also typed out at the 

breakpoint. If two escapes are used C"y$$B" or "x<y$$B"), the 

breakpoint is automatically "proceeded" after the typeout occurs. 

(The CDP neither halts execution nor returns to command level.) 

To delete the breakpoint at y, type "y$D". Any of these commands 

without arguments C"$B", "$$B", or "$D") delete all breakpoints. 
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After a breakpoint has occurred, •$x• executes the next 

microinstruction and •n$x• executes the next n microinstructions. 

The instructions executed are printed out, and the CDP stays at 

command level. •$p• resumes continuous execution and returns to 

application level. 

The simulator permits examining and modifying the state of 

the microinterrupt system. Each microinterrupt level is known to 

the simulator by a number in the range 1-63. Higher numbers 

correspond to higher priorities. Those defined so far: 

0 MAIN 
1 software-controlled interrupt 

61 terminal output 
62 terminal input 
63 100 microsecond clock interrupt 

Level 0 (MAIN) is always set. The location MAXINT holds the 

number of the highest interrupt request set. 0 $I• clears all 

interrupts. 0 n$IS" and "n$IC" set and clear level n 

respectively. 

There are two trace flags, both initially off. The first 

traces every instruction; the second traces only those 

instructions with labels. The flags are toggled by ";T" and 

";;T" respectively. 

The simulator detects various violations of microprogramming 

rules, such as disturbing the MAR or MBR during a main memory 

operation or failing to load the MBR before a main memory store. 

122 



Report No. 4268 Bolt Beranek and Newman Inc. 

The real MBB in such cases would not complain but would act 

unpredictably.) Such errors halt execution and return to command 

level. ";?" queries the CDP for a description of the last error. 

11 n$M 11 sets the data word width. n must equal 16 or 20. If 

a number, n is interpreted in decimal. Initially 20 is used. 

This command chooses 16-bit or 20-bit populated data paths for 

the simulated machine; the command is independent of the 

simulator's using the data width mode flags in MISC. (Section 

7.3 explains the data width choices.) 

";R" resets all I/0 devices. 

Table 10.1 shows special locations for examining the 

simulated machine's internal state: 
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ALURES 
AL UST 
BASE 
BASED EL 
BUTTON 

I OB US 
IO STE 
LITES 
MAR 
MAR OP 
MAR TYPE 
MAX INT 
MBR 
MIR 
MISC 
MISC2 
MST ATE 
PADD 
RAMADDR 
REG RES 
REGS EL 
SR CR ES 
SYNERR 
SYNSRC 
TEMP 
TIME 
UADD 
UIR 
UPC 

Table 10.1: 

Bolt Beranek and Newman Inc. 

ALU output 

the delayed version of BASE 
set to push the button (must be 
explicitly cleared) 

IO state counter 

memory operation 

current highest priority interrupt pending 

state counter of memory system 
physical memory address 

data read from registers 
absolute register number selected 
contents of source bus 
error syndrome bits 
syndrome source 

increments every microcycle <never cleared) 
address of microinstruction in UIR 
microinstruction being executed 

The Simulated MBB's Internal Registers 

Various illogical attempted uses of the simulator will yield 

the CDP's general error message "XXX". One example is typing 

";D", trying to talk with the simulator's DDT, if the simulator 

is not running. 
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10.4 Summary of Commands 

Below is a list of the CDP's commands. Starred commands are 

for the simulator only. n indicates an expression. Parentheses 

indicate optional parts of commands. 

<rubout> 

I 

<er> 

<lf > 

" 

= 

$= 

SSS 

* . ? I • 

* ($)$B 

;C 

Aborts the current typein (echoes XXX). 

Slash opens a location. Locations in lower BK 
microcode memory are always opened in the 
simulator. Other locations are opened in the 
physical MBB if selected, but all changes are 
made in the simulator as well. 

Carriage return closes the currently open 
location. If <er> is preceded by an expression, 
the expression's value is stored in the location 
being closed. 

Line feed closes the currently open location and 
moves to the next. As with <er>, a new value may 
be entered into the location being closed. 

Up-arrow closes the currently open location and 
moves to the previous one. As with <er>, a new 
value may be entered into the location being 
closed. 

Displays the last typed value as a number. 

Displays the last typed value as a symbol if 
possible. 

Defines the label sss to have the value of the 
current location. 

Types a description of the last microprogramming 
rule violation. 

(see description of breakpoints) 

Sets the current address space. (The user then 
types u, M, D, or R for microcode memory, main 
memory, Dispatch memory, or ALU scratch 
registers, respectively.) 
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* ($)$D (see description of breakpoints) 

;D 

n DI 

E 

"E 

(n)$G 

;H 

; I 

* $I 

* n$IC 

* n$IS 

(n)$J 

s$K 

;L 

* n$M 

Enters 11 system 11 mode, in which the user talks 
directly with the MBB's DDT. 

Examines dispatch memory location n. 

Transfers control of the MBB's terminal interface 
from DDT to the application program. (This 
command is used only after ;D, when in system 
mode; the command is actually interpreted not by 
the CDP but by the MBB.) 

Control-E complements the MBB's full­
duplex/half-duplex echoing mode. The MBB 
initially treats terminal as full-duplex. A 
control-E is useful to prevent double echoing if 
the physical terminal is really half-duplex. 
(This command is used only in system or 
application mode. The command is processed by 
the MBB.) 

Starts the application software and enters 
application mode. The application software 
probably interprets n as a starting macrocode 
address. If n is not supplied, the CDP uses the 
value from the last 11 $G" command. 

Done, escape to monitor. 

Accepts input from a file as if it were typed to 
the CDP on the user's terminal. 

Clears all interrupts 

Clears interrupt level n. 

Sets interrupt level n. 

Jumps to microcode address n CO if no address 
given) • 

"Half-kills" symbol s. Then s is available for 
typein but not typed out. 

Loads binary files. Symbols and simulated memory 
are always loaded; the physical MBB is loaded if 
selected. 

[n = 16 or 20] Sets data width to n. 
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n M/ Examines main memory location n. 

AN Control-N returns to command level. After 
control-N, use $P to return to application mode 
or control-X to halt. 

;O Selects simulator-only state, if running with a 
physical MBB. A second ;S will switch back to 
the physical MBB. 

$p 

* ;R 

* n;R 

n$R 

n R/ 

;S 

* ;T 

* ; ; T 

n U/ 

A.x 

* $X 

* n$X 

Proceeds after 
control-N. 

breakpoints, 

Resets all I/0 devices 

Resets I/0 device n. 

control-X, or 

Sets radix for typein and typeout to n. 
number, n is interpreted in decimal.) 

(If a 

Examines ALU scratch register n. 

reads in the symbols from an MBB source file 

Toggles the full trace mode flag, to trace all 
instructions executed (initially off). 

Toggles the symbol trace mode flag, to trace 
instructions whose locations have labels 
(initially off). 

Examines location n in the microcode address 
space. 

Control-X is handled at interrupt level by the 
CDP. It puts the CDP at command level <stopping 
any loading), halts the real MBB's application 
software if running (when talking with the real 
MBB), and halts the simulator if running. 

Single steps (execute a single microinstruction). 

Single steps n times. 
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10.5 Current CDP Bugs and Confusion 

1) When two symbol files are loaded, suppose symbol "s" is 

redefined from value m to n. Symbol "s" still retains 

the ghost of its old value. Though "s=" will produce n, 

"m$=" will still produce "s". 

2) When the CDP has unwittingly left the MBB in echo mode 

(perhaps after a "panic" input of five control-X's), it 

misinterprets echoes; for example, if "M" is echoed, the 

CDP will believe that the MBB is signaling a main memory 

error. Typing ";D" followed by "control-N" will correct 

this. 

3) If the MBB's application software puts the terminal 

interface handler's routine "ttin.poll" in "transparent" 

posture, the CDP will get no response to its control-N 

when the user issues a control-N or control-X command. 

(The program listing explains "transparent" posture in 

discussing the terminal handler.) If the application 

software improperly keeps "ttin.poll" in transparent 

posture, push the MBB's button to recover. 

4) Subtle timing considerations (such as the danger of the 

MBB missing input while waiting for output) work 

differently with the simulator than with the real MBB. 

5) The simulator does not insert delay between the 

128 



Report No. 4268 Bolt Beranek and Newman Inc. 

microcode's setting or clearing the software-controlled 

interrupt and the value of INTS changing. 

6) Although the following sequence will load paper tape 

into the H316 emulator: 

;DDT (MBB) 
!lG 
~ 
~S~RPaper Tape Input file: 

the following will not: 

l~G 
~RPaper Tape Input File; 

Further, tape loading with control-R does not work with 

the simulator. 

10.6 Invoking the CDP 

To use the CDP and connect to an MBB, one must be a NETWIZ. 

Anyone can use the CDP in simulator-only mode. When you connect 

to the MBB, CPD asks for your name. If someone else then tries 

to connect to that MBB, they are informed by CDP that the machine 

is in use and who is using it. 

Below are two typescripts of CDP use on system BBN-A. The 

first example uses the simulator only; the second uses the real 

MBB. File "<mbb>mbbimp.mbn" is a program file with microcode for 

both the system and the H316 IMP application. The file "ddt.mbn" 
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is an H316 stand-alone DDT routine which starts at 20000. In 

both examples, the last line shows communication with the 

application software (with the macrocode). The "Jumped to zero" 

message in the first example comes from the CDP initially 

starting the simulator. 

@<mbb>mbbsys.EXE.27 
Open connection to MBB? CY/N) n 
MBB Symbolic DDT 
1loader MBB Input File: <mbb>mbbimp.MBN.l [Old Generation] 
Done. 
;loader -- MBB Input File: <mbb>ddT.MBN.l [Old Generation] 
Done. 
20000$g 
Jumped to zero 
1/ 10057 

@<mbb>mbbsys.EXE.27 
Open connection to MBB? (Y/N) y 
MLC# 3 Port# 71 
Your name please: phil in office Cxl234) 
Assigned to TTY161 
MBB Symbolic DDT 
1loader -- MBB Input File: <mbb>mbbiMP.MBN.l [Old Generation] 
Translating file ••• 
Loading boot routine ••• 
Loading loader ••• 
Starting load ••• Done. 
1loader -- MBB Input File: <mbb>ddT.MBN.l [Old Generation] 
Translating file ••• 
Loading boot routine ••• 
Loading loader ••• 
Starting load ••• Done. 
20000$g 
1/ 10057 
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11 THE MBB ASSEMBLER 

MBB microcode and data are assembled by a two-pass assembler 

which runs on TENEX and TOPS-20. The assembler can be called by 

"<mbb>mbbasm.exe". A single source file is accepted as input by 

the assembler, and a binary file, an error file, and a listing 

file may be produced. 

When processing instructions to go in the microcode address 

space, the assembler expects to see a microcode instruction; when 

processing an instruction to be in any other address space, the 

assembler expects to see an arithmetic expression. These 

expectations can be changed somewhat, as discussed later, by 

parentheses, square brackets, and the EXP pseudo-op. 

After some preliminary matters, we will discuss in detail 

microcode instructions and pseudo-ops. 

11.1 Format Considerations 

Letters are converted to upper case on input. Spaces and 

tabs are ignored. A semicolon starts a comment, causing the rest 

of the line to be ignored. 

Symbols are distinguished by their first ten characters. In 

symbols, legal characters are letters, ".", "'", and "@". Labels 

are distinguished by their first six characters, and may not have 
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more than ten characters. 

If a source line has over 80 characters, the line is ignored 

and a warning is printed in the error file. 

A source line is either a symbol definition (using "=" or 

"==",or using":", or "::"to define labels), an instruction, or 

a pseudo-op. (Instructions may start with one or more labels.> 

Symbols may be defined by "=" or "==": 

A = 3 

A -- 3 

With "--" -- ' the symbol is "half-killed". Half-killed symbols are 

not used in typeout by the CDP (Section 10.2.2). Similarly, a 

label defined with "::" instead of ":" is half-killed. 

11.2 Numbers and Expressions 

The RADIX pseudo-op sets the prevailing radix (the default 

is octal). 

Numbers and symbols may be composed into expressions using 

the following operators: 

= * & (AND) 1 (!OR) ? (XOR) _(shift left) (NOT) 

All are binary operators, except for the unary operator 
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(bitwise complement) and (minus or negative), which can be 

binary or unary. The unary operators are right associative, and 

are evaluated before binary operators. Thus -7 = C-7) = 6 and 

7+1 = C-8)+1 = -7. Binary operators are left associative. 

Thus, 2*3+4 = 6+4 = 10 and 2+3*4 = 5*4 = 20. 

Within an expression, square brackets enclose material to be 

evaluated as a microcode instruction. 

11.3 Microcode Instructions 

Generally, microcode instructions take the form: 

[IF[NOT] <cond>1 <reg> <op> <source> -> <reg>, <dest> [LS] 

Most of the fields may be omitted under the proper circumstances. 

The register and source fields on the left side of the arrow may 

be interchanged, as may the register and destination fields on 

the right. Excess spaces and tabs are ignored. A label may 

precede an instruction, followed by l or 2 columns. A semicolon 

starts a comment; the rest of the line is ignored. Further 

details on the fields of instruction are given in the ensuing 

sections; the instruction syntax is defined formally in Section 

11.5. Here are some examples: 
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L0&7 -> LO 
7&LO -> LO, MBR 
7-LO -> LO 
Rl7+3 -> TEMP, Rl7 
Rl7+3 -> Rl7, TEMP 
IF ZERO GS -> MAR(R) 
IFNOT ZERO GS -> MAR(RIO) 
MAR(SL) 
DISP(3) -> UPC 
GO&lOO LS 

LABEL: 1 -> GO 
LABEL:: 77000 -> GO 

20S40 -> UPC 
GO& (1!2) -> GO 
NOT TEMP -> GO :COMMENT 

Spaces and tabs are ignored. A semicolon starts a comment: 

the rest of the line is ignored. 

11.3.1 Sources and Destinations 

The ALU sources and operation appear to the left of the 

arrow: the places to write the ALU's output appear to the right. 

The two ALU inputs (the source and the scratch pad register) , if 

both specified, may be given in either order. Similarly, if two 

places to write the ALU result are specified (a destination and a 

scratch register), they may be given in either order. 

The source and destination mnemonics are given in Section 6. 
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11.3.2 Constants 

Any permitted constant value is assembled properly as a 

source; illegal constants are flagged. Even though the code may 

be designed to run in 16-bit data width mode, constants are 

assembled for 20 bits. Thus, 177776 is an illegal constant; -2 

however is legal, producing 3777776, which is functionally 

equivalent in 16-bit mode. 

11.3.3 ALU Registers and Operations 

The symbols LO through L15 indicate "local" scratch register 

addresses 0 through 15 mapped by BASE; GO through G15 indicate 

addresses O through 13 unmapped; MIRRA and MIRRB indicate address 

selection by an MIR daughterboard field mapped by BASE. (In 

general. Rn specifies value n for the microinstruction's five-bit 

Register field. If the source statement specifies no scratch 

register, the assembler uses a value of O.) 

The ALU operations are: 

+ ADD 
SUBTRACT (register minus source bus) 

& AND 
I INCLUSIVE OR 
? EXCLUSIVE OR 
NOT COMPLEMENT source bus 

PASS source bus 
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If the scratch register input to the ALU (The ALU's "A" input) is 

missing in the source statement, and the NOT operator is not 

present Ce .g., "MBR->TEMP") , a PASS operation is assembled. If 

the source bus input is missing <e.g., "RO->MAR"), the assembler 

assembles an ADD operation with a constant of 0 to drive the 

source bus. If the source statement contains no arrow Ce.g., 

Sl6MBR LS), no destination for the ALU result is specified; the 

MBB will still perform the indicated operation, latching the ALU 

status if desired. 

Within a microcode instruction, operators are normally 

interpreted as ALU operations; inside parentheses, however, 

operators are interpreted as forming arithmetic expressions. 

Thus, "Cl+2)->MAR" passes the constant 3 to the MAR but "1+2-

>MAR" is illegal since it specifies an ALU operation between two 

constants (instead of, for example, between a constant and a 

scratch register). 

11.3.4 Conditional Execution 

A conditional execution is indicated by preceding the body 

of the statement with IF or IFNOT followed by one of these 

conditions: 
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TRUE 
ZERO 
NEG 
ODD 
MARCOND 
INTP 

MODEFO 

(always true) 
ALU status register has the "zero" bit on 
ALU status register has the "negative" bit on 
ALU status register has the "odd" bit on 
MAR condition (from the MARDB) 
an interrupt other than the software-controlled 
interrupt has been requested 
mode flag O Cin MISC) is on 

If no condition is specified, "IF TRUE" is assembled. 

11.3.5 Other Special Cases 

Certain sources and destinations take qualification codes 

enclosed in parentheses. When referenced as a destination, the 

MAR optionally takes codes: 

R read "macro" 
RIO read I/0 
RP read "physical" 
w write "macro" 
WIO write I/O 
WP write "physical" 

{These symbolic codes have values equal to the value to put in 

the microinstruction's Transfer field.) When referenced as a 

source, the MAR optionally takes codes: 

SR shift right 
SL shift left 

(These symbolic codes have values equal to the value to put in 

the microinstruction's Constant field.) 
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When referenced as a source, Dispatch Memory takes an 8-bit 

qualifying code (between 0 and 255) to be interpreted by the 

application-dependent MIR daughterboard. (This code specifies 

the value for the microinstruction's Constant field.) 

A "LS" at the statement's end indicates latching the ALU 

status. 

Further information on source statement format, such as 

restrictions on the constants and the dispatch source, can be 

found in Section 2.7. 

11.4 Pseudo-Ops and Address Spaces 

Below are the pseudo-ops, with their formats and use. The 

"pointer" referred to below is the next location to be assembled: 

it is represented in the assembler by the symbol II II 
• • 

EXP e Assemble the value of expression e in the next 

location. (Do not interpret e as an instruction.) 

DISPATCH n Set the pointer to Dispatch address n. 

END Ignore all succeeding input. 

INCLUDE "F" Textually insert source file F after the line with 

the include. 

[NO]LIST Disable or enable the listing output. 
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MAINM n Set the pointer to main memory address n. 

REGS n Set the pointer to ALU register address n. 

UPROM n Start assembling at microcode address n. 

URAM n Set the pointer to microcode address n!20000. (20000 

is the start of RAM.) 

When assembling for the microcode address space, the 

assembler interprets source lines as microcode instructions. 

Thus, 

0 

is interpreted as 

0 -> 

To assemble the explicit constant "O", write 

EXP 0 

(The instruction "O ->" functions as a no-op. In fact, the 

assembler symbol "NOP" is defined as O. Thus, in the microcode 

address space, the source statements "O" and "NOP" both assemble 

as no-ops. (The explicit constant 1 ("EXP l") also functions as 

a no-op; "EXP O" has the wrong parity.) 

In other address spaces, the assembler interprets source 

lines as expressions rather than microcode instructions. To have 

text interpreted as a microcode instruction, enclose it in square 

brackets. Square brackets could be used to store a 
' 
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microinstruction in main memory. Thus, 

MAINM 0 
([3->MAR]_-20) & 177777 
(3->MAR] & 177777 

would store the microcode instruction "3->MAR" in main memory 

locations 0 and 1 (16 bits in each.) 

11.5 The Parser 

Table 11.1 gives the assembler's parser. 
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L <- Ll EOL 

Ll<- <sym> = E 
<- <label>: L2 
<- L2 

L2<- <keyword> <args> 

Bolt Beranek and Newman Inc. 

<- I ;legal only in microcode address space 
<- E ;not legal in microcode address space 
<-

I <- IFP SRC -> DEST FLG 
<- IFP SRC FLG 

IFP<- IF <cond> 
<- IFNOT <cond> 
<-

SRC<- s ! R ! S <ALU op> R R <op> s NOT S 

R <- <reg. spec.> 

S <- <source spec> ! <source spec> {E) T 

DEST<- D ! R ! D,R ! R,D ! --

D <- <dest. spec.> ! <dest spec>{E) 

FLG<- -- I <flag spec> FLG 

E <- T 
<- T { <binary op> T } ••• 

T <- <unary op> T 
<- ( E) 
<- [I] 

<- <symbol> 
<- N 
<- • 

<- <number> 

Table 11.1 Assembler Grammer 
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11.6 Invoking the Assembler; Files Generated; Loading 

Here is a sample typescript on system D: 

@<mbb>mbbasm.EXE.5 
Source file: foo.MIC.l [Old Generation] 
Binary file: FOO.MBN.l [New file] 
Error file: TTY:FOO Cconf irmJ 
Listing file: FOO.LST.l [New file] 
Pass 1 
Pass 2 
@ 

As shown, the error file indicates the start of the two 

passes. Any errors are noted in the file as they are discovered. 

Some errors are noted on both passes, and some only on Pass 2. 

The default names for the binary and listing files are used 

by typing escape after the prompt. Typing an escape for the 

error file causes the output to default to the user terminal. To 

send the errors to a disk file, the filename must be proceeded by 

'DSK:'. 

The listing file contains all source lines shifted right. 

If a line contains an instruction, the octal address is given the 

left, with high order bits indicating the memory space according 

to this code: 

300000000 
500000000 
600000000 
700000000 

microcode memory 
main memory 
Dispatch memory 
ALU scratch pad registers 
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The location contents are not given in the listing file. 

The binary file contains the assembled addresses and values, 

with a symbol table at the end for use by the CDP. 

The CDP can load a binary file into the MBB. All address 

spaces may be loaded, with a few caveats. First, the lower 8K of 

microcode cannot be loaded, since the MBB has no loading path for 

it. The CDP does not try to load these addresses into the real 

MBB, though it loads them into the simulated MBB. Second, if the 

binary file specifies loading any ALU scratch registers used by 

the MBB system code, problems will occur. Third, as mentioned in 

Chapter 8, the loadable system microcode must be loaded before 

Dispatch memory, can be accessed. 
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