
Report No. 4268

MBB Microprograrnmer's Handbook

R. Weissler, M. Kraley, P. Herman

First Published January 1980

Revised August 1980

Copyright Cc) 1980 by Bolt Beranek and Newman Inc.

Report No. 4268 Bolt Beranek and Newman Inc.

Table of Contents

1 INTRODUCTION AND OVERVIEW•••••••••••••••••••••••••••••
MPMs and Emulation ••••••••••••••••••••••••••••••••••

1
1 1.1

1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4

Physical Description •••••••••••••••••••••••••••••••• 5

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3
3.1
3.2
3.3
3.4

4

4.1
4.2
4.3

Processor Design •••••••••••••••••••••••••••••••••••
Basic Data Loop ••••••••••••••••••••••••••••••••••
MIR and Dispatch •••••••••••••••••••••••••••••••••
MAR and Main Memory ••••••••••••••••••••••••••••••
Other Features •••••••••••••••••••••••••••••••••••

PROCESSOR ••
Basic Data Flow ••••••••••••••••••••••••••••••••••••
Register Selection •••••••••••••••••••••••••••••••••
ALU Status •••
Program Control •.•...•••••••••..•••...•..•.•...•.••
Conditional Execution ••••••••••••••••••••••••••••••
Constants ••
Certain Coding Awkwardnesses •••••••••••••••••••••••
MIR Daughterboard and Dispatch Memory ••••••••••••••
Sh if ting•................•.... • •. • •

Loading and Reading Microcode •••••••••••••••••••••
Miscellaneous Features ••••••••••••••••••••••••••••
Handling Exceptional Conditions •••••••••••••••••••

MAIN MEMORY•••••••••••••••••••••••••••
Read and Write Paradigms ••••••••••••

.
Memory Timing ••••••••••••••••••••••••••••••••••••••
Memory Access Modes ••••••••••••••••••••••••••••••••
Special Considerations •••••••••••••••••••••••••••••

MAIN MEMORY ERROR DETECTION AND CORRECTION
(EDAC) •••

The EDAC Data Paths••••••••••••••••••••••••
The EDAC Algorithm•••••••••••••••••••••••••••••••••
Integrating EDAC into the MBB ••••••••••••••••••••••

10
10
14
16
18

20
20
22
24
25
27
28
30
31
37
39
41
42

44
46
47
47
49

50
50
52
60

5 I/O and INTERRUPTS ••••••••••••••••••••••••••••••••••• 64
5.1 I/O Design Issues •••••••••••••••••••••••••••••••••• 64
5.1.1 Hardware/Software Tradeoffs •••••••••••••••••••••• 64
5.1.2 The Microinterrupt System •••••••••••••••••••••••• 66
5.2 I/O Access and Data Transfer ••••••••••••••••••••••• 67
5.3 I/O Address Space •••••••••••••••••••••••••••••••••• 70
5.4 Standard MBB I/O Devices ••••••••••••••••••••••••••• 71
5.4.1 Local Interrupts ••••••••••••••••••••••••••••••••• 72
5.4.2 Interrupt Enable Register •••••••••••••••••••••••• 74
5.4.3 Switch Register •••••••••••••••••••••••••••••••••• 75
5.5 Interrupt System ••••••••••••••••••••••••••••••••••• 75
5.5.1 Device Priority and Vectors •••••••••••••••••••••• 76
5.5.2 Servicing Interrupt Requests ••••••••••••••••••••• 79

i

Report No. 4268 Bolt Beranek and Newman Inc.

5.5.2
5.5.3

Servicing Interrupt Requests ••••••••••••••••••••• 79
Interrupt Timing Constraints ••••••••••••••••••••• 80

6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

7
7.1
7.2
7.3
7.4

MICROINSTRUCTION FORMAT••••••••••••••••••••••••••••••
Source Field CUIR 31 - 20) •••••••••••••••••••••••••
ALU Field (UIR 19 - 16)••••••••••••••••••••••••••••
Register Field CUIR 15 - 11) •••••••••••••••••••••••
Destination Field CUIR 10 - 5) •••••••••••••••••••••
Condition Field CUIR 4-1) ••••••••••••••••••••••••••
Parity (UIR 0) •••••••••••••••••••••••••••••••••••••
Special Considerations for Using Dispatch as
a Source •••

BIT ASSIGNMENTS IN CERTAIN REGISTERS•••••••••••••••••
AL UST • ••••••••••••••••
MISC • •••••••••••••••••••
MISC2 • •••••••••••••••••• • • ••••
The EDAC Register ••••••••••••••••••••••••••••••••••

82
82
87
88
88
90
90

91

92
92
93
94
97

8 THE MBB's SYSTEM SOFTWARE•••••••••••••••••••••••••••• 99
8.1 The Terminal Handlers •••••••••••••••••••••••••••••• 99
8.2 'Running' and 'Not Running' States •••••••••••••••• 100
8.3 Exceptional Conditions and Initialization ••••••••• 102
8.4 Source File ••••••••••••••••••••••.•••••••••••••••• 103

9 THE MBB's UDDT COMMANDS••••••••••••••••••••••••••••• 104

THE CONTROL AND DEBUGGING PACKAGE•••••••••••••••••• 10
10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.4
10.5
10.6

The CDP's Modes ••••••••••••••••••••••••••••••••••
The CDP's Command Mode •••••••••••••••••••••••••••

Examining and Changing Locations •••••••••••••••
Symbols • •••••..•••.•.•.•••••••••• • • • • • • • • • • • • • •
Controlling MBB Program Execution ••••••••••••••

The Simulated MBB ••••••••••••••••••••••••••••••••
Summary of Commands ••••••••••••••••••••••••••••••
Current CDP Bugs and Confusion •••••••••••••••••••
Invoking the CDP •••••••••••••••••••••••••••••••••

THE MBB ASSEMBLER••••••••••••••••••••••••••••••••••
Format Considerations ••••••••••••••••••••••••••••
Numbers and Expressions ••••••••••••••••••••••••••

11
11.1
11.2
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.4
11.5
11.6

Microcode Instructions •••••••••••••••••••••••••••
Sources and Destinations •••••••••••••••••••••••
Constants ••••••••••••••••••••••••••••••••••••••
ALU Registers and Operations •••••••••••••••••••
Conditional Execution ••••••••••••••••••••••••••
Other Special Cases ••••••••••••••••••••••••••••

Pseudo-Ops and Address Spaces ••••••••••••••••••••
The Parser •• ••••••••••••••••••••••••• • •• • •. • • • • • •
Invoking the Assembler1 Files Generated1
Loading••

ii

109
110
114
115
115
118
119
125
128
129

131
131
132
133
134
135
135
136
137
138
140

142

Report No. 4268 Bolt Beranek and Newman Inc.

PICTURES

Figure I.la: MBB Physical Structure ••••••••••••••••••••••• 6
Figure I.lb: MBB Physical Structure (continued) ••••••••••• 7
Figure l.lc: MBB Physical Structure (continued) ••••••••••• 8
Figure 1.2: MBB Logical Structure •••••••••••••••••••••••• 12
Figure 2.1: Processor •••••••••••••••••••••••••••••••••••• 21
Figure 2.2: The MIRDB and Dispatch Memory •••••••••••••••• 32
Figure 2.3: Shifting ••• ~ ••••••••••••••••••••••••••••••••• 38
Figure 3.1 Main Memory Address and Data Paths ••••••••••• 45
Figure 4.1: EDAC Data Paths •••••••••••••••••••••••••••••• 51
Figure 5.1 I/O Data Transfer ••••••••••••••••••••••••••••• 68
Figure 5.2 I/O Device Addressing••••••••••••••••••••••••• 73
Figure 5.3 I/O Interrupt Vector Addresses •••••••••••••••• 78
Figure 6.1: Microinstruction Format •••••••••••••••••••••• 83
Figure 9.1: Control of the Terminal Interface ••••••••••• 107
Figure 10.1: The CDP's States ••••••••••••••••••••••••••• 112

iii

Report No. 4268 Bolt Beranek and Newman Inc.

1 INTRODUCTION AND OVERVIEW

The Microprogrammable Building Block (MBB} is a general

purpose, easily microprogrammable, powerful computer which can be

used for a variety of applications. This manual attempts to

completely describe the MBB's hardware elements and their

function from the microprogrammer's point of view.

Although the MBB can be programmed directly in its

microlanguage for a specific application we envision that in most

application, the MBB will be emulating some other machine, either

existing or invented. Accordingly, we begin with a discussion of

emulation, which also introduces some terms which will be used

throughout this document. We then describe some of the physical

characteristics of the machine and give an overview of its

logical structure.

1.1 MPMs and Emulation

Because they allow close program

action, microprogrammable

emulating other computers.

computers

When used for

control over hardware

are often suited for

such emulation, the

microprogrammable machine (MPM} is called the "micromachine" or

"microcomputer"; its code is "microcode", its instructions are

"microinstructions", the execution of a microinstruction is a

"microcycle", and so on. (We are not using "microcomputer" to

1

Report No. 4268 Bolt Beranek and Newman Inc.

mean a very small computer, as is sometimes done.) The emulated

machine is called the "macromachine", its code is "macrocode",

and so on.

To emulate the macrocomputer's execution of a given

macroprogram, the microcomputer needs that program loaded as

data. The microcomputer's microprogram reads macroinstructions

one at a time, decoding each one and emulating its execution.

For example, a macroprogram branch corresponds to the

microprogram's breaking out of sequence in its examination of

macro instructions.

Emulating a macroinstruction is often straightforward.

Macro instructions generally deal with macroregisters,

macromemory, and macro-I/O (including interrupts); and the

macromachine's data operations generally consist of unary and

binary operations such as NOT and ADD. The microcomputer

generally contains registers which the microprogram uses as

images of macroregisters.

is maintained to have

program counter, and

For example, one of the microregisters

its contents reflect the macromachine's

is used to determine the next

macro instruction to be emulated. Normally, emulating the

execution of a macroinstruction would involve increasing that

register by one; emulating the execution of a macro-JUMP command

would involve setting that register to reflect the new

macromachine's execution address. Other microregisters would

2

Report No. 4268 Bolt Beranek and Newman Inc.

mirror the macromachine's accumulators and index registers. A

macroinstruction to clear an accumulator, for example, would be

emulated by clearing the corresponding microregister.

The microcomputer also generally has a memory area which the

microprogram uses as a direct image for macromemory. This area

holds the macromachine's program and data. To fetch the next

macroinstruction to be executed, the microprogram simply reads

from this area at an address indicated by its image of the

macromachine's program counter. To emulate a macroinstruction to

clear a memory cell, the microprogram simply clears the

corresponding location in its image of macromemory.

Further, the microcomputer has, in general, an Arithmetic

and Logic Unit (ALU) which can perform the macrocomputer's data

operations such as NOT and ADD. To simulate a macroinstruction

to add memory contents to an accumulator, the microprogram uses

its ALU to add the contents of its image of the memory cell to

the contents of its image of the accumulator and stores the

result in its image of the accumulator.

Because the macromachine's registers, memory, and data

operations have direct representations, emulating their functions

is easy. In contrast, the macromachine's I/O system often is not

replicated. For example, the macrocomputer may have many

priority-ordered interrupt levels, while the microcomputer may

make available only one; the macrocomputer's I/O instructions may

3

Report N~. 4268 Bolt Beranek and Newman Inc.

send signals down an I/O bus which has no

microcomputer; or the macrocomputer may

hardware which lets it initiate a block

equivalent in the

have sophisticated

transfer with one

instruction, while the microcomputer lacks such hardware and must

transfer each word separately under microcode control. When I/O

hardware is not mirrored precisely, emulating I/O functions can

be difficult. Generally, the micromachine's system I/O handlers

interact with microcode which emulates I/0-related

macroinstructions such as instructions to request an interrupt or

to initiate a block transfer.

In addition to I/0 hardware, certain other specialized

hardware may not be mirrored. For example, the micromachine may

lack the macromachine's hardware logic for decoding

macroinstructions or performing memory mapping. In all of these

cases, the microcode assumes the burden of emulating the

macromachine's specialized hardware. The microcode's close

control over the microcomputer's hardware is usually important

for efficient emulation.

An MPM used for emulation may offer two advantages over the

macrocomputer it emulates. First, the MPM may be cheaper, since

it can use simple, inexpensive. regularly structured hardware,

using microcode to mimic the macromachine's expensive specialized

hardware features. Second, it may be easy to change the

microcode to enhance the macrocomputer's configuration, primitive

4

Report No. 4268 Bolt Beranek and Newman Inc.

operation, or efficiency. For example, it might be easy to

expand macromemory, to add new macroinstructions, or to optimize

the emulation of frequently executed macrocode.

1.2 Physical Description

Before discussing the detailed logical design of the MBB we

will describe the MBB's physical structure. Figures 1.1a through

1.1c show various views of a minimum MBB configuration. The

exact configuration is dependent on the intended application.

The housing is a box approximately 12" high and 20" deep,

mountable in a standard 19" rack. A smoked plexiglass front lets

display lights shine through. Inside, four printed circuit (PC)

cards rest between guide rails; one is for the power supply, two

are for the basic MBB processor/memory system, and one is

available for I/O circuitry. (The power supply card has some

logic circuitry in addition to fans, power supply, and other

bulky units. For convenience it too is called simply a "card".)

Because the cards are fairly wide (about 14"), each has a

transverse stiffener to prevent bowing.

Each card has a metal bulkhead mounted at the rear. The

cards use L-shaped electrical connectors, one end soldered to the

card and the other mounted in the bulkhead. All electrical

5

Report No. 4268 Bolt Beranek and Newman Inc.

T 0

s:tJ 12 II

l 0

INTER-BOARO
CONNECTIONS

0

••••

FRONT VIEW

REAR VIEW

LED DISPLAY

ADAPTER
CABLES

HOST, MODEM
&TERMINAL
CABLES
(TO FANTAIL)

POWER
DISTRIBUTION

PANEL

Figure l.la: MBB Physical Structure
Picture 1

6

Report No. 4268 Bolt Beranek and Newman Inc.

/
LEDs STIFFENER

\
CIRCUIT CARD

SIDE VIEW

BULKHEAD~

CONNECTORS

r---------..------------------------~------....,.

DODD
DODD
croo

ICs ID
r-i

DDDDD
DDDDD
DODOO
c"t /o r I Cs 'l

I

CIRCUIT CARD

TOP VIEW

Figure l.lb: MBB Physical Structure (continued)
Picture 2

7

PLENUM

FILTER

CIRCUIT CARD

AIR FLOW, MBB
REAR VIEW

POWER SUPPLY 11 CARD 11

TOP VIEW

POWER SUPPLIES

Figure 1.lc: MBB Physical Structure (continued)
Picture 3

8

Report No. 4268 Bolt Beranek and Newman Inc.

connections from one card to another are made with cables which

attach to the connectors mounted on the bulkhead. The bulkhead

is wider than the card, and it transfers the force of connector

mating to the side rails of the box. The bulkhead screws into

the box to keep the card still. The bulkhead, like the

transverse stiffener mentioned above, helps to prevent bowing.

The MBB's side walls extend past the rear; the overhang

protects the connectors mounted on the bulkheads.

Since the box has no internal wiring or edge connectors,

tight tolerances are not needed for placement of cards in the

box.

PC cards are spaced rather widely to ease cooling, relax

mechanical tolerances, and provide sufficient area for

connectors. Spacing is not uniform; the power card, containing

two fans, needs considerable space while an I/0 card may need a

wide bulkhead to accommodate many connectors.

Power consumption is only about 350 watts at the AC plug, so

two fans easily provide adequate cooling. Figure 1.1c shows air

flow viewed from the rear. Air flows in at the bottom left rear.

across the left half of the power board, up and across the other

boards from left to right, down and across the right half of the

power board, and out the bottom right rear. A baffle, reaching

from the power board up to the next higher board, prevents

"short-circuit" air flow between the inlet and outlet sides. The

9

Report No. 4268 Bolt Beranek and Newman Inc.

power board has its logic elements on the left side to be cooled

by incoming air, and its heavy heat dissipaters on the right side

to be at the end of the airflow.

A battery on the power board provides one minute of backup

power. Our experience suggests that such a battery will enable

the MBB to withstand a large majority of external power outages.

The battery will recharge automatically and will require no

regular maintenance; under normal conditions it should last 3-5

years.

The MBB's hardware is divided into a "standard" or "system"

part, which is present in every MBB system, and an "application"

part, which is peculiar to the particular application. The

standard part consists of the housing, the power card, and two PC

cards for processor/memory. The processor/memory logic is

designed to permit two inserts: small PC cards called the MIR

and MAR daughterboards. These daughterboards are custom designed

for each MBB application.

1.3 Processor Design

1.3.1 Basic Data Loop

Figure 1.2 shows the logical structure

paths. The ALU is the heart of the machine.

the ALU are the source and destination

10

of the MBB's data

Forming a loop with

busses and various

Report No. 4268 Bolt Beranek and Newman Inc.

registers. This loop is referred to as the "processor", and is

shown in more detail in Figure 2.1. The source and destination

busses are driven by "tri-state" logic: that is, the hardware

selects one source of data at a time to drive them, holding the

other possible sources in a neutral state. A typical

microinstruction determines the ALU's two inputs, an ALU

operation, and destinations for the ALU's output. The ALU's "A"

input comes from one of the ALU's scratch pad registers. The

ALU's "B" input comes from one of the possible inputs to the

source bus. The ALU operation may be ADD, SUBtract (scratch

register minus source bus), EXOR, OR, AND, PASS source bus, and

NOT source bus. The ALU's output may be written to any one

register driven by the destination bus: it may also be written

back to the same scratch pad register which supplied the "A"

input.

The data paths of the MBB are 20 bits wide. While only 16-

bit paths are needed for a straightforward emulation of a 16-bit

machine, the only significant price paid for the extra bits is

the PC board space consumed by the extra data paths: the

processor's internal ICs to populate them cost very little. (In

contrast, the extra bits for the ALU scratch registers and main

memory are reasonably expensive, and are also easier to

optionally omit.) The potential use of the extra 4 bits seems

well worth the price. These bits could be used to expand the

instruction set and address space of a 16-bit machine. Such an

11

Report No. 4268 Bolt Beranek and Newman Inc.

APPLICATION
SPECIFIC

1/0

INTERRUPT
VECTOR
GATING

INTERRUPT BUS ---+-4-+---t-_.. CONTROL
1/0 ADDRESS MAIN MEMORY

AND 1/0
l/O DATA CONTROL

SOURCE BUS

MICRO
INSTRUCTION

REGISTER

MICROCODE
MEMORY ·

MICRO PROGRAM
COUNTER

DESTINATION BUS

VARIOUS
SPECIAL

REGISTERS

Figure 1.2: MBB Logical Structure
Picture 4

12

SCRATCH PAD
REGISTER

FILE

Report No. 4268 Bolt Beranek and Newman Inc.

expansion would involve changing the emulation microcode

(maintaining compatibility with existing macrocode), and probably

could be performed in easy steps.

A software-controlled system status bit specifies whether

the machine performs arithmetic operations (such as adding and

shifting) and records ALU status based on either 16-bit or 20-bit

data words.

The basic microcycle time of a 16-bit MBB is 125 nsec. If

an MBB uses the full 20-bit data width, the microcycle time must

be increased from 125 nsec to 135 nsec to accommodate a longer

ALU carrying propagation time. To effect this change, a

different crystal is used to control the system clock signal.

A microprogram counter, the UPC, controls the fetching of

microinstructions from microcode memory. The UPC can be loaded

from the destination bus to effect a program branch; therefore,

the machine's full data computation power may be used to direct

the flow of program execution. The microinstruction being

executed is held in the microinstruction register (UIR) for

decoding.

Microcode is contained in both PROM and RAM. PROM is read­

only and non-volatile. RAM is writable, and its contents are

lost on power failure. PROM code is intended for such tasks as a

system bootstrap or a mini-DDT; code size is kept small, but code

13

Report No. 426 8 Bolt Beranek and Newman Inc.

speed is not an issue. For RAM code, in contrast, size is less

important and speed is more important.

The ALU with its scratch registers, and the microcode memory

coupled with instruction fetching and decoding, provide a basic

computing capability. Further power is supplied by other major

components, which we now describe.

1.3.2 MIR and Dispatch

A macroinstruction to be emulated may be loaded into the

macroinstruction register (MIR) • The MIR daughterboard CMIRDB) ,

custom designed for each macromachine to be emulated, assists in

macroinstruction decoding. Some simple, application-dependent

hardware in the MIRDB can free the microcode from some

cumbersome, frequently required calculations which would

seriously slow the machine. The MIRDB has three principal

functions:

1. to ease macroregister selection

2. to facilitate dispatching to microroutines based on the
macro instruction

3. to provide a specific transformation of the macro­
instruction

For register selection, bits from the MIR may be used (under

microinstruction control) to select the scratch pad register that

feeds the ALU's "A" input. This feature is intended for

14

Report No. 4268 Bolt Beranek and Newman Inc.

macromachines whose macroinstructions have a field specifying

which of several macroregisters to use. These different

macroregisters would be mirrored by a block of ALU scratch pad

registers, and a macroinstruction's register specification field

would automatically cause the MBB to access the corresponding

microregister.

The second function of the MIRDB is to assist the

microprogram in dispatching to the proper routines for emulating

the various macroinstructions. Bits from the microinstruction

CUIR), the macroinstruction (MIR), and the system status register

(MISC) are combined in an application-dependent manner to produce

a 10-bit "dispatch address". This dispatch address is not itself

an address of a microcode routine; such a situation would have

required a complicated MIRDB, as well as fixed routine addresses.

Instead, these 10 bits address a cell in a lK x 12-bit "dispatch

memory"; this cell holds the microcode address to which to

branch. A microinstruction may load this microcode address into

the UPC to effect the branch. (Because of memory timing

constraints, this address is loaded directly onto the destination

bus rather than being loaded onto the source bus and passed

through the ALU.) Dispatch memory is easily rewritten, so that

locations of emulation routines need not be fixed.

15

Report No. 4268 Bolt Beranek and Newman Inc.

1.3.3 MAR and Main Memory

Another major MBB component is the main memory and

associated logic. Main memory is intended to include the

macroaddress space (containing the macroprogram's code and

variables), plus an area reserved for microcode use. In general,

main memory is used, as are the ALU scratch registers, for

read/write data. Compared with the scratch register memory, main

memory is much larger, but slower <as discussed shortly).

The memory address register (MAR) controls main memory

access. When a microinstruction loads the MAR, certain

microinstruction bits specify whether to initiate a main memory

transfer, an I/0 tcansfer, or neither; whether the transfer is a

read or a write; and for main memory transfers, whether the

reference is "macro" (using an address supplied by an MAR

daughterboard, as explained below) or "physical" (using the

address in the MAR directly) •

Compared with the MBB's internal processing, the main memory

access is rather slow; reading from a main memory cell takes

three microcycles. The first microcycle is used to load the MAR

with the address desired. The next two cycles may be used

freely, except that they may not write to the MAR or to the

memory buffer register (MBR) • At the start of the following

cycle, the contents fetched from main memory are available in the

MBR. Writing to main memory proceeds similarly. The MBR must be

16

Report No. 4268 Bolt Beranek and Newman Inc.

set up beforehand with the data to be written, the MAR is loaded

to specify the memory address, and the two cycles following the

MAR load may not alter the MAR or the MBR.

The main memory address selected may be passed directly from

the MAR to main memory; or it may instead, under microinstruction

control, pass through an MAR daughterboard (MARDB) for

translation and validity checking. Main memory references which

emulate macromemory references will pass through the MARDB to

undergo any address translation and validity checking

characteristic of the macromachine. An illegal address detected

by the MARDB prevents any memory access and sets a status bit.

Since valid addresses are properly translated and illegal

addresses prevent access, an emulation of a macromachine memory

operation cannot access the area reserved for private microcode

use. This private area can only be accessed by a "physical" read

or write, in which the address is passed directly from the MAR to

the memory.

Like the MIRDB, the MARDB is tailored for each application;

here again, a simple piece of hardware may greatly speed up

emulation by freeing the microcode from some tedious, frequently

required calculations.

On some machines, I/0 transfer instructions. look like

memory reference instructions; the hardware traps references to

certain addresses as really referring to certain I/0 devices. To

17

Report No. 4268 Bolt Beranek and Newman Inc.

emulate such a machine, the MARDB would treat such addresses as

illegal, preventing access and setting an easily testable status

bit. The microcode could then test this bit and branch to an

appropriate routine.

I/O devices are read and written much like main memory. The

MAR specifies an I/O address, and the MBR serves as a data

buffer. I/0 transfers differ from main memory transfers in two

ways. First, while main memory transfers take three cycles

(including the MAR load), I/0 transfers take either two or four,

depending on the device. Second, while for main memory the

intervening cycles after the MAR load may be used rather freely,

for I/O these cycles (one or three, depending on the device) must

be devoted to supporting the transfer.

1.3.4 Other Features

Figure 2.1 shows certain other MBB features worth

mentioning. To facilitate byte operations, two byte-swapped

forms of the MBR are available as sources, one for 8-bit bytes,

and one for 10-bit bytes. The MBR was chosen because many of the

byte operations desired will probably deal with data bytes read

from main memory or I/0 devices. To support shift operations,

the MAR and MBR form a double-length shift register; one

microinstruction may shift their contents right or left one bit

(end off, 0 shifted in). We decided not to add more shifting

18

Report No. 4268 Bolt Beranek and Newman Inc.

hardware to handle multiple-position shifts and different shift

types (rotate, arithmetic). Such hardware, while it would have

speeded emulation of shifts for some machines, seemed too

specialized and thus not worth the cost. The microcode, aided by

our simple shift hardware, assumes the burden of emulating the

various types of shift instructions.

19

Report No. 4268 Bolt Beranek and Newman Inc.

2 PROCESSOR

Now that we have had an overview of the processor structure,

\we can examine the pieces of the MBB in more detail (see Figure

2 .1} •

Bits in registers and on busses are numbered starting from

O, the low order bit. All numbers are decimal, unless otherwise

specified.

2.1 Basic Data Flow

Data flow centers around the Arithmetic Logic Unit (ALU}.

The ALU has two inputs. Its "A" input is from a scratch pad

register file (1024 words * 20 bits}. Its B input is from a 20-

bit "source bus". All drivers of the source bus, plus Dispatch

memory, are called "sources". A 20-bit "destination bus" is

driven by the ALU's output (or Dispatch memory, see below}. All

registers which can be driven from the destination bus, except

the ALU's scratch pad registers, are called "destinations".

Selecting the ALU's two inputs, performing an arithmetic or

logic operation, and storing the result are the main events in a

microcycle. A microinstruction specifies a source to drive the B

input, a scratch pad register to drive the A input, an ALU

operation, and a single destination to receive the output. (If

Dispatch memory is the source, it drives the destination bus

20

URAML

I\)
~

TEMP

SOURCE BUS

MIR
FIELD

MIR
DAUGHTER

BOARD

DESTINATION BUS

SERIAL
NUMBER

Figure 2.1: Processor
Picture 5

r
I
I
I
I
I
I

SWAPPEDMBR
(18 BIT WORD)

I-SHIFT
"' LINK

l
INTERRUPT

VECTOR

1/0
SYSTEM

::ti
Cl)

'O
0 .,
c-t"

z
0

~
I\)

°' CP

to
0
I-'
c1"

to
Cl) .,
11>
::s
Cl)

~

11>
::s
0.

z
Cl)

~
11>
::s
H
::s
Q

Report No. 426 8 Bolt Beranek and Newman Inc.

directly, and the ALU is not used.) The ALU's output may

optionally be written back to the same scratch pad register which

fed the A input.

Some sources are less than 20 bits wide. When they are read

onto the >source bus, the bus is padded with high order O's. When

registers less than 20 bits wide are written from the destination

bus, the high order bits on the bus are ignored.

The seven available ALU operations are:

ADD
SUBTRACT (scratch register minus source bus)
AND
Inclusive OR
Exclusive OR.
PASS source bus
NOT source bus (bitwise complement)

The eighth possible ALU operation is undefined. The ALU is

c'ombinatorial only: it has no storage. To pass a scratch pad

register, the assembler uses the ADD operation with a constant of

0 driving the source bus: we may think of passing a scratch

register as an available "operation".

2.2 Register Selection

There are 1024.registers: only 32 are accessible at any

given time. Sixteen global registers are always acce~sible: ~

"window" of 16 registers is movable within the lK address space

22

Report No. 4268 Bolt Beranek and Newman Inc.

depending on the contents of a register called BASE.

may also be selected on the basis of the contents of

detail:

Registers

MIR. In

A five-bit microinstruction field selects the scratch pad

register for the ALU's input. Let R be the field's value. For R

= 0 through 15, the contents of the 10-bit BASE register

determines the window of addresses available; BASE is inclusive

ORed with R to select the desired register. (This inclusive OR

function allows several uses of BASE. If BASE is a multiple of

16, then the local register block is a full sized 16 register

block. With the appropriate choice for BASE, the local register

block can be half, quarter or eighth sized. If local register 0

is selected, then BASE serves as a direct 10 bit address into the

register file.) The set of registers addressable at any moment

with R = O through 15 is called the current "local register

block". Registers 0-13, the "global" registers, are always

accessible, using R = 16 through 29. For R = 30 or 31, BASE

again sets the window; the particular register in the local block

is determined by the Macroinstruction Register daughterboard

(MIRDB) in an application-dependent manner. Two different

registers may be selected using R = 30 and R = 31. Register

addresses supplied by the MIR are also ORed with the contents of

BASE, so the registers are always within the current "local"

block. The MIR may not be used for register selection on any

cycle immediately following a load of the MIR.

23

Report No. 4268 Bolt Beranek and Newman Inc.

In summary, the register address is determined as follows:

~alue Qf B

0-15
16-29
30,31

~esiate~

R!{BASE} (locals)
R-16 (globals)
MIR function}!{BASE}

If BASE is loaded from the destination bus in cycle N, its

new value takes effect for register selection in cycle N+l. The

value of BASE when referenced as a source, however, does not

change until cycle N+2. This special one cycle delay permits the

old value of BASE to be saved in the new local register block.

2.3 ALU Status

Each microinstruction may optionally latch the ALU status.

If the microinstruction specifies latching, the following ALU

bits and conditions are latched into the ALU Status Register

(ALUST) :

high bit of A input
high bit of B input
high bit of output
low bit of output
ALU result zero
carry

The "high" bits are bit 19 or 15, depending on whether the

machine's data width mode specifies 20 or 16 bits respectively.

The "ALU result zero" status bit is set when the ALU result is

zero; in 16-bit mode, only the low 16 bits matter. The carry,

24

Report No. 4268 Bolt Beranek and Newman Inc.

also dependent on the data width mode, reflects the traditional

"carry-out" on addition, and the complement of "borrow-in" on

subtraction; the "carry" status bit is set as follows on addition

and subtraction:

high bit of A input 1 1 1 1 0 0 0 0
high bit of B input 1 1 0 0 1 1 0 0
high bit of output 1 0 1 0 1 0 1 0

carry on addition 1 1 0 1 0 1 0 0
carry on subtraction 0 1 1 1 0 0 0 1

The "carry" bit for other operations is meaningless.

These ALU status bits provide primitives for computing

various status bits set by arithmetic and logical operations in a

macromachine. In emulating macromachine operations which set

status bits, the microcode would latch the ALU status on the

appropriate microcode operation and then save the value of ALUST

in a register or in main memory. If later the macromachines's

status bits must then be tested, the saved value of ALUST can be

decoded.

2.4 Program Control

Program execution is controlled by the Microcode Program

Counter (UPC} and the Microinstruction Register CUIR}. The UIR

holds the instruction being executed, while the UPC holds the

address of the instruction being fetched into the UIR for

25

Report No. 426 8 Bolt Beranek and Newman Inc.

execution during the next cycle. In detail, suppose the UPC has

value X at the start of microcycle M. During cycle M, the

microcode instruction at address X is fetched into the UIR. Then

during cycle M + 1, this instruction is decoded and executed.

The hardware normally increments the UPC at the start of

each cycle, so that sequential instructions are fetched and

executed. To effect a program branch, however, the microcode can

load the UPC as a destination. {When the microcode specifies

loading the UPC, actually both the UPC and another register,

RAMADDR, are loaded. Section 2.10 explains RAMADDR.) Because

microinstruction fetching is pipelined as described above, the

transfer of control takes two cycles: on the second cycle

following the UPC load, the instruction at the new address will

be executed. To clarify, suppose that in cycle M the machine

executes a microinstruction at address X which loads Y into the

UPC. The following table then gives the contents of the UPC and

UIR at the beginning of cycles M, M+l, and M+2:

C.;ic.le. UEC UIB

M X+l instruction at x {Y -> UPC)
M+l y instruction at X+l
M+2 Y+l instruction at y

The intervening instruction at X+l, executed before control

transfers to address Y, may be any otherwise legal

microinstruction, including another transfer of control. In the

above example, if the instruction at X+l transfers control to

26

Report No. 426 8 Bolt Beranek and Newman Inc.

address z, the machine behaves as follows:

C.~c.le.

M
M+l
M+2
M+3

uec.
X+l
y
z
Z+l

instruction
instruction
instruction
instruction

UlB

at x (Y -> UPC)
at X+l (Z -> UPC)
at y
at z

If further Z = X+2, then the code has spliced an execution of the

statement at Y into an otherwise sequential execution sequence.

Because the UPC may be loaded as a destination, the full

data computation power of the machine is available for computing

transfers of control.

Execution must never "fall through" from the lower BK

addresses to the upper BK; Section 2.10 explains why.

2.5 Conditional Execution

Every microinstruction has a field for

execution. The following conditions are available:

always true}
ALU status: result zero
ALU status: result odd Clow bit on)
ALU status: result negative (high bit on)
interrupt pending
mode flag 0 on
MAR condition

conditional

The ALU status conditions refer to the appropriate bits in the

ALU Status Register. The "interrupt pending" condition is true

27

Report No. 4268 Bolt Beranek and Newman Inc.

if a microinterrupt request (Section 5) other than the

programmable request is pending, and may change at any time.

Mode flag O, controlled by the application software, is a bit in

the MISC register. The MAR condition is determined by the

application-dependent MAR daughterboard.

The microinstruction may specify execution either when the

selected condition is true or when it is false. By selecting the

"always true" condition the instruction may specify either

unconditional execution or unconditional non-execution.

When non-execution is specified, ALU performs the indicated

operation on the indicated inputs, but the result goes nowhere:

the hardware prevents writing to any destination or ALU scratch

register, and also prevents latching the ALU status in ALUST.

Conditional execution is useful not only for program jumps

but also for in-line execution.

2.6 Constants

The microinstruction may specify an explicit constant value

to drive the source bus. Because the microinstruction field

which specifies the constant is kept to a reasonable size, not

all 20-bit constants may be specified. The instruction may

specify any one of three 8-bit fields and can then choose only

all O's or all 1's for the other bits. The three fields are:

28

Report No. 4268 Bolt Beranek and Newman Inc.

bits 0-7 <right), bits 8-15 (middle), and bits 12-19 Cleft). In

addition to these six possibilities, the instruction may specify

an "extended constant". In this case, bits 0-13 may be set as

desired and the other bits are O. Since the microcode address

space only has 14 bits Cl6K words), loading an extended constant

into the UPC can effect a program branch to any microcode

address. When an extended constant is used, the ALU always does

a PASS operation.

The assembler automatically encodes permitted constants into

one of these seven forms, flagging illegal constants.

Any 20-bit constant C can be built in at most three cycles.

Let

Cl = C AND 377
C2 = C AND 177400
C3 = C AND 3600000

and let R be an ALU scratch pad register. Then the instruction

sequence

provides constant C.

load Cl into R
load (C2 OR R) into R
load CC3 ORR) into •••

29

Report No. 4268 Bolt Beranek and Newman Inc.

2.7 Certain Coding Awkwardnesses

It is not possible to copy one scratch pad register to

another, or to perform an ALU operation involving two scratch pad

registers in a single microinstruction. Such operations take two

cycles, requiring a register for temporary storage which is both

a source and a destination. TEMP is often used for this purpose.

Let R and S be registers. To copy the contents of R into S:

load R into TEMP
load TEMP into s

To add the contents of R and S:

load R into TEMP
load (S PLUS TEMP) into •••

It is also not possible to combine two sources in a single

microcycle. Such a combination takes two cycles, requiring a

scratch pad register for temporary storage. For example, to add

MIR to TEMP, a scratch pad register R is used as follows:

load MIR into R
load (TEMP PLUS R) into •••

It is possible to subtract a source from a scratch pad

register in one cycle, but not vice versa. To subtract a

register R from a source S various techniques are possible,

depending on where the result must go, whether R and S may be

overwritten, and what constants are available in registers. For

example, if the constant 0 is in some scratch pad register z, and

30

Report No. 4268 Bolt Beranek and Newman Inc.

the result is to go to some register D (possibly S itself) which

is both a source and a destination, the following two-cycle

sequence works:

load (R MINUS S) into D
load (Z MINUS D) into D

2.8 MIR Daughterboard and Dispatch Memory

The Macroinstruction Register (MIR) is designed to hold

macroinstructions. An application-dependent MIR daughterboard

(MIRDB) helps to interpret the macroinstruction held in the MIR

(see Figure 2.2).

The MIRDB can free the software from some cumbersome,

frequently required calculations. As inputs to its computations,

the MIRDB has: the 20 MIR bits, the four Mode Flags in MISC, and

the microinstruction's eight-bit constant field.

The MIRDB has four functions. First, it provides a source,

MIRFIELD, which is usually a modified form of the MIR. In

emulating the SUE or PDP-11, for example, a good use for MIRFIELD

might be to provide displacements on branch instructions. These

machines compute the displacements by sign extending the low

order byte and then shifting left one bit. In emulating these

machines, performing such a calculation in software on every

branch instruction would be tedious; some simple logic in the

31

Report No. 4268 Bolt Beranek and Newman Inc.

SOURCE BUS

MIR MIRFIELD
gating gating REGISTER SELECTION,

MIR·
(20 bits)

DATA WIDTH CONTROL

DISPATCH ADDRESS

MIRDB

UIR bits
Mode Flags

DISPATCH
MEMORY
(1K by 12)

DISPATCH
gating

DESTINATION BUS

LOAD DATA
(from TEMP)·

Figure 2.2: The MIRDB and Dispatch Memory
Picture 6

32

Report No. 4268 Bolt Beranek and Newman Inc.

MIRDB, however, could provide the displacement in MIRFIELD.

Second, the MIRDB, under microcode control, can select ALU

scratch pad registers. Values of 30 and 31 in the

microinstruction's Register field indicate register selection by

the MIRDB; the daughterboard generates two four-bit fields,

corresponding to register values 30 and 31. When one of these

two registers is selected, the register address supplied by the

MIRDB is inclusive ORed with the contents of BASE to determine a

scratch pad register address. This feature is useful for

emulating macromachines whose instructions have fields specifying

which of several macroregisters to use (such as index registers

or accumulators) • The macroregisters would be mirrored in a

block of ALU scratch pad registers, and the macroinstruction's

macroregister selection field would be used by the MIRDB to

determine the corresponding ALU scratch pad register address.

The application specific MIRDB helps solve the problem that these

register fields are in different bit positions in different

processors' instruction sets.

performed frequently, and

The register selection function is

should be relatively efficient.

Because of timing constraints, the MIR must not be used to select

a register in the cycle immediately following an MIR load.

Third, the MIRDB can control the machine's data width mode

(16 or 20 bits). This control is enabled when the DWIDTHCTRL bit

in the MISC register is on. This feature might be useful for

33

Report No. 426 8 Bolt Beranek and Newman Inc.

simultaneously emulating the instruction sets of a 16-bit machine

and a 20-bit machine, or for providing an extension to the

instruction set and memory of a 16-bit machine.

Fourth, the MIRDB, together with Dispatch memory, permits

easy dispatching to the proper microcode routine to emulate

different macroinstructions. When a microinstruction selects

Dispatch as a source, the daughterboard calculates a 10-bit

address. Dispatch memory is then interrogated at this address;

the contents read are passed directly to the destination bus, and

may be loaded into the UPC to effect a program branch.

The address computed depends on the contents of the MIR, the

microinstruction's Constant field, and the Mode Flags in MISC.

The MIRDB can let the microcode dispatch to an emulation routine

which depends on the macroinstruction (MIR contents). Further,

the microinstruction's Constant field lets the microcode specify

different kinds of dispatches. For example, a macroinstruction's

first dispatch might take all memory reference instructions to a

common routine to calculate the effective address; memory

reference instructions may then dispatch again, this time to

separate routines to perform the indicated operation. The Mode

Flags in MISC could reflect macromachine state bits which affect

macroinstruction interpretation; the microcode could then

dispatch to different macroinstruction emulation routines as

appropriate. In the H316 emulation, for example, Mode Flag 0

34

Report No. 4268

gives the addressing mode ("normal"

instructions JST, STA, IMA, and

routines depending on the flag.

Bolt Beranek and Newman Inc.

or "extended") , and the

IRS have different emulation

Dispatch memory is 1024 words by 12 bits. Its contents

drive the destination bus directly because there is not enough

time to send them through the ALU. The 12-bit value fetched from

Dispatch memory is right justified in the destination bus. The

MIRDB can specify the next two bits, allowing the memory values,

when interpreted as microcode addresses, to reach all locations

in the microcode address space.

Dispatch memory is itself loadable, permitting easy

relocation of instruction emulation routines. Dispatch loading

is enabled only when the LOADDISP bit in MISC is on. As long as

the LOADDISP bit is on, any microinstruction which references an

"odd" ALU scratch pad register (see next paragraph) risks loading

a Dispatch location <even if it specifies conditional execution

with a condition not satisfied); otherwise, the LOADDISP bit does

not affect machine behavior. The low 12 bits of TEMP specify the

data contents to be loaded. The MIR, the Mode Flags, and the

microinstruction's Constants field specify the address to be

loaded, in the same way that they specify the address to be read

when Dispatch is selected as a source. To load a location,

execute three microinstructions in a row. The first and third

must reference an "even" register and the second must reference

35

Report No. 4268 Bolt Beranek and Newman Inc.

an "odd" register (see next paragraph). All three instructions

must have the appropriate Constants field. Otherwise, these

three instructions may be freely specified. (They may even

specify conditional execution with a condition not satisfied.)

Every microinstruction specifies an ALU scratch pad register

address in its Register field. We say that the instruction

references an "even" or "odd" register according to whether the

register address specified, befQ~e an~ magginQ b~ UAS~, is even

or odd. Usually, bit 11 in the microinstruction (the low order

bit of the Register Number subfield) determines this evenness or

oddness: 0 for even, 1 for odd. However, if the Register field

has value 30 or 31, specifying register selection by the MIR

daughterboard, then the crucial bit is the low order bit of the

four-bit field generated by the MIR daughterboard: again, 0 for

even and 1 for odd.

To simplify loading, the MIR daughterboard should permit one

value of the microinstruction's Constant field to specify a

"transparent" mapping, in which the MIR's low 10 bits give the

Dispatch address. By convention, a Constant field value of 0

will specify this transparent mapping. The current system

software assumes this convention in the DDT code to examine and

change Dispatch memory.

36

Report No. 4268 Bolt Beranek and Newman Inc.

2.9 Shifting

The MAR and MBR form a double precision shift register, with

the MAR on the left Chigh order). When the MAR is referenced as

a source, the low two bits of the microinstruction's Constant

field specify a shift operation:

00 no shift
01 shift right one bit
10 shift left one bit
11 undefined

Independent of the operation specified, the value of the MAR

before shifting is loaded onto the source bus. The MAR and MBR

shift only one bit per microinstruction, and 0 is shifted into

the vacated bit: the burden of more complicated shift operations

is on the microcode.

As shown in Figure 2.3, shifting respects the data width

mode. In 20-bit mode, the MAR and MBR act as two 20-bit

registers: in 16-bit mode, the MAR and MBR act as two 16-bit

registers. Actually, the only difference is in driving MAROO

(bit 0 of the MAR) on left shifts, and in driving MARIS and MBR15

on right shifts. In 16-bit mode, the top 4 bits of the MAR and

MBR themselves shift, though they do not drive any other bits.

37

Report No. 4268 Bolt Beranek and Newman Inc.

19 18 17 16 16 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 19 18 17 16 15 14 13 12 1110 09 08 07 06 06 04 03 02 01 00

13i33'f i3"+i33'ff3"3"±+++·1 I f'f f ±3" +±+3"3"±+H3"'f "±'f 3"+.,
MAR MBR

SHIFT LEFT, 20-BIT MODE

19 18 17 16 15 14 13 12 1110 09 08 07 06 06 04 03 02 01 00 19 18 17 16 16 14 13 12 11 10 09 08 01 06 05 04 03 02 01 00

1333"3"33"=f 334£34£"f3333=£i=Ji 13313ft314£33333333333i0

MAR MBR
SHIFT LEFT, 16-BIT MODE

19 18. 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 19 18 17 16 16 14 13 12 11 10 09 08 01060604 03 02 01 00

0-fffffffffffffffff fff-1 -Ff ffffffffffffffffff I
MAR MBR

SHIFT RIGHT, 20-BIT MODE

19 18 17 16 15 14 13 12 11 10.09 08 07 06 06 04 03 02 01 00 19 18 17 16 15 14 13 12 11 10 09 08 07 06 06 04 03 02 01 00

0+£ff' t Ff Ff ff ff Ff fffFEI I l·fff 11 Ff fffEfffffffffl
o MAR - - MBR

SHIFT RIGHT, 16-BIT MODE

Figure 2.3: Shifting
Picture 7

38

Report No. 4268 Bolt Beranek and Newman Inc.

2.10 Loading and Reading Microcode

The upper 8K of the 16K microcode address space may be

loaded by the microcode, provided that the physical memory itself

is loadable CRAM rather than PROM) • To load the upper 8K, the

program must be executing in the lower BK. The low 16 bits of

TEMP contains the contents to be loaded, and the 14-bit register

RAMADDR (located on the microcode daughterboard) must contain the

address to be loaded. Writing a 1 into the M2.LOADUH bit of

MISC2 loads the high 16 bits of the microcode word; writing a 1

into the M2.LOADUL bit loads the low 16 bits. (Writing both of

these bits at once loads both halves of the microcode word, each

with the same contents.> If the bit is written in cycle m, then

in cycle m+l the memory's contents are indeterminate; by cycle

· m+2 the new contents are present. Further, cycle m+l must not

change the value of TEMP or RAMADDR.

Between writing the load address to RAMADDR and loading the

microcode, the program must not load the UPC. (This restriction

extends through the cycle after writing M2.LOADUH or M2.LOADUL.)

RAMADDR must not be loaded while executing in the upper BK

of the microcode address space. Further, the program must never

"fall through" to the upper BK of memory; any entry to the upper

BK must be by an explicit load of the UPC.

39

Report No. 426B Bolt Beranek and Newman Inc.

The hardware structure that imposes these restrictions is as

follows. There are two 14-bit registers, UPC and RAMADDR.

Specifying UPC as a destination loads both; specifying RAMADDR as

a destination loads only RAMADDR. The high bit of UPC determines

whether to fetch an instruction from the lower or upper BK. If

the lower half is used, the low 13 bits of the UPC give the rest

of the address; if the upper half is used, the low 13 bits of

RAMADDR give the rest of the address. Execution in the upper BK

increments both UPC and RAMADDR; execution in the lower BK

increments only UPC. When executing in the lower half, RAMADDR,

not being incremented, is free to be used for specifying a

loading address. The M2.LOADUH and M2.LOADUL bits enable

loading, which takes two cycles. Since loading the UPC would

overwrite any load address in RAMADDR, loading the UPC must be

avoided during microcode loading. Execution must never "fall

through" to the upper BK since RAMADDR would not be in step with

the UPC.

The microcode parity bit must be explicitly loaded as

desired Cto give the word odd parity) , as part of the low 16

bits. The hardware does not generate parity.

Reading microcode memory also uses RAMADDR. Only the upper

BK may be read, and the reading must be executed in the lower BK.

If RAMADDR contains address x at the start of cycles m and m+l,

then in cycle m+l the sources URAMH and URAML yield the contents

40

Report No. 4268 Bolt Beranek and Newman Inc.

of the high and low 16 bits, respectively, of the

address x. Thus, the standard reading sequence

RAMADDR, wait one cycle, and read URAMH or URAML Cor

the other) •

2.11 Miscellaneous Features

location at

is: load

one after

To ease byte operations, two byte-swapped forms of the MBR

(called Sl6MBR and S20MBR) are available as sources. When Sl6MBR

is specified, the low 8 bits are exchanged with the middle 8 bits

(the order within each byte staying the same); the top 4 bits

stay in place. When S20MBR is specified, the low 10 bits are

exchanged with the high 10 bits. The MBR was chosen because it

is a read/write register which serves as a data buffer for main

memory and I/0 operations, and desired byte operations will

likely deal with data transferred to or from main memory or I/O

devices.

A "serial number" source yields a fixed 16-bit constant.

The low order 12 bits, determined by cuts in PC board etchings,

hold the machine's unique serial number. The high order 4 bits,

determined by solder wire jumpers on the PC boards, represent the

assembly revision level of the machine.

41

Report No. 4268 Bolt Beranek and Newman Inc.

2.12 Handling Exceptional Conditions

On detecting various exceptional conditions, the hardware

traps microcode execution to address O. The PROM memory starting

at address 0 should have an appropriate handler. The conditions

detected include new power, microcode parity error, uncorrectable

main memory error, and button pushed.

When power is restored, the hardware forces execution to

address 0 and holds it there for roughly a half second to let the

hardware settle.

Microinstructions should have odd parity. When an

instruction with even parity is fetched, the hardware detects an

error and signals for a trap to address o. Subject to the caveat

below on trap multiplexing, the trap is timed so that execution

branches to 0 after the instruction following the instruction

with the bad parity.

If the main memory Error Detection and Correction CEDAC)

option is present, the hardware senses certain uncorrectable

errors in main memory (Section 4). If EDAC trapping is enabled,

the EDAC logic will then signal for a trap to address O. Subject

to the caveat below on trap multiplexing, the trap is timed so

that execution branches to 0 after the second cycle in which the

fetched value is available. (Section 3 discusses memory access

timing, including when fetched values becomes available.)

42

Report No. 4268 Bolt Beranek and Newman Inc.

A manual push-button is located on the processor card. When

the button is pushed, the hardware signals for a trap to address

o. This is used to unilaterally enter the microcode DDT.

The conditions of microcode parity error, uncorrectable main

memory error, and button being pushed are actually multiplexed to

one trap generator. The trap is generated by the rising edge of

the inclusive OR of the microcode parity error condition, the

main memory error condition, and the button being pushed. The

microcode parity error and main memory error conditions are

asserted for only one microcycle on each error, but the button

condition is asserted as long as the button is pushed; as long as

the button remains pushed, microcode parity errors and main

memory errors cannot cause traps. The trap's mechanism is to

force the microprogram counter to 0 for several cycles. (The

power-up trap uses the same mechanism, but it forces the

microprogram counter to 0 for much longer.>

Various status bits let the handler at address 0 determine

what conditions have occurred. A bit in register MISC2 reflects

whether the button is being pushed; other bits in MISC2 are

latched upon new power, a microcode parity error, and an

uncorrectable main memory error.

43

Report No. 4268 Bolt Beranek and Newman Inc.

3 MAIN MEMORY

Main memory, like the ALU scratch pad register file, holds

read/write data. Compared with the ALU register file, main

memory is much larger but somewhat slower. Main memory is

intended to contain the macromachine's address space, holding

the macromachine's program and data. Main memory may also store

information for the microcode's private use.

Main memory is implemented with dynamic RAMs. These are

much larger than the static RAMs used elsewhere in the MBB, and

have a much longer access time. Dynamic RAMs have special

constraints which must be accommodated by the microcode, such as

refreshing and power up "priming". These are discussed later.

The Memory Buffer Register CMBR) buffers data, and the

Memory Address Register (MAR) specifies the memory address (see

Figure 3.1). Whenever the MAR is loaded, a four-bit transfer

field is latched into an auxiliary "memory operation" register

(called MAROP). The value latched specifies whether or not to

initiate a memory or I/O transfer and, if so, whether to read or

write and whether to use "physical" or "macro" access (discussed

below).

44

Report No. 4268

from 1/0 Bus
Receivers

MBA Input Bus

MBR
(20 bits)

to I /0 Address
Drivers

Bolt Beranek and Newman Inc.

SOURCE BUS

MAR gating S16MBR gating

MAIN
MEMORY

Memory Address
Multiplexer

MAR
(20 bits)

DESTINATION BUS

S20MBR gating

Memory
Timing and

Control

MAR OP
(4 bits)

Figure 3.1 Main Memory Address and Data Paths
Picture 8

45

Report No. 426 8 Bolt Beranek and Newman Inc.

3.1 Read and Write Paradigms

By convention, cycles are numbered starting with the cycle

after the MAR load. The read paradigm for a "physical" memory

access is as follows:

load address in MAR (Transfer code says "read")
[l] don't change MAR, MBR unchanged
[2] don't change MAR, MBR unchanged
[3] memory contents in MBR, MAR may be changed

Cycles [11 and [21 may be used freely, provided the MAR is

unchanged. In cycles [11 and £21, the MBR retains its old

contents. In cycle [31, the MBR contains the fetched memory

contents, and the MAR may be loaded to initiate another memory

operation.

The write paradigm for a "physical" memory access is as

follows:

load contents into MBR
•••
load address into MAR (transfer code says "write")

[11 don't change MAR or MBR
[2] don't change MAR or MBR
[31 main memory has been changed

Again, cycles [l] and [21 may be used freely except to write the

MAR or MBR, and cycle [3] may start a new transfer. Any number

of cycles may intervene between the MBR load and the MAR load.

46

Report No. 4268 Bolt Beranek and Newman Inc.

3.2 Memory Timing

Main memory transfers take more than a single microcycle.

When nested as closely as possible, transfers in general take N

cycles each; with the current hardware, N is 3. To change the

paradigm to fit a memory where N is greater than 3,* simply ex-

pand cycles [11 and [21 into N-1 cycles, with the same constraints

on each one. The fetched contents on reads are then available in

cycle [NJ. In the general case, an uncorrectable main memory

error detected by the optional Error Detection and Correction

CEDAC) logic will trap to execute at microcode address 0 during

cycle [N+21. Section 2.12 discusses traps to address O, and

Section 4 discusses EDAC.

3.3 Memory Access Modes

On each read and write, the transfer code latched into MAROP

specifies an access mode. Access may be "physical" or "macro".

For a "physical" access, the address is passed directly to the

memory from the MAR. For a "macro" access, the address is

obtained from the application-dependent MAR daughterboard

CMARDB), as shown in Figure 3.1. The daughterboard may perform

memory address translation, either simple schemes (like byte-

*For example, the overhead of the UNIX memory management MARDB
adds one microcyle to every "macro" main memory access; here N is
4.

47

Report No. 4268 Bolt Beranek and Newman Inc.

word) or full scale memory mapping. Further, the MARDB may treat

some values in the MAR as specifying illegal addresses, and

prevent any memory operation from occurring. In addition, the

MARDB can control a condition MARCOND, which the microcode can

test with conditional execution (Section 2.5).

The "physical" access is intended for handling the

microcode's private data area, while the "macro" access is

intended for emulating a macromachine's memory operations. The

MAR daughterboard can emulate the macromachine's memory mapping,

and can ensure that macromachine operations never reference the

microcode's reserved area of main _memory. As input for its

decisions, the MARDB has the 20 MAR bits, the four MAROP bits,

and the four Mode Flags in MISC. (In the H316 emulation, one

Mode Flag bit indicates "normal" or "extended" addressing mode,

and a second bit indicates "upper" or "lower" bank if in "normal"

mode; the MAR daughterboard uses both flags.)

In some machines (such as the SUE), the same instruction

codes reference memory and I/O devices; some addresses simply

point to I/O devices rather than to actual memory. To emulate

such a machine, memory reference macroinstructions must be

handled differently depending on the address. The MAR

daughterboard could help by setting the MARCOND condition

according to whether the address loaded in the MAR indicates

memory or I/O. (Presumably the MARDB would also prevent main

48

Report No. 4268 Bolt Beranek and Newman Inc.

memory access if the address indicated I/O.)

By providing

capabilities, the

some basic application-dependent hardware

MAR daughterboard can free the microcode from

common, tedious calculations.

3.4 Special Considerations

Main memory uses dynamic RAMs, which must be periodically

"refreshed" to maintain their contents. For the MBB, this

refreshing consists of reading the memory. The scope of reading

needed depends on the chip size. If a chip contains 2N bits of

addressing, the low N bits are called the "row" bits and the high

N bits are called the "column" bits. For every combination of

row bits, that combination must occur in a main memory read at

least every 2 milliseconds. Currently 16K (14-bit address) RAMs

are used, so there are 2**7 (128) reads to perform. (The total

number of chips used does not matter, since all chips are

refreshed in parallel.)

After power-up, the dynamic RAMs must

read or written) a minimum of eight

function properly. This "priming" of

automatically by the system PROM microcode.

49

be accessed (either

times before they will

main memory is done

Report No. 4268 Bolt Beranek and Newman Inc.

4 MAIN MEMORY ERROR DETECTION AND CORRECTION (EDAC)

The MBB uses dynamic semiconductor memory devices for its

main memory. Because these devices may give occasional bit

errors, the MBB provides special error detection and correction

logic (EDAC) as an option. If the EDAC option is present, main

memory and the MBR are 26 instead of 20 bits wide. The extra 6

bits, called "check" or "syndrome" bits, provide redundant

information used to detect and correct bit errors. All single

bit errors can be corrected; all double bit errors can be

detected; errors in more than two bits are generally either not

detected or improperly corrected. We first describe the

algorithm used to detect

algorithm's

into the

operation.

correctness;

MBB. Figure

4.1 The EDAC Data Paths

and correct errors, and prove the

we then explain how EDAC is integrated

4.1 summarizes EDAC data paths and

Both main memory and the MBR are 26 bits wide: 20 data

bits, plus 6 check bits. When a word is written from the MBR to

memory or read from memory to the MBR, the data bits are passed

without change.

When a word is written from the MBR

"write check pattern" is computed and

50

into memory, a 6-bit

stored in the memory

Report No. 4268

WRITE ACCESS

ATION DESTIN
BUS EDAC

PREP

READ ACCESS

Bolt Beranek and Newman Inc.

MBR

CHECK

~----

~

CHECK
~ PATTERN DATA --... t--

COMPUTATION

MAIN
MEMORY

DATA i ----
CHECK

_I

MBR

CHECK --

ERROR
CHECK STATUS

DATA

MAIN
MEMORY

DATA

CHECK

PATTERN
COMPUTATION

BIT IN ERROR

Figure 4.1: EDAC Data Paths
Picture 9

51

Report No. 4268 Bolt Beranek and Newman Inc.

location's check bits. When a word is read from memory into the

MBR, the memory's check bits are copied into the MBR7 a 6-bit

"read check pattern" is then computed to detect and correct bit

errors. Both the write check pattern and the read check pattern

are functions (described below> of the 26 bits in the MBR1

essentially the same logic is used to compute the two patterns.

4.2 The EDAC Algorithm

Two "boundary conditions" are assumed for memory use: no

memory word is read without having first been written, and before

a write the MBR's check bits all have value 1. In this section

these conditions will enter our proof at peripheral points1 in

the next section their "physical meaning" will be discussed.

The check bits' values in the MBR and memory, as well as

the read and write check patterns, can be represented 6-bit

strings such as "011111". From left to right, these bits will be

called the "parity" bit P and the "syndrome" bits S4, S3, S2, Sl,

and so. The data bits in the MBR and memory are labeled Dl9

through DOO (DOO is the low order bit). Lower case p and s

denote bit values while upper case P and S denote the bits

themselves.

The check pattern computation functions can be determined

from Table 4.1. Each column is associated with a certain check

52

Report No. 4268 Bolt Beranek and Newman Inc.

bit, and each row is associated with a certain check or data

bit in the MBR (or is "unused"). For any check bit R, define

c(R) (the set of bits "covered" by R) as the set of check and

data bits B such that the entry in R's column and B's row is an

"*"• Define c' (R) to be just the data bits in c(R). Thus, for

example, c(P) is the set of all 26 bits, since P's column

contains all *'s; and c' (P) is the set of all data bits.

53

Report No. 426 8 Bolt Beranek and Newman Inc.

p S4 S3 S2 Sl so

* p

* * so
* * Sl
* * * unused
* * S2
* * * unused
* * * unused
* * * * unused
* * S3
* * * unused
* * * unused
* * * * Dl9
* * * Dl8
* * * * Dl7
* * * * Dl6
* * * * * DlS
* * S4
* * * Dl4
* * * Dl3
* * * * Dl2
* '* * Dll
* * * * DlO
* * * * D09
* * * * * DOS
* * * D07
* * * * D06

* * * * DOS
* * * * * D04
* * * * D03
* * * * * D02
* * * * * DOl
* * * * * * DOO

Table 4.1: EDAC Check Bit Computation

The check bits are computed in the same way for the read and

write check patterns. The value for a check bit Sn Cn=0,1,2,3,4)

in the check pattern is the complement of the EXOR of the values

in the MBR of all bits in c(Sn).

54

Report No. 4268 Bolt Beranek and Newman Inc.

Similarly, the value for P in a read check pattern is the

complement of the EXOR of the values in the MBR of all bits in

c(P). The value for P in the write check pattern, however, is

the EXOR of the value of P in the MBR, the values of the bits in

c'(P) in the MBR, and the values of the check bits in the ~~ite

QheQk ~atte~n itaelf.

Since c(P) includes all 26 bits and P has value 1 in the MBR

before a write, we can restate the computation of P in the check

patterns as follows. In the write check pattern, P gives the

word written (data plus check bits) an odd parity. In the read

check pattern, P reflects the parity of the word read: 1 for

even parity, 0 for odd parity.

We will study first the check patterns generated according

to these rules. Later we will analyze the effect of hardware

errors.

We will show that, if a word is written into memory and then

read back without error, the read check pattern is always

011111. Let p, s4, s3, s2, sl, and sO be the values of the bits

in the read check pattern; let p', s4', s3', s2', sl' and sO' be

the values of the bits in the write check pattern (which are

stored in memory during the write); and let p", s4", s3", s2",

sl", and sO" be the values of the check bits in the MBR before

the write. Cp", s4", s3", s2", sl", and sO" are normally l's,

but we defer using this assumption in order to make our result

55

Report No. 4268 Bolt Beranek and Newman Inc.

more general for later use. Since all data bits have the same

value throughout the transfer, we need not define separate

symbols for their values before the write, after the write, and

after the read.) If a and b are bit values, let a * b denote a

EXOR b and let a denote the complement of a; if A is a set of

bits, let *A denote the EXOR of the values of all bits in A.

We can express succinctly with equations the rules given

above in prose for calculating the read and write check patterns.

The read check pattern is computed from values in memory as

follows:

(1)

(2)

p =

sn =

<C*c' (p)) * p' * sO' * Sl' *s2' * s3' * s4')

(*c'(Sn) * sn').

(We use n to stand for O, 1, 2, 3 or 4. Thus, the second

equation is really five equations, one for each check bit.

Equation (2) holds because Sn covers itself but no other check

bit; equation (1) holds because P covers every check bit.) The

write check pattern is computed from the values in the MBR as

follows:

(3) p' = C*c'(P)) * p" * sO' * sl' * s2' * s3' * s4'

(4) sn' = «*c' (Sn)) * sn").

We can substitute (3) and (4) into (1) and (2) to yield the read

check

MBR.

pattern values as functions of the original values in the

Substituting (3) into (1) yields

56

Report No. 4268 Bolt Beranek and Newman Inc.

(5) p = (p")

and substituting (4) into (2) yields

(6) sn = sn".

Thus, the read check pattern depends only on the initial check

bit values in the MBR, not on the data bits. We are assuming an

initial pattern of 111111; (5) and (6) thus yield a read check

pattern of 011111.

So far, we have shown that an error-free "round trip

transfer" from

check pattern

MBR

011111.

to memory

We will

and back to MBR yields the read

now examine the read check

patterns caused by various hardware errors.

Our model of a hardware error is that in memory, between the

write and the read, one or more bits change value. P's behavior

on errors is easy to analyze. P in the read check pattern

reflects the parity of the word read. In the absence of errors,

P in the read check pattern is O, reflecting the memory word's

correct odd parity. In general, P in the read check pattern

reflects the number of bits in error in memory: P is 0 if the

number of errors is even (including none), and 1 if the number of

errors is odd.

Having completely analyzed P's behavior with errors, we now

consider that of the check bits. If only one bit in memory is in

57

Report No. 4268 Bolt Beranek and Newman Inc.

error, just those check bits which cover the erroneous bit will

appear as 0 in the read check pattern instead of the normal 1.

For example, if Dl9 is in error, since just S3, Sl, and SO of the

check bits cover Dl9, the check bits will appear as 10100 in the

read check pattern. From this example, we see that the bit in

error can be read from Table 4.2 by matching the parity and check

bits in the read check pattern. (The EDAC.BANK field of the EDAC

register must be examined to uniquely determine the failing

memory chip.)

If exactly two bits are in error, then, since the two bits

cannot be covered by exactly the same syndrome bits, the syndrome

bits in the error pattern will not be 11111.

We can summarize the read check patterns for zero, one, and

two errors:

58

Report No. 4268 Bolt Beranek and Newman Inc.

Read Check Bit in Physical
eat.te.r.n ~I.I.QI. LQcat.iQn

100000 MBROO Ml, M27
100001 MBROl Ml3, M39
100010 MBR02 Ml4, M40
100011 MBR03 M26, MS2
100100 MBR04 M2, M28
100101 MBROS Ml2, M38
100110 MBR06 MlS, M41
100111 MBR07 M2S, MS!
101000 MBR08 M3, M29
101001 MBR09 Mll, M37
101010 MBRlO Ml6, M42
101011 MBRll M24, MSO
101100 MBR12 M4, M30
101101 MBR13 MlO, M36
101110 MBR14 Ml 7, M43
101111 S4 M20, M46
110000 MBRlS M23, M49
110001 MBR16 MS, M31
110010 MBR17 M9, M3S
110011 MBR18 M18, M44
110100 MBR19 M22, M48
110111 S3 M21, M47
111011 S2 Ml9, M4S
111101 Sl MB, M34
111110 so M6, M32
111111 p M7, M33

Table 4.2: Read check pattern following a single-bit error

S9

Report No. 4268

Numbat Qf EttQta

0
1
2

Bolt Beranek and Newman Inc.

011111
lxxxxx Cxxxxx gives bit in error)
Oxxxxx Cxxxxx is not 11111)

Single errors can be detected by P being 1, and corrected using

the check bits' value. Double errors can be detected by both P

and at least one check bit being zero. The EDAC logic interprets

any read check pattern as no error, a single error, or a double

error. If more than two bits are in error, an odd number of

errors will be interpreted as a single error, and an even number

of errors will be interpreted as no error or a double error.

Since no memory location is read without first having been

written, every read from memory is the second half of a "round

trip transfer". Therefore, the EDAC logic can safely perform

this error analysis on every read.

4.3 Integrating EDAC into the MBB

The discussion of the EDAC algorithm assumed that the MBR's

check bits were all l's before a write to memory. When the MBR

is loaded from the destination bus, the check bits are loaded

from the 6-bit EDAC.PREP field of the EDAC register {Section

7.4). For normal operation, this field should be set to 111111.

For hardware debugging, it may be given another value. When the

MBR is loaded by a memory or I/0 fetch, the check bits generally

60

Report No. 4268 Bolt Beranek and Newman Inc.

are loaded with different values. CA memory fetch, of course,

copies the check bits from memory. An I/0 fetch loads the check

bits randomly.) Therefore, before any main memory write, the last

load of the MBR must be from the destination bus. In the

following memory-to-memory transfer sequence, the statement

"MBR->MBR" copying the MBR to itself through the ALU, is needed

for this reason.

LOCl->MAR(R)
• • •
• • •
MBR->MBR
LOC2->MAR{W)

• • •
• • •

; read main memory at address LOCI

; fix MBR's check bits
; write value to main memory

at address LOC2

Equations (5) and (6) of the last section show that in the

error-free case, toggling any EDAC.PREP bit in the EDAC register

simply toggles the corresponding bit in the read check pattern.

For example, having 010111 instead of 111111 in the EDAC register

produces a read check pattern in the absence of hardware errors

of 110111 instead of 011111. This would be detected as an error

by the EDAC hardware. {Errors will work much as before, changing

bits in the read check pattern away from their values in the

error-free case.)

The discussion of the algorithm also considered only those

reads which follow writes. In fact, the EDAC logic would be

confused on reading a location which had never been written,

61

Report No. 4268 Bolt Beranek and Newman Inc.

since the check bits in memory would be random. Therefore, as

part of the initialization after power-up, all main memory

locations should be written. (Such writing must be preceded by

the eight memory cycles required to prime main memory.)

On detecting errors after reads, the EDAC logic affects MBB

operation in three ways. First, various status conditions and

error data are latched. On detecting any error, the "M2.MEMERR"

bit in MISC2 is set. On detecting any double (uncorrectable)

error, the "M2.UCERR" bit in MISC2 is set. On detecting any

single (correctable) error, the read check pattern and the memory

bank from which the erroneous data came are saved in the EDAC

register. Thus, faulty bits in individual chips may be

identified.

Second, if enabled, EDAC corrects single data errors. On

detecting a single data error, EDAC steals two microcycles to fix

the indicated bit in the MBR. EDAC does not eliminate the error

in memory, so every subsequent fetch would require the same

fixing. (The program should eventually eliminate the error by

rewriting the corrected data to memory.) Setting the "EDAC.FIX"

bit in the EDAC register enables the cycle stealing and MBR

fixing; clearing the bit disables them.*

*Note that if fixing is not enabled, the read check pattern is
UQt latched in the EDAC register on an error.

62

Report No. 4268 Bolt Beranek and Newman Inc.

Third, if enabled, EDAC traps to microcode address 0 on

detecting a double error. Setting the "EDAC.TRAP" bit in the

EDAC register enables this feature; clearing the bit disables the

feature.

The current system software (see Chapter 8) leaves fixing

enabled always, but leaves traps enabled only when running

application code. The program listing gives details.

63

Report No. 4268 Bolt Beranek and Newman Inc.

5 I/0 and INTERRUPTS

5.1 I/O Design Issues

Before discussing the details of I/0 access and operation, a

brief description of some facets of MBB I/O philosophy is in

order.

5.1.1 Hardware/Software Tradeoffs

A key goal of the MBB design is to minimize the hardware

devoted to I/0 interfaces. MBB I/0 hardware performs only very

basic tasks such as handshaking, electrical level conversion,

serial-parallel conversion, and requesting a microinterrupt after

transferring a unit of data. The microcode then has

responsibility for such functions as maintaining the finite state

machine for the line, transfer of data to or from memory CDMA),

status reporting, word assembly/disassembly, padding, and

checksumming. Such microcode is considerably cheaper and easier

to supply and change than the corresponding hardware.

I/O emulation is not a trivial demand on the micromachine.

In a communications application, such as the MBB IMP, half of the

processor bandwidth is nominally budgeted to support the I/O

system, leaving the other half for instruction emulation. This

bandwidth tradeoff is, of course, "dynamically allocated based on

the instantaneous I/O processing requirements of the machine.

64

Report No. 4268 Bolt Beranek and Newman Inc.

As an example, it is helpful to consider the actions

involved in the receipt of a data character on a communications

line ("modem") interface. When the interface shifts in 8 bits, a

microinterrupt is generated. When this interrupt is serviced,

the microcode reads the data byte from the interface and

references that device's status block in register memory. This

area contains:

- finite state machine state
- residual characters
- checksum
- DMA pointers
- error and status indicators

If the state information indicates the interface is idle,

the character is checked to see if it is a DLE (the transparency

escape character) • If the interface is in data mode, the

checksum calculation is updated via table lookup <using tables

stored in reserved main memory). Then this character is combined

with the previous one (saved in the status block) to form a word.

The DMA pointers are updated and the word written to memory.

Control of the micromachine then passes to the next task. This

action continues for the remainder of the packet, with the

microcode detecting the end of message sequence and checking the

checksum. Status information is updated and the completion

macrointerrupt is requested.

65

Report No. 4268 Bolt Beranek and Newman Inc.

5.1.2 The Microinterrupt System

The I/0 service request system of the MBB is a hybrid of

classic polling mechanisms, classic vectored interrupt systems

and the Pluribus PID. The interrupts do not in fact "interrupt"

the processor; rather, the processor must periodically poll in

order to service any pending interrupt. Hardware is provided,

however, to synchronize interrupt requests, to perform priority

ordering, and to generate an interrupt vector. It is the

microprogrammer's responsibility to access this hardware often

enough to meet latency requirements. If no interrupt request is

pending, the interrupt vector takes. the MBB to the start of

emulation of the next macroinstruction.

This approach has several advantages over real interrupts.

First, the hardware is simpler and overhead is lessened since it

is not necessary to automatically save and restore the UPC and

other micromachine context. Second, it eliminates the mechanism

of enabling and disabling microinterrupts. This would require at

least one extra bit in the microinstruction since it would be too

expensive to execute many enable and disable microinstructions.

Finally, this approach should considerably simplify the design of

the microcode since interrupts are more readily controlled.

66

Report No. 4268 Bolt Beranek and Newman Inc.

5.2 I/O Access and Data Transfer

As explained earlier, I/O devices are accessed much like

main memory. The MAR specifies the address, microinstruction

bits determine the nature of the transfer {I/0 or memory; read or

write), and the MBR serves as a data buffer.

As shown in Figure 5.1, the "I/O Bus" signals include an I/O

address bus with qualifying bits, and a data bus with control

signals. The address bus has 16 bits and is driven from the MAR.

The address qualifying bits are the bits from the

microinstruction mentioned above. The data bus is tri-state and

bi-directional. On output, the MBR drives the bus with data for

a device; on input a device drives the bus with data for the MBR.

Paths are provided for 20 bits. For devices which use fewer than

20 bits, high order MBR bits are ignored on output and O's are

placed in the MBR on input. To ease character-oriented

manipulation of received data, data loaded from devices into the

MBR can be gated subsequently onto the processor's source bus in

regular or byte-swapped form.

The control aspect of interfacing to I/O is intended to be

flexible; we must allow for a large variety of devices to be

connected and still provide an efficient coupling with the

micromachine. One significant variation is the response time of

various devices: An interface constructed of TTL can generally

respond to a request within one cycle while typical LSI devices

67

°' CX>

DATA
CONTROL
SIGNALS

I/O VALID 4 <Jr-'. --
I/0 READ/WRITE .,. <:J --
I/O STROBE ~
I/O READ GATE ------~t> ..

MBR OUTPUT BUS

I/O DATA BUS

MBRTO I/O
GATING

1/0 TO MBR
GATING

A I/O
DD

R
I /0 ADDRESS 4! I DR E
BUS I SS

VE
~

MBR INPUT BUS

FROM MEMORY
ADDRESS REGISTER

MAIN
MEMORY

SOURCE BUS

MBR OUTPUT
GATING

MBR INPUT
GATING

MEMORY BUFFER
REGISTER (MBR)

{~~~~__._~~~~-

Figure 5.1 1/0 Data Transfer
Picture 10

DESTINATION BUS

l

}

:;:()

CD
'O
0
'""S
~

z
0

.:::-
1'0

°' CX>

to
0
1--'
~

lJ:l
CD
'""S
OJ
::s
CD
;:<;;'

0,)

::s
0..

z
<D
~ s
0,)
::s
H
::s
()

Report No. 4268 Bolt Beranek and Newman Inc.

(e.g., a USART or floppy disk controller) have required input

pulse widths and data access times which amount to several MBB

cycles.

The resultant control mechanism has four signals. The

first, driven by the MBB, says whether the access is read or

write. This bit, called IOWRITE, controls the bidirectional I/0

data bus drivers and is sourced by bit 1 of MAROP.

The second signal, called IOSTROBE and driven by the MBB,

says "do it!". After loading the MAR with an I/O address and Cif

a write) the MBR with the data, IOSTROBE is asserted for N

consecutive cycles, where N is dependent on the time constants of

the actual device being addressed. IOSTROBE is asserted by

setting the M2.IOS bit in MISC2. Note that this bit does not

need to be explicitly cleared; IOSTROBE is on for the length of a

cycle if, and only if, M2.IOS was set by the previous

microinstruction.

The third signal is driven by each I/O board. It is used

only by the hardware; the microcode cannot directly discover its

state. It is asserted on a read to say that the data on the I/0

Bus is valid. The MBB uses this to latch the data into the MBR.

The I/O board generates this signal at the appropriate time,

relative to IOSTROBE, knowing the time constants involved for the

device addressed.

69

Report No. 4268 Bolt Beranek and Newman Inc.

It is the microcode's responsibility to know the time

constants for the devices it accesses, both the number of cycles

IOSTROBE must be asserted and in which cycle the read data will

be valid.

The fourth signal, IOVALID, resets all I/0 devices, either

at power-up or when the bit M2.IORESET is set in MISC2. (Note

that M2.IORESET only affects I/O devices actually on I/0 boards;

the "standard" devices are reset only by power-up.) It is the

responsibility of every I/0 board designer to insure that each

I/O board can be reset to a known state by removing IOVALID for a

single clock cycle.

5.3 I/O Address Space

I/O devices* have 16 bit addresses. The high order three

bits of an address denote the I/O board on which the device

resides (see figure 5.2). I/O boards are numbered by their

physical position in the box. The devices on the MBB's memory

board (the "standard" devices) are considered to be on board

zero; the I/0 board cabled to the memory board is board onet etc.

(There is thus a maximum of seven I/O boards in any MBB system) •

The other 13 bits of a device address have no a priori meaning;

*A "device" may be a communications interface, a control and
status register, or some other unit which can either supply data
to or accept data from the micromachine.

70

Report No. 4268 Bolt Beranek and Newman Inc.

each I/O board has its own specific assignments.

5.4 Standard MBB I/O Devices

The MBB provides two communications paths, suitable for a

terminal, a cassette loader, or a computer port. The standard

I/O devices include these two interfaces (called individually the

"console" and "loader" interfaces and collectively the "terminal"

interfaces), a (read-only) switch register, and an Interrupt

Enable Register. (The current system software controls these

devices, as explained below, in Section 10.1, and in the program

listing.)

The two terminal interfaces are each built around a USART

(Signetics 2651) which handles 8-bit transfers to and from the

processor. (For more detail than that given here, see the

listing and the USART's data sheet.) The current system software

configures these USARTs to function as full duplex, asynchronous

interfaces. The MBB's processor may access four different

registers in the USART; the "device's internal register" field in

the I/0 address specifies which of the USART's registers to use.

(The MBB's addressing mirrors the USART's internal numbering.)

See Figure 5.2.

Writing to Register 0 gives the USART data to transmit;

reading from Register O reads the USART's received data. Writing

71

Report No. 4268 Bolt Beranek and Newman Inc.

to Register 1 sets line protocol synchronization characters,

necessary only if the USART is configured as a synchronous

interface: reading from Register 1 reads status such as ready and

overrun conditions for transmission and reception. Register 2 is

used to read and write configuration information such as

synchronous/asynchronous operation, baud rate, and treatment of

data parity. Register 3 is used to read and write command

information such as enabling of transmission and reception, and

data looping.

5.4.1 Local Interrupts

The USART buffers one byte in each direction in addition to

the byte being transmitted or received. It sends interrupt

signals to the processor when it is ready to provide more

received data or to accept more data to transmit. The microcode

can disable the transmit and receive interrupts by disabling the

USART's transmitter and receiver respectively. (The current

system software disables the transmitter when it has nothing to

send: the software can leave the receiver enabled without

interruption, since it is always ready for a receive interrupt.)

Since the receive and transmit interrupts indicate

respectively received data ready and room for data to transmit,

reading received data and supplying data to transmit will turn

off these interrupts. When a byte is read or written there is a

72

Report No. 4268 Bolt Beranek and Newman Inc.

STANDARD DEVICES

1s 14 13 12 11 10 g a 1 s s 4 3 2 1 o

Io o o I• • • • •I
* (> DON'T CARE

DEVICE
8 CONSOLE TERMINAL
1 LOAD DEVICE
6 SWITCH REGISTER

DEVICE

7 INTERRUPT ENABLE REGISTER

APPLICATION SPECIFIC DEVICES

DEVICE'S
INTERNAL
REGISTER.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I BOARD I ADDRESS WITHIN BOARD

Figure 5.2 I/O Device Addressing
Picture 11

73

I

Report No. 4268 Bolt Beranek and Newman Inc.

delay before the processor senses that the interrupt request is

turned off. To ensure sufficient time for the request to drop,

eight additional cycles should intervene between the last

"IOSTROBE" (setting of bit M2.IOS to effect the I/0 transfer) and

a query of the interrupt system.

5.4.2 Interrupt Enable Register

The microcode can also disable the interrupt requests from

the two USARTs with a mask in a 4-bit Interrupt Enable Register

(IER). The IER holds four interrupt mask bits, corresponding to

the transmit and receive interrupts from each USART:

0 receive, device 0 (console)
1 transmit, device 0 (console}
2 receive, device 1 (loader)
3 transmit, device 1 (loader)

Setting a bit enables the interrupt1 clearing a bit disables

the interrupt. The low order 4-bits of the IER are read/write

bits1 the high order 4 bits are always read as O's and cannot be

written. (The current system software does not use the IER's

mask bits to disable interrupts.)

74

Report No. 4268 Bolt Beranek and Newman Inc.

5.4.3 Switch Register

The fourth I/O device is an 8-bit switch register located on

the MBB's memory board. The contents of these switches may be

read from device 6 on board 0 (see figure 5.2). Writing to this

location does nothing. The low 4 switches are used by the system

software to select the console terminal's baud rate. The high 4

switches are currently unused.

5.5 Interrupt System

It is important not to confuse the microinterrupt system

with the mechanism for handling exceptional conditions (also

referred to as "traps"). Exceptional conditions are discussed in

Section 2.12.

Microinterrupts, such as those for device transfer

completions, are queued by the interrupt system as service

requests. Such requests are serviced only when polled by the

microprogram. The hardware supplies a "vector address"

corresponding to the highest priority pending request.

(Transferring control to that address would service the request.>

If no interrupt request is pending, the hardware supplies an

address "MAIN" corresponding to the microprogram's main task.

This task is usually used to emulate macroinstructions;

transferring control to "MAIN" would cause the next

75

Report No. 4268 Bolt Beranek and Newman Inc.

macroinstruction to be emulated. To dismiss and transfer control

to the handler for the highest priority pending request <or to

"MAIN" if no requests are pending), the microcode loads the

hardware-supplied vector address into the UPC. Interrupt vectors

are located in RAM code, so that service routines may be changed

easily.

Microcode routines are thus free from being interrupted

(except by traps). Code is divided into strips, each of which

dismisses by loading the interrupt vector into the UPC. Strips

must be short enough to provide response to I/O interrupts within

the latency constraints of the various interfaces.

5.5.1 Device Priority and Vectors

The priority of interrupt requests is governed by an

interrupt chain which begins on the memory board, goes "up" the

I/0 boards (from lowest numbered board to highest), comes "down"

the I/O boards, and finishes on the memory board. Thus any I/0

board may have both "high priority" devices, by inserting them in

the "up" chain, and/or "low priority" devices, by inserting them

in the "down" chain. The last I/0 board must have a jumper cable

to connect the "up" and "down" interrupt chains.

The MBB's standard I/0 devices include both high priority

and low priority devices, and, in fact, since the chain begins

76

Report No. 4268 Bolt Beranek and Newman Inc.

and ends on this board they are respectively the highest and

lowest priority interrupts. Besides interrupts from the above­

mentioned communications interfaces, standard interrupts include

one which is generated every 100 microseconds and a programmable

interrupt.

The 100 microsecond interrupt is used, among other things,

to cause the refresh of main memory and to drive a timing

"service", which allows users' microcode to be called at

specified intervals. The programmable interrupt can be set and

cleared by the microprogram. It has the lowest priority save

that of "MAIN". Thus it is useful for tasks which should proceed

before the next macroinstruction but should yield to I/0 service.

One example is tracing of macroinstructions, in which some state

is recorded before each macroinstruction is executed. Another

use is to allow long microprogram strips to be broken up to meet

I/O latency requirements.

Each interrupt has an associated vector. Vectors are

located at the start of the upper 8K (the loadable half) of

microcode. Vectors are spaced 4 addresses apart, to permit

context saving and branching. Vector addresses have eight bits

of significance, three to denote the I/0 board of their origin

and five to indicate the device within the I/0 board (see Figure

5.3). Vector addresses thus range from 20000 to 21774.

77

Report No. 4268 Bolt Beranek and Newman Inc.

INTERRUPT VECTOR ADDRESS

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 0 . 0 0 0 0 1 0 0 " ' BOARD DEVICE I 0 0 I

Figure 5.3 I/O Interrupt Vector Addresses
Picture 12

78

Report No. 4268 Bolt Beranek and Newman Inc.

If an I/0 board has fewer than 32 devices or there are fewer

than seven I/0 boards in a system, some of the microcode address

space in the reserved vector area will not be used for vectors.

This space is then available for any other microcode.

Interrupt priority, from highest to lowest, along with the

vector addresses of the core devices, is as follows:

vector address (octal)

20004
20020
20024
20030
20034

20040
20050

100 microsecond clock
console interface, receiving side
console interface, sending side
loader interface, receiving side
loader interface, sending side

<other devices in the high priority chain>

<other devices in the low priority chain>

microprogrammable interrupt
MAIN (instruction emulation)

5.5.2 Servicing Interrupt Requests

The interrupt vector source (called "INTS") gives the vector

of the highest requested interrupt. Since loading the interrupt

vector into the UPC transfers control to the vector, the

microcode can easily dismiss to permit priority-ordered interrupt

service. The interrupt system works by polled requests rather

than actual interrupts so there is no need to "lock out"

interrupts. The "MAIN" request is always asserted; its vector

should branch to the machine's background level task, such as

79

Report No. 4268 Bolt Beranek and Newman Inc.

emulating the next macroinstruction.

We recommend reserving 20000 as an illegal vector, since

various hardware and software malfunctions can transfer control

there. Two such observed malfunctions have been broken hardware

in the interrupt chain and improper dispatching (Section 2.8)

through a cleared Dispatch memory cell.

Servicing a request does not automatically clear the

request; the microcode handler must explicitly clear it. The

clock sets its request every 100 microseconds; writing a 1 to the

M2.CLKINT bit in MISC2 clears the request. (When read, M2.CLKINT

reflects the clock interrupt request state: 1 for on, 0 for off.)

The console and loader interfaces assert requests when ready to

supply received data or accept data for transmission; the

requests are turned off by reading or writing data, or by

disabling transmission or reception. (These requests can also be

disabled by mask bits in the Interrupt Enable Register.) The

programmable interrupt is requested by the M.PROGINT bit in MISC.

Setting the bit sets the request; clearing the bit clears the

request.

5.5.3 Interrupt Timing Constraints

There is a delay between events which set or clear requests

and the reflection of the new state in the INTS source. The

80

Report No. 4268 Bolt Beranek and Newman Inc.

interrupt hardware periodically samples the states of the various

interrupt service request lines, and places on the interrupt bus

the vector address corresponding to the highest priority device

requesting service. Because of timing considerations in

determining the highest priority request, the interrupt system is

controlled by a special clock signal which runs at half the speed

of the main MBB system clock; interrupt requests are thus sampled

every two microcycles.

To be sure of updated information, some number of

microcycles must intervene between the program's setting or

clearing a request and the program's sampling the INTS source.

This number of cycles is dependent on each I/O board's

implementation. For the core devices, four cycles suffice for

the 100 microsecond clock and the programmable interrupt. After

clearing a console or loader interface interrupt by reading,

writing, or disabling transmission or reception, a wait of eight

cycles (instead of four) should intervene between the last

IOSTROBE cycle and sampling the INTS source.

81

Report No. 4268 Bolt Beranek and Newman Inc.

6 MICROINSTRUCTION FORMAT

Figure 6.1 shows the microinstruction format. We now

explain each field in detail. The decimal bit numbers of each

field and subfield are given below in parentheses. Field and

subfield values are given in hexadecimal. The mnemonics listed

are known to the assembler and the Control and Debugging Package.

The fields and subfields which control writing (Latch

Control, Map Control, Register Load Control, Destination Type,

and Destination Register) are interpreted so that a value of 0

avoids writing anywhere. Thus, a microinstruction with value 1

Call bits 0 except for the Parity bit to maintain odd parity)

acts as a "no-op".

6.1 Source Field (UIR 31 - 20)

The Source field controls driving of the source bus. (It

also controls whether to drive the destination bus from the ALU

output or from Dispatch memory: see code 4 below.) The source bus

is 20 bits wide. The Source Type subfield (31-28) makes the

primary selection as follows:

82

Q)

w

31 30 29 28127 26 25 24123 22 21 20119 18 1716115 14 13 12.11 10 9 8 I 7 6 5 41 3 2 1 0 :_I_ - :_:=_!_

SOURCE SELECTION ALU REGISTER DESTINATION boNDITIONAJ :

R
CONSTANT 0 DESTINATION I

SOURCE REGISTER REGISTER CONDITION T
TYPE SOURCE

SUBTYPE ,. ,. JsHIFT
OPERATION TESTED y NUMBER 1 MEMORY OR 1/0

TRANSFER

I T
' j.

I

1 DESTINA;.ON L SE:SE (IF/IFN

FOR ALU
STATUS

REGISTER
LOAD

CONTROL

-

Figure 6.1: Microinstruction Format
Picture 13

TYPE
OT}

::a
CD
"O
0
""$
(1"

:z:
0

.s=
I\)

°' CX>

tl:l
0
r-'
cT

tl:l
CD
""$
ll>
:s
CD
:ii.-

I»
:s
Q,.

:z:
CD

~
ll>
:s
H
:s
Q

Report No. 426 8

Source
Type

Bolt Beranek and Newman Inc.

0-3 Use a source given in the Source Subtype field.
Pad the high order bits of the source bus with O's
for sources less than 20 bits according to width
of source as follows:

0 don't pad
1 pad top 4 bits
2 pad top 8 bits
3 pad top 12 bits

(20 bit source}
(16 bit source}
(12 bit source}
(8 bit source}

4 Place 0 on the source bus, but drive the
destination bus from Dispatch memory instead of
from the ALU output. The assembler mnemonic for
this is DISP. (The Constant subfield may be used
by the Dispatch address selection logic on the
MIRDB.}

5 Place 0 on the source bus. (The assembler never
uses this code.}

6-9 Use an "extended constant" of 14 bits. Drive the
source bus's bottom 8 bits from the Constant
subfield; the next 4 bits from the ALU field; the
next 2 bits from the Source Type code:

6 10
7 11
8 00
9 01

The top 6 bits will be O's. The ALU is forced to
perform a "pass" operation, and ALU status will
not be latched.

84

Report No. 4268 Bolt Beranek and Newman Inc.

A-F Use a "regular constant". The source bus will
have 8 contiguous bits driven from the Constant
subfield, with the other bits either all O's or
all l's, determined by the Source Type code as
follows:

CJlde gla~ement gadding

A 15-8 l's
B 15-8 O's
c 19-12 l's
D 19-12 O's
E 7-0 l's
F 7-0 O's

The following table summarizes the effect of the Source Type

subfield:

Source Bus

Type Bits Bits Bits Bits Bits
CSlde l9.-l6. l5.-l2. ll-a. 1-4. 3.-0. u.ae

0 * * * * * 20-bit source
1 0 * * * * 16-bit source
2 0 0 * * * 12-bit source
3 0 0 0 * * 8-bit source
4 0 0 0 0 0 Dispatch
5 0 0 0 0 0 <unused)
6 0 "2" ALU M L extended constant
7 0 "3" ALU M L extended constant
8 0 "O" ALU M L extended constant
9 0 "l" ALU M L extended constant
A l's M L l's l's regular constant
B 0 M L 0 0 regular constant
c M L l's l's l's regular constant
D M L 0 0 0 regular constant
E l's l's l's M L regular constant
F 0 0 0 M L regular constant

* => source specified in Source Subtype subfield
ALU => ALU field (bits 19-16)

L => low 4 bits, source field (bits 23-20)
M => middle 4 bits, source field (bits 27-24)

85

Report No. 4268 Bolt Beranek and Newman Inc.

The Source Subtype (bits 27-24) specifies source as follows:

Source
Type
CQae

0
0
0
1
3
1
1
1
1
1
1
0
0
0
2
0

Source
Subtype

CQae

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

S.Qu.t.~e

Memory Address Register
Memory Buffer Register
Temp
Interrupt Vector
ALU Status
Serial Number
MISC
MISC2
EDAC
Micro-RAM, low bits
Micro-RAM, high bits
Macroinstruction Register
Macroinstruction Field
Swapped MBR (8 bit bytes)
Base
Swapped MBR (10 bit bytes)

MAR
MBR
TEMP
INTS
AL UST
SN
MISC
MISC2
EDAC
URA ML
URAMH
MIR
MIRFLD
Sl6MBR
BASE
S20MBR

Source
Niatb

20
20
20
16
08
16
16
16
16
16
16
20
20
20
16
20

The Source Type code must specify padding appropriate to the

source's width. (The assembler assembles the appropriate code

automatically.) The source's contents are right justified on the

source bus, and the padding of O's drives the high order bits.

If padding is improperly specified, so that some bits on the

source bus are driven by both the padding and the source, the

If the MAR is specified as the source, bits 21 and 20

specify the MAR/MBR shift, if any:

86

Report No. 4268 Bolt Beranek and Newman Inc.

!UR Ac.tiQn MnemQnic.

0 no shift MAR
1 shift right MAR (SR)
2 shift left MAR (SL)
3 undefined (none)

6.2 ALU Field (UIR 19 - 16)

The ALU field controls the ALU. The Operation subfield (19

-17) specifies an ALU operation as follows:

CQde

0
1
2

. 3
4
5
6
7

Q~et.atiQn

AND
ADD
INclusive OR
PASS bus
Complement bus
(undefined)
EXclusive OR
SUBtract (register minus bus)

MnemQnic.

&
+

NOT

?

If the Latch Control bit (16) is on, the ALU status is latched

into the ALU status register: if this bit is off, the ALU status

is not latched.

If the Source field calls for an extended constant, the ALU

automatically does a pass operation; the ALU field is then used

to help specify the constant. Note that the ALU status cannot be

latched during an extended constant instruction.

87

Report No. 4268 Bolt Beranek and Newman Inc.

6.3 Register Field (UIR 15 - 11)

The Register field specifies the ALU scratch register input

to the ALU. If the Map Control bit (15) is on, the Register

Number subfield (14-11) gives the register address. (If,

however, the Register field has value 30 or 31, then the MIR

daughterboard supplies a four-bit register number which, when

inclusive ORed with the contents of BASE, gives the register

address.) If the Map Control bit is off, the Register Number

subfield, inclusive ORed with the contents of BASE, gives the

register address.

6.4 Destination Field (UIR 10 - 5)

The Destination field specifies which register is loaded

from the destination bus. (The Destination bus itself is driven

by the ALU output unless dispatch memory is used as a source, in

which case the bus is driven directly from Dispatch memory.) If a

destination register has fewer than 20 bits, the high order bits

of the bus are not used.

If the Register Load Control bit (10) is on, the ALU result

is written to the scratch register specified in the Register

field. (Thus, the same register that was used as the ALU' s "A"

input is written.)

88

Report No. 4268 Bolt Beranek and Newman Inc.

If the Destination Type bit (9) is off, the Destination

Register field (8-5) selects a destination as follows:

CQde Oes.tinatiQn MnemQnic.

0 (none)
1 MBR MBR
2 TEMP TEMP
3 MIR MIR
4 RAMADDR RAMADDR
5 UPC and RAMADDR UPC
6 MISC MISC
7 MISC2 MISC2
8 EDAC control EDAC
9 ALU status AL UST
A BASE BASE

If the Destination Type bit is on, the Destination is the MAR.

The Transfer subfield (8-5) then specifies the memory or I/0

operation (MAROP), if any. Defined codes are as follows:

CQde l'.I.ans.f e.I. MnemQnic.

0 None (just load MAR)
2 write I/O WIO
3 read I/0 RIO
A read physical RP
B write physical WP
c read macro R
D write macro w

(The low order bit is a "read/write" bit. For memory operations,

0 means read and 1 means write. For I/0 operations, 0 means

write and 1 means read.)

89

Report No. 4268 Bolt Beranek and Newman Inc.

6.5 Condition Field (UIR 4-1)

The Condition field specifies conditional execution. The

Sense bit (4) gives the sense of the condition. A 0 means to

execute the instruction only if the condition is true; a 1 means

to execute the instruction only if the condition is false. The

Condition Tested subfield specifies a condition as follows:

CQde CQnditiQn MnemQni~

0 (always true) TRUE
1 ALU result zero ZERO
2 ALU result negative NEG
3 ALU result odd ODD
4 MAR condition (from the MARDB) MARCO ND
5 interrupt pending INTP
6 mode flag 0 is on MODEFO
7 (always false, not used)

The ALU conditions refer to the appropriate bits in the ALU

Status Register. The MAR condition is controlled by the MAR

daughterboard. The "interrupt pending" condition is true if any

microinterrupt request other than the software-controlled request

is pending. Mode flag O, a bit in MISC, is controlled by the

microprogram.

6.6 Parity (UIR 0)

The Parity bit gives the instruction odd parity.

90

Report No. 4268 Bolt Beranek and Newman Inc.

6.7 Special Considerations for Using Dispatch as a Source

When Dispatch memory is used as a source (Source Type code

4), the destination bus is driven by Dispatch memory instead of

by the ALU output. The ALU operation subfield is not useful; and

if the Latch Control bit is on, the ALU status register is

latched with random values. The Register field· can specify a

scratch register to be driven from the destination bus (the Load

Register bit must be on as usual), and the Destination field

selects a destination as usual.

91

Report No. 4268 Bolt Beranek and Newman Inc.

7 BIT ASSIGNMENTS IN CERTAIN REGISTERS

We will discuss the bit assignments for various registers:

ALUST, MISC, MISC2, and EDAC. As in Section 6, the mnemonics

listed are known to the assembler and the Control and Debugging

Package. The symbols' values are masks for the indicated bits or

fields.

7.1 ALUST

The ALUST register may be loaded directly from the

destination bus. Normally, however, it is used to record the ALU

status. When the ALU status· is latched, the ALU status register

is loaded as follows:

~it Meaning

0 {on if ALU result is zero}
1 low bit of ALU result
2 (always latched as 0)
3 (always latched as 0)
4 ALU "carry"
5 high bit of ALU result
6 high bit of source bus input to the ALU
7 high bit of scratch register input to the ALU

The "high bit" is bit 15 or 19, depending on whether the machine

is in 16-bit or 20-bit data width mode. For determining whether

the ALU result is zero, the high four bits are ignored in 16-bit

mode. Bits O, 1, and 5 of ALUST determine the conditions ZERO,

ODD, and NEG respectively for conditional execution. The ALU

92

Report No. 4268 Bolt Beranek and Newman Inc.

"carry" is defined in Section 2.3.

7.2 MISC

The MISC register controls various micromachine functions.

Like most MBB registers, MISC "holds" bit values: bits' values

written may be read back intact. The bits are assigned as

follows:

Ilit F.un~tiQn MnemQni~

0 mode flag 0 M.MODEFO
1 mode flag 1 M.MODEFl
2 mode flag 2 M.MODEF2
3 mode flag 3 M.MODEF3

4 programmable interrupt M.PROGINT

5 Data Width Mode M.DWMODE
6 Data Width Control M.DWCTRL

7 Load Dispatch M.LOADDISP

8 Light 0 M.LITEO
9 Light 1 M.LITEl

10 Light 2 M.LITE2
11 Light 3 M.LITE3

Mode flag 0 is one of the testable conditions for

conditional execution. The four mode flags have no pre-assigned

meaning in the MBB; they are for use by the application-dependent

MIR and MAR daughterboards. (For the H316 emulation, for

example, flag 0 on indicates "extended" addressing mode, and flag

1 on indicates "upper bank" when in "normal" addressing mode.

The MIR daughterboard uses flag O, and the MAR daughterboard uses

93

Report No. 4268 Bolt Beranek and Newman Inc.

both flags.) When M.PROGINT is on, the programmable interrupt is

requested; the request must be explicitly cleared by resetting

the M.PROGINT bit.

The MISC register controls the data width used for shifting

and determining ALU status conditions. If M.DWCTRL is on, the

machine's data width mode is controlled by the MIR daughterboard.

If M.DWCTRL is off, the machine's data width mode is controlled

by the M.DWMODE of MISC: 0 for 16 bits, 1 for 20 bits.

M.LOADDISP must be set to load Dispatch memory (Section

3.6). The lights bits drive LEDs on the memory board which are

visible from the front of the MBB. A 1 corresponds to the light

on. When looking at the front panel, light 0 is on the right.

7.3 MISC2

MISC2 and the EDAC register, unlike most registers, do not

"hold" written values in the conventional sense; their "read" and

"write" values need not be obviously related. Here are the bits

in MISC2:

94

Report No. 4268 Bolt Beranek and Newman Inc.

1Ut ~r.ite. Re.ad Mne.mQnic.

0 (clear) new power M2.NEWPWR
1 (clear) microcode parity M2.UPERR

error
2 IO RESET button being M2.BUTTON

pushed M2.IORESET
3 IO STROBE 0 M2.IOS
4 load URAM low 0 M2.LOADUL
5 load URAM high 0 M2.LOADUH
6 AC power ok M2.ACOK
7 battery fully charged M2.BATOK
8 (clear) any main memory error M2.MEMERR
9 (clear) uncorrectable main M2.UCERR

memory error
10 (clear) clock interrupt M2.CLKINT
11 MBR parity M2.MBRPAR

12-15 MAROPO - MAROP3 M2.MAROP

M2.NEWPWR, M2.UPERR, M2.MEMERR, and M2.UCERR behave in a

"write-to-clear" manner. Normally, these bits are read as O.

After the associated condition occurs, the bit will be read as 1.

Writing a 1 to the bit in question clears the condition

indication; the bit will then be read again as O until the

condition next occurs. (When the condition indication is off,

writing a 1 to the bit does nothing.)

The clock interrupt bit behaves the same way, but this bit

also controls the interrupt request. Every 100 microseconds, the

clock asserts its interrupt request and sets the "read" side of

M2.CLKINT. Both the interrupt request and the "read" side of

M2.CLKINT will stay on until a 1 is written to M2.CLKINT.

(Writing a 1 when the request is off does nothing.)

95

Report No. 4268 Bolt Beranek and Newman Inc.

M2.IORESET and M2.BUTTON share a single bit in MISC2.

M2.IORESET is used to reset I/0 devices. When this bit is set,

the IOVALID signal is not asserted, and all I/O devices are

reset, eKQe~t the standard I/O devices discussed in Section 5.4.

M2.BUTTON is off unless the button is currently being pushed.

M2.IOS controls the IOSTROBE signal, which is used to

initiate I/0 transfers. This signal is described in Section 5.2.

Writing a 1 to M2.LOADUL or M2.LOADUH loads microcode RAM.

TEMP contains the contents, and RAMADDR contains the address;

M2.LOADUL loads the low 16 bits in the specified address, and

M2.LOADUH loads the high 16 bits. Section 2.10 explains further.

M2.ACOK is on when the AC line voltage is within acceptable

operating limits for the MBB's power supply, and off when the

battery is being used to supplement inadequate AC power.

M2.BATOK is on whenever the battery is fully charged.

M2.MBRPAR gives the odd parity of the MBR. If the EDAC

option is installed, this parity includes the MBR's check bits.

(After an explicit load of the MBR from the destination bus, all

six check bits are normally set to l; so the check bits should

not alter the parity.)

M2.MAROP reflects the machine's MAROP field, which is a

copy of the Transfer field (bits 8-5) of the microinstruction

which last loaded the MAR.

96

Report No. 426 8 Bolt Beranek and Newman Inc.

7.4 The EDAC Register

Like MISC2, the EDAC register has independent "read" and

"write" sides. This register deals with the optional main memory

Error Detection and Correction (EDAC} logic described in Section

4. The field assignments are:

13.its. Wr.:ite. Be.ad Mne.mQni~

0-5 check bit values read check pattern EDAC.PREP
to load on last error

6 enable fixing 0 EDAC.FIX
7 enable traps 0 EDAC.TRAP

8-11 memory bank EDAC.BANK
12-15 MAR type from MARD EDAC.MAR

Writing EDAC.PREP sets the values which are loaded into the MBR's

check bits when the MBR is loaded from the destination bus.

(This field must be set to all l's for normal operation.> This

field's "read" side gives the read check pattern latched on the

last correctable error when fixing was enabled. (Between power-

up and the first correctable error, the value is random.> The

EDAC.FIX bit being on enables correction of single bit errors.

The EDAC.TRAP bit enables trapping to microcode address 0 on

double <uncorrectable) errors. When a single error occurs with

fixing enabled, the number of the physical memory bank being

referenced is latched in EDAC.BANK. The EDAC.PREP and EDAC.BANK

fields together identify the individual memory chip which caused

the error <see Chapter 4). Application-dependent information

from the MAR daughterboard can be referenced via the 4 bit

97

Report No. 4268 Bolt Beranek and Newman Inc.

EDAC.MAR field.

98

Report No. 4268 Bolt Beranek and Newman Inc.

8 THE MBB's SYSTEM SOFTWARE

This section describes the MBB's current system software.

The system uses the two terminal interfaces to support loading,

DDT, and application-dependent traffic; handles exceptional

conditions; and otherwise provides a friendly environment for

application software. The program listing (pointed to in Section

8.4) gives details omitted here.

8.1 The Terminal Handlers

The system software centers around two terminal handlers.

They are independent twin processes, sharing reentrant code and

using different data areas in the ALU register file.

Each terminal handler independently multiplexes its traffic

among three routines: a micro-DDT (UDDT), a loader, and the

application software. UDDT receives and responds to commands

from the external device. (Section 9 discusses UDDT commands.>

The loader loads the MBB's memories from an external device. The

application software may use the terminal interface for

application-dependent purposes. The terminal handler switches

control among these routines based on commands received from the

external device; only one routine controls the interface at a

time. The "terminal handler" denotes the hardware server plus

these three routines behind the server.

99

Report No. 4268 Bolt Beranek and Newman Inc.

In principle, the MBB can be completely

either of its two terminal interfaces.

kind of control exercised may be limited by

controlled through

In fact, however, the

the nature of the

external device. Generally, a terminal might not be suited for

loading and a cassette might not be suited for UDDT. A terminal

with cassette, or another computer, could be suited for both UDDT

and loading.

The two

example, one

other handles

terminal handlers are truly independent. For

handler can support application traffic while the

UDDT commands. Or both handlers can perform

loading at once; if they both want to load the same area, the

second will overwrite what the first has previously written.

The UDDT and loader routines are partly in PROM and partly

in RAM. Until the RAM portion is loaded, some UDDT commands are

unavailable.

8.2 'Running' and 'Not Running' States

The system software distinguishes two states of the MBB:

"running" the application software (such as macrocode emulation)

and "not running". When "not running", the microcode executes a

tight loop with three coroutines: one routine which refreshes

main memory, plus the two terminal handlers. Each terminal

handler sleeps (returns) when waiting for character input or

100

Report No. 4268

output. Thus, the interfaces are

microinterrupt system is not used

"INTS->UPC" is never executed).

Bolt Beranek and Newman Inc.

continually polled. The

(that is, the instruction

Before the MBB enters the "running" state, the RAM-resident

system software must be loaded. The "G" command to UDDT sets the

running state. (UDDT sets the system's "running" flag and calls

the application program's initialization routine.) When the MBB

is "running", program flow is different. All routines regularly

dismiss with the microinstruction "INTS->UPC", and interrupts

<serviced by system and application code in RAM) drive the MBB's

processes. When any input or output interrupt occurs on either

standard interface, both terminal handlers are awakened.

(Awakening both handlers, though not necessary, is the easiest

thing to do.) As before, each terminal handler sleeps (returns)

when waiting for I/O. After both handlers return, an "INTS->UPC"

is executed, dismissing until the next interrupt. The clock

interrupt handler takes over the refreshing of main memory. (The

clock interrupt handler also offers a wake-up service for the

application program.) The system software services only the

clock interrupt and the terminal I/0 interrupts~ the application

software services MAIN, the programmable interrupt (which it

controls), and any interrupts for application-dependent I/O.

The MBB stays in the "running" state until UDDT processes a

halt command C"H") or an exceptional condition causes the system

101

Report No. 4268 Bolt Beranek and Newman Inc.

to reinitialize.

8.3 Exceptional Conditions and Initialization

Various exceptional conditions cause the system to

reinitialize. On sensing such a condition, the system stops

running application code, saves the readable registers (such as

MAR and TEMP) in a block of ALU scratch registers, initializes

both terminal handlers, and sends out through both interfaces a

character code for the type of error. The condition may be

hardware-detected, trapping through microcode address O, or

software-detected, branching through a UDDT breakpoint routine.

The character codes for the different conditions are:

n
b
p
m
j

*
t

New power
Button pushed
Parity error in microcode
uncorrectable Main Memory error
wild Jump to address 0 (no apparent reason)
microcode breakpoint
macrocode trap or breakpoint

All except "*" and "t" indicate hardware-detected conditions

which trapped to address O.

Certain of these errors necessitate some extra

initialization beyond that described above. On new power, all

non-PROM memories (microcode RAM, Dispatch, main memory, ALU

scratch registers) are cleared. When the button is pushed,

102

Report No. 4268 Bolt Beranek and Newman Inc.

before letting the terminal handlers run, the microcode stays in

a tight loop (which includes a main memory refresh) until the

button is released. (One reason for this wait is to avoid

suppression of traps. As explained in Section 2.12, as long as

the button is pushed, microcode parity errors and main memory

errors cannot cause traps.) When the loader port has a boot

device attached, the MBB will automatically load itself on all

exception conditions except button pushed and microbreakpoint.

Unfortunately, when an exceptional condition occurs, the UPC

cannot be saved for inspection.

8.4 Source File

The system software source is in two files: a PROM resident

section and a URAM resident section. The files currently reside

in <MBB> as USYS-PROM.MIC and USYS-URAM.MIC.

103

Report No. 4268 Bolt Beranek and Newman Inc.

9 THE MBB's UDDT COMMANDS

This section discusses the micro-DDT (UDDT) commands, as

well as one command to transfer control from the application

software to UDDT. This section assumes familiarity with DDTs in

general and does not precisely describe all formats, conventions,

and shortcuts. The letter commands given below must be entered

in upper case. In this section, "n" represents an octal number.

The MBB prompts with carriage return and line feed followed

by n I II . .
The commands "nU", "nM", "nD", and "nR" examine address "n"

in microcode memory, main memory, Dispatch memory, and the ALU

scratch registers respectively. An MIR daughterboard must be

installed before Dispatch memory can be accessed. The MBB

responds to these commands with the value in the location

specified. The lower 8K of microcode memory may not be accessed.

Main memory is accessed in the "physical" mode; similarly,

Dispatch memory and the registers are accessed by absolute

addresses without mapping. (Dispatch is interrogated with the

microinstruction constant field containing O; the MIR

daughterboard is then presumed to effect a "transparent" map, as

described in Section 2.8.)

Terminating characters act as with many other DDTs. A

carriage return closes the current location; a line feed closes

104

Report No. 4268 Bolt Beranek and Newman Inc.

the current one and opens the next; and an

current one and opens the previous one.

up-arrow closes the

A number, if entered

before the terminating character, is stored as the new value in

the open location.

Commands "nJ", "nG", and "H" control program execution.

"nJ" transfers microcode execution to address "n". This command

is useful for branching to hardware test programs. The code

called by the "J" command may return to the system software by

branching to "pdt.int"; in this case, UDDT will still control the

terminal interface. (To run a test program repeatedly in

parallel with the system software, one can put the test program

at the MAIN interrupt vector. The test program is then the

"application" program, and it may be started by the "G" command

discussed in the next paragraph. The test program should dismiss

with "INTS->UPC".)

"nG" starts the application software. The argument "n" is

used by the application software, perhaps as a macrocode starting

address; the argument may also be missing, in which case the

application software is so informed. "H" halts the application

software.

of the

incoming

passed to

On receiving the command "E", UDDT releases control

interface to the application software. Further

characters (except control-N and control-E) are then

the application software, and the application software may then

105

Report No. 4268 Bolt Beranek and Newman Inc.

send characters to the external device. "E" is legal only if the

application software is running. A control-N returns terminal

control to UDDT.

Control-E switches the character echoing state. (Control-E

has this effect whether UDDT or the application software is in

control.) Initially, the terminal handler echoes received

characters. A control-E inhibits echoing; a second control-E

reenables echoing; and so on.

Figure 9.1 summarizes the transfer of control among UDDT,

the loader, and the application software.

Rubout echoes "X" and makes UDDT forget the latest typein.

Spaces are ignored, and input characters not yet discussed is

illegal. On receiving an illegal input, the UDDT closes any

open location and types "?" followed by a prompt.

Table 9.1 summarizes the commands. Certain commands'

handlers are in RAM; these commands, marked in the table by '*',

are allowed only when UDDT's RAM extension is loaded.

106

Report No. 4268

DDT.

LOADER

Bolt Beranek and Newman Inc.

··------·-,
I NOT RUNNING I
I SYSTEM SOFTWARE I L _______ J

APPLICATION

Figure 9.1: Control of the Terminal Interface
Picture 14

107

Report No. 4268

nu
nM
no
nR

(n)<carriage return>

(n)<line feed>

*(n) <uparrow>

nJ

*Cn)G
*H

*E

control-N
control-E

<rubout>

<space>

Bolt Beranek and Newman Inc.

examine microcode memory
examine Main memory
examine Dispatch memory
examine Registers

close location (inserting new
value if supplied)
close location (inserting new
value if supplied) and open
next one
close location (inserting new
value if supplied) and open
previous one

Jump to microcode address

Start application software (Go)
Halt application sof~ware

Exit DDT (connect the terminal
to the
application pro"gram)
return terminal control to UDDT
change Echo state

close any open location, and
echo "X"
ignored

*=>allowed only if UDDT RAM microcode is loaded

() indicates an optional argument

Table 9.1: The MBB's UDDT Commands

108

Report No. 4268 Bolt Beranek and Newman Inc.

10 THE CONTROL AND DEBUGGING PACKAGE

The Control and Debugging Package (CDP) runs on TENEX and

TOPS-20. It communicates with the MBB's system software (Section

8) through a PTIP port connected to one of the MBB's terminal

interfaces. The CDP user can issue DDT commands to the MBB

either in an uninterpreted manner or in an interpreted (symbolic)

manner. The user can also load the MBB from a local file.

Further, the user can activate a simulated MBB with special

features such as breakpoints; the user interacts with the

simulated MBB in much the same manner as he interacts with the

real MBB.

Lower case letters typed to the CDP are converted to upper

case on input. In this section, •$• denotes •escape".

We will shortly describe the CDP in some detail, considering

the CDP's internal states and the associated internal states of

the MBB's terminal handler. The CDP functions in a complicated

manner, so this description will be complicated. For the naive

user, however, the CDP can be easy to use; some of the CDP's

internal complexity even stems from the effort to ease the naive

user's way. Some key commands work as follows: "$Gn starts the

application microcode. Control-N returns the user's terminal to

the top level (just as it does with the MBB's UDDT). Control-X

halts whatever can be halted, and returns the user's terminal to

top level. •$p• proceeds from any interruption, undoing a

109

Report No. 4268 Bolt Beranek and Newman Inc.

previous control-N or control-X.

Whether interacting with the real or simulated MBB, the CDP

hides complexity from the user. A single command from the user

may cause several interactions between the CDP and the MBB,

including unobvious items such as echo control.

In studying the CDP's functioning, it is easier at first to

consider interactions with the real MBB only. Much of what we

say will apply also to the simulated MBB; later we will treat the

similarities and differences.

10.1 The CDP's Modes

The CDP has four modes or levels: command, loading,

application, and system. The first three modes correspond to the

controller of the MBB's terminal handler (Section 8.1). In

command mode, the CDP talks to the MBB's UDDT; the CDP translates

between the user's symbolic command language (described below)

and UDDT's command language (descried in Section 9). In loading

mode, the CDP talks to the MBB's loader in order to load a file.

In application mode, the CDP talks to the MBB's application

software; the CDP cooperates with the MBB's terminal handler to

pass characters directly between the user and the MBB's

application software. In system mode, as in command mode, the

CDP talks with UDDT; in this case, however, the CDP passes

110

Report No. 4268 Bolt Beranek and Newman Inc.

characters without interpretation between the user and UDDT. The

user may thus use directly the MBB's UDDT commands discussed in

Section 9.

We now describe the rather tricky rules for switching

between modes, summarized in Figure 10.1.

Certain events always cause the CDP to enter command mode.

On receiving notice from the MBB of an exceptional condition, the

CDP prints an appropriate message and enters command mode. As

discussed in Section 10.3, the MBB sends a character code for

each exceptional condition. The messages typed for each code are

as follows:

n
b
p
m
j

*
t

Power on
Button
Microcode parity error
Main memory error
Jumped to zero
Program aborted
Instruction trap

If the user at any time types five control-X characters in a row,

the CDP does a "panic" return to command level. This panic

return may leave things in a funny state. For example, if the

panic return skipped the step of turning off echoes from the MBB,

the CDP will be confused by unexpected incoming echoes.

At command level, ";L" tells the CDP to enter loading mode.

After the user specifies a file, the CDP uses UDDT commands to

111

Report No. 4268 Bolt Beranek and Newman Inc.

COMMAND

..... -
SYSTEM_

-- DONE

E(MBB)

,~

APPLICATION

Figure 10.1: The CDP's States
Picture 15

112

t R_.. -
--DONE

s
p L
E 0
CA
I
AD
L

Report No. 4268 Bolt Beranek and Newman Inc.

load a small bootstrap. When loaded, the bootstrap starts

running and loads in the real loader. The real loader

automatically starts running after being loaded. The CDP then

sends the file to the real loader. When done, the CDP sends the

loader an "end-of-file" block, causing the loader to release

control back to UDDT. The CDP then reenters command level to

accept further commands. During a load, control-X tells the CDP

to quit. The CDP immediately sends the MBB's loader an "end-of­

file" block, causing it to release control to UDDT, and the CDP

reenters to command level.

Most commonly, the CDP is in either command or application

mode. The CDP starts out in command mode. From command mode,

"$G" and "$P" enter application mode. (These commands also have

other effects described below.) In application mode, control-N

and control-X reenter command mode. CControl-X also has other

effects described below; control-N has no other effect.>

System mode is normally used only to debug the MBB's system

code. At command level, ";D" enters system mode. Actually,

system and application modes are not distinguished by the CDP.

In both modes, characters are passed transparently between the

user and the MBB; the only difference is in the MBB itself. We

say that the CDP is in "system" mode if it is talking with UDDT

while we say that the CDP is in "application" mode if it is

talking with the MBB's application software.

113

Report No. 4268 Bolt Beranek and Newman Inc.

If the CDP is in system mode and the user types "E", UDDT,

on receiving the character, will release control to the

application software; the CDP is now in application mode! Even

though a control-N, if received at -the MBB, would restore control

of the MBB's interface to UDDT, the CDP user cannot return to

system mode simply by typing control-N. Indeed, control-N is not

sent to the·MBB but intercept~d by the CDP as a command to return

to command mode. Following the control-N with ";D" will reenter

system mode.

In system and application modes, a special feature is

available by typing control-R. After the user specifies a file,

the CDP simply sends the raw file to the MBB. This feature

permits sending a "paper tape" file to the application software,

and it generally would be used only in application mode. After

the file has been sent, the user is still in system or

application mode.

10.2 The CDP's Command Mode

This section describes the commands available within the

command level, and also those which return to command level from

application mode. Many of these commands cause the CDP to

interact with the MBB's terminal handler. With some of the

commands, we will sketch this interaction. These sketches will

ignore subtle timing considerations, such as the need for the CDP

114

Report No. 4268 Bolt Beranek and Newman Inc.

to suppress MBB echoing or to wait for a response from the MBB.

10.2.1 Examining and Changing Locations

To examine and change locations is straightforward. Where n

is a number, "n U/", "n Ml", "n D/", and "n R/" examine location

n in microcode memory, Main memory, Dispatch memory, and the ALU

scratch registers respectively. (The CDP sends UDDT an "nU",

"nM", "nD", or "nR" command.) The CDP remembers a "current

address space", which is one of these four memories. Examining a

location in a given memory sets the current address space to that

memory. The command "; C" followed by "U", "M", "D", or "R" also

sets the current memory space. Typing "n/" examines location n

in the current space.

Terminating characters act as with many other DDTs. A

carriage return closes the current location; a line feed closes

the current one and opens the next; and an up-arrow closes the

current one and opens the previous one. A number, if entered

before the terminating characters, is stored as the new value in

the open location.

10.2.2 Symbols

Numbers need not be octal. The prevailing radix may be set

to any value m, 2<m<l6, by "m$R". Cm is interpreted as a decimal

115

Report No. 4268 Bolt Beranek and Newman Inc.

number.) Initially, 8 C0 octal 0) is used.

On startup, the CDP loads the MBB assembler's symbols; and

whenever the CDP loads a file into the MBB it retains that file's

symbols. (MBB binary files prepared by the assembler include a

symbol table.) In general, one may use symbols whenever one could

use numbers. One may even use well formed arithmetic

expressions; expressions are evaluated by some MBB assembler

routines invoked by the CDP.

Internally, the CDP represents the four memory spaces as

part of one huge space. Microcode starts at 30000000, main

memory at 50000000, dispatch at 60000000, and ALU scratch

registers at 70000000. Thus, location 5 in main memory is

represented as 30000005. If a symbol is used as a label, the

high order bits of the symbol's value are set according to the

address space. Since the CDP can thus associate address spaces

with symbols, the user can use an abbreviated format for

examining locations defined by labels. For example, to examine

the microcode at address label "start", one may type "start/";

this command both opens the proper microcode address and sets the

current address space to microcode memory.

The symbol "." has a value equal to the "current location".

The "current location" normally represents the last location

examined; however, after a 0 ;C 0 command, the current location's

high order bits are changed to reflect the new address space.

116

Report No. 4268 Bolt Beranek and Newman Inc.

Values of locations in microcode memory are typed out, and

read in, as microcode source statements. For example, changing

the statement at label "FOO" from "O->L3" to "l->L3" might

involve the typescript:

EQQL O->L3 l->Ll<~etu~n>

To enter an explicit constant, one can use the assembler

pseudo-op EXP (Section 11.4):

EOOL l->L3 exe l<~etu~n>

Various commands manipulate symbols. "=" asks the CDP to

express numerically the last value typed in or out1 "$=" asks the

CDP to express the last value typed in or out with a symbol if

possible. Here are some uses of "=":

2.0.0.0.l UI

2.0.0.0.0. UI

S.'.J:AB'.J: =

40->BASE

RO&MAR

30020455

= 36201400500

= 0

A microcode word of all zeroes is interpreted as the instruction

"RO&MAR". "START" is a label at microcode address 204551 the

high order 3 identifies the microcode memory space.

If "s" is a symbol, "s$K" half-kills "s" (suppresses its use

in type-out) and "s:" defines s as a label at the current

location.

117 '.

Report No. 4268 Bolt Beranek and Newman Inc.

The CDP assigns special meaning to the

the MBB's working registers (MAR, MBR,

symbols

etc.) •

designating

UDDT has no

command to examine these registersi however, their values are

saved in a block of ALU scratch registers when an exceptional

condition occurs. Typing "MAR/" will examine the associated ALU

scratch registeri similarly with "MBR/" and so on. Thus, a

snapshot of the micromachine's state at the last failure may be

examined easily.

10.2.3 Controlling MBB Program Execution

We now consider the commands to control the MBB's program

execution. Let e be an expression, and let n be the octal

representation of its value. "e$G" starts the application

software. When the user types "e$G", the CDP sends the MBB "nG".

The CDP then sends the MBB "E" to make UDDT release control of

the terminal interface to the application software. The CDP then

enters application mode, in which it passes characters

transparently between the user and the MBB; the user can then

talk with the application software.

Typing control-X halts the application software. The CDP

sends the MBB a control-N to regain the attention of UDDT, sends

"H" to halt the application software, and reenters command level.

(The CDP might already be in command level when control-X is

typed, since the user may have just typed control-N to return the

118

Report No. 4268 Bolt Beranek and Newman Inc.

CDP to command level. In that case, the CDP sends just "H" to

the MBB.)

Typing "$P" proceeds after control-X or control-N. If the

application software had been halted, the CDP wakes it up by

sending "G", sends "E", and reenters application mode. If the

user had not halted the application software, but merely returned

with control-N to command level, the CDP simply

application mode.

reenters

Command level has some editing characters: control-A or

control-H for character delete, and rubout for word delete.

";I" inputs a prepared file of commands.
";H" halts the CDP (returns to the monitor).

The CDP's miscellaneous error message is "XXX".

10.3 The Simulated MBB

Even while the CDP interacts with the real MBB, it keeps a

simulated MBB in the background. Files loaded into the real MBB

are also loaded into the simulator. If the user asks to examine

the lower 8K of microcode memory, the CDP fetches the value from

the simulator since this area cannot be read in the real MBB.

When the contents of any memory are changed, the new value is

entered into the simulator as well as the real MBB.

119

Report No. 4268 Bolt Beranek and Newman Inc.

The ";O" command brings the simulator out of the background.

The CDP enters a "simulator only" state, in which it

communicates with the simulator only and it activates the

simulator to execute microcode on command. A second ";O"

deactivates the simulator and restores communication to the real

MBB. More generally, each ";O" toggles the "simulation" state

between using the real MBB and using the simulator. (The CDP can

also be started up to always use the simulator only, by initially

telling the CDP not to open a connection to the real MBB.

Section 10.6 gives examples.)

The simulator provides debugging facilities not available on

the real MBB, such as breakpoints, single-step execution,

tracing, and the ability to examine the machine's complete

internal state. On the other hand, the simulator has some

disadvantages: it is slow, it does no I/0 except for one of the

terminal interfaces, and subtle timing considerations are

different.

The CDP talks with the simulator much the way it talks with

the real MBB. All of the modes and commands available with the

real MBB are also available with the simulator. Some of these

commands are implemented in the same way, by "sending" the same

DDT commands to the simulator. For example, "e$G" still causes

the CDP to send "nG" followed by "E" where n is the octal

representation of the value of e. (If the simulator is not

120

Report No. 4268 Bolt Beranek and Newman Inc.

already running, the CDP first starts the simulator at microcode

address O, yielding a "Jumped to zero" message.> Other commands,

from necessity or expediency, are implemented with short cuts by

poking directly into the simulator's memory. For example, ";L"

loads the simulator's memory directly from the file specified.

As one would expect, ";D" now lets the user talk directly

with the simulator's DDT.

Certain commands have slightly different meanings.

Control-X now halts the simulator completely, and "$P" resumes

simulator execution after control-X or a breakpoint. Since the

MBB's working registers (such as MAR) can now be examined

directly, the CDP no longer looks in an ALU register block for

the saved values. Control-R does not work with the simulator.

Breakpoints in the simulated MBB work as follows:

The command "y$B" sets a breakpoint at location y. Before

the instruction at y is executed, the CDP types "BPT@y", halts

execution, and returns to command level. If the command format

"x<y$B" is used, the value of location x is also typed out at the

breakpoint. If two escapes are used C"y$$B" or "x<y$$B"), the

breakpoint is automatically "proceeded" after the typeout occurs.

(The CDP neither halts execution nor returns to command level.)

To delete the breakpoint at y, type "y$D". Any of these commands

without arguments C"$B", "$$B", or "$D") delete all breakpoints.

121

Report No. 4268 Bolt Beranek and Newman Inc.

After a breakpoint has occurred, •$x• executes the next

microinstruction and •n$x• executes the next n microinstructions.

The instructions executed are printed out, and the CDP stays at

command level. •$p• resumes continuous execution and returns to

application level.

The simulator permits examining and modifying the state of

the microinterrupt system. Each microinterrupt level is known to

the simulator by a number in the range 1-63. Higher numbers

correspond to higher priorities. Those defined so far:

0 MAIN
1 software-controlled interrupt

61 terminal output
62 terminal input
63 100 microsecond clock interrupt

Level 0 (MAIN) is always set. The location MAXINT holds the

number of the highest interrupt request set. 0 $I• clears all

interrupts. 0 n$IS" and "n$IC" set and clear level n

respectively.

There are two trace flags, both initially off. The first

traces every instruction; the second traces only those

instructions with labels. The flags are toggled by ";T" and

";;T" respectively.

The simulator detects various violations of microprogramming

rules, such as disturbing the MAR or MBR during a main memory

operation or failing to load the MBR before a main memory store.

122

Report No. 4268 Bolt Beranek and Newman Inc.

The real MBB in such cases would not complain but would act

unpredictably.) Such errors halt execution and return to command

level. ";?" queries the CDP for a description of the last error.

11 n$M 11 sets the data word width. n must equal 16 or 20. If

a number, n is interpreted in decimal. Initially 20 is used.

This command chooses 16-bit or 20-bit populated data paths for

the simulated machine; the command is independent of the

simulator's using the data width mode flags in MISC. (Section

7.3 explains the data width choices.)

";R" resets all I/0 devices.

Table 10.1 shows special locations for examining the

simulated machine's internal state:

123

Report No. 4268

ALURES
AL UST
BASE
BASED EL
BUTTON

I OB US
IO STE
LITES
MAR
MAR OP
MAR TYPE
MAX INT
MBR
MIR
MISC
MISC2
MST ATE
PADD
RAMADDR
REG RES
REGS EL
SR CR ES
SYNERR
SYNSRC
TEMP
TIME
UADD
UIR
UPC

Table 10.1:

Bolt Beranek and Newman Inc.

ALU output

the delayed version of BASE
set to push the button (must be
explicitly cleared)

IO state counter

memory operation

current highest priority interrupt pending

state counter of memory system
physical memory address

data read from registers
absolute register number selected
contents of source bus
error syndrome bits
syndrome source

increments every microcycle <never cleared)
address of microinstruction in UIR
microinstruction being executed

The Simulated MBB's Internal Registers

Various illogical attempted uses of the simulator will yield

the CDP's general error message "XXX". One example is typing

";D", trying to talk with the simulator's DDT, if the simulator

is not running.

124

Report No. 4268 Bolt Beranek and Newman Inc.

10.4 Summary of Commands

Below is a list of the CDP's commands. Starred commands are

for the simulator only. n indicates an expression. Parentheses

indicate optional parts of commands.

<rubout>

I

<er>

<lf >

"

=

$=

SSS

* . ? I •

* ($)$B

;C

Aborts the current typein (echoes XXX).

Slash opens a location. Locations in lower BK
microcode memory are always opened in the
simulator. Other locations are opened in the
physical MBB if selected, but all changes are
made in the simulator as well.

Carriage return closes the currently open
location. If <er> is preceded by an expression,
the expression's value is stored in the location
being closed.

Line feed closes the currently open location and
moves to the next. As with <er>, a new value may
be entered into the location being closed.

Up-arrow closes the currently open location and
moves to the previous one. As with <er>, a new
value may be entered into the location being
closed.

Displays the last typed value as a number.

Displays the last typed value as a symbol if
possible.

Defines the label sss to have the value of the
current location.

Types a description of the last microprogramming
rule violation.

(see description of breakpoints)

Sets the current address space. (The user then
types u, M, D, or R for microcode memory, main
memory, Dispatch memory, or ALU scratch
registers, respectively.)

125

Report No. 4268 Bolt Beranek and Newman Inc.

* ($)$D (see description of breakpoints)

;D

n DI

E

"E

(n)$G

;H

; I

* $I

* n$IC

* n$IS

(n)$J

s$K

;L

* n$M

Enters 11 system 11 mode, in which the user talks
directly with the MBB's DDT.

Examines dispatch memory location n.

Transfers control of the MBB's terminal interface
from DDT to the application program. (This
command is used only after ;D, when in system
mode; the command is actually interpreted not by
the CDP but by the MBB.)

Control-E complements the MBB's full­
duplex/half-duplex echoing mode. The MBB
initially treats terminal as full-duplex. A
control-E is useful to prevent double echoing if
the physical terminal is really half-duplex.
(This command is used only in system or
application mode. The command is processed by
the MBB.)

Starts the application software and enters
application mode. The application software
probably interprets n as a starting macrocode
address. If n is not supplied, the CDP uses the
value from the last 11 $G" command.

Done, escape to monitor.

Accepts input from a file as if it were typed to
the CDP on the user's terminal.

Clears all interrupts

Clears interrupt level n.

Sets interrupt level n.

Jumps to microcode address n CO if no address
given) •

"Half-kills" symbol s. Then s is available for
typein but not typed out.

Loads binary files. Symbols and simulated memory
are always loaded; the physical MBB is loaded if
selected.

[n = 16 or 20] Sets data width to n.

126

Report No. 4268 Bolt Beranek and Newman Inc.

n M/ Examines main memory location n.

AN Control-N returns to command level. After
control-N, use $P to return to application mode
or control-X to halt.

;O Selects simulator-only state, if running with a
physical MBB. A second ;S will switch back to
the physical MBB.

$p

* ;R

* n;R

n$R

n R/

;S

* ;T

* ; ; T

n U/

A.x

* $X

* n$X

Proceeds after
control-N.

breakpoints,

Resets all I/0 devices

Resets I/0 device n.

control-X, or

Sets radix for typein and typeout to n.
number, n is interpreted in decimal.)

(If a

Examines ALU scratch register n.

reads in the symbols from an MBB source file

Toggles the full trace mode flag, to trace all
instructions executed (initially off).

Toggles the symbol trace mode flag, to trace
instructions whose locations have labels
(initially off).

Examines location n in the microcode address
space.

Control-X is handled at interrupt level by the
CDP. It puts the CDP at command level <stopping
any loading), halts the real MBB's application
software if running (when talking with the real
MBB), and halts the simulator if running.

Single steps (execute a single microinstruction).

Single steps n times.

127

Report No. 4268 Bolt Beranek and Newman Inc.

10.5 Current CDP Bugs and Confusion

1) When two symbol files are loaded, suppose symbol "s" is

redefined from value m to n. Symbol "s" still retains

the ghost of its old value. Though "s=" will produce n,

"m$=" will still produce "s".

2) When the CDP has unwittingly left the MBB in echo mode

(perhaps after a "panic" input of five control-X's), it

misinterprets echoes; for example, if "M" is echoed, the

CDP will believe that the MBB is signaling a main memory

error. Typing ";D" followed by "control-N" will correct

this.

3) If the MBB's application software puts the terminal

interface handler's routine "ttin.poll" in "transparent"

posture, the CDP will get no response to its control-N

when the user issues a control-N or control-X command.

(The program listing explains "transparent" posture in

discussing the terminal handler.) If the application

software improperly keeps "ttin.poll" in transparent

posture, push the MBB's button to recover.

4) Subtle timing considerations (such as the danger of the

MBB missing input while waiting for output) work

differently with the simulator than with the real MBB.

5) The simulator does not insert delay between the

128

Report No. 4268 Bolt Beranek and Newman Inc.

microcode's setting or clearing the software-controlled

interrupt and the value of INTS changing.

6) Although the following sequence will load paper tape

into the H316 emulator:

;DDT (MBB)
!lG
~
~S~RPaper Tape Input file:

the following will not:

l~G
~RPaper Tape Input File;

Further, tape loading with control-R does not work with

the simulator.

10.6 Invoking the CDP

To use the CDP and connect to an MBB, one must be a NETWIZ.

Anyone can use the CDP in simulator-only mode. When you connect

to the MBB, CPD asks for your name. If someone else then tries

to connect to that MBB, they are informed by CDP that the machine

is in use and who is using it.

Below are two typescripts of CDP use on system BBN-A. The

first example uses the simulator only; the second uses the real

MBB. File "<mbb>mbbimp.mbn" is a program file with microcode for

both the system and the H316 IMP application. The file "ddt.mbn"

129

Report No. 4268 Bolt Beranek and Newman Inc.

is an H316 stand-alone DDT routine which starts at 20000. In

both examples, the last line shows communication with the

application software (with the macrocode). The "Jumped to zero"

message in the first example comes from the CDP initially

starting the simulator.

@<mbb>mbbsys.EXE.27
Open connection to MBB? CY/N) n
MBB Symbolic DDT
1loader MBB Input File: <mbb>mbbimp.MBN.l [Old Generation]
Done.
;loader -- MBB Input File: <mbb>ddT.MBN.l [Old Generation]
Done.
20000$g
Jumped to zero
1/ 10057

@<mbb>mbbsys.EXE.27
Open connection to MBB? (Y/N) y
MLC# 3 Port# 71
Your name please: phil in office Cxl234)
Assigned to TTY161
MBB Symbolic DDT
1loader -- MBB Input File: <mbb>mbbiMP.MBN.l [Old Generation]
Translating file •••
Loading boot routine •••
Loading loader •••
Starting load ••• Done.
1loader -- MBB Input File: <mbb>ddT.MBN.l [Old Generation]
Translating file •••
Loading boot routine •••
Loading loader •••
Starting load ••• Done.
20000$g
1/ 10057

130

Report No. 4268 Bolt Beranek and Newman Inc.

11 THE MBB ASSEMBLER

MBB microcode and data are assembled by a two-pass assembler

which runs on TENEX and TOPS-20. The assembler can be called by

"<mbb>mbbasm.exe". A single source file is accepted as input by

the assembler, and a binary file, an error file, and a listing

file may be produced.

When processing instructions to go in the microcode address

space, the assembler expects to see a microcode instruction; when

processing an instruction to be in any other address space, the

assembler expects to see an arithmetic expression. These

expectations can be changed somewhat, as discussed later, by

parentheses, square brackets, and the EXP pseudo-op.

After some preliminary matters, we will discuss in detail

microcode instructions and pseudo-ops.

11.1 Format Considerations

Letters are converted to upper case on input. Spaces and

tabs are ignored. A semicolon starts a comment, causing the rest

of the line to be ignored.

Symbols are distinguished by their first ten characters. In

symbols, legal characters are letters, ".", "'", and "@". Labels

are distinguished by their first six characters, and may not have

131

Report No. 4268 Bolt Beranek and Newman Inc.

more than ten characters.

If a source line has over 80 characters, the line is ignored

and a warning is printed in the error file.

A source line is either a symbol definition (using "=" or

"==",or using":", or "::"to define labels), an instruction, or

a pseudo-op. (Instructions may start with one or more labels.>

Symbols may be defined by "=" or "==":

A = 3

A -- 3

With "--" -- ' the symbol is "half-killed". Half-killed symbols are

not used in typeout by the CDP (Section 10.2.2). Similarly, a

label defined with "::" instead of ":" is half-killed.

11.2 Numbers and Expressions

The RADIX pseudo-op sets the prevailing radix (the default

is octal).

Numbers and symbols may be composed into expressions using

the following operators:

= * & (AND) 1 (!OR) ? (XOR) _(shift left) (NOT)

All are binary operators, except for the unary operator

132

Report No. 4268 Bolt Beranek and Newman Inc.

(bitwise complement) and (minus or negative), which can be

binary or unary. The unary operators are right associative, and

are evaluated before binary operators. Thus -7 = C-7) = 6 and

7+1 = C-8)+1 = -7. Binary operators are left associative.

Thus, 2*3+4 = 6+4 = 10 and 2+3*4 = 5*4 = 20.

Within an expression, square brackets enclose material to be

evaluated as a microcode instruction.

11.3 Microcode Instructions

Generally, microcode instructions take the form:

[IF[NOT] <cond>1 <reg> <op> <source> -> <reg>, <dest> [LS]

Most of the fields may be omitted under the proper circumstances.

The register and source fields on the left side of the arrow may

be interchanged, as may the register and destination fields on

the right. Excess spaces and tabs are ignored. A label may

precede an instruction, followed by l or 2 columns. A semicolon

starts a comment; the rest of the line is ignored. Further

details on the fields of instruction are given in the ensuing

sections; the instruction syntax is defined formally in Section

11.5. Here are some examples:

133

Report No. 4268 Bolt Beranek and Newman Inc.

L0&7 -> LO
7&LO -> LO, MBR
7-LO -> LO
Rl7+3 -> TEMP, Rl7
Rl7+3 -> Rl7, TEMP
IF ZERO GS -> MAR(R)
IFNOT ZERO GS -> MAR(RIO)
MAR(SL)
DISP(3) -> UPC
GO&lOO LS

LABEL: 1 -> GO
LABEL:: 77000 -> GO

20S40 -> UPC
GO& (1!2) -> GO
NOT TEMP -> GO :COMMENT

Spaces and tabs are ignored. A semicolon starts a comment:

the rest of the line is ignored.

11.3.1 Sources and Destinations

The ALU sources and operation appear to the left of the

arrow: the places to write the ALU's output appear to the right.

The two ALU inputs (the source and the scratch pad register) , if

both specified, may be given in either order. Similarly, if two

places to write the ALU result are specified (a destination and a

scratch register), they may be given in either order.

The source and destination mnemonics are given in Section 6.

134

Report No. 4268 Bolt Beranek and Newman Inc.

11.3.2 Constants

Any permitted constant value is assembled properly as a

source; illegal constants are flagged. Even though the code may

be designed to run in 16-bit data width mode, constants are

assembled for 20 bits. Thus, 177776 is an illegal constant; -2

however is legal, producing 3777776, which is functionally

equivalent in 16-bit mode.

11.3.3 ALU Registers and Operations

The symbols LO through L15 indicate "local" scratch register

addresses 0 through 15 mapped by BASE; GO through G15 indicate

addresses O through 13 unmapped; MIRRA and MIRRB indicate address

selection by an MIR daughterboard field mapped by BASE. (In

general. Rn specifies value n for the microinstruction's five-bit

Register field. If the source statement specifies no scratch

register, the assembler uses a value of O.)

The ALU operations are:

+ ADD
SUBTRACT (register minus source bus)

& AND
I INCLUSIVE OR
? EXCLUSIVE OR
NOT COMPLEMENT source bus

PASS source bus

135

Report No. 4268 Bolt Beranek and Newman Inc.

If the scratch register input to the ALU (The ALU's "A" input) is

missing in the source statement, and the NOT operator is not

present Ce .g., "MBR->TEMP") , a PASS operation is assembled. If

the source bus input is missing <e.g., "RO->MAR"), the assembler

assembles an ADD operation with a constant of 0 to drive the

source bus. If the source statement contains no arrow Ce.g.,

Sl6MBR LS), no destination for the ALU result is specified; the

MBB will still perform the indicated operation, latching the ALU

status if desired.

Within a microcode instruction, operators are normally

interpreted as ALU operations; inside parentheses, however,

operators are interpreted as forming arithmetic expressions.

Thus, "Cl+2)->MAR" passes the constant 3 to the MAR but "1+2-

>MAR" is illegal since it specifies an ALU operation between two

constants (instead of, for example, between a constant and a

scratch register).

11.3.4 Conditional Execution

A conditional execution is indicated by preceding the body

of the statement with IF or IFNOT followed by one of these

conditions:

136

Report No. 4268 Bolt Beranek and Newman Inc.

TRUE
ZERO
NEG
ODD
MARCOND
INTP

MODEFO

(always true)
ALU status register has the "zero" bit on
ALU status register has the "negative" bit on
ALU status register has the "odd" bit on
MAR condition (from the MARDB)
an interrupt other than the software-controlled
interrupt has been requested
mode flag O Cin MISC) is on

If no condition is specified, "IF TRUE" is assembled.

11.3.5 Other Special Cases

Certain sources and destinations take qualification codes

enclosed in parentheses. When referenced as a destination, the

MAR optionally takes codes:

R read "macro"
RIO read I/0
RP read "physical"
w write "macro"
WIO write I/O
WP write "physical"

{These symbolic codes have values equal to the value to put in

the microinstruction's Transfer field.) When referenced as a

source, the MAR optionally takes codes:

SR shift right
SL shift left

(These symbolic codes have values equal to the value to put in

the microinstruction's Constant field.)

137

Report No. 4268 Bolt Beranek and Newman Inc.

When referenced as a source, Dispatch Memory takes an 8-bit

qualifying code (between 0 and 255) to be interpreted by the

application-dependent MIR daughterboard. (This code specifies

the value for the microinstruction's Constant field.)

A "LS" at the statement's end indicates latching the ALU

status.

Further information on source statement format, such as

restrictions on the constants and the dispatch source, can be

found in Section 2.7.

11.4 Pseudo-Ops and Address Spaces

Below are the pseudo-ops, with their formats and use. The

"pointer" referred to below is the next location to be assembled:

it is represented in the assembler by the symbol II II
• •

EXP e Assemble the value of expression e in the next

location. (Do not interpret e as an instruction.)

DISPATCH n Set the pointer to Dispatch address n.

END Ignore all succeeding input.

INCLUDE "F" Textually insert source file F after the line with

the include.

[NO]LIST Disable or enable the listing output.

138

Report No. 426 8 Bolt Beranek and Newman Inc.

MAINM n Set the pointer to main memory address n.

REGS n Set the pointer to ALU register address n.

UPROM n Start assembling at microcode address n.

URAM n Set the pointer to microcode address n!20000. (20000

is the start of RAM.)

When assembling for the microcode address space, the

assembler interprets source lines as microcode instructions.

Thus,

0

is interpreted as

0 ->

To assemble the explicit constant "O", write

EXP 0

(The instruction "O ->" functions as a no-op. In fact, the

assembler symbol "NOP" is defined as O. Thus, in the microcode

address space, the source statements "O" and "NOP" both assemble

as no-ops. (The explicit constant 1 ("EXP l") also functions as

a no-op; "EXP O" has the wrong parity.)

In other address spaces, the assembler interprets source

lines as expressions rather than microcode instructions. To have

text interpreted as a microcode instruction, enclose it in square

brackets. Square brackets could be used to store a
'

139

Report No. 4268 Bolt Beranek and Newman Inc.

microinstruction in main memory. Thus,

MAINM 0
([3->MAR]_-20) & 177777
(3->MAR] & 177777

would store the microcode instruction "3->MAR" in main memory

locations 0 and 1 (16 bits in each.)

11.5 The Parser

Table 11.1 gives the assembler's parser.

140

Report No. 4268

L <- Ll EOL

Ll<- <sym> = E
<- <label>: L2
<- L2

L2<- <keyword> <args>

Bolt Beranek and Newman Inc.

<- I ;legal only in microcode address space
<- E ;not legal in microcode address space
<-

I <- IFP SRC -> DEST FLG
<- IFP SRC FLG

IFP<- IF <cond>
<- IFNOT <cond>
<-

SRC<- s ! R ! S <ALU op> R R <op> s NOT S

R <- <reg. spec.>

S <- <source spec> ! <source spec> {E) T

DEST<- D ! R ! D,R ! R,D ! --

D <- <dest. spec.> ! <dest spec>{E)

FLG<- -- I <flag spec> FLG

E <- T
<- T { <binary op> T } •••

T <- <unary op> T
<- (E)
<- [I]

<- <symbol>
<- N
<- •

<- <number>

Table 11.1 Assembler Grammer

141

Report No. 4268 Bolt Beranek and Newman Inc.

11.6 Invoking the Assembler; Files Generated; Loading

Here is a sample typescript on system D:

@<mbb>mbbasm.EXE.5
Source file: foo.MIC.l [Old Generation]
Binary file: FOO.MBN.l [New file]
Error file: TTY:FOO Cconf irmJ
Listing file: FOO.LST.l [New file]
Pass 1
Pass 2
@

As shown, the error file indicates the start of the two

passes. Any errors are noted in the file as they are discovered.

Some errors are noted on both passes, and some only on Pass 2.

The default names for the binary and listing files are used

by typing escape after the prompt. Typing an escape for the

error file causes the output to default to the user terminal. To

send the errors to a disk file, the filename must be proceeded by

'DSK:'.

The listing file contains all source lines shifted right.

If a line contains an instruction, the octal address is given the

left, with high order bits indicating the memory space according

to this code:

300000000
500000000
600000000
700000000

microcode memory
main memory
Dispatch memory
ALU scratch pad registers

142

Report No. 4268 Bolt Beranek and Newman Inc.

The location contents are not given in the listing file.

The binary file contains the assembled addresses and values,

with a symbol table at the end for use by the CDP.

The CDP can load a binary file into the MBB. All address

spaces may be loaded, with a few caveats. First, the lower 8K of

microcode cannot be loaded, since the MBB has no loading path for

it. The CDP does not try to load these addresses into the real

MBB, though it loads them into the simulated MBB. Second, if the

binary file specifies loading any ALU scratch registers used by

the MBB system code, problems will occur. Third, as mentioned in

Chapter 8, the loadable system microcode must be loaded before

Dispatch memory, can be accessed.

143

