14Dec68 ~ 10-1-0

10. ARITHMETIC PROCESSOR PAGING

10.1 Introduction

BBN 1s designing an interface between the KA-10 arithmetic
processor and core memory which we call the Pager. This

- device receives from the APR over a standard memory buss
execute, read, write, and read-modify-write requests. It

then maps the incoming virtual address into an appropriate
real core address (provided the request is legal) and passes
the request to the memory modules over another standard memory
buss. The mapping requires about 150 nsec.

The paging hardware peprforms the following functions;

(1) Independently maps each 512-word block (or page)
of the 262,1l4l-word virtual address space into an
absolute core location, or, if the block 1is not

. currently in core, traps to a core managing
program. .

(2) Provides independent protection for each 512-word
page in the read, write, and execute modes.

(3) Records statistics in a Core Status Table which
are useful to the core management program.

The principal advantage of paging over the current dual-
protect-and-relocate scheme incorporated in the KA-10 is

that each process is provided with a large, constant
262,1484-word virtual machine, yet requires only those pages
which are referenced during an interaction to be in core.
This can significantly reduce the core memory requirements of
running programs.

10.2 Mapping

It 1s presently impractical to keep mapping information for
all 512 pages of a virtual address space in hardware because
of the quantity of hardware required. For this reason, a
limited number (16 originally, expandable to 32) of asso-
clative hardware registers are employed and the mapping
information 1s kept in 512-word Page Tables in core memory.
The manner in which virtual addresses are mapped into real
addresses i1s shown in Figure 10-1,

Whenever a page not mapped by the assoclative registers is
referenced, the pager initiates a loading sequence (requiring
about three memory cycles) during which the appropriate page
table entry is referenced and an assoclative register loaded
with the required mapping information. Associative registers
are reloaded in a round-robin fashion. We hold the theory
that a program's memory references will be sufficiently
"collected" that 16 mapping registers are enough to prevent
too frequent reloading.

11Decé68 10-2-0

From Processor Inside Pager To Memory (When
- a match is found)
Priority Interrupﬁ}_*iThese three levels :
Cycle are used when a
trap condition
KeyEgggiie(ﬁgen arises, but not in
Deposit switch the association
1s pushed on t process itself,
computer
console)
Indirect Address) i
Fetch
Read Level (R) These levels are
+
Write Level (W) | tested against the —>Read Level (R+E)

permission bits in—— [—»Write Level (W)
Execute Level (E)— each Associative_ '
N Register (e.g., R+RP).
Monitor Mode

4 These levels are tested

9 Highest Bits of] for equivalence with 1 Highest Bits
18 Bit Addresg the corresponding bits | of Absolute
in each Associative Address
Register.
9 Lowest Bits of 9 Lowest Bits
18 Bit Address o of Absolute
’ Address
Self-loading

from page table
entry when no
match is found

Virtual Page
Number--9 Bits

Absolute Page Numben
11 Bits

)
-
'—l
[)

Lxecute Permission (EP)
Write Permission (WP)
Read Permission (RP)
yonitor Mode

Figure 10-1
Mapping From Virtual to Absolute Addresses

11Dec68 | 10-3-0

As shown in Figure 10-2, which page table 1s referenced
during the loading sequence depends upon the memory request.
There 18 one page table for user mode requests and three
possible partial page tables for monitor mode requests. The
"locations of the monitor mode page tables are as follows:

First APR's Map 31008 to 31778

Second APR's Map 30008 to 30778 Absolute locations

Common Map 32008 to 3677

Private Map 7098 to '7778 of the Process State Page
The locations of the user mode page table and of the process
state page are loaded into the pager when processes are
switched, as described later.

10.3 Switching Processes

The IOB reset pulse generated by CONO APR,2¢@@@g@ causes the
pager to clear itself. Thereafter, the pager may be

switched from one process to another by first storing an
approprilate word in location 71, and then executing CONO 24,
xxx. The pager does not interpget any of the effective
address bits of the CONO and will not respond to any other I/0
instructions (except IOB reset). When CONO 24, xxx is
received, the pager will complete the page number dump for the
old process (described later), clear itself, and reload its
base registers from 718. This is shown in Figure 10-3.

11Dec68 10-4-0

User Mode Monitor Mode

205

‘ 16 KA\ Although processed 32 K Unmapped area

16 K may operate in
environments as
| 16 K large as 256 K,
16 K the Upper Bound
—— | Register may be
_}f_ﬁ__ set to exclude
16 K all memory reger~“
— | ences above 16,
| 16 K] 32, 48, 64, 80,
96, or 112 K,
Processes not requiring
a large virtual address
Space may achieve economy
by using the Upper Bound
Register and merging the
User Mode page table inta
the top of the State .
. The number o
overhead pages required
is then reduced from two

Absolute addresses

Mapped individually
per Processor

Mapped commonly
for all processes
and all processors,
Non-resident in-
formation in the
Exec and Monitor
is referenced via
this map. The map
itself is in the
unmapped core area.,
between 32008 and
5?008. 4

to one. 32 x_ Mapped privately
T?T??f° : T per process

————

Figure 10-2
Mapping of Virtual Addresses

11Dec68

10=5=-0

CONO 24, xxx causes the Pager to reload its main registers

as follows:

1. Read absolute location 718, interpreted as below.

XX 3

11 bits

1|5 Bits 11 Bits

T

Y

Y
DB (Dump Bit)

DP (Dump Pointer)
The Tocation (MBR)-640.+(DP) *
is where the next four-byte

Associative Register dump will go.

MBR (Monitor Base Register)
Lopation of the Process
State Page.

Enables the dumping feature

UBR (User Mode Base Register)
The location of the User Mode

page table.

UPR (UPper Bound Register) 000
Limits legal virtual addresses 001

No restriction
112K restriction

to the first 16K, 32K, 48K, 64K] 010 = 96K restriction
80K, 96K, or 112K. 011 = 80K restriction
100 = 64K restriction
101 = 48K restriction
110 = 3§K restriction
111 = 16K triction
2. Read location (MBR)'GMOB. restr 'o
9 Bits 9 Bits |x 17 Bits

PUR (Process Use Register)

AGER (AGE Register)

—

Figure 10-3
Initializing the Pager For a New Process

11Dec68

10-6-0

10.4 The Self-Loading Sequence

When a memory request is not mapped by an assoclative
‘register, the pager enters its self-loading sequence. This
¢onsists of the following steps.

(1)
(2)

(3)

(b)
(5)

(6)

Reading an appropriate page table entry

Checking read, write, and execute pro- P> Figure 10-4
tection bits for access violation.

Checking the directed trap bits for
trap conditions.

Tracking down shared and indirect

pointers to determine the absolute Figure 10-5
address of the page and trapping if

the page 18 not in core.

Modifying the Core Status Table entry

corresponding to the core address of Figure 10-6
the page and trapping if the page field

1s less than 208.

Dumping the last three and the current nine-bit
virtual page numbers every fourth time a
user-mode page 1s loaded into an assoclative
register (only when the dumping feature is
enabled). These four nine-bit bytes are stored
in the Process State Page at location 640, +
contents of the dump counter register. THe
dump counter is a 28-position counter that
assumes values between 4 and 37,4, so that the
dump is actually into the regiog 6&“8 to 6778.
ke ds
Dumping a record of the last 112 user-mode
pages loaded into the associative registers
(not necessarily all different pages, however,
because the mger may reload the same page
several times). By means of this record the
working set of a process may be swapped in
quickly following rescheduling.

11Dec68 10-7-0

Address Control Field--Determines the format of the 22 bit
address field

Read .

Write

V d to
Execute Access Permitte page

* Hybrid or Display Processor
l Directed traps and loading information

~— ~ — N
0} o (Address of this page--22 bits
by ‘—vfl
: ¥This bit not currently assigned
, Access trap bit

l=trap after loading A.R.
1 and 00= don't trap-

Trap to Monitor--{10=trap immediately
0
1

Copy trap bit
Trap to User bit
PPut in SPT (1f indirect) or put on drum (if private)
fLoad adjacent pages when loading this one

1l ¢ Shared Page Number Unused
13 bits 9 bits

'.
0 Aictive Flle Number | Page Number
13 bits 9 bits
l
1 Master File Number Papge Number
18 bits 9 bits

This last pointer format should not be encountered
by the paging hardware; it is used only on inactive
files., The Monitor converts entries of this type
to shared or indirect pointers when the file is
activated.,

Figure ' - 10-4
Format of Page Table Entries
I. Private pointers
IT, Shared pointers
ITII. Indirect pointers
IV, Indirect file pointers

* These.bita are ignored by the pager.

10-8-0

11Dec68

93vd 93BATJd

ad3ed paJdeys

aJempdeH Buided ayjy 4A4g.
Suyddey 308aFTpul puk “padasys ‘93BATJI]

G-0T 9InST4

.wooo.om 09 dn Jo yga3usar ® Sj3twasad saempary ayy
80000z uoT3®20T 3® ST arqEl Jajutod pPadeys JO UTITJIO

$S3JpPE WnJp ® 3Jd® $3TQqQ 02 3sow-3y3Ty = [0
SS3Jppe 3J0D B 3Je §3F7Qq [T 3Sow-3y3ty = 00
SE3JppPE OSTP ®B aJd® §3TQq T2 3SOW-qU3TY = XT

IJIJ

93ed 39a8Jfpurl

BJ] B §95NEBO 309d
—=TPUTl Jaayjoue 3nq
faajutod paJaeys
® 8Q pPINOd STY3
‘ATSATIBUIBRTY)

§S3JppYy

A

91q®e]
aded 309Ja7puJ

~—
'
1]
PI®Td SS3J4ppV 31d-2¢
a1qe], 33ed
a1qQ®l SPOW J98)
Jd93uTod paJdeys
8S2JpDY ' M NdS M 0T
ds| ; "
SS3Jppy ‘L°d .HI«H Nd - NSV : 10
m e 4

11Decé68 ‘ 10-9-0

40008

CORE STATUS
TABLE

Absolute \v/\dﬁ\/ﬁ\/N\/
Page No.

b A
)
/ N
/ N
/ ~N
/ N
10000, <
/ N
/ Core Status Table Entry _
7
0 8 9 17 18 19 35\
9 Bits 9 Bits 17 Bits]
|| v tl“ ModiFication '
0 8:9 17\ 19 35
9 Bits 9 Bits 17 Bits]
AGER PUR |

1. Bits @-8 of AGER replace Bits @#-8 of CST entry.

2. Bits 9-17 and 19-35 are "ORed" into Bits 9-17 and 19-35
of CST entry.

3. Write request level is "ORed" into Bit 18 of the CST
~entry (if the write is permitted)

L]

Figure 10-6

Pager References to the Core Status Table

11Dec68 10-10-0

If no trap condition occurs during self-loading, an
assoclative register 1s loaded with therequired mapping
information and the pager proceeds. Note, however, that the
write permission bit in an associative register 1s set only
‘when both the modification bit in the Core Status Table and
the write permit bit in the page table entry are set.

10.5 Pager Traps

A paging trap will occur whenever one of the following
events happens:

1. The trap bits.in the process page table force a
trap.

2. The addressed page (or indirecting page table)
is not in core.

3. An illegal condition 1s detected.

4, The Core Status Table entry for an addressed
page contains an age less than 20, (meaning that
the core manager 1is controlling tge page).

When one of the above conditions happens, the pager first
stores the cause and location of the trap into the Process .
State Page at location 642,. The format of this word is
shown 1n Figure 10-7. Theg, if the APR operation 1n progress
was a write, it stores the data into location 643, of the
state page. Finally, it forces the APR to executé absolute

location 704. Location@;708 should contain a JSYS instruc-
tion to a t@ap routine.

The arrangement of the Trap Cause field was chosen so that
decoding of the cause could be easily accomplished by the
JFFO instruction.

To restart a process which was terminated by a pager trap,
the following information 1s of value:

1. The program counter (PC) saved by the JSYS in
location 708 i1s correct. ,

2. If the read or execute bits in 642, of the state page
are set, restart is completed by pgrrorming a JRSTF -
to the first location of the trap routine. ‘

3. If the read bit 18 not set but the write bit 1s set
in 642,, the data iﬁ_€h38 must be written into the
effect§ve address of 6“28 before returning control
to the process via JRSTF.

11Decb8 10-11-0

A sample program to restart a process which was terminated
by a paging trap is given below:

CONO 24,0 ; LOAD PAGER WITH NEW BASE REGISTERS
; UPPER BOUND REGISTER, AND DUMP REGISTER
MOVE 1,777642 ;GET TRAP STATUS WORD
TLNE 1,12 ;SKIP IF NEITHER READ NOR EXECUTE BITS SE
JRST BEGIN
MOVE 777643 ;GET DATA WORD
TLNE 1,1 ;SKIP IF USER MODE
JRST MONWR
UMOVEM (1) ;COMPLETE USER MODE WRITE
BEGIN: HRLZI 17,777620 . ;RESTORE AC'S FOR THE PROCESS
BLT 17,17 - - .
JRSTF@T776M41 ;RESUME PROCESS (JSYS IN LOCATION 704
;SAVES THE FLAGS AND PC IN 777641).
MONWR: MOVEM (1) ;COMPLETE MONITOR MODE WRITE
JRST BEGIN

In Figure 10-7 the function of the PI cycle, Key Cycle nd
Indirect Address Sequence b1t§*mg1_ngﬁ_gg_glganyffﬁ‘ﬁggfgg —
(trap should not occur during a PI cycle, 1f the time-sharing
software 1s coded properly since it 1is impossible to recover
from such a trap. The function of this bit is to notify the
software that a disaster has occurred so that crash recovery
may be attempted. Key Cycle traps will not occur very often
under tlme-sharing, but we would like to be able to handle
them since someone may wish to examine or deposit into th
\ non-resident portion of the Monitor's address space./ The
ndirect address sequeé DIt 1s used to distinguish data
reads of non-existent memory from indirect addressing reads
of non-existent memory. 1In the former case, the software may
wish to create new memory and proceed, but in the latter case,
a programming error has been made.

10.6 Core Management Philosophy

Core management for processes with large virtual address
spaces can prove to be a significant problem. To minimize
difficulties we have designed into the Pager several features
(Figure 10-6). :

(1) Recording modification
Because a write request will set the modified bit
in the Core Status Table, core-to-drum swaps need
be performed only for pages yith this bit set.

11Dec68 10-12-0

TRAP STATUS WORD

0 10 ,

11 Bits 11 18 Bits
Trap Cause Effective éédress of paging
(See Below) trap

MM (Monitor Mode)
VE (Execute request)
&W (Write request)
¢R (Read request)

‘; (Indirect address sequence 1n progress)

vPI (Priority Interrupt cycle in progress)

KEY (KEY cycle in progress--console Examine
or Deposit switch pushed)

Interpretation of the Trap Cause Field:

w
e
[R

Copy Trap (Bit 9 set in Page Table entry

User Trap (Bit 8 set in Page Table entry)

Immediate Monitor Trap (Bits 9-10=10 in Page Table entry)
Illegal Read (Bit 2=0 in page table and read request)
Illegal Write (Bit 3=0 in page table and write request)
Illegal Execute (Bit U=0 in page table and execute request
Access Bit not set (Bit 12=0 in page table entry)

Upper Bound Register Exceeded

Memory request not serviced:within 70 usec

O O~IN\N W

& 3 Shared
& 4 Page Tabl
& 5 Excessive (Double indirecting is not permitted)
& 10 Illegal

Private

Shared} Not in core

On Replacement Queue (Bits @-6=@ in Core Status entry)
Drum Write Requested (Bits @-6=1 in Core Status entry)
Not yet in core (but swap-in requested)

(Bits @g-6=2 in Core Status entry)
Blocked by core manager (Bits @-6=3 in Core Status entry)
Monitor after-loading trap (Bits 9-1@g=g1 in page table entry)
Parity error
Illegal pointer format (Bits g-i=11 in page table entry)

1 Indirect & 2 Private
Not in core

m\O o~ oW

sy

Figure 10-7

Trap Status Word Format

11Dec68 10-13=0

(2) Identifying Processes using a page
By loading the process use register (PUR) with a
bit identified with the current process the Core
Status Table entry for each page will contain a
record of the processes which have used each page,
the core management program can then discriminate
pages in use by active processes from those which
were used by processes now inactive.

(3) Marking time-of-last-reference
When a large process 1s compute bound, its "working
set" will frequently change with time. By
periodically incrementing the age register, the
core manager can look at the Core Status Table and
distinguish recently referenced pages from ones
not referenced for a long time. The latter are
likely to be outside current working sets and are
good candidates for replacement by new pages.

(4) Recording the working set of a process
By examining the nine-bit page numbers dumped by
the pager into the region 6&“8 to 6774, the core
manager can make awgbod guess about the current
working set of the process. If the process was
rescheduled and swéﬁ%ed out of core, it may be
reasonable to preload these pages into core before

next scheduling the process.

(5) Provide for dual-processor operation
Because one APR may be computing for a process,
while the other APR 1s tampering with the Core
Status Table, we have included a speclal check in
the paging hardware for ages less than 20,. When
the software 1s about to examine some entgy in the
Core Status Table, it may EXCH a word with the
left-most five bits = @ for the Core Status Table
entry. This will prevent the other APR from
inadvertently loading this page during the
examination. ~

7 June 70 BBN PROPRIETARY 10-1-4

10, ARITHMETIC PROCESSOR PAGING

10,1 Introduction

BBN has implemented a device called the BBN Pager which is
connected between the KAlfg (PDP-1f arithmetlic processor)
and the KAlf's memory port. In conjunction with a set of
hardware modifications to the KAl1g, the BBN Pager changes
the core memory mapping mechanism such that core memory

is allocated and protected in 512 word pages. The address
space of the machine is mapped for EXEC mode as well as
USER mode with the BBN Pager. The paging mechanism can be
bypassed by executing a specific CONO to the pager or by
executing (or depressing) IOB reset to invoke a so called
"transparent mode" for the running of the standard DEC
monitors or diagnostic software.

10.2 The Associative Mapping Process

When mapping is enabled in the pager, the 9 high order
virtual address bits, state of the EXEC/USER mode flip
flop, and type of request (read, write, execute) from the
KAlQ are compared and tested with the contents of 1 to 54
(depends on pager configuration) associative registers.
This comparison is performed on all associative registers
simultaneously. If a match is found, the particular as-
sociative register containing the match also contains

11 bits which become the high order 11 bits of the real
core address (hereafter abbreviated as R.C.A.).*¥ The use
of 11 R.C.A. high order bits permits the KAlf

to reference up to 1024K* words of memory. In this simple
case, the coverall delay directly attributed to the pager
is about 100 nanoseconds plus cable delay. The simple case
is represented by Figure 10-1.

*K=1024 words
*% A glossary of terms is presented at the end of this section

7 June 70

From KAlQ

BBN PROPRIETARY

Inside BBN Pager

Priority Interi};
rupt Cycle

Key Cycle (When
Examine or
Deposit Switch
Is pushed on
computer
console)

Indirect Addres$%
Fetch

Read Level(R)—l

Write Level(W) —l

Execute Level(E)
EXEC/USER Mode

iy

9 Highest Bit

These three levels are
used when a trap con-
dition arises, but not
in the association
process 1tself.

These levels are
tested against the
permission bits in
each Associative
Register

These levels are tested
for equivalence with the
corresponding bits in
each Associlative Register.

10-2-4

To Memory (When

a match is found)

—> Read Level(R+E)
—> Write Level(W)

11 Highest Bits
of Absolute
Address

G Lowest Bits

of 18 Bit
Address

9 Lowest Bité\
of 18 Bit
Address _J

Bits in Assoclative Registers

> of Absolute -
Address

Virtual Page
Number--9 Bits

Absolute Page

11 Bits

Number

Execute Permission (EP)
Write Permission (WP)

Read Permission (RP)

USER Mode (g for EXEC Mode)

Figure 10-1

Mapping From Virtual to Absolute Addresses
(Simplest Case, Match Found in Associative Register)

7 June 70 BBN PROPRIETARY 10-3-4

10.3 USER Mode Mapping when the Association Fails

When a match is not found in an associative register (hereafter
abbreviated as A.R.), the pager begins a self-loading sequence
which basically involves the loading of an A.R. from infor-
mation found in one or more tables in core memory. The
particular A.R. to get self-loaded is determined in a very
simple cyclic fashion. That is, i1f the last A.R. loaded was
A.R. 5, the next to be loaded will be A.R. 6(if it exists;
if not, the next existing A.R. in the cyclic sequence 1s used)
.cew The average pager is configured with 16 A.R.'s which
means that 1f the program confines most of its references to
an 8K or less working set, self-loading will be invoked
infrequently.

The first stage of the self-loading sequence involves reading
some information from a table 1n core memory called the page
table (hereafter abbreviated as P.T.). This table is 512
words long and is itself a page which may be anywhere in core
memory. The origin of the P.T. is specified by the contents
of a register in the pager called the User Mode Base Register
(hereafter abbreviated as U.B.R.). The 11 bits of the U.B.R.
are used as the 11 high order address bits and are concaten-
ated with the original 9 high order address bits (on which the

association failed) to reference the appropriate word in the
P.T.

The word which is read from the page table is of one of four
types as determined by bits # and 1 of the word. These types
are:

@@ private page

#1 shared page pointer

1% indirect page pointer

11 illegal format

10.3.1 Private Page

In the simplest case of a private page type, the rightmost 11
bits contain the high order R.C.A. bits and bits 2-4 contain
the read, write, execute access information which are used to
self-load an assoclative register. The private page entry
has many options which are detailed in Figure 10-2.

7 June 1970 BBN PROPRIETARY 10-4~ 4

Entry type code @, Private Page

Read
Write Access Permitted to Page
Execute
Directed Traps and Loading’Information
412 56 13 14 35
1
!
' *| %% %| Location of this page--
BIBIRIW X ¥] 22 bits

| i

Access permission bit

Trap to Monitor--ll=trap immediately
1g=trap after loading A.R.
gl=and #@ = don't trap

Trap on write or read-

modify-write reference

(useful to make private
copy of a page)

i
e Trap to User bit

¥not used by Pager hardware

Figure 10-2, Private Page Entry in P.T.
Most of the option bits cause traps to occur which cause
the KAlf to take some speclal actlon when a page 1is
referenced in a particular way.

7 June 70 BBN PROPRIETARY 10-5-4

10.3.1.1 The Location Field

The location field is 22 bits wide. This permits the speci-
fication of where a page really is in primary, secondary, or
even tertiary storage. If bits 14-17 are all @#'s, the right
most 11 bits contain the high order R.C.A. bits. If any of

bits 14-17 are set, a page not-in-core trap will be invoked

which will cause the KAl@ to take special action.

10.3.1.2 Limiting the Size of the User Address Space

The pager contains a reglster called the Address Limit Reg-
ister (A.L.R.) which is capable of restricting the legal
USER mode virtual addresses to the first 16X, 32K, 48K,

64K, 80K, 96K, 112K or the entire 256K,

10.3.2 The Core Status Table

Whenever an assocliative register i1s successfully loaded, a
word in the core memory status table is updated. This table
contains an entry for every page of real core in the system.
An entry contains information about that page related to:
the relative amount of time the vage has been in core (con-
tained in a 9 bit pager register called A.G.E.R.--AGE Reg-
ister), whether the page has been written into (the modification
bit), and which processes (of a subset of all processes
ex1sting in the system) have referenced the page. The par-
ticular processes referencing a page are identified by bits
in the process use field of the entry. These blts are
updated by the contents of a 26 blt pager register called
P.U.R.--Process Use Reglster.

The use of the core status table (C.S.T.) causes one additional
read-modify-write cycle of overhead (while referencing the
C.S.T.) in the self- 1oad1ng sequence,

The modification bit and write permission bits at the A.R. are
handled in a slightly complicated way. The modification bilt
is set only if the memory request which initiated the loading
of an A.R. was a write or read-modify-write cycle. The mod-
ification bit is never cleared by the pager. If an A.R. 1s
loaded due to a non-write request, the write permission bit

of the A.R. 1s not set regardless of whether writes are per-
mitted by the page table entry unless the page has already
been modified (indicated by the modification bit already set
from some previous operation) and write permission is specified
by the page table entry.

7 June 70 BBN PROPRIETARY 10-6 -4

A.R. write permit « PT write permit A (WRRQ V modification bit)
new modificatlon bit + old modification V (WRRQ A PT write permit)

As speclal aid for the control of shared pages, a pager trap

1s generated 1f the three high order bits of the page age field
in the C.S.T. entry are all ¢'s. This provides a vay for the
core manager to defer use of a particular real core page while
the page's state is being tested or changed.

The core status table starts at absolute real core location
Lggd,. A diagram of the table and its use by the pager 1is
shown in Pigure 10-3.

7 June 70 BBN PROPRIETARY 10-7-4

Absolute Core Location
(Start of Table)

4000 —
/
8 ' [come sTaTus
TABLE
Dispatched into by NN
Real Core Page
Number INANAANNANAA/
AL N
s/
y N
Absolute Core
Location / N
10000, (highest .
addresSs to whith N
table can extend if 1024K real memory is used)
/
Ve Core Status Table Entry -«
0 : 8 9 10 35
9 Bits 26
page age process use bits
f
modification bit
9 Bits [26 Bits
0 Y 35
AGER PUR
Register Register

1. Bits @ - 8 of AGER replace Bits ¥ - 8 of CST entry.

2. Bits 1¢ - 35 are "ORed" into Bits 1@ - 35 of CST
entry.

3. Write request level is "ORed" into Bit 9 of the
CST entry (if the write 1s permitted).
Figure 1¢-3

Pager References to the Core Status Table

7 June 70 BBN PROPRIETARY 10-8 -4

10.3.3 Shared Page Pointer

The Shared Page Pointer entry in the P,T. is used for the
most commonly shared pages in the system. Thils type of PR

entry is detailed in Figure 10-14. f;? :
, "
. . AN
Entry Code @1, Shared Page Pointer Vép J¥{
X
s
SN
Read \
Write & O
Execute Q %
@
Directed Traps and Loading Irformatién
71 4y 56 13 14 2
B 5- 3 - 5 27 35
FLIIR{WI|X [#[*|* * Shared Page Unused *
Number 13 bits
|

Access permission bit

Trap to Monitor- -ll=trap immediately
1@=trap after loading
A.R.
@l=and @@ = don't trap

Trap on write or read-
modify~-write reference
(useful to make private
copy of a page)

Trap to User bit

Figure 10-4 Shared Page Pointer

The Shared Page Number/fleld is used as a dispatch into the
Special Pages Table (S.P.T.) which starts at absolute core
location 2¢,8¢%,. The contents of the specified S.P.T. entry
contalins the page location information in bits 14~35 in the
same format as a private P.T. entry bits 14-35. (see section
10.3.1.1).

7 June 70 BBN PROPRIETARY 10~-9-4

10.3.4 Indirect Page Pointer

The Indirect Page Pointer entry in the P.T. is used for
uncommonly shared files or processes or for indirectly
referencing the dynamic address space of a file or process
which is expected to change. This type of entry is de-

tailed in Figure 10-5. e\
S g
< QV
Entry Code 1@, Indirect Page Pointer - XJJ' *({,\(

k-

Read ' O‘}Q
Write ' '

| Execute

Directed Traps and Loading Information

2123456 13 14 26 27 35

|
1{@{R|W|X|*]*}* * Page Table Number| Page Number
1 : 13 bits 9 bits

R
l"'———-~--—-—-~~Access permission bit

Trap to Monitor--ll=trap immediately
1d=trap after loadin:
A.R.
@l=and @@ = don't
trac

Trap on write or read-
‘modify-write reference
(useful to make private
copy of a page)

L--~*_Trap to User bit

Figure 10-5 Indirect Page Pointer

7 June 70 BBN PROPRIETARY ‘ 10-10-=4

The Page Table Number (P.T.N.) is used as a dispatch into
S.P.T. to fetch an entry which contains the location in
bits 14-35 (see section 10.3.1.1) of the indirect page
table. The Page Number Field of the Indirect Page Pointer
is used as a dispatch into the Indirect Page Table. The
specified entry of this table can be any of the three page
table entry types Just described. An attempt to use indi-
rect page pointers to a depth of more than 2 will result
in a pager trap.

The access permission finally granted via Indirect Page
Pointer mapping is the "AND" of the R,W,X bits and other
access permlssions starting with the first Indirect Page
Pointer down through all P.T. entries until the destination
page 1s found. This generally results in a reduction of
the final access granted.

10.3.5 Summary of P.T. Entry Types

All three page table entry types have the virtue that the
actual location of a page is kept in only one place instead
of being replicated in many page tables (for example).
Detailed examples of the three P.T. entries are presented
in Figure 10-6.

10-11-4

7 June 70

9384 93BATJJ

BBN PROPRIETARY

93BJ pPadryg

adempary Fuideg syl Ag
dutpddep 300aTpul pue ‘padryg ‘83BATIJ

g=g1T @an3T4

9dBd 309J4Tpujl

™
//,
\
h !
_ i
_ 8T qe] o3®d
_ apOl JI38(
| —
m ERCEN
| so8eq Tetoeds
! uoT3eO07] 00
m..‘\l/..l\\/r.\,\\\/.\\\ Ow.mﬁm .
\L/\\/\|/\\
UOT3BOOT UOT38B00T o NdS 194
a3ded 83ded H
ST qelL
Nd UGT38B007] Nd NId 4
aded 308JTpPUT .& 4094TPUT *5°d [F Nd L T
NI
1+ .

7 June 70 BBN PROPRIETARY , 10-12-4

10.4 EXEC Mode Mapping

EXEC Mode mapping is really qulite similar to USER Mode mapping.
The major difference being that four distinct areas of the

EXEC Mode address space are separately mapped and mapping of
the "Resident Monitor" is separately enabled. These four areas
are shown in Flgure 10-7.

Y]

Resident Monitor Code
Mapping Opticnal
(normally not invoked)

32K | Mapped Individually
per KAl¢ processor

64K Swappable Monitor
Code

192K Mapped Privately
per process

256K
Figure 10-7 Exec Mode Address Space

The associative mapping process is exactly the same for EXEC
mode as USER mode. However, most of the page table (for the
self-loading sequence) for the EXEC mode address space 1is
fixed in absolute addresses. Namely:

Optional Resident Monitor Map 3¢Gﬁ8 to 3@778
{Not used unless Resident
Monitor Mapping is turned on)
absolute
First KAlg's Map 31QQ8 to 31774 Real Core
locations
Second KAld's Map 3799’8 to 37778

Common Swappable Monitor Map 32095 to 35774

7 June 70 BBN PROPRIETARY 10-13-4

The area that is mapped privately per process 1is actually
mapped by an area of the special overhead page associated
with each process called the Process Storage Block (P.S.B.).
The address of the P.S.B. is Specified by the contents of

an 11 bit pager register called the Monitor Base Register
(M.B.R.). Only the highest 128 words of the P.S.B. are used
for mapping purposes. The remainder is used for process
specific temporary storage, stacks, and 2 more words are
used by the pager. Thus locations 600, - 777, of the P.S.B.
map the highest 64K of the EXEC mode aédress pace.

7 June 70 BBN PROPRIETARY 10-14-4

10.5 Invoking the USER Address Space With the KAl@ in EXEC Mode

There are two classes of instruction modifications which were
made to the KAl to enable the system to make references to
parameters in the user's address space when the machine is in

EXEC mode.
10.5.1 UMOVEx

The first class of instruction modifications is the UMOVEx
set which forces MOVEs to and from USER space.

UMOVE User Map Move

100 M A I X Y
0 6 7 8 9 12 13 14 17 18 35

Move one word from the source to the destination specified by
M, using the user address map. The source 1s unaffected, the
original contents of the destination are lost.

UMOVE User Move 100
UMOVEI User Move Immediate 101
UMOVEM User Move to Memory 102
UMOVES User Move to Self 103

These instructions provide a convenient way for the monitor

to invoke the USZR address mapping to fetch or store infor-
mation into the USER address space (UMOVE or UMOVEM). UMOVEI
provides a way for the monitor to do address computation

using indirect addressing through the USER address space.

Of ccurse, indexing and AC references are not affected by the
choice of USER map/EXEC map. However, addresses which indirect
through the USER AC'!'s are handled specially (see section 10.5.3).

10.5.2 XCT AC, E

The next instruction change 1s a modification to the XCT
instruction to use the AC Field (formerly ignored) to affect
which map 1s used.

The AC fleld 1s interpreted as shown in Figure 10-8. If the
specified bit is on, use of USER address space is forced for
any of the conditlons indicated.

7 June 70 BBN PROPRIETARY 10-15-4

XR =

XW =\

daw = 5

X b =)KDG):Q..
AC Fileld

A

[4 > \
Effective Data Fetch, Address Data Store,
Address Byte Pointer Computation Byte
Computation, Fetch, From Fetch/Store,
Last Address Pop Stack, Byte Pointer Push Stack,
of BLT Push Memory, Pop Memory,
W "From' of 'To' of BLT

9 1g 11 12
Bit

- Figure 1¢-8 XCT AC bits

The instruction to be executed is always fetched from monitor
space. To BLT a data block from a user location specified in
AC left,

HRRI AC, FIRST

xcT 4, [BLT Ac, LasT]

FIRST: BLOCK N

LAST = ,-1

To BLT a data block into a user region specified by the first
and last user locations in AC left and right respectively,

HRRM AC, INSTR

HLR AC, AC

HRLI AC, FIRST

XCT 11, INSTR

7 June 70 BBN PROPRIETARY 10-16-14

INSTR: BLT AC, @

FIRST: BLOCK N

XCT 15, INSTR can BLT data from one place to another in the
user's address space. (Useful for zeroing out a reglon)

To transfer a series of bytes specified by a user byte
pointer in AC,
LP: XCT 3, [ILDB Ac2, AC]
(or [IDPB AcC2, Ac])
UMOVEx AC, E 1is equivalent to XCT 15, [@OVEX AC, é]

7 June 70 BBN PROPRIETARY 10-17-4

10.5.3 Call From Monitor Flag (PC Flag Bit 7)

Bit 7 of the PC flags word is used to store the state of a
flip flop named CALL FROM MONITOR. This bit is saved and
restored in the same fashion as the other PC flag bits. It
is cleared by MR START, and set whenever an EX JSYS (ef-
fective address<1000) is executed in EXEC mode. This bit -
indicates to the called JSYS routine that effective addres-
ses, byte pointers, and BLT pointers passed as arguments
should refer to the EXEC mode address space, not the cur-
rent USER address space. When this bit is on, special

XCT and UMOVEX references are automatically forced into

the EXEC mode address space instead of the USER's space.

This feature simplifies the coding of EX JSYS routines
which accept pointers as arguments and which may be called
either from USER mode or EXEC mode. The routine merely
makes use of any pointers with UMOVEx, or special XCT
instructions, and the CALL FM MON flag automatically forces
references into the correct address space.

7 June 70 BBN PROPRIETARY 10-18-4

10.5.4 Forced References to USER Space Locations g~178

A 5 bit AC BASE REGISTER exists in the pager to provide an

independent mapping mechanism for saved accumulators. This
special mapping process to reference saved AC's 1is invoked

by forced references to USER space (UMOVEX or specilal XCT)

with addresses <208.

During the mapping process, the low 4 bits are taken from

the virtual address, the next 5 bits (27-31) are supplied

from the AC BASE REGISTER, the top 9 bits (18-26) are

forced to 775, and EXEC mode addressing is forced. This
intermediate virtual address is then passed to the pager

for mapping in the standard fashion. This means that the
saved accumulators are mapped into one of 32 blocks, (selected
by the AC BASE REGISTER) each 16 wcrds long, located in

page 775 of the EXEC mode virtual address space. (Recall

this page is mapped privately per process).

This space is ordinarily used as a stack of saved AC's.
Upon entry to an EX JSYS which is pseudo-interruptable,

the AC's are BLT'ed into this save region. The EX JSYS
then references its own AC's in the normal fashicn, and the
AC's saved from the calling program via UMOVEX and XCT
instructions with forced user space effective addresses
<2@¢,. Pointers passed from the calling program which orig-
ina?ly pointed into the AC's are evaluated with UMOVE or
special XCT instructions, and automatically reference

these saved AC's. This feature operates in the same-
fashion whether the calling program was USER mode or EXEC
mode, i.e. the CALL FM MON flag forces speclal references
>20, into the EXEC mode space, but special references <208
go into the saved AC stack independent of this flag.

A side effect of this feature is that forced references
<20, in USER mode reference the user's shadcWw core. (The
firgt 208 Iocations of the user's page zero).

7 June 70

BBN PROPRIETARY

1#.6 Pager Traps

A paging trap will occur whenever one of the following

events happens:

1‘

The trap bits in the process page table
force a trap.

The addressed page (or indirecting page
table) is not in core.

An 1llegal condition is detected.
The Core Status Table entry for an ad-

dressed page contains an age with the
three highest bits = #.

10-1%-4

When one of the above conditions happens, the pager first
stores the cause and location of the trap into the P.S.B.

at loeation 571

T0g (170
JS@S

instruction to a trap routine.

. The format of this word is shown in

Figure 1§-9. Tgen, if the APR operation in progress was
a write, it stores the data into location 572
Finally, it forces the APR to execute absoluté location
if second APR). Location 7¢8 should contain a

of the P.S.B.

The arrangement of the Trap Cause fleld was chosen so that
deccding of the cause could be easily accomplished by the
JFFO instruction. '

To restart a process which was terminated by a pager trap,
the following information is of value:

.

2.

The program counter (PC) saved by the JSYS
at location 798 is correct.

If the read or execute bits in 571q of the
P.S.B. are set, restart is completed by
performing a JRSTF € through the PC word
saved by the JSYS at location 7@y (17Q8).

If the read bit is not set but the write
bit 1is set 1n 5715 of the P.S.B., the data
in 5724 of the P.5.B. must be written into
the adgress in 571, of the P.S.B. before
returning control @o

the process via JRSTF.

7 June 70 BBN PROPRIETARY 10-20-4

A sample program to restart a process which was terminated
by a paging trap is glven below:

CONO PGR, ¢ ;LOAD PAGER WITH NEW BASE REGISTERS,
ETC. (see section 10.7 for details)
MOVE 1, 777571 ;GET TRAP STATUS WORD
TLNE 1, 12 ;SKIP IF NEITHER READ NOR EXECUTE -
:BITS SET a1
e 0F
JRST BEGIN Ao HE The
, . /\‘:' g &
MOVE 777572 :GET DATA WORD w =
TINE 1, 1 ;SKIP IF USER MODE
JRST MONWR
UMOVEM (1) ; COMPLETE USER MODE WRITE
BEGIN: HRLZI 17, 777520 sRESTORE AC's FOR THE PROCESS
BLT 17, 17 |
JRSTF @777573 - ;RESUME PROCESS (JSYS IN LOCATION T7fg
3SAVES THE FLAGS AND PC IN 777573).
MONWR: MOVEM (1) ; COMPLETE MONITOR MODE WRITE
JRST BEGIN

Figure 1@-1 shows that the PI cycle, Key Cycle, and Indirect
Address Fetch levels are provided to the pager. The reason
for the PI cycle and KEY cycle bits 1s to distinguish traps

of the running program from PI and KEY cycle traps (KEY cycles
occur when the console EXAMINE, DEPOSIT, or XCT switches are
pushed). The Trap Status Word in Figure 1§-9 contains suf-
ficient information to simulate a KEY cycle operation and
recover from the trap provided timing is not critical (e.g.
BLKO or BLKI to magtape or dectape might get data late in-
dications). However, a pager trap during a PI cycle should
never occur and is a disaster so recovery is impossible. The
running program can be continued after such a trap by JRSTF
8777573 as in the sample restart program. The indirect address
sequence bit is used to distinguish data reads of non-exlstent
memory from indirect addressing reads of non-existent memory.

7 June 70 BBN PROPRIETARY 10-21 -~

In the former case, the software may wish to create a "new
memory page" and proceed, but in the latter case, a prog-
ramming error has been made.

Another interesting feature of the pager 1s the monitor
after-loading trap. All other directed traps take place

at the beginning of the self-loading sequence, before any
associative register has been loaded with mapping information
for the new page, but the after-loading trap takes place at
completion of the self-loading sequence. This enables the
Monitor to perform statistics-taking operations for specifiled
pages each time one is loaded into an associative register.

M

f June 70 BBN PROPRIETARY 10~22 -4

TRAP STATUS WORD
) 8 9 1¢

9 Bits 3|1 1111 18 Bits

EM (gxec Mode)

J

l J/ Effective Address of Request
E

(Execute request)

V
, W (Write request)

v R (Read request)

I (Indirect address sequence in progress)
1\

, PI (Priority Interrupt cycle in progress)

KEY (KEY cycle in progress--console Examine,
XCT, or deposit switch pushed)

vV
Non-EX~-MEM

V
Parity Error

Figure 1¢-9
Bits @#-8, trap cause are decoded as follows: Bits & and 1

define one of four groups each defined below:

Group @: TSR @, 1 = g9

Bit Meaning if ON
2 AGE = @gX
3 AGE = @2X as read from
4 AGE = @hx - C.S.T.
5 AGE = @6X
6 Monitor After-Loading A.R. trap

7 June 70 BBN PROPIETARY 10-23~4

Group 1: TSR ¢, 1 = g1

jus]
jurs
t

Meaning if on

Shared not in core

page table not in core (p.t.2)

2nd indirect, private not in core (p.t.3)
Indirect shared not in core (p.t.2 or p.t. 3)
Indirect page table not in core (p.t.3)
Excessive Indirect pointers (>2)

o= U1 W l

Group 2: TSR ¢, 1 = 1¢

Bit Meaning if on

2 Private Not 1n core

3 Write copy trap (bit 9 in P.T.)

y User trap (bit 8 in P.T.)

5 Access trap (P.T. bilt 12 = ¢ or bits 1P-11=3)

6 Illegal Read or Execute

7 Illegal Write

8 Address Limit Register Violation or P.T. bits
@,1=3 (1llegal format)

Group 3: TSR g, 1 =11

8Y)
e
¢t

Meaning if on

Private Not in core

Write copy trap (bit 9 in P.T.)

User trap (bit 8 in P.T.)

Access trap (P.T. bit 12 = @ or bits 10-11=3)
Illegal Read or Execute ‘

Illegal Write .

Address Limit Register Violation or P.T. bits
#,1=3 (illegal format)

(in 2nd or 3rad
page table)

O~ WUT I N I

7 June 70 | BBN PROPRIETARY 10-24 =k

10.7 Controlling the Pager via I/0 Buss CONO's

The IOB reset pulse generated by the APR causes the pager
to completely clear itself. In the cleared state no map-
ping 1s performed by the pager and all memory requests
are passed unchanged to the memory buss. The pager is
assigned device mnemonic PGR (device number 24) and int-
erprets the three low bits of CONO PGR, X as described
below. Other bits of the CONO are ignored.

CONO PGR, @Z Clears all assoclative registers
and reloads the Monitor and User
mode base registers and Address
Limit Register from location 71
and the Core Status age and process
use registers from location 72.
(see Figure 10~10)

CONO PGR, 1 Clears all assoclative registers
‘ mapping EXEC mode pages.

CONO PGR, 2 Clears the associative register
mapping the page addressed by the
next write (or read-modify-write)
memory reference. The Pager op-
erates in the normal manner both
before and after this write ref-
erence but does not complete the
write operation.

Note that because a priority interrupt may occur between the
execution of this CONO and the following write instruction,
it is normally required to do the following:

CONO PI, 4gg 3TURN OFF PI SYSTEM
CONO PGR, 2 sCLEAR PAGE OF NEXT WRITE
MOVEM PAGE*1g@g ;CLEAR PAGE
CONO PI, 204 sTURN PI SYSTEM BACK ON
CONO PGR, 3 Clears all assoclative registers
mapping USER mode pages
CONO PGR, 4 Turns off all mapping, leaving base
registers and associative registers
unchanged

CONO PGR, 5 is equivalent to CONO PGR, U4

7 June 70 BBN PROPRIETARY 10-25-4

CONO PGR, 6 Turns off mapping for resident
monitor (virtual addresses
20-7777T74) and turns on USER
mode mapping and mapping of
EXEC space 1000008 - 777777

CONO PGR, 7 Turns on mapping for all address -
' 20q = 7777774 for both EXEC mode
ang USER modé references)

7 June 70 , BBN PROPRIETARY ‘ - _ 10-26-4

CONO PGR, # causes the Pager to reload 1ts
main registers as follows:

1. Read absolute location 7lg. (171g if second APR),
interpreted as below.

@ 34 67 17 18 22 23 24 25 35 ;

XXXX 3 11 bilts 5 bits XX 11 bits

MBR (@pnitor Base
Register) Location

of the Process Sto-
rage Block.

2/
AC Base
N ' Register

UBR (User Mode Base Register)
The locatlon of the User Mode
\V page table.

(§3F = No restrietion
ALR (Address Limit Register) v ggé = ;é;Krreztylgzlon
Limits Legal USER mode virtual g11 - 80K estr%ction
addresses to the first 16K, - restr-cLion
30K. LBK. 6LK. 80K. 96K. om 199 = 64K restriction
llZﬁ > 2 2 2 181 = 48K restriction
° 11% = 32K restriction
Llll = 16K restriction

2. Read location 728 (1728 if second APR)

4 8 9 19 35
9 bits 1> 26 bits |

: T :
l{) J/ PUR (Process Use Register)
Not Used

AGER (AGE Register)

Figure 1¢-%

Initializing the Pager For Running a New Process

7 June 70 BBN PROPRIETARY : 10-27-4

Glossary
A.G.E.R. AGE Register
A.L.R. Address &iﬁit Register
A.P.R. Arithmetic PRocessor (KAl@)
A.R. Assoclative Register
C.S.T. ' - Core Status Table
M.B.R. | Monitor Easé Register
PGR PaGeR device mnemonic
P.S.B. | Process §torage Block
P.T. Page Table
P.T.N. Page Table Number
P.U.R. : Process Use Register
R.C.A. Real Core Address
S.P.N. ‘ Shared Page Number
S.P.T. §pecial Pages Table \

U.B.R. ; User Mode Base Register

	1_01
	1_02
	1_03
	1_04
	1_05
	1_06
	1_07
	1_08
	1_09
	1_10
	1_11
	1_12
	1_13
	2_01
	2_02
	2_03
	2_04
	2_05
	2_06
	2_07
	2_08
	2_09
	2_10
	2_11
	2_12
	2_13
	2_14
	2_15
	2_16
	2_17
	2_18
	2_19
	2_20
	2_21
	2_22
	2_23
	2_24
	2_25
	2_26
	2_27

