
•
•
.."

M
Ii
III
•

Customizing
Manual

multimedia
document
communication
software

This document reflects the BBN/Slate Release 1.1 software.

BBN Software Products
A Division of Bolt Beranek and Newman Inc.

•

M
ii
ilia

• s::

Customizing
Manual

Copyright © 1990 by Bolt Beranek and Newman Inc. All Rights Reserved. No part
of this work covered by the copyrights hereon may be reproduced or copied in any
form or by any means - graphic, electronic, or mechanical, including photocopying
recording, taping, or information and retrieval systems - without written permissi~
from the publisher:

BBN Software Products
A Division of Bolt Beranek and Newman Inc

150 CambridgePark Drive
Cambridge, MA 02140

Latest Printing: October 1990

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or other Federal Acquisition Regulations.

Export Notice

This technical data, or any part thereof or direct product thereof, may not be exported or re­
exported, either directly or indirectly, into Afghanistan, the People's Republic of China,
South Africa, Namibia or any of those countries listed from time-to-time in supplements
to Part 370 to Title 15 of the Code of Federal Regulations in Country Groups Q, S, w. y or
Z (collectively. the "Prohibited Countries"), without first obtaining permission to do so
from the U.S. Office of Export Administration and other appropriate governmental
agencies.

BBN/Slate is a trademark of Bolt Beranek and Newman Inc.

PostScript is a registered trademark of Adobe Systems. Inc.

SunView is a trademark of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

X Window System is a trademark of Massachusetts Institute of Technology.

Contents
Preface v

1 Customizing Basics
1.1 Initialization and profile files 1-2
1.2 Setting global preference variables 1-11
1.3 Key bindings 1-12
1.4 Creating mail aliases 1-23

2 Configurable Menus
2.1 Menu files 2-1
2.2 Menu file syntax 2-4
2.3 Tutorial: Configuring a new menu file 2-10

3 The BBN/Slate Extension Language
3.1 Overview 3-1
3.2 Syntax and semantics 3-7
3.3 Functional description 3-18
3.4 Function definition and development 3-35
3.5 Application examples 3-59
3.6 Token syntax 3-85

A Customizing Variables
A.l Document Manager variables A-3
A.2 Document Editor variables A-4

B Listing of Functions

Index

Contents iii

Preface

This preface contains the following:

• an overview of this manual

• a list of the documentation conventions used in this manual

• an overview of the BBN/Slate ™ documentation

About this manual

This is the Customizing Manual for the BBN/Slate multimedia
document communications system. It introduces you to the ways
in which you can adapt BBN/Slate to fit your particular needs.
For example, it describes how to reconfigure the BBN/Slate menu
system, and how to employ familiar keyboard sequences to assist
you in performing document creation and editing. This manual
also introduces you to how you can write your own programs that
can further extend the capabilities of BBN/Slate.

This Customizing Manual contains three chapters and two
appendices:

•

•

•

Chapter 1 discusses Customizing Basics, an introduction to
BBN/Slate profile files.

Chapter 2 presents the tools for Configurable Menus, so you
can change your BBN/Slate menu environment as appropriate.

Chapter 3 describes the BBN/Slate Extension Language, a
powerful programming tool to extend the capabilities of your
BBN/Slate software and alter your BBN/Slate environment.

Preface v

Mouse
operations

• Appendix A lists the Customizing Variables that you can
employ to control the behavior of BBN/Slate.

• Appendix B is a complete List of Functions that provides a
reference for all BBN/Slate functions provided with this
software release.

If you are interested in learning more in general about how
BBN/Slate works (for example, the structure of BBN/Slate
document files), we recommend that you also read the System
Topics manual.

Documentation conventions for this manual

Unless noted in the text, this book uses the conventions described
in this section.

This book uses the following format for describing mouse
operations:

BUTTON action

or

modifier BUTTON action

where:

• BUTTON is the left, middle, or right button.

• Action is click, hold, drag, or release.

• Modifier is the key you hold down while performing a mouse
operation, either the control or shift key.

For example:

LEFT click means you left click the left mouse button.

vi BBN/Slate Customizing Manual

Menu commands

Boldface font

Italic font

Shift MIDDLE hold means you press and hold the middle
mouse button while holding down the shift key on the
keyboard.

Menu commands are given with the form:

menuname-commandname

For example, the following menu command:

Text-Fonts-Face-Italics

shows that Text is the top-level menu, Fonts is a submenu of
Text, Face is a submenu of Fonts, and Italics is an option of the
Face menu.

This boldface font is used for menu activities and mouse
operations. For example:

You can adjust the spacing of points in the grid with the
Graphics-Style-Grid command.

To listen to a speech passage in a document, you LEFf
click while the mouse pointer is over the icon or passage.

Boldface is also used for keys you press on the keyboard, such as
the Return key.

This italic font is used to give emphasis, especially when a new
term is introduced in the text. In discussions of command-line
activity or programming, italic represents a placeholder in
command syntaxes and directory specifications. For example, in
the following command syntax:

% install/install_lang package

Preface vii

Monospace font

Control key

Escape key

Alternate key

package is a placeholder for the actual name of the language
package you are installing.

This monospace font is primarily used in descriptions of
command-line activity and programming. It is used to represent
filenames, directories, BBN/Slate commands and functions, UNIX ™

operating-system commands, prompts and messages you see on
your screen, and user input. For example:

You must define the program by adding it with an
autoload statement to your .slate_editor.init
file.

BBN/Slate folder names are also represented in monospace font.

For key sequences that use the control key, a caret (") indicates
the control key. For example, "A means that you type the control
key and the letter A together. You can type A in upper- or
lowercase.

The escape key is represented by Esc, as in Esc-D. In this
example, you type the escape key and an uppercase D together.
You would not type a lowercase d; case matters when you are
using the escape key.

Key sequences that use the alternate key represent the key with
Alt, as in Alt-w. In this example, you type the alternate key
together with lowercase w. Again, case matters when you use Alt.
Please see the Release Notes for information about which key
serves as the Alt key on your system.

viii BBN/Slate Customizing Manual

User
documentation

On-line help

Installation and
release notes

Overview of BBN/Slate documentation

The BBN/Slate documentation set includes the following manuals:

• Getting Started introduces you to BBN/Slate through a series of
tutorial exercises.

• The Reference Manual gives a complete description of the
BBN/Slate system.

• The Customizing Manual explains how you can tailor the
BBN/Slate system to fit your needs. Topics include
reconfiguring the menu system, and writing your own programs
using the Slate Extension Language (SEL).

• System Topics is a collection of documents covering system
topics such as the structure of BBN/Slate document files,
command-line document management tools, and mail utility
programs.

• Multilingual Documents describes how to create documents in
five other writing systems (Arabic, Cyrillic, Hangul, Hebrew,
and Thai) available with the BBN/Slate Multilingual Option.
Note: If you did not order the Multilingual Option, you will
not receive this manual.

In addition to the printed documentation, BBN/Slate has an on-line
menu help facility that provides information on all command and
menu choices. Also, BBN/Slate provides on-line UNIX manual
pages with information about BBN/Slate's command-line programs
and utilities.

System-specific installation instructions and release notes
supplement the BBN/Slate user documentation set.

Preface ix

Obtaining Documentation
and Services

This section explains how you can:

•

•

order documentation

obtain technical assistance

obtain training services

How to order documentation

To order additional copies of this manual or any other BBNISlate
manual:

• In North America, mail a completed purchase order to:

BBN Software Products
A Division of Bolt Beranek and Newman Inc.
10 Fawcett Street
Cambridge, MA 02138
ATTN: Sales Administration

For prices and other ordering information, call Sales
Administration at 617/873-5115.

• Outside North America, contact the nearest Sales and Support
office.

Preface xi

How to obtain technical assistance

For BBN/Slate customers who are on maintenance and need
technical assistance:

•

•

In North America, call the Hotline number: 617/873-3968.
Hotline hours are Monday through Friday, 8:30 a.m. to 8 p.m.
(EST).

Outside North America, contact the nearest Sales and Support
office.

How to obtain training

BBN supports its customers and products with a full range of
training programs. BBN/Slate courses are offered in conjunction
with hardware vendors or at BBN education centers. In addition,
arrangements can be made with the Education Services department
to present the same courses at customer sites.

To receive a course catalog or additional information:

•

•

In North America, call the Course Registrar at 617/873-8383.

Outside North America, contact the nearest Sales and Support
office.

xii BBN/Slate Customizing Manual

1 Customizing Basics

BBN/Slate software has been designed with customization in mind.
You have the power to change BBN/Slate in many ways. You
should feel free to experiment with some or all of the features
described in this manual, so that you can tailor the system to your
needs. Customizing BBN/Slate means that you can feel more
comfortable. You can make it more like environments you already
know; or, you can extend it to do particular tasks you need that
are not included in the BBN/Slate software as distributed.

BBN/Slate customization is very flexible. Features can be avail­
able to all users (public features) or available to a single user
(private features).

It is possible to create a number of helpful tools for yourself or
other BBN/Slate users at your site. Some of these customized
tools might serve a simple purpose. For example, you could create
an extension language function that automatically inserts a graphic
image of your signature at the current active cursor position in
your BBN/Slate file. You could then associate this function to a
key binding, so with just a few keystrokes, you can add your
personal signature to your electronic memos.

BBN/Slate customization also makes far more complex customized
tools possible for your site: a mail-merge program to handle the
addressing chores for letters to your customers; an external
data-handler program that imports numbers from an outside source
into BBN/Slate, creates a spreadsheet and generates a graph, prints
it, and exports summary data in a format for use by another
external program; and more. Several sample programs are
included in this manual to assist you in getting started.

Customizing Basics 1-1

1.1

Figure 1-1

The organizational center of BBN/Slate customization is its profile
files. This chapter focuses on initializing profile files, setting
preference variables, key binding functions, and creating mail
aliases. Subsequent chapters and appendices present in-depth
information on customizing BBN/Slate menus and writing your
own custom functions using the BBN/Slate extension l~nguage.

Initialization and profile files

Every time you start the Document Editor (either when you start
BBN/Slate, or when you enter the command edi tdoc from the
operating system), edi tdoc begins with a search for a public and
a private profile file (Figure 1-1). The content of the profile files
determines the resulting "look and feel," or configuration, of
BBN/Slate.

Name:

slate_editor.init public profile file

• slate_editor. init

Document Editor session

Document Editor initialization

Location:

/usr/slate/lib or
/usr/local/lib or
/usr/lib

user's home
directory

1-2 BBN/Slate Customizing Manual

Public profile file

Private profile file

By including customization commands in the public profile file, a
system administrator can make the commands take effect for
everyone who uses a particular installation of BBN/Slate. By
including the commands in your private profile file instead, you
make them take effect only when you are using BBN/Slate. This
makes it possible for each individual BBN/Slate user to create the
editing environment in which he or she is most comfortable and
productive.

The public file, called slate_editor.init, is optional. It
can be found in /usr/slate/lib, /usr/local/lib, or
/usr/lib, depending on where the lib directory was placed by
your system administrator at installation. The public profile file
allows all BBN/Slate users on the system to share commonly
defined Document Editor characteristics, key bindings, and so on.

There is no public profile file distributed with the BBN/Slate
software, since it should be tailored to your specific site.
However, there is a sample profile file, called
slate_editor. sample_init, also located in this directory.
You can use it as a template for designing your own public or
private profile files. If desired, you could make a copy serve as
your public profile file by entering the following command from
the lib directory:

cp slate_editor.sample_init slate_editor.init

and then editing the slate_editor.init file as appropriate
for your site.

The private file, called • slate_edi tor. ini t, is also optional.
If it exists, it should be located in each BBN/Slate user's home
directory. (Note that because this file name begins with a period,
it does not normally appear when listing directory contents.)

Customizing Basics 1-3

1.1.1

The private profile file can contain the same kinds of statements as
the public profile file. The only difference is that they will be in
effect only for the individual user.

As with the public profile file, there is no private profile file
distributed with the BBN/Slate software. However, it is easy for
users to share helpful features by copying those portions of their
private profile files into the private profile files of others. If many
users want to share the same features, then it makes sense to place
them within one public profile file rather than in the individual
private profile files.

Contents of a profile file

Profile files can contain a variety of statements. These include:

•
•
•

•

•

•

search paths

key bindings (general, and for specific media types)

global variables (both Boolean and value-specific) that control
the BBN/Slate environment

alias definitions that allow the use of nicknames for addressing
mail

extension language definitions and commands

autoload statements to read files containing extension language
definitions

Figure 1-2 is a sample profile file containing each of these types
of statements. (Note that a comprehensive profile file could be
much larger.)

1-4 BBN/Slate Customizing Manual

Figure 1·2

.slate_editor.ihit file

SEARCH PATHS
menu-directory
library-search-path

= "/home/smith/Slate/Menus";
= "/home/smith/Slate/sel";

KEY BINDINGS
This takes effect everywhere, in all media editors:
bind(default-keymap, "Esc-x", execute-command-dialog);
Emacs text bindings:
bind(text-keymap, ""@", text-set-mark);
bind(text-keymap, "Esc-f", text-forward-word);
bind (text-keymap, ""0", text-open-line);
Spreadsheet bindings:
bind(sheet-keymap, ""Xn",
bind(sheet-keymap, ""Xr",
Graphics bindings:

sheet-format-dialog);
sheet-ruling-dialog);

bind(graphics-keymap,"B",
bind(graphics"';keymap,"t",

graphics-add-rounded-box);
graphics-add-text);

GLOBAL PREFERENCE VARIABLES
auto-backup = 1;
header-name-font = "helvetica14b";
header-value-font = "helvetica14";
page-width = "7.Oi";
print-bottom-margin = "1.0i";
spreadsheet-font = "helvetica10";
print-spooler = "lpr %s";
mail-spoolel:;' = "/usr/mmdf/lib/submit -mrlxto,cc,bcc < %s";
mail-spooler-successful-exitval= 9;

MAIL ALIASES
alias ("beth",
alias("bruce",

Sample profile file

"bchampion");
"bsmith");

(continued)

Customizing Basics 1-5

Figure 1-2

Search paths

EXTENSION LANGUAGE DEFINITIONS
Function to execute a buffer of extended commands:
define public void execute-buffer()
"Execute a buffer of extended commands."
{

}

write-buffer-to-file-as-text(current-buffer(),
"/tmp/SELtest")~

read-commands-from-file("/tmp/SELtest")~

Key bindings for above. Allows you to create a buffer
with extended commands, then execute them with AXAE
bind (text-keymap, "AXAX", read-commands)~

bind(text-keymap, ''''XAE'', execute-buffer) ~

#AUTOLOAD COMMANDS
Functions for slide-making program:
autoload (set-region-to-copy, "make_slides.sel")~

autoload (copy-region-to-file, "make_slides.sel")~

autoload (make-slides, "make_slides.sel",
text-keymap, "Esc-''')~

Sample profile fll~ (continued)

Each of these types of profile statements is briefly described
below. Key bindings, preference variables, and mail aliases are
fully described later in this chapter. Search paths, extension
language definitions, and autoload statements are fully described
elsewhere.

These are statements that direct BBN/Slate where to look for
certain objects. There are currently two different search paths you
can include.

Include a menu-directory variable to specify where you have
placed any custom-configured BBN/Slate menu files. Configurable
menus are discussed in Chapter 2.

1-6 BBN/Slate Customizing Manual

Key bindings

Global preference
variables

Mail aliases

Extension
language
definitions

Autoload
commands

Include a library-search-path variable to specify those
directories where you store files of BBN/Slate extension language
definitions. Extension language search paths are discussed in
Chapter 3.

These are one of the most common ways to customize BBN/Slate.
For example, if you are accustomed to using certain key sequences
for performing basic editing functions (deleting lines, selecting text,
selecting files, and so on), you can bind those key sequences to
perform the same functions in BBN/Slate. It is possible to create
a very comprehensive set of key bindings that closely map an
existing editing environment (for example, emacs or vi). You
can also define key bindings that take advantage of function keys
available for a particular keyboard model.

Key bindings are discussed in detail in Section 1.3.

You can set global variables to control certain appearance and
behavior features of BBN/Slate. See Section 1.2 for more details.

Mail aliases provide a convenient shorthand naming convention for
people with whom you correspond frequently. They are described
in detail in Section 1.4.

It is possible to include complete BBN/Slate extension language
definitions in the profile file (see Chapter 3). Normally, this
should be restricted to a few frequently used definitions to
minimize startup time. It is more efficient to access your
definitions via autoload commands.

The autoload command publishes a function (making it available
for use), but restrains reading the function definition until you
actually invoke it. Thus, autoload allows you to include a large
number of functions without incurring the overhead of reading
their function definitions at startup. This speeds up the startup
time for edi tdoc when it reads a public or private profile file.

Customizing Basics 1-7

1.1.2

Testing new
features

1.1.3

Editing a profile file

A profile file is a plain text file, not a BBN/Slate file. This means
that you should edit it in one of the following ways:

• outside of BBN/Slate (for example, using a text editor such as
vi)

• within BBN/Slate (reading and storing the definition as a text
file)

If you edit a profile file with BBN/Slate, always be sure to treat
the file as a text file.

It is best to add one or two new features at a time to any profile
file, then test them. You can quickly test your features or changes
by entering the operating system command:

editdoc filename

where filename is the optional name of any BBN/Slate file (if
appropriate, you can include a path as part of the filename). For
example:

editdoc /horne/srnith/Slate/test.slt

If an error is encountered while reading the profile file, BBN/Slate
displays a dialog box that reports the error and the line number on
which it was found. You can then correct the error and repeat the
test.

Order of profile statements

The order of statements is not important in your profile file, with
the exception that search paths should be located at or near the top

1-8 BBN/Slate Customizing Manual

1.1.4

Definitions and
redefinitions

of the file. This is because the library-search-path must
be defined before any statements that include extension language
definitions. It is helpful to organize and group your statements by
type, as illustrated by Figure 1-2.

Syntax and definitions In profile files

Profile files contain definitions and commands that use the
BBN/Slate extension language. Accordingly, their definitions and
commands follow the BBN/Slate extension language syntax.
Profile file examples used in this chapter introduce that syntax.
You can find a formal definition in Chapter 3.

The Document Editor reads and executes the extension language
commands after reading any profile files. If an error is
encountered in the profile file or a file containing extension
language commands, any remaining definitions and functions are
not read. Therefore, it is generally advisable to either fix the error
or disable it (for example, by commenting it out), and then restart
the Document Editor so that the normal complement of functions
are available.

The definitions obtained from the public profile file are augmented
by those in the private profile file. Because the private file is read
last, definitions in that file can also implicitly redefine existing
public functions.

For example, if the public profile file contains the definitions:

bind(default-keymap, "Esc-[210z",
text-end-of-paragraph); #R3 key

bind(default-keymap, "AX=" ,
text-underline-off); #CTRL-X=

and the private profile file contains the definitions:

Customizing Basics 1-9

1.1.5

bind (default-keymap, "Esc-[210z",
text-end-of-sentence); # R3 key

bind (default-keymap, ""'Xx",
text-underline-off); # CTRL-Xx

then the private profile file:

• redefines the R3 key (Esc-[210z) to perform the function
text-end-of-sentence instead of text-end-of-paragraph

• defines CTRL-Xx (in addition to CTRL-X=) to perform the
function text-underline-off

Comments in profile files

You can include comments in your editor profile file to describe
its contents. When reading profile files, if the editor encounters a
pound sign (#) character on any line, it ignores the rest of that
line.

Note that comments can occupy an entire line:

KEY BINDINGS

or they may occur at the end of a line, following a statement:

bind (text-keymap, "Esc-[211z", previous-pane);
bind (text-keymap, "Esc-[213z", next-pane);

Fl key
F2 key

In this example, note that including a comment that associates the
escape sequence to a particular function key could be helpful as
you maintain your profile file later on.

As illustrated in Figure 1-2, it can be helpful to use comments
throughout a profile file and to use them to differentiate the
sections that are present. For example:

###################
KEY BINDINGS
###################

1-10 BBN/Slate Customizing Manual

1.2

The next section describes how to set global variables in your
profile files.

Setting global preference variables

There are a number of variables that you can set to control the
behavior of certain editing commands. Some variables have
numeric values; others have string values.

You set variables by including assignment statements in your
profile file. Assignment statements look like this:

variable = value;

The semicolon is optional, but it helps to mark the end of the
assignment statement. The value may be a number or a string
surrounded by double quotes, depending on the type of the variable
you are setting. To embed double quote marks in string values,
precede them with a backslash character (\).

The following are all examples of valid assignment statements:

default-document-template
header-name-font
display-classify-menu
visit-splits-pane

= "simple";
= "helvetica10b"~
= 1~

= 1;

See Appendix A for lists of the variables you can use to customize
the editor.

The defaul t-document-template variable is particularly
useful, because it allows you to specify the default text style sheets
that are used when you create a new document. (See the
Reference Manual for more information on document templates.)

Customizing Basics 1-11

1.3

1.3.1

Keymaps

Key bindings

Functions and key bindings

Each menu command in the BBN/Slate Document Editor works by
invoking a function to perform the actual editing task you have
selected. These functions have names so that you can refer to
them directly.

You can associate any function with a key or sequence of keys on
the keyboard. This association of a function to a key sequence is
called a key binding, and the function is bound to the key sequence
you have chosen. BBN/Slate comes with a set of default bindings
that are described in the Reference Manual, but you can change
them to suit your own preferences.

When you are editing documents composed of many different
media elements, you may want the same key to mean different
things in the different media editors. For instance, you might want
"B to mean "add a box" when editing a graphics element, but
mean "back up one character" when editing text.

To allow for this kind of context-sensitive key binding, BBN/Slate
supports the notion of keymaps. A keymap is a collection of
related key bindings. Each keymap has its own name, so you can
refer to them individually.

Each media type in BBN/Slate has its own keymap. When you
press keys on the keyboard, BBN/Slate looks up the associated
function in the keymap of whatever media type you are editing.
Table 1-1 lists the keymap name for each of the media types.

1-12 BBN/Slate Customizing Manual

Table 1-1

1.3.2

Keymap names

Reymap Name
de£ault-keymap
header-keymap
text-keymap
graphics-keymap
image-keymap
speech-keymap
sheet-keymap
picture-keymap

Media Type
none selected
document headers
text
graphics
image
speech
spreadsheet
rasterfile

The de£ault-keymap is the keymap used when not editing a
particular media type (for example, when there is no cursor
displayed for any media type upon opening a file). It is also used
if the keys you type are not found in the media editor keymap.
Thus, binding a key in the default keymap is one way to make
that binding take effect in all media types.

Using the bind command

To create a key binding, you must specify three things: the key
you want to bind, the function you want bound to it, and the
keymap in which you want the binding to occur.

You specify these things using a bind command in your profile
file. The syntax of a bind command is:

bind (keymap, key-sequence, action-routine)~

The semicolon is optional, but helps to mark the end of the bind
command. An example of a bind command is:

bind (text-keymap, "Esc-k", display-keyboard)~

Customizing Basics 1-13

Simple
characters

Control
characters

This command binds the key sequence Esc-k to the function
display-keyboard. You can use it whenever a text region
(which uses the text-keyrnap) is active.

The keymap is one of the keymap names listed in the previous
section, and determines which media types this binding will apply
to. When you include bind commands in your profile file, the
bindings for the default-keymap should precede bindings for all of
the other keymaps.

The action-routine is the name of one of the editor's functions.
The Reference Manual lists all of the menu commands in the
editor and their associated functions. Appendix B lists all of the
functions available in the BBN/Slate system.

The key-sequence specifies the key or keys you must press to
invoke the function you have specified. The key sequence is
surrounded by double quotes, and can include any of the following
items:

These are simple alphanumeric or punctuation keys, like a.

You specify control characters as "a or " A. You type them by
holding down the Control key while typing the character that
follows the ". Case does not matter when typing control
characters.

Note that when placing "a in the bind command of your profile
file, you can simply insert the characters " and a; you need not
insert the actual control sequence, although it will be recognized if
used.

1-14 BBN/Slate Customizing Manual

Alt characters

Escape
characters

You specify Ait characters as AIt-a or Alt-A. You type them by
holding down the Alternate key while typing the character that
follows the Alt-. Please see the Release Notes for clarification on
which key serves as the Alternate key for your system (its
function may be performed by a key with a different label than
Alt or Alternate).

Case does matter when typing Alt characters.

On some systems, Alt characters are sometimes used to access
special ASCII characters not available directly from the keyboard.
These characters can be accessed by including them in bind
statements in a public or private profile file. For example:

bind (text-keymap, "Alt-D", text-self-insert}; #Tilde

The actual bindings will vary with the specific keyboard and
system being used. The documentation for your operating system
and keyboard may be of assistance. You can also experiment with
special key combinations in the Document Editor by using the
text-quote-next-character function (the default binding
for which is "Q).

For example, if you can enter "Q Alt-7 to create a bullet character
(e) on your system, then adding the bind statement

bind (text-keymap, "Alt-7", text-self-insert}; #Bullet

to your profile file allows you to create the bullet character simply
by pressing Alt-7.

You specify escape characters as Esc-a or Esc-A. You can also
represent escape as ESC-.

You indicate them by typing the Esc key, and then typing the
character that follows the Esc-. Case does matter when typing
escape characters.

Customizing Basics 1-15

Mouse buttons

If you need extra escape sequences, you can also specify two
escapes, such as Esc-Esc-D (press the Esc key twice, then the D
key).

You specify mouse buttons by giving an optional modifier (Ctrl or
Shift), followed by the button name (LEFT, MIDDLE, or
RIGHT) and then the button action (click or hOld).

For example, LEFT click means clicking the left mouse button.
Shift MIDDLE hold means pressing and holding the middle
mouse button while holding down the shift key on the keyboard.

The case of characters does not matter when specifying mouse
buttons.

It is common to bind two-character sequences to a command. For
example:

bind (default-keymap, ""X"S", save-current-buffer)~
bind (defaul't-keymap, ""Xt", keyboard-template-select) ~

In the first example, you must type both the "X and the "S before
the function is invoked. When you type "X, the editor waits to
see what you type next. The "X is a prefix character, because it
prefixes another keystroke in the keymap. If after typing, "X you
type "S, the editor invokes the function for "X"S (in this case,
save-current-buffer). If you type something else, it looks
to see whether that key sequence has anything bound to it, or
whether it might be the prefix for yet another command.

You can use the same prefix character for a group of related
commands. For instance, in the default keymap "X"S means
"save file" and "X"R means "read file". The two commands are
similar because they both work on files, so they are grouped
together under the "X prefix.

1-16 BBN/Slate Customizing Manual

If you could not use prefix characters, you could only bind
functions to the keyboard until you ran out of keys. Using prefix
characters, there is no limit to the number of functions you can
bind to the keyboard. However, once you use a character as a
prefix, it cannot be used as a simple character. For example, the
default BBN/Slate software uses two prefIx characters:

AX
Esc

This means you cannot bind any functions to just 1\ X or Esc.

Prefix characters are also useful when you want to bind functions
to the function keys on your keyboard. When you press one of
the function keys, it can generate a sequence of several characters.
Because BBN/Slate allows you to use arbitrarily long character
sequences for any command, you can still make bindings to the
function keys.

Consult your Release Notes for lists of the sequences generated by
each of the function keys, and for some examples of how to bind
editing functions to them.

Special key combinations. Within some media types, it can be
appropriate to bind regular alphabetic keys to functions. For
example, in the graphics media type, you are normally involved
with drawing pictures and choosing actions from the graphics
palette. You only use text when labeling parts of the graphic. In
this context, it can be appropriate to bind the alphabetic key t to
initiate the graphics-add-text function, so that you simply
press the t key and begin entering text within the graphic. The
bind command for this is:

bind(graphics-keymap, "t", graphics-add-text);

This binding, together with many other related ones, is included in
the sample profile fIle slate_editor. sample_init.

Customizing Basics 1-17

1.3.3

1.3.4

Creating key bindings

There are two basic sources of functions for key bindings:

1. User-callable functions published in the Document Editor; you
can find a listing of the BBN/Slate functions that accompany
this software release in Appendix B of this manual.

2. Extension language functions that you write yourself and define
as public. Chapter 3 describes how to do this.

There is an important exception for both these sources: functions
that accept arguments or return values cannot be bound to key
sequences. You can easily work around this limitation by
providing a top-level extension language function that does not
require arguments or return values, but which calls sub-functions
that handle obtaining or returning the required information (see
Chapter 3).

Emulating ano~her text editor

Often, users come to BBN/Slate with experience using other text
editors. They may find it helpful to have BBN/Slate emulate
another editor, so many common keyboard commands (to delete
lines, move the cursor, mark areas of text, and so on) use familiar
key sequences.

Because different software applications almost never have exactly
the same set of features, you should not expect to map all of the
key sequences. Additionally, BBN/Slate can accommodate many
more media types than ordinary text editors, so, for example, there
may not be a correspondence for handling speech recordings.
However, defining even a few of the key sequences that are the
most common and familiar to you can help you quickly "feel at
home" with BBN/Slate.

1-18 BBN/Slate Customizing Manual

Some common key sequences used by an emac s text editor are
shown in Table 1-2. (There are many variations of emacs, some
using different key sequences than those shown here.) Although
emacs has many more functions than those shown here, the
principal remains the same for any emulation.

Note that both emacs and BBN/Slate are capable of displaying all
key bindings, thus establishing the initial portion of this listing.
You can do this in BBN/Slate with the function display­
current-keymap-in-buffer. It is helpful to print the list,
and then pare it down to those functions you want to emulate.

Use the first column of Table 1-2 to record the names of
BBN/Slate functions that correspond to emac s functions. In some
cases, no corresponding function is applicable, and is marked
"N.A:". In other cases, the default BBN/Slate key binding is
identical, so no binding is necessary. These functions are marked
with an asterisk (*). Some emac s functions do not have direct
equivalents, but could be easily emulated through a short
BBN/Slate extension language program. You can write and pub­
lish these custom functions and then include them in the profile
file. These are marked as "SEL function."

Sometimes, the key sequences you emulate may override the
default BBN/Slate key sequences. In these cases, you should
decide whether to provide different key sequences for accessing
the BBN/Slate function.

Most of the BBN/Slate functions can be found simply by browsing
through the text functions in Appendix B of this manual. You
can also select BBN-Invoke Function from the main menu, or
enter execute-command-dialog (the default binding is Esc-x)
and use the apropos-dialog command to examine possible
synonyms for some of the emacs function names. (This
technique is described in detail in Chapter 3.)

Customizing Basics 1-19

Table 1-2 Comparing BBN/Slate and emacs functions

Key
BBN/Slate function Sequence

text-set-mark C-@
text-start-of-line * C-a
text-backward-character * C-b
N.A. C-c

text-delete-forward *
text-end-of-line *
text-forward-character *
text-kill-line *
text-down-line *
text-open-line *
text-up-line *
text-search-

C-d
C-e
C-f
C-k
C-n
C-o
C-p

reverse-incrementally * C-r
text-search­

forward-incrementally * C-s

text-trans pose-characters * C-t
scroll-up C-v

Emacs function

set-mark-command
beginning-of-line
backward-char
mode-spec if ic-

command-prefix
delete-char
end-of-line
forward-char
kill-line
next-line
open-line
previous-line

isearch-backward

isearch-forward

transpose-chars
scroll-up

text-cut-region *
text-paste *
text-delete-back *

C-w kill-region

change-to-buffer *
save-buffers-and-exit

C-y yank
DEL delete-backward-

char
C-x C-b list-buffers
C-x C-c save-buffers­

kill-emacs
find-file
delete-blank-lines
save-buffer
write-file

visit-file-dialog *
SEL function
save-current-buffer *
write-current-buffer *
delete-cur rent-pane
delete-other-panes *
split-pane-down
split-pane-across
scroll-left
scroll-right

C-x C-f
C-x C-o
C-x C-s
C-x C-w
C-x 0

C-x 1

C-x 2

C-x 5
C-x <

C-x >

delete-window
delete-other-windows
split-window-vertically
split-window-horizontally
scroll-left
scroll-right

(continued)

1-20 BBN/Slate CustomiZing Manual

Table 1-2 Comparing BBN/Slate and emacs functions (continued)

Key
BBN/Slate function Sequence Emacs function

page-up C-x [backward-page
page-down C-x 1 forward-page
change-to-buffer C-x b switch-to-buffer
insert-file-dialog C-x i insert-file-dialog
next-pane C-x 0 other-window
text-start-of-buffer * ESC < beginning-of-buffer
text-end-of-buffer * ESC > end-of-buffer
text-backward-paragraph ESC [backward-paragraph
text-forward-paragraph ESC 1 forward-paragraph
text-end-of-sentence ESC a backward-sentence
text-backward-word * ESC b backward-word
text-delete-forward-word * ESC d kill-word
text-forward-word * ESC f forward-word
N.A. ESC g fill-region
execute-comMand-dialog * ESC x execute-comMand-dialog
text-paste ESC y yank-pop

The next step is to enter bind commands in your profile file that
correspond to columns one and two in Table 1-2. Functions
marked with an asterisk need not be bound, since they already use
a common key binding. Functions denoted as not applicable are
ignored. Functions marked as possible BBN/Slate extension
language functions are not included here, but could easily be
developed (see Chapter 3 for details).

The remaining functions - those for which a key binding needs to
be assigned - are shown in Table 1-3. This table illustrates the
actual bind commands you would place in a profile file.

Customizing Basics 1-21

Table 1-3 Emacs key bindings in a BBN/Slate profile file

##################
#BBN/Slate emulation of common emacs key sequences
##################
bind(text-keymap, ""'@", text-setmark);
bind(text-keymap, ""v H

, scroll-up) ;
bind(text-keymap, If AX"'C" , save-buffers-and-exit);
bind(text-keymap, ""XO", delete-current-pane);
bind(text-keymap, ""X2", split-pane-down);
bind(text-keymap, ""X5" , split-pane-across);
bind(text-keymap, II AX<" I scroll-left);
bind(text-keymap, IIAX>", scroll-right);
bind(text-keymap, IIAX[", backward-page);
bind(text-keymap, IIAX]", forward-page);
bind(text-keymap, ""Xb" , change-to-buffer);
bind(text-keymap, nAXi", insert-file-dialog,);
bind(text-keymap, flAXO", next-pane) ;
bind(text-keymap, "Esc-[",text-backward-paragraph);
bind(text-keymap, "ESC-] ",text-forward-paragraph);
bind(text-keymap, "Esc-a",text-end-of-sentenbe);
bind(text-keymap, "Esc-x",execute-command-dialog);
bind(text-keymap, "Esc-y",text-paste);

Finally, you should test each of the bindings to be sure you have
entered the key binding correctly and that you have employed the
correct BBN/Slate function. Once you are satisfied, you can place
the bindings in the public profile file (if all users at your site want
to use them) or in the appropriate private profile files.

Section 1.4 describes how to set up mail aliases when ending
electronic mail.

1-22 BBN/Slate Customizing Manual

1.4 Creating mail aliases

Mail aliases allow you to create a shorthand notation by which you
can refer to people or groups of people when sending electronic
mail. Mail aliases make it easier to send mail to people whose
mail addresses are difficult to remember or type. They are also
convenient when you often send mail to the same group of people;
you can use a single word to represent the entire group, rather than
having to type in each person's address every time you send mail.

You create mail aliases by including alias commands in your
profile file. The syntax of alias commands is:

alias("name", "address-or-alias, address-or-alias ••• ");

where address-or-alias is the mail address of the recipient or
another alias which represents the mail address of the recipient.

The .semicolon is optional, but it helps to mark the end of the alias
command. The name is the word you want to use to refer to the
addresses listed in the alias. For example, if you had an alias
command like this:

alias("joe", "jsmith23b@shire.bbn.com");

you could send a message whose To field said simply joe, and
BBN/Slate would automatically send it to
jsmith23b@shire.bbn.com. Similarly, you could use an
alias like this:

alias("cohorts", "paul, ellie, robin@xyz.edu");

to send mail to a whole list of people, just by typing "cohorts" in
the To field of your message. The addresses in an alias can be
aliases themselves, so

alias("friends", "cohorts, joe, sam@xyzzy.com");

Customizing Basics 1-23

makes friends equivalent to all of the people listed in both the
joe and cohorts aliases, plus sam at xyzzy.

1-24 BBN/Slate Customizing Manual

2

2.1

System menus

Configurable Menus

BBN/Slate provides configurable menus as a convenient and
powerful mechanism for customizing BBN/Slate menus. You can
use configurable menus to:

• add menu entries for existing BBN/Slate functions that are not
currently displayed as system menu items (Section 2.1)

• rename and/or reorganize existing menu entries (Section 2.2)

• create a menu entry that invokes a new BBN/Slate extension
language function (Section 2.3)

Just as key bindings allow BBN/Slate users to customize their
keyboard environment, configurable menus allow BBN/Slate users
to customize their menu environment.

Changing the existing BBN/Slate menus is not difficult, but you
should exercise judgment when, for example, deleting default menu
entries. Note that changing the menus can alter the appearance
and functionality of the software from what is described in the
BBN/Slate documentation.

Menu files

The default BBN/Slate menus, called system menus, are files
located in lusrlslate/menus (note that your site may have
installed BBN/Slate in a different directory than lusrlslate).
There are two subdirectories under menus. The full
subdirectory contains the complete, full system menus. The

Configurable Menus 2-1

File structure and
format

quick subdirectory contains the shorter QuickStart menus. This
chapter presents examples using the system menu files located in
the full subdirectory. (You can handle the system menu files
located in the quick subdirectory in identical fashion.)

The current system menu files are:

bbnicon.menu
editdoc.menu
enclosure.menu
graphics.menu
headers.menu

image.menu
speech.menu
spreadsheet.menu
text.menu

BBN/Slate menu files are plain text files. Note that system menu
files are organized not around any particular menu structure (which
is arbitrary), but around the BBN/Slate media types (text, graphics,
enclosures, and so on). Each system menu includes the suffix
.menu in the filename.

When configuring menus, you make a copy of one or more of
these system menus in a local directory, keeping the same
filename. You then edit the copy to change the existing menus
(see Section 2.3).

A menu file has a regular and defined organization and structure
that mirrors the functionality of its actual menu. Consider, for
example, the TEXT menu and the initial portion of the
text. menu file:

Text
I Add *
Fonts ~
Language ~
Styles ~
Edit ~
Counters ~
Group
Ungroup
Search •••
Select *
Usts ~
Describe Item •••

2-2 BBN/Slate Customizing Manual

MENU Text

TITLE Text

MENUNAME Text/Add

MENUNAME Text/Fonts

MENUNAME Text/Language

MENUNAME Text/Styles

MENUNAME Text/Edit

MENUNAME Text/Counters
ITEM Group

HELP "Place the selected region in a single
list or list item. (AXg)"

INVOKES text-group
GENERATED-BY text-group-pertinent

END ITEM

ITEM Ungroup
HELP "Break the selected region out of a

list or list item. (AXU)"

INVOKES text-ungroup
GENERATED-BY text-ungroup-pertinent
ENDITEM
ITEM Search •••
HELP "Search for some string or replace

some string. (M-S)"
INVOKES text-search-forward-dialog
ENDITEM
MENUNAME Text/Select
MENUNAME Text/Lists

ITEM Describe Item •••

HELP "Provide information about the paragraph
which contains the cursor. (AXW)"

INVOKES text-describe-object

END ITEM
ENDMENU

This menu contains the two categories of menu entries: submenus
and simple commands.

The first six entries of the menu (from Add through Counters) are
submenu entries that lead to further menu choices. These are

Configurable Menus 2-3

2.2

identified in the menu file as MENUNAME. Subsequent portions of
the menu file describe each submenu, using their own MENU

entries, but for this menu level, including just the MENUNAME
label is sufficient.

The next three menu entries (from Group through Search •••) are
simple command entries that are used to directly invoke commands
or functions. These are identified in the menu file as ITEM.

Note that each ITEM entry includes additional lines, or fields. For
example, the HELP field provides a help message to display when
a user presses MIDDLE hold for the current menu item. Section
2.2 describes all of the possible menu fields.

Menu file syntax

A menu file should contain only the fields necessary to its
particular defmition; all fields are optional. The possible fields
and their syntax are:

MENU command (menu-name)
TITLE name
HELP string
INVOKES name
FONT
GROUPS

name
(namel, name2, ••• namen)

GENERATED-BY name
DEFAULT-SELECTION index of default

selection, starting at 0
command description

ENDMENU

These fields are described as follows:

2-4 BBN/Slate Customizing Manual

MENU command
(menu-name)

TITLE

HELP

Menu names must be unique over all the BBN/Slate menus. If the
command name is unique, then menu-name may be omitted, and
name of the menu is considered the same as command. For
example:

MENU Add (Text/Add)
MENU Text

The name of the first menu is Text/Add. The name of the
second menu is Text.

The command is what appears in the menu. Menu names cannot
include parentheses, but can include spaces.

There are two cases where you must provide menu-name:

1. When you want to use the shorthand "MENUNAME abc" and
describe it later with the MENU ••• ENDMENU form.

2. When the actual menu (not just the command) is used in two
or more places in the menu hierarchy.

For example, suppose you have a list of the text formats in a
menu, and you want that menu to be invoked both by the
TEXT/ADD menu item and by the TEXT/STYLES/GLOBAL
CHANGE menu item. You describe the menu once, and then
use its name to refer to it thereafter.

The title is the name that appears at the top of the menu. For
example:

TITLE Graphics

The help field is a string, enclosed in double quotation marks.
This message is displayed whenever MIDDLE hold is pressed.
Any carriage returns and leading or trailing spaces in the message
are stripped. For example:

HELP "Place the selected region in a single list or
list item. ("Xu)"

Conflgurable Menus 2-5

INVOKES

FONT

GROUPS

GENERATED-BY

Note that the existing menu help messages sometimes include
information about default key bindings. If these bindings change
(see Chapter 1), you should also change the appropriate help
messages.

If you include this field, the named BBN/Slate function is invoked
when the menu item is chosen. The function must be published
(Le., user-callable). For example:

INVOKES text-group

To display a menu entry in a different font, include this field.
You can specify any font in the slate/fonts subdirectory
whose name includes a • font suffix (but do not include this
suffix in the name). For example, to use I8-point Helvetica bold,
spec~:

FONT helvetica18b

This field is included in default BBN/Slate menus to impose
constraints on the system menus by dimming (making unselectable)
various groups of commands according to the circumstance. You
should not attempt to alter existing GROUP fields or to apply new
instances of them to menus that you reconfigure.

Include this field if you need to include a function to generate a
context-specific menu entry. For example, the submenu for
Styles-Local Change varies, depending on the current active
element (paragraph, example, etc.). By including:

GENERATED-BY text-generate-local-edit-menu

in the menu description, you can create an appropriate submenu
entry. The function must be published (Le., user-callable).

2-6 BBN/Slate Customizing Manual

DEFAULT-SELECTION This field is the index (starting with 0) to the default selection in
that menu. The default selection is highlighted when you first
display the menu. The default selection is chosen if you select its
parent menu command without actually displaying the submenu.

Command
description

The command description consists of one or more lines.
Depending on the circumstances, they can be organized in any of
four forms. The first form is for entries that are not submenus,
and the next three forms are for entries that are submenus:

• ITEM. If the menu entry directly invokes a command or
function, use a simple command description
(ITEM ••• ENDITEM).

• MENU. If the menu entry involves standard menu actions, use
another MENU entry. In other words, you nest one MENU

entry within another. This command description consists of its
own MENU ••• ENDMENU section. There is no limit to the
number of levels you may choose to nest, although you may
find more than three or four levels of menus unwieldy.
However, you can simplify the organization of your menu file
by using MENUNAME (see below) entries in place of a full
MENU definition, and then providing the actual full MENU

definition later.

• MENUNAME. If the menu entry leads directly to another
submenu, you can use a submenu command (MENUNAME).

MENUNAME is simply a shorthand convention that serves as a
pointer to the full MENU ••• ENDMENU definition later in the
menu file.

• MENUITEM. Use a MENUITEM entry if the field refers to a
command that has a submenu and you want to control the
FONT or GENERATED-BY fields.

These four types of command descriptions are described in the
following sections.

Configurable Menus 2-7

2.2.1

2.2.2

2.2.3

Item

An ITEM (simple command description) contains many of the
same fields as the basic MENU description:

ITEM name
HELP
INVOKES

string
name

FONT name
GROUPS (namel, name2, namen)
GENERATED-BY name

ENDITEM

The field descriptions are identical to those listed for MENU in
Section 2.2.

Menu

You can nest one MENU ••• ENDMENU section within another. You
may find it more convenient and easier to read your menu files by
using the MENUNAME form.

Menuname

A MENUNAME entry has the form:

MENUNAME menu-name

Using MENUNAME, you can reduce the nesting of menu definitions,
making menu files easier to read. For example, the following
menu definition:

2-8 BBN/Slate Customizing Manual

2.2.4

MENU Text
MENU Add (Text/Add)

MENU Face (Text/Fonts/Face)

ENDMENU
ENDMENU

MENU Fonts (Text/Fonts)

ENDMENU
ENDMENU

can be organized in a more linear fashion by using MENUNAME
statements in place of the original MENU descriptions, followed by
each MENU description:

MENU Text
MENUNAME Text/Add
MENUNAME Text/Fonts

ENDMENU

MENU Add (Text/Add)

ENDMENU

MENU Fonts (Text/Fonts)

ENDMENU

MENU Face (Text/Fonts/Face)

ENDMENU

Menultem

MENUITEM menu-name
FONT name
GROUPS (name, name, name)
GENERATED-BY name

ENDMENU

Conflgurable Menus 2-9

2.3

Step 1

This form is used if the menu fields refer to a command that has a
submenu, and you want to control the FONT or GENERATED-BY

fields.

The menu-name is a menu name, and there must be a description
(of the form MENU ••• ENDMENU) corresponding to that name
somewhere else in the file.

The three fields (FONT, GROUPS, and GENERATED-BY)

describe the command that invokes the submenu; the fields in the
corresponding MENU ••• ENDMENU section describe the submenu.
For example, specifying the FONT field in a MENUITEM alters the
font just for menu-name. Specifying the FONT field in a
MENU ••• ENDMENU section alters the font for the entire submenu.

Tutorial: Configuring a new menu file

This section describes the steps you take to configure BBN/Slate
menus, including examples of changing existing menus and adding
new functionality.

Configuring menus involves altering the default BBN/Slate system
menus. Generally, you do this outside of BBN/Slate, using a text
editor from the operating-system level. (You also can edit the files
from within Slate, reading and writing them as plain text files.)
Changes to menus do not take effect until you restart edi tdoc.

This initial example reconfigures some of the features of the main
BBN/Slate system menu file, edi tdoc • menu. Begin as follows:

Using a workstation window outside of BBN/Slate, create a
subdirectory for menu functions (if you have not already done so).
For example:

mkdir /horne/srnith/Slate/Menus

2-10 BBN/Slate Customizing Manual

Step 2

StepS

Step 4

2.3.1

While it is not necessary to provide a separate subdirectory for this
purpose, it makes it easier to locate menu functions, and it keeps
your regular BBN/Slate directories cleaner.

Copy the edi tdoc . menu system menu file from the BBN/Slate
Menus subdirectory. For example, if the system menus are in
/usr/slate/menus/full, you could enter:

cd /home/smith/Slate/Menus
cp /usr/slate/menus/full/editdoc.menu •

Add the path for the new menu subdirectory to your profile file
(.slate_editor.init). For example:

menu-directory = "/home/smith/Slate/Menus";

From the new menu subdirectory, start up your text editor. For
example:

emacs editdoc.menu

You can now make several changes to the menu file.

Changing menu order

You are now ready to edit a local copy of the edi tdoc . menu
file.

First, you can alter the current order of the Document main menu
entries:

Set Language Font •••
Find Object
Check Spelling

to alphabetical order:

Conflgurable Menus 2-11

Step 1

Step 2

Check Spelling
Find Object
Set Language Font •••

Locate the Document menu lines in the editdoc • menu file by
searching for:

MENU Document

Study the organization of this section. Notice that the three menu
entries appear consecutively. A summary of this section is shown
below (in detail only to the first level of indent to save space),
with the menu entries in bold:

MENU Document (Editor/Document)
HELP "Assorted commands •••
ITEM Set Language/Font •••

ENDITEM

MENU Find Object (Editor/Document/Find Object)

ENDMENU

MENU Check Spelling (Editor/Document/Check Spelling)

ENDMENU
ENDMENU

Carefully move each block of lines that comprise each menu entry
into their new order so that they now appear as follows:

2-12 BBN/Slate Customizing Manual

Step 3

Step 4

2.3.2

MENU Document (Editor/Document)
HELP "Assorted commands •••
MENU Check Spelling (Editor/Document/Check Spelling)

ENDMENU
MENU Find Object (Editor/Document/Find Object)

ENDMENU
ITEM Set Language/Font •••

ENDITEM
ENDMENU

Save the file in the local directory (be sure to keep the file named
edi tdoc • menu). Then, from the operating-system level, test the
change by starting a new Document Editor window with the
command:

editdoc

Pull down the Document menu. You should now see the menu
entries in their new, alphabetical order. Although there is a new
order, the functionality of each menu item is still the same.

When you are done testing, you can exit from the new Document
Editor window.

Adding new functionality

One of the most powerful aspects of BBN/Slate customization is
the ability to make custom functions available to all users. One of
the most convenient ways to do this is by using customized menus.

There are two basic resources available for adding functionality to
BBN/Slate. First, you can draw upon existing BBN/Slate functions
that are not currently part of the menu system; Appendix B lists
hundreds of functions. Second, you can create your own functions
using the BBN/Slate extension language (see Chapter 3), and then
reconfigure your BBN/Slate menus for easy access to your new

Configurable Menus 2-13

Adding
BBN/Slate
functions

Step 1

functions. As long as the function you call does not require
arguments, you can invoke it from a menu file. (Note that the
BBN/Slate extension language gives your function access to system
variables and the ability to employ arguments when calling other
functions.)

As an initial example, you can add the ability to invoke the
BBN/Slate function pwd-in-dialog from the main File menu.
This function displays the current working directory in a pop-up
message window.

As described in the previous example, edit a local copy of the
editdoc.menu file. Search for the string MENU File. Add
the portion shown in bold so that the complete section reads as
follows:

MENU File (Editor/File)
HELP "Create, load, and store documents."
MENUNAME Editor/File/New
MENUN~ Editor/File/Read
MENUNAME Editor/File/Write
MENUNAME Editor/File/Insert
ITEM pwd

HELP "Prin~ Working Direc~ory in
pop-up dialog box."

FO~ Helve~ica14bi

INVOKES pwd-in-dialog
ENDITEM

ENDMENU

The new menu item specifies a font of 14-point Helvetica bold
italic. This makes the menu entry distinct from the others in the
File menu:

2-14 BBN/Slate Customizing Manual

Step 2

Step 1

Read
Write =>
Insert =>
pwd

Save the file, then invoke the command edi tdoc again to test
the change. When you select pwd from the menu, you should see
your current working directory displayed in a dialog box.

Adding extension language functions. You can also add a new
extension language function that you wrote yourself. This is really
no different than adding existing BBN/Slate functions such as
pwd-in-dialog.

Chapter 3 provides complete details on writing and testing your
own BBN/Slate extension language functions. Also, make sure that
the function is public and you have included it in a profile file
(for example, using autoload).

Using make-slides (a program presented in Chapter 3), an
example is given here of how to add menu support for an
extension language function. This program automatically creates
separate viewgraph files from an existing BBN/Slate document.
Assuming that you have created the file make_slides. sel,
entered the make-slides extension language functions, and
tested the program by invoking it explicitly with the execute­
command-dialog function, you can now proceed with the steps
involved in adding menu support.

You must define the program by adding it with an autoload
statement to your • slate_editor. init file. If you plan to
invoke your function only from a menu, then you can omit any
key binding from the autoload statement:

autoload (make-slides, make_slides.sel);

Configurable Menus 2-15

Step 2

Step 3

2.3.3

If you want to be able to invoke the function from the keyboard as
well, you can include a key binding:

autoload (make-slides, make_slides.sel,
text-keymap, "Esc-''');

Again, edit a local copy of the edi tdoc • menu file. Add this
function to the end of the realphabetized entries from the
Document main menu (see Section 2.3.1), as shown in bold:

ITEM Set Language/Font •••
HELP "Change the default •••
INVOKES set-document-font-dialog

END ITEM
ITEM Make Slides
HELP "Create viewgraph files from the current file."
INVOKES make-slides
ENDITEM

Save the file, then invoke the command edi tdoc again to test
the change. When you select Make Slides from the menu, the
make-slides extension language function runs, you are queried
for information, and the file is processed into viewgraphs.

Public accessibility

When you create menu files that you want to be in effect for all
BBN/Slate users at your site, you may find the following strategy
helpful.

1. Keep your site-specific menu files in a special site-wide
location. Placing the files in a subdirectory of your BBN/Slate
software is not a good idea, in case you later delete the area
when installing a new version of BBN/Slate.

2-16 BBN/Slate Customizing Manual

2. Add a menu-directory entry to a site-wide BBN/Slate
profile file s la te _ edi tor. ini t. If this file does not yet
exist, you can easily create one. If you installed BBN/Slate in
/usr / slate, for example, this file should be located in
/usr/slate/lib. This strategy avoids the extra work of
making sure that the menu-directory specification is in
every user's profile file.

There is an additional benefit to doing this. Having a
slate_editor. in it file specify a site-wide reconfigured
menu allows individual users to create their own, private menu
configurations that can further modify the site-wide
configuration.

Configurable Menus 2-17

3

3.1

The BBN/Slate Extension
Language

Overview

The BBN/Slate Extension Language (SEL) is a tool that extends
the capabilities of BBN/Slate software and enhances your
BBN/Slate environment. You can use it to:

• build new, custom functions that accomplish specific tasks for
your editing environment and, if desired, access them via a
reconfigured menu

• control actions in enclosures (including exchanges with external
database management software, and interactive dialogues to
allow users to load external files)

• define a common BBN/Slate environment for all users in your
work group

• tailor BBN/Slate more closely to editing environments with
which you are already comfortable (for example, you can
define the same keyboard equivalents that you already use in a
text editor, such as emacs or vi, for cursor control, file
saving, and window control)

• access BBN/Slate functions not available through default menus
and key bindings

SEL can help you work with all media types, and works within the
BBN/Slate Document Editor program edi tdoc •

The BBN/Slate Extension Language 3-1

Who can use
SEL?

3.1.1

3.1.2

To summarize the purpose of SEL succinctly, it offers e.xtensibility
and customization.

System administrators can use SEL to create a common
environment for all BBN/Slate users at their site. Individual users
can use SEL to redefine the common environment, or to create
additional functionality for their own use.

Using SEL

To develop new functions in the Slate Extension Language, you:

1. create a file containing extension language commands,
functions, and variable definitions

2. invoke a command that reads and executes the commands in
that file

Once the file of extension language commands has been read
by edi tdoc, any function defined in that file can be directly
invoked. The file can be read through explicit command, or read
automatically at startup by placing a command to read the file in
the user's • slate editor. ini t file.

Accessing functions

The BBN/Slate software comes with hundreds of built-in functions
for handling compound documents. While many of these functions
are immediately available to all users, many others are not assigned
to the default menus or key bindings that come with the system, as
in the following illustration.

3-2 BBN/Slate Customizing Manual

Figure 3-1

Menus

Bindings

Explicit
invocation

default high-level functions

all other user-callable functions

low-level functions

accessible from
default menus

accessible with BBN/Slate
extension language

not accessible

Accessibility of functions In BBN/Slate

You commonly access BBN/Slate functions in the following ways:

Choosing a pull-down menu item automatically invokes a
corresponding function or series of functions. For example,
choosing the main-menu function keycaps in the Document
Editor invokes the function display-keyboard. (Some menu
actions involve low-level functions, however.) The use of menus
is explained fully in the Reference Manual.

A key binding can be used to invoke functions. For example, the
up-arrow key is bound to the text-up-line function. Sections 3.2,
3.4, and 3.5 present key bindings in more detail.

You can explicitly invoke functions using the execute-command­
dialog command. This is itself a function that pops up a window
where you enter the function name and then click the OK button
to invoke it. (You may do this only to access functions that do
not require arguments. You can allow users access to functions

The BBN/Slate Extension Language 3-3

3.1.3

that require arguments by building SEL functions, where the
functions either supply the arguments explicitly, or the argument
values are supplied by querying the user.) Section 3.4 describes
explicit invocation.

Power and flexibility

One of the principal purposes of the BBN/Slate extension language
is to help you take advantage of many of the powerful functions
already developed for the BBN/Slate software. You can then use
the extension language to combine these functions in unique ways
that meet the specialized needs of your site.

SEL keeps "programming overhead" to a minimum by allowing
you to perform complicated functions with single statements. For
example, in many programming environments, displaying a
message in a pop-up dialog box could involve writing a large
number of statements; in the BBN/Slate extension language, you
can perform this with one statement, such as the following:

display-message(IfThis is an unclassified document.If)~

You can then define this statement as part of a function that, when
invoked from within the Document Editor, creates the following
pop-up window:

This is an unclassified document.

I
[OK ~

The BBN/Slate extension language also provides a full range of
programming constructs. For example, the following commands:

3-4 BBN/Slate Customizing Manual

local search-string, search-region;
search-string = read-string-dialog(

"Keyword or phrase to search for.",
"Word or phrase: ");

search-region = create-region(beginning-of-buffer(),
end-of-buffer(»;

if (text-search(search-string, search-region, 1»
{
text-line-to-top()

text-select-current-word()
}

perform these tasks:

• prompt the user to enter a search string

• search the document for the specified string

• scroll the paragraph containing that string to the top of the
display area if the string is found

• highlight the word

The vehicle for applying extension language code such as this is
the function definition. By adding the lines shown in bold, these
same statements can stand alone as a complete function definition:

define public void search-word()
"Search for a word, scroll 'to 'top, and highligh't i't."
{
local search-s'tring, search-region;
search-string = read-string-dialog(

"Keyword or phrase to search for.",
"Word or phrase: ");

search-region = create-region(beginning-of-buffer(),
end-of-buffer(»;

if (text-search(search-string, search-region, 1»
{

}

text-line-to-top();
text-select-current-word();
}

The BBN/Slate Extension Language 3-5

There are several ways to make this function active (see Section
3.3). Once this is done, you can invoke the new function
search-word, test it, and subsequently put it to work as a new
BBN/Slate feature for yourself or for your site. You can also bind
it to a specific key such as the Rl key (see Section 3.3 for a
complete discussion of key binding).

Pressing the Rl function key invokes the newly defined function
search-word. It creates a pop-up window that prompts you
to enter a search string:

Keyword or phrase to search for.

~IW __ o_rd __ o_r~p~h_r_a_se_: __ t_e_x~ __________________________ J
[(OK)] (Cancel)

If it finds the string, it then scrolls the paragraph containing the
string to the top of the window and highlights the word. For
example:

The departmental survey on"~-retrieval techniques
is reviewed in this report.

The remainder of this manual explains in more detail how you can
use and define functions in SEL. While the introductory examples
presented here are simple in nature, it is possible to build far more
sophisticated programs. Section 3.5 presents some advanced SEL
examples that you may want to survey, such as a mail-merge
program.

Because SEL is a programming language, the next section intro­
duces you to the syntax of the language so that you can begin to
familiarize yourself with its conventions.

3-6 BBN/Slate Customizing Manual

3.2

3.2.1

3.2.2

3.2.3

3.2.4

Syntax and semantics

This section specifies the syntax of the BBN/Slate extension
language. This information is useful to anyone who plans to use
the BBN/Slate extension language. In addition, you may find the
examples presented in Section 3.5 to be an aid in learning SEL.

Integer constants

Integer constants are represented by a string of unsigned digits.

Real constants

Real constants are represented by a string of unsigned digits
including a decimal point.

String constants

String constants are a sequence of characters bounded by double
quotes. To include a double quote in a string, precede it with a
backslash character. For special characters, use the character's
octal representation preceded by a backslash; for example, to
include the special ASCII character "H, use the representation
\010.

Variable names

Variable names are a string of uppercase and lowercase letters or
numbers, and may also contain any of the following characters:

- • @

The BBN/Slate Extension Language 3-7

3.2.5

3.2.6

The dash, period, and numbers cannot be used as the first character
of a variable name. Variable names are case dependent; 'xxx' and
'.xxx:' are different variables.

Reserved words

The following are reserved words in the extension language.
These words are case independent (they may be in uppercase,
lowercase, or mixed case).

autoload
if
define
else
global
local
null
private
public
return
undefine
while

Note that the SEL reserved word null is analogous to null in
the C language. You can compare null with a pointer or string,
assign it to a pointer or string, and so on.

Comments

Text from a pound sign (#) to the end of a line is considered a
comment and is ignored.

3-8 BBN/Slate Customizing Manual

3.2.7

3.2.8

Variable types and usage

The following types are defined:

buffer
char
document
int
keymap
mark

object
pointer
real
region
string
void

Variables must be assigned a value (by appearing on the left-hand
side of an assignment statement) before they can be used on the
right-hand side of an assignment statement, in an expression, or as
an argument to a function.

Variable types must match when:

• used in expressions and assignment statements

• passed as arguments to edi tdoc or user-defined functions

The only exceptions are that pointers and integers are considered to
match and that strings are converted to and from integers as
needed.

You do not declare a variable's type. This is determined when the
variable is first assigned a value.

Variable scoplng

Variables are either global, file local, or function local. All
user-defined variables must be declared before being used.
Variables defined in edi tdoc (see Section 3.3.3 and Appendix
A) are declared at initialization, before the user's profile file is
read. You do not need to declare these types of variables before
using or setting them.

The BBN/Slate Extension Language 3-9

Purpose and use
of global
variables

Global variables are declared in a global statement; file local
variables are declared in a local statement:

global a, b, c
local d, e, f

Both global and file local variable declarations must appear outside
a function. For example:

local d, e, f
define public void test()
{
}

Function local variables are also declared in a local statement
that appears after the definition of a function, but before the body
of the function (see Section 3.4 for more information on the syntax
of function definitions):

define public void test()
{

local g, h, i
}

When a variable is encountered, the extension language interpreter
first looks for its definition as a function local variable (defined in
the function currently being executed) or function parameter, then
as a file local variable, and finally as a global variable.

Once they are declared, global variables permanently reside within
your BBN/Slate software. Because of this, if you need to pass
information between functions scattered over several files, you may
find it more practical to pass information via a calling function's
arguments. Global variables are most appropriate for selected,
general-purpose declarations. For example, you may want to
declare:

global TRUE, FALSE~

TRUE = l~
FALSE = O~

3-10 BBN/Slate Customizing Manual

3.2.9

so that you can use expressions such as:

while (TRUE)

Expressions

The syntax of an expression is:

expression binary-operator expression
or

(expression)
or

unary-operator expression

The operators are:

equality (==)
inequality (1=)
greater-than (»
less-than «)
greater-than-or-equal-to (>=)
less-than-or-equal-to «=)
multiplication (*)
division (I)
addition (+)
subtraction (-)
logical or (I I)
logical and (&&)
logical negation (1)
unary-negation (-)
assignment (=)

The BBN/Slate Extension Language 3-11

The precedence of the operators is the same as in the C language:

Precedence (descending order)

- (unary)

* /
+
< <= > >=
-- !=
&&

II
=

The entire expression is always evaluated. For example, in the
statement:

while (a == 1 && b == 2) c = c + 1;

both the values of a and b are tested, even if a is not 1.

All of the operators may be applied to all of the variable types
with the following exceptions:

•
•

•
•

•

unary operations are not allowed on strings

arithmetic operations and logical operations are not allowed on
two strings (however, string-to-integer conversions are done for
expressions in which one argument is a string and one
argument is an integer)

arithmetic and logical operations are not allowed on two marks

arithmetic operations are not allowed on two regions

unary subtraction is supported only for reals and integers

These exceptions are summarized in Table 3-1.

3-12 BBN/Slate Customizing Manual

Table 3-1

3.2.10

Application of operators to variable types

Description Operator String Strings Marks Regions
Arithmetic operators

Binary +-*/ No No No
*Unary No No No No

Relational operators < <= > >=
Equality operators == 1=
Logical operators

Connectors II && No No
Negation I No No

• Note: Unary negation is supported only for reals and integers.

Statements

The following types of statements are defined in the extension
language:

statement :rype

if, while, assignment,
return, function call,
function definition

undefine

global

local

autoload

Discussion

Section 3.2

Section 3.2.17

Section 3.2.8

Section 3.2.8

Section 3.4.8

Multiple statements can be enclosed in braces; they are then treated
as a single statement. Statements may be optionally terminated
with a semicolon.

The BBN/Slate Extension Language 3-13

3.2.11

3.2.12

3.2.13

3.2.14

The if statement

The syntax of an if statement is:

if (expression) s~a~emen~
or

if (expression) s~a~emen~ else s~a~emen~

The parenthesized expression is evaluated. If it is non-zero, the
statement following it is executed. If it is zero and there is an
else statement, then the else statement is executed. An else
statement is always assumed to match the innermost if statement
possible.

The while statement

The syntax of a while statement is:

while (expression) statement

The parenthesized expression is evaluated. If it is non-zero, the
statement following it is executed. These two steps are repeated
until the parenthesized expression is zero; then the statement
following the while statement is executed.

Assignment statement

The syntax of an assignment statement is:

variable = expression

The expression is assigned to the variable.

The ret.urn statement

The syntax of a return statement is:

3-14 BBN/Slate Customizing Manual

3.2.15

3.2.16

3.2.17

return expression
or

return

A return statement must be inside a function. It causes
execution of the function to be terminated. The expression in
parentheses is the result of the function. It must match the
type-name in the function definition (see Section 3.2.7).

Function call

The syntax of a function call is:

function-name (parameters)

where parameters is a comma-separated list of expressions. If
there are no parameters, the parentheses must still be included.
Each actual parameter is evaluated and assigned to the corre­
sponding formal parameter when the function is called, i.e.,
arguments are passed by value. If a parameter is changed within
the called function, its value outside that function is not changed.

Indirect function call

The syntax of an indirect function call is:

invoke symbol parameters

where symbol is a variable that contains a function name, and
parameters is a comma-separated list of expressions (if any).

Function definitions

The syntax of a function definition is as follows:

The BBN/Slate Extension Language 3-15

define function-type type-name function-name
(variable-list) "help string"

{
local local-variable-list

statements

}

The function-type is either private or public. The default is
public. You should declare a function to be private if it is
just a "helper function," one not intended to be used by itself or
invoked directly by the user. Only public functions can be
described via apropos-dialog or describe-command and executed
via execute-command-dialog (see Section 3.4).

The type-name can be any of the valid types (see section 3.2.7).
If the type-name is void, then it is assumed that the function does
not return a value. If the type-name is not void, then a value
must be returned by a return statement within the function body
(see section 3.2.14).

The variable-list is a comma-separated list of variable names. It is
optional, but the parentheses must be included. When the function
is called, each variable in the list is assigned the value of the
corresponding actual parameter in the function call (see Section
3.2.10).

The optional help string describes the function. The help string
must be enclosed in double quotes; to include a double quote in
the help string, precede it with a backslash character. This help
string is printed by the edi tdoc function, describe-command
(see Section 3.3.4).

3-16 BBN/Slate Customizing Manual

The local-variable-list is a comma-separated list of variable names,
and is optional. The local statement defines variables that are
local to the function (see Section 3.2.8).

The body of the function is enclosed in braces and contains zero
or more statements.

User-defined functions can be redefined. When a function
definition is read, if there is an existing user-defined function with
the same name, the user is queried as to whether to redefine the
function. If the user replies affirmatively, the function is
redefined; if the user replies negatively, the new definition is
ignored. The user query can be bypassed in one of two ways:

• Place the following line in your profile file:

redefine-silently = 1;

• Explicitly undefine the function, using the extension language
undefine command.

The undef ine command takes a comma-separated list of names
of functions to undefine. For example:

undefine test, test2
define public void test()
new definition of test function
{
}

define public void test2()
new definition of test2 function
{
}

The BBN/Slate Extension Language 3-17

3.3

3.3.1

Search paths

Functional description

This section describes the functional characteristics of the
BBN/Slate extension language.

The role of the profile file

The extension language coordinates closely with your profile file.
Chapter 1 explains profile files in detail: what they can contain,
how you might organize them, and how profile file initialization
works. It also covers the use of public and private profile files,
and how you can use private profile files to redefine default
system characteristics (for example, through the use of global
preference variables).

Several kinds of· profile file content relate directly to the extension
language:

•
•
•

library search paths

extension language definitions

autoload commands

You must include the variable library-search-path in your
profile file to specify those directories where you store files of
BBN/Slate extension language definitions. You can specify more
than one directory, separating each with a colon. The string of
directory names must be surrounded in double quote marks. For
example:

library-search-path = "/home/smith/Slate/sel:/home/sel";

3-18 BBN/Slate Customizing Manual

Extension
language
definitions

The autoload
command

3.3.2

Loading
commands from
a profile file

Loading
commands from
a separate file

You can place complete extension language definitions directJy in
your profile file. However, you should restrict this practice to
minimize edi tdoc startup time. It is preferable to use
autoload commands.

The autoload command restrains reading function definitions
from files until the functions are actually invoked. Thus, you can
use autoload to publish a large number of functions without
incurring the overhead of reading their function definitions at
startup.

Loading commands

There are several methods of loading commands:

1. List them directly in the profile file.

2. List them in a separate file and use an autoload statement in
the profile file.

3. Invoke the Document Editor (editdoc) with an -exec
argument

4. Use the read-commands function from within the Document
Editor.

S. List them in a separate file and use a
read-commands-from-file statement in the profile file.

You can place definitions directly in a profile file. In general, you
should refrain from this practice to minimize startup time for the
Document Editor.

You can improve the startup time for the Document Editor by
placing your SEL commands in a separate file. You can then
place a reference to each function in your profile file with an
autoload statement. The functions will be read only when
actually invoked by the user.

The BBN/Slate Extension Language 3-19

Loading
commands with
-exec argument

The syntax of the autoload command is:

autoload (function-name, "filename",
keymap-name, "key-sequence ");

The filename is the name of the file that contains the definition of
the function, and may also include a specific path. The
keymap-name and key-sequence are optional. If they are included,
the function is bound to the key sequence in the keymap. For
example, if you include the statement:

autoload (rnmerge, "rnrnerge. sel") ;

in your profile file, you can then invoke
execute-command-dialog (the default key binding is Esc-x)
and select mmerge. If you include the statement:

autoload (rnrnerge, "rnrnerge. sel", text-keyrnap, "Esc-#");

in your profile file, you can then invoke mmerge by pressing
Esc-#.

Note that you must precede any autoload statements in your
profile file with a library-search-path variable that defines
the directory paths containing your SEL definitions.

You can load commands from a file directly at edi tdoc startup
by including the argument:

-exec filename

where filename is the name of a text-only file containing
commands. For example:

editdoc -exec /usr/slate/SEL/public_definitions.sel

3-20 BBN/Slate Customizing Manual

Loading
commands within
the Document
Editor

Also, edi tdoc can be invoked with the -1 flag:

editdoc -1

This causes edi tdoc to "listen" on its standard input and accept
lines with the same format as its command line arguments. For
example, edi tdoc can be sent (on its standard input), additional
lines of the form:

-exec filename

where filename is again the name of a file of extension
language commands. These commands are read and executed as
they are received.

You can read and execute a file of extension language commands
directly from the Document Editor. To do this, select BBN-Load
SEL Commands from the main menu, or invoke the
execute-command-dia1og function (the default binding for
this is Esc-x) and then enter the read-commands function in the
dialog box:

FuncUon to execute:

about-slate
add-audio
add-blank-image
add-enclosure
add-graphics
arjd-header

I read-command~

K OK)]

(cancel)

Another dialog box appears, requesting a file of extention language
commands:

The BBN/Slate Extension Language 3-21

File name:

I/u 1/home/slate/extra.sel

(list (Gancel)

Enter the name of the text file that contains the extension language
commands. If the file is not located in the current directory, you
should precede it with the appropriate pathname. Alternatively,
you can first use the change-directory-dialog function
before invoking read-commands to redefine the search path.

You can also compose files of extension language commands
during a Document Editor session. After composing the file of
extension language commands, write the file as text, and then use
the read-commands function to read the text file. Alternatively,
you can write an extension language function that writes the
current buffer (which is assumed to contain extension language
commands) as a text file in a temporary area, and then executes
that text file. This is a very useful way to develop and debug
extension language functions. All of these methods are described
and illustrated in Section 3.4.

Once a command is loaded, any variables or functions defined in
the file are defined in edi tdoc, and any statements in the file are
executed. These functions can now be invoked directly from
edi tdoc, either by binding them to key sequences or by invoking
execute-command-dialog (see Section 3.3.2).

3-22 BBN/Slate Customizing Manual

3.3.3 Variables In edi tdoc

The BBN/Slate edi tdoc program utilizes two basic categories of
variables: document manager variables and document editor
variables. The document manager variables, of which there are
only a few, control the appearance and behavior of the Document
Manager. The document editor variables, which are many in
number, control the appearance and behavior of the Document
Editor.

The document editor variables can be further separated into three
categories:

• editor variables. These variables control the operation of the
Document Editor, and should be set in the
• slate_editor. init profile file. An example of this
type of variable is classify-names, which controls the
classification markings used to label document elements.

• document variables. These variables control the attributes of a
document that should persist from one editing session to
another, and are set by defining document attributes in the
Document Editor. An example of this type of variable is
page-footer, which you set in the Preview/Print .•• dialog
box of the Print menu.

• buffer variables. These variables control the attributes of a
document that should persist during an editing session, but
should not persist across editing sessions. These are internal
variables set and used by the Document Editor.

All variables are stored in one of three variables tables, depending
upon the scope of the varible. Variables associated with the
current buffer are stored in the buffer variables table. Variables
associated with the document are stored in the document variables
table. Variables associated with the Document Editor in general

The BBN/Slate Extension Language 3-23

3.3.4

Rapid location
and entry of
names

are stored in the global variables table (for example,
page-left-pixels, which controls the margin between the left
edge of the Document Editor window and the beginning of the text
area).

For a comprehensive list of BBN/Slate variables, consult Appendix
A.

On-line information

There are several functions that provide on-line information. You
can access them by selecting BBN-Invoke Function from the main
menu, or by invoking execute-command-dialog (the default
binding for this function is Esc-x). Either method displays a
dialog box (see below). You then enter one of the function names
described in this section. For example:

Function to execute:

about-slate
add-audio
add-blank-image
add-enclosure
add-graphics
add-header

I describe-variabl'l..

[OK]

(cancel)

You can either use the mouse to scroll through the list and select
one of the function names, or you can type the name of the
command directly from the keyboard. You can use the BBN/Slate
typing completion feature to assist you in locating the desired
name: type the first set of characters that distinguish one name
from all others and then press Space. The name is completed.
You can LEFf click on the OK button or press Return to
confirm the selection. Typing some characters and then Return
completes the name and, if the name is unique, accepts the choice.
For example, typing:

3-24 BBN/Slate Customizing Manual

On-line
information
functions

desc Space -d Space Return

locates and enters the describe-document-variable
function.

The following on-line information functions are available:

describe-command
This function displays a description of a function in the extension
language. It displays a dialog box requesting the function name.
The dialog includes a scrollable alphabetical list of the user-callable
functions defined in editdoc and any public user-defined functions.
Enter the name of the function to describe (using space for
recognition of an initial substring) or select it from the scrollable
list of functions. A new dialog box will be displayed with a
description of the function selected including the types of its
arguments and returned result.

display-functions-in-buffer
This function displays the names and descriptions of all the
user-callable functions defined in edi tdoc and any user-defined
functions. The output is placed in a separate buffer (named
#help). The information displayed is the same as that given by
describe-command. (Because the system processes several
hundred functions, this command can require a long time to
execute.)

apropos-dialog
These functions display the names of all the user-callable functions
defined in edi tdoc and any user-defined functions that contain
the specified word. The apropos-dialog function queries the
user for the word; the apropos function takes the word as an
argument. The names of functions are displayed in a scrollable
list. If you choose one of the functions from this list, then a
description of that function is displayed. The information
displayed is the same as that given by describe-command.

The BBN/Slate Extension Language 3-25

describe-variable
describe-buffer-variable-dialog
describe-document-variable-dialog
describe-global-variable-dialog
These functions are used to display a description of a variable.
They display a dialog box requesting the variable name. This
dialog includes a scrollable list of variables. Enter the name of the
variable to describe or select it from the scrollable list of variables.
The describe-variable function describes variables in any of
the BBN/Slate variable tables. It searches for variables first in the
create-buffer-variable variable table, next in the document-specific
variable table, and finally in the global variable table.

The describe-buffer-variable function describes v~riables
in the create-buffer-variable variable table for the current buffer.

The describe-document-variable function describes
variables in the document-specific variable table for the current
document.

The describe-global-variable function describes global
variables that are either defined in edi tdoc or declared in a
global statement in a file of extension language commands.

The description of the variables includes the current value of the
variable and a description of the flags set for that variable. The
following flags are defined:

user-readable The user is allowed to read the variable in a file
of extension language commands.

user-writable The user is allowed to assign a value to the

3-26 BBN/Slate Customizing Manual

Example

Help from the
BBNmenu

defined

variable in a file of extension language commands
or by using one of the set functions (set,
set-buffer-variable, or
set-document-variable).

The variable is defined. In an extension language
file, undefmed variables can be assigned a value
(thus defining them), but they cannot be read.

creat.e-buffer- This variable is replicated for each buffer created.
variable

document.­
specific

This variable is replicated for each document
created.

An example of looking up on-line information would be to
investigate the current value associated with the variable that tracks
the page width. Invoking describe-document-variable
for page-width provides a description (fn a scrolling message
box) such as the following:

A document specific variable. The width of a page displayed
on the screen. The default la 6.5 Inchea.
The following flags are set:
document-specific
defined
user .. eadable
user writable
The value Is: 6.51.

The BBN menu (at the far left of the main menu) provides a Help
submenu with convenient access to several of the functions
discussed in this section.

The BBN/Slate Extension Language 3-27

Help from the
BBNmenu

3.3.5

The BBN menu (at the far left of the main menu) provides a Help
submenu with convenient access to several of the functions
discussed in this section.

Classi Doc'

ApfOllOS
Set Variable Describe Function
Invoke Function Describe Variable
Load SEL Describe Key Binding

List Current Key Bindings

Apropos calls apropos; Describe Function calls
describe-command; and Describe Variable calls
describe-variable. In addition, Describe Key Binding and
List Current Key Bindings allow you to obtain information on
specific or all key bindings, respectively.

Special extension language functions

Among the user-callable functions listed in Appendix B, the
following functions have been defined in the editor specifically for
use in the extension language. Special note is made here of these
functions because they are useful for manipulating locations in and
regions of the current document.

beginning-of­
buffer

end-of-buffer

current-point

Return the location of the start of the document.
It takes no arguments. The type of the returned
value is mark.

Return the location of the end of the document.
It takes no arguments. The type of the returned
value is mark.

Return the current insertion point (cursor
location). It takes no arguments. The type of the
returned value is mark.

3-28 BBN/Slate Customizing Manual

current-region

beginnlng-of­
region

end-of-reglon

create-region

text-set-polnt

document-set­
point

Return the current selected region, the area
between the current insertion point and the current
mark. Regions are used as arguments to several
edi tdoc functions, most notably to the search
functions. It takes no arguments. The type of
the returned value is region.

Return the start of the specified region. It takes
one argument of type region. The type of the
returned value is mark.

Return the end of the specified region. It takes
one argument of type region. The type of the
returned value is mark.

Create a new region. It takes two arguments of
type mark, which are the start and end of the
region created. The type of the returned value is
region. For example, the call:

region = create-region(beginning-of-buffer(),
end-of-buffer(»

creates a region that is the entire document.

Set the insertion point to the specified text
location in the document. This function
guarantees that the insertion point is set in text
(i.e., if the location specified is in a non-text
object, then the point is set in the next text
object). It takes a single argument of type mark
and returns no value.

Set the insertion point to the specified location in
the document. It takes a single argument of type
mark and returns no value.

The BBN/Slate Extension Language 3-29

text-set-mark Set a mark at the current point. It takes no
arguments and returns no result.

mark-Is-equal Compare two marks. It takes two arguments of
type mark and returns true (1) if they are equal
and false (0) otherwise. This function must be
used to compare values of type mark (for
example, the results of calls to beginning­
of-buffer, end-of-buffer, current­
point, and current-mark); they cannot be
compared using the equality operator.

mark-add-offset Add an integer offset to a mark and create and
return a new mark. It takes two arguments. The
first is of type mark and the second is an integer
offset of type int. The type of the returned value
is mark.

mark-Is-in- Determine if a mark is within a region. If the
region mark is within the region, it returns true (1),

otherwise it returns false (0). It takes two
arguments. The first is of type mark and the
second is of type region.

mark-convert- Convert a mark to a location in a document. It
to-location takes one argument of type mark, and converts it

to an integer, which is the location in the docu­
ment. The type of the returned value is int.

locatlon-convert- Convert an integer location in a document to a
to-mark mark. It takes one argument of type int, which is

a location in a document and returns a value of
type mark.

~o BBN/Slate Customizing Manual

3.3.6

Error handling

Other extension language facilities

The following is a description of the extension language facilities
for error handling, executing functions repeatedly, and setting or
determining the last function executed.

These facilities make use of global variables that can be read
directly in the extension language (simply by referring to the
variable), but which must be set by calling edi tdoc functions.
That is, these variables cannot be set by simply assigning them a
value in an extension language assignment statement.

The global variable is used in edi tdoc functions to indicate
whether or not an error has occurred. If an error has occurred,
this variable is set to 1; if no error has occurred, this variable is
set to O.

To read global-error in the extension language, simply refer
to it. To set global-error, call set-global-error-code
with a single integer argument, which is the value to assign to
global-error.

For example, the following extension language function invokes
text-down-line, which moves the cursor down one line, until
the end of the document is reached. Text-down-line sets
global-error when it reaches the end of the document.

define public void go-to-end()
{
set-global-error-code(O);
clear any previous error set
while (1)

}

{
text-down-line();
if (global-error)
return;
}

The BBN/Slate Extension Language 3-31

Repeat count

Last function
executed

The global variable global-repeat-count is the number of
times that an operation should be repeated. The repeat count is set
by the function gather-repeat-count (for which the default
key binding is "U).

The repeat count can be read in the extension language simply by
referring to global-repeat-count. To set global­
repeat-count in the extension language, invoke the function
set-repeat-count, with an integer argument which is the new
repeat count.

For example, the following extension language function,
indent-region, invokes a user-defined function called
indent-worker. The indent-worker function takes an
argument that is the number of spaces to indent the selected
region; this argument is taken from global-repeat-count.
When the repeat count is used in this way, it is important to reset
the repeat count to its default value of 1 before executing any
other functions. Many edi tdoc functions use the repeat count,
and in this example the function that should be repeated is
indent-worker and not any function that indent-worker
may call.

define public void indent-region()
local count:

{
count = global-repeat-count:
set-repeat-count(l):
indent-worker(count):
}

The global variable global-last-function contains the
name of the last function that was executed. This can be read
simply by referring to the variable. It is set by invoking the
function set-last-function-executed with a string
argument that is the name of a function.

3-32 BBN/Slate Customizing Manual

Temporary
buffers

When an extension language function is executed,
global-last-function is the name of the last editdoc
function executed from the keyboard (not the last function executed
from the extension language). Global-last-function is only
set when an edi tdoc function is invoked from the keyboard or
by explicitly calling set-last-function-executed.

For example, suppose that the user visits a file by selecting
File-Read-In New Buffer from the top-level menu, which executes
the editdoc function visit-file-dialog, and then calls
the user-defined function test:

define private void worker()
{
text-insert-string(global-last-function);
}

define public void test()
{
text-add-item("noindent", 0);
text-insert-string("last function executed was: ");
text-insert-string(global-last-function);
text-newline-check();
set-last-function-executed("test");
text-insert-string("last function executed was: ");
worker ();
}

The following two lines are written in the buffer:

last function executed was: visit-file-dialog
last function executed was: test

When you create a new buffer in an SEL definition (for example,
by using add-empty-buffer), you can specify that the buffer
is temporary (sometimes called a scratch buffer) by beginning the
buffer name with a percent sign (%). For example:

add-empty-buffer("%temp","");

The BBN/Slate Extension Language 3-33

This has the effect of eliminating the overhead of automatic
backup and checkpointing for these buffers, and improves
performance. See Section 3.5.4 for a sample program that employs
a temporary buffer.

3-34 BBN/Slate Customizing Manual

3.4 Function definition and development

This section presents a comprehensive example of creating, writing,
testing, and installing custom BBN/Slate functions. It leads you
through the definition and development of two new functions.
Then, it shows you how to load them and bind them to key
sequences so that you can use them in the same manner as any
default BBN/Slate function.

It assumes that you have read the previous sections in this chapter
and have an overview of SEL syntax, but that this is your first
attempt to write a new function.

Creating a new function involves the following steps:

1. Plan the new functionality; review existing functions and
choose those that you will use to create the new function
(Section 3.4.1).

2. Edit a text file (not a normal BBN/Slate file) and enter the
function name and definition (Section 3.4.3).

3. Test the definition (Section 3.4.5).

4. Add the function to your profile file so that it is automatically
available at startup; if appropriate, also assign a key binding
(Section 3.4.8).

You can profit greatly from spending time reviewing the list of
available functions (Appendix B). You may also find it helpful to
consult Section 3.5, where more-advanced examples are provided.

The steps described in this section are designed to demonstrate an
effective methodology for developing your own BBN/Slate

The BBN/Slate Extension Language 3-35

3.4.1

Reviewing
functions with
hardcopy

functions. Although it is possible to create a new function directly
in your profile file, then debug and test it by repeatedly starting up
the Document Editor, it is not an efficient way to work. Special
tools and techniques are available to assist you.

Planning new functionality

This section describes the steps you should take prior to entering
extension language statements into a function definition.
Information is provided about how you can gain a working
knowledge of information on existing BBN/Slate functions.

An important initial task is to plan the addition of any new
functions. You can create new functions by using:

•

•

•

functions provided with BBN/Slate

functions you have created

a combination of the above

A basic design strategy is to employ existing functions with lower
functionality to create functions with higher functionality. To
facilitate this, you should be as familiar as possible with the many
functions provided with BBN/Slate. There are two steps you can
take that will assist you in learning about functions: produce a hard
copy of all existing functions, and use the on-line apropos­
dialog function to locate potentially useful functions.

Initially, you will find it helpful to study Appendix B, which lists
all built-in system functions for this release. Once you begin to
add your own functions, you can create your own listings that
include your own user-specific or site-specific functions.

To create a new listing of all current functions (similar to
Appendix B), take the following steps.

3-36 BBN/Slate Customizing Manual

Reviewing
functions with
on-line lookup

From within the Document Editor, enter Esc-x to bring up the
function dialog box. Enter display-functions-in-buffer,
then press Return or LEFr-click on OK:

Function to execute:

about-slate
add-audio
add-blank-image
add-enclosure
add-graphics
add-header

I display-functions-in-bufferL

....
~

A ...

K OK ~
(cancel)

This function displays the names and descriptions of all
user-callable functions (initially, these are built-in system functions
only; as you add your own functions, these will be folded into
any future function listings that you create). The output is placed
in a separate buffer named #help, which you can then save and
print out as you would any document.

Note: Because the system must process several hundred functions,
invoking display-functions-in-buffer can take a long
time to execute.

With hundreds of functions to choose from, it can be difficult to
be sure, just by looking at a hard copy of the function listings,
whether or not you have the best function in mind to do the job.
To assist you in surveying possible candidates, the apropos­
dialog function lists any function whose name contains the
keyword or string you enter.

From within the Document Editor, enter Esc-x to bring up the
function dialog box (the scrolling region contains the names of all
user-callable functions). Enter apropos-dialog, then press
Return or LEFr click on OK:

The BBN/Slate Extension Language ~7

Function to execute:

about-slate
add-audio
add-blank-image
add-enclosure
add-graphics
add-header

I apmpos-dial0Q.

((OK]

(Cancel)

The apropos-dialog dialog box appears. Enter any keyword
or string that you believe might apply to the action you are
planning to perform. For example, if you are looking for a
function that deals with paragraphs, you could enter para as your
search string:

I Apropos: para;..

[OK] (Gancel)

The function dialog box reappears, only this time the scrolling
region contains only those functions whose names contain para.
To learn more about any of these functions, you can select it, then
press Return or LEFT click on OK:

3-38 BBN/Slate Customizing Manual

Function name:

I~W~Xg~~a~~jP~~~~~h~-e~n,d""""""II~·~ wxt-at-p~~h-start
wxt-backward-p~~h
wxt-clear;p~raph
imaml~
wxt-end-of-p~~h

I wxt-cut-p~~1).

((OK]

(cancel)

You will then see an information box about the function:

Oelete the block of text contaming the cursor and place It on ~
the clipboard. I
Returned result type Is: void.
No arguments. ...

""

[(OK))

This box contains three pieces of information about the function
definition:

• the help message that is included as part of the function
definition

• the type of any returned value from the function (void, as in
the above example, means that there is no returned value)

• the number of arguments, if any

You may find it helpful to repeat apropos-dialog several
times, using a number of synonyms, to be sure that you have
surveyed all the possible candidates for the action you want to
perform.

The BBN/Slate Extension Language 3-39

3.4.2

Building an
itemization
function

Tutorial example

This section explains how to add two new functions.

The first function offers an alternate method for creating an
itemization (typically, this action might be requested by users who
prefer direct actions from the keyboard). For example, a common
menu-directed method of creating an itemization is to select
Add-Text-itemization from the main menu:

BBtllSlate Multlmellia Document Editor

toe-title
usertag
verbatim
description
enumeration

Mall

You then begin typing the text of the list item. The objective of
the new function is to perform this action using the key binding
Esc-i. In other words, typing Esc-i This is a list item results in
the following:

o This is a list item

It might seem you just create a simple key binding for this action,
but this is not the case. Searching the listing of available
functions reveals that there is no existing function for creating an
itemization. This is because BBN/Slate does not provide a

3-40 BBN/Slate Customizing Manual

Building a new
search function

separate function for the creation of each text format. (Indeed, this
is not practical, since users are free to create their own text
formats with unique names.) Instead, it provides a general-purpose
function, text-add-i tern, whose description is as follows:

text-add-item
Takes two arguments: the name of a text format,
and a boolean which is true if the format was
automatically generated. Add an instance of the
specified text format. Returned result type is: void.
Argument types are: string, int

Because this function requires arguments, and arguments cannot be
provided as part of a bind statement, you must use the extension
language to supply those arguments. You do this by stating the
function name, and providing its arguments enclosed in
parentheses:

text-add-item("itemization", 0);

Additionally, every function begins with a define statement and
encloses the complete definition within braces (see Section 3.2), so
the complete function reads as follows:

define public void text-add-itemization()
{
text-add-item("itemization", 0);
}

The public declaration makes this a function that can be bound
to a key sequence or invoked from a menu; void specifies that
this function returns no arguments. The last part of the define
statement names the function, text-add-i temization. The
succeeding sections illustrate how you process and activate it.

The second (and separate) new function you can add is a new
search capability that performs the following tasks (this function
was introduced briefly in Section 3.1):

The BBN/Slate Extension Language 3-41

•
•
•

•

prompts the user to enter a search string

searches the document for the specified string

if the string is found, scrolls the paragraph containing that
string to the top of the display area

highlights the last word of the string

The logical work flow of this function can be represented as
follows:

This function is built from several existing lower-level BBN/Slate
functions. You can survey potential lower-level functions by
locating them with apropos-dialog and reading their
descriptions. Entering string, for example, yields the function
read-string-dialog:

3-42 BBN/Slate Customizing Manual

read-s~ring-dialog

Display a dialog for ob~aining a s~ring from ~he
user and re~urn ~ha~ s~ring. ~his ~akes ~wo
argumen~s, ~he firs~ is a message ~ha~ is placed a~
~he ~op of ~he dialog, and ~he second is a promp~
~ha~ is placed in a box wi~hin ~he dialog. ~he

dialog also has confirm and cancel bu~~ons. If ~he
user hi~s ~he cancel bu~~on, ~his func~ion se~s ~he
global variable, global-error.
Re~urned resul~ ~ype is: s~ring.
Argumen~ ~ypes are: s~ring, s~ring.

This function could be used to query a user for the search string
and store the reply in a variable called search-string:

search-string = read-string-dialog(
"Keyword or phrase to search for.",
"Word or phrase: ");

Entering search to the apropos-dialog prompt yields the
text-search function, which can be employed to do the actual
searching. In tum, the first argument to text-search is the
search string; the second is the region to search. Entering
region to the apropos-dialog prompt reveals a
create-region function. You can use create-region to
define the search area and store it in the variable
search-region:

search-region = create-region(beginning-of-buffer(),
end-of-buffer(»;

Once you know what to search for and where to search for it, you
can then proceed with the actual text-search function. Its
third argument is a Boolean integer that you set to 1 (TRUE) to
indicate that you want the search to be case insensitive:

text-search(search-string, search-region, 1)

The BBN/Slate Extension Language 3-43

As shown in the logic diagram, you also want to differentiate
between successful and unsuccessful searches. Only successful
searches should take action. You can do this by placing
text-search within an if expression:

if (text-search(search-string, search-region, 1»
{

}

As shown in the logic diagram, successful searches should result in
scrolling the text to the top of the screen and highlighting the last
word of the string that is found. You now need to locate
functions that correspond to these actions.

Using apropos-dialog to search for the topics scroll and
highlight does not yield the functions for which you are looking
(for example, the function scroll-up moves the display up by
one line. You want to proceed to the top of the pane; so, take
some time to review a hard copy listing of the many text functions
available. Each of these begins with the prefIX "text-" (you can
examine these now by referring to Appendix B). This reveals two
useful functions: text-line-to-top and text-select­
current-word.

In the BBN/Slate extension language, function calls must include
parentheses following the function name. Because there are no
arguments for either of these functions, simply include empty
parentheses (and place them within the if statement):

if (text-search(search-string, search-region, 1»
{
text-line-to-top();
text-select-current-word();
}

3-44 BBN/Slate Customizing Manual

3.4.3

If you include no further statements, unsuccessful searches simply
"fall out" of the function and it returns. In practice, this means
that unsuccessful searches leave the cursor where it was before the
search was initiated.

The complete code is as follows:

define public void search-word()
"Search for a word, scroll to top, and highlight it."
{
local search-string, search-region;
search-string = read-string-dialog(

"Keyword or phrase to search for.",
"Word or phrase: ");

search-region = create-region(beginning-of-buffer(),
end-of-buffer(»;

if (text-search(search-string, search-region, 1»
{

}

text-line-to-top();
text-select-current-word();
}

This completes the design shown in the logic diagram.

The next section explains how to create a file that contains both
the itemization and searching functions. Creating definition files is
an essential part of developing BBN/Slate function definitions.

Edit a definition file

Once you have completed planning the function, you are ready to
enter SEL statements into a file.

The code for building these two new functions is now ready to
place within a definition file. It is important to keep in mind that
definition files must always be text files, not BBN/Slate document
(.slt) files. The reason is evident if you examine document files
from the operating-system level instead of within BBN/Slate. Each

The BBN/Slate Extension Language 3-45

Where to store
SEL files

3.4.4

file contains an introductory section with a considerable amount of
BBN/Slate-specific style information, plus special content tags that
identify the text (or other media types) that may be present in the
file. Definition files, on the other hand, should contain none of
this special information - only the extension language text.

Definition files can be located in any convenient directory of your
operating system. Simply make sure that these directories are
included in a library-search-path statement in your profile
file (. slate_editor. ini t). This statement should include
one or more directory paths, each separated with a colon, and the
entire path(s) in quotation marks:

library-search-path =
"/home/smith/Slate/SEL:/usr/slate/lib/SEL";

You should place this statement near the beginning of your profile
file, before any mention of site-specific functions located in those
directories.

A defiIJition file can contain one or more function definitions. The
definitions need not be related, but you may find it helpful to
group different types of functions in separate files.

Tutorial example

This section explains how you can create definitions in the
following ways:

• outside of BBN/Slate (for example, using a text editor such as
emacs)

• within BBN/Slate (storing the definition as a text file)

3-46 BBN/Slate Customizing Manual

Creating text-only
files outside of
BBN/Slate

Step 1

Step 2

Step 3

Step 4

If you use an outside editor, it must store the text as a plain,
ASCII text file (for example, there can be no control codes
present). If you use BBN/Slate, you must use choose
File-Write-As Text from the main menu when saving the file.
Both methods are described here.

The first tutorial example (on itemization) illustrates how you can
create files outside of BBN/Slate for use with function definitions.

Using a workstation window outside of BBN/Slate, create a
subdirectory for SEL functions (if you have not already done so).
For example:

cd /home/smith/Slate/SEL

Although it is not necessary to provide a separate subdirectory for
this purpose, it makes it easier to locate SEL functions, and it
avoids cluttering up regular BBN/Slate directories with SEL files.

Change directories to this new SEL subdirectory and start up your
normal text editor. Choose a new filename that is appropriate to
the contents, such as Listltems. sel. (Later, you can add
separate definitions to this file for other BBN/Slate list items, such
as enumeration.) For example:

cd /home/smith/Slate/SEL
emacs ListItems.sel

Enter the complete itemization function definition:

define public void text-add-itemization()
{
text-add-item("itemization", 0);
}

Save the file.

The BBN/Slate Extension Language 3-47

Creating text-only
files within
BBN/Slate

Step 1

Step 2

Step 3

The second tutorial example (on word searching) illustrates how
you can create files within BBN/Slate for use with function
definitions.

Using a workstation window outside of BBN, create a subdirectory
for SEL functions (if you have not already done so). For
example:

mkdir /home/smith/Slate/SEL

Now switch to your BBN/Slate Document Editor window and
begin with an empty buffer. If your main buffer is empty, for
example, you can do this by selecting Editor-ButTer-Switch
To-main from the main menu. Enter the entire text for the
search function:

define public void search-word()
"Search for a word, scroll to top, and highlight it."

{
global search-string, search-region;
search-string = read-string-dialog(
"Keyword or phrase to search for.",
"Word or phrase: ");
search-region = create-region(beginning-of-buffer(),

end-of-buffer(»;
if (text-search(search-string, search-region, 1»

{

}

text-line-to-top();
text~select-current-word();

}

Choose File-Write-As Text from the main menu. Because this
buffer has not yet been saved, you are prompted for a pathname
and filename. Enter the pathname of the SEL directory you
created, then enter the filename SearchWord. 5el.

3-48 BBN/Slate Customizing Manual

3.4.5

3.4.6

Test the definition

Once you write the definition and save it in a file, you are ready
to test it. The first tutorial example that follows deals with the
itemization function: this is a short, simple function and it can be
tested in a straightforward manner. The second tutorial example
deals with the word searching function. This is a more complex
function, and several tools and techniques are introduced that you
can use. These will be helpful whenever you need to refine and
debug more complex functions.

Tutorial example: Listltems • sel

You are now ready to explicitly read and interpret the extension
language commands in the Listltem. sel file. To do this,
press Esc-X, then enter the function read-commands in the
dialog box:

Function to execute:

about-slate
add-audio
add-blank-image
add-enclosure
add-graphics
add-header

I read-command:j.

[(OK]

(cancel)

This prompts you for the file name containing the definition (to
obtain a listing of available files in the current or other directories,
press Esc):

The BBN/Slate Extension Language 3-49

File name:

llistltems.sel

(list) (Gancel)

The read-commands function reads the definition, and adds it to
the collection of existing definitions. To make sure it is there,
enter an apropos-dialog command and search for i tern.
You should see text-add-iternization among the other
functions that include the string i tern in their name:

Function to execute:

text -add -item
text -add -itemization
text -add -nephew -item
text -add -uncle -item
text -itemize

[OK)]

(Cancel)

Select text-add-i ternization and LEFT click on OK to test
the help string. You should see the following:

Add an Itemization.

I Returned result type is: void.
No arguments.

[OK ~

LEFT click on OK to close the help window. Now, test the
function by entering Esc-X and the new function name; then, press
Return or LEFT click on OK:

3-50 BBN/Slate Customizing Manual

Subsequent
editing ofa
function

Function to execute:

about-slate
add-audio
add-blank-Image
add-enclosure
add-graphics
add-header

I text-add-ltemlzaU0'l.

t OK]

cancel)

This should create a new itemization at the current cursor position.

From time to time, you may need to revise an existing function
definition file. You can do this at any time, using the same
read-commands function as before. It re-reads the file,
processes it, and checks to see if there is already a definition of
the same name (in the case of the current example, a function
named text-add-i temization). It will ask you for
permission to redefme it:

Redefine function text -add -enumeration?

t Yes] (No)

Press Return or LEFf click on OK to test your changes and
redefine the function. If there are other pre-existing functions in
the file as well, you are prompted in the same manner for each of
them; select No if you have not changed the function.

It is possible to suppress this redefinition prompt, if desired, by
taking either of the following steps:

1. You can suppress all redefinition prompting by placing the
following line in your profile file:

The BBN/Slate Extension Language 3-51

3.4.7

redefine-silently = 1i

2. You can suppress redefinition prompting for selected functions
by first undefining them. To do this, place an undefine
statement at the beginning of the function definition. For
example, the first two lines of the word searching function
would appear as follows:

undefine search-word
define public void search-word()

Tutorial example: SearchWord. sel

This section presents a development tool that will assist you in
designing new functions more quickly and efficiently.

When developing a number of functions, it is convenient to
automate the process of reading the definition file and executing
the commands to test them. You can do this by inserting the
following lines in your • s 1a te _ edi tor. ini t profile file, then
restarting the Document Editor:

#Execute a buffer of extended commands
define public void execute-buffer()
"Execute a buffer of extended commands."
{

}

write-buffer-to-file-as-text(current-buffer(),
"/tmp/SELtest")

read-commands-from-file("/tmp/SELtest")

bind (default-keymap,
bind(text-keymap,

""X"E", execute-buffer)
""X"E", execute-buffer)

The binding for defau1t-keymap applies when the cursor is
not active in any media type (for example, when you first open a
buffer); the binding for text-keymap applies when the cursor
is active in a text area. The newly defined function
execute-buffer:

3-52 BBN/Slate Customizing Manual

Testing the
example

Step 1

• writes the current buffer containing your SEL function as a text
file named SELtest in your /tmp directory

• performs the read-commands-from-file function on that
file

This allows you to use the following strategy:

1. Create a new definition in a BBN/Slate buffer.

2. Enter "X "E to invoke the execute-buffer function; this
saves the file temporarily in / tmp, reads its commands, and
makes it available for calling.

3. Test the function by entering execute-command-dialog
(Esc-X), then the function name. (Note that if the function is
declared to be private, it is not displayed in the scrolling
region.) Evaluate how it works.

4. Use BBN/Slate to modify the definition as necessary, and
repeat steps 2 through 3 until the function is debugged and
tested. If you are modifying the function during a later
session, you can read its definition into a new buffer using
File-Insert-Text File from the main menu.

S. Store the final version as a text file in an appropriate directory
(e.g., /usr/slate/lib/SEL/Listltems. sel), using
File-Write-As Text from the main menu. Additionally, make
sure that the directory path is listed in the library­
search-path in your profile file.

With this development tool now in place, you can proceed with the
development of the word searching function:

Starting from a new, empty buffer in the Document Editor, select
File-Insert-Text File to read the file SearchWord. sel into the
buffer.

The BBN/Slate extension Language 3-53

Step 2

Step 3

Handling errors

Enter "X "E. (Note: the first time you submit a function, it is
created. On subsequent occasions, you are prompted whether you
want to redefine the function, since it already exists. If you have
modified it, answer Yes.)

Enter Esc-X; respond to the dialog box by entering the function
name, search-word. Test it to make sure you are prompted to
enter a search string, and that it performs as expected for existing
and nonexisting keyword searches.

When developing functions, it is normal to experience coding
errors from time to time. Errors are reported (via dialog boxes) at
different times, depending on the nature of the error.

Syntactical errors are reported by line number at the time the
function is parsed. For example, misspelling the reserved word
def ine on the first line and then invoking read-commands
results in the following error report:

SEL e o .. : Itmp/SELtest, line 1: syntax e o ...

I
[OK))

Some errors are syntactically correct, but incorrect in meaning. For
example, a misspelled function name, such as raed-string­
dialog instead of read-string-dialog (line 5 of the
SearchWord function) results in the following:

3-54 BBN/Slate Customizing Manual

Refining
examples

SEL e o .. : undefined function: .. aed-st .. ing-dialog.

I
[OK))

Errors may be near rather than actually on the line reported. For
example, omitting the parentheses from a function name so that
instead of:

define public void search-word()
"Search for a word, scroll to top, and highlight it."

it reads:

define public void search-word
"Search for a word, scroll to top, and highlight it."

results in an error reported on line 2. This is because it is
syntactically acceptable to place the parentheses on the line after a
function name, as in the following:

define public void search-word
()

"Search for a word, scroll to top, and highlight it."

Only when parentheses were not found at the beginning of line 2
was the error reported.

If there are multiple errors, only the first error encountered is
reported, and the remainder of the file is not read.

A worthwhile strategy to employ is to build and test basic features
first, making sure they are sound. You can then add additional
capabilities one at a time. This permits you to concentrate on
debugging new areas of functionality.

The BBN/Slate Extension Language 3-55

Debugging aids

3.4.8

Aut%ad

You can also employ the display-message function to display
pop-up messages at strategic points in your program:

display-message("Now within inner loop.");

Additionally, you can use the global-error variable (see
Section 3.3) to assist with debugging.

Binding and activating functions

Once you have completed the development of a function, you
should include a reference to it in the profile file. The profile file
is read at Document Editor startup (and at no other time); with a
function reference there, you no longer need the read-commands
and execute-buffer functions you used during the develop­
ment and test phase. In essence, it becomes a permanent part of
your function library.

You should also decide if it is appropriate to assign a key binding
to the function. You can explicitly invoke any function that does
not require arguments by invoking the execute-command­
dialog function (for which the default key binding is Esc-x)
and entering the function name in the dialog box; this may be
sufficient for functions that will be used infrequently. In many
cases, however, it is convenient to bind a function key or key
sequence to enable speedy invocation of a new function.

It is possible to include the full text of function definitions in the
profile file (as with the execute-buffer function in the
preceding section). However, this creates additional overhead at
startup. To address this issue, BBN/Slate provides an autoload
command.

3-56 BBN/Slate Customizing Manual

3.4.9

The autoload command allows you to read function definitions
from files when the functions are invoked. This command can be
used to include a large number of functions without incurring the
overhead of directly reading all the function definitions at startup.

The syntax of the autoload command is:

autoload (function-name, "filename",
keymap-name, "key-sequence")

The filename is the name of the file that contains the definition of
the function. If you include only a file name, the path to the
directory where it is located must be included in the library­
search-path. Alternately, you may specify an explicit path and
file name, in which case the library-search-path is ignored.

The keymap-name and key-sequence are optional. If they are
included, the function is bound to the key-sequence in the keymap.

Only functions declared as public can be autoloaded.

Tutorial example

The example in this section explains how you can create the
reference to the function text-add-itemization. The
function is located in the file Listltem. sel; enter the
following in the profile file • slate editor. ini t (on one
line) :

autoload (text-add-itemization, "Listltem.sel",
default-keymap, "Esc-i");

Remember, the profile file is also a text-only file. You normally
should edit this file using a text editor at the operating-system
level. If you edit it within BBN/Slate, read and save it as a text
file.

The BBN/Slate Extension Language 3-57

To create the reference to the function search-word, located in
the file SearchWord. sel, enter the following in the profile file
. slate_editor. init (on one line) :

autoload (search-word, "SearchWord.sel" ,
de£ault-keyrnap, "Esc-s");

As a final test, quit the current Document Editor session, start up
the Document Editor once more, and make sure that the key
bindings correctly invoke the functions.

3-58 BBN/Slate Customizing Manual

3.5

3.5.1

Application examples

This section contains several illustrations of function definitions.
They vary from simple to more complex examples. These
examples provide an overview of using the BBN/Slate extension
language, and they can furnish insight into how you might
approach similar tasks.

Remember that it is possible to invoke these or any programs you
develop from a BBN/Slate menu. See Chapter 2 for a complete
description of how you can configure your menuing system to
provide access to the programs you create.

Inserting a signature file

If your site is equipped with a scanner, you can use it to create
files containing the digitized image of the signature of each of
your users. Once you have created the file, you can edit it in
BBN/Slate using the Add-Image-From File ... menu. For example,
you may want to crop the image to include just the area
immediately around the signature, and scale it to reduce its size.
Once it is ready, you can save it in a special location, such as
your home directory. For example, this example assumes that the
image has been placed in a document named .slate_sig.slt
and that it is located in /home/smith.

The short function below, named sign-message, places the
image automatically at the end of your current file:

DEFINE void sign-message()
"Sign a message with my digitized signature."
{

}

text-end-of-buffer()~

insert-named-file("/home/smith/.slate_sig.slt")~

The BBN/Slate Extension Language 3-59

You must then store the sign-message function in a file
(remember that it must be a plain text file). This example assumes
that you have placed it in a file named sig. sel. Note that it is
also possible to store many different functions in one common file,
perhaps giving it a general name such as utili ties. sel.

Next, include a key binding in your profile file to associate the
sign-message function with a key sequence. The autoload
command binds it to the key sequence Ese-Ese-S.

insert signature file in messages
autoload (sign-message, "sig.sel", text-keymap,

"Esc-Esc-S");

Typically, you would invoke this function once you have
completed writing a memo, as shown in the following example.

Memorandum

To: Project Team

Cc: S. Champion

From: Bruce Smith

Subject: Job Well Done I
Date: April 27, 1990

I would like to congratulate all members of this Project Team who
contributed to meeting our goals on time, 8S specified, and under
budget. Thanks to each of youl

3-60 BBN/Slate Customizing Manual

3.5.2 Loop for execute-command-dialog

This is a simple function that allows you to repeat the
execute-command-dialog function (Esc-x) in a while loop,
until you select No from the dialog box prompt. This allows you
to enter execute-command-dialog just once, invoke
function-lookup, and then browse through assorted functions
until you are ready to exit. It makes evaluating potential functions
for your BBN/Slate programs easier.

define public void function-lookup()
"Look at functions repeatedly; interrupt to exit loop."
{

}

local s;
while (1)

{
#call the routine
execute-command-dialog();
s = display-confirmation(

"Execute another command? ");
if user cancels dialog, exit
if (s == 0)

return;
}

The BBN/Slate Extension Language 3-61

3.5.3 Changing fonts

This example illustrates how you can redefine and later restore
keymap settings and how you can use invoke to indirectly call a
function. The function asks the user whether to use the roman,
bold, italic, or bold italic font face. Then, it rebinds the key
bindings for LEFT hold and Esc-Ese-d. The effect is that each
time that the user selects a region of text with the mouse (with
LEFT hold, dragging over the region, and Release), the selected
region is changed to the font face chosen. To stop the process and
restore the default key bindings, the user types Esc-Ese-d. This is
a useful procedure for going back over an existing document and
highlighting keywords and phrases.

3-62 BBN/Slate Customizing Manual

local font_func;

define private void @apply-font()
{

}

text-set-region();
invoke font_func();

define private void @end-apply-font()
{

}

bind(text-keymap, "LEFT-HOLD", text-set-region);
bind (text-keymap, "ESe-ESe-d", unbound-error);
bind (default-keymap, "LEFT-HOLD", text-set-region);
bind (default-keymap, "ESe-ESe-d", unbound-error);

define public void apply-font-to-region()
local font;
{

}

font = read-string-dialog(
"Select font: r, b, i or bi.", "Font:");

if (font == "r")
font func = text-romanize

else if (font == "b")
font func = text-boldify

else if (font == "i")
font func = text-italicize

else if (font == "bi")

else
{

}

font_func = text-bolditalicize

display-message("Font face not known.");
return;

bind (text-keymap, "LEFT-HOLD", @apply-font);
bind (text-keymap, "ESe-ESe-d", @end-apply-font);
bind(default-keymap, "LEFT-HOLD", @apply-font);
bind(de£ault-keymap, "ESe-ESe-d", @end-apply-£ont);

The BBN/Slate Extension Language 3-63

3.5.4 Screen capture

This example is a screen capture program that you can invoke
from within the BBN/Slate Document Editor. It determines the
windowing system in use and calls the correct screen capture
utility. You then select a portion of the screen for capture, and
that portion is inserted into the document at the current cursor
position.

This example also illustrates the use of invoke for indirect
function calls.

The most convenient method for users to access this program is to
place an autoload staement in your public or private profile file.
For example:

autoload(capture-screen, "snap.sel");

Then, add a menu item to an appropriate system menu file that
executes capture-screen. For example:

ITEM Screen capture •••
HELP "Capture a portion of the screen and insert it

at the current cursor position."
INVOKES capture-screen

See Chapter 2 for details on adding new menu items.

DEFINE PUBLIC VOID capture-screen()

{

"Capture a portion of the screen using mmsnap
or xwd (as appropriate to the window system
in use) and insert it at the current cursor
position."

local snap-buffer;
local snap-command;
local snap-prompt;
local insert-function;

3-64 BBN/Slate Customizing Manual

Select a screen capture program and an object
creation routine based on the window system
in use. We should really allow the user to
set up default commands for SunView and Xll,
to take advantage of optional flags on the
screen capture programs. For instance, the
MIT XllR4 xwd program has a "-frame" argument
that includes the window manager's decorations
on a window dump. Not all versions of xwd
support this, so we can't include it in a
default program specification intended to work
in all environments. Per-user specifications
for the screen capture programs would help here.

if (window-system-is-sunview) {

}

snap-command = "mmsnap >/tmp/snap.out";
snap-prompt = "Left Drag to select a region

of the screen ••• ";
insert-function = add-named-raster;

else {

}

snap-command = "xwd >/tmp/snap.out";
snap-prompt = "Left Click to select a window ••• ";
insert-function = add-named-xwd;

Create a buffer for process-run to use. We also
clear the buffer in case it contains any error
messages from previous unsuccessful attempts to
run capture-screen.

set-global-error-code(O);
snap-buffer = find-buffer("%screen-capture");
if (global-error)

snap-buffer = add-empty-buffer(
"%screen-capture", "");

clear-buffer(snap-buffer);

Run the process, check the result, and remove
the temp file. If we wanted to handle errors
in a more sophisticated way, we we could try
to grab the contents of the snap-buffer and
display it in a dialog instead of just providing
the user with the buffer name.

The BBN/Slate Extension Language 3-65

3.5.5

}

display-string-in-status-line(snap-prompt)~

set-global-error-code(O)~

process-run(snap-buffer, snap-command)~
display-string-in-status-line("")~

if (global-error) {

}

display-message("The screen capture operation
seems to have failed. The buffer
named #screen-capture should contain
whatever output or error messages the
operation may have produced.")~

return~

invoke insert-function("/tmp/snap.out")~
process-run(snap-buffer, "/bin/rm -f /tmp/snap.out")~

Slide maker

This example is a collection of three function definitions that form
a slide maker program. That is, it breaks up one file into a series
of smaller component files. For example, you can specify that
each time the program encounters a heading style, a new slide
(file) is created.

The program is applicable to files that consist of regularly
demarcated material, such as a viewgraph presentation. The
illustration below summarizes this process:

Original File File 1

This is a Heading
This Is a Heading

o Item One
o Item One o Item Two
o Item Two

This is Another Heading

1. Point One
2. PointTwo • File 2
3. Point Three

This is Another Heading

1. Point One
2. PointTwo
3. Point Three

3-66 BBN/Slate Customizing Manual

When you invoke the function make-slides, you are prompted
for the text style, which serves as a dividing point for each file:

Text style that marks start of slide.

I Style: heading,

[(OK 1 (Gancel)

You are then prompted for a file prefix. If you enter
Presentation, the first file becomes Presentation!. sl t, the
second file becomes Presentation2. sl t, and so on:

Prefix for unique file names for slides.

I Prefix: Presentatio'l

(OK)] (Gancel)

The BBN/Slate Extension Language 3-67

The complete set of three function definitions is shown below.

Break a file up into pieces and store each piece as
a separate file with a name of the form prefixn,
where n is an incrementing number. Each piece
begins with a specified text style. The user is
queried for the name of the text style and for the
prefix for the file created. The original file is
not modified.

global prefix-name, n, done, TRUE, FALSE, next~

define void set-region-to-copy()
{

}

local start~
start = current-point()~
find-media-type-again()~

if (start == current-pointe»~
{

done = TRUE~
document-set-point(end-of-buffer(»~

}
text-set-mark()~

next = current-point()~
document-set-point(start)~

define void copy-region-to-file()
{

}

local this-buffer, s~

this-buffer = current-buffer()~
copy() ;
s = strcat(strcat(prefix-name, n), ".slt")~

n = n + 1~

add-empty-buffer(s, 1I11)~

change-to-named-buffer(s)~

paste()~

write-buffer-to-file(current-buffer(), s)~

mark-buffer-unmodified(current-buffer(»i
set-buffer-of-pane(O, this-buffer)~

3-08 BBN/Slate Customizing Manual

define void make-slides()
{

}

n = 1;
TRUE = 1;
FALSE = 0;
done = FALSE;
find-direction = 0;
find-type = 0;
text-find-name = read-string-dialog(

"Text style that marks start of slide.",
"Style:");

prefix-name = read-string-dialog(
"Prefix for unique file names for slides.",
"Prefix:");

delete-other-panes();
docurnent-set-point(beginning-of-buffer(»;
while (! done)
{

}

set-region-to-copy();
if (current-region() == 0)
{

}

display-message("No region selected to save."
return;

copy-region-to-file();
docurnent-set-point(next);

The BBN/Slate Extension Language ~9

3.5.6 Search utility

This example, while only slightly extending the features available
with the conventional search function of BBN/Slate, is instructive
in its use of variables for defining and manipUlating areas of a
document. See Section 3.3 for more information on these special
extension language functions (such as current-point and
end-of-buffer).

The functions in this example query the user for a search string
and then search the entire document from beginning to end for
instances of that search string. When the string is found, the
paragraph containing that string is displayed at the top of the
display area and is highlighted. Two function keys are used in
this example and are arbitrarily chosen to be F2 and F3 -- you
may need to change them to reflect your system's use of function
keys, the escape sequences they generate, and your preferences.
F2 and F3 are bound to the functions search-first and
search-next. The function search-first queries the user
for a search string and searches for it at starting at the start of the
document. The function search-next finds the next instance
of the search string in the document.

3-70 BBN/Slate Customizing Manual

local FALSE, TRUE, NULL, F2, F3;

local s_search_string; # the current search string

define private int find-word-in-region(search_string,
search_region)

"Search forward for search_string in search_region
folding case (i.e. a lower case letter in the search
string matches either an upper or lower case letter
in the document). If the search is successful, then
display the start of the paragraph that contains the
search string at the top of the display, and
highlight the paragraph."
{

}

if no search region, return FALSE
if (search_region == NULL)

return(FALSE);
if (!text-search(search_string, search_region,

TRUE))
return(FALSE);

save current cursor position
text-save-excursion();

move cursor to start of paragraph
text-start-of-paragraph();

display line containing cursor at top of display
text-line-to-top();

restore cursor position
text-restore-excursion();

select and highlight paragraph
text-select-current-paragraph();
return(TRUE»;

The BBN/Slate Extension Language 3-71

define public void search-first()
"Query the user for a word or phrase to search for
and call find-word-in-region to search for it from
the start of the document. If the search string is
not found, then display an error message. II

{

}

local new_search_string, whole_document;
new_search_string =
read-string-dialog("Word or phrase to search for.",

"Word or phrase: ");

if user cancels dialog, do nothing
if (global-error)

return;

save the search string
s_search_string = new_search_string;

if search string is not empty, do search
if (s_search_string 1= 1111)

{

}

whole_document = create-region(
beginning-of-buffer(), end-of-buffer(»;

if (lfind-word-in-region(s_search_string,
whole_document»
display-message(strcat(s_search_string,

II not found. "»;

3-72 BBN/Slate Customizing Manual

define public void search-next()
"Search for the next instance of the search string in
the document. If the search string is not found, then
deselect any selected region."
{

}

local region_to_search;
if cursor not set, then do nothing
if (current-point() == NULL)

return;
region_to_search = create-region(

current-point(), end-of-buffer());
if (!find-word-in-region(s_search_string,

region_to_search))
clear-region any previously selected region
text-clear-mark();

F2 = "ESC-[22Sz";
F3 = "ESC-[226z";
FALSE = 0;
TRUE = 1;
NULL = 0;
s_search_string = "";

bind F2 function key to search-first
bind (text-keymap, F2, search-first);

bind F2 function key to search-next
bind (text-keymap , F3, search-next);

The BBN/Slate Extension Language 3-73

3.5.7 Mail merge

This example is a mail merge facility. It is the largest and most
complex of the sample programs presented here. The initial six
functions are declared as private (because users do not need to
access them). Only the final function, merge, is declared as
public - this is the function name users will invoke.

There are comments throughout to assist you in understanding the
code. The initial comments describe how the program works.

merge(): a mail merge facility

This package defines a single public routine, merge.

The merge routine:
1) Prompts for a file of addresses. The file should

2)
3)

4)

be a Slate document with sets of names and
addresses, each separated by blank lines.
Prompts for a letter template.
Prompts for a place to insert the salutation and
a place to insert the address into the letter.
Generates the merged files with the same base
name as the template but with numbers appended.
For example, if the template is called form-letter,
the generated files will be form-letter-1.slt,
form-letter-2.slt, etc.

Define some global values

global TRUE;
TRUE = 1;
global FALSE;
FALSE = 0;

3-74 BBN/Slate Customizing Manual

Special keys used below

local control-g;
local control-left-click;
control-g = string-to-event-code(""G");
control-left-click = string-to-event-code("CTRL-LEFT-CLICK");

These are local variables used within this set of routines.
We prefix all these variables with s to make it clear that
they are local variables.

local s_address_file; # name of address list file
local s_letter_file; # name of letter template file
local s_address_curpoint; # saved point in address file
local s_files_written; # number of letters written
local s_eof; # end of address list read
local s_newfile; # initial substring of new file
local s_filename; # name of file being created
local sJ>aste_l_mark # place to paste salutation
local sJ>aste_2_mark # place to paste address

For development purposes, we undefine these functions
at the beginning of the file so we can reload new
versions without getting any error messages during
the development process.
These lines can be removed once these routines are stable
and will only be loaded once per editing session.

undefine merge-mark-distance,

merge-is-blank-line,
merge-get-point-from-user,
merge-copy-line-group,
merge-cleanup,
merge-worker,
merge

The BBN/Slate Extension Language 3-75

merge-mark-distance(): Return the distance between two marks.
We do this by converting them to document locations
(which are simple integers) and then subtracting.

define private int merge-mark-distance(m1, m2)
{

}

local 11, 12;

11 = mark-convert-to-location(m1);
12 = mark-convert-to-location(m2);
return (12 - 11);

merge-is-blank-line(): This routine returns TRUE if the
point is in a blank line, FALSE otherwise. An empty line
or a line that contains only whitespace is considered to
be blank. This routine assumes the point is at the
start of the line.
Note, however, a blank line is *not* the whitespace
in between two paragraphs (one could argue that this
mail merge package should treat it as an empty line,
but this routine will not recognize it).

3-76 BBN/Slate Customizing Manual

define private int merge-is-blank-line()
{

}

local sol, eol, nchars, i;

Use save and restore excursion to leave the point at the
same place as where you started.

text-save-excursion();
sol = current-point();
text-end-of-line();
eol = current-point();
document-set-point(sol);
nchars = merge-mark-distance(sol, eol);
i = 0;
while (i < nchars)
{

}

if (ltext-is-whitespace(i»
{

}

text-restore-excursion();
return(FALSE);

i = i + 1;

text-restore-excursion();
return(TRUE);

merge-get-point-from-user(): Allow the user to scroll through
the document to identify the position to insert the
salutation, address, etc.
Actually, since event-process-current() is used, the
user can really do anything until s/he confirms.
Ctrl-left-click will confirm the point, Control-G
will interrupt the process.
This routine returns TRUE if the user confirmed, FALSE
otherwise.

The BBN/Slate Extension Language 3-77

define private int merge-get-point-from-user(msg)
{

}

local s, code, buffer;

buffer = current-buffer();
s = strcat(msg, II Ctrl-Left-Mouse to confirm, AG to stop. ");
display-string-in-status-line(s);
comrnand-loop-start();
while (TRUE)
{

}

code = event-wait-for-next();
if (code == control-left-click)
{

}

if (buffer 1= current-buffer(»
{

}
else
{

}

display-message("You must be in the template file.");
display-string-in-status-line(s);

display-string-in-status-line("");
return (TRUE);

else if (code == control-g)
{

}
else

if (buffer 1= current-buffer(»
{

}
else
{

}

display-message("You must be in the template file.");
display-string-in-status-line(s);

display-string-in-status-line("");
return (FALSE);

event-process-current();

3-78 BBN/Slate Customizing Manual

merge-cleanup(): Delete back size chars from the mark specified.

define private void merge-cleanup(mark, size)
{

}

document-set-point(mark);
text-set-mark();
document-set-point(mark-add-offset(mark, -size»;
text-cut-region();

merge-copy-line-group(): Copy the next group of lines
from the address file.

define private void merge-copy-line-group()
{

local start, nlines;

Go back to the address file and to our last location.

visit-document(s_address_file);
document-set-point(s_address_curpoint);

The BBN/Slate Extension Language 3-79

}

Skip over blank lines. Note that text-down-line will
set the global-error flag if we are at the end of the
document.

while (merge-is-blank-line() && !global-error)

text-down-line();
if (global-error)
{

}

s_eof = TRUE;
set-global-error-code(O);
return;

RESET!

Skip down to a blank line or the end of the document.
Make the non-blank lines be the selected region.

start = current-pointe);
nlines = 0;
while (!merge-is-blank-line() && !global-error)
{

text-down-line();
if (!global-error)

nlines = nlines + 1;
}
set-global-error-code(O);
if (nlines == 0)
{

}

s eof = TRUE;
return;

RESET!

text-end-of-line();
s_address_curpoint = current-pointe);
text-set-mark();
document-set-point(start);

Copy those lines to the clipboard.

copy();

... for next time around

3-80 BBN/Slate Customizing Manual

merge-worker(): Do the actual merge. Copy the
salutation from the address list and paste it
in and then copy the address and paste it.

The BBN/Slate Extension Language 3-81

define private void merge-worker()
{

}

local start, end, sizel, size2;

Get salutation
merge-copy-line-group();
Check if we're done
if (s_eof)

return;
Now paste it in
visit-document(s_letter_file);
if (global-error) return;
document-set-point(s-paste_l_mark);
start = mark-convert-to-location(current-point(»;
paste(); # current-point now at end of region
text-delete-back(); # get rid of extra newline
end = mark-convert-to-location(current-point(»;
sizel = end - start;

Get address
merge-copy-line-group();
This is really an error •••
if (s_eof)

return;
Now paste it in
visit-document(s_letter_file);
document-set-point(s-paste_2_mark);
start = mark-convert-to-location(current-point(»;
paste(); # current-point now at end of region
text-delete-back(); # get rid of extra newline
end = mark-convert-to-location(current-point(»;
size2 = end - start;

Save the document
s_filename = strcat(strcat(s_newfile, s_files_written+l), ".slt");
write-buffer-to-file(current-buffer(), s_filename);
if (!global-error)

s_files_written = s_files_written + 1;

Clean up pasted-in region
merge-cleanup(s-paste_l_mark, sizel);
merge-cleanup(s-paste_2_mark, size2);

3-82 BBN/Slate Customizing Manual

merge(): This is the
This routine:

main routine for the mail merge facility.

1) Prompts for a file of addresses. The file should

2)
3)

4)

be a Slate document with sets of user names and
addresses, separated by blank lines.
Prompts for a letter template.
Prompts for a place to insert the salutation and
a place to insert the address.
Generates the merged files with the same base
name as the template but with numbers appended.

The BBN/Slate Extension Language 3-83

define public void merge()
{

}

Get the file of addresses
s_address file = read-string-dialog("Address file:", "File name:");
if (global-error)

return;
visit-document(s_address_file);
if (global-error)
{

display-message("Merge failed: Can't find address file.");
return;

}
document-set-point(beginning-of-buffer(»;
s_address_curpoint = current-point();

Get the letter template file
s_letter_file = read-string-dialog("Letter template file:", "File name:":
if (global-error)

return;
visit-document(s_letter_file);
if (global-error)
{

}

display-message("Merge failed: Can't find letter template file.");
return;

s files written = 0;

s newfile = strcat(s_letter_file, "-");

Get the salutation and address point
if (Imerge-get-point-from-user("Specify salutation point."»

return;
s-paste_l_mark = current-point();
if (!merge-get-point-from-user("Specify address point."»

return;
s-paste_2_mark = current-point();

s_eof = FALSE;
s_files_written = 0;
while (Is_eof && I global-error)

merge-worker();
display-message(strcat("Files written:" s_files_written»;

3-84 BBN/Slate Customizing Manual

3.6

3.6.1

Token syntax

This section lists the token syntax of the BBN/Slate extension
language. It can be used as an aid in understanding the exact
structure of the language.

Statements

stmt:
if_stmt I
while_stmt I
func_call I
assign_stmt I
func_def I
multi_stmt I
return_stmt I
local_stmt I
global_stmt I
undef_stmt I
autoload_stmt
ind_func_call

stmtlist:

autoload_stmt:

stmtlist stmt I /* empty */

LBRACE TK stmtlist RBRACE TK

AUTOLOAD TK LPAREN TK SYMBOL TK SYMBOL TK RPAREN TK - - - -
AUTOLOAD_TK LPAREN_TK SYMBOL_TK SYMBOL TK SYMBOL TK

func_call: SYMBOL TK param_Iist

if stmt: IF TK LPAREN TK expr RPAREN TK stmt
IF TK LPAREN TK expr RPAREN TK stmt ELSE TK stmt

The BBN/Slate Extension Language 3-85

3.6.2

global stmt:

param_list:

local stmt:

undef stmt:

RETURN TK LPAREN TK expr RPAREN TK
RETURN TK

/* empty */ I symbol_list!

SYMBOL_TK I
symbol_list! COMMA TK SYMBOL TK

GLOBAL TK symbol_list

LPAREN TK expr RPAREN_TK
LPAREN TK RPAREN TK

LPAREN TK symbol_list RPAREN TK

Functions

func_type:
/* empty */ I PRIVATE TK PUBLIC TK

func def:
DEFINE TK func_type SYMBOL_TK SYMBOL_TK arg_list I

DEFINE TK func_type SYMBOL TK SYMBOL TK arg_list multi_stmt

DEFINE TK func_type SYMBOL_TK SYMBOL_TK arg_list STRING_TK

I

I

DEFINE TK func_type SYMBOL TK SYMBOL TK arg_list STRING_TK mUlti_stmt

3-86 BBN/Slate Customizing Manual

3.6.3 Expressions

expr:
expr EQ_TK expr I
expr NE TK expr I
expr GE TK expr I
expr LE TK expr I
expr GT TK expr I
expr LT_TK expr I
expr MUL TK expr I
expr DIV TK expr I
expr ADD TK expr I
expr SUB_TK expr I
expr OR_TK expr I
expr AND_TK expr I
expr COMMA_TK expr
NOT_TK expr I
SUB_TK expr I
LPAREN TK expr RPAREN TK
INT TK I
REAL TK I
SYMBOL_TK
STRING_TK
func_call
ind func call - -
NULL_TK

INT TK: One or more unsigned digits.
REAL_TK:
SYMBOL_TK:

One or more unsigned digits including a decimal point
lower case letters plus the characters - . @ and _.
The dash and period cannot be used as the first
character.
Zero or more characters bounded by double quotes.
A double'quote may be included by preceding it with
a backslash.

The BBN/Slate Extension Language 3-87

3.6.4

3.6.5

3.6.6

Reserved words

DEFINE TK: define
UNDEF TK: undefine
GLOBAL TK: global
LOCAL TK: local
NULL TK: null
INVOKE TK: invoke
IF TK: if
ELSE TK: else
WHILE TK: while
RETURN TK: return
AUTOLOAD TK: autoload

ASSIGN TK:
NOT TK:
EQ_TK:
NE TK:
GE TK:
LE TK:
GT TK:
LT TK:
MUL TK:
DIV TK:
ADD TK:
SUB TK:
AND TK:
OR TK:

COMMA TK:

Expression operators

=

!=
>=
<=
>
<

*
/
+

&&

II

Other tokens

LPAREN TK: (
RPAREN TK:)
LBRACE TK: {
RBRACE TK: }

3-88 BBN/Slate Customizing Manual

3.6.7 Comments

Text from a # to the end of a line is ignored. A # may be included
in a string, and in that case, it is not interpreted as a comment.
Semicolons may be used at the end of statements. They are currently
ignored.

The BBN/Slate Extension Language 3-89

A Customizing Variables

This appendix describes the variables that may be set to control the
behavior of BBN/Slate. There are two basic categories of
BBN/Slate variables: document manager variables and document
editor variables. The document manager variables control the
appearance and behavior of the Document Manager. The
document editor variables control the appearance and behavior of
the Document Editor.

The document editor variables can be further separated into three
categories:

• Editor variables. These variables control the operation
of the Document Editor, and should be set in the
.slate_editor.init profile file. An example of this
type of variable is classify-names, which controls the
classification markings used to label document elements.

• Document variables. These variables control the attributes of a
document that should persist from one editing session to
another, and are set by defining document attributes in the
Document Editor. An example of this type of variable is
page-footer, which you set in the Preview/print ... dialog
box of the Print menu.

• Buffer variables. These variables control the attributes of a
document that should persist during an editing session, but
should not persist across editing sessions. These are internal
variables set and used the Document Editor.

Customizing Variables A-1

Setting variables

Organization of
this appendix

All variables are stored in one of three variables tables, depending
upon the scope of the variable. Variables associated with the
current buffer are stored in the buffer variables table. Variables
associated with the document are stored in the document variables
table. Variables associated with the Document Editor in general
are stored in the global variables table (for example, page­
left-pixels, which controls the margin between the left edge
of the Document Editor window and the beginning of the text area,
is a global variable).

In addition to setting variables in your. slate_edi tor. ini t
profile file, you can specify a new value for a variable
interactively. You can do this in several ways:

• Choose Set Variable from the BBN menu item (located at the
left side of the main menu).

• Enter execute-extended-command (for which the default
key binding is Esc-x) and select set from the scroll box. You
can also select set-buffer-variable-dialog,
set-document-variable-dialog, or set-global­
variable-dialog to review and reset specific variables in
the variables tables.

If the variable you choose has a current value, the dialog box will
display it. If you want, you can simply exit from the dialog box
without changing the value. This is useful for reviewing or noting
the value of the variables in case you want to revert to a previous
value. The values you assign in this interactive manner last for
the duration of your editing session. To make variable assignments
permanent, you should set them in your profile file.

This appendix sorts the variables into the two basic categories of
Document Manager variables (of which there are only a few) and
Document Editor variables. It further groups the Document Editor

A-2 BBN/Slate Customizing Manual

A.1

editor-args

display-document­
size

default-menu-font

variables by function: top-level Document Editor variables, text
variables, graphics variables, and so on (note that there are no
variables associated with conferencing). This organization helps
you to associate each variable with the context in which you use it.

Document Manager variables

The Document Manager reads a file named. slate_tool. init
from your home directory to customize its operation. This file
may include any of the variables included in this section.

A string that the Document Manager passes on startup to the
Document Editor. Since the Document Editor obeys the standard
operating-system flags to set its window size and position, you can
use this variable to control the initial position and size of the
Document Editor. For example:

editor-args = "_Wp 550 0 -Ws 600 900 -WP 1088 75"~

If the value of this variable is 1, then the size of a document is
listed at the end of the document summary line. The default
assignment is:

display-docurnent-size = o~

You can control the default font used for menus in the Document
Manager by setting this variable to the name of the font. The
default assignment is:

default-menu-font = "helvetica10b"~

Customizing Variables A-3

A.2

A.2.1

auto-backup

checkpoint­
frequency

classify

classify-names

default-classification

default-document­
template

Document Editor variables

Top-level Document Editor variables

Controls whether a file filename. BAK is written the first time a
file is saved. This backup file saves the initial version of the file
at the start of the editing session. It may be overwritten during
subsequent editing sessions.

Controls how often checkpoint files are written out. Default value
is 200.

An integer which gives the current top classification level for all
objects in the document. This variable is only guaranteed to be
valid after the document is written or printed.

The classification names. The value of this variable should be a
string of semicolon separated pairs. Each pair is a classification
level from lowest to highest. The elements of the pair are
separated by a comma. The first element of the pair is the long
form of the classification level; the second element is the short
form. The default assignment is:

classify-names = "(Unclassified), (U) ; (Confidential),
(C) ; (secret), (S) ; (Top Secret), (TS) ;"

The default classification level for new objects. The value of this
variable should be the long form of one of the classification levels,
e.g. "Secret".

The default document template to use for initializing new buffers.
If the name is an absolute path name, that file is used. If it
begins with a plus sign (+), it is looked up as a file in a folder.
Otherwise, the user and then system template directories are
searched. If this variable is unset, the editor will look for a file of
the name. slate_template in the current directory, user's
home directory, or the Slate system data directory, in that order.

A-4 BBN/Slate Customizing Manual

default-font The default font for new documents if no document template is
explicitely set. If a document template is set (using
defaul t-document- template), this variable has no effect.

default-keymap The top-level keymap that is used when outside any media editor.

default-menu-font Font used for menus in the editor.

display-classify- If non-zero, the classification menu choice is displayed in the
menu top-level editor menu.

default-ui-font The font used for buffer status lines and the editor message area.

find-direction Direction in which to search to find an instance of a media type or
text style. Values are 0 (forward), 1 (reverse), and 2 (anywhere).
The default is forward.

find-type Type of media object or text style to search for. Values are: 0
(text), 1 (image), 2 (speech), 3 (sheet), 4 (graphics), 5 (headers),
and 6 (raster). The default is text.

global-error An error code that is set by the editor functions.

global-last-function The name of the last editdoc or user defined function executed.

global-repeat-count The number of times to repeat an operation.

global-linestyle- The global line style table.
table

library-search-path Path names separated by colons to search for autoload files.

menu bar-suppress If menubar-suppress is set to non-zero, the pull-down menus
across the top of the editor window will not be shown. If you

Customizing Variables A-5

menubar-dlstrlbute­
evenly

menubar-Icon-flle

menu-directory

page

page-even-footer

page-even-header

page-footer

page-header

suppress display of the menu bar, the only way to access the top
level editor menu is by using Control-Right-Hold. This variable
is only effective when set in the • slate_editor. init profile
file -- changing it while the editor is running has no effect.

If set to non-zero, the pull-down menubar items will be evenly
distributed across the top menubar. Otherwise, the items will be
left justified.

The file name where icon for menubar is found.

The directory in which to search for menu files. If this variable is
set, the editor will look in the specified directory when loading
menu definition files, and use the menu definitions there to modify
the default menus. This variable only takes effect when set from
the • slate_editor. init file; changing its value interactively
has no effect.

The current page while printing. This variable may be modified in
the Print Values attribute of a text style in order to set the page
number during printing.

The text to place at the bottom of even pages. Tildes are used to
separate the text for the left side, center, and right side of the
page. A "$" indicates the end of a line (for multi-line text). The
characters "@1" are replaced with the current page number. The
default is the empty string. This variable may be modified in the
Print Values attribute of a text style in order to change the even
footer style during printing.

The text to place at the top of even pages.

The text to place at the bottom of even and odd pages.

The text to place at the top of even and odd pages.

A-6 BBN/Slate Customizing Manual

page-left-pixels

page-odd-footer

page-odd-header

page-scroll­
percentage

page-top-plxels

page-width

quick-menus

read-only

redefine-silently

spool

The number of pixels of white space at the left of a document
when it is displayed. The default is 12.

The text to place at the bottom of odd pages.

The text to place at the top of odd pages.

The percentage of the new page (height or width) to show when
scrolling by pages. The default is .8 to show 80% of the new
page.

A buffer-specific variable. The number of pixels of white space at
the top of a document when it is displayed. The default is 12.

A document-specific variable. The width of a page displayed on
the screen. The default is 6.5i.

This variable determines whether Slate uses the full set of
command menus, or an abbreviated set of menus that includes only
the most commonly used subset of editor commands. This variable
only takes effect when set from the • slate_editor. in it file;
changing its value interactively has no effect.

A buffer specific variable. If non-zero, the buffer cannot be
modified; if 0, the buffer can be modified. The default is to allow
the buffer to be modified.

If non-zero, the user can redefine user-defined functions in the
extension language without warning. If 0, the user is asked to
confirm the redefinition of a function. The default is to ask the
user to confirm redefinitions.

If non-zero, send the document to a printer rather than a file. The
default is to send the document to a printer.

Customizing Variables A-7

suppress-startup­
screen

use-color

visit-splits-pane

window-system­
name

window-system­
is-sunview

window-system­
is-x11

write-current­
version

A.2.2

text-default-format

If non-zero, then don't display the logo; if 0, then display the
logo. The logo is displayed momentarily at startup and covers the
entire editor window. The default is to display the logo.

If non-zero, use color; if 0, do not use color. The default is to not
use color.

If non-zero, the visit-file command (invoked using the menu
commands File-Read-In New Buffer or the default key binding
"X"V) splits the existing pane and displays the file in the second
pane. If 0, the visit-file command reads a new file into the existing
pane. The default is to read a new file into the existing pane.

The name of the window system in use (either sunview or
xll). The default setting is sunview.

If non-zero, the window system in use is Sun View TM. If 0, the
window system in use is Xll.

If non-zero, the window system in use is Xl!. If 0, the window
system in use is SunView.

If non-zero, the editor uses the version 3.0 format for sending
documents. If 0, the current version format is used. The default is
to use the current version format.

Text variables

The format used for inserting text into a document when no
specific format is requested. Default is:

text-default-forrnat = "paragraph"

A-8 BBN/Slate Customizing Manual

text-autotag­
content

If 1, the three letters "tag" appear in the tag field of a description
list as it is created. If 0, no text appears. The default assignment
is:

text-autotag-content = 1;

text-keymap The keymap for the text media type.

text-find-name The name of the text style to find. The default is the empty string.

text-plain-Iinewidth The default width of a line when writing a multimedia document
as text. The default is 79 characters.

A.2.3 Graphics variables

additional-textures Additional textures to enter in the global texture table.

global-bg-texture Index in global texture table for the default background texture for
images.

global-color-texture- The global color texture table.
table

global-fill-texture

global-pen-texture

global-texture-:-table

graphics-keymap

graphics-text­
Justification

Index in global texture table for the default fill texture for graphics
and images.

Index in global texture table for the default pen texture for
graphics and images.

The global texture table.

The keymap for the graphics media type.

Justification to use when adding text to a graphics object. Valid
values: left, center, right.

Customizing Variables A-9

graphics-show-grid

graphics-align-to­
grid

graphics-show-size

graphics-show­
rulers

graphlcs-show­
mouse-position

graphics-grid-size

graphics-font

A.2.4

editor-colormap­
size

If set to 1, show the grid when a new graphics object is created. If
set to 0, do not show it.

If set to 1, grid mode (align objects to grid) is ON. If set to 0, it
is OFF.

If set to 1, show the size when reshaping. If set to 0, do not show
it.

If set to 1, show the horizontal and vertical rulers when a new
graphics object is created. If set to 0, do not show them.

If set to 1, show the mouse position in rulers (when visible). If set
to 0, do not show position.

Size to make grid when new graphics object is created.

The font to use for text in a graphics object. The default is the
default document font.

Image variables

Sets the number of colors BBN/Slate will use when displaying a
color rasterfile. If a color image has more than this number of
colors, BBN/Slate will discard the least frequently used colors and
replace them by other, similar colors.

The default is to use no more than 128 colors, leaving the other
128 colors for use by other color applications running on the same
workstation display. If you are not using any other color
applications, you may want to increase the editor's colormap size
to 256, by including a line such as:

editor-colormap-size = 256~

in your • slate editor. ini t file.

A-10 BBN/Slate Customizing Manual

global-brush­
texture

Image-keymap

plcture-keymap

A.2.5

spreadsheet-font

A.2.6

audio-caption­
position

audio-caption­
justification

The editor's colormap is created the first time a color image is
displayed. Once the colormap has been created, changes in
edi tor-colormap-size are ignored.

Index in global texture table for the default brush texture for
images.

The keymap for the image media type.

The keymap for the picture media type.

Spreadsheet variables

Sets the default font for the spreadsheet editor. For example,

spreadsheet-font = "helvetica12"

sets the default font for new spreadsheets to a 12-point Helvetica
font. The font may be changed for each spreadsheet by selecting
the spreadsheet, then choosing Font from the spreadsheet menu.

Speech (audio) variables

Indicates the default positioning for the caption of new speech
elements. Legal values are "above", "below", "left", and
"right". The default assignment is:

speech-caption-position = "below"

A string that indicates how the caption is to be justified with
respect to the icons for new speech elements. The editor only uses
this variable when the caption is above or below the icon. Legal
values are "left", "right", and "center". The default
assignment is:

audio-caption-justification = "center"

Customizing Variables A-11

audio-caption-font A string that indicates the font to be used for captions on new
speech elements. You may use a BBN/Slate font name. For
example:

audio-caption-font = "helveticalOb"

The default value is the same as the default font for the document.

audio-caption-text The text that labels each new speech element. You can embed
various codes in this string to insert information such as your
name, the date, the time, etc. The codes that may be included in
this string are:

@Iogname Your operating system login name.

@fullname Your full name, as it appears in the operating system password
file.

@hostname The short host name (without domain qualifiers) of the host where
you are logged in.

@Hostname The full host name (including domain qualifiers) of the host where
you are logged in.

@date The current date in the form "3 Jun 1990".

@date(format) A date whose format is determined by the date formatting codes in
the format string. These codes are the same codes used in
headers and footers. The default assignment for this string is:

audio-channels

speech-caption-text = "Remark by @fullname on
@date(%D, %G:%M %A)"

The length of each speech passage in seconds is automatically
appended to its caption string.

Number of audio channels to record. Monophonic is 1 channel
and stereophonic is 2. Not all devices support stereo.

A-12 BBN/Slate Customizing Manual

audio-input

audio-output

audio-playback­
level

audio-record-JeveJ

audio-sampling­
rate

vocoder

The input source for recording speech. The value is a string
whose interpretation is device-specific. For instance, for a device
that can record directly or take input from another audio source,
the legal values might be "microphone" or "aux". Using the value
"default" will select some default audio input source appropriate to
the device in use.

The output device for playing speech. The value is a string whose
interpretation is device-specific. For instance, for a device that can
play to either an internal speaker or an external headphone jack,
the legal values might be "speaker" or "headphones". Using the
value "default" will select some default output appropriate to the
audio device in use.

The relative volume at which to play speech back. The value is
usually an integer between a and 100, and specifies the percentage
of the audio device's maximum playback level to use when playing
speech. Setting audio-playback-level to a negative value
uses a default playback level appropriate to the device. The actual
effect of any given value will be device-specific. Some devices
may not provide control over the playback level, in which case
setting the variable will have no effect at all.

The relative volume at which to record speech. The value is
usually an integer between a and 100, and specifies the percentage
of the audio device's maximum recording level to use when
recording speech. Setting audio-record-Ievel to a negative value
uses a default recording level appropriate to the device. The actual
effect of any given value will be device-specific. Some devices
may not provide control over the recording level, in which case
setting the variable will have no effect at all.

Number of audio samples per second for each channel. This
variable is only used when creating an audio object.

The hostname of the voice annotation server for this editor to use.

Customizing Variables A-13

A.2.7

enclosure-internal­
top-padding

enclosure-intern al­
left-padding

enclosure-intern al­
bottom-padding

enclosure-internal­
right-padding

enclosure-external­
top-padding

enclosure-external­
left-padding

enclosure-external­
bottom-padding

enclosure-external­
right-padding

enclosure-ignore­
exitval

enclosure-temp­
directory

enclosure-font

Enclosure variables

The amount of whitespace to leave between the top of an
enclosure's icon or caption and its bounding box.

The amount of whitespace to leave between the left edge of an
enclosure's icon its bounding box.

The amount of whitespace to leave between the bottom of an
enclosure's icon or caption and its bounding box.

The amount of whitespace to leave between the right edge of an
enclosure's icon or caption and its bounding box.

The amount of whitespace to leave above an enclosure in the
document.

The amount of whitespace to leave to the left of an enclosure in
the document.

The amount of whitespace to leave below an enclosure in the
document.

The amount of whitespace to leave to the right of an enclosure in
the document.

If the value of enclosure-ignore-exi tval is nonzero, the
enclosure media type will ignore non-zero termination codes by
enclosure commands. Otherwise, non-zero termination codes are
assumed to imply an error in the execution of the command and an
error message is presented.

Directory to use when creating temp files for editing copies of
enclosed data. If undefined, use "/tmp".

The font to use for enclosure captions. The default is to use the
default document font when the enclosure is created.

A-14 BBN/Slate Customizing Manual

enclosure-I con-file The name of a file containing that icon to use for newly created
enclosures. The data in the file should be in the format produced
by "iconedit". If the variable is unset, a default icon is used.

enclosure-Icon-width If the enclosure-icon-file variable is set, this variable tells
how many pixes of icon data to use in the enclosure's icon.
Setting its value to ° means use the entire width of the icon data.

enclosure-icon­
height

enclosure-copy-data

If the enclosure-icon-file variable is set, this variable tells
how many pixels of icon data to use in the enclosure's icon.
Setting its value to ° means use the entire height of the icon data.

If set to a non-zero value, the default for new enclosures is to use
enclose-by-copying mode. If set to 0, the default is to use
enclose-by-reference mode.

enclosure-show-slze If set to a non-zero value, the default for new enclosures is to set
the show-size attribute. If set to 0, the default is not to show the
size.

enclosure-copy- If set to a non-zero value, the default for new enclosures that are
when-mailed references is to set the copy-when-mailed attribute. If set to 0, the

default is not to set copy enclosure data when mailed.

A.2.8 Printing variables

print-bottom-margin The margin to reserve at the bottom of the page when printing.
Units are: i (inches), I (lines), c (centimeters), s (spaces in the
default font), and p (points - 1/72 of an inch). The default is .75
inches.

print-gutter The horizontal space between columns when printing multiple
columns on a single page. Units are: i (inches), I (lines), c
(centimeters), s (spaces in the default font), and p (points - 1/72 of
an inch). The default is ".si".

Customizing Variables A-15

print-header-font

print-headers

print-landscape

print-left-margin

The font to use for headers and footers. The value of this variable
is an index into the font delta table, so it should be changed with
care.

If this is non-zero, print headers and if this is 0, do not print
headers. The default is to print headers.

If this is non-zero, print in landscape mode (horizontally) on the
page and if this is 0, print vertically on the page. The default is to
print vertically on the page.

The margin to reserve at the left edge of the page when printing.
Units are: i (inches), I (lines), c (centimeters), s (spaces in the
default font), and p (points - 1/72 of an inch). The default is
".7Si".

print-numcolumns The number of columns to print. The default is 1.

print-oddeven If this is non-zero, print odd and even pages with different headers
and footers. If this is 0, then the values for even headers and
footers are used for both odd and even pages. The default is to use
the even headers and footers for both odd and even pages.

print-pageheight The height of the page before margins are subtracted. Units are: i
(inches), I (lines), c (centimeters), s (spaces in the default font),
and p (points - 1/72 of an inch). The default is "lli".

print-pagewidth The width of the page before margins are subtracted. Units are: 1

(inches), I (lines), c (centimeters), s (spaces in the default font),
and p (points - 1/72 of an inch). The default is "B.Si".

print-right-margin The margin to reserve at the right edge of the page when printing.
Units are: i (inches), I (lines), c (centimeters), s (spaces in the
default font), and p (points - 1/72 of an inch). The default is
".7Si".

A-16 BBN/Slate Customizing Manual

print-spooler

prlnt-startpage

print-titlepages

print-toe

print-top-margin

printfile

A.2.9

The command line used to print the document. The program
invoked is assumed to read PostScript® on its standard input and
generate a printed document as its output. In the command line,
the notation % 8 is converted to the name of the document. The
default is "lpr %8".

The page number for the first page of the document. The default is
1.

The number of pages that should be printed at the start of the
document before page numbering begins. The default is 0.

If this is non-zero, print the table of contents and if this is 0, do
not print the table of contents. The default is to not print the table
of contents.

The margin to reserve at the top of the page when printing. Units
are: i (inches), I (lines), c (centimeters), s (spaces in the default
font), and p (points - 1/72 of an inch). The default is ".7Si".

A buffer specific variable. If the spool variable is 0, this variable
specifies the name of the file in which the print command will
place its output. The default assignment is:

printfile = "printfile.ps";

Mall variables

Header variables

header-display-fields The set of header fields displayed when you add new headers to a
document. List the names of the fields, separated by spaces. The
default assignment is:

header-display = "to subject";

Customizing Variables A-17

header-edit-fields

header-keymap

header-name-font

header-nodisplay­
fields

The header editing dialog, however, will always contain the three
standard headers, To, Subject, and Cc.

An additional set of header field names, separated by spaces, that
appear when you add headers to a document. The default To,
Subject, and Cc fields always appear.

You can use this variable to specify additional headers for your
messages. For example, if you always want to be prompted for
fields named Bcc and Priority, you could include:

header-edit-fields = "Bcc Priority";

in your • slate_editor. init profile file.

The keymap for the header media type.

The font used to display the header field names. It should be of
the form:

header-name-font = "helveticalOb";

The set of header fields you do not want displayed in the editor.
List the names of the fields, separated by spaces. For example:

header-nodisplay-fields = "received message-id";

header-noedit-fields The set of header fields that cannot be edited. When you edit an
existing set of document headers, these fields will not be displayed
in the editing dialog. List the field names, separated by spaces.
The default assignment is:

header-noedit-fields = "date from";

The header editing dialog will always contain the three standard
headers, To, Subject, and Ce.

A-18 BBN/Slate Customizing Manual

header-value-font

mail-record

fax-mail-address

The font used to display the header field values. It should be of
the form:

header-value-font = "helveticalO";

The name of a folder to place copies of all out-going mail, e.g.,
"+outbox". If this variable is unset, no copy of outgoing mail
is made.

Mail variables for the system administrator

In addition to the variables that control display and editing of
document headers, a number of variables control the encoding and
sending of multimedia mail. These variables are normally set by
the system administrator when BBN/Slate is first installed. These
variables enable you to configure BBN/Slate so that it can send
multimedia mail using mail transport systems not directly supported
by the installation program described in the Installation
Instructions.

If you use Sendmail or MMDF as your mail transport system, you
probably do not need to be familiar with the variables in this
section; the BBN/Slate installation program knows how to
configure the system correctly for both Sendmail and MMDF. If
you use some other mail transport system, you must use these
variables to configure the editor to send mail correctly . You will
also need to refer to System Topics to learn how to arrange for
multimedia mail to be received from other BBN/Slate users
properly.

Encoding and delivery of multimedia mail are controlled by the
following editor configuration variables. The default values
have been chosen so that they are suitable for use with
/usr/lib/sendmail as the mail delivery agent.

The address of the fax spooler mailbox.

Customizing Variables A-19

mail-conte nt-name A string indicating the name of the field used to encode the
message content type.

mail-conte nt-type

This variable is only used if mail-content-type is not an empty
string. It sets the name of the field whose value will be the value
of rnail-content-type. The default assignment is:

mail-content-name = "X-content-Type";

You might want to change it to Content-Type if you have a
mail system that fully implements Internet RFC 1049 message
headers. The MMDeliver program supplied with BBN/Slate will
recognize either form.

A string indicating the content type of the mail message.

If the value is not an empty string, then the file submitted to the
mail spooler will contain a header of the form:

X-Content-Type: value of mail-content-type

This variable is normally used when multimedia messages are
being encoded prior to delivery. It indicates the encoding type
used, so that the mail system on the recipient's host will be able to
decode the message when it arrives. To disable the generation of
the X-Content-Type header, set the variable's value to an
empty string, like this:

mail-content-type =

The default is:

" II • ,

mail-content-type = "X-BBN-Encoded-Multimedia;l.O";

The value has been chosen to conform to the syntax specified in

A-20 BBN/Slate Customizing Manual

mail-delete-when­
sent

mail-encoder

Internet Request For Comments number 1049 (RFC 1049,
"Content-type header field for Internet messages"). It should not
be changed lightly, since MMDeliver looks for this magic value to
indicate encoded multimedia mail.

If non-zero, the editor will delete automatically generated
composition, reply, and forward buffers after they are sent as
electronic mail. If this variable is set to 0, the buffers will not be
automatically deleted. The default value is 1. It should not be
changed at the moment, because the implementation of nontransient
buffers is currently incomplete.

If mail-spooler-requires-encoding is true, this program will be used
to convert the 8-bit multimedia message body to a 7 -bit encoding.
The program is expected to read from its standard input and write
to its standard output. The default value is mmencode, a program
supplied with BBN/Slate. It should not be altered lightly, since the
mmdeliver mail delivery program is designed to work with
MMEncode's encoding format.

mail-encoder-Ignore- An integer indicating that the mail-encoder program's exit status is
exitval not to be relied upon.

When called upon to encode mail messages prior to delivery, the
editor will test the exit status of the mail-encoder program to make
sure it succeeded. It assumes that an exit status matching the
value of mail-encoder-successful-exi tval indicates
success; it also assumes that any other status indicates failure, in
which case it will issue a lengthy diagnostic message.

However, it is possible that some user-supplied mail encoders will
return unpredictable results even when they succeed in encoding
the message. Setting mail-encoder-ignore-exi tval to a
nonzero value will suppress the error checking and diagnostic
messages in such cases.

The default value for mail-encoder-ignore-exitval is O.

Customizing Variables A-21

mail-encoder­
successful-exitval

mail-spooler

%F

%T

%C

%B

%S

%0

%s

An integer indicating the exit value the mail encoder uses to signal
successful encoding.

Most UNIX programs will exit with a zero termination status to
indicate success. However, there are exceptions, and BBN/Slate is
prepared to cope with them.

The default mail-encoder-successful-exitval is O.

A string that specifies the name of the program used to enqueue
mail for delivery. The name may contain shell wildcard and
redirection characters, in which case it will be evaluated by
/bin/sh.

You may include additional information such as header field values
and spool file names by embedding the following special sequences
in the spooler name:

The value of the From: field

The value of the To: field

The value of the Cc: field, if any

The value of the Bcc: field, if any

The value of the Subject: field, if any

The value of the Date: field

The name of the temporary file in which the message may be
found

When header fields are inserted into the spooler string, only the
field values are included; the field names are not inserted unless
you include them explicitly in the spooler string.

A-22 BBN/Slate Customizing Manual

mail-spooler­
extracts-headers

mai I-spooler­
ignore-exitval

The field values are inserted exactly as typed by the user, with no
automatic quoting of multi-word values or escaping of shell
wildcards. If your mail spooler requires such quoting, it is your
responsibility to include the appropriate quote characters in the
mail spooler string.

The default is:

mail-spooler = "/usr/lib/sencimail -t -Oeq < %s"

An integer that indicates whether the mail-spooler can extract
message headers from the mail message.

If the value is non-zero, the spool file will consist of the message
headers, followed by a blank line, followed by the (optionally
encoded) message contents.

If the value is 0, the spool file will consist of the message contents
alone; any required header information is presumed to be included
in the mail-spooler variable.

The default value for mail-spooler-extracts-headers
is 1.

An integer indicating that the mail-spooler program's exit status
can not be relied on.

When it calls the local mail transport program to deliver a
multimedia message, the editor will test the exit status of the
mail-spooler program to make sure it succeeded. It assumes that
an exit status matching the value of mail-spooler­
successful-exitval indicates success; it also assumes that
any other status indicates failure, in which case it will issue a
lengthy diagnostic message.

However, it is possible that some user-supplied mail spoolers will

Customizing Variables A-23

mail-spooler­
requires-encoding

mail-spooler­
successful-exitval

return unpredictable results even when they succeed in enqueuing
the message. Setting mail-spooler-ignore-exi tval to a
non-zero value will suppress the error checking and diagnostic
messages in such cases.

The default value for mail-spooler-ignore-exi tval is O.

An integer that indicates whether the mail delivery program
requires encoding of non-ASCII messages.

If the value is non-zero, the mail transport program requires
that messages be composed of 7 -bit ASCII characters. Since
BBN/Slate documents are binary files using 8-bit characters, they
must be encoded into an ASCII-only format before they may be
submitted to such a mail transport program.

If the value is 0, however, the mail transport program is assumed
to be capable of dealing with binary files directly, and the
multimedia message is not encoded.

The default value for mail-spooler-requires-encoding
is 1.

An integer indicating the exit value the mail spooler uses to signal
that it has successfully enqueued the mail.

Many UNIX mail-spooling programs will exit with a zero
termination status to indicate success. However, there are
exceptions, most notably MMDF (whose mail submission program
indicates success with exit status 9), and BBN/Slate is prepared to
cope with them.

The default mail-spooler-successful-exitval is O.

A-24 BBN/Slate Customizing Manual

text-mail-spooler

Mail variables for sending text mail

When delivering text mail, the BBN/Slate editor converts the
multimedia message to a text message (replacing non-text objects
with legends to mark where they occurred in the original
document), then writes the message headers and text message to a
spool file, and calls on the local mail delivery agent to submit the
file for delivery.

The exact behavior of each of these steps is controlled by
variables that you can set in the sitewide profile file
(slate_editor.init) or in a user's private profile file
(.slate_editor.init). See Chapter 1 for more information
on profile files. Variables are set by including a line of the form

variable-name = numeric value;

or

variable-name = "string value";

in the profile file. Double quote marks may be embedded in string
values by preceding them with a backslash character, exactly as in
the shell.

Encoding and delivery of multimedia mail is controlled by the
following three editor configuration variables. The default values
have been chosen so that they are suitable for use with
/usr / lib/ sendmail as the mail delivery agent.

A string that specifies the name of the program used to enqueue
text mail for delivery. This will normally be the same as the
mail-spooler used for encoded multimedia messages. The
name may contain shell wildcard and redirection characters, in
which case it will be evaluated by /bin/ sh.

Customizing Variables A-25

text-mail-spooler-

successful-exitval

text-mail-spooler­
ignore-exitval

You may include additional information such as header field values
and spool file names by including the special character sequences
mentioned above, in the description of the mail-spooler
variable.

The text mail delivery program is assumed to extract headers and
delivery information from its input. The spool file consists of the
message headers, followed by a blank line, followed by the text of
the message. No special encoding is supported.

The default assignment is:

text-mail-spooler = "/usr/lib/sendmail -t -Oeq < %s";

An integer indicating the exit value the text mail spooler uses to
signal that it has successfully enqueued the text mail.

Many UNIX mail spooling programs will exit with a zero
termination status to indicate success. However, there are
exceptions, most notably MMDF (whose mail submission program
indicates success with exit status 9), and BBN/Slate can work with
them if you set value for
text-mail-spooler-successful-exitval accordingly.

The default text-mail-spooler-successful-exitval is
O.

An integer indicating that the text-mail-spooler program's exit
status can not be relied on.

When it calls the local mail transport program to deliver a
multimedia message, the editor will test the exit status of the
text-mail-spooler program to make sure it succeeded. It
assumes that an exit status matching the value of
text-mail-spooler-successful-exitval indicates
success; it also assumes that any other status indicates failure, in
which case it will issue a lengthy diagnostic message.

A-26 BBN/Slate CustomiZing Manual

A.2.10

keyboard_button1

However, it is possible that some user-supplied mail spoolers will
return unpredictable results even when they succeed in enqueuing
the message. Setting text-mail-spooler-ignore-exi tval
to a non-zero value will suppress the error checking and diagnostic
messages in such cases.

The default value for text-mail-spooler-ignore-exitval
is o.

Multilingual variables

The keyboard display (which you can access by choosing Keycaps
from the main menu or by invoking the display-keyboard
function) includes three buttons at the bottom, two of which, by
default, are set to display none:

BBIliSlate Virtual Keyboard

Language C Engli3h Paragraph Flow: Left-Io-Rlght

English none none (Take Down)

If your site is using the multilingual version of BBN/Slate, you can
shift the keyboard to other languages by simply selecting one of
these three "fast keyboard" buttons, once you define them. You
may find this more convenient than switching languages by using
the rotary selection switch at the upper left of the keyboard
display.

Foreign language versions only. The keyboard to place on the first
"fast keyboard" button on the keycaps dialog. For example:

keyboard_buttonl = "Russian";

Customizing Variables A-27

keyboard _ button2

keyboard_button3

Foreign language versions only. The keyboard to place on the
second "fast keyboard" button on the keycaps dialog.

Foreign language versions only. The keyboard to place on the third
"fast keyboard" button on the keycaps dialog.

A-28 BBN/Slate Customizing Manual

B Listing of Functions

This appendix lists all user-callable BBN/Slate functions. These
are the default functions provided with this release of the software.
It is intended as a general-purpose reference tool for functions that
you can employ in your own BBN/Slate extension language
functions. You can scan this appendix to gain an overview of the
breadth of functionality available.

You can also use the apropos function to assist you in locating
functions having to do with a particular topic area. There are two
ways to invoke apropos: by selecting BBN-Help-Apropos from
the main menu, or by invoking execute-command-dialog
(for which the default key binding is Esc-X) and typing apropos.
In response to the apropos dialog. box, enter any potential topic
or string of characters that you believe might be part of a function
name (examples are char, string, text, buf, and so on).
Apropos then displays a scrolling box containing any functions
that include your entry. Select any of the functions to display its
description in a dialog box.

This alphabetical listing was created using the function
display-functions-in-buffer (see Chapter 3). As you
add your own user-callable functions, they will be added to it
whenever you create another list. Note that once you create a
listings file in this manner, you may also find it convenient to use
normal BBN/Slate search commands on the file to locate topics of
interest.

Listing of Functions B-1

about-slate Displays a dialog that tells you what version of BBN/Slate you are
using, and when it was created. Returned result type is: void. No
arguments.

add-audio Add a speech object at the current cursor position. Returned result
type is: void. No arguments.

add-blank-image Add a blank image at the current cursor position. Returned result
type is: void. No arguments.

add-empty-buffer Open an empty buffer with the specified buffer name and file
name. The buffer name must be unique and may not be empty.
This routine returns the newly created buffer, or NULL in case of
errors. Note that add-empty-buffer does NOT switch to the new
buffer. Use change-to-named-buffer to make the new buffer
become the current buffer. Returned result type is: buffer.
Argument types are: string, string.

add-enclosure Add an enclosure at the current cursor position. Returned result
type is: void. No arguments.

add-generic-image Add some type of monochrome or color bitmap image to the
document. This command prompts for a file name, then tries to
derive the image type by examining the file contents. Returned
result type is: void. No arguments.

add-graphics Add a graphics object at the current cursor position. Returned
result type is: void. No arguments.

add-header Add a header to the start of the document if none exists and
display a dialog for the user to fill in the header fields. Returned
result type is: void. No arguments.

add-image-from-file Prompt for the name of a BBN/Slate image file and add its
contents at the current cursor position. Returned result type is:
void. No arguments.

B-2 BBN/Slate Customizing Manual

add-image-from­
named-file

add-named-raster

add-named-xwd

add-object

add-raster

add-spreadsheet

add-xwd

alias

any-buffer-Is­
modified

append-buffer­
to-documl;!nt

append-buffer­
to-file-as-text

Add the contents of the named BBN/Slate image file at the current
cursor position. Returned result type is: void. Argument types are:
string.

Add the contents of the named rasterfile at the current cursor
position. Returned result type is: void. Argument types are: string.

Add the contents of the named X Window Dump file at the
current cursor position. Returned result type is: void. Argument
types are: string.

Displays a scrolling list of objects which may be added to the
document and adds the selected object at the current cursor
position. Returned result type is: void. No arguments.

Prompt for the name of a rasterfile and add its contents at the
current cursor position. Returned result type is: void. No
arguments.

Add a spreadsheet at the current cursor position. Returned result
type is: void. No arguments.

Prompt for the name of an X Window Dump file and add its
contents at the current cursor position. Returned result type is:
void. No arguments.

Bind an alias name to its value. Returned result type is: void.
Argument types are: string, string.

Returns true if any buffer is modified. Returned result type is: int.
No arguments.

Append the specified buffer to the specified file. Returned result
type is: void. Argument types are: buffer, string.

Append the specified buffer to the specified file as text. Returned
result type is: void. Argument types are: buffer, string.

Listing of Functions B-3

apropos

apropos-dialog

audio-edit

audio-edit-caption

audio-edit-font

audio-listen

aUdio-top-menu

audio-use­
clipboard-icon

audio-use­
default-icon

audio-use-file-icon

beginning-of-buffer

Display a list of published functions that contain the specified
word. Selecting one of the functions describes that function.
Returned result type is: void. Argument types are: string.

Query the user for a word and then display a list of published
functions that contain that word. Selecting one of the functions
describes that function. Returned result type is: void. No
arguments.

Pop up a dialog to edit (record and play) the selected audio object.
Returned result type is: void. No arguments.

Edit the caption you see in the audio object on the screen.
Returned result type is: void. No arguments.

Change the font of the caption on the screen. Returned result type
is: void. No arguments.

Plays the current audio object without a control panel. Interrupted
by any mouse button. Returned result type is: void. No arguments.

Put up menu to manipulate the audio object. Returned result type
is: void. No arguments.

Use icon in the clipboard for the icon of the caption on the screen.
Returned result type is: void. No arguments.

Change the icon of the caption on the screen. Returned result type
is: void. No arguments.

Use the default icon for the icon of the caption on the screen.
Returned result type is: void. No arguments.

Returns the start of the document. The returned type is marker.
No arguments.

B-4 BBN/Slate Customizing Manual

beginning-of-region

bind

bound

buffer-Is-modified

buffer-of-pane

cd

change-directory

change-directory­
dialog

change-to-buffer

change-to-named­
buffer

Returns the start of the specified region. The returned type is
marker.

Bind a key sequence in a keymap to a function. When the key
sequence is typed, the function is executed. The first argument is
a keymap name; the second argument is a key sequence and the
third argument is a function name. The function must not be one
that takes arguments or returns a result. Returned result type is:
void. Argument types are: string, string, string.

Return the function bound to a key sequence in a keymap. The
first argument is the keymap name, the second is the key sequence.
Returned result type is: string. Argument types are: string, string.

Return true if the specified buffer is modified, otherwise return
false. Returned result type is: int. Argument types are: buffer.

Takes a pane number and returns the buffer currently contained in
that pane. Returns NULL and sets the global error flag if the pane
number is out of legal range. Returned result type is: buffer.
Argument types are: into

Prompt for a directory name and make it the editor's working
directory. Returned result type is: void. No arguments.

Change the editor's working directory to the named directory.
Returned result type is: void. Argument types are: string.

Prompt for a directory name and make it the editor's working
directory. Returned result type is: void. No arguments.

Query the user for the name of the buffer to make the current
buffer. Returned result type is: void. No arguments.

Make the named buffer be the current buffer. Returned result type
is: void. Argument types are: string.

Listing of Functions 8-5

char-to-int

char-to-string

check-spelling

check-spelling­
of-document

check-spelling­
of-region

checkpoint­
modified-buffers

clear

Convert character to integer. Returned result type is: int. Argument
types are: char.

Convert character to string. Returned result type is: string.
Argument types are: char.

Check the spelling in the document. A dialog box will be
displayed allowing you to select which parts of the document will
be checked. You may check the entire document, the currently
selected region, or from the cursor to the end of the document.
Returned result type is: void. No arguments.

Check the spelling of all text in the document. Text within other
media types (spreadsheets, graphics, headers, voice captions) will
also be checked. Returned result type is: void. No arguments.

Check the spelling of all text in the selected region. Text within
other media types (spreadsheets, graphics, headers, voice captions)
will be checked wherever possible. Returned result type is: void.
No arguments.

Checkpoint all modified buffers. Returned result type is: void. No
arguments.

Clear the selected region. Returned result type is: void. No
arguments.

clear-buffer Clear the specified buffer. Returned result type is: void. Argument
types are: buffer.

clear-current-buffer Clear the current buffer. Returned result type is: void. No
arguments.

command-loop Loop receiving and processing user events. Loop can be exited by
call command-loop-exi t (). Returned result type is: void. No
arguments.

B-6 BBN/Slate Customizing Manual

command-loop-exit

command-loop-start

copy

counter-add­
occurrence

counter-add­
occurrence-dialog

counter-add­
reference

counter-add­
reference-dialog

counter-define­
style-dialog

counter-delete­
named

counter-delete­
unused

Exit closest enclosing command loop. Returned result type is: void.
No arguments.

If a user-written routine is going to be used to receive and process
user events, this routine should be called at the start to clean up
various internal state variables to ensure proper behavior. Returned
result type is: void. No arguments.

Copy the selected region. Returned result type is: void. No
arguments.

Add an occurrence of a counter. The arguments are counter name,
optional tag, counter level, style (0 = increment, 1 = init, 2 =
noincr), and initial value (if style = 1). Returned result type is:
void. Argument types are: string, string, int, int, int.

Add an occurrence of a counter. Display a dialog to specify
which counter. Returned result type is: void. No arguments.

Add a reference to a counter. Arguments are counter name,
counter tag, and style (0 = counter value, 1 = counter page).
Returned result type is: void. Argument types are: string, string,
int.

Add a reference to a counter. Display a dialog to specify which
counter. Returned result type is: void. No arguments.

Display a dialog for creating a new counter. Returned result type
is: void. No arguments.

Delete the named counter. Returned result type is: void. Argument
types are: string.

Delete all the unused counters in the document. Returned result
type is: void. No arguments.

Listing of Functions B-7

counter-describe

counter-find

counter-find-tag­
dialog

counter-find-tag­
ref-dialog

counter-tag­
occurrence

counter-tag­
occurrence-dialog

create-new-buffer

create-region

current-buffer

current-document

Return a string describing the counter near the mark. Returned
result type is: string. No arguments.

Find an instance of a counter and set the point there. Arguments
are the counter name, the tag, and 0 if looking for the actual
counter and 1 if looking for a reference to it. Returned result type
is: void. Argument types are: string, string, into

Find an instance of a tag. Displays a dialog to specify the tag.
Returned result type is: void. No arguments.

Find a reference to a tag. Displays a dialog to specify the tag.
Returned result type is: void. No arguments.

Modify the tag or style of the counter near the cursor. The
arguments are the tag, the style (0 = increment, 1 = init), and the
initial value if the style = init. Returned result type is: void.
Argument types are: string, int, into

Display a dialog to modify the tag or style of the counter near the
cursor. Returned result type is: void. No arguments.

Create an empty document buffer using the default document style.
The user is prompted for the name of the buffer. The buffer is
not associated with any file until it is saved for the first time.
Returned result type is: void. No arguments.

Creates a region of the document and returns that region. The
returned type is region. Argument types are: marker, marker.

Return the currently selected document buffer. Returned result type
is: buffer. No arguments.

Return the current document. Returned result type is: document.
No arguments.

B-8 BBN/Slate Customizing Manual

current-file Return the name of the file that is in the current buffer. Returned
result type is: string. No arguments.

current-mark Returns the current mark (the end of the currently selected region).
The returned type is marker. No arguments.

current-abject-type Return the type name of the currently selected object. Returned
result type is: string. No arguments.

current-pane Return the pane number of the current pane. Returned result type
is: int. Argument types are: void.

current-point Returns the current point (cursor location). The returned type is
marker. No arguments.

current-region Returns the currently selected region of the document. The returned
type is region. No arguments.

cut Cut the selected region. Returned result type is: void. No
arguments.

deiconify

delete-all­
checkpoints

delete-buffer

delete-buffer­
checkpoint

delete-buffer­
with-filename

De-iconify the editor window. Returned result type is: void. No
arguments.

Delete checkpoint files in preparation for exiting. Returned result
type is: void. No arguments.

Delete the given document buffer. Returned result type is: void.
Argument types are: buffer.

Delete the checkpoint file associated with a buffer. Returned result
type is: void. Argument types are: buffer.

Delete the buffer associated with the named file. Returned result
type is: void. Argument types are: string.

Listing of Functions 8-9

delete-current-buffer Delete the current buffer. Returned result type is: void. No
arguments.

delete-current-pane Delete the current pane. Returned result type is: void. No
arguments.

delete-named-buffer Delete the buffer with the specified name. Returned result type is:
void. Argument types are: string.

delete-other..;panes Delete all but the current pane. Returned result type is: void. No
arguments.

describe-buffer­
variable

describe-buffer­
variable-dialog

describe-command

describe-document­
variable

describe-document­
variable-dialog

describe-global­
variable

describe-global­
variable-dialog

describe-key

Describe the given buffer-specific variable. Returned result type is:
void. Argument types are: string.

Describe a buffer-specific variable. Returned result type is: void.
No arguments.

Describe an user callable editdoc function or an user defined
function. Returned result type is: void. No arguments.

Describe the given document-specific variable. Returned result type
is: void. Argument types are: string.

Describe a document-specific variable. Returned result type is:
void. No arguments.

Describe the given global variable. Returned result type is: void.
Argument types are: string.

Describe a global variable. Returned result type is: void. No
arguments.

Give the name of the function to WhICh a sequence of keys is
bound. Returned result type is: void. No arguments.

B-10 BBN/Slate Customizing Manual

describe-variable

deselect-all-objects

designate-variable­
buffer-specific

designate-variable­
document-specific

Describe a variable. Searches the buffer specific, document
specific and global variable tables in that order. Returned result
type is: void. No arguments.

Deselect any objects which are currently selected. Returned result
type is: void. No arguments.

Make the specified variable buffer specific. Returned result type is:
void. Argument types are: string.

Make the specified variable document specific. Returned result type
is: void. Argument types are: string.

display-buffer-status Display the status of all buffers. Returned result type is: void. No
arguments.

display-compile-date Display the compile date at the bottom of the display. Returned
result type is: void. No arguments.

display-confirmation

display-copyright

display-current­
directory

display-current­
directory-dialog

display-current­
keymap-in-buffer

Displays the specified message in a dialog box with buttons
labelled yes and no and returns 1 if the user selects yes and 0 if
the user selects no. Returned result type is: int. Argument types
are: string.

Display the copyright at the bottom of the display. Returned result
type is: void. No arguments.

Display the editor's current working directory in the message area.
Returned result type is: void. No arguments.

Display the editor's current working directory in a popup dialog
box. Returned result type is: void. No arguments.

Display the current key mappings. Returned result type is: void.
No arguments.

Listing of Functions 8-11

display-error Display the specified message in a dialog box. Returned result type
is: void. Argument types are: string.

dlsplay-functions- Display descriptions of the published functions. Returned result
In-buffer type is: void. No arguments.

display-keyboard Put up the graphical keyboard in a dialog window. Returned result
type is: void. No arguments.

display-message Display the specified message in a dialog box. Returned result type
is: void. Argument types are: string.

display-print-dialog Display printing dialog and dispatch print job based on the user
action. Returned result type is: void. No arguments.

display-string-in- Display the specified message in the bottom line of the display
status-line (below the buffer title banner). Returned result type is: void.

Argument types are: string.

display-system-error Display the specified string in a dialog box followed by the system
error message derived from errno. Returned result type is: void.
Argument types are: string.

display-unbound­
error

do-nothing

document-move­
point

Print a message at the bottom of the display saying that a key is
not bound to any function. Returned result type is: void. No
arguments.

Routine which does nothing. Placeholder in keymaps. Returned
result type is: void. No arguments.

Move the cursor location by the number of characters specified in
the argument. Returned result type is: void. Argument types are:
into

document-set-obJect Set the current object to the object at the given location. Returned
result type is: void. Argument types are: marker.

8-12 BBN/Slate Customizing Manual

document-set-point Set the cursor to the specified location in the document. Returned
result type is: void. Argument types are: marker.

edit-object-attributes Change the display or printing attributes of the currently selected
object. Attributes that may be changed include whether or not the
outline is displayed around this object, whether this object forces a
page break, the object's justification on the page, classification
level, and print resolution. Returned result type is: void. No
arguments.

enclosure-change­
font

enclosure-deselect­
and-insert

enclosure-edit-data

enclosure-edit­
description

Change the font used for this enclosure's caption. Returned result
type is: void. No arguments.

Deselect the current enclosure object and insert the character just
typed immediately after the enclosure. This command is normally
bound to all printing characters while an enclosure is selected. It
should not be bound to non-printing characters, as unpredictable
results may occur. Returned result type is: void. No arguments.

Performs the "Edit" operation defined for an enclosure. Returned
result type is: void. No arguments.

Modify the file, type, or commands defined for an enclosure.
Returned result type is: void. No arguments.

enclosure-edit-Iayout Modify the icon or margins for this enclosure. Returned result type
is: void. No arguments.

enclosure-execute Performs the "Execute" operation defined for an enclosure.
Returned result type is: void. No arguments.

enclosure-execute- Searches the current enclosure for a command whose name
command matches its argument, and executes that command if it exists.

Returned result type is: void. Argument types are: string.

enclosure-print Performs the "Print" operation defined for an enclosure. Returned
result type is: void. No arguments.

Listing of Functions 8-13

enclosure-reload­
data

enclosure-show­
filename

enclosure-top-menu

enclosure-user­
command-1

enclosure-user­
command-2

enclosure-user­
command-3

enclosure-user­
command-4

enclosure-write-data

enclosure-write­
data-to-file

end-of-buffer

Reloads the data for an enclosure from the named file. This
command operates on enclosures that include data by copying, not
on those that include data by reference. Returned result type is:
void. No arguments.

Display the filename from which this enclosure was created.
Returned result type is: void. No arguments.

Put up the top-level menu for the current enclosure object. If the
current object is not an enclosure, do nothing. Returned result type
is: void. No arguments.

Performs the first user-defined operation for an enclosure. Returned
result type is: void. No arguments.

Performs the first user-defined operation for an enclosure. Returned
result type is: void. No arguments.

Performs the first user-defined operation for an enclosure. Returned
result type is: void. No arguments.

Performs the first user-defined operation for an enclosure. Returned
result type is: void. No arguments.

Prompt for a filename, and write the data from an enclosure to the
file specified. This command operates on enclosures that include
data by copying, not on those that include data by reference.
Returned result type is: void. No arguments.

Write the data from an enclosure to a named file. This command
operates on enclosures that include data by copying, not on those
that include data by reference. Returned result type is: void.
Argument types are: string.

Returns the end of the document. The returned type is marker. No
arguments.

8-14 BBN/Slate Customizing Manual

end-ot-region Returns the end of the specified region. The returned type is
marker. Argument types are: region.

event-current-code Return the character code of the last event received. Returned
result type is: int. No arguments.

event-current-x

event-current-y

event-get-next-code

event-is-pending

event-process­
current

event-wait-tor-next

execute-command­
dialog

execute-string

exit

Return the x coordinate of the last event received. Returned result
type is: int. No arguments.

Return the y coordinate of the last event received. Returned result
type is: int. No arguments.

Receive the next event and return its code. Returned result type is:
int. No arguments.

Return non-zero if an event is pending. Returned result type is: int.
No arguments.

Process the event just received. This involves handling events in
scrollbars, borders, keepup dialogs, as well as standard events in
the pane. Returned result type is: void. No arguments.

Receive the next event and return its code. Handle any pending
operations before receiving the event. Returned result type is: int.
No arguments.

Execute an user callable editdoc function or an user defined
function. Returned result type is: void. No arguments.

Execute the string as extension language commands. Returned
result type is: void. Argument types are: string.

Exit the editor. If there are any modified buffers, query the user
to ask whether the buffers should be saved. Returned result type is:
void. No arguments.

Listing ot Functions 8-15

exit-without­
saving-changes

filename-of-buffer

find-buffer

flnd-buffer­
containing-filename

find-media-type

find-media-type­
again

gather-repeat-count

generate-tables

get-menu

graphics-add-arc

graphlcs-add-box

graphics-add-circle

Exit the editor. This does not save modified buffers. Returned
result type is: void. No arguments.

Return the name of the file that is in the specified buffer. Returned
result type is: string. Argument types are: buffer.

Return the buffer with the specified name. Returned result type is:
buffer. Argument types are: string.

Return the buffer containing the specified file. Returned result type
is: buffer. Argument types are: string.

Search for an instance of a media type or text style. A dialog is
displayed prompting for the media type to find, and the direction
in which to search. Returned result type is: void. No arguments.

Find another instance of the media type last specified in a find
command. Returned result type is: void. No arguments.

Collect characters for specifying repeat count and set global repeat
count. Returned result type is: void. No arguments.

Generate the tables of contents, figures, etc. This function will
repaginate the document before generating the tables to assure all
page references are correct. Returned result type is: void. No
arguments.

Returned result type is: menu. Argument types are: string.

Add an Arc feature to the drawing. Returned result type is: void.
No arguments.

Add a Box feature to the drawing. Returned result type is: void.
No arguments.

Add a Circle feature to the drawing. Returned result type is: void.
No arguments.

8-16 BBN/Slate Customizing Manual

graphics-add-ellipse Add an Ellipse feature to the drawing. Returned result type is:
void. No arguments.

graphics-add­
freehand

graphics-add­
freehand-closed

graphics-add-line

Add a Freehand feature to the drawing. Returned result type is:
void. No arguments.

Add a Closed Freehand feature to the drawing. Returned result
type is: void. No arguments.

Add a Line feature to the drawing. Returned result type is: void.
No arguments.

graphics-add-lineseq Add a Line Sequence feature to the drawing. Returned result type
is: void. No arguments.

graphics-add­
polygon

graphics-add­
rounded-box

graphics-add-spline

graphics-add-text

Add a Polygon feature to the drawing. Returned result type is:
void. No arguments.

Add a Rounded Box feature to the drawing. Returned result type
is: void. No arguments.

Add a Spline feature to the drawing. Returned result type is: void.
No arguments.

Add a Text feature to the drawing. Returned result type is: void.
No arguments.

graphics-add-wedge Add a Wedge feature to the drawing. Returned result type is: void.

graphics-align-all­
features-to-grid

No arguments.

Align the selected features to the grid as a group. Returned result
type is: void. No arguments.

graphics-align-each- Align each selected feature to the grid separately. Returned result
feature-to-grid type is: void. No arguments.

Listing of Functions 8-17

graphics-align­
features

graphics-align­
features-dialog

graphics-align­
to-grid

graphics-change­
arrows

graphics-clear

graphics-copy

graphics-cut

graphics-deselect­
all-features

graphics-deselect­
feature

graphics-duplicate

graphics-font-dialog

graphics-group­
objects

Align selected features according to Align dialog request. Returned
result type is: void. No arguments.

Put up Align Features dialog and execute it. Returned result type
is: void. No arguments.

Align the selected features to the grid. The user is asked whether
they should be aligned separately or as a group. Returned result
type is: void. No arguments.

Add arrow if none or remove arrow if there was one. Returned
result type is: void. No arguments.

Cut the selected features from the drawing and discard them.
Returned result type is: void. No arguments.

Copy the selected features onto the clipboard. Returned result type
is: void. No arguments.

Cut the selected features from the drawing and put them on the
clipboard. Returned result type is: void. No arguments.

Turn off selection of all selected features. Returned result type is:
void. No arguments.

Deselect the feature near the mouse. Returned result type is: void.
No arguments.

Add duplicate copies of the selected features to drawing. Returned
result type is: void. No arguments.

Offer dialog to change font of selected text features or default.
Returned result type is: void. No arguments.

Create group of all selected features and add it to the drawing.
Returned result type is: void. No arguments.

B-18 BBN/Slate Customizing Manual

graphics-lock-object Lock the selected features so they cannot be modified. Returned
result type is: void. No arguments.

graphics-move

graphics-move­
to-back

graphics-move­
to-front

graphics-palette

graphics-pan

graphics-paste

graphics-read­
from-file

graphics-repeat­
add-feature

graphics-reshape

graphics-reshape­
move-select

graphlcs-restore­
original

Try to interpret mouse click as move operation. Returned result
type is: void. No arguments.

Push the selected features to the background of the drawing.
Returned result type is: void. No arguments.

Pull the selected features to the foreground of the drawing.
Returned result type is: void. No arguments.

Display the palette used for creating and editing graphics features.
Returned result type is: void. No arguments.

Select a point with the mouse and make this the new center point
in the viewport. Returned result type is: void. No arguments.

Add the contents of the clipboard to the drawing. Returned result
type is: void. No arguments.

Replace current drawng with the contents of a given file. Returned
result type is: void. No arguments.

Add another of the last type of feature added. Returned result type
is: void. No arguments.

Evaluate mouse hold as reshape operation. Returned result type is:
void. No arguments.

Evaluate mouse click as reshape, move, or select operation.
Returned result type is: void. No arguments.

Restore the original view of the drawing. Returned result type is:
void. No arguments.

Listing of Functions 8-19

graphics-round­
corners

Returned result type is: void. Argument types are: int.

graphics-save-to-file Save currently selected drawing in a file. Returned result type is:
void. No arguments.

graphics-scale

graphics-select­
additional-feature

graphics-select-all

graphics-select­
new-feature

graphics-select­
with-box

graphics-set­
arrow-style

graphics-set­
grid-size

graphics-set­
resolution

graphics-set­
ruler-units

graphics-set­
text-justification

graphics-smooth­
objects

Reduce or enlarge the selected features. Returned result type is:
void. No arguments.

Select a feature, preserving other selected features. Returned result
type is: void. No arguments.

Select all features in the drawing Returned result type is: void. No
arguments.

Select a new feature, deselecting all other features. Returned result
type is: void. No arguments.

Try to interpret mouse click as Select operation. Returned result
type is: void. No arguments.

Change default arrow style for new features. Returned result type
is: void. Argument types are: int.

Returned result type is: void. No arguments.

Display dialog to change resolution. Returned result type is: void.
No arguments.

Returned result type is: void. No arguments.

Change text justification of selected features (or default). Returned
result type is: void. Argument types are: int.

Smooth line sequences into splines or unsmooth splines into line
sequences. Returned result type is: void. No arguments.

B-20 BBN/Slate Customizing Manual

graphics-toggle­
griddisplay

graphics-toggle­
grid mode

graphics-toggle­
rulersdisplay

graphics-toggle­
showsize

graphics-top-menu

graphics-undo

graphics-ungroup­
object

graphics-unlock­
object

graphics-zoom-In

graphics-zoom-out

handle-move-button

header-add-empty

Toggle whether the grid is displayed. Returned result type is:
void. No arguments.

Toggle whether the grid is turned on. Returned result type is:
void. No arguments.

Toggle whether rulers are displayed. Returned result type is: void.
No arguments.

Toggle whether the size of features is shown as they are moved
and resized. Returned result type is: void. No arguments.

Display Graphics Editor top-level menu. Returned result type is:
void. No arguments.

Undo the last operation, if possible. Returned result type is: void.
No arguments.

Ungroup all selected group features. Returned result type is: void.
No arguments.

Unlock the selected locked features. Returned result type is: void.
No arguments.

Draw a box outlining the area to zoom in on to see more detail.
Returned result type is: void. No arguments.

Draw a box outlining the area to zoom out to see less detail.
Returned result type is: void. No arguments.

Move the selected multimedia object. Returned result type is: void.
No arguments.

Add headers to the document if they do not already exist. Returned
result type is: void. No arguments.

Listing of Functions 8-21

header-check-fields Add values for the From and Date fields to the header and ensure
that there is a To and Cc list. If there are no addressees specified,
allow the user to edit the headers to add them. If, after editing,
there are still no addressees, return FALSE. Returned result type is:
int. No arguments.

header-delete-field Remove the specified field from the headers. If there are no
headers in the current document or the named field is one that
cannot be edited, then no action is taken. If the named field is one
that cannot be removed, then only its value is deleted. Returned
result type is: void. Argument types are: string.

header-deselect­
text-appear

header-edit

header-edit­
name-font

header-edit­
value-font

header-get-field

header-set-field

Deselect the header object, insert a text object and insert the
character typed into that object. Returned result type is: void. No
arguments.

Edit the header object. Returned result type is: void. No
arguments.

Display a dialog to change the font of the names in the header
display. Returned result type is: void. No arguments.

Display a dialog to change the font of the values in the header
display. Returned result type is: void. No arguments.

Return the value of the specified field in the header. If there are
no headers in the current document or if the field does not exist,
then an empty string is returned. Returned result type is: string.
Argument types are: string.

Add the specified name/value pair to the document's headers. If
the named field already exists, then it is replaced. If there are no
headers in the document, then headers are added. If headers
cannot be added or the named field is one that cannot be edited,
then no action is taken. Returned result type is: void. Argument
types are: string, string.

B-22 BBN/Slate Customizing Manual

header-stamp-obj

header-top-menu

iconify

image-add-object

image-add-text

image-clear

image-copy

Image-crop

image-crop-to­
viewport

image-cut

image-deselect­
region

Stamp the date and sender's name on the headers. Returned result
type is: void. No arguments.

Display the top-level header menu. Returned result type is: void.
No arguments.

Iconify the editor window. Returned result type is: void. No
arguments.

Displays the palette for adding geometric objects to an image.
Returned result type is: void. No arguments.

Allows the user to type text on an image. Returned result type is:
void. No arguments.

Deletes the currently selected region of an image and replaces it
with the background texture (but does not place the deleted region
on the clipboard). Returned result type is: void. No arguments.

Copies the current selected region of an image onto the clipboard.
Returned result type is: void. No arguments.

If there is a currently selected region of an image, this reduces the
image to only contain that region. If no region is selected, this
allows the user to interactively crop the image. Returned result
type is: void. No arguments.

Discard the image data that is not visible within the image
viewport. This involves a loss of data. Returned result type is:
void. No arguments.

Deletes the currently selected region of an image and replaces it
with the background texture. Returned result type is: void. No
arguments.

Clears the image selection. Returned result type is: void. No
arguments.

Listing of Functions 8-23

image-extend­
select-region

image-install­
colormap

image-invert

image-paint

image-palette

image-paste

image-read-into­
image

image-reflect

image-scale

image-scale­
interactively

Extends one comer of the selected region. Returned result type is:
void. No arguments.

Install the colormap of the currently selected image. Returned
result type is: void. No arguments.

Inverts the selected region of an image (makes white black and
black white). Returned result type is: void. No arguments.

Allows the user to paint on the image using the current brush size
and texture. Left mouse hold draws and middle mouse hold erases.
Middle mouse click confirms the painting and right mouse click
cancels it. Returned result type is: void. No arguments.

Display the palette used for creating and editing images. Returned
result type is: void. No arguments.

Paste into the image from the clipboard. The user positions the
clipboard image with the mouse and then confirms the position by
pressing one of the mouse buttons. Returned result type is: void.
No arguments.

Queries the user for a file name containing an image in BBN/Slate
format. The new image overwrites and destroys the current
contents of the image. Returned result type is: void. No arguments.

Reflects the selected region of the image around some axis. This
takes an integer argument which determines which axis to reflect
around (0 - vertical, 1 - horizontal, 2 - upward diagonal, 3 -
downward diagonal). Returned result type is: void. Argument types
are: int.

Displays a dialog for specifying how to scale the image. Returned
result type is: void. No arguments.

Allows the user to interactively scale an image. Returned result
type is: void. No arguments.

B-24 BBN/Slate Customizing Manual

image-select-region

image-set-brush

image-set-font

image-set-linewidth

image-set-texture

image-tilt

image-tilt­
interactively

image-top-menu

image-undo

image-user-crop

image-write-to-file

index-cleanup

Interacts with the user to select a rectangular region of the image
with the mouse. Returned result type is: void. No arguments.

Displays the dialog for setting size of the current paint brush.
Returned result type is: void. No arguments.

Displays the dialog for setting the font used for text added to the
image. Returned result type is: void. No arguments.

Displays the dialog for setting the line width of the paint brush.
Returned result type is: void. No arguments.

Displays the dialog for adding objects to the image and setting line
and fill textures. Returned result type is: void. No arguments.

Displays the dialog for specifying how to tilt the image. Returned
result type is: void, No arguments.

Allows the user to interactively tilt an image (not implemented).
Returned result type is: void. No arguments.

Displays the top-level image menu. Returned result type is: void.
No arguments.

Undo the last image operation. Returned result type is: void. No
arguments.

Interacts with the user to crop the size of the image. Returned
result type is: void. No arguments.

Query the user for the name of a file. The current image is
written out to this file in BBN/Slate image format. Returned result
type is: void. No arguments.

Removes any index entries in the current region. Returned result
type is: void. No arguments.

Listing of Functions 8-25

index-delete-specific Delete the index entry with the given identifier. Returned result
type is: void. Argument types are: into

index-edit Allows the user to edit the index entry at the cursor. Returned
result type is: void. No arguments.

index-edit-specific Edit the index value with this index identifier. Returned result type
is: void. Argument types are: into

index-find Find the index entry with the given label and return its identifier.
If a region is selected it is limited to that region, otherwise it
proceeds from current point and wraps around document. The label
specified may be a regular expression. Returned result type is: int.
Argument types are: string.

Index-flnd-dialog Find the index entry with the label the user specifies and make
that the selected region. Returned result type is: void. No
arguments.

index-find-next Find the next index entry in the document. Returned result type is:
void. No arguments.

index-from-point Return the identifier for an index entry at or after the current
point. Returned result type is: int. No arguments.

index-generate Generates the index to the file /tmp/index.out. Returned result type
is: void. No arguments.

index-get Return the contents of the index entry at this identifier. Returned
result type is: string. Argument types are: int.

index-get-next Find the next index entry in the document and return the label.
Returned result type is: string. No arguments.

Index-near-polnt Return the identifier of an index entry near the current location of
point. Return -1 if there is none. Returned result type is: into No
arguments.

8-26 BBN/Slate Customizing Manual

index-next

index-region

index-region­
automatically

index-region-dialog

index-select

index-set

Return the index entry after the given identifier; sets the error code
and returns -1 if there are no more. Returned result type is: int.
Argument types are: int.

Index the current region with the given label. Returned result type
is: void. Argument types are: string.

Adds an index entry for the current region. The region is indexed
under the term in the region. If no region is selected, the current
word is indexed. Returned result type is: void. No arguments.

Allow the user to specify an index entry which is bound to the
current region. Returned result type is: void. No arguments.

Select the region covered by the index entry specified by the given
identifier. Returned result type is: void. Argument types are: int.

Set the index value with this index identifier to the given new
value. Returned result type is: void. Argument types are: int,
string.

initialize-error-buffer Set up the buffer which is used to report errors. Returned result
type is: void. No arguments.

initialize-help-buffer

insert-document­
dialog

insert-file-dialog

insert-named­
document

Set up the help buffer for displaying information. Returned result
type is: void. No arguments.

Query the user for a document to insert at the cursor location.
Returned result type is: void. No arguments.

See insert-document-dialog. Returned result type is: void. No
arguments.

Insert the specified file at the cursor location. Returned result type
is: void. Argument types are: string.

Listing of Functions 8-27

insert-named-file

insert-named­
text-file

insert-text­
file-dialog

int-to-char

keymacro-done­
remembering

keymacro-playback

keymacro-start­
remembering

last-pane

location-convert­
to-mark

mail-compose

mail-forward

See insert-named-document. Returned result type is: void.
Argument types are: string.

Insert the named text file at the current location. Returned result
type is: void. Argument types are: string.

Insert an ASCII text file at the cursor position. Returned result
type is: void. No arguments.

Convert integer to character. Returned result type is: char.
Argument types are: int.

Stop saving key strokes to define a keyboard macro. Returned
result type is: void. No arguments.

Execute a keyboard macro. Returned result type is: void. No
arguments.

Start saving key strokes to define a keyboard macro. Returned
result type is: void. No arguments.

Return the pane number of the highest-numbered pane that exists.
The panes that exist at any given time are numbered from a to
last-paneO, inclusive. Returned result type is: int. Argument types
are: void.

Converts a location in a document to a marker. The returned type
is marker. Argument types are: int.

Compose a new message. This creates a buffer named #compose
and displays a dialog for the user to write a header in that buffer.
Returned result type is: void. No arguments.

Forward the message in the current buffer. This creates a buffer
named #forward and creates a header in that buffer. The original
message is included in the buffer. Returned result type is: void. No
arguments.

B-28 BBN/Slate Customizing Manual

mail-reply Reply to the message in the current buffer. This creates a buffer
named #reply and creates a header in that buffer. The header
subject contains the text Re: followed by the subject of the original
message. Returned result type is: void. No arguments.

mail-reply-include Reply to the message in the current buffer. This creates a buffer
named #reply and creates a header in that buffer. The header
subject contains the text Re: followed by the subject of the original
message. The original message is copied into the reply. Returned
result type is: void. No arguments.

mail-replycc Reply to the message in the current buffer. This creates a buffer
named #reply and creates a header in that buffer. The header
subject field contains the text Re: followed by the subject of the
original message. The header Cc field contains all the addresses
on the To and Cc lists of the original message. Returned result
type is: void. No arguments.

mail-replycc-include Reply to the message in the current buffer. This creates a buffer
named #reply and creates a header in that buffer. The header
subject contains the text Re: followed by the subject of the original
message. The original message is copied into the reply. Returned
result type is: void. No arguments.

mail-send Send the message in the current buffer. The system determines
whether the message should be sent as text or multimedia.
Returned result type is: void. No arguments.

mail-send-as-text Send the message in the current buffer as a text message. Returned
result type is: void. No arguments.

mail-send- Send the message in the current buffer as a multimedia message.
multimedia Returned result type is: void. No arguments.

maln-top-menu Display the top level menu. Returned result type is: void. No
arguments.

Listing of Functions 8-29

mark-add-offset

mark-buffer­
modified

mark-buffer­
unmodified

mark-convert-to­
location

mark-is-equal

mark-is-in-region

menu-build

menu-create

menu-display

Add an integer offset to a marker and return a marker pointing to
the new location in the document. The returned type is marker.
Argument types are: marker, int.

Mark the current document as modified. Returned result type is:
void. No arguments.

Mark the specified document as not modified. Returned result type
is: void. Argument types are: buffer.

Converts a marker to a location in a document. Returned result
type is: int. Argument types are: marker.

Compare two markers in the document and return true if they are
the same. Returned result type is: into Argument types are: marker,
marker.

Returns true if the specified location is in the specified region.
The ends of the region are considered in the region. Returned
result type is: into Argument types are: marker, region.

Add a command to a menu. The arguments are the menu, the
index of the command in the menu (starting with zero), the name
to display in the menu, the help message, the submenu, and the
name of the user callable function to execute. Returned result type
is: void. Argument types are: menu, int, string, string, menu,
string.

Create a menu. Called with the menu name, the number of items
that will be in the menu, the name of the function to invoke, and
the parent menu. Returned result type is: menu. Argument types
are: string, int, string, menu.

Returned result type is: into Argument types are: menu.

B-30 BBN/Slate Customizing Manual

menu-initialize

menu-invoke­
function

move-current­
object-to-bottom

move-current­
object-to-top

next-pane

page-down

page-left

page-right

page-up

paginate-current­
buffer

paste

picture-install­
colormap

Initialize a menu. Call after creating the menu and adding all the
commands to it and before displaying the menu. Returned result
type is: void. Argument types are: menu.

Invoke the function of the given menuitem of the given menu.
Returned result type is: void. Argument types are: int, string.

Move the bottom of the current object to the bottom of the pane.
Returned result type is: void. No arguments.

Move the top of the current object to the top of the pane. Returned
result type is: void. No arguments.

Make the next pane be the current pane. Returned result type is:
void. No arguments.

Display the next page of the document. Returned result type is:
void. No arguments.

Move the viewport one page to the left. Returned result type is:
void. No arguments.

Move the viewport one page to the right. Returned result type is:
void. No arguments.

Display the previous page of the document. Returned result type is:
void. No arguments.

Ensure that the current buffer is paginated and page references are
up-to-date. Returned result type is: void. No arguments.

Paste the selected region. Returned result type is: void. No
arguments.

Ensure that the currently selected picture's colormap is installed.
Returned result type is: void. No arguments.

Listing of Functions 8-31

preview-buffer Display a dialog to specify the parameters for the previewer and
then preview the specified buffer. Returned result type is: void.
Argument types are: buffer.

preview-current- Preview the printed form of the current buffer on the screen.
buffer Returned result type is: void. No arguments.

previous-pane Make the previous pane be the current pane. Returned result type
is: void. No arguments.

print-buffer Prints the buffer passed as an argument. Returned result type is:
void. Argument types are: buffer.

print-current-buffer Print the current buffer. Returned result type is: void. No
arguments.

process-attach Attach a shell command to the given buffer, placing the output of
the command into the buffer at the current point. If not in a text
object, a verbatim text object is added and the text is placed in
that. Returned result type is: void. Argument types are: buffer,
string.

process-close-stdin Close the input of the process associated with this buffer. Returned
result type is: void. Argument types are: buffer.

process-input Feed the given string to the process associated with the given
buffer. Arguments are the buffer, the string, and the length of the
string. Returned result type is: void. Argument types are: buffer,
string, int.

process-is-attached Returns non-zero if there is a process bound to this buffer.
Returned result type is: int. Argument types are: buffer.

process-kill Kill the process associated with this buffer. Returned result type is:
void. Argument types are: buffer.

B-32 BBN/Slate Customizing Manual

process-run

process-send­
region

process-send­
text-region

process-wait

pwd

pwd-in-dialog

read-commands

read-commands­
from-file

Execute a shell command and place the output at the current point
in the given buffer. If not in a text object, a verbatim text
object is added and the text is placed in that. This command will
not return until the process exits. Returned result type is: void.
Argument types are: buffer, string.

Pass the selected region in the given buffer to the process
associated with the second buffer. Returned result type is: void.
Argument types are: buffer, buffer.

Pass the selected region (as text) in the given buffer to the process
associated with the second buffer. Returned result type is: void.
Argument types are: buffer, buffer.

Wait for the process associated with the given buffer to terminate.
Returned result type is: void. Argument types are: buffer.

See display-current-directory. Returned result type is: void. No
arguments.

See display-current-directory-dialog. Returned result type is: void.
No arguments.

Read extension language commands from a file. The user is
queried for the name of the file. Returned result type is: void. No
arguments.

Read extension language commands from a specified file. If you
supply only a file name, it looks for the file starting with the
current directory, and then tries all the paths specified in the
library-search-path variable. If you supply an absolute
path, such as

read-commands-from-file("/home/smith/SELtest");

Listing of Functions 8-33

read-document­
in-buffer

read-fiJe-in-buffer

it looks for the file only at that location. You may use UNIX
environment variables. For example, if the environment variable
sel is set to the value /nfs/xyzzy/u4/smith, then you can
represent that path by using:

read-commands-frorn-file(l$sel/SELtest");

Returned result type is: void. Argument types are: string.

Return the buffer containing the specified file. Returned result type
is: buffer. Argument types are: string.

See read-document-in-buffer. Returned result type is: buffer.
Argument types are: string.

read-menus-from-fiJe Returned result type is: void. Argument types are: string.

read-string-dialog

redisplay

replace-buffer­
contents

save-all-modified­
buffers

save-buffer

Display a dialog for obtaining a string from the user and return
that string. This takes two arguments, the first is a message that is
placed at the top of the dialog, and the second is a prompt that is
placed in a box within the dialog. The dialog also has confirm
and cancel buttons. If the user hits the cancel button, this function
sets the global variable, global-error. Returned result type is: string.
Argument types are: string, string.

Redisplay the display. Returned result type is: void. No arguments.

Read a file into the current buffer. The user is queried for the file
name. Returned result type is: void. No arguments.

Save all the modified buffers. Returned result type is: void. No
arguments.

Save this buffer in its associated file; if no file is associated with
the buffer, then the user is queried for a file name. Returned result
type is: void. Argument types are: buffer.

B-34 BBN/Slate Customizing Manual

save-buffer-as-text

save-buffers­
and-exit

save-current-buffer

save-named-buffer

scroll-down

scroll-left

scroll-right

scroll-up

select-entire­
document

select-language

set

Save this buffer as text in its associated file; if no file is associated
with the buffer, then the user is queried for a file name. Returned
result type is: void. Argument types are: buffer.

Save all the modified buffers and exit editdoc. Returned result type
is: void. No arguments.

Save the current buffer. Returned result type is: void. No
arguments.

If the given file is in a buffer, save it. Returned result type is:
void. Argument types are: string.

Scroll the document display up by one line so that the next line in
the document is displayed at the top of the display. Returned result
type is: void. No arguments.

Scroll the document viewport to the left. Returned result type is:
void. No arguments.

Scroll the document viewport to the right. Returned result type is:
void. No arguments.

Scroll the document display down by one line so that the previous
line in the document is displayed at the top of the display.
Returned result type is: void. No arguments.

Select the entire document. Returned result type is: void. No
arguments.

Returned result type is: void. No arguments.

Set the value of a variable. If it exists as a document or buffer
variable, set it there, otherwise set it globally. Returned result type
is: void. No arguments.

Listing of Functions 8-35

set-buffer-filename

set-buffer-of-pane

set-buffer-variable

set-buffer-variable­
dialog

set-current-buffer

set-document-font

set-document-font­
dialog

set-document­
variable

set-document­
variable-dialog

set-filename­
of-buffer

set-global-error­
code

set-global-variable

Query the user for a filename to associate with this buffer.
Returned result type is: int. Argument types are: buffer.

Takes two arguments, a pane number and a buffer, and sets the
buffer for the pane to the supplied buffer. Returned result type is:
void. Argument types are: int, buffer.

Set the value of the given buffer-specific variable to the given
value. Returned result type is: void. Argument types are: string,
string.

Set the value of a buffer-specific variable. Returned result type is:
void. No arguments.

Make the given buffer the current buffer. Returned result type is:
void. Argument types are: buffer.

Set the default document font to the given value. Returned result
type is: void. Argument types are: string.

Select the default document language and font from a dialog.
Returned result type is: void. No arguments.

Set the value of the given document-specific variable. Returned
result type is: void. Argument types are: string, string.

Set the value of a document-specific variable. Returned result type
is: void. No arguments.

Set the file name associated with the specified buffer. Returned
result type is: void. Argument types are: buffer, string.

Set the global variable, global-error. Returned result type is: void.
Argument types are: int.

Set the value of the given global variable to the given value.
Returned result type is: void. Argument types are: string, string.

8-36 BBN/Slate Customizing Manual

set-global-variable­
dialog

set-keyboard-name

set-Iast-function­
executed

set-reg ion­
classification

set-repeat-count

sheet-add-select­
area

sheet-auto-compute

sheet-clear

Set the value of a global variable. Returned result type is: void.
No arguments.

Set the current keyboard table to use. Returneu result type is: void.
Argument types are: string.

Set the named function as the last function executed in the global
variable global-last-function. Returned result type is: void.
Argument types are: string.

Set the classification level of the currently selected region.
Returned result type is: void. Argument types are: into

Set the number of times to repeat an operation in the global
variable global-repeat-count. Returned result type is: void.
Argument types are: into

Interact with the user to extend the currently selected region in the
spreadsheet. Returned result type is: void. No arguments.

Set automatic calculation to true and recompute the spreadsheet if
it was previously false. Returned result type is: void. No
arguments.

Delete the currently selected region of the spreadsheet (but do not
place it on the clipboard). Returned result type is: void. No
arguments.

sheet-command- Display the top-level spreadsheet menu. Returned result type is:
button void. No arguments.

sheet-compute Cause all formulas in the spreadsheet to be recalculated. Returned
result type is: void. No arguments.

sheet-compute-by- Set the recomputation style to compute by columns (calculate all
column formulas in the first column, then the second, then the third, etc.).

Returned result type is: void. No arguments.

Listing of Functions 8-37

sheet-compute-by­
row

sheet-compute­
dialog

sheet-compute­
natural

sheet-copy

sheet-cursor-col

sheet-cursor-down

sheet-cursor-keys

sheet-cursor-Ieft

sheet-cursor-next

sheet-cursor-right

sheet-cursor-row

sheet-cursor-up

Set the recomputation style to compute by rows (calculate all
formulas in the first row, then the second, then the third, etc.).
Returned result type is: void. No arguments.

Display the dialog which allows the user to set the recomputation
controls. Returned result type is: void. No arguments.

Set the recomputation style to "natural" order (recompute each
formula after any formulas which it depends on). Returned result
type is: void. No arguments.

Copy the currently selected region of the spreadsheet to the
clipboard. Returned result type is: void. No arguments.

Return the index of the cursor cell column. Returned result type is:
int. No arguments.

Move down one cell (or the current number specified by the repeat
count). Returned result type is: void. No arguments.

Handle escape codes generated by the Sun cursor keys. Returned
result type is: void. No arguments.

Move left one cell (or the current number specified by the repeat
count). Returned result type is: void. No arguments.

Move to the next cell in the currently selected region. Returned
result type is: void. No arguments.

Move right one cell (or the current number specified by the repeat
count). Returned result type is: void. No arguments.

Return the index of the cursor cell row. Returned result type is:
int. No arguments.

Move up one cell (or the current number specified by the repeat
count). Returned result type is: void. No arguments.

B-38 BBN/Slate Customizing Manual

sheet-cut Delete the currently selected spreadsheet region and copy it to the
clipboard. Returned result type is: void. No arguments.

sheet-delete-cols Delete the currently selected columns (cells to the right will move
over to fill the deleted region). The deleted columns are placed on
the clipboard. Returned result type is: void. No arguments.

sheet-delete-rows Delete the currently selected rows (cells below will move up to fill
the deleted region). The deleted rows are placed on the clipboard.
Returned result type is: void. No arguments.

sheet-deselect-area Clear the currently selected region. Returned result type is: void.
No arguments.

sheet-edit-cell Edit a spreadsheet cell. Returned result type is: void. No
arguments.

sheet-fill-down

sheet-fill-right

Copy cells in the top row of the selected region into the selected
rows below them. Returned result type is: void. No arguments.

Copy cells in the right-most column of the selected region into the
selected columns to the right. Returned result type is: void. No
arguments.

sheet-flush-center All the flush routines will change justification of the selected cells
if a range of cells is selected, change the default for a column if
an entire column is selected and change the default for the
spreadsheet if an entire row is selected. Returned result type is:
void. No arguments.

sheet-flush-left Change the selected cells to be left-justified. Returned result type
is: void. No arguments.

sheet-flush-leftright Change the selected cells to be strings-left, values-right. Returned
result type is: void. No arguments.

Listing of Functions 8-39

sheet-flush-repl Change the selected cells to be replicated-justified. Returned result
type is: void. No arguments.

sheet-flush-right Change the selected cells to be right-justified. Returned result type
is: void. No arguments.

sheet-font-dialog Display the dialog for changing the font of the spreadsheet.
Returned result type is: void. No arguments.

sheet-form-col Form a column reference from it's integer value, e.g. a = A.
Returned result type is: string. Argument types are: int.

sheet-format-cents This routine changes the numeric format to cents (12.34). Returned
result type is: void. No arguments.

sheet-format-dialog Display the dialog for modifying the numeric format of the
selected region. Returned result type is: void. No arguments.

sheet-format-dollar Change the numeric format to dollars ($1234). Returned result type
is: void. No arguments.

sheet-format- Change the numeric format to dollars and cents ($12.34). Returned
dollarcents result type is: void. No arguments.

sheet-format- Change the numeric format to dollars and comma separated
dollarthousands thousands ($1,234). Returned result type is: void. No arguments.

sheet-format- Change the numeric format to dollars, comma separated thousands
dollarthousandscents and cents ($1,234.56). Returned result type is: void. No arguments.

sheet-format-general Use general numeric formatting (use as many decimal places as
necessary). Returned result type is: void. No arguments.

sheet-format­
general-dollar

Change the format to display the $ sign but to otherwise use
general numeric formatting. Returned result type is: void. No
arguments.

B-40 BBN/Slate Customizing Manual

sheet-format-Int

sheet-format-string

sheet-format­
thousands

sheet-format­
thousandscents

sheet-get-cell

sheet-get-cell-value

sheet-graph-create

sheet-graph­
create-Silently

sheet-graph­
generate-one

sheet-graph-set­
dataset-field

Round off to the nearest integer (1234). Returned result type is:
void. No arguments.

Display the formula instead of the value. Returned result type is:
void. No arguments.

Display the value using thousands (1,234). Returned result type is:
void. No arguments.

Display the value using thousands and cents (1,234.56). Returned
result type is: void. No arguments.·

Get the contents of some cell in the spreadsheet. Returned result
type is: string. Argument types are: int, int.

Get the value of some cell in the spreadsheet. If the cell is a
formula, the value of the formula, is returned, not the formula
itself. Returned result type is: string. Argument types are: int, int.

Display the dialog for creating a new chart from a spreadsheet.
Returned result type is: void. No arguments.

Creates a line graph with the default parameters and returns the
name of the created graph. Returned result type is: string. No
arguments.

Display the dialog for creating a new chart from a spreadsheet.
Returned result type is: void. Argument types are: int.

Set a field of the given dataset of the named graph to the given
value. The first argument is the graph name, the second is the
dataset index (0 through 5), the third is the field name (one of
range, label, legend, dolines, dosym, or lblalign). The fourth
argument is the value. Returned result type is: void. Argument
types are: string, int, string, string.

Listing of Functions 8-41

sheet-graph-set-field Set a field of the named graph to the given value. The first
argument is the graph name, the second is the field name (one of
name, autogenerate, type, title-line1, title-line2, x-axis-Iabel,
y-axis-Iabel, x-range, grid, xmin, xmax, xincr, ymin, ymax, or
yincr). The third argument is the value. Returned result type is:
void. Argument types are: string, string, string.

sheet-home Move the current cell to cell AI. Returned result type is: void. No
arguments.

sheet-insert-cols

sheet-insert-rows

sheet-interactive­
column-change

sheet-manual­
compute

sheet-mouse­
set-cursor

sheet-move

sheet-move-cursor

sheet-parse-col

Insert empty columns into the spreadsheet in place of the selected
region. Cells in the selected region and to the right will move
over. Returned result type is: void. No arguments.

Insert empty rows into the spreadsheet in place of the selected
region. Cells in the selected region and below will move down.
Returned result type is: void. No arguments.

Change the width of a column using the mouse. Returned result
type is: void. No arguments.

Set the recomputation style to manual (formulas are only
recomputed when it is explicitly requested). Returned result type is:
void. No arguments.

Set the cursor using the mouse. Returned result type is: void. No
arguments.

Copy the spreadsheet on the clipboard into the selected region and
adjust any formulas which referenced its old location to reference
the new location. Returned result type is: void. No arguments.

Move the current cell of the spreadsheet. Returned result type is:
void. Argument types are: int, int.

Extract the starting column from a range string (e.g. Al). Returned
result type is: int. Argument types are: string.

B-42 BBN/Slate Customizing Manual

sheet-parse-height Extract the height of a range from a string (e.g. Al:Dl = 4).
Returned result type is: into Argument types are: string.

sheet-parse-range Return non-zero if the string is a legal range. Returned result type
is: into Argument types are: string.

sheet-parse-row Extract the starting row from a range string (e.g. AI). Returned
result type is: into Argument types are: string.

sheet-parse-width Extract the width of a range from a string (e.g. Al:Cl = 3).
Returned result type is: into Argument types are: string.

sheet-paste Paste the spreadsheet from the clipboard, including underlying
formulas, into the selected region. Returned result type is: void. No
arguments.

sheet-pastevalues Paste the values only of the cells in the spreadsheet on the
clipboard into the selected region. Returned result type is: void. No
arguments.

sheet-read-Iotus Read a file containing a Lotus worksheet. Returned result type is:
void. No arguments.

sheet-read-text Read a file containing an ASCII table. Columns are separated by
tabs and each line is a separate row. Returned result type is: void.
No arguments.

sheet-read-text-file Read an ASCII table from the specified file. Columns are separated
by tabs and each line is a separate row. Returned result type is:
void. Argument types are: string.

sheet-ruling-apply Apply the current selected ruling style to the selected region.
Returned result type is: void. No arguments.

sheet-ruling-dialog Display the dialog used for setting and clearing rulings. Returned
result type is: void. No arguments.

Listing of Functions 8-43

sheet-select-area

sheet-selected­
height

Select an area of the spreadsheet using the mouse. Returned result
type is: void. No arguments.

Return the height of the selected area. Returned result type is: int.
No arguments.

sheet-selected-width Return the width of the selected area. Returned result type is: int.
No arguments.

sheet-set-cell Set the value of a cell in the spreadsheet. The first two arguments
are the column and row index. The third argument is the cell
contents. The fourth argument is a flag that means, if non-zero, to
interpret the cell contents as a label. Otherwise, the spreadsheet
will attempt to interpret the contents as a number or formula.
Returned result type is: void. Argument types are: int, int, string,
int.

sheet-set-current- Set the value of the current cell in the spreadsheet. The first
cell argument is the cell contents. The second argument is a flag that

means, if non-zero, to interpret the cell contents as a label.
Otherwise, the spreadsheet will attempt to interpret the contents as
a number or formula. Returned result type is: void. Argument
types are: string, into

sheet-set-cursor Set the current cell of the spreadsheet. Returned result type is:
void. Argument types are: int, int.

sheet-set-selection Set the selected area of the spreadsheet. The first argument is the
top column, the second is the top row, the third is the width of the
selected region and the fourth is the height of the selected region.
The fifth argument is non-zero if the currently selected region
should be cleared first. Returned result type is: void. Argument
types are: int, int, int, int, into

sheet-sort Display the dialog for sorting the spreadsheet. Returned result type
is: void. No arguments.

B-44 BBN/Slate Customizing Manual

sheet-top-menu Display the top-level spreadsheet menu. Returned result type is:
void. No arguments.

sheet-width-change Query the user to change the width of the selected columns.
Returned result type is: void. No arguments.

sheet-write-Iotus Write the spreadsheet out in Lotus worksheet format. This routine
is only partially implemented. Returned result type is: void. No
arguments.

sheet-write-text

sleep

split-pane-across

split-pane-down

strcat

string-find

string-get

string-to-char

Write the spreadsheet out in a readable format. Returned result
type is: void. No arguments.

Pause for some number of milliseconds. Returned result type is:
void. Argument types are: int.

Divide the current pane in half horizontally. Returned result type
is: void. No arguments.

Divide the current pane in half vertically. Returned result type is:
void. No arguments.

Append the second string to the first and return the result. The
input strings are not changed. Returned result type is: string.
Argument types are: string, string.

Return the index of the location of the second string in the first
string. Return -1 if it is not found. Returned result type is: int.
Argument types are: string, string.

Extract part of a string. The first argument is the source string.
The second is an index into it and the third is the number of
characters to extract. Returned result type is: string. Argument
types are: string, int, int.

Extract a character from a string. Returned result type is: char.
Argument types are: string, int.

Listing of Functions 8-45

stri n g-to-eve nt-cod e

strlen

template-define

template-define­
dialog

template-expand­
name

Convert the string representation of a key into its integer code, e.g.
Ctrl-Ieft-click. Returns -1 if the string is not valid. Returned result
type is: int. Argument types are: string.

Return the length of the specified string. Returned result type is:
int. Argument types are: string.

Make the current buffer a user-defined template with the given
name. Returned result type is: void. Argument types are: string.

Make the current buffer a user-defined template. The user is
queried for the filename for storing the template. Returned result
type is: void. No arguments.

Expand the given template name into its full path name. The
template may be a normal file or a template in the user or system
template area. Returned result type is: string. Argument types are:
string.

template-instantiate- Instantiate a template from the specified file. Returned result type
from-file is: void. Argument types are: string.

template-keyboard- Display a dialog for selecting a template for composing a
select document. Returned result type is: void. No arguments.

text-add-item Takes two arguments: the name of a text format, and a Boolean
which is true if the format was automatically generated. Add an
instance of the specified text format. Returned result type is: void.
Argument types are: string, int.

text-add-nephew- Takes the name of a style as an argument, adds a paragraph with
item that style to the document, and then groups that paragraph with the

current paragraph. Returned result type is: void. Argument types
are: string.

B-46 BBN/Slate Customizing Manual

text-add-uncle-item Takes the name of a style as an argument, adds a paragraph with
that style to the document, and then ungroups that paragraph.
Returned result type is: void. Argument types are: string.

text-appear Add a new instance of the default text style to the document and
insert the character typed. Returned result type is: void. No
arguments.

text-at-line-end Returns non-zero if the cursor is at the end of the line. Returned
result type is: into No arguments.

text-at-line-start

text-at-paragraph­
end

text-at-paragraph­
start

text-backward­
character

text-backward­
paragraph

text-backward-word

text-boldify

Returns non-zero if the cursor is at the start of the line. Returned
result type is: into No arguments.

Returns non-zero if the cursor is at the end of the paragraph.
Returned result type is: into No arguments.

Returns non-zero if the cursor is at the start of the paragraph.
Returned result type is: into No arguments.

Move the cursor back one character (or the number of characters
specified by the repeat count). Returned result type is: void. No
arguments.

Move the cursor to the start of the current block of text. If the
cursor is at the start of the current block of text, then move the
cursor to the start of the previous block of text. Returned result
type is: void. No arguments.

Move the cursor to the start of the current word. If the cursor is
at the start of the current word, then move the cursor to the start
of the previous word. Returned result type is: void. No arguments.

Display the text in the selected region in a bold face. If no region
is selected, then display the next characters entered in a bold face.
Returned result type is: void. No arguments.

Listing of Functions 8-47

text-bold italicize

text-capitalize

text-character

text-check

text-clean-clear

text-cleanup-fonts

text-clear-mark

Display the text in the selected region in a bold italic face. If no
region is selected, then display the next characters entered in a
bold italic face. Returned result type is: void. No arguments.

Capitalize the first character of the word that the cursor is in.
Returned result type is: void. No arguments.

Return the character at the point. Returned result type is: char.
Argument types are: int.

Returns non-zero if the point is set and is currently in a text
object. Returned result type is: int. No arguments.

Clear the selected region without checking any special conditions.
Returned result type is: void. No arguments.

Remove any font changes in the selected region. Returned result
type is: void. No arguments.

Remove the mark from the text passage. Returned result type is:
void. No arguments.

text-clear-paragraph Delete the block of text containing the cursor. Returned result type
is: void. No arguments.

text-clear-point

text-clear-region

text-compress

This causes no object to be selected. Sets the current point
(returned by current-point) to o. Returned result type is: void. No
arguments.

This causes no region to be selected. Sets the current region
(returned by current-region) to be o. Returned result type is: void.
No arguments.

Cause the characters in the selected region to be compressed by
two points. Returned result type is: void. No arguments.

8-48 BBN/Slate Customizing Manual

text-compute­
pagewidth

text-copy-chars

text-copy-region

text-create-format

text-current-format

text-cursorkey

text-cut-paragraph

text-cut-region

text-decrement­
pOintsize

text-delete-back

text-delete-back­
word

text-delete-extra­
white-space

Recompute the page width based on the document page-width
variable. Returned result type is: void. No arguments.

Return a string containing the characters in the current region.
Returned result type is: string. No arguments.

Copy the selected text region on to the clipboard without removing
it from the document. Returned result type is: void. No arguments.

Displays a dialog to create a new style based on an old one.
Returned result type is: void. No arguments.

Return the name of the style used to format the current paragraph.
Returned result type is: string. No arguments.

Handle the escape codes generated by the Sun cursor keys.
Returned result type is: void. No arguments.

Delete the block of text containing the cursor and place it on the
clipboard. Returned result type is: void. No arguments.

Delete the selected text region from the document and place it on
the clipboard. Returned result type is: void. No arguments.

Reduce the pointsize of the selected region. Returned result type is:
void. No arguments.

Delete the character before the cursor. Returned result type is:
void. No arguments.

Delete characters to the beginning of the word that the cursor is in.
If the cursor is at the start of a word, delete the word before the
cursor. Returned result type is: void. No arguments.

Delete all but a single space in the region surrounding the cursor.
Returned result type is: void. No arguments.

Listing of Functions 8-49

text-delete-forward Delete the character after the cursor. Returned result type is: void.
No arguments.

text-delete- Delete characters to the end of the word that the cursor is in. If
forward-word the cursor is at the end of a word, delete the word following the

cursor. Returned result type is: void. No arguments.

text-delete- Delete any white space surrounding the cursor. Returned result type
white-space is: void. No arguments.

text-describe-object Provide information about the format of the block of text in which
the cursor resides. Returned result type is: void. No arguments.

text-deselect

text-doubleline-off

text-doubleline-on

text-down-line

text-edit-format

text-edit-global­
format

Deselect any selected text region. Returned result type is: void. No
arguments.

Remove double underlines in the selected region. Returned result
type is: void. No arguments.

Double underline the selected region. Returned result type is: void.
No arguments.

Move the cursor down one line. The cursor is placed as nearly as
possible immediately below its current position. If the next line is
shorter than the line the cursor is currently in, then the cursor is
placed at the end of the line. Returned result type is: void. No
arguments.

Edit the named text format either globally or locally by assigning
the specified value to the specified attribute. Returned result type
is: void. Argument types are: string, int, string, string.

Edit a text format. This command first displays a form that allows
the user to select the format to change and then displays a form

8-50 BBN/Slate Customizing Manual

text-edit-Iocal-format

text-edit-named­
global-format

text-edit-named­
local-format

text-end-of-buffer

text-end-of-line

text-end-of­
paragraph

with all the attributes of that format. This command makes global
changes to the format; i.e., it changes all instances of text blocks
in that format as well as new text blocks added in that format.
Returned result type is: void. No arguments.

Edit the format of the selected region of text. If the selected
region contains more than one format style, then a form is
displayed that allows the user to specify which format to edit.
This command displays a form with all of the attributes of the
format and the user can edit the format by making the appropriate
changes in the form. This command makes local changes to the
format; it changes only the text in the selected region. Returned
result type is: void. No arguments.

Edit the named text format. This command displays a form with
all the attributes of the specified format. This command makes
global changes to the format; i.e. it changes all instances of text
blocks in that format as well as new text blocks added in that
format. Returned result type is: void. Argument types are: string.

Edit the named format. This command displays a form with all of
the attributes of the format and the user can edit the format by
making the appropriate changes in the form. This command makes
local changes to the format; it changes only the text in the selected
region. If there is no text in the specified format in the selected
region, then nothing is done. Returned result type is: void.
Argument types are: string.

Move the cursor to the end of the text in the buffer. Returned
result type is: void. No arguments.

Move the cursor to the end of the line that it is in. Returned result
type is: void. No arguments.

Move the cursor to the end of the block of text that it is in.
Returned result type is: void. No arguments.

Listing of Functions 8-51

text-end-of-sentence Move the cursor to the end of the sentence containing the cursor.

text-enter-from­
bottom

text-enter-from-top

text-enumerate

text-expand

text-extend-region

text-filter-reg ion­
dialog

text-filter-region­
to-tool

text-find-name

text-find-rev-name

Returned result type is: void. No arguments.

This will cause the text cursor to appear in the bottom-most block
of text visible. Text operations may then be invoked from the
keyboard. Returned result type is: void. No arguments.

This will cause the text cursor to appear in the top-most block of
text visible. Text operations may then be invoked from the
keyboard. Returned result type is: void. No arguments.

Make the selected region into an enumeration. Returned result type
is: void. No arguments.

Expand the text in the selected region. Returned result type is:
void. No arguments.

Extend the selected region with the mouse. Returned result type is:
void. No arguments.

Write the selected region as a complete document to a temporary
file and query the user for a command line to invoke a tool on
that file. Returned result type is: void. No arguments.

Write the selected region as a complete document to a temporary
file and invoke the tool with the specified command line on that
file. Returned result type is: void. Argument types are: string.

Takes the name of a formatting style and searches for it in the
document. If found, the cursor will be set to the start of first
paragraph found with that style. Returned result type is: void.
Argument types are: string.

Takes the name of a formatting style and searches backwards for it
in the document. If found, the cursor will be set to the end of the
first paragraph found with that style. Returned result type is: void.
Argument types are: string.

B-52 BBN/Slate Customizing Manual

text-find-style-again

text-forward­
character

text-forward­
paragraph

text-forward-word

text-free-excursion

text-gene rate­
table-of-contents

text-get-selection

text-global-replace­
dialog

text-group

Find the last text style which was specified using the top level
Find command. Returned result type is: void. No arguments.

Move the cursor foward one character (or the number of characters
specified by the repeat count). Returned result type is: void. No
arguments.

Move the cursor to the end of the current block of text. If the
cursor is at the end of the current block of text, then move the
cursor to the end of the next block of text. Returned result type is:
void. No arguments.

Move the cursor to the end of the current word. If the cursor is at
the end of the current word, then move the cursor to the end of
the next word. Returned result type is: void. No arguments.

Clear a saved excursion without restoring the previous context.
Returned result type is: void. No arguments.

Generate the table of contents for the given buffer. Returned result
type is: string. Argument types are: buffer.

Insert the selection into the text buffer. Returned result type is:
void. No arguments.

Display the text search form with the operation initialized to global
replace. Global replace is used to replace all instances of the
specified string with another string. Returned result type is: void.
No arguments.

If no region is selected, group the object in which the cursor
resides with the object above it. Returned result type is: void. No
arguments.

text-group-by-name Group the selected region into the specified formatting environment
which must be a list type environment. Returned result type is:
void. Argument types are: string.

Listing of Functions 8-53

text-increment­
pointsize

Display the text in the selected region in the next largest font size.
If there is no selected region, then make the font change for new
text. Returned result type is: void. No arguments.

text-initialize-keymap The keymap for the text media type. Returned result type is: void.

text-insert-character

text-insert-partial­
string

text-insert-space

text-insert-string

text-is-between

text-is-empty­
paragraph

text-is-whitespace

text-italicize

text-itemize

No arguments.

Insert the specified character at the cursor position. Returned result
type is: void. Argument types are: char.

Takes two arguments: a string to insert and the number of
characters to insert. Inserts the specified number of characters
from the string at the cursor. Returned result type is: void.
Argument types are: string, int.

Insert a space. Returned result type is: void. No arguments.

Insert the specified string at the cursor position. Returned result
type is: void. Argument types are: string.

Returns the first object if the current object is text and the mouse
lies between two text objects, otherwise it returns zero. Returned
result type is: object. No arguments.

Returns true if the text is in an empty paragraph. Returned result
type is: int. No arguments.

Returns true if the character following the cursor is a space or tab.
Returned result type is: int. Argument types are: int.

Display the text in the selected region in an italic face. If no
region is selected, then display the next characters entered in an
italic face. Returned result type is: void. No arguments.

Make the selected region into an itemization. Returned result type
is: void. No arguments.

B-54 BBN/Slate Customizing Manual

text-kill-line

text-line-to-bottom

text-line-to-top

Remove the text from the cursor position to the end of the line;
the text removed is put on the clipboard and can be re-inserted
with the text-paste command. Returned result type is: void. No
arguments.

Scroll the viewport so the line containing the cursor is moved to
the bottom of the pane. Returned result type is: void. No
arguments.

Scroll the viewport so the line containing the cursor is moved to
the top of the pane. Returned result type is: void. No arguments.

text-mark-paragraph Select the text paragraph in which the cursor resides. Returned
result type is: void. No arguments.

text-modify-font­
baseline

text-modify-font-face

text-mod ify-fo nt­
family

text-modify-font­
pointsize

Increment or decrement the baseline of the text in the selected
region by the given number of points. If there is no selected
region, then make the font change for new text. Returned result
type is: void. Argument types are: int.

Modify the font face of the text in the selected region. If no
region is selected then display the next text entered in the specified
face. Returned result type is: void. Argument types are: int.

Change the font family of the selected region. If no region is
selected, choose the font family for the next characters entered. A
name completion dialog appears in which the user may specify the
desired font family. Returned result type is: void. Argument types
are: string.

Increment or decrement the point size of the font of the selected
region by the given number of points. If there is no selected
region, then make the font change for new text. Returned result
type is: void. Argument types are: int.

Listing of Functions 8-55

text-newline Start a new line of text. If the cursor is in a paragraph with
word-wrapping on, then the current paragraph is split into two. If
word-wrapping is off, a newline is inserted into the current
paragraph. Returned result type is: void. No arguments.

text-newline-check Check if the cursor is in an empty paragraph in a list and do the
proper ungrouping if that is the case. Otherwise, this routine
performs the same function as text-newline. Returned result type is:
void. No arguments.

text-open-line Start a new line at the cursor position. Returned result type is:
void. No arguments.

text-paste Insert the contents of the clipboard at the cursor location. Returned
result type is: void. No arguments.

text-paste-document Insert the specified document into the current buffer at the cursor
location. Returned result type is: void. Argument types are:
document.

text-paste-from-file

text-query-replace­
dialog

text-quote-next­
character

Paste text from a named file into the current point in the document
in the named format. The remaining arguments are paste with or
without leading or trailing spaces and preserve newlines or replace
them with spaces. Returned result type is: void. Argument types
are: string, string, int, int, int.

Display the text search form with the operation initialized to query
replace. Query replace is used to replace all instances of the
specified string with another string. The user is given the option
to confirm or abort each replacement. Returned result type is: void.
No arguments.

Read the next character typed and insert it into the text. This
command is used to insert characters that would otherwise be
interpreted as editing characters, in other words, all the characters
listed in the keybinding currently in effect. Returned result type is:
void. No arguments.

8-56 BBN/Slate Customizing Manual

text-reg ion-size

text-remove-Iocal­
modifications

text-restore­
excursion

text-romanize

text-save-excurslon

text-scroll-to-start­
of-buffer

text-search

Return the number of characters in the selected region. Returned
result type is: int. No arguments.

Remove any local style changes which have been applied to the
selected region. Returned result type is: void. No arguments.

Restore the old point and mark after an excursion. Returned result
type is: void. No arguments.

Display the text in the selected region in a roman face. If no
region is selected, then display the next characters entered in a
roman face. Returned result type is: void. No arguments.

Save the current point and mark so it can be restored later.
Returned result type is: void. No arguments.

Make the beginning of the current buffer visible at the top of the
current pane. Returned result type is: void. No arguments.

Search for the specified string in the specified region and return
true if the string is found and false otherwise. The arguments are
the search string, the region to search and whether or not to fold
case. Returned result type is: int. Argument types are:· string,
region, int.

text-search-forward- Display the text search form with the operation initialized to
dialog forward search. Returned result type is: void. No arguments.

text-search-forward- Do an incremental forward search. The user is queried for the
incrementally string and the document is searched forward from the cursor

position to the end of the document. Returned result type is: void.
No arguments.

Listing of Functions 8-57

text-search­
Incrementally

text-search-reverse­
dialog

text-search-reverse­
incrementally

text-select-add

text-select-add­
nephew

text-select-add-uncle

text-select-again

text-select-current­
line

Takes an argument which is 0 to search forward from the current
position to the end of the document and 1 to search backward
from the current position to the start of the document. Does an
incremental search. Returned result type is: void. Argument types
are: int.

Display the text search form with the operation initialized to
reverse search. Returned result type is: void. No arguments.

Do an incremental reverse search. The user is queried for the
string and the document is searched backward from the cursor
position to the start of the document. Returned result type is: void.
No arguments.

Add a block of text in a selected style. A name completion dialog
appears in which the user may specify the desired style. Returned
result type is: void. No arguments.

Display a scrolling list of styles and then add a paragraph
formatted according to the selected style to the document. It then
groups the new paragraph with the current paragraph. Returned
result type is: void. No arguments.

Display a scrolling list of styles and then add a paragraph
formatted according to the selected style to the document. It then
ungroups the new paragraph from the current paragraph. Returned
result type is: void. No arguments.

Re-execute the last selection routine. Returned result type is: void.
No arguments.

Select the line containing the cursor. If this is invoked multiple
times, it will extend the selected region by a line each time.
Returned result type is: void. No arguments.

B-58 BBN/Slate Customizing Manual

text-select-current­
list

text-select-current­
paragraph

text-se I ect -cu rre nt­
sentence

text-select-current­
word

text-select-font­
family

text-select-this-word

text-self-insert

text-set-character

text-set-cursor

Select the list containing the cursor. If this is invoked multiple
times, it will extend the selected region by the enclosing list each
time. Returned result type is: void. No arguments.

Select the block of text containing the cursor. If this is invoked
multiple times, it will extend the selected region by a block each
time. Returned result type is: void. No arguments.

Select the sentence containing the cursor. If this is invoked
multiple times, it will extend the selected region by a sentence
each time. Returned result type is: void. No arguments.

Select the word containing the cursor. If this is invoked multiple
times, it will extend the selected region by a word each time.
Returned result type is: void. No arguments.

Change the font family of the selected region. If no region is
selected, choose the font family for the next characters entered. A
name completion dialog appears in which the user may specify the
desired font family. Returned result type is: void. No arguments.

Select the word that the cursor is in. If the cursor is at the first
character in the word or immediately following the last character in
the word, then that word is selected. If the cursor is not in a word,
then the next word (if it exists) is selected. Returned result type is:
void. No arguments.

Insert the character typed at the current cursor position. Returned
result type is: void. No arguments.

Replace the character following the cursor with the specified
character. Does not update the display. Returned result type is:
void. Argument types are: char.

Put the cursor at the mouse location. Returned result type is: void.
No arguments.

Listing of Functions 8-59

text-set-mark

text-set-point

text-set-pointsize

text-set-region

text-set-selection

text-split

text-split-check

text-split-in

text-split-list

text-split-out

Set the mark at the current cursor position. Returned result type is:
void. No arguments.

Set the cursor to the specified text location in the document.
Returned result type is: void. Argument types are: marker.

Set the point size of the font of the selected region to the given
value. If there is no selected region, then make this change for
new text. Returned result type is: void. Argument types are: int.

Put the cursor at the mouse position and then track the mouse and
extend the selected region until the mouse is released. Returned
result type is: void. No arguments.

Set the selected region to the specified region. Returned result type
is: void. Argument types are: region.

Divide the current block into two blocks at the current cursor
position. Returned result type is: void. No arguments.

Divide the current block of text into two blocks at the current
cursor position. Returned result type is: void. No arguments.

Like text-split, except it then groups the two split blocks. This is
useful when you want to add another point under an enumeration.
Returned result type is: void. No arguments.

Split a list at the cursor into two lists. The item in which the
cursor resides becomes the last item in the first list. Returned result
type is: void. No arguments.

Like text-split, except it then ungroups the two split blocks. This
is useful to get out of a grouped item or at the end of a list.
Returned result type is: void. No arguments.

8-60 BBN/Slate Customizing Manual

text-start-of-buffer

text-start-of-Iine

text-start-of-Iine­
absolute

fext-start-of­
paragraph

text-start-of­
sentence

text-strikeout-off

text-strikeout-on

text-stuff-selection

text-subscript

text-superscript

Move the cursor to the start of the text in the buffer. Unlike
text-scroll-start-of-buffer, this command makes the first text in the
buffer visible. Returned result type is: void. No arguments.

Move the cursor to the start of the line that it is in. Returned
result type is: void. No arguments.

Move the cursor to the start of the line. If the cursor is in a list,
move it to the start of any tag which is also on this line
(text-start-of-line will not move into an uneditable tag). Returned
result type is: void. No arguments.

Move the cursor to the start of the block of text it is in. Returned
result type is: void. No arguments.

Move to the start of the sentence containing the cursor. Returned
result type is: void. No arguments.

Remove strikeout (the font style) in the selected region. Returned
result type is: void. No arguments.

Strikeout (which is a font style) the selected region. Returned
result type is: void. No arguments.

Insert the selection into the text buffer. Returned result type is:
void. No arguments.

Make the characters in the selected region a subscript. Returned
result type is: void. No arguments.

Make the characters in the selected region a superscript. Returned
result type is: void. No arguments.

Listing of Functions 8-61

text-switch-format

text-switch-named­
format

text-switch-point­
and-mark

text-tab

text-to lower

text-top-menu

text-toupper

text-trans pose­
characters

text-underline-off

text-underline-on

text-undo-subscrlpt

Change the format of the selected region of text. A dialog is
displayed that allows the user to select the new format. If the
selected region contains text formatted in more than one style, then
a dialog is displayed that allows the user to select the format to
change. Returned result type is: void. No arguments.

Switch the style of text objects in the selected region. The first
argument is the name of the style to switch from, the second
argument is the name of the style to switch to. Returned result
type is: void. Argument types are: string, string.

Switch the location of point and mark. Returned result type is:
void. No arguments.

Insert a tab. Returned result type is: void. No arguments.

Make the text in the selected region lowercase. Returned result
type is: void. No arguments.

Display the top level text menu. Returned result type is: void. No
arguments.

Make the text in the selected region uppercase. Returned result
type is: void. No arguments.

Transpose the two characters preceding the cursor. Returned result
type is: void. No arguments.

Remove underlines in the selected region. Returned result type is:
void. No arguments.

Underline the selected region. Returned result type is: void. No
arguments.

Make subscripted characters appear at normal size and baseline.
Returned result type is: void. No arguments.

B-62 BBN/Slate Customizing Manual

text-undo­
superscript

text-ungroup

text-up-line

Make superscripted characters appear at normal size and baseline.
Returned result type is: void. No arguments.

Make all of the items in the selected region of a list be separate
items. Returned result type is: void. No arguments.

Move the cursor up one line. The cursor is placed as nearly as
possible immediately above its current position. If the previous line
is shorter than the line the cursor is currently in, then the cursor is
placed at the end of that line. Returned result type is: void. No
arguments.

text-write-selection The Sun Put command. Returned result type is: void. No
arguments.

toggle-object-outline Toggle whether the outline box of the current object is displayed.
Returned result type is: void. No arguments.

transliterate-region Transliterate a region of the document from one script to another.
Returned result type is: void. No arguments.

unset-buffer-varlable Unset the value of the given buffer-specific variable. Returned
result type is: void. Argument types are: string.

unset-buffer­
variable-dialog

unset-document­
variable

unset-document­
variable-dialog

Unset the value of a buffer-specific variable. Returned result type
is: void. No arguments.

Unset the value of the given document-specific variable. Returned
result type is: void. Argument types are: string.

Unset the value of a document-specific variable. Returned result
type is: void. No arguments.

unset-global-variable Unset the value of the given global variable. Returned result type
is: void. Argument types are: string.

Listing of Functions 8-63

unset-global­
variable-dialog

update-display

visit-document

visit-document­
dialog

visit-file

visit-file-dialog

visit-new-document

vocoder-release

Unset the value of a global variable. Returned result type is: void.
No arguments.

Force the screen to be updated so that it reflects the current state
of the document. Normally, the editor will defer updating the
screen while editing actions are taking place or extension language
commands are being executed. Returned result type is: void. No
arguments.

Read the specified file in a new buffer. Returned result type is:
void. Argument types are: string.

Read a document in a new buffer asking the user for the file
name. Returned result type is: void. No arguments.

See visit-document. Returned result type is: void. Argument types
are: string.

See visit-document-dialog. Returned result type is: void. No
arguments.

Read the specified file in a new buffer. Returned result type is:
void. Argument types are: string.

Release the audio hardware so it will be available to another client
Returned result type is: void. No arguments.

vocoder-shutdown Release the audio hardware so it is unavailable to another client
Returned result type is: void. No arguments.

write-buffer-as-text Write the specified buffer as text. The user is queried for the
name of the text file. Returned result type is: void. Argument types
are: buffer.

write-buffer-to-file Write the specified buffer to the specified file. Returned result type
is: void. Argument types are: buffer, string.

8-64 BBN/Slate Customizing Manual

write-buffer-to-flle­
as-text

write-buffer-to­
stdout-as-text

write-current-buffer

write-current-buffer­
as-text

write-current-buffer­
to-stdout-as-text

write-region-as-text

write-region-to-flle

write-reglon-to-file­
as-text

write-reglon-to­
process

write-region-to­
stdout

write-string-to­
stderr

write-string-to­
stdout

Write the specified buffer to the specified file as text. Returned
result type is: void. Argument types are: buffer, string.

Write the specified buffer as text to the standard output. Returned
result type is: void. Argument types are: buffer.

Write the current buffer. The user is queried for the filename.
Returned result type is: void. No arguments.

Write the current buffer as text. Returned result type is: void. No
arguments.

Write the current buffer as text to the standard output. Returned
result type is: void. No arguments.

Write the selected region as text. The user is queried for the name
of the text file. Returned result type is: void. No arguments.

Write the selected region to the given file. Returned result type is:
void. Argument types are: string.

Write the selected region as text to the given file. Returned result
type is: void. Argument types are: string.

Filter the selected region. Returned result type is: void. No
arguments.

Write current region as text to standard output. Returned result
type is: void. No arguments.

Write a string to the standard error channel. Returned result type
is: void. Argument types are: string.

Write the specified string followed by a newline to standard
output. Returned result type is: void. Argument types are: string.

Listing of Functions 8-65

Index

() (function call) symbols 3--45
{ } (multiple statement) symbols 3-14
= (assignment statement) symbol 3-14
(comment) symbol 3-8
, (separation) symbol 3-15
; (statement termination) symbol 3-14
% (temporary buffer) symbol 3-34

A
access

function 3-1, 3-2
activating functions 3-57
add-obj ect function B-3
alias (mail) command

in profile files 1-7, 1-23
Alt key

in key bindings 1-14
system determination of 1-14

application examples
SEL 3-60

apropos function 3-29, B--4
apropos -di a log function 3-27
arguments

Boolean 3--44
matching variable types 3-9
passing by value 3-15

ASCII characters
accessing special 1-15

assignment statement 3-14
audio (speech) functions B--4
audio (speech) variables A-ll
audio (vocoder) functions B-64
auto-backup variable A--4
auto load statement 2-15, 3-20, 3-57

in profile files 1--4, 1-7
automatic backup

variable for A--4

B
backup file

variable for controlling A--4
.BAK file extension A--4

BBN menu for help 3-29
BBN/Slate extension language see SEL
bind command

in keyboard bindings 1-13
in profile files 1-13

binding functions 3-57
bindings

keyboard 3-3
Boolean arguments 3--44
buffer functions B-5
buffer variables 3-24
buffers

c

location within 3-29
temporary 3-34

call
function 3-15,3-45

case dependency
reserved words 3-8
variable names and 3-8

cd function B-5
change-di rectory function B-5
change-d i rectory-di a log function 3-23
characters

accessing special 1-15
permissable variable name 3-8
prefix (key binding) 1-17
quoting 1-15

checkpoi nt-frequency variable A--4
check-spell ing function B-6
classification levels

variables for A-4
command description

menu 2-7
commands see also functions

loading 3-20
MENU 2-5
reading SEL 3-2

comments
extension language 1-10
SEL 3-8

configuration file see profile file
configuring menus 2-10

Index-l

constants
integer 3-7
real 3-7
string 3-7

context-specific menu entries 2-6
control characters

in key bindings 1-14
copy function B-7
copying regions (text-copy-region) B-49
counter functions B-7
current position

functions for 3-29, 3-71
customizing

adding menu functions 2-13
types of 1-1

customizing functions B-1
customizing variables A-I

D
debugging aids

SEL 3-57
declaration of variables 3-9
default functions 3-3
default menu selection specification 2-7
default-document-templ ate variable 1-11, A-4
default-keymap 1-13
defi ne statement 3-5, 3-16
definition file

editing 3-46
definitions

nesting menu 2-8
SEL function 3-5
testing 3-50, 3-54

delete functions B-9
describe functions B-lO
descri be-buffer-vari abl e-di al og function 3-27
descri be-command function 3-26
descri be-document-vari ab 1 e-di a 109 function 3-27
describe-global-variable-dialog function 3-27
describe-variable function 3-27
dialog boxes

creating pop-up 3-4
directories

cd function B-5
change-di rectory B-5
menu 2-17
pwd function B-33
for SEL functions 3-48
SEL search paths 3-19, 3-47

display
keyboard 3-3

display functions B-11

Index-2 BBN/Slate Customizing Manual

display-functions-in-buffer function 3-26, B-1
di spl ay-message for dialog boxes 3-4
Document Editor see also edi tdoc

customizing variables A-4
emulating other editors 1-18
initialization 1-2
optimizing startup 3-20

Document Manager
customizing variables A-3

document size
controlling A-3

document styles see default-document-temp 1 ate
document variables 3-24
documents

inserting and pasting B-56

E
edi tdoc see also Document Editor
editdoc (BBN/Slate Document Editor) 3-1

-exec argument 3-20, 3-21
startup optimization 3-20
variables 3-24

editing
BBN/Slate functions 1-20
definition files 3-46
existing menus 2-14, 2-16

editor variables 3-24
editors

emulating key bindings 3-1
emulating other 1-18
plain text file editing 3-47

electronic mail functions B-28
el se statement 3-14
emacs editor

emulating 1-19, 3-1
emulation

keyboard 1-18
text editor 3-1

enclosure functions B-13
enclosure variables A-14
ENDMENU specification 2-7
environment

building a common BBN/Slate 3-1
errors

handling 3-32, 3-55
profile file 1-8
repeat count 3-33
SEL messages 3-55
syntactical 3-55

escape characters
in key bindings 1-15

evaluation of expressions 3-12

event functions B-15
examples

configuring menus 2-10
SEL application 3-60

execute-conmand-di a 109 function 3-62
execute-conmand-di a 109 (function invocation) 3-3
exit function B-15
expressions

evaluation of 3-12
SEL operators 3-11
syntax of 3-11

extension language, BBN/Slate see SEL

F
field descriptions

menu 2-7
file local variables 3-10
files

editing SEL definitions 3--46
inserting a signature image 3-60
loading SEL commands 3-22
menu 2-1
merging 3-75
printing to A-17
SEL 3-2
SEL search paths 3-19,3--47
text-only SEL 3--49

find functions B-16
flags

variable 3-28
fonts

controlling default A-5
controlling menu A-3
controlling status line A-5
menu 2-6, 2-14
using SEL to change 3-63

footers
page A-6

full menus 2-1
function definitions

SEL 3-5
function local variables 3-10, 3-17
functional description of SEL 3-19
functionali ty

planning SEL 3-37
functions

accessing 3-2
accessing complete range of 3-1
activating 3-57
adding to menus 2-13
audio (speech) B--4
binding 3-57

functions (continued)
buffer B-5
building new SEL 3-1
built-in 3-2
call syntax 3-15
calling 3--45
copy B-7
counter B-7
creating text formats 3--41
current position B-8
default 3-3
definition and development 3-36
definition syntax 3-16
delete B-9
describe B-lO
describing 3-16
display B-11
display-functions-in-buffer 3-38, B-1
displaying description 3-26
document regions 3-29, 3-71
editing definitions 3--46
enclosure B-13
event B-15
execute-command-dialog 3-3
exit B-15
find B-16
graphics B-16
header B-21
help for 3-29
help text 3-17
image B-23
index B-25
indirect calling 3-15, 3-65
initialize B-27
insert B-27
invoking 3-3
invoking from menus 2-6
keyboard macro B-28
listing of B-1
lower-level 3--43
low-level 3-3
mail B-28
mark B-30
menu B-30
move B-31
on-line information 3-25
page B-31
preview B-32
pri vate 3-16
process B-32
public 3-16,3-58
read B-33
redefinition of 3-17, 3-52

Index-3

functions (continued)

replace B-34

G

reviewing available 3-37
save B-34
scroll B-35
search 3-43, 3-71
select B-35
set B-35
sheet (spreadsheet) B-37
silent redefinition of 3-17,3-52
sleep B-45
string B-45
template B-46
testing 3-50, 3-54
text B-46
tutorial example 3-41, 3-42, 3-47
unset B-63
user-callable 3-3
visit B-64
vocoder B-64
window (sp1 it-pane) B-45
write B-64

global declaration 3-10
global variables

in profile files 1-4, 1-7
purpose of 3-10

gl oba l-error variable 3-32
graphics functions 8-16
graphics variables A-9
group environment

building 3-1
GROUP menu specification 2-6
groups

menu 2-6
gutter

controlling A-IS

H
header functions B-21
header variables A-17
headers

page A-6
help

about functions 3-29
text for functions 3-17
text for menus 2-5

Index-4 BBN/Slate Customizing Manual

I
if statement 3-14
image functions B-23
image variables A-I0
images

inserting 3-60
index functions B-25
indirect function call 3-15, 3-65
initialization file see profile file
initialize functions B-27
insert functions B-27
integer constants

SEL 3-7
invocation

function 3-3
invoke statement 3-15,3-65
invoking functions from menus 2-6
ITEM ••• END ITEM menu specification 2-7,2-8

K
key bindings

Alt key 1-14
bind command 1-13
control characters 1-14
creating 1-18
escape characters 1-15
macro functions B-28
menu help text and 2-6
non-text applications 1-17
prefix char'acters 1-17
in profile files 1-7, 1-12

key sequences
keyboard bindings 1-14

keyboard
displaying 3-3, A-27
macro functions B-28

keyboard bindings
for custom user interface 1-18, 3-3
special characters 1-15

keymaps

L

in bind command 1-14
default 1-13
definition 1-12
names of 1-13

language, BBN/Slate extension see SEL
languages

keyboard display of A-27

1 i brary-search-path variable 3-47
1 i brary-search-path variable 3-19, 3-21
local declaration 3-10
location functions for buffers 3-29
loops

use of 3-62
lower-level functions 3-43

M
macros (keyboard) see key bindings
mail aliases

in profile files 1-7, 1-23
mail functions B-28
mail merge application example 3-75
mail variables A-17
mail-spooler variable A-22
margin

controlling A-IS
mark

current 3-30
mark functions B-30
MENU command 2-5
menu entries

simple command 2-3
submenus 2-3

menu files 2-1
copying 2-2,2-11
editing 2-14, 2-16
public 2-16
sample 2-3
syntax of 2-4

menu functions B-30
menu names see also menus, TITLE, 2-5
menubar

controlling A-5
menu-di rectory variable 2-17
MENU ••• ENDMENU specification 2-8
MENU ITEM menu specification 2-7,2-10
MENUNAME

menu specification 2-8
submenu entries 2-4, 2-7

menus
adding new functions 2-13
changing order 2-11
command description 2-7
command description fields 2-7
configuring 2-1
configuring example 2-10
context-specific entries 2-6
controlling fu1Vquick A-7
default font size A-3
DEFAULT -SELECTION specification 2-7

menus (continued)
dimming entries with GROUP 2-6
editing existing 2-14, 2-16
ENDMENU specification 2-7
field descriptions 2-7
FONT specification 2-6
fonts 2-14
full 2-1
function invocation from 2-6
GENERATED-BY specification 2-6
GROUPS specification 2-6
help for functions 3-29
HELP text 2-5
improving organization 2-9,2-11
INVOKES for functions 2-6
ITEM ••• ENDITEM specification 2-7,2-8
key bindings in help text 2-6
MENU entries 2-5
menu-di rectory variable 2-17
MENU ••• ENDMENU specification 2-7,2-8
MENU ITEM specification 2-7, 2-10
MENUNAME menu specification 2-8
MENUNAME submenu entries 2-4, 2-7
nesting of definitions 2-8
public accessibility 2-16
QuickStart 2-2
SEL functions in 2-14
simple command 2-3
submenus 2-3
system 2-1
TITLE 2-5

mouse buttons
in key bindings 1-16

move functions B-31
multilingual variables A-27
multiple statements 3-14

N
names

menu 2-5
SEL variable 3-7

null
SEL use of 3-8

o
objects

adding B-3
octal representation of characters 3-7
on-line function information 3-25

Index-5

operators
application to variable types 3-13
expression 3-11
precedence 3-11

optimizing startup time 3-20
order

changing menu 2-11
organizing menus 2-9,2-11
overview of SEL 3-1

p

page
controlling height A-16
controlling starting A-17
controlling width A-16
footers A-6
functions B-31
headers A-6

page-wi dth variable A-7
parentheses

use in function calls 3-45
poi nter variable type 3-9
position functions

current B-8
precedence

operator 3-11
preference variables

global 1-11
in profile files 1-7

prefix characters
in key bindings 1-17

preview functions B-32
pri ntfil e variable A-17
printing

pri ntfil e variable A-17
print-spooler variable A-17
spool variable A-7
variables for A-IS

print-spooler variable A-17
pri vate function type 3-16
process functions B-32
profile file

adapting a sample 1-3
autoload statement 2-15,3-20,3-57
creating a 1-2
editing 1-8
errors in 1-8
initialization 1-2
key bindings 1-12
menu-di rectory variable 2-17
overview 1-2
private 1-3

Index-6

profile file (continued)
public 1-3
role of 3-19
sample 1-5
.slate_editor.init file private profile 1-5
slate_editor.init file public profile 1-3
slate_editor.sample_init sample profile file 1-3
SEL in 3-19,3-47
statement order 1-8
testing new features 1-8

programming
sample SEL constructs 3-4

public accessibility of menus 2-16
pub 1 i c function type 3-16
public menu files 2-16
pwd function B-33

Q
QuickStart menus 2-2
quotation marks

including in a string 3-7, 3-17
quoting characters 1-15

R
read functions B-33
read-commands-from-fi 1 e function B-33
reading SEL commands 3-2
real constants

SEL 3-7
redefine-silently variable 3-17,3-53
regions

copying B-7, 13-49
functions for 3-29,3-71

repeat count for errors 3-33
replace functions B-34
reserved words

SEL 3-8
return statement 3-15, 3-16

s
sample menu file 2-3
save functions B-34
scope of SEL variables 3-9
screen capture 3-65
scroll functions B-35
search functions 3-43, 3-71
search paths

in profile files 1-4, 1-6

SEL (BBN/Slate extension language)
= (assignment) statement 3-14
adding functions to menus 2-14
assignment statement 3-14
binding and activating functions 3-57
comment inclusion 3-8
comments 1-10
debugging aids 3-57
defi ne statement 3-5, 3-16
definition and development 3-36
definitions 1-9
describing functions 3-16
directories for functions ~8
document region functions 3-29
editing definition files ~6
else statement 3-14
error messages 3-55
expression evaluation 3-12
expression operators 3-11
expression syntax 3-11
file local variables 3-10
file merging 3-75
files 3-2
font handling 3-63
function call 3-15
function definitions 3-5, 3-16
function information 3-25
function local variables 3-10, 3-17
functional description 3-19
functionality planning 3-37
global declaration 3-10
help text for functions 3-17
if statement 3-14
integer constants 3-7
invoke statement 3-15, 3-65
1 ibrary-search-path variable 3-19, 3-21, ~7
loading commands 3-20
loading files 3-22
local declaration 3-10,3-17
loops 3-62
lower-level functions 3-43
null 3-8
overview 3-1
planning functionality 3-37
pri vate function type 3-16
in profile file 1-4, 1-7
profile file 3-19, ~7
pub 1 i c function type 3-16
purpose of global variables 3-10
read-commands-from-fi 1 e function B-33
reading commands 3-2
real constants 3-7
redefinition 1-9

SEL (continued)
reserved words 3-8
return statement 3-15, 3-16
reviewing available functions 3-37
sample programming constructs 3-4
sample programs 3-60
screen capture example 3-65
statements 3-13
string constants 3-7
syntax errors 3-55
syntax in profile files 1-9
syntax and semantics 3-7
system administration 3-2
testing functions 3-50, 3-54
text format creation 3-41
token syntax 3-86
tutorial ~1, ~2, ~7
undefine command 3-17,3-53
using 3-2
variable categories 3-24
variable flags 3-28
variable names 3-7
variable scoping 3-9
variable types and usage 3-9
void type name 3-16
while statement 3-14
windowing systems 3-66
writing functions 3-36

select functions B-35
semicolon

terminating statements 3-14
set functions B-35
setting variables A-2
sheet (spreadsheet) functions B-37
simple command menus 2-3
. slate_editor. i ni t file see also profile file
.slate_tool.init A-3
sleep function B-45
speech (audio) functions B-4
speech (audio) variables A-11
speech (vocoder) functions B-64
spelling

checking B-6
spool variable A-7
spreadsheet (sheet) functions B-37
spreadsheet variables A-11
starting page

controlling A-17
startup optimization 3-20
statement

assignment 3-14

Index-7

statements
comment 1-10
loading 3-20
multiple 3-14
types of 3-13

strcat (string) function B-45
string constants

SEL 3-7
string functions B-45
styles

controlling default A-8
document see default-document-templ ate

submenus 2-3
SunView

wi ndow-system-i s-sunvi ew variable A-8
syntax

menu files 2-4
SEL 3-7, 3-86

syntax errors
SEL 3-55

system administration and SEL 3-2
system menu files

copying 2-11
location of 2-2

system menus 2-1

T
tables of contents

controlling A-17
template functions B-46
temporary buffers 3-34
testing function definitions 3-50
text

function help 3-17
menu help 2-5

text formats
creating 3-41

text functions B-46
text variables A-8
text-add-item function 3-42
text-default-format variable A-8
text-quote-next-character function 1-15
TITLE

menu 2-5
title pages

controlling A-17
tutorial

function 3-41, 3-42, 3-47

u
undefine command 3-17,3-53
unset functions B-63

Index-8 BBN/Slate Customizing Manual

user interface
keyboard bindings 1-18

user-callable functions 3-3

v
values

and argument passing 3-15
assigning see assignment statement
returning 3-15, 3-16

variables
application of operators 3-13
audio A-11
auto-backup A-4
buffer 3-24
case dependency of names 3-8
categories of 3-24
customizing A-I
declaration not required 3-9
default-document-template I-II, A-4
document 3-24
Document Editor A-4
Document Manager A-3
edi tdoc 3-24
editor 3-24
enclosure A-14
file local 3-10
flags 3-28
function local 3-10, 3-17
global 3-10
global preference 1-11
global-error 3-32
graphics A-9
header A-17
image A-I0
list of A-I
mail A-17
mail-spooler A-22
matching types 3-9
multilingual A-27
printing A-15
purpose of global 3-10
scope 3-9
SEL names 3-7
setting A-2
speech A-11
spreadsheet A-11
tables 3-24
text A-8
types and usage 3-9

vi editor
emulating 1-19, 3-1

visit functions B-64

vocoder functions B-64
voi d type name 3-16

w
while statement 3-14
windows

SEL and windowing systems 3-66
size and position (. slate_tool. i nit) A-3
split-pane functions B-45
splitting A-8

write functions B-64

x
XlI

wi ndow-sys tem- i s-xll variable A-8
XI1R4 xwd program 3-66

Index-9

BBN Software Products
A Division of Bolt Beranek and Newman Inc.

Your opinions about our products and services are important to us. Please use this self-addressed,
stamped form to help us evaluate this manual. Your response to the questions listed below will
help us assess our current documentation and plan ways to improve it to meet your needs. Just
fill in your responses, detach this sheet, fold and tape it, and drop it in the mail. We'll pay careful
attention to what you say!

Manual Title: BBN/Slate Customizing Manual (Release 1.1)

List your operating system: Date: __ 1 __ 1 __

General Comments: Yes Somewhat No

Do you like this manual? 0 0 0

Is it easy to read? 0 0 0

Is the order of topics easy to follow? 0 0 0

Is the information accurate? 0 0 0

Can you easily find the information you need? 0 0 0

Do the examples and illustrations help? 0 0 0

Can you easily apply the described features 0 0 0
to your own needs?

Do you use on-line help? 0 0 0

Comments and Suggestions (include chapter or page number where applicable):

How do you primarily use this manual?

o Introduction o Tutorial o Reference

o Check here to receive information about our Education Services.

o Check here to receive the BBN Software Quarterly newsletter.

Please fill in the following information:

Name ________________ _ Title _______________ _

Company _______________ _ Street _______________ _

City _______________ _ State _______________ _

Zip Code ______________ _ Phone ______________ ___

Fold

BUSINESS REPLY ENVELOPE
FIRST CLASS PERMIT NO. 36450 CAMBRIDGE, MA

POSTAGE WILL BE PAID BY ADDRESSEE

BBN Software Products
A Division of Bolt Beranek and Newman Inc.

10 Fawcett Street
Cambridge, MA 02138

Attn: Manager, Documentation

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1/ \' ./ /";1" I '''' - I '\ ' , '/ , ,"'" --I - / ,./ '" \ / "~/'
- -, \- - \- 1- I/ ,..... I

\ .// \ "\ - / - ./-;I" ,., \ I....... I -/...... I - "" J - \
...... \ ,- J...... _ /""" _ \ I" I 1 " \ 1 ,"" I... \ - I - '... \.; ,\', "'

/ - / - \ \. - - - -' - - I .;' '/ / -,......,,-
_ ./ 1_ / - / , \ - I '" \. - " I....... l ' I' / \

,)., - ,I \ i \ -" '\ \ ./ ./ \,., \ -! \ - 1- './ I
I - - - _ .;./ /,./ - \/, I ', "

\. \ .; ,'-" '\ I"\. I ,,\ / / ~,,/.... '/
- -/ ... '1-/" - , ... , /,-

/ ~_/_, \/ ... / (...... 1
t 'I I \ 1 - \...... '.." -/ - - _, I ,
..... \ .. -,./

- , , ,-/,,'--/ " 1'.... _ -"" \ \ - \ - , 1- ~
\ , 1;1" '\-\- / ,,-I I' I /// ...

... "', \ ,,' \ J '-" I / \ '\-:: ,.,.....! '\ ') \. ;I" \'"'
1,1,. --- , ', - , ,'/1 ,-I' ./1

2523012 , 'I ' .; BBN Software Products , - \ \ - - \ , \ I i ~ = ;; = §!. " I, '
" I '\ - "" A Division of Bolt Beranek and Newman Inc. - i! = ;; = ;; = = \

-, \" \ 1- \ I' ,'//
....... /... I - ,_...... / , \ ,. "I, """ \ \ ,. 1 1...;-_
• I / , I ',., " I I" / \ _ \ 1 - '~ "/ ~ / , !., "", \ ' : \ ; I \' I :. 1,' I

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	B-51
	B-52
	B-53
	B-54
	B-55
	B-56
	B-57
	B-58
	B-59
	B-60
	B-61
	B-62
	B-63
	B-64
	B-65
	B-66
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	replyA
	replyB
	xBack

