Status of the TENEX Memos ‘ 1 March 1972

The TENEX Memos were first issued as a complete set in
January of 1970. They were intended as a comprehensive design
specification for the TENEX operating system, on which, at
that time, coding had not begun. The set of memos was the
result of a design effort stretching over a two year period,
and most of the memos had existed in several earlier versions
which were revised and updated as the design was firmed up.

It has now been nearly two years since the first version
of the TENEX mogitor was placed in operation. During that
time, these memos have served not only as a guide to imple-
mentation, but also as the main source of information on the
system for new users and for other prospective TENEX instal-
lations. Until the publication of "TENEX - A Paged Time
Sharing System for the PDP-1@" in late 1971, this set was
the only document which could give the reader a feel for the
"flavor" of the system. It is still substantially more

detailed in most respects than the paper.

However, in the time since they were issued over two
years ago, they have become steadily more obsolete. Partly,
actual implementation of the system showed certain things
to be impractical or less optimal than had been thought, and
partly, some ideas were re-evaluated and modified or phased
out. Some updating was done in late 1970, at a time when
the system had been operating for several months, and the
more important sections were brought into line with reality.
An additional yeér has past since that time, and evolution
of the system has caused some obsolesence in some of the
sections, and rendered others totally useless.

As time permits, new documentation will be produced
which is current and which dominates the TENEX memos in

-1-

Status of the TENEX Memos 1 March 1972

detail and function. In the interim, in order to continue
to provide the function which tinese memos have served, we
have undertaken a review. Rather than suffering the delay
of revising and republishing the entire set, we have used

the following procedure:

1. Memos which are mostly incorrect or irrelevant
have been taken out of circulation;

2. A description of the discrepancies and some ncw
inforration has been written for the reraining

memos and is provided herewith.

Fortunately, the most fundamental and irportant documents
in the set fall into the latter category. Therefore, the set
of TENEX memos as now distributed should be quite useful in
conveying the "flavor" of the systern, and in serving as an

introduction to its features and gcneral structure.

The riemos now being distributed are:

TENEX-3 - TENEX Job Structure
TENEX-4 - File Systen
TENEX-5 - Terminal Service

TENEX-6 - EXLCCUTIVE Technical Description
TENEX=-7
TENEX-8 - Monitor Calls and Pseudo-Interrupts
TENEX-12 -Schedulinc and Storage Management

Fork Structure and Communication

The most inportant memos for learning about the general
structure of the system are 3 and 4. The TENEX Executive
Manual provides a rnuch more detailed and user-oriented
description of the Exec than TEMEX-6, however the memo does
contain documentation on most of the Exec's privileged (wheel)

Status of the TLNEX Memnos 1 March 1972

cormands. Menos 5 and 7 provide some useful prograrming
information, mostly for machine language prograrnmers, and
some implementation details. TENEX-8 is almost entirely
implementation details, and TENEX-12 is a technical discus-
sion, neither of which are of irmediate value to the

programmer.

Notes on the Obsolesence of Memos

As implementation on the system was begun, it was envisioned
that there would be an initial version called the "Mini-System" which
would be sufficient to meet our immediate needs, and that the
so-called "full-blown" TEMEX would follow at a later time. 1In
fact, the system has evolved continually from the time it was
first put into operation, and there has been no clear demar-
cation between a "Mini-Svstem" and any other class of systenm,
whatever its name. The systen is now referred to as TENEX,
and it is in the state where most of the original desion goals
have been net, but there remain a number of major and minor
improverents which are planned for the next 6 to 12 months.
Therefore, statements which occur throughout these documents
to the effect that something is or is not in the "Mini-Systenm"
actually provide no information about what is irplerented in
the current system nor when a particular facility will be
implemented. The following notes on each section will attempt
to clarify what is now implemented, what is expected to be

implemented, and what is an obsolete specification.

TENEX-3 - Job Structure

Pages l1-7 are generally quite accurate; the remainder
(implementation details) contains some fairly unimvortant
inaccuracies. Everything described has becen implerented,
including expansion of JSB storage beyond one page. The
diagram on page 1l contains an obvious error; in the current

-3=-

Status of the TENEX Memos 1 March 1972

system, the 128K area from 64K to 196K (addresses 200000 to

600000 octal) contain the swappable monitor and all systcm-

cormon swappable storage. Sce also the TENEX Monitor Manual
which contains a very detailed description of the monitor

virtual memory.

TENEX-4 - File System

The information herein is generally correct; page 7,
'indirect pointer', 'backed-up' file, and 'protection string'’
blocks are not inplemented and this specification may soon be
obsolete. Page 11, disc allocation specification does exist
in the directory descriptor block but is not used by the system.
The entire question of resource allocation and limitation is
now under study. Page 20, subroutine files (4.2) have neither
been imnlemented nor specified beyond this description. It
is doubtful that exactly this tyve of facility will ever exist;
under study now are "nipeline files" anc "nseudo~-teletype"
files which would dominate most of the proposed uses of sub-
routine files plus be easier to implement and have various
advantages of their own. Page 22, mailbox files (4.4) do not
exist and are not planned. Page 25, "protected entry" not
implemented, obsolete spec. Saved environnents do not exist
in the current svster (core image saving has been adequate
for most requirements), so various discussions in that con-
nection are obsolete; e.g. page 32, there are no "retention
counts" in the systemn. Page 35, special files (8.), no
mountable directory devices which move information automatically
into tihe disc directory currently exist; this specification

is obsolete.

TENEX-5 Terminal Service

In general, service for half-duplex terminals has been

implemented. However, the type of half-duplex connection

-4

Status of the TENEX Memos) 1l M™arch 1972

implied bv the third paraqgraph on paqge 10 (where the systerm
receives an echo for each character sent) has never existed

in our hardware, so the facility described has not been
implemented. The system currently supports teletvne rodels
33, 35, and 37, the TI, and the ARPA network "virtual terminal”.
Various others which have requirements similar to these have
been used satisfactorily. Page 3, line editing is not now
available as a monitor service but is a planned future ad-
dition. Page 5, no monitor facilities especially for terminal
paper—-tape devices have been irmnlemented. User programs

exist for copying files to and from these devices with the
necessary formatting, and that will probably continue to be
sufficient. Page 8, two additicnal data modes have been
implemented, see recent programming documentation. Page 11,
terminal linking is presently implemented, but the imnle-

mentation is not quite what is implied by this discussion.

TENEX-6 - Exec Technical Descrintion

In most cases, features listed as "not irplemented yet"
are presently not implemented, and the specification is
probably obsolete. Page 16, DEFINE not implemented; PROTECTION
is implemented. Page 21, ALPHABETIC, CHRONOLOGICAL, and
REVERSE are implemented. Page 24, file group descriptors
(*in file name) are implemented for DELETE, LIST/TYPE,
DIRECTORY, and UNDELETE, and in COPY for the source file only.
Page 30, TEN50 cormmand obsolete; DDT command implemented and
starts or resumes regular DDT. Page 36, linking commands
are inplemented. Page 39, !LOGOUT command is obsolete, regular
LOGOUT command takes optional job number to log out another
job, and is legal if other job is same user as this job, or
if this job is enabled.

Status of the TENEX Memos 1 March 1972

TENEX-7 - Fork Structure and Communication

Information herein is generally correct, some imple=:
mentation details are incomplete. Page 11, implementation
of terminal interrupts has been changed and improved sub-
stantially, but from the user point of view, the changes
have been mostly additions. Page 13, a more up-to-date
version of this table is available in the JSYS Manual.

TENEX-8 - Monitor Calls and Pseudo-Interrunts

All rnonitor UUO's available on the KA-1{ (40-77 octal)
have been reserved and used for TOPS-=10 (DEC system) com-
patible operations. Only the JSYS instruction is used for
TENEX monitor calls. The discussion is still accurate and
should be useful for system programmers seeking to learn
about monitor coding conventions or attemptinag to understand
the PSI svstemn.

TENEX-12 - Scheduling and Storaae '"anagenent

This section is generallv accurate in its description of
the function of each of the various modules mentioned. There
is however, no real-time scheduler module. The alqorithms
described for each of the modules are generally obsolete,

however they may be of value in uncderstanding the evolution

which these modules have undergone and therefore in learning
about the operation of the.current svsten from the listings.
Specifically, most of the goals and concepts given on pacges

5-16 for the scheduler module are still valid, although the

means for achieving them has been inproved. The algorithns

described in the "balance set" section were sorewhat nore

tentative when written, and so are only about 50% indicative

Status of the TENLCY. llemos 1 March 1972

of the operation of the currcnt systern,

Other Meros

The remaining memos from the original set are no longer
being circulated. For the most part, they were speculative
design dlscu551on° and do not now represent current sysctem

1mplementatlon or current thought.

TENEX =3 Job Structure Nov 3¢, 197¢--Update Page 1

TENEX Job Structure

A user program running under TENEX operates on a virtual
machine which 1looks something 1like a PDP~-1{ arithmetic
processor with 256K of attached memory. The virtual APR
does not make available to the user program the direct I/0
instructions (CONO, DATAI, etc.), but has a large class of
instructions (JS¥S's and UUO's) which provide access to
monitor routines performing user-oriented I/O and other

operations.

The TENEX monitor and paging hardware create an illusion of

memory (called the virtual memory) which can be treated as

ordiﬁary core, e.g. machine instructions can be executed
which load and store randomly in the 256K space. Each of
these references is interpreted by the paging hardware and
translated from the user's virtual address to an "actual"
core address before being sent to the memory. A reference
may cause a not-in-core trap which stops execution of the
running program and initiates a monitor routine which
changes the contents of memory after which the reference is
completed. Thus the illusion of 256K of memory can be
created for the user even though there may be less than 256k

of total core on the machine, and though there may be other

TENEX =3 Job Structure Nov 30, 197@--Update Page 2

user and monitor programs in the actual core.

The TENEX hardware and software do more than just simulate
real core. The virtual machine has facilities that are
considerably more powerful and sophisticated than typical
hardware configurations used directly. This memo discusses
the basic structure of the entities which are provided by

TENEX.,

Memory

The only "real®, generai purpose memory in TENEX is the file
system. It is "real" in the sense that it has relatively
fixed names attached (memory is always referenced by logical
user-selected names, never by hardware location such as disc
address) . Also, all information of any sort (data,
programs, etc.) resides in the file system when not being

actively used.

The characteristics of the file system are discussed in memo
TENEX~-4. Generally, any word of information in the file

system is identified by:

l. File name (including user/directory) within total

file system
2. Page number within file (§ To (512t2-1))

3. Word within page (# To 511)

TENEX -3 Job Structure Nov 3§, 1970--Update Page 3

A concatanation of 2 and 3 (page number * 512 + word number;
9 bits of word number attached to the right end of up to 18
bits of page number) gives a logical identifier of any word
within a file. A portion of the file system, called the

randon file logic, allows user programs to make single word

random references into a file given the word address and the

job file number (JFN, the identifier of an open file).

Frequently, it is convenient to deal with information in the
file system by treating a page as a basic unit. For this
purpose page number and 3job file number are used. To
reference information in a file, the file must be open. The
file opening procedure involves acquiring a handle on the
file by associating a directory name and a small number
called a Job File Number (JFN) then presenting this handle
to the monitor call for opening a file. A page of any open
file in a job can be identified by a single 36-bit word

containing.

Left Half: Job File Number

Right Half: Page Number

g 17 18 35
JOB
FILE PAGE
NUMBER NUMBER

TENEX -3 Job Structure Nov 38, 197@--Update Page 4

The PDP-1§ APR does not directly reference information in
files. It does fetch instructions and instruction operands

from the virtual memory. To the APR, the virtual memory

consists of 256K 36-bit word addresses. To the user, the
virtual memory is 512 consecutively numbered page addresses,
each consisting of 512 _ cdnsecutively numbered word
addresses. The pages of the virtual memory are effectively
slots into which are placed indentifiers of pages in the
file system. At any given time none, some, or all of the
slots may be filled. In general, a user program may place
any page of information from the file system into any page
of virtual memory by:
l. Opening the file (if not already open)
2. Executing a monitor call giving:
a. The Job File Number and page number of the
desired page of information in one word.
b. The number of virtual memory page which is to
receive the information in another word.
Then any of the words in the page are available to the APR

for instruction or operand fetches.

The contents of the virtual memory at any time are specified

by the virtual memory map which the user may manipulate. As

well as setting words in the map, the user may read the map
and move pages around. At any time, the user may ask for
the "name" of the page in position N of his map (N in range

§=511), and the monitor will return a word containing a Job

TENEX -3 Job Structure Nov 38, 1970--Update Page 5

File Number and page number.

Processes and Forks

Precisely defined, a virtual memory is associated with a
process (also called a fork). A process is a basic entity
in TENEX. It is a 1logical entity capable of performing
computation. Its state is contained in its virtual memory
map and the state of the APR, PC and all flags. A program
may be thought of as a named entity capable of performing a
set of user related functions, such as LISP or DDT. By this
definition, a running program must be associated with at
least one and possibly more processes. See memo TENEX-7 for

a complete discussion of forks.

PAGE IN .

FORK A MAP FORK B MAP

Direct (share) Pointer
Fig. = File Page Mapped Into Fork

TENEX =3 Job Structure Nov 3§, 197@¢--Update Page 6

Jobs

A job within TENEX is a set of one or more hierarchically
related processes which can communicate with each other in
defined ways. A job may contain several running or
suspended programs. Each active process within TENEX is a

part of some job. A job has the following attributes:

1., Name of user who initiated the job

2., Account number to which is charged all costs
associated with use of system resources by this
job.

3. Some open files

4, A hierarchy of running and/or suspended processes

A job may also have one or more terminal or other devices
assigned and attgched. Much of the information about the
job resides in the Job Storage Block (JSB), a page which is
referenced by the monitor and Exec, but does not appear in

the virtual memory of any user process.

FORK OPEN USER AND ASSIGNED
STRUCTURE FILE LIST ACCOUNT DATA DEVICES

3\\
/

TENEX -3 Job Structure Nov 30, 197@--Update Page 7

Private Memory

Every job has at least one open file, a file used as
"private memory" by the job (analagous the 94f's PMT). This
Private Memory File (PMF) is created and opened by the
monitor when the job is initiated. Pages will be assigned
when named private memory is acquired by one fork, and
deassigned in various explicit and implicit ways. Memory
for temporary storage is usually acquired by executing an
instruction which attempts to reference an address in a page
for which the map is empty, i.e. has no memory assigned.
When this occurs, the monitor will assign a page (contents
initialized to all #'s) which is not part of any file and is
therefore unnamed. If a name is later required (because of
program request), the page will be assigned to and placed in
the private memory file and will then have a regular JFN=-PN
name. These files of private memory for the running jobs
exists in the PMFDIRn file directory, and the identification
of the file for each job contains the system job number (a
unique number) for that job. There will be as many PMFDIRn
(e.g. PMFDIR#, PMFDIRl, ...) directories as needed to

permit private memory files for all the jobs on the system.

TENEX =3 Job Structure Nov 30, 197¢=--Update Page 8

Some Implemention Details

Storage Blocks

Each job has a Job Storage Block (JSB), a page which is used
to hold information which is global to the job. Each
process (fork) within the job has a Process Storage Block
(PSB) which holds information local to that process, and a
User Page Table (UPT) which maps the user address space for

that fork.

The JSB contains:

l. Job fork structure

2. Open file data and pointers

3. Certain pseudo-interrupt system data

4, Data on user, account, attached file directory, etc.
5. String storage for open file names and fork

protection information.

In very large jobs, some of this information can grow to
fill more space than is available in one page. When this
happens, additional pages will be assigned (up to 8 total)
to store the information. This expansion is not implemented

in the initial TENEX system.

The top 96 words of the JSB contains pointers to the pages
of the common portion of the monitor map. Monitor maps of

all processes in the job have indirect pointers to these

TENEX =3 Job Structure Nov 3§, 1978--Update Page 9

woxrds

of the JSB in the lower 96 positions. The remaining

32 slots of the monitor map are private to each process.

The common pages are such things as:

1.
2,

Window pages for open sequential files

Index blocks for open files

The private pages are such things as:

1.
2,

3.

PSB

Page table

Currently referenced file directory

JSB (share pointer)

contains:

Monitor call temp cells and PDL (TENEX-8)
Pseudo-interrupt statuses and states

Process PC and AC's when process is runnable but not
running

Table of forks known to this process (TENEX-7)
Special capability table (TENEX-11l)

AC block from user and monitor contents (TENEX-8)

The top 128 words of each PSB are reserved for the monitor

map.

The lower 96 of these are indirect pointers to

job=common map in the JSB as above.

TENEX -3 Job Structure Nov 30, 197@-~Update Page 149

Mapping - File Pages

When a disk file is opened, an SPT (Special Pages Table in
monitor) entry will be made for the index block. When a
process requests one of the pages in that file for its map,
the following will happen:
An SPT entry will be made for this page (if not
already in SPT), and the process page table will

receive the appropriate share pointer.
Mapping - Private Pages

When a process first requests a new private page (usually by
storing into an empty page of its map), a page will be
assigned which is logically part of the PMF, The page is
not actually put in the file at that time however, and the
page table entry can be kept as a private pointer. However,
when that process or any other process reads the map (i.e.
requests the name of that page), the page must be made part
of the file and the page table entry changed to a shared or
indirect pointer as above. Then this identifier can

subsequently be used to refer to the same page.

TENEX -3 Job Structure Nov 3§, 197@--Update Page 11

Monitor Map

In addition to the user virtual memory described earlier,
each process also has a monitor virtual memory. Unlike the
user spvace which is homogeneous, the monitor space is

divided into a number of areas.

256K - .
; ! 16K | PRIVATE PER PROCESS STORAGE
240K ! ‘
. 48K ! PRIVATE PER JOB STORAGE
192k ——————
128K | SWAPPABLE MONITOR
= ? COMMON TO SYSTEM
8K — 7]
. 16K SWAPPABLE STORAGE
64K
. 16K . PRIVATE PER PROCESSOR STORAGE
48K o
: 1
. 48K RESIDENT MONITOR (UNMAPPED)
x -
9

The top two areas were described above. The swappable
monitor space is used to contain a large class of routines
which are part of the monitor which can be swapped into core
when needed. These include library-type functions (e.q.
floating input and output) as well as system related
functions. The swappable storage core contains the disk bit
tables plus various I/O buffers which are dynamically

assigned and locked into core when actually transferring

TENEX =3 Job Structure Nov 38, 197f#--Update Page 12

data to or from an I/O device (such as dectape). The
per-processor region is used to hold storage which must be
different for each of the APR's used on the system, The
lower 48K is normally unmapped (or mapped to identical core
addresses) i.e. it refers directly to a contiquous, fixed
area of core memory. It contains the central routines of
the monitor which cannot be swapped out, including the

scheduler, core manager, and most I/0 drivers.

TENEX =3 Job Structure Nov 3¢, 197¢--Update Page 13

TENEX-4 File system, 14 January 70 : PAGE 1

0. INTRODUCTION

The file system of TENEX provides a means of storing
programs and data on various peripheral devices and
prdviding access to such stored data. A file 1s more or
less an ordered set of data which has a name or for some
devices simply an unnamed stream of data. All files are
handled uniformly with some operations unavailable for the

more restricted devices.

File names are kept in directories with each entry in
the directbry relating the name to the location of
information in the file. Directories are also named, and
‘the names of directories are kept in a directory 1hdex.
Each entry in the directory index relates the name of the
directory to a number which can be used to determine the
location of the direétory. Separate directories are Kkept
for each device in the system. So;called disc files may be
kept on the swapping drum but still appear 1in the same
directory as reai disec files. Files may be shared 1n a very
general way with explicit access protection. Furthermore,
as many‘system tables ahd data bases as possible (consistent
with efficient operation) are kept as files so t@at ordinary
programs (with special status where necessary to protect the
system integrity) may examine and process these tables for
extracting information about the state of the system or

performing routine activities like providing file backup.

TENEX-U4 File system, 14 January 70 PAGE 2

1. FILE DIRECTORY STRUCTURE

All directories for.the main file system of TENEX are
contained within onev large file. This large file 1s
subdivided into regions of 4K (K = 1024) words each, one
region for each directory in the system. The position of
each directory in the large flle 1s:computable with simple

arithmetic from a directory number which is associated with

a directory néme as described below in section 2. The fille

directdry file is permanently open and referenced by a fixed
file number. After a user logs in, the eight pages which
constitute the portion of the directory under which LOGIN is
done are mapped into a UK regién of the monitor address.

Space of every process in the Job.
1.1 Individual Directory Format

The portion of the file directory file devoted to an
individuél directory is divided into three areas. The area
at the low end of the ﬁirectory has a fixed allocation and
contains all the bobkkeeping information for the directory.
The second region contains many different kinds of
information and 1s described in section 1.3. The last
region is an ordered symbol tableilwhich associates name

strings with "value" information in the free storage region.

TENEX-4 File system, 14 January 70 ~ PAGE 3

1.2 The Fixed Allocation Region

The contents of the fixed allocation region are 1listed

and described below:

1.2.1 Directory Lock and Use Indicators
These two words are used to arbitrate various
kinds of access to -an individual directory and
prevent simultaneous references from losing. The
directory lock must be set before the directory 1is
modified in any way which could affect other
processes. The directory lock must also be set
when a process which is examining the directory
could be affected by another process modifying the
directory. The use indicator - serves to prevent
unnecessarily locking the directory for long
periods of time. Whenever the directory 1is in
use, the use indicator is incremented. Before the
‘directory can be locked for an extended period of
time, the use indicator must show no uses are
being made of the directory. Manipulating the use
indicator requires the lock to be set.

1l.2.2 - Directory Number :
The directory number 1is used to 1identify the
directory currently being mapped for a particular
process. This is done to -eliminate unnecessary

map switching. Because the information is
redundant, it also aids 1in detecting system
failures.)

1.2.3 Symbol Table Bounds

Two words define the region of the diréctory which
currently contain the symbol table.

1.2.4 Beginning of Free Storage List ,
The left half of this word points to the beginning
of the free storage chain described below in
section 1.3.

1.2.5 Default File Protection Word
The contents of this cell are used to 1initialize
the protection word of a flle descriptor block in
. the absence of an explicitly specified protection
given by the user or program. ’

1.2.6 Directory Protection , _
This word is used to determine who may reference
~this directory, and how. The following kinds of

TENEX-4 File system, 14 January 70 PAGE 4

protection are afforded:
a. 1list the directory
b. open files from the directory
c. add new files to the directory
d. attach to the directory
e. ownership rights (delete, rename, change
account number)

1.2.7 Default Automatic Backup Protection
This word points to a- block of bytes which

specifies how many backup versions of various
.groups of files are to be retained.

1.3 Free Storage Region

The free Storage regién is used to contain all of the
variable' length data which 1s needed for.the directory.
Examples of items kept in the free storage region are name
strings, file descriptor blocks, and protection strings.
Space 1in fhié ‘region vis dynamically allocated and
deallocated and incremehtally garbage collectéd. This 1is
done to reduce the need for total garbage collection.
(Total garbage collection may be occasionally necessary due
to fragmentation of the space.) Use counts aré kept where
necessary and at the time an item becomes unnecessary, its

‘'space is returned to the free storage pool.

All blocks in the free storage region which afé in use,
"have similar formats. The first word contains in the left
half a (negative) block type. and in the right half the
length "of the block. The rest of the words in thé block

contain the data for the block. Free blocks contain in the

TENEX-U4 File system, 14 January 70 PAGE 5

left half a forward chain pointer to the next free block.
The right half of a free block again contains the length of
the block. The end of the ffee chain is marked with a zero

in the left half of the first word of the last free block.

Space is allocated in this region by scanning the free

storage chain~for a block which is:

1. Exactly the right length.

2. Greater than the length needed by the size of
the most common plock.

3. Greater than the 1length needed by the
smallest amount.

The above criteria are applied in the order given, and if a
free block 1is found satisfying any of them, the space needed
is extracted from the block and made into a new used block.
If a block cannot be found which satisfies one of the above
criteria, an attempt is made to expand the free storage area.
by moving the symbol table to the end of the next page and
adding‘the 512.words thus gained to the end of the free
stofage list. If the symbol table canﬁot be moved then
there is no room for this entry. Note that when this
happens; it may still be possible to allocéte blocks of

smaller length.

Déallocation is done by scanning the free list for the
free block just preceding the block being deallocated. The
- block 1is either'linked into the chain, or if it is adjacent

to’ either or both of the preceding or following blocks, it

TENEX-4 File system, 14 January 70 PAGE 6

is merged with that block.

1.3.1 Block Formats

The formats of the various block types which may exist

in the free storage region are given below.

1.3.1.1 Free block

word

0
rest

contents

XWD pointer to next free block,length
ignored

1.3.1.2 String block

word.

0
100.

contents

XWD 4000xx*,length in words(n)
ASCIZ /the string/

(* xx are used to identify what the string is for)

1.3.1.3 File descriptor block

word

oM WhHO

10
11
12

13
1k

contents

XWD 400100,25 (block type and length)
XWD control bits,name pointer

XWD other extensions,SIXBIT extension

XwD
XWD

XwD

file address (including disc vs. drum)
and class

protection word

first creation date and time

last writer,retention count

other versions,version number

(job number is used for version number
in the case of temporary files.

See section 4.1.)

account number (positive) or

pointer to account string (negative)
last byte size,number of versions to
retain :
length in bytes _

this version creation date and time

" last write date and time

TENEX-4 File system, 14 January 70 PAGE 7

15 last reference date and time

16 XWD write count, reference count

17 last incremental backup date and time
20 last medium term backup date and time
21 last archival backup date and time

22 backup bits

23 backup location (tape number)

24 user settable word

1.3.1.4 Pile indirect pointer block

word contents

XwD 400101,6 .

XWD control bits,name pointer

XWD other extensions,SIXBIT extension

XWD directory number pointed to,
pointer to file name string of
file pointed to (includes name,
extension, and version)
protection
creation date and time

WwN = O

W =

1.3.1.5 Backed-up file block

word contents

0 XWD 400102,3
1 XWD control bits,name pointer
2 XWD other extensions,SIXBIT extension

1.3.1.6 Account string block

word contents

0 XWD 400200,length of block
1 retention count
2400 ASCIZ /string/

1.3.1.6 Protection string block
word contents

0 XWD 400201,length of block

1 retention count

2e0e BYTE (indefinite number of bytes specifying
protection)

TENEX-4 File system, 1lU4 January 70 PAGE 8

1.4 Symbol Table Region

The symbol table region 1is wused for associating a
striﬁg or symbol with a block of information. Each entry in
the table consists of one word containing in the left half a
pointer to a string block and in the right half a pointer to
a block of other 1nf9rmation. Thrée bits in the top of the
right half are used to indicate the typé of 1ﬁformation.
Three types of information blocks are pointed to from the
~Symbol. table. There are: file names, group names, and
protection names. Entries are ordered 1in the table
alphabetically; 1.e. the comparison used to order the
entries is "SUB JCRYO" on successive words of .the strings.
The entry type. is also used for -ordering, and has the

highest weight.

Entry type O is used for file names. The left half of
the word addresses a string block in the free storage region
which contains the file name string. The rigbt half word
addresses one of three types of blocks. The block addressed
is either a file descriptor block, a file indirect pointer

block, or a backed up file block.

Entry type 1 is used for group names. The left half of
the word addresses a string block containing the group name
string. The right 15 bits addresses a group descriptor

block.

TENEX-U4 File system, 14 January 70 PAGE 9

Entry type 2 is used for protection names. The' format

of the symbol table entry is parallel to the above two entry
types. ' B

TENEX-4 File system, 14 January 70 PAGE 10

2, DIRECTORY INDEX STRUCTURE

The directory index is also a file as 1is the file
directory. The directory index 1s also divided into
subindices of UK words each in order to avoid map switching
While searching. The.correct subindex can be found on the
basis of the first character of the directory name by
dispatching into a table at the beginning of the directory
index. Each subindex is divided into 3 regions which serve
the same functions as the three regions of an individual
file directory. The first UK region of the directory 1index
is not a subindex,. but contains directory index global
information 1ncluding a directory number table for
performing the ‘inverse translation from number to string.
This 4K region will be mapped as part of the swappable
monitor. A 4K subindex will be mapped in the same 4K region
of the process monitor map that is used for directories. To
distinguish whether a directory subindex or a directory 1is
currently mapped, each subindex will have the negative of
its subindex number in the same position as the file

directory number in a file directory.

The fixed allocation region for each subindex of the
directory index contains the followingfitems of information.
1. Directory subindex 1lock used to lock the

directory to prevent 1its use while 1in a
transient state.

TENEX-4 File system, 14 January 70 PAGE 11

2. Directory subindex use 1indicator serves to
indicate the subindex is in use and cannot be
locked. . T

3. Negative subindex number 1dentifies which
subindex is currently mapped in this process.

4, Symbol table bounds delimit the current
limits of the symbol table.

5. A pointer to the beginning of the free
storage chain is used to allocate and
deallocate space in the free storage region.

The free storage region 1s managed in the same way as
the free storage region of the file directory. The blocks
in fhe directory index consist of mainly string blocks and
directory descriptor blocks. The directory descriptor block
describes all the attributes of a directory (and the
associated wuser) which are necessary to ldentify it to the
system. The items contained in a directory descriptor block

are the following.

The password string pointer points to a
string block which contains the password which
must be typed by a user on a terminal in order to
login under the particular directory name
associated with this descriptor block. If this
pointer 1indicates that no password exists, then
login may not be done under this directory name.
Files may be referenced by explicitly naming the
directory, or attaching to the directory.

The directory name string pointer addresses
the string pointed to by the left half of the
symbol table entry whose right half addresses this
directory descriptor block. : .

The maximum permanent. - disc allocation
specification determines how much flle storage the
files in the directory associated with this block
are allowed to occupy on a long term basis. Files
may be stored on the disc 1in excess of this
number, but at the time the user logs out, he is
advised of the fact that he has exceeded his

TENEX-Y4 File system, 14 January 70 | ‘PAGE 12

storage allotment and given the opportunity to
reduce his storage requirements by deleting files
or requesting certain files to be backed up. If
he falls to do this, files may be moved to backup
storage at the discretion of the system in order
to reduce the storage used below this level.

The absolute maximum disc allocation
specification determines a stronger upper limit on
the amount of file storage a directory may occupy.
If this allocation is exceeded, a user attached to
this directory may not open any files for . writing
until he has deleted or requested a backup and
delete operation for enough files to reduce his
total usage below the absolute maximum.

The date and time of last LOGIN are saved to
determine which (if any) login messages the user
should see. This prevents the user from seeing a
lot of junk that he has seen before.

, A word of privilege bits 1s allocated for
specifying special privileges available to a user
logging in under this directory name.

A word of mode flags is allocated to control
any options which the user has enabled for this
directory.

The directory number gives the internal
system handle for this directory. It is used to
directly find the 1location of the directory
corresponding, to this name. ’

User identification information provides
information about the user responsible for this
directory which might be necessary to identify him
to people. Address and telephone 1nformation
would be kept here. ‘)

Information about special system resource
guarantees are kept in the directory index so that
such requirements can be stated to the system when
a user logs in under this directory name.
The symbol table region of the directory index 1is
similar to that of the file directory. The left half of

each entry points to a string block'containing'the directory

TENEX-4 File system, 14 January 70 PAGE 13
name. The right half contains the directory number.

The directory number table is used to translate from a
directory number to the location of a directory descriptor
block. Since the directory number space is not dense, the
directory number table is a hash table. Each entfy in the-
table contains in thé left half the 1location of the
directory descriptor block and 1in the right half the

directory number.

TENEX-Y4 File system, 14 January 70 PAGE 14
3. FILE NAMES

File names in TENEX are composed of five identifiers.
These are device, directory name, file name, exténsion, and
version. These five items uniquely 1identify any file
accessible to a dser on the system. The device name
jdentifies on what device in the system the file 1s
contained. The directory name gives the directory under
which the file appears. The file name and extension and
version identify a particular .file in the directory given by

the device and directory name.

The'character set from which these identifiers may be
constructedb is composed of the upper case letﬁers, digits,
and punctuation marks found in the range 40-137 (octal) in
the ASCII set with the exception of the characters period :
;3 < > space and comma. These punctuation marks may be
appear in an identifier if they are preceded by a control-V.
The control-V is not part of the identifier. Lower case
letters 'may be used, but they are equivalent to the
‘corresponding upper case letters. This 1s done so that all
Afile names.may'be typed on uppér case only terminals such as
model 33 Teletype terminals. The punctuation marks listed
‘above as exceptions are used as delimiters for various
fields of the file name and while their use w;thin a
particular field méy not be ambiguous from a syntactic view,

a blanket restriction on their’use is made for simplicity.

TENEX-4 File system, 14 January 70 PAGE 15
The general form for a file name is:

device:< directory name> name.extensionjversion number

;T;Pprotection specificationjAaccount string

The underlined = characters are real, the rest 1s

representative.

A file name may either come from the memory of a
process, 6r it may come from aAfile (including a terminal)
or it may come from both memory and then a file. If any of
the fields .of the name are omitted, the field is supplied by
the program, or from a standard set of default values. The

Standard default values are:

device DSK
directory currently attached directory

name ‘no system default, must be specified by
program

extension null string

version no system default, program must specify

‘ : usually most recent for reading, and
next higher for output. Special ways
of representing these cases are
provided for the program.

T » file is assumed not temporary

P as specified in directory (usually read
all and write self only)

A , account number,of login.
Recognition is done on‘file names in a uniform manner

regardless of the source of input, or the intended use of

TENEX-4 File system, 14 January 70 ' PAGE 16

the file. The program can control certain aspects however.
Whenever an alt-mode 1s dinput from memory or file, the
portion of the field input prior to the alt-mode is looked
up according to which field is currently being input. A
match is 1indicated if the input‘ string either exactly
matches an entry in the appropriate table, or is an initial
substring of exactly one entry. In the latter case, the
portion of the matching entry not appearing in the input
string is output on the output file. The field terminator
is output also, and recognition is done on successive filelds
with a null string as input, or if not possible, the fields
are defaulted.. If: the file name cannot be uniquely
determined, as much as possible is recognized and a bell is
oﬁtput ‘signifying that more input 1is required. If the
string input cannot possibly match any existing file name by

appending more characters, an error return results.

Control-F behaves like alt-mode except recognition 1is
not carried out past the current field. This allows the

name to be recognized for example, but not the extensilon.

If an alt-mode 1is not used, then each field 1is
delimited as indicated above, and the name so specified must
exactly match some existing file name . unless the program
specifies that newkfile names are allowed (i.e. an output
file). - The complete file name 1s speciflied whenever all

fields have been recognized, or a comma, space, or carriage

TENEX-4 File system, 14 January 70 PAGE 17
return 1is input.

Confirmation may be required 1if the program. has so
specified in the call. In this case, one of three messages
is output following termination of the name. The messages
are: "New Pile" if no versions of the indicated file exist,
"New Version" if other Qersions exiét but the indicated one
does not, and "0ld Version" if the indicated file name and
version already exists. Following the message, one
character is 4input and if it 1is one of the characters
alt-mode, space, carriage return, or comma a normal return
occurs, Otherwise, an error return results and no JFN (job
file number) is attached to the file name. The confirmation
character may be read by the program by using the "back up

one character" operation.

Editting characters are recognized while ¢typing file

names as follows:

4+ A deletes one character from the current.' If
: no characters remain in the current field, a
bell 1is output.

+ W deletes the current field. If the current
field 1is null, a bell is output.

+ X causes the file name gathering operation to
be aborted, and an error return given to the

program.
Rubout deletes the entire input, and starts over.

+ R retypes the entire name as speciflied so far
and awalts further input.

TENEX-4 File system, 14 January 70 PAGE 18

b, FILES

There are several types of files in TENEX. .Thesé' are
all handled in a uniform way as far as possible. The
exceptions are for operations which have no meaning for

certain devices. Such operatiqns are treated as illegal.

4,1 Ordinary Files

So~-called ordinary files are maintained on
disk/drum/core and provide the heart of the TENEX file
system. When the unqualified term "file" is mentioned, it
usually refers to an ordinary file. Each file has at least
one index block which is essentially a page table in which
€ach entry gives the locétion of one page of information in
the file. There are variants of ordinary files which differ
in the way the system handles them, but not in their basic

structure.

Files longer than 256K have more than one index block
‘and are éalled "long files". The location of index blocks
for a long file is given in a higher level 1index block.
:Long files provide a means for storing up to 128KK or over
128,000,000 words. The management of long files is

invisible to the user.

TENEX-4 File system, 14 January 70 . PAGE 19

Frequently prograns use scratch files to store
intermediate results. The names for such files are usually
built into the program and therefore if that program is run
Under under more than one Jjob, under the same directory
nane, a conflict‘in the use of the name occurs. It is
necessary that these ‘programs reference different files.
This is done by making the default version number for these
so-called "temporary files" be the job number. Temporary
files also_have_the feature that_ they nominally disappear
when logout occurs and are therefore useful for storing data

of a temporary nature.

It is eccasionally desirable that the name of a file
and 1its protection and accounting information be permanent
€ven though its contents be deleted. Such a file 1is a
. user's message file which must be accessible.to other users
‘for appending messages, but must be deletable by the owner.
For this purpose, a file may be declared "permanent", Note

.that a file may be permanent and temporary independently.

The existence of version numbers for files has been
alluded to in the above discussion. Version numbers are
nothing more than a further extension of the fiie name which
is used for two purposes. First version numbers allow
envifonmente to be saved which refer to particular versions
of files and suhsequently resumed even if incompatible newer

versions have been created 1in the meantime. Second, it

TENEX-U4 File system, 14 January 70 PAGE 20

provides an automatic backup version of a file which is
rewritten because the usual default version number for files
opened for writing 1is one greater than the most recent

version number.
4,2 Subroutine files

A subroutine file is a mechanism for making a program
look 1like a file. That 1is, file operations instead of
transferring data to or from a device, make calls to a
program, This allows special processing to be interposed
between .the data the main program sees and the data
appearing on én ordinary file, or the generation of data by

the subroutine file from internal strings or whatever.

'Subroutine files will be implemented in a more general
wéy than wasbdone'on the SDS-940 system. First, subroutine
files will be processes and have all the capabilities of
proceéses. Subroutine files may be called from ahy other
processeé in ﬁhe job if access 1is permitted (as for other
files). Subroutine files may be named and appear in file
.directorieé. Subroutine files will have multiple entry
points so that the operations that can be performed on
:°Pd1nary files can have their counterparts for subroﬁtine
files. | Subroutine files cén generate. any of the, speclal
signalé which can pccur when USingAan ordinary file such as

end-of-file, data error, etc. The only restriction placed

TENEX-U4 File system, 14 January 70 PAGE 21

on a subroutine file 1is that it may not be called

recursively.

Opening a named subroutine file 1is 'equivalent to
setting up a brocedure type file as ’'a process, and then
declaring it to be-a subroutiné file. Opening an unnamed
subroutine file 1is simplj declaring a process to be a
subroutine file. When a process is opened as a subroutine
file, it 1is started once at its "open" entry. Subsequent
data transfers cause the process to be restarted at 1ts
"1npu£" 'entry for input operations, "qutput" entry for
output operétions etc. A byte size 1is assoclated with a
subroutine file and the system packs or unpacks data to
match byte sizes between the subroutine file and the program
calling it. Operations for which no entry point is provided

are treatéd as illegal.

4,3 Terminals

Underv most circumstances, terminals are used 1like
files. That is, they provide a stream of input characters,
or accebt a stream of ouﬁput characters. The TENEX Exec
will open the terminal for input and output so that programs

will not have to do so. Terminals are discussed further in

TENEX-U4 File system, 1l January 70 PAGE 22

4,4 Mailbox Files

Another special kind of file is a so-called "mailbox
file". Opening a mailbox file establishes a depository in
the monitor for exchanging information between.two or more
processes anywhere within the system. Mailbox files are

discussed more fuily in TENEX-10.

TENEX-U File system, 14 January 70 PAGE 23
5. FILE OPERATIONS

-Using a file in TENEX 1is basically a four step process.
First a corresbondence is.established between a JFN and a
file name, next the file 1is opened establishing the mode and
access ‘permission and setting up monitor tables to permit
the data 6f_ the file to be accessed, third data 1is
transferred to‘qr from the fille, and finally the file closed
fixing up the directory information and feléésing the space
occﬁpied in system tables and disassociating the JFN and

.file name.
5.1 Getting a JFN for a File Name

The system call for getting a JFN for a file name has
the following (possibly null) parameters.

1. String pointer to string to be processed as

input :

2; String pointer to default device name

3. String pointer to default directory name

I, String pointer to default :name

5.. String pointer to default protection |

5. String pointer to default account

7. Default version number

8. Default extension
9. Tempoyary bit‘
10. Input JFN

TENEX-4 File system, 14 January 70 : " PAGE 24

11. Output JFN

12. Allow new file bit

13. Allow old file bit

14, Confirmation required bit

15. Print whole name if only partially specified
(used mainly for partial strings from core)

This system call provides for all the ways of establishing
an association between a JFN and a file name. The name may
be either specified by a string in core, or-by a stringAfrom
a filé, or ,both. It may also be wused to change the
Protection or account number of a file, but sgparate monitor

calls will be provided for these purposes also.

Possible errors which might occur when using the above
System call are that one of the device, directory, name,
extension, version, or protection fields cannot be found, or
the protection cannot be changed, or the directory 1s
protected against changes necessary to accomplish the intent
of the call (e.g. cannot create a new file in another

directory).

5.2 Opening a File

Opening a file for expliclt access 1is done by one
system call whose parameters are the JFN, the access
desired, the data mode, and the byte size (if applicable).
Each of the accesses needed are specified independently and

the file is successfully opened only if each of the accesses

TENEX-4 File system, 14 January 70 - PAGE 25

is possible. The possible accesses are:

1. Read
2. Write
3. Append

b, Execqte' .

5. As specified by page table

6. Protected entry only

7. Thawed (not thawed means the contents can be
~ changed while the file is open)

8. Wait |

Read éccess éllows the contents of the file to be read via
byte inpug, string input, random input, or activation with
only the read bit set 1in the page table. Write access
allows ﬁpe. contents of the file ¢to be written via byte
output, block output, random output, or‘activétion with the
Write permit bit set 1in the page table. Append access
aliows the filé to be written only via byte output or block
°utput. Furthermore, the byte polnter may not be changed.
Execute access allows the contents of ﬁhe file to be called
8s a procedure, or pages to be activated with only the
execute permit bit set in the page table. As specified
access allows the file to be referenced as for read, write,
and execute accesses e#cept thaﬁ,eaéh page can be referenced
only if the page table permits such access. ’Prqtécted entry

access allows the file to used to initialize a process and

TENEX-4 File system, 14 January 70 ~ PAGE 26
started only at specific entry points.

Thawed access allows the file to be referenced even
when 1ts contents are liable to be changed. I.e. the
contents are not frozen. If the file: is opened without
thawed access, then there cannot be any .writers of the fille,
and the system will not aliow any writers to open the file
8s 1long as it is open without thawed access. Thawed access
applies only to a specific version of a file. The wait bit
Controls whether the program will .be' blocked if access
cannot be granted due to the thawed access bit. If the wailt
bit 1is one, the process will be blocked until access is

Permitted. If it is zero, an error return will be given.

Several'errors may occur when attempting to open a
file. All .of the "not found" errors that may occur when
getting a JFN for a file name may occur 1f the item 1in
question is deleted in the interim. In addition, errors may
occur 1f the access requested cannot be granted or 1f the

JEFN given does not have a file name associated with it.

5.3 Data Transfer

- There are six I-0 transfer operations: byte 1input
‘(BIN), byﬁe output (BOUT), string input (SIN), string output
(SOUT),‘random'inputb(RIN),_random 6utput'(ROUT). There 1is
also a moﬁitor call to aétivaﬁe a page into the process

address space (PIN). The parameters of the calls are given

TENEX-4 File system, 14 January 70 PAGE 27
in the following table.

BIN,BOUT JFN and a byte
SIN,SOUT JFN and a byte pointer

RIN,ROUT JFN and byte number within the file and
a byte

PIN - Page identification (JFN.Page number),
address :

The index block for a file 41is simply a page table.
Like all page tables, it contains only addresses of lower
accessibility than itself. When a page table 1s on the

disc, it contains only disc addresses.

The contents of a file are always accessed by
activating pages of the file into an address space. This 1is
usually done by making the pages of ﬁhe file into shared .
pages and putting share pointers into the page tables.
Sequential and random accesses are simply monitor calls
which reference pages of the file which have been activated
‘into regions of the monitor map of the process. These pages

are called window pages into the file.

For each open file, there 1is an associated 6yte pointer
which addresses the last byte read or written from the file.
It is normally initialized to point befbre the beginning of
the file so the first operation will reference the first
byte of the file. In append mode, the polriter is
initialized to the last byte of the fi;e so that the first

write will append to the file. This byte pointer may be

TENEX-4 File system, 14 January 70 PAGE 28

arbitrarily repositioned within the file (except for append
only files). Random I-O operations do this such that RIN
followed immediately by BIN for the same file will read two
successive bytés. vSeparate operations are available to
arbitrarily reposition the pointer without transferring any
data and also to read the current value of the pointer. If
the pointer 1is positioned beyond ‘the current end of the
file, an end-of-file indication will be giveﬁ if a read
operation folloﬁs. If a write operation follows, the space
Skipped over 1s effectively filled ih with zeroes. The
pointer may not be set before the beginning of the file.
Setting the pointer to zero causes the next byte referenced

to be the first byte of the file,

It is also possible to change the byte size. When the

byte size is changed, the next byte number is computed as:
< current byte number> ¥(36/< newsize>)/(36/< oldsize>

Where A/B means greatest integer less than or equal to the
quotient of A and B. This means that unless the byte sizes
are commensurate, the next byte may overlap‘ the ﬁrevious
byte. For example, if the previous byte size was 7, and the
new byte size is 9, and the current byte nﬁmber is 2, then
the previous byte was number 1 and came from bits 7-13 of
.word 0 of the file. The ﬁew current byte number will %be 1
and thus the next byte wili come from bits 9-17 of word 0 of

the file. Thus the five high order bits of the next byte

TENEX-4 File system, 14 January 70 PAGE 29

will be the same as the 5 low order bits of the previous
byte. It is not possible to change the byte size for
Certaln devices or to change the byte size to greater than

36 or less than 1.

Several unusual conditions may-" occur while data is
being transferred to or from a file. These conditions
generate a pseudo-interrupt and other action as 1indicated

below, These conditions may also be tested with a monitor

call.
End of file (BIN,SIN,RIN) Attempt to read
) beyond 1last byte of file. A zero
byte is returned.

Device error (A1l operations) An irrecoverable
device error has occurred. The
input data is the best obtainable.
For input, each byte that is
potentially bad will be accompanied
by a device error indication. For
output, the error will affect some
data preceding the operation 1in
which the error 1s signalled.

No room No space 1is available on the
storage medium. The operation in
which this error 1is signalled 1is
not completed. ’ :

Not open The file has not been opened for

this JFN.

TIllegal access Access for the attempted operation
has not been granted. '

5.4 Closing a File

The process of closing a file does several things. It

updates the directory entry to reflect a new file length and

TENEX-4 File system, 14 January 70 v PAGE 30

to make the file known if it was a new file being written.
The window pages are removed from all maps of this job, and
share pointers converted back into private polnters for the
file if the file is not open any place else. The pages of
tne file are deelared'to have a preferred residence on the

disc (if applicable).

5.5 Other File Operations

There are other operations which may be performed on a
file. These eperations are not performed on an open file
but rather on a file which has been associated with a JFN

and not opened.

A file may be deleted., The contents of a deleted file
do not disappear instantaneously. Instead, the file 1is
mafked as deleted, and the actual process of returning the
storage used by the file 1s deferred to the operation of a
file maintenance program which is run at periodic intervals,
By deferrinp the actual deletion, a user has an opportunity
to save himeelf'if‘he accidently deletes the wrong file by

undeleting the file.

A file méy be renamed. Renaming a file simply changes
the directory, name, extension, and version of the file.

All other information about the file remains unchangea.

A file's protection may be changed either implicitly by

TENEX-4 File system, 14 January 70 PAGE 31

Specifying a new protection when gathering a file name to be
given a JFN, or explicitly by meahs of a separate monitor

Call,

The account information for a file may also be changed
implicitly by specifying a new account number when gathering
a file name to be given a JFN, or by ‘means of a separate

monitor call.

Finally, various kinds of backup requests may be made
for file. These requests are processed by the file
maintenance program and allow the user to cause his file to

_be backed up in a special manner.

TENEX-4 File system, 14 January 70 PAGE 32
6. FILE SHARING

Thefe are two ways in which reasons for the existence
for a file may arise. First a file may be open in sbme
number of jobs. Second, a file may have been open by a job
at the time that thé environment was saved. In both cases,
it is not desirable that the file disappear even if it 1is
deleted. The problem is to keep track of the reasons for
Yetention of a file. Unfortunately, there is no crash proof
way of doing this. It has been said that retention counts
are always off by one and pointer structures always form

loops after a crash.

When a system crashes, the most vulnerable information
is in monitor tables. In this case, the record of open
files is most vulnerable. By separating the record of open
files from that of saved environment uses, retention counts
can be made nearly crash proof. Thus one counter is kept in
the file’ directory for counting the number of saved
environments that reference a particular .file. A second
counter 1is kept in a table parallel to. the SPT for counting
the number 6f times the file 1is currently open. | In this
Way, 1if the system crashes, it is possible to assume the
file is not open, and reset the second counter without

affecting the first.

TENEX-4 File system, 14 January .70 _PAGE 33
7. FILE ACCESS PROTECTION

Because TENEX must service a diverse user community, it
is essential that access to files be protected in a fairly
general way. Generally, access to a file depends on two
things: the kind of access desired, and the relation of the
Program making the access to the’ owner of the file.
Initially we will implement a simple protection scheme 1in
which the only possiblé relationships a program may bear to

/
the file's owner are:

1. The directory attached to the job under which
the program 1is running 4is the same as the
owning directory.
2. The directory attached to the job under which
the program 1s running is in the same group
as the owning directory.
3. Neither 1 or 2.
Six kinds of access are distinguished for a file. they

are:

1, read

2. write

3. execute

, append

5. directory 1listing

6. protection modification

The above six protection types and three relationships

can be related by 18 bits (a 3 by 6 binary matrix) in which

TENEX-4 File system, 1lU4 January 70 - PAGE 34

a one indicates that a particular access 1s permitted for a

particular relationship.

Eventually a more general system will be used in which
more general relationships exist such as everybody except
groups A, B, and C. This scheme will probably use some sort
of finite state machine processing .a' byte string to

determine the validity of an access request.

‘TENEX-4 File system, 14 January 70 PAGE 35
8. SPECIAL FILES

Several special files exist in TENEX. Some of these
such as the file directory and directory index have already
been mentioned. Another special file is the disc allocation

bit table.

The device "NIL:" 1is an infinite sink for dumping
unwanted output and a zero length file (gives immediate end

of file) for input.

All mountable directory devices in the system will have
the directory for the device stored in a file. If storage
requirements permit, the directory will permanently reside
on the disc and will be named in a way which indicates the
kind of device and 1ts 1dentification such as MTAl2451,
When something is mounted on a particular unit, a file name
corresponding to the unit number is made into an indirect
pointer to the directory file (e.g. MTAUNITZ2 points to
MTA12451 or some such naming convention) and the contents of
the directory file compared with the directory stored on the
reel (or whatever). Discrepancies are noted in an attempt
to minimize operator error. When a discrepancy is noted,
the operator is informed and allowed to either specify the
correct reel number (if he previously specified it
incorrectly) or to force the system to accept the directory

on the reel.

TENEX-5 Terminal Service =-- Update 2# November 197{ Page 1

TENEX Terminal Service

The TENEX terminal service routines will handle a variety of
terminals including all models of teletypes as well as the
IBM ‘'Selectric', the GE terminal, etc. The initial
implementation of TENEX handles only models 33, 35, and 37
teletypes ASR or KSR, but is implemented in such a way that
terminal dependent functions, such as code translation
operations, can be added easily.

The overall design of the EXEC (Memo TENEX-6) and the
general purpose CUSP's are based on the use of the model 33
and 35 full-duplex teletypes. This means that:

l. Features not available on these units (e.g. lower
case) are not wused in the design of control
languages. However, optional use of such features
is possible for special purpose programs (e.g.
RUNOFF) .

2, System design has not been compromised to accomodate
those terminals which lack some of the features of
the 33-35's (e.g. control characters). The system
capabilities utilizing these features are:

a. Not available on such terminals, or
b. Simulated by some special sequence of input or
output, or
C. Available via alternate conventions determined
by change of mode.
Which of the above alternatives is adopted for each
incompatibility is documented with the description
of the various terminal and control features in this
and other TENEX memos, or has yet to be determined.
Operation of the system may be somewhat less
convenient from such other terminals.

TENEX will provide a number of terminal-dependent functions
related to half-duplex teletypes such as are mentioned in
connection with the pseudo-interrupt capability. However,
procedures which are required only for half-duplex terminals
are in general not yet implemented. That is, half-duplex
terminals are not usable on the current version of TENEX.

TENEX~-5 Terminal Service =- Update 2§ November 197f/ Page 2

Terminal I/0

Input and output operations with terminals are done via the
regular file system mechanisms and monitor call
instructions, including:

l. Open File - The name TTY (as a device) designates the
terminal whether typed in by a user or supplied as a
string by a program. The direction of transfer (in
or out) is a parameter of the call.

2. Transfer Data = The instructions BIN and BOUT
transfer data between the user's AC and the terminal
if given a JFN obtained by opening the TTY as above.
For convenience, JFN's 100 and 101 will refer to the
primary (usually terminal) input and output files
respectively of a job.

3, Set Status = A number of JSYS instructions are
available for specifying statuses which may be
pertinent. Some are device dependent and will be
ignored if inappropriate to the actual device.

Most necessary steps have been taken to ensure that the
terminal and other serial character files may be used
interchangeably. This means that either a regular file or
the terminal may be specified any time a program reguests a
file name, and that the user can cause a file to be used in
place of the terminal when the terminal is assumed. :

To realize this goal and to relieve the various user and
subsystem programs from terminal dependent concerns, the
system provides an interface to the terminal(s) which:
1. Makes the terminal look like any other file to a
program, and
2., Performs those functions which users expect to have
on a terminal.

The following are specific points toward those ends:

l. Certain status bits and/or parameters apply to some
types of files (devices) and not others. Monitor
calls are designed such that parameters for all
kinds of files may be communicated, and those which
do not apply are ignored. Standard default cases

are defined for unsupplied parameters.

For example, a program may specify a wakeup control
for a file regardless of whether or not that file is
a terminal. If it is not, the specification will be
ignored but remembered and given back to the program
if requested. In this way a program can (and is
expected to) give specifications for any situation

TENEX-5 Terminal Service =- Update 2y November 1971 Page 3

which might exist where the default specification is
not satisfactory. (See JSYS manual section 4B
discussion of JFN mode word for details.)

2. The internal character set includes an End-of-Line
(EOL) character which is the combined functions of
carriage return and line feed. In normal modes, the
terminal service routines will echo CR-LF (or just
LF for HDX) when a CR is typed, and an EOL will be
supplied to the program(l). Similarly, on output
EOL will be translated to CR=-LF. On input of LF, or
output of CR or LF, no special action or translation
will occur.

Other format affector characters are output directly
or simulated as may be required by the particular
device to obtain the appropriate action. These
include Form Feed (4L) and Tab (4I).

3. Line editing capabilities on input will be provided
within the terminal service routines, including:
a. Delete last character - 4A
b. Delete line - %X
c. retype current line - 4R
d. Delete last word or field - 4W

Automatic 1line editing capabilities are not
available in current TENEX but are a planned TENEX

extension.

These features can be available only if the program
specifies an input mode of line-at-a-time. Clearly
the line editor can only delete those characters
which have not been delivered to the program, and
will deliver buffered characters to the program on
receipt of an input terminator. Therefore,
characters can be deleted or retyped only back to
the last input terminator. If this terminator is CR
(and EOT perhaps), then one can reasonably and
logically do line editing which seems natural to the
user.

(1) A subsystem may provide a quote operator to cause input
of an actual CR, e.dqd. 4V=-CR typed would appear to the
program as 4V-EOL and could be interpreted as +V=-CR. The LF
would still be echoed however. Alternately, the program
could set the mode to no-echo or use binary (8-bit) mode.

TENEX-5 Terminal Service =- Update 2§ November 1971 Page 4

This capability is sufficient for most p%ograms
which require teletype input, and sufficient for the
case where the user uses the teletype for input in
place of a file, Programs which have a very
interactive input syntax (e.q. DDT) or require
special processing (e.g. LISP) will probably choose
not to use the built-in edit features. Nonetheless,
any such programs should conform to the editing
character conventions used by the system, and dreat
pressure will be brought upon all programmers to do

SO.

TENEX-5 Terminal Service =-- Update 2§ November 197¢ Page 5

Paper Tape Readers on Terminals

Many terminals provide paper tape readers. TENEX will
provide two alternative methods for reading paper tapes via
these readers. The current version of TENEX does not have
these features.

Method 1 (for FDX ASR terminals only):

On a full duplex terminal, it is simply necessary to output
XON or to depress start reader to read in a paper tape. The
system will detect the condition input buffer nearly full
and characters being input at highest rate for that
terminal. If this condition is true, an XOFF is transmitted
and a flag (XOVFLG) is set to remember this event. When the
input buffer subsequently becomes nearly empty and this flag
(XOVFLG) is set, an XON is transmitted. All characters
input get handled as though they were typed. Note this
means CR gets input as EOL and echoed as CRLF. However,
most paper tapes will contain CRLF which means EXTRANEOUS
LF's WILL BE INPUT by this method.

Method 2 (for any ASR terminal, FDX or HDX)

A separate device name will mean terminal paprer tape reader
(e.g. TTYPTR). If the user specifies input from this file,
an XON is transmitted and the XON, XOFF sequences mentioned
above are transmitted to FDX terminals. For HDX terminals
only specially prepared tapes (see TTYPTP) can be used. In
all cases the sequence CR-LF is echoed as CR-LF, but the
character EOL is input to the program. This mode filters
out the extraneous line feeds.

If the user specifies the file name TTYPTP for output, the
tape is begun with leader, and the sequence
CR=-XOFF~LF-RUBOUT is punched for each EOL. When the file is
closed, trailer is punched. On input, when an XOFF is
received, it is echoed immediately and the XOVFLG is set as
above. On an FDX terminal, input buffer nearly empty and
XOVFLG set causes XON to be transmitted, and on an HDX
terminal, input buffer empty and XOVFLG set causes XON to be
transmitted.

TENEX-5 Terminal Service =-- Update 20 November 197f1 Page 6

Input Buffer Overflow

For FDX terminals, input buffer full and any character typed
in causes an immediate typeout of control-G (bell).

X-Y Paper Position

The system calculates the X-Y position of the paper in the
terminal from the known motion caused by typing characters
and format affectors. This position, represented by a 1line
count and a character count is available to the user
program.

Horizontal Tab

The system has a flag for each terminal which states whether
the terminal has a mechanism for horizontal tabs. It is
always assumed that these tabs are preset to a horizontal
stop every eighth character, The system software tab
settings are preset to these same stops. If the program
outputs a tab and the software tab settings are consistent
with the preset stops, and the terminal has a horizontal tab
mechanism, the tab is output directly. In all other cases,
the tab is simulated by multiple spaces. If the user
outputs more characters than will fit on a line, the system
will insert an EOL and ** to indicate that the line has been

broken.

Three 36 bit words per file specify the tab settings. A bit
represents each space on the line (maximum terminal paper
width is 36*3=108 characters). A 1 means there is a tab
stop at that position, a f means there is no tab stop. A
monitor call is available to change the tab settings from
the preset values (above) to any special setting the user
might wish.

Form Feed

Form Feed is handled much like horizontal tab. The system
will normally print through the paper folds unless programs
explicitly transmit control-L. A system flag indicates
whether the terminal has a FF mechanism, or whether software
simulation by multiple LF is necessary. Vertical tab is not
part of the set of format effectors in TENEX.

TENEX-5 Terminal Service =-- Update 20 November 197§ Page 7

Terminal Dependent Specification

The system will remember the characteristics of the "normal®
terminal used on each of the scanner lines. When a terminal
is attached to a job, these characteristics will be used to
initialize the words actively controlling the behavior of
the service routines. If the user finds (or knows) that his
is a different type of terminal (e.g. half-duplex), he may
change the active status specifications by EXEC command or
JSYS. Only the operators or other system personnel may
change the permanent record.

These characteristics include:

a. Has lower case

b. Has horizontal tab

c. Has form feed

d. Is half-duplex

e. Page length

f. Page width

Note: (Parity (even) is always generated on control
characters.)

Terminal I/0 Control

There are a number of statuses which control the behavior of
certain sections of the service routines. These statuses
are recorded for each file but have significance only if the
device used on that file is a terminal. They are set and
read by regular file JSYS instructions. Normal or default
states are defined for each condition and will be used
unless the user specifies otherwise.

Echo Control

There are four echo mode states, defined by two bits. The
first state eliminates all echos, This is useful for
password input or to allow a program to use special echo
characters by doing its own echoing. The three remaining
states differ in the timing of the echo characters. The
states are combinations of the following two basic types of
echos:

1. Immediate Echo - An echo sent to the printer
immediately on receipt of a character from the
keyboard.

2, Deferred Echo - An echo deferred until the input
character is delivered to the program

These two types are combined in the following four ways:

TENEX-5 Terminal Service -- Update 2f} November 197§ Page 8

g8 - No Echos

§1 - Immediate echoing only. Causes terminal to behave
somewhat like half-duplex (i.e. local copy)
terminal except that typing during output does not
produce garbled characters.

1§ - Immediate or Deferred - This is the normal mode and
should be most convenient for most applications.
Echos are immediate until a wakeup character is
struck. From then until the next time the program
is blocked for input, the echos are deferred. This
mode allows "typing ahead"™ but keeps the printed
copy 1in correct sequence when there is rapid
interaction between user and program.

11 - Immediate and Deferred - Like mode 10 except that
immediate echos are dgenerated in addition to
deferred echos when the program is not blocked for
input. That is, if the program computing and a key
is struck, an immediate echo will be seen. The same
echo will be printed again when the program gets
around to accepting the character from the service
routine, This allows wusers to see what they are
typing when they type ahead and still see
sequentially correct copy containing user and
program typescripnt.

Wakeup

There are six bits reserved to specify classes of characters
on which a program should be restarted after being blocked
for input. Four are currently defined:

Format control (control characters having format
effect, plus RUBOUT, EOL, and ESC)

Non-format controls (remaining control characters)
Punctuation

Letters and numbers

o> W [el
.

Logical Data Modes

There are four bits reserved to specify the data mode for
all sequential files. Two of the 16 possible combinations
are currently defined:

§ - Binary. For terminals means that all 8 bits received
by scanner are passed to program unchanged and
unechoed. Called 8-bit mode on some systems.

1l - ASCII. For terminals means that translation,
echoing, etc. are performed as described and as
specified by other modes., Data size is 7 bits.

TENEX-5 Terminal Service =-- Update 20 November 197 Page 9

Lower Case Output Control

A one-bit status tested if program outputs LC character and
device does not have lower case printer.

1 - Indicate lower case. Print 'a' as '$A’',

- Do not indicate. Print 'a' as 'A’.

Lower Case Input Control

A one-bit status tested if terminal supplies lower case
character on input.

- Echo and pass character to program unchanged.

l - Convert character to UC for echo and program.

Control Character Output Control

A status tested when program outputs control character. Two
bits for each of the 32 control characters.
g§gd - Ignore character
§1 - Indicate. Control-A prints as 4A
1§ - Send code directly and account for format effect.
11 - Simulate and account format effect (used when device
does not have mechanical format device).

Normal setting is ignore null, send direct or simulate
format affectors according to capability of device, indicate
all others.

TENEX-5 Terminal Service == Update 2§ November 197¢ Page 1Y

Terminal Interrupts

Thirty-six of the terminal codes are defined as potential
interrupt characters. The user program may assign any of
these characters to the designated PSI channels (c.f. PSI
Structure, TENEX-7). Internally, each of the characters is
assigned to one bit of a word as follows:

Bit Code Key ' Bit Code Key

g go @ or break 18 22 4R

1 g1 +A 19 23 48

2 P2 +B 20 24 47T

3 g3 t+C 21 25 4U

4 P4 +D 22 26 1V

5 #5 +E 23 27 W

6 g6 4F 24 30 4X

7 7 +G 25 31 +4Y

8 10 +H 26 32 42

9 11 +I (tab) 27 33 ESC (ALTMODE)
1y 12 Line Feed 28 177 RUBOUT

11 13 +K (Vert Tab) 29 4f Space :
12 14 +L (Form feed) 3¢ dataset carrier off
13 15 CARRIAGE RETURN 31)

14 16 +N 32)===- To be assigned
15 17 10 33)

16 24 +P 34)

17 21 +Q 35)

As is 1implied by the above, the check for interrupt
character occurs before any translation or echoing is done.
Interrupt characters are neither echoed nor placed in the
input buffer.

With half-duplex terminals a special method is provided to
allow interrupt characters c¢o be typed when output is in
progress. Output is suspended if an "echo-check" indicates
the echo input character was not the same as the output
character. Output will be suspended for 5 seconds during
which time the wuser may type the interrupt character. At
the end of this 5 second period, output will be re-enabled.

The character control-C is handled as one of the possible
interrupt characters. It can be enabled, however, only by
forks having a special capability, and will be so enabled by
the EXEC at any fork level that it is run. The usual effect
of this convention is that +C will return control
immediately to the “current™ EXEC (the EXEC most recently in
control of the teletype), usually the top level.
Potentially, privileged programs other than the EXEC could
use control-C also.

TENEX-5 Terminal Service -- Update 20 November 1970 Page 11

ggrminal Links

The link strategy will be similar to the 940 link structure
but somewhat more restricted to permit links among a large
number (perhaps 1£0f or more) of terminals without the
resident core requirments of the 94{i structure (goes up as N
squared). Instead it will be possible for only a few
terminals to have complicated 1link structures at any one
time, and each terminal may be linked to only a subset of
the total existing terminals. The implementation is
effectively a short list of terminals to which output is to
be sent, and a short list of files to which input is to be
given. The link structure is not implemented in the current
version of TENEX.

Big Buffer Empiementation

In order to reduce the amount of time spent processing
terminal interrupts, as character interrupts are received
(input or output) minimal operations are performed at
interrupt level. All input characters are simply DATAI'd
(this includes terminal line number) into a global input
buffer with no echoing or testing performed. Input is moved
from the big buffer to the separate line input buffers and
any immediate echos are generated by a program running under
control of the scheduler. The scheduler periodically (e.q.
every 1/58 or 1/66 second) runs this routine. Deferred
echos will be generatad by those routines (in moritor mode)
called directly by the user program to deliver characters.

TENEX-5 Terminal Service -- Update 20 November 197¢ Page 12

Character Set

The internal character set consists of 128 characters of 7
bits each. The codes are generally those defined by 1967
ASCII as modified by DEC. They are consistent with BBN's
Anelex line printer. The two o0ld alt-mode codes 135 and 136
will be translated to ESC (33) on input unless the terminal
is known to have lower case.

The control (non-printing) group #-37, is shown below

Key Mech Fn TENEX Logical‘Function
null (or)

g +@ break key Fill - ignored on output
1l +A Reserved for line edit - delete char
2 +B .
3 +C Reserved for EXEC interrupt
4 +D (EOT)
5 4E (WRU)
6 +F
7 4G Bell
1§ +H Backspace
11 +I H. Tab Tab - used directly or simulated
12 LF(J) Line feed Line feed

13 4K Vert tab
14 4L Form feed Form feed - simulated if necessary

15 CR(M) Car. Ret. On input becomes EOL (37)
l6 4N

17 +t0

20 4P

21 4Q (XON)

22 4R Reserved for line edit - Retype

23 4S8 (XOFF)

24 4T

25 41U

26 1tV

27 W ‘ Reserved for line edit = delete word
30 4X Reserved for line edit - delete line
31 4Y

32 42

33 ESC(ALT MD)

34 N

35 +]

36 +4

37 4+ EOL Code used for end-of-line function

() Indicates mechanical function of concern only on some
half duplex terminals.

TENEX-5 Terminal Service == Update 2{ November 197¢ Page 13

The printing groups (4 = 177) are shown below.

Low 5 Group (high 3 bits)
Bits 40-77 1¥0-137 146=-177

go space
g1
g2
g3
g4
g5
g6
g7

19
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

e PN Tow

Is + %~
OO B EHRFUHEYD mooQUa

=~ /—NKX =CHLDTOW OZXHXRUMNIE o RoleNeN: B
Edecctuy QT

NV A OO JouUbwihkHE ¢

g | e NG ¢

BOUT

TENEX-6 Exec Language 2 Dec 70 update Page 1

TENEX EXECUTIVE TECHNICAL DESCRIPTION

The Executive 1is the user's handle on the TENEX tlime sharing
system. The Exec 1s a user fork which decodes and executes
requests for:

access to the system
utility operations regarding files
and file directories
initiating private programs and subsystems
limited debugging alds
initiation of batch (detached) operations
printout of information including system statistics
system maintenance

The set of acceptable commands 1s referred to as the
Executive Command Language.

This memo is an outline of the current state of the TENEX
Executive Language. It 1is intended for the systems programmers.
A TENEX Executive Language User manual is also available.

Notation: The following notation is used 1in the commands and
error messages given in this document:

UPPER CASE is literal

lower case describes argument fields in commands
()'s are literal - they enclose noise words

[J's enclose optional fields in commands

/ means "or"

<>'s are used with /'s for grouping where necessary

TENEX=-6 Exec Language 2 Dec 70 update Page 2

General Form gg Commands

Each command begins with a keyword. Depending on the command,
the 1initial keyword may be followed by arguments such as file
names, numbers, and additional keywords, and/or "noise words" to
make the command more readable. The nolse words will be
enclosed in parentheses to distinguish them from the arguments.
The 1initial keyword wusually 1identifies the command function.
Some commands include optional arguments or argument 1lists of
indefninite 1length. A few commands, such as that for flle
directory 1listing, take optional "sub-commands", each with
arguments, to specify options.

Any initial word not recognized as a command keyword is taken as
the name of a subsystem to be started.

COMMAND INPUT

The exec types "@" when ready for command input, or "@@" when
ready for a "sub-command", except that "!" and "!!" are used for
privileged users who have ENABLEd their special capabilities.

Three general styles of input may be used. The styles are
distinguished by syntactic analysis and by input terminators;
hence they do not require different input modes and thus may be
intermixed freely within a session or even within a statement.

1. Complete Input. A complete command may be typed 1in, with
all keywords and noise words given in their entirety, and
without any non-printing characters being used. This style
is good for novices who are copying a typescript, command
files, IBM terminals without special characters; also it
may simplify documentation.

2. Abbreviations. The user may shorten a command in two ways:
he can omit noilse words completely, and he can shorten
keywords. Any keyword may be abbreviated with any 1initial
substring (terminated with space) long enough to
distinguish it from the other keywords acceptable 1n that
context. Keywords will be made unique in three characters
or 1less 1insofar as possible without producing very
non-english-1like words,

3. Recognition. The user types the same characters as 1in
abbreviated input, except he terminates each field (keyword
or argument) with the altmode key. This produces a
print-out of the complete command -- each alt mode causes
the rest of the field (if an abbreviated keyword or file
name) and any following noise words (with enclosing
parentheses) to be printed.

After recognition and checking of the arguments, most commands
will wait for the user to type a confirming carriage return

TENEX-6 Exec Language 2 Dec 70 update ‘ Page 3

before execution, except that if the user terminates the last
field with ‘carriage return (as opposed to space or alt mode)
confirmation 1is skipped. As indicated in the descriptions, some
commands may be confirmed with an altmode, which is echoed with
a carriage return. Some commands, notably those that write
files, require confirmation even when the last field 1is
terminated with a carriage return. These always type something
to prompt the user before awaitin the second, confirming
carriage return: elther EOLD/etc FILE] if the last argument was
an output file name, or [CONFIRM:] if not.

The above may be clarified by a description of the input
terminators:

Space: may be used to terminate any field (full key word,
abbreviated key word, parenthesized noise word, or
argument) when recognition 1s not desired.

Alt Mode: same Dbut causes recognition: types rest of
abbreviated key word or file name, then any following noise
words. If an ambiguous abbreviation has been glven, rings
bell and accepts further input. Also acceptable as
confirmation character for certain commands.

Carriage Return: confirmation character. Also optional as
terminator for last field of command, 1in which case
recognition is not used and confirmation is omitted (except
for commands which write files). Also used to terminate
list of sub-commands.

Comma: special meanings in certain commands; indicates that
additional arguments are to be given in an indefinite list
(as in SAVE command), or that sub-command input is desired
(as in DIRECTORY).

Semicolon: acceptable in place of confirming carriage
return, or terminating carriage return when last field is
not a file name. Causes characters to be ignored until
carriage return, to allow comments (particularly useful 1in
command files).

Optional fields, defaulting, nulling: Some commands end with one
or more optional fields. If an alt mode only is entered in one
of these flelds, the field is defaulted, and 1its default value
is printed (if it has no particular default value, "ot is
printed). Entering a carriage return only defaults the field
and all following fields without further printout; terminating a
field with a carriage return defaults all following fields. To
explicitly null a field and continue to the next one, without
the noise word printout invoked by the alt mode (not to mention
the difficulty of editing command files contalning alt modes),

you may enter "-" followed by space or any other terminator

TENEX=-6 Exec Language 2 Dec 70 update Page 4

legal in that context. It is not possible to null a field by
typing space alone, because leadling spaces are ignored. See the
description of the DETACH command for examples of fields you

might wish to null.

Extra spaces and tabs may be used freely 1ln commands, to permit
formatting of typescripts or command files. For example, a
command can be terminated with one or more tabs, a comment (text
preceded by ";"), and a carriage return.

Continuation: A command may be continued on the next 1line by
typIng "&" in any context where a space is legal; a carriage
return will be echoed.

Form feed (+L) is treated as a carriage return in most contexts,
except that 1t is not legal as a file name terminator.

Lower case letters in Exec commands are treated the same as
upper case letters.

TENEX-6 Exec Language 2 Dec 70 update Page 5

EXAMPLES: These show the use of various 1input terminators.
User typing is underlined, with alt mode represented as "$" and

carriage return as "%".

DAYTIME (a command not requiring confirmation)

@DAYTIMEZ

MONDAY, NOVEMBER 16, 1978 13:36:56
@DAY . ‘
MONDAY, NOVEMBER 16, 1978 13:37:06
@DAYZ

MONDAY, NOVEMBER 16, 1978 13:37:12
@DAY$TIME

MONDAY, NOVEMBER 16 197# 13:37:22

COPY name (TO) name (confirmation mandatory)

@COPY FOO.MAC;1 (TO) FILE MAC;1 [NE% FILE]Z
ION

@“TTTRRTTHEF“IE’MKE‘TZ[OLD VERSIONJZ (first carriage

return not echoed, does not suppress confirmation)
@COP$Y FO$0.MAC;1 (TO) FIE MAC$;2 [NEW VERSION]Z

SAVE (CORE FROM) n (TO) n, (FROM) n (TO) n... (ON) name

@SAVE (CORE FROM) @ (TO) 20@P9 (ON) FOO.SAV [NEW FILE]%
) D 1
@SAVSE (CORE FROM) g$ (TO) 20008% (ON) FOO.MAC$;5%
@SAV P$ (TO) 20000, 4BPLR$ (TO) 50000% (0“7‘?66“AV7ENEW VERSION]%

DIRECTORY (Typves file directory. If comma typed before
confirming carriage return or alt mode, takes "sub-commands".)

@DIRECT%
@DIR$ECTORY $
@DIR$ECTORY %

@DIR$ECTORY, %

@HUHﬁONOLOGf‘AL (BY) $WRITEZ (field defaulted)
@@03UTPUT (TO) LPT%

@@VSERBOSEZ

@687 (CR terminates sub-commands, starts listing)

@DIR,%

@@Eﬂi (optional field omitted)
360 Lprs

@evy

ez

tenex-6 Exec Language 2 Dec 70 update Page 6

Input Editing

The editing characters available in the exec are:

+A Delete character, echo "\" and
character deleted

W Delete word or field, echo "«"

+X Delete command,.echo maxm

rubout Delete command, echo "XXX"

4R Retype line

The implementation of 4+A and 4W 1is only partial because the exec
does not read in an entire statement before processing it, but
rather processes each statement fleld-by-field as 1t 1s entered
in order to do recognition and to give immediate error messages.
It is only possible to back up within the current field with +#+A
or t+W; once a field has been terminated with space, alt mode, or
comma, it will be possible to change that field only by deleting
the line (4X) and entering it again in corrected form. Thus the
number of consecutive 4+A's that can be processed is 1limited to
the number of characters that have been typed in the current
field; the number of 4W's 1is never more than one. If an invalid
4A or 4W 1s entered, the exec will ring the bell rather than
printing "\" or "«",

Exception: when a file name 1is being input, "+X" deletes the
entire file name and echoes "++«<«" and a carriage return. "+W"
in a file name deletes one field (name, extension, version,
etc.).

Interrupt Characters

When the monitor sees a 4C, it will PSeudo-Interrupt a fork
which has a PSI channel enabled for +C. Since a special status
is required to enable a +C PSI, this fork will normally be the
exec. Upon receiving a +C PSI, the exec will take the following
actions: suspend any running subsidiary forks, terminate any
command being executed within the exec, delete any partially
typed in exec command, clear terminal input buffer, and echo
"4C"~ carriage return. If a second "4C" is typed promptly, the
terminal output buffer is also cleared. Thus two 4C's provide
quick termination, while a single 4C will lose no output from a
running program.

TENEX-6 Exec Language 2 Dec 70 update Page 7

Error Messages

For each command, a list of error messages 1s glven. In
addition to these, there are many general input syntax errors,
most of which type "?" and return to command input. Some errors
type " ? " and allow the user to try the same field again; these
are labeled "type 2" errors. This happens, for example, if a
garbage character is input when a confirming carriage return 1is
expected, or when an input flle is not found. Exception: 1f the
erronious argument was terminated with a carriage return, the
command is always aborted.

In addition to the messages 1listed with each command, all
commands which require the user to be logged in type LOGIN

PLEASE if he 1s not.

File name errors: Some or all of the following group of errors
apply to every command contalning a file name argument:

"o " 4f file not found and existing file required (type 2)
NO JFN'S AVAILABLE: YOU MUST CLOSE SOME FILES FIRST
JSB FULL: TRY CLOSING SOME FILES THEN REPEATING COMMAND
DIRECTORY FULL: CAN'T CREATE NEW FILES UNTIL YOU
DELETE SOME FILES AND "EXPUNGE (DELETED FILES)"
NEW FILE NAME REQUIRED
DEVICE NOT MOUNTED
DEVICE ASSIGNED TO ANOTHER JOB
NO FILES IN THAT DIRECTORY

Error pseudo-interrupts: If an error condition produces an
unexpected error pseudo-interrupt while an exec command is being
executed, a message such as ILLEG INSTRUCTION TRAP IN EXEC 1is
printed, followed by the PC, AC's 1, 2, and 3, and a system
error message (a la ERSTR JSYS). Faults such as 1illegal
instruction in user programs which do not do their own error PSI
processing cause the exec to print a message such as ILLEG INST
0 AT 771371 and return to command input. (Any PSI occurring on
a channel which the program has activated but not assigned a
level to causes termination; where the channel number does not
implay a fault, "CHAN n INTERRUPT AT pc" is typed).

JSYS error returns: An unexpected JSYS monitor call error return
produces a message of the same form, beginging with JSYS ERROR
RETURN IN EXEC. The Exec tests for all but the least 1likely
JSYS error returns and types messages of 1ts own; any
easy-to-reproduce method of getting a JSYS ERROR RETURN IN EXEC
message constitutes a bug and should be fixed or reported to the
person who can fix it.

TENEX-6 Exec Language 2 Dec 70 update Page 8

LOGIN

System Access Commands

Two general forms, and mixtures thereof, are permitted:
LOGIN (USER) user (PASSWORD) no echo (ACCOUNT) account

LOGIN

(USER) user name

(PASSWORD) no echo in full duplex case
(ACCOUNT) account

The second form is inconsistent with the general form of
Exec commands; it was added because a string account fleld
might otherwise run off the right margin, and because of
half duplex password input considerations. The second form
can be invoked by the wuser by terminating fields with
carriage returns. A modification of 1t 1s forced by the
Exec for password input on a half duplex terminal: the Exec
forces a carriage return after ther user name and password
fields, and Just after typing "(PASSWORD)" it types a
carriage return and a mask of giberish characters onto which
the user types his password.

The input acceptable for the "account™ argument depends on
the user: some users require string account numbers, and any
string of 0 to 39 alphanumeric characters 1s accepted;
others require a number, and any decimal number from 1 to
999999 is accepted. For users in the latter category, the
Exec types "(ACCOUNT #)" instead of Just "(ACCOUNT)".

This command types out a message containing the TSS Job
number, the terminal 1line number, the date and time of
login, and the system login message (see below).

In a later version of the system, this command will, for
certain users, autoatically transfer control to a default
subsystem, eg, TELCOMP.

Alt mode is acceptable for confirmation. Obviously, the job
needn't be logged in. Minimal abbreviation: "LOG", despite
"LOGOUT".

TENEX=-6 Exec Language 2 Dec 70 update Page 9

System Login Message: The operator may write a message to
users to be printed when they LOGIN on the file
<SYSTEM>LOGINMESSAGE. If this flle exists, LOGIN prints its
contents 1f the write date and time of the file are more
recent than the date and time the user last logged in. For
certain wusers, this file is printed at every LOGIN even if
it 1is older than the last login date and time for this user
(this action 1is 1invoked by a directory bit -- see !CREATE

below).

Message Messagei If a file MESSAGE.TXT;1 of non-0 1length
exists 1n the user's directory, the Exec prints YOU HAVE A
MESSAGE after LOGIN or after a 4+C during LOGIN's printout.

Errors: YOU ARE ALREADY LOGGED IN
"o after user name if no such user
"om after password if incorrect
"ol after account if must be numeric but isn't

LOGOUT

Closes all open files and logs job off system;
may also be used to kill unloggedin Jjobs.

Errors: NOT LEGAL IN INFERIOR EXEC

CHANGE (ACCOUNT TO) account
Changes account for subsequent charges.,
~Account: as for LOGIN.

Errors: "o if account must be numeric but isn't

TENEX-6 Exec Language 2 Dec 70 update Page 10

ATTACH (USER) user name (PASSWORD) no echo (TSS JOB #) job number

Attaches terminal to existing, detached job. General format
and handling of password on half duplex terminals same as
LOGIN. "Tss Job #" field defaults to number of existing job
with given user name if there is exactly one such detached
Job.

If current Job is not logged in, it goes away; if 1t 1is
logged in, ATTACH detaches it and type "DETACHING JOB n".

The ATTACHed-to job continues running, or starts running 1if
it was hung waiting for a controlling terminal. If the
job's primary I1/0 was redirected, ATTACH does not itself
redirect 1t back to the terminal, but typing 4C after
ATTACHing will do so.

Note: ENABLEd WHEELs and OPERATORs may "steal" a Jjob: for
them ATTACH types [ATTACHED TO TTYn] instead of giving a JOB
n NOT DETACHED error, then requires a(nother) confirming
carriage return.

Alt mode 1is acceptable for confirmation.

Errors: "o" after user 1if no such user
THAT'S A FILES-ONLY DIRECTORY NAME
"o after password if incorrect and

current Jjob 1s not logged in
JOB n NOT DETACHED
JOB n NOT LOGGED IN
JOB n NOT LOGGED IN UNDER name
NO DETACHED JOB LOGGED IN UNDER name
TSS JOB # REQUIRED - name HAS

MORE THAN ONE DETACHED JOB
INCORRECT PASSWORD (if logged in)

TENEX-6 Exec Language 2 Dec 70 update Page 11

DETACH (INFILE) [existing file name/¥#] (OUTFILE) [file name/¥]
(AND) [START/REENTER/CONTINUE]

Detaches job from terminal, leaving terminal free. If all
arguments are omitted (eg by typing "DETACH-carriage
return"), the Job hangs, because the Exec immediately
requests input from the non-existent controlling terminal.

The optional file name arguments will later permit
redirecting primary I/0 in a manner similar to the REDIRECT
command (see index). At present they are NOT INPLEMENTED
YET; the fields should be nulled by entering "=" if you want
to get past them to give the third argument.

The third argument permits starting the program under the
Exec. If it is omitted but an input file is given, then the
Exec proceeds to take commands from the file.

Errors: see REDIRECT

TENEX=6 Exec Language 2 Dec 70 update Page 12

Resource Allocation Commands

ASSIGN device name (AS) [logical name]

Assigns device to this job, preventing other jobs from using
it. Also mounts device 1f mountable. Synonyms (logical

names) are NOT IMPLEMENTED YET.

Errors: " 2 " if no such device (type 2)
device: CANNOT BE ASSIGNED
device: NOT AVAILABLE (not assigned,
but in use by another job)
device: ALREADY ASSIGNED TO JOB n :
YOU CAN'T ASSIGN YOUR CONTROLLING TERMINAL

SYNONYMS . NOT IMPLEMENTED YET
TTYn: IS THE CONTROLLING TERMINAL FOR JOB n

DEASSIGN device name

Cancels a previous ASSIGN for the same device: unmounts 1t
if mounted, and makes it available to other jobs.

Errors: " 2" if no such device (type 2)
device: NOT ASSIGNED
device: NOT ASSIGNED TO YOU
LIMIT (ADDITIONAL) CORE/DISK/CPU/KILOCORESECS (TO) number

Command to allow users to impose limits on thelr resource
usage. NOT IMPLEMENTED YET, and probably won't be fully
implemented in Minisys.

Alt mode acceptable for comfirmation.

Errors: limit unreasonable
limit greater than your absolute maximum

TENEX=6 Exec Language 2 Dec 70 update Page 13

File Commands

COPY existing file name (TO) file name

After the output file name is terminated, system responds
with [NEW FILE], [NEW VERSION], [OLD VERSION], or Jjust
[CONFIRM] for a non-directory device.

Confirmation is mandatory: a carriage return must be typed
after [NEW FILE]/etc, even if one was typed just before it.

The output file's name and extension are defaulted to be the
same as the input file's.

Subcommands: If a comma 1is given before the confirming
carriage = return, subcommands are accepted after
confirmation. The subcommands are:

ASCII

Causes copying in ASCII mode (mode 1) for devices for
which this is legal (as determined with DVCHR), and in
normal mode (mode 0) for other devices, in 7 bit bytes.
Useful mainly with paper tape or to cause proper
byte-size to be stored in file when copying to disc
from another device.

BINARY
Causes copying in BINARY mode (mode 14) for devices for
which this is legal, else mode 0, in 36-bit bytes. If

either device is a terminal or line printer (for which
36 bit bytes are illegal, causes the warning message

[ILLEGAL MODE SUBCOMMAND BEING IGNORED]

and copying in mode 0, byte size 7. Useful mainly with
paper tape.

IMAGE BINARY

Causes copying in IMAGE BINARY mode (13) where legal
(paper tape only); otherwise the same as binary.

TENEX-6 Exec Language 2 Dec 70 update Page 14

.IMAGE

Causes copying in IMAGE mode (10) for devices for which
this 1is 1legal (else mode 0) and 8-bit bytes. If mode
10 1s legal for neither source nor destinatilon,

[ILLEGAL MODE SUBCOMMAND BEING IGNORED]

is typed and the mode and byte size of copy defaulted
as though no subcommand had been given., Useful only

with paper tape.

Typing a carriage return only terminates subcommand 1input
and starts copying.

Method of Copying: The method of copying depends on the
devices™ on which the source and destination files are since
for some devices, particularly paper tape, there 1s more
than one useful mode of copying. The mode subcommands
described above are provided. In most cases other than
disk-to-disk copying (below), byte I/0 is used. This method
does not transmit any zero bytes which may occur in the file
if the byte size is 7, and cannot transmit "holes"
(non-existent pages) which can occur in disk files (see
warning messages below). If the mode and byte size were not
specified with an acceptable subcommand, normal mode (mode
0) i1s used and the byte size is defaulted as follows:

IF a terminal or line printer is 1involved, use 7=bit
bytes.

ELSE IF both files are on disk, use source file's byte
size.

ELSE IF source is PTR: and destination PTP:, use 8 bit
bytes. This duplicates any paper tape.

ELSE IF source is disk file and destination is PTP:
IF source file byte size is 7, use 7 bit Dbytes
(ASCII paper tape mode).
IF source byte size is 8, use it (IMAGE paper
tape) and type warning message (see below).

ELSE IF either PTR: or PTP: 1s involved, test extension
of other file. Use 36=bit bytes (BINARY paper
tape) for .REL or .SAV source, 7-bit bytes (ASCII
paper tape) for others, typing a warning in either
case.

ELSE use 36-bit bytes. This covers all other coples,
such as those between DECtapes or between a
DECtape and disk.

TENEX-6 Exec Language 2 Dec 70 update Page 15

Note that use of T7-bit bytes for binary data loses bit 35 of
each word, and assumes the wrong paper tape format. Also
note that if an ASCII file 1s copled from disc to DECtape,
then back to the disk, without using the ASCII subcommand,
it will have a byte size of 36 stored with it. This is not
likely to have any i1l effects, but one possibility is that
it will be subsequently copied to paper tape, in which case
the wrong format (BINARY instead of ASCII) will be assumed

if no subcommand is glven.

Disk-To-Disk Copies: If both files are on disk, and COPY (as
opposed to APPEND) 1s being used, and no subcommand was
given which specified a byte size different from that of the
source, then copying 1s done by pages. This method
maintains the file's page structure, keeping any "holes" and
copying pages after the byte EOF. :

Warning messages:

[ILLEGAL MODE SUBCOMMAND BEING IGNORED]

The following two messages can occur when source 1s
disk but copying by pages 1s not being used (see
above).

[HOLES IN FILE WILL BE LOST]
If disk source file consists of non-contiguous
pages, nothing 1s put in the destination for the
"holes", so that the data 1is compacted downward.

[PAGES AFTER EOF WILL NOT BE COPIED]
If there are pages in the disc source file after
its "end of file" (the highest address to which
byte I/0 has been done), they are not copiled.
Such pages may be put into a file with the PMAP
JSYS and occur in SSAVE files.

[(YOU DIDN'T SPECIFY PAPER TAPE FORMAT WITH A
SUBCOMMAND, SO "mode" IS BEING ASSUMED.]
"mode" can be ASCII, IMAGE, or BINARY.

Errors: file name errors
READ PROTECT VIOLATION FOR FILE name
WRITE PROTECT VIOLATION FOR FILE name
name CAN ONLY BE APPENDED TO
device: IS ASSIGNED TO JOB n
device: IS NOT MOUNTED
device: CAN'T DO INPUT
device: CAN'T DO OUTPUT
device: CAN'T DO NORMAL MODE INPUT
device: CAN'T DO NORMAL MODE OUTPUT
FILE name BUSY

TENEX-6 Exec Language 2 Dec 70 update Page 16

APPEND existing file name (TO) existing file name

Description for COPY applies. Data is always transferred by
bytes, in the byte size of the source file.

Errors: see COPY. also:
DESTINATION FILE NOT ON DISK

RENAME (EXISTING FILE) existing file name (TO BE) file name

After output file name is terminated, system responds with
[NEW FILE] etc, as for COPY. Confirmation is mandatory.
Output file name and extension default to those of input
file.

Errors: file name errors

DEFINE (NEW FILE) new file name (AS) file name

Creates an "indirect pointer" for the first file name to the
second file name. If the second file name does not exist
the command is allowed anyway, since the pointer needn't
point to a real file until it 1s opened for input.

Errors: file name errors
FIRST FILE NOT ON DISK
protection error

PROTECTION (OF FILE) existing file name (IS) protection

"Protection" is an 18-bit octal number in Minisys. NOT
IMPLEMENTED YET.

Errors: file name errors
YOU CAN'T PROTECT THE PROTECTION FROM YOURSELF
ACCOUNT (OF FILE) existing file name (IS) account
Errors: file name errors

DISK FILES ONLY
"o 4f account must be numeric but isn't

TENEX-6 Exec Language 2 Dec 70 update Page 17

DELETE existing file name

For disk files, this merely flags the file; until it 1is
really deleted with the EXPUNGE command or by the operators,

it may be UNDELETED. Version number defaults to
existing version.

Errors: file name errors
PROTECTION VIOLATION

UNDELETE deleted file name

Errors: file name errors
NOT DELETED

EXPUNGE (DELETED FILES)

Really deletes any "DELETED" files in the connected
directory.

CLEAR (DIRECTORY OF DEVICE) device name

Erases all files on specified device; currently legal
for DECtapes. Confirmation mandatory.

Errors; " 9 " if no such device (type 2)
DECTAPES ONLY
device: NOT AVAILABLE
device: ASSIGNED TO JOB n
device: NOT MOUNTED ’

lowest

disk

only

TENEX-6 Exec Language 2 Dec 70 update Page 18

MOUNT device name

"Mounts"™ a device such as a DECtape, that 1s, causes system
to read directory and set a flag permitting access to files
on the device. This is a subset of ASSIGN and should only
be used when you wish to let more than one job access the
device. If device is already mounted, no error results.

Errors: " 9 " if no such device (type 2)
device: NOT A MOUNTABLE DEVICE
device: NOT AVAILABLE
device: ASSIGNED TO JOB n

UNMOUNT device name

"Unmounts" device, making access illegal until another MOUNT
or ASSIGN is given. By making access impossible, using this
command (or DEASSIGN) protects against potentially
catastrophic screwups which can occur if a new tape, etc.
is hung and accessed before its directory has been read.

Errors: " o " if no such device (type 2)
device: NOT A MOUNTABLE DEVICE
device: NOT AVAILABLE
device: ASSIGNED TO JOB n
device: NOT MOUNTED

CONNECT (TO DIRECTORY) directory name [(PASSWORD) password]

SHUT

Changes default disk directory name. Password input similar
to LOGIN. Password may be omitted if directory doesn't have

a password or if user 1is an ENABLEd WHEEL.

Errors: " o " fopr no such directory (type 2)
INCORRECT PASSWORD

(ALL OPEN FILES)

Closes all open files which were opened by forks inferior to
the Exec (le by the program running under the Exec). Useful

during program debugging.

Errors: none

TENEX-6 Exec Language 2 Dec 70 update Page 19

JFNCLOSE Jfn
Closes a (specified opening of) a specified file

and

releases the JFN. Allows closing a file left open by a

program, eg during debugging. A list of assigned JFNs

may

be obtained with the FILSTAT command, below. Note: in most

normal cases, the Exec closes all flles and releases

all

JFN's used 1in Exec commands; flles used by programs run
under the Exec are closed by the commands GET, RUN, START,

RESET, and SHUT.

Errors: "o" for no such assigned jfn

CLOSE (FILE) name of an open file

Closes all openings of the specified file 1in the current
job, and releases all JFNs assigned to it. More convenient

than JFNCLOSE. 'NOT IMPLEMENTED YET.

Errors: "o" for no JFN assigned to given flle name

TENEX-6 Exec Language 2 Dec 70 update Page 20

DIRECTORY [device:][<directory name>][file name]

If no argument and no subcommands are given, directory
prints ™name.extenstionj;version", and ";T" for temporary
files, for each file in the job's connected disk directory,

~on the primary output file (normally terminal), ordered as
in directory.

If more than one version of a file exists, the name and
extension are printed only once, with the several version
numbers seperated by commas on the same line. If additional
fields are being printed, this of course applies only when
all printed fields are the same. Whenever the name or the
name and extension are the same as those last printed, they
are omitted and a few spaces typed in thelr place.

Variations may be specified with an argument and/or with
subcommands. The argument can specify a device other than
disk (the other legal device 1is DECtape, see below), a
particular disk directory, and/or a specific file. It will
later be extended to allow listing of only those files which
have a given name, extension, account, etc.

Subcommand input is initiated by typing a comma immediately
before the confirmation character (the comma may termirate
the preceding field, or an altmode or space may intervere).
The following subcommands apply when listing disk
directories. Whenever a field 1is optional, the default
value is given first.

These subcommands cause additional fields to be printed:

ACCOUNT

PROTECTION

SIZE (IN PAGES)

LENGTH (IN BYTES)

DATES (OF) [WRITE/READ/CREATION]

give one DATES command for each date to print

TIMES (AND DATES OF) [WRITE/READ/CREATION]

VERBOSE Prints account, protection, size in
pages, dates of last write and read.
This fits on one Teletype 1line.

EVERYTHING Prints all of the above fields.

A heading is printed 1if any fleld beyond protection 1s
requested. Protection and preceding fields are printed in

standard TENEX file name string form.

TENEX-6 Exec Language 2 Dec 70 update Page 21

The following determine the order of printout and are NOT
IMPLEMENTED YET.

ALPHABETIC
CHRONOLOGICAL (BY) [WRITE/READ/CREATION]

Causes inverse chronological
printout unless "REVERSE" is

. glven.
REVERSE Reverses order of printout
in all cases.

The following end subcommand input and start listing:

START
carriage return

Miscellaneous subcommands:

DELETED (FILES ONLY)

OUTPUT (TO FILE) file name
Default file name is "DIR";
Default extension is ".DIR".

LPT Short for OUTPUT (TO FILE) LPT:

NO (HEADING)

DOUBLESPACE

SEPERATE (LINES FOR EACH VERSION)

CRAM Suppresses most spaces in printout.

Faster, but does not produce columns.

Listing DECtape directories: A dectape directory can be
listed by giving "DTA1:" etc as argument. No additional

argument or subcommands are permitted (Though in the future
a file name argument and some subcommands will be
permitted). The format is identical to that of the 10/50

system.

TENEX-6 Exec Language 2 Dec 70 update Page 22

Errors: " o " 4f no such device (type 2)
device: IS NOT A DIRECTORY DEVICE
device: NOT MOUNTED
device: ASSIGNED TO JOB n
ILLEG DEVICE
non 4f name or extension given with DECtape
device name
"o if no such directory name
file name errors
SUBCOMMANDS LEGAL ONLY FOR DISK

The following can occur during listing if invalid
information is found in a disk directory.

0 WORD FOUND IN DIRECTORY SYMBOL TABLE

0 FDB ADDRESS FOUND IN DIRECTORY SYMBOL TABLE
BAD BLOCK TYPE FOUND IN DIRECTORY

NO NAME POINTER IN FDB

NO EXTENSION POINTER IN FDB

FANCY PROTECTION

3 ANONE if account information missing

QFD file name

Quick File Direcory. Primarily used to obtain a quick
printout of all of the directory information about a single
file. However, it will take all of the argument and
subcommand options of directory =-- it i1s actually equivalent
to DIRECTORY plus the subcommands CRAM, EVERYTHING, and NO
(HEADING). See DIRECTORY description above.

TENEX-6 Exec Language 2 Dec 70 update Page 23

LIST

TYPE

(FILE) file name
Lists symbolic files on line printer, a la 940 UTILITY.

May be confirmed with alt mode. Takes sub-commands, in the
same general form as directory, if argument is terminated
with comma or the command is confirmed with a comma.

Unless a heading 1s specified or suppressed with a
subcommand, each page of the listing is headed with the file
name, date & time, and page number. The date & time is that
of the last write for disk files; for other sources, it 1s
the date & time the listing is begun.

The sub-commands are:

NOT IMPLEMENTED YET and yet to be specified.

Errcrs: file name errors
LPT: NOT MOUNTED (off 1line)
device: NOT MOUNTED
device: IS ASSIGNED TO JOB n
READ PRETECT VIOLATION FOR FILE name
name CAN ONLY BE APPENDED TO
FILE name BUSY

(FILE) file name

Same as LIST except default output file 1is the job's primary
output file, normally the terminal, 1nstead of the line
printer. When using TYPE, it 1is convenient to terminate the
file name with space or alt mode (as opposed to carriage
return), then confirm the command with a form feed (4L) so
that the listing starts at the top of a new page.

TENEX=-6 Exec Language 2 Dec 70 update Page 24

File Group Descriptors -- a Future Extension

A future version of the Exec will allow a "File Group Descriptor"
in the file name arguments of the Utility Commands. A File Group
Descriptor is like a file name, except that the name, extension,
version, and perhaps other filelds may be replaced with #*'s., 1In
most contexts the #'s mean "repeat the command for every exlsting
value of this field", but in certaln output arguments they mean
"copy this field from the corresponding input file name field".
Also, in commands taking only one file argument, a list of such
descriptors seperated by commas may be used.

Examples:
DELETE *,MAC (deletes all versions)
LISTS #,MAC (1ists latest versions only)
LIST *_ MAC;#¥ (forces all versions)

LIST M.MAC,*.TEL,F00.*
DIRECTORY DTAN:*.MAC,DTA5:,<STROLLO>;A11N51
DIRECTORY <#¥*> (might list all directories, for operator)
COPY #,MAC (TO) DTAL:¥* # :

(puts files on dectape with current names)
COPY <MURPHY>*.,MAC;A11451 (TO) *

(steals all of his 11451 files)

ACCOUNT (OF FILE)*;A11206 (is) 1
RENAME #* ,MAC (TO BE) %*.BAK
RENAME (EXISTING FILE) VERYLONGFILENAME,EXT (TO BE) #*,FOO

For user protection, commands which output to files, delete
files, etc will require the user to confirm each name of a group
specified with "#" before operating on that. file. The command
will type the file name, and [OLD/etc FILE] if pertinent, and
await a carriage return to mean "yes" or an N to specify skipping
to the next file. EG:

@COPY #.MAC (TO) ¥*.BAK;*
M.BAK;5 [NEW FILE]
C.BAK;17 [OLD VERSION] N
FOO.MAC;33 [NEW VERSION]

e

TENEX=6 Exec Language 2 Dec 70 update Page 25

The following commands will permit #'s in their arguments to
specify repetition for a group of files, and will take a 1list of
descriptors seperated by commas: DIRECTORY, LIST, TYPE, DELETE,
UNDELETE, ACCOUNT, PROTECTION, CLOSE.

COPY, APFEND, and RENAME will permit #'s (but not commas) in
their first arguments to specify iteration, and in their second
arguments, to specify fileld-copying. DEFINE is the same except
that the arguments are reversed.

DEASSIGN will take "*" to mean "all assigned devices".

Implementation of these features requires implementation of
JSYS's to input File Group Descriptors and to iterate over a
group of files.

TENEX=-6 Exec Language 2 Dec 70 update Page 26

Subsystems and Programs

subsystem name

DUMP

A subsystem name may be input without a preceding keyword -
whenever the first word of a command is not found in the
Exec's tables, disk directory <SUBSYS> 1is searched for a
file with the given name. If the file is found and the
command comfirmed, the subsystem 1s run, as though "RUN
<SUBSYS>name" had been input.

Care must be taken ¢to prevent subsystem names from
duplicating exec commands. There is provision in the Exec
for making special table entries to prevent recognition of a
command on seelng a substring of it which is also present in
the subsystem directory, but it is undesirable to make such
entries for strings 1longer than two characters. Also a
subsystem name must begin with a 1letter or a digit and
cannot begin with a string of digits followed by "/" or "\".

A subsystem 1s a save file in the directory <SUBSYS>; the
default extension is .SAV.

Errors: not 4f file not found
file name errors

(ON) file name

Dumps environment on named file. Types [OLD VERSIONJ]/[NEW
FILE]/etc and requires confirmation after that even if a
carriage return terminated the file name, NOT IMPLEMENTED

YET.

Errors: file name errors

attempt to dump execute-only or proprietary
program (these may come under "protection
errors")

protection error or other error
while opening file

device hung

data error

etc

TENEX-6 Exec Language 2 Dec 70 update Page 27

SAVE (CORE FROM) n (TO) n, (FROM) n (TO) n,... (ON) file name

Saves part or all of the assigned memory of the fork
inferior to the Exec 1in a non-shareable TENEX core save file
(very similar to a 10/50 core save file). This type of file
must be completely copled when it 1is retrieved. The
program's entry vector 1is also stored in the file. ‘

The 1lower and wupper 1limits default to 0 and 177777
respectively. If an alt mode 1s typed directly after a
comma, the Exec types out the noise word "“(FROM)" prather
than defaulting the next field as it does in most cases.
This 1is because there is no other way to elicit the noise
word, since an alt mode in place of the comma proceeds to
"(ON) file name".

The default file extension is ".,SAV",

Errors: NO PROGRAM
"e" for upper limit less than lower
file name errors

SSAVE (PAGES FROM) n (TO) n, (FROM) n (TO) n,... (ON) file name

Similar to SAVE, but saves indicated pages of assigned
memory 1in a TENEX sharable save file. When activated with
GET, RUN, etc, each page will be shared with the file and
with other jobs using the file until written into, at which
time a private copy will be made. SSAVE files thus speed up
GETs and reduce system overhead due to page-swapping, yet
can be used (non-optimally) even if the program isn't fully
reentrant.

‘ Errors: see SAVE

GET file name

Does a RESET (see below), then creates an inferior fork and
reads the specified file into it., The file may have been
created with SAVE, SSAVE, or DUMP. The default extension is
".SAV", The entry vector is also read from the file; the
fork's speclal capabilities possible are transmitted from
the Exec, but not normally enabled (see ENABLE, below).

Errors: file name errors

TENEX-6 Exec Language 2 Dec 70 update Page 28

MERGE file name
Combines an additional file with a program previously GETed.
Same as GET except does not reset first and does not update
entry vectory unless current one is O.

Errors: file name errors

RUN file name
Does a GET on given file name, then STARTs it.
Errors: file name errors
NO START ADDRESS
RESET

Eliminates program under Exec (ie kills all inferior forks)
and closes all files opened by inferior forks.

The RESET function is the first step in the execution of the
following commands: GET, RUN, subsystem name.

Errors: none

TENEX-6 Exec Language 2 Dec 70 update Page 29

Program Control and Debugging Commands

START

Closes all files opened by forks inferior to the Exec, then
starts program.

Errors: NO PROGRAM
NO START ADDRESS

REENTER

Errors: NO PROGRAM
NO REENTER ADDRESS

CONTINUE

GOTO

Resumes execution of Jjob after +4C.

Minimum abbreviation 1s "CON", despite "CONNECT" and
"CONVERT".

Errors: NO PROGRAM

PROGRAM HASN'T BEEN RUN
NOT INTERRUPTED

octal number

Starts program at specified location.

Errors: NO PROGRAM
NO SUCH PAGE
CAN'T EXECUTE THAT PAGE

octal number/

. Examine location. No confirmation. User types location and

slash (with no space or other characters between them!).
Exec responds with tab, contents in N,,N form, and carriage
return.

Errors: NO PROGRAM
NO SUCH PAGE
CAN'T READ THAT PAGE

TENEX-6 Exec Language 2 Dec 70 update Page 30

Octal number \ octal number
octal number \ octal number,,octal number

Deposit into locatlon. The address precedes the backslash,
the contents follows. The contents may be a single 36-bit
unsigned octal number, or two 18=bit numbers seperated by
space, alt mode, a comma, or two commas. Like most Exec
commands, this must be terminated by or confirmed with
carriage return.

Errors: NO PROGRAM
NO SUCH PAGE
CAN'T WRITE THAT PAGE

ENTRY (VECTOR LOCATION) octal number [(LENGTH) octal number]

Declares the location of the program's entry vector, which
is the block of memory containing the program's entry
point(s). Location 0.of the entry vector is the program's
starting address; location 1 (if length greater than 1) 1is
its reenter address. If omitted, length defaults to 1. To
specify 10/50 compatible entries, give length 254000. The
current entry vector is typed out by MEMSTAT, described
below.

Errors: NO PROGRAM

TEN50 DDT

Transfers control to a 10/50 DDT 1loaded with the users
program. Uses contents of JOBDDT (location 74) as start
address of DDT.

Minimum abbreviation: "T D". Alt mode acceptable for
confirmation.

Errors: NO PROGRAM
NO PAGE O
CAN'T READ PAGE O
NO 10/50 DDT LOADED WITH PROGRAM (JOBDDT 0)

DDT

Future command to transfer control to an invisble DDT. NOT
IMPLEMENTED YET.

TENEX=-6 Exec Language 2 Dec 70 update Page 31

FORK octal fork handle
Changes the fork accessed by the following commands:

START
REENTER
GOTO

/

\
ENTRY
TEN50 DDT
SAVE
SSAVE
RUNSTAT
MEMSTAT
MERGE

The specified fork is used until another FORK command, or
until a GET, RUN, RESET, or subsystem name. The JOBSTAT
command may be used to obtain handles for all inferior
forks, and print a listing of them. The 400000 bit may be
omitted in the fork handle.

In the normal case, there will be only one subsidiary fork,
or the additional forks will be managed entirely by the top
subsidiary fork, and wuse of this command will not be

necessary.

ENABLEd WHEELs may give "FORK O" to operate directly on the
running Exec, eg to SAVE a newly patched version.

This command should not be included in user documentation at
this time.

Errors: FORK HANDLE MUST BE BETWEEN 1 AND 34
NO SUCH FORK

Also see SHUT, CLOSE, and JFNCLOSE above.

TENEX-6 Exec Language 2 Dec 70 update Page 32 -

Primary Input/Output Redirection Commands

REDIRECT (INFILE) [existing file name/*] (OUTFILE) [file name/*]
(AND) [START/REENTER/CONTINUE]

Redirects primary input and/or output and optionally starts
execution. NOT IMPLEMENTED YET '

If an input file name is given, primary input is redirected
to 1t, starting at the beginning of the file. If "#¥" is
given, input 1is resumed from the last previously used input
file, using the pointer position at which interruption
occured. If the field is nulled (with carriage return, alt
mode, or dash), primary input is not redirected.

Likewise for the output file argument.

The third argument permits starting the Job without
requiring an Exec command in the file. In conjunction with
#1's for the file names, this is useful for resuming after
typing #C.

Default file extensions: ".INP" and ".OUT".
Confirmation is mandatory if an output file name is given.

Errors: error in file name (" 2 ")
"#" ojven when there is no previous
input or output file (" ? ")
error in opening file
errors in START/REENTER/CONTINUE: see same.

COMMANDS (FROM FILE) existing file name
Redirects primary file input. Primary output file (normally
terminal) is not changed; all input is echoed on it (whether
this pseudo-echoing 1is done by the Exec or the monitor must
be decided).
This subset of REDIRECT is NOT IMPLEMENTED YET.

Errors: bad file name ("™ 2?2 ™)
error in opening file

TENEX-6 Exeéc Language 2 Dec 70 update Page 33

Information Printing Commands

The commands in this group do not require confirmation, and have
no errors except as indicated.

AVAILABLE [LINES/DEVICES]

Types a list of free 1lines or of other free devices,
depending on the second keyword, which defaults to LINES if
omitted. In the DEVICES case a list of devices assigned to
the current job 1is also printed. Login not required.

DAYTIME

Types current date and time. Login not required.

WHERE (IS USER) user name

Types out the terminal line number or "DETACHED" for each
job logged in under the given name. Login not required.

Error: "2" if no such user

JOBSTAT

Types out the current job's TSS job number, the user's name,
and the terminal 1line number. Will 1later type a table
giving the job's fork structure, including the name of the
program in each fork, but this is NOT IMPLEMENTED YET.

RUNSTAT

Types a very brief description of the state of the program
under the Exec. Possible responses include:

NO PROGRAM

NEVER STARTED

4C FROM RUNNING AT pc

4C FROM IO WAIT AT pc

HALT AT pc

HALT: ILLEG INST AT pc (or other error condition)
4C FROM FORK WAIT AT pc

4C FROM SLEEP AT pc

TENEX-6 Exec Language 2 Dec 70 update Page 34

USESTAT

Types: USED cpu time IN console time
and should later type any other chargeable resources used in

this session.

FILSTAT

File statuses: types connected directory name if other than
user name, and a table of assigned JFNs, names, what access
open for (NOT OPENED, READ, WRITE, EXECUTE, APPEND,
PROCEDURE, and/or PER PAGE TABLE), and condition (DATA
ERROR, EOF). Also types a 1list of devices assigned to this
Job.

DSKSTAT

Types number of disk blocks (pages) in use in the currently
connected directory,

SYSTAT

System status. Types system wuptime, number of logged-in
jobs, and a table showlng TSS job number, terminal line
number (DET if detached), user name (or NOT LOGGED IN), and
subsystem name ("(PRIV)" for a private program) for each
job. Job needn't be logged in.

MEMSTAT

If there is no fork inferior to the Exec, MEMSTAT types NO
PROGRAM. Otherwlise, it types the number of assigned pages,
the entry vector location and length unless entry vector
word 1is zero, and a memory map. The memory map shows, for
each assigned page or group of adjacent pages, the page
number(s), owning file name or fork number or "pPRIVATE",
page number(s) in owning file or fork, and access allowed:
R=read, W=write, E=execute. Indirect pointers are indicated

with an "e".

TENEX=-6 Exec Language 2 Dec 70 update Page 35

STATUS
Types:
THE STATUS COMMANDS AVAILABLE ARE:
JOBSTAT, RUNSTAT, USESTAT, MEMSTAT, FILSTAT, DSKSTAT,
AND SYSTAT.

Do not document this in future user documentation.

VERSION

Prints system name and version number, and Exec version
number. This information should be included in all software

trouble reports.

See also ERRSTAT and STATISTICS in the privileged commands
section.

TENEX-6 Exec Language 2 Dec 70 update Page 36

Miscellaneous Commands

LINK (TO TERMINAL) number
This won't be in Minisys.
Errors: no such terminal number (type " 2 ")

that terminal has refused 1links
that terminal not logged in (?)

BREAK (LINKS)
REFUSE (LINKS)

RECEIVE (LINKS)

Terminal Characteristics Commands

HALFDUPLEX

FULLDUPLEX

TABS

FORMFEED

LOWERCASE

NO <TABS/FORMFEED/LOWERCASE>

The default terminal characteristics are full duplex with no
tabs, formfeed, or lower case.

HALFDUPLEX will not be implemented in Minisys.

Login not required, alt mode acceptable for confirmation.

STOPS ny,n,n...

Sets software tab stops. The default tab stops are at every
8th column.

TENEX-6 Exec Language 2 Dec 70 update Page 37

[NO]

QUIT

RAISE

Controls conversion of lower case characters to upper case
on 1input. RAISE permits you to type in lower case but have
the characters be echoed and recived by the program in upper
case, In contrast, [NO] LOWERCASE determines whether lower
case characters output by your program are converted to
upper case before being transmitted to your terminal.

Halts the Exec, returning control to program it 1is being run
under, If the Exec 1s not being run under another program,
QUIT is 1llegal except for ENABLED WHEELS and OPERATORS.

Errors: NOT LEGAL IN TOP-LEVEL EXEC

TENEX=6 Exec Language 2 Dec 70 update Page 38

Privileged Commands

The commands described here may only be used by those whose user
names have one or more of the proper special capability bit(s)
set. There are three special capability bits of interest here,
WHEEL, which allows use of all privileged commands, OPERator,
which allows use of a subset relevant to system operations, and
CONFidential information access, which allows use of certain
commands which print information but do not otherwise effect the
system. With a few exceptions, these commands are preflixed by a
non-printing control character which will be represented in this
memo by "!". The ENABLE command must be given before most other
privileged commands will be accepted (indeed, before the
non-printing control character will be accepted). If a user who
does not have the appropriate special capability (or who has not
ENABLEd where required) attempts to give a privileged command,
the Exec will type "?" as it would for any other unrecognized
command, before even printing the rest of the word 1f an
abbreviation of it was terminated with alt mode.

ENABLE

Enables right half special capabilities (WHEEL, OPERator,
CONFidential information access) 1in the Exec and in 1its
inferior fork (if any; effected by FORK command) and enables
recognition of the non-printing control character which
prefixes most of the privileged commands. Requires WHEEL,
OPER or CONF special capability possible.

DISABLE

Opposite of enable; requires same capabllity.

ERRSTAT

Types information on recent system errors. Currently this
includes only disk and drum errors. Confirmation not
required. Requires WHEEL, OPER, or CONF special capability
possible (but not necessarily ENABLEd).

TENEX~6 Exec Language 2 Dec 70 update Page 39

STATISTICS

!SET

Prints out information on system loading, performance, etc.
for example:

IDLE TIME 39% WAITING 28% CORE MGMT 2% PAGER TRAPS 2%
DRM READS 266272 WRITES 203734

DSK READS 27903 WRITES 21432

81 PAGES OF USER CORE

15954 TERM WAKEUPS 820 TERM INTERRUPTS

40934367 TIME INTEGRAL OF JOBS IN BALANCE SET

All numbers in the above are cumulative since the system
was started. Also, a table of CPU time and page

faults for each subsystem will be typed.

Requires WHEEL, OPER, or CONF possible.

(DATE AND TIME)

Causes Exec to request date and time, then set same in the
running monitor. Requires OPER or WHEEL special capability
ENABLEAd.

!UNHANG device name

Performs a device-dependent function on the service routine
for specified tape drive, etc, to make it available again
after an error condition from which the software doesn't
recover by itself. Requires OPER or WHEEL special
capability ENABLEd. NOT IMPLEMENTED YET.

!LOGOUT (TSS JOB #) number (AFTER DUMP ON) [file name]

For eliminating unwanted detached Jjobs, crashed Jobs,
unauthorized Jjobs, etc. The default directory for the
optional file name is that to which the specified job is
connected; if a file name 1s given, the job's environment is
dumped on that file before the job goes away. Requires OPER
or WHEEL special capability ENABLEd. NOT IMPLEMENTED YET.

!ASSIGN device name

Assigns the indicated device to this Job, with option to
take it even if somebody else is using it, or to wait until
it is free and take it. Probably this should be done with
options on the regular ASSIGN command which come into effect
for ENABLEd WHEELs and OPERs only. Requires WHEEL or OPER
ENABLEd. NOT IMPLEMENTED YET.

TENEX-6 Exec Language 2 Dec 70 update Page 40

!BROADCAST
message

Sends text beginning on next line and ending with alt mode
to all terminals. Requires OPER or WHEEL ENABLEd. NOT
IMPLEMENTED YET.

INOACCOUNT

Turns off system accounting, for use during system checkout.
Requires WHEEL special capability ENABLEd. NOT IMPLEMENTED

YET.

!ACCOUNT

Turns acccounting back on, after !NOACCOUNT. Requires OPER
or WHEEL special capability ENABLEd. NOT IMPLEMENTED YET.

!EDDT

Transfers control to a DDT looking at Exec, with symbols.
Gets DDT if necessary from file <SUBSYS>UDDT.SAV, and stores
symbol table pointer into 1t. Requires WHEEL ENABLEAd. ’

TENEX=-6 Exec Language 2 Dec 70 update Page 41

!PRINT (NAME) name [VERBOSE]

Prints out the various parameters associated with a TENEX
user name or files-only directory. Recognition is applied
to the name. Requires WHEEL or OPERator special capability
ENABLEd; also requests a superpassword before printing.
Default—value parameters are suppressed as specified below
unless "verbose" 1s entered after the name. Sample
printout:

PASSWORD ABCD
DISK LIMIT 9766

WHEEL

DIRECTORY NUMBER 5

LAST LOGIN 22-SEP=70 12:37
USER GROUPS 1,2,3
DIRECTORY GROUPS 2

PRINT's complete "vocabulary" is:

PASSWORD password
DISK LIMIT decimal number (suppressed if 488)
WHEEL (if privilege word Bi8 on)
OPERATOR (privilege word B19)
CONFIDENTIAL INFORMATION ACCESS (B20)
OTHER PRIVILEGE BITS octal number

(other set bits, suppressed if none)

FILES ONLY (mode word BO)
ALPHANUMERIC ACCOUNTS (mode word B1)
REPEAT LOGIN MESSAGES (mode word B2)

. OTHER MODE BITS octal number (suppressed if none)
SPECIAL RESOURCE INFORMATION octal number (if non=0)
DIRECTORY NUMBER octal number
DEFAULT FILE PROTECTION octal (if not 500000777752)
DIRECTORY PROTECTION octal (if not 500000777740)
DEFAULT # FILE VERSIONS TO KEEP decimal number

(1f not 2)
OTHER FILE RETENTION SPECIFICATIONS octal number
(if not 500000000000)
LAST LOGIN date time (1f any)
USER GROUPS n,n,n ... (if any)
DIRECTORY GROUPS n,n,n ... (if any)

See the description of CRDIR in section 10 of the BBN TENEX
JSYS Manual for further description of the various
parameters.,

Errors: "o" for no such directory
"o" for bad superpassword

TENEX=6 Exec Language 2 Dec 70 update Page 42

!CREATE (NAME) name [(PASSWORD) password]

Creates a new TENEX user name or filles-only directory, or
modifies parameters of an old one. Requires WHEEL or
OPERator special capability ENABLEA4 and requests a
superpassword.

After the name 1is entered, the Exec responds with [OLD] or
[NEW]. After a carriage return, the command creates a new
directory with all default parameters, or does nothing to an
old one except update the password if one is given. A comma
after the name or after the password causes subcommand input
to be initiated after confirmation. Subcommands are used to
specify non-default parameters for new directories or to
change parameters of old directories.

The default characteristics for a new directory are all zero
except: .

disk limit: 488

default file protection: 500000777752

directory protection: 500000777740

default number of file versions to keep: 2

Several of the parameter words consist of independent bits,
only some of which have assigned functions at this time.
For these specific subcommands (WHEEL, FILES (ONLY), etc.)
are provided for the already assigned bits, as well as
general subcommands for changing any bits 1n the word.
These subcommands are marked with an * and operate in a
strange way described below.

The subcommands are:

NAME name
for changing directory name; NOT IMPLEMENTED YET.

PASSWORD password for changing password; redundant except
that it allows making it null.

DISK (STORAGE LIMIT) decimal number of pages

Privileges:
[(NOT] WHEEL (Privilege B18)
[(NOT] OPERATOR - (Privilege B19)

[NOT] CONFIDENTIAL (INFORMATION ACCESS)
(Privilege B20)

#[NOT] PRIVILEGES octal number

Mode:
[NOT] FILES (ONLY) (Mode BO)
[NOT] ALPHANUMERIC (ACCOUNTS) (Mode B1)
[NOT] REPEAT (LOGIN MESSAGES) (Mode B2)
#[NOT] MODE octal number

TENEX-6 EXec Language 2 Dec 70 update Page 43

#[NOT] SPECIAL (RESOURCES INFORMATION) octal number
NUMBER octal directory number

PROTECTION (OF DIRECTORY) octal number

DEFAULT (FILE) PROTECTION octal number

DEFAULT (FILE) NUMBER (OF VERSIONS TO KEEP) decimal
sets B32-B35 of retention specifications word.

#[NOT] RETENTIOHN (SPECIFICATIONS) octal
[NOT] USER (GROUP) decimal number
[NOT] DIRECTORY (GROUP) decimal number

The abovevtwo subcommands turn on or off one group bit;
multiple subcommands must be used to change more than
one bit.

KILL (THIS DIRECTORY)
NOT IMPLEMENTED YET

ABORT
Aborts this CREATE. 4C does the same.

LIST [VERBOSE]
Prints out what !PRINT would print if this CREATE were
completed. Highly recommended to check changes before
ending the CREATE. Default-valued fields are
suppressed unless "VERBOSE" is given.

carriage return
Ends subcommand input. After extra confirmation, the

specified changes are put into effect.

The subcommands marked with "¥" modify the exlsting value of
the parameter. The bits set in the argument are set in the
parameter (ie. the argument 1is OR'd into the parameter),
or, if the subcommand 1is prefixed by NOT, the corresponding
parameter bits are cleared. The bits not set in the
argument are unaffected. The "existing value" means the
current value for old directories, and the default value for
new directories, both, of course, as modified by preceding
subcommands.

Whenever an octal number is specified in the subcommands, it
may optionally pe typed in as two half-words separated by
space, alt mode, comma, or comma-comma.

TENEX=-6 Exec Language 2 Dec 70 update Page 44

ERRORS: PASSWORD REQUIRED FOR NEW NAME UNLESS FILES-ONLY
YOU CAN'T CHANGE THE NUMBER OF AN OLD DIRECTORY

NUMBER ALREADY IN USE

TENEX=6 Exec Language 2 Dec 70 update Page 45

Planned Exec Extensions

CONCISE COMMAND LANGUAGE

Eventual implementation of CCL commands that work with the 10/50
CUSPS and also with new subsystems is expected. The CCL scheme
will use a command compiler built into the exec, rather than a
speclal subsystem; it will put the compiled commands into exec
memory rather than a disk file.

Two schemes of transmitting commands to the subsystems appear
plausible at this time. First, an exec subroutine file could be
created with a suitable name (such as PIP017.TMP) and directory
entry. A 10/50 CUSP, or a new program coded following the
conventions of DEC's CCL, would be started at its CCL entry and
would read the file as it does on the 10/50 system. This scheme
would eliminate some of the IO overhead of the scheme used in the

10/50 system.

The second scheme would be to create a subroutine flle and
redirect primary IO to it. This saves additional overhead as it
would be unnecessary to make a directory entry or a directory
search. When used with this scheme, o0ld programs would be
started at their non-CCL entries; new programs, not necessarily
coded with CCL in mind could also be used. In this scheme, more
work would be done in the exec and less in the subsystem. For
instance, compiled commands requiring transfer of control to a
different subsystem would be detected and executed 1in the
subroutine file code rather than 1n each subsystem.

TENEX-6 Exec Language 2 Dec 70 update Page 46

COMMAND FILES AND BATCH PROCESSING

The TENEX exec will be capable of taking commands from a file.
This file will contain ASCII text. Any of the command formats
acceptable from the Terminal will be acceptable in the file,
though 1t 1s expected that people will generally not omit noise
words and will not use alt mode characters, because they will
want the file to be easy to read and easy to edit. While a
command file is in use, input characters will be output to the
terminal, so a complete typescript can be produced. Use of a
command file is initiated with a COMMANDS (FROM) command, or with
a DETACH command. The latter takes input and output file names
as arguments and causes the job to continue execution without a
terminal.

The facility eventually envisioned will permit batch processing.
The command file will be able to contain input for subsystems and
private programs as well as for the exec, and it will be possible
to direct all terminal output to a file for later listing. There
will be provisions for suspending execution of Jobs using
non-conversational input files when an error is detected.
Methods whereby errors will be detected by the exec will include:
monitoring terminal output (which 1s going through a subroutine
file) from 10/50 programs for lines beginning with "?" and the
inclusion of special monitor calls in error routines of new
subsystems.

TENEX=6 Exec Language 2 Dec 70 update Page 47

IACCOUNT . ¢ « o o & 40

'BROADCAST * L] L] ® . L] L] L] L] uo
!CREATE (NAME) name e o o o o o U2
IDEASSIGN + o o o o o o o« o o o 12
!LOGOUT L] L] [] L] [] [] L [] [] [] L[] L] 39
!NOACCOUNT * [] L] L] L] L] L] [] L] L] L] uo
!PRINT (NAME) name . « « « « « o 41
!SET L) [] L] . L] L] L] * L] L] ® L] ® * 39
!UNHANG L] L] L] ® * L] L] L] * [[] L] 39
& L] L] * L] L] L] L] [] L] (] L d [] L] []] u

e o o o ; ® o o o o .o 24, 32
24

/ [L * o L L] . L] L] L] L * L L L[] 1’ 29

10/50 e o o o o e e o o o o o o 9, 27, 30

.
] L] L L] * L] . L] L] L] ® L] L L] . L] u

<>'s L L * L) (] L . L d L L] L L) L] L 1

ACCOUNT 16

APPEND [] L] L] L] L] o L] L] L] L L[] L] L) 1 6
ASS I GN L] (] . [] L L] [] L] . L] L] L L] 1 2
ATTACH o o ¢ o« o o o o o o o o« « 10
AVAILABLE .+ ¢« « « o« o o o ¢ o « 33

BRE AK * * L] L] L L d L) L] L] . L] [] L] 36

CHANGE ° . . 3 ° . (;o . . ° O ° 9
CLEAR L] L] * * L] L] * [] L] L] [] o L] 17
CIOSE . « « . . . 19
Command Files and Batch Processing 45
COMMANDS . 3 .] . . 3 . o 3 . . 32
Comments . . . 4y

CONCISE COMMAND LANGUAGE e o« o o 45
Confirmation « « ¢« o« « o« o o« o o 3
CONNECT * [] L] L] L[] * [] L] * L] L] [] 18
continuation character U
CONTINUE L] L] L] * L] L] [] L[] * L] * L] 29
COPY ° . ° ') 3 . . . 3 o 13

DAYTIM L] L[] L] L . L L] L L] L d . ® 3 3

TENEX=-6 Exec Language 2 Dec 70 update Page 48

DDT L] [] L] [] L] L] L J L] L] L] L] L] ‘o * 30
DEASS I GN [] L] L 4 L] L] L] L] L] * L] [] o 12
Defaulting Fields . « « ¢« ¢« « ¢« 3

DEFINE + v o o« o o o o« o o o o o 16
DELETE ¢ ¢ ¢ o o o o o o o o o o 17
Deposit ¢ « o« o« o o o o o o o o 30
DETACH . * * ® L[] L] L] L] L) L] . L] * 1 1
DIRE CTORY * L] L] L] * L] 0- L] [] [) [] 2 o
DIS ABLE [] [] [] L * L * L] L) L] L] [38
DSKSTAT [] L] . L] * [2 L] L] L] L] L) L] 3 u
DUMP [} [L)] [] . [. [] . . .] 26
EDDT [] L] L] L] * L d * * L] L * [] L] uo
ENAB LE * * L] L] L] . L] L] * [] (] [] L 3 8
ENTRY (VECTOR LOCATION) 30
Error Messages « « o o o ¢ o o o [

error pseudo-interrupts . ¢ . o 7

ERRSTAT « ¢ o o ¢ o o o o o o o 38
Examples of EXEC Command e o o 5

EXPUNGE ¢ ¢ ¢ o o o o o o o o o 17
File Commands 13

File Group Descriptors
FILSTAT .+ o ¢ ¢ o o o
FO RK [] L] L] L] L] L]
form feed . . .
form feed (4L) .
FORMFEED
FULLDUPLEX . . .

e o o o o
e o o o o
e o o ¢ o
e o o o o o o o
e o o o o o o o
e ¢ ¢ o o o o o
e o o o o o o o
e o o o o o o o
N
w

.
n

General Form of Commands . . .
GET [] L] [] L] L] ® L] L] L] L] [] L] L] [2 2 7
GOTO * L] * * L] [] * [} L] [] L] . [] * 2 9

HALFDUPLEX o« « « o o o o o o« o o 36
Information Printing Commands . 33
Input Editing .+ « ¢« « o « o « o 6
Interrupt Characters « « « « « « b

JFNCLOSE ¢« &« o « o o« o o o o o o 19
JOBSTAT « + o o o o o o o o o o 33

JSYS error returns « « o« o o o o [
LIMIT ® [] L] L] L] L] L] . [] * L] * L] 12
LINK . . . [. ') . . . 36
LIST ° [. . . L) [} L} [. [[° [23
LOGIN ® L] * * L] L] L] [2 L] [] L] ® [] 8
LOGOUT] [] L] L] L[] L] L] . L] * L] ® * 9
1OWEr CASE€ « o« o o o o o o o o o 1, 4
LOWERCASE [. . . [. [. . ° L] 36

MEMSTAT L L] L] L L] L] L] . L L] L[] L d 3“

TENEX-6 Exec Language 2 Dec 70 update Page 49

mRGE [] L] [] o [] [] L] L] ® [] ® * [] 2 8
Miscellaneous Commands . « « « « 36
MOUNT [] L] L] ° [] * * L] [] L] L] * L] 18

NO . e o o o o e o o e o o o o o 36, 37 3
NOT IMPLEMENTED YET o 11, 12, 16, 19,421, 23, 26, 30, 32,
3

33, 39, 40, 42,
notation « « o+ ¢ ¢ ¢ ¢ o o o o o 1
Nulling Fields « + « o ¢ ¢ ¢ ¢ « 3

Optional Fields . . . « & « e o3

Planned Exec Extensions U5

Primary Input/Output Redirection Commands 32
Privileged Commands . « « « » o« 38

Program Control and Debugging Commands 29
Programs « « « « o o« « o o o o o 26
PROTECTION &« ¢ o o o o o o o o o 16

QFD .o . Y . O 22
QUIT . [} . . . 3 . . . [.] 37
RAISE [* L] [] L] L) * L] . L[] L] * L] 37
RECEIVE &« ¢ « o o o o o o o o « 36
REDIRE CT]] .] 3 L} . o . L) ° . 32
REENTER + « o o o o o o o o o o 29
REFUSE .] . ’ . 3 .) . °] [[. 36
RENAME v « o o o o o o o o o o o 16
RESET [] L] . L] L] L] [] L * L d [] [] * 2 8
Resource Allocation Commands . . 12
RI-I}I L[] L] [] L] L] L] L[] L] L] L] . L[] L] * 2 8
RUNSTAT .« o o o o o o o o o o o 33
SAVE L] * L] L] L[] L] o L] L] . L] L] . L] 2 7
SH UT [] * L] L] [] L] * L] L] L] * L] L] L] 1 8
SPACES « « o o o o o o o o o o o U

SS AVE . 3 L) . 3] . ° ° 2 7
START . * . . ° °) . . L) . . . 29
STATISTICS ¢ o o o o o o o o o » 39
STATUS @« o o o o o o o s o o o o 35
STOPS . . . 3 . . 3 . . . 3 . 'y 36
Sub-ccmmands ° O 3 . 3 . [3 [} . 2 3
sub—=commands .« « ¢ o« o s o o o o 20
subsystem name . o« « o« o o o o o 20
SUDSYSEEMS « « o o « o o o o o o 26
Subsystems and Programs 26
SYSTAT 3 3 . . . 3 3 3 u
System Access Commands . « « « o« 8

System Login Message « « « « « « 9

TABS . 3 . . . 3 (] 3 . ¢« o . L] . 36
TabS . 3 . 3 . . . O . . . 3 . . u
TENSO . .] * 3 e 3 . 3 . o o . 30

Terminal Characteristics Commands 36

TENEX=-6 Exec Language 2 Dec 70 update Page 50

TYPE L] L] L L] L] L L] * L] L] () L] . * 23
type 2 errors . « o« o o o o

L
[]
-3

UNDELETE . 17

UNMOUNT o+ &« o o w v v v w v w2 18
UDPEr CAS€ « o o« o o o o o o o o 1
USEsTAT [] [] [] [] [] [] [] * L] [] * [] 3 u

VERSION e o e o e o o o o o o o 35
WHERE e e 8o o o e o o o o o o .0 33

[1'S & ¢ ¢ o« o o o o o o o o o o1

\...............30

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 197§ Page

Fork Structure and Communication

TENEX permits each 3job to have multiple simultaneously
runnable processes or forks. The fork structure is quite
similar to the SDS-94f structure in that both parallel and
subsidiary forks are allowed. The structure looks like an
inverted tree. A fork alwavs has one superior fork (except
for the top-level EXEC fork), and may have one or more
inferior forks. Two forks are said to be parallel if they
have the same superior fork.

R

It is possible for a fork to create inferior (suhsidiary)
forks but not parallel or superior forks in the structure.
A fork can communicate with other members of the structure
by

(a) sharing memory

(b) termination, initiation, or suspension of any
parallel or subsidiary fork.

(c) pseudo (software simulated) interrupts

Fork Accumulators

The accumulator values for a fork are in the hardware AC's
when the fork is running and saved in the PSR when the fork
is dismissed. Forks may access one anothers AC's through
the RFACS, SFACS JSYS's.

1

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1970 Page

Fork Structure Specification

The current fork structure of a job is recorded by a pointer
structure in the monitor address space. This structure is
started in the job storage block (JSB) and if wunusually
large, will grow into a separate full page. The JSB and any
additional pages used for fork structure will reside in a
contiguous 4K area of the monitor map of all processes.
Every fork of a job will have a 12-bit basic identifier
which when added to a base value, will address parallel
tables in this 4K space. This block contains the relative
pointers and all other pertinent data for the fork.

FIRST TABLE: FKPTRS

SUPERIOR PARALLEL INFERIOR
POINTER POINTER POINTER

SECOND TABLE SYSFK

SYSTEM FORK INDEX OR =1

The 12-bit identifiers are used by the various monitor
routines which operate on fork structures, but they are not
given directly to user programs. Instead, when a fork is
created, the creating process is given a small integer (plus
400PpP)* which is an index into a table in its PSB. The
associated word in this table contains the job fork
identifier. EnFries in this table are 18 bits, 2 per word.

* The 40J@¢PP bit is on to distinguish fork handles from
JFN's which can both be used as arguments to some JSYS's,

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 197¢ Page 3

This is the mapping process:

PROCESS MEMORY] PSB JOB FORK
STRUCTURE
AL
PROCESS FORK FORK
IDENTIFIER TABLH //
ABLE]
N_JBASE

A process thus has a handle on any fork it has created, and
this handle is used to reference that fork until deleted.
Handles for the fork itself and the superior fork are also
defined as numbers (fork table entries) 460898 and -1
respectively.

Fork handles may be passed between forks, by which means a
fork may reference other than its own immediate inferiors or
superior. Any particular handle is valid only within one
process however (normally the process which created it), so
if a handle H is passed between forks, it must be translated
to a new handle H' which is valid in the receiving fork.
The operation of translating a handle first identifies the
fork being translated using the old handle H and the handle"
of the fork in which H is defined, and then adds an entry to
the fork table of the receiving fork into which the new :
handle H' is an index. For example, an inferior fork N
creates an inferior fork and gets the handle M. One can
reference that new fork directly by first obtaining that
handle (via shared memory, say) and then creating a new
handle via a monitor call which says "get a handle on the
fork in position M of the fork table of fork N".

A program may also cause an image of its parallel and
inferior fork structure to be created in its own memory.
Local fork handles will be created for all forks in that
structure. The structure will consist of 2=-word entries for

each fork of the form

PARALLEL INFERIOR !
POINTER POINTER
SUPERIOR FORK
POINTER HANDLE

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1970 Page

The pointers will be 18 bit absolute addresses. For
example, if this fork structure were in existence,

then the following would be created for the top fork.

BLOCK/ # BLOCK+2 ;SELF. NO PARALLELS, INFERIOR PTR
' g g ;SUPERIOR NOT INCLUDED, SELF #0
BLOCK+2/ 0 BLOCK+4 ;NO PARALLELS
BLOCK 2 ;SUPERIOR PTR, NUMBER IS 2
BLOCK+4/ BLOCK+6 @ ;PARALLEL PTR, NO INFERIORS
BLOCK+2 3 :
BLOCK+6/ @) ;END OF PARALLEL LIST
BLOCK+2 4 . :

Fork Creation and Control

Monitor calls are available which explicitly create and
delete a fork. A fork is said to exist when there is a
process storage block (PSB) assigned to it. Executing the
create fork monitor operation will assign a PSB and add the
Tork to the fork hierarchy. The virtual memory map for a
fork may be specified at the time the fork is created or at
a later time. Other monitor calls initiate running of the
fork or cause running to be suspended. A fork continues to
exist and be potentially runnable until either it is
explicitly deleted or its superior fork is deleted.

There will be other monitor calls which provide convenient
and often used sets of fork operations. For example, a
single monitor call may initiate running of a fork and wait
for it to terminate. Another monitor call will effectively
jnitiate the running of a named file (e.g. subsystem) under
the current fork.

4

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1974 Page 5

Fork Suspension

A process may be suspended (temporarily stopped) by one of
sevef?l conditions
(1) The process's execution of an instruction which
causes a hardware alarm (memory trap, instruction
trap, etc.)
(2) The request for suspension by a superior process
(e.g. the EXEC on receipt of control-C).
(3) Suspension of the superior process.

' TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1974 Page 6

Pseudo-Interrupts

Certain conditions will cause a process to receive an
interrupt, meaning that control will be transferred to
specified locations called the pseudo-interrupt routines.
Simultaneously, the process PC will be saved so that the
pseudo-interrupt routine may resume the interrupted sequence
upon completion of its tasks. These conditions are:

(1) Terminal Pseudo Interrupts--generated when selected
terminal keys are typed.

(2) Illegal Instruction Traps (such as attempts to
execute I/0 instructions in ordinary user mode) or
attempts to execute privileged monitor calls.

(3) Memory Traps including read, write and execute,
directed traps, and un-assigned memory.

(4) Arithmetic Processor Traps

(5) Unusual File Conditions (EOF, errors)

(6) Specific Time of Day reached

(7) Generated Pseudo-Interrupts

(8) Subsidiary Fork Termination

(9) System Resource Allocation traps

There are 36 pseudo-interrupt channels and some number

NPLEVS (currently 3), - pseudo-interrupt riori levels.,
Priority levels are numbered from 1 to NPLEV. is not a

legal priority level. Most of the possible causes of PSI's
are each permanently assigned to one of the 36 channels.
The remainder are user-assignable to one of several of the
36 channels. Each channel can be activated or deactivated.
If activated, the channel can cause an interrupt on the
user-specified priority level. This two step interrupting
procedure eliminates the need for user decoding of interrupt
cause.,

An. interrupt for any channel will be initiated only if there
are no interrupts in progress on the same or higher priority
channels. Otherwise, it will be remembered and initiated
when the last equal or higher priority channel de-breaks.
Since a higher level (lower priority number) interrupt can
interrupt a lower level PSI routine, there can be up to
NPLEVS interrupts in progress simultaneously. The user's
PST routine exits with a monitor call which resets the
interrupt-in-progress status of that PSI priority level.

The user can turn the pseudo-interrupt system on or off.
When the system is off, interrupt requests are remembered
until the system is turned back on except for certain
®panic® channels (e.g. instruction trap, described below)
where an interrupt request will take, as though the PSI
system was always on. The user can also clear the entire
interrupt system, thereby forgetting all stacked requests.

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1970 Page 7

Channels vs. Priority Levels

Note carefully the distinction between channels and priority
levels. A channel corresponds to one particular cause of
interrupts. There is a one-to-one correspondence of
channels and interrupt causes as shown in Table l. Some
interrupt causes are assignable to different channels, but
at any given time, an interrupt cause is associated with at
most one channel, and each channel is associated with at
most one interrupt cause. The priority levels are provided
to allow some interrupt conditions to be able to interrupt
the service routine for other interrupt conditions.

For example, a program could assign a "break key" type of
user request (e.g. LISP's control-H) to a low priority
level, some APR overflow conditions to a medium priority
level, and an "abort key" user request (e.g. LISP's
control-E) to a higher priority channel. Thus, an
unexpected or infrequently occurring APR condition (e.g.
PDL overflow) could be handled during the program's main
sequence or during a user initiated break sequence, but a
user initiated abort request would override any of the above
sequences.,

As stated earlier, each activated PSI channel is user
assigned to one of NPLEVS priority levels. The user makes
his assignment by considering when one interrupt condition
can arrive during the servicing of another, and when
servicing of the later interrupt cannot be deferred until
completion of the first.

Interrupt Service Conventions

Before using the pseudo-intergﬁpt system, the user must
execute a monitor call to ‘specify the 1location of his
channel table (CHNTAB) and 1level table (LEVTAB) in two
half-words, i.e.

LEVTAB CHNTAB

which the monitor will keep in the PSB, Then, for each
channel activated, the user must set up the contents of
location CHNTAB plus the channel number to contain:

Left half: number of priority 1level to which this
channel is assigned.

Right half: address of interrupt service routine for
this channel.

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1970 Page

For any priority level specified by one or more of the above
channel words, the user must set up the contents of location
LEVTAB plus the priority number minus 1 to contain:

Left half: (Presently unused.)

Right half: location of word (in writable page) in
which to store interrupt PC and flags.

When an interrupt is requested, the channel word (at
location CHNTAB plus the interrupt channel number) is
fetched. The left half specifies the priority level to be
used. If this left half is @, or if the pseudo interrupt
system for this fork is off or if an SIR has never been done
for this fork, the system considers this fork is not
prepared to handle a pseudo-interrupt on this channel and
the pseudo-interrupt is changed to a fork terminating
condition. If neither that level nor any higher priority
level interrupt is in progress, the process PC will be set
to the right half of the channel word. The old process PC
will be stored as specified by the right half of the
priority level word (at location LEVTAB plus the priority
number minus 1), and the process will be run., When the
interrupt routine is completed, it is dismissed with a
monitor call which restores the process PC as specified by
the right half of the priority level word, and the process
is resumed. -

There are some special conditions governing interrupts from
monitor calls; these are discussed in Memo TENEX-8,
However, if the service routine does not change the
interrupt PC, all interrupts are guaranteed to be completely
transparent, i.e. the fork will be resumed on de-break and
will continue to do whatever it was doing. Note that, in
general, the service routine must save any AC's or other
temp storage possibly in wuse by the interrupted routine.
The monitor protects temp storage in use by interrupted
monitor routines (as described in TENEX-8), but the user is
responsible for protecting all temp storage in user memory.
If the service routine does change the interrupt PC, (in any
way, even the flag bits) the de-break will cause the fork to .
be restarted at the location specified by the interrupt PC.

In one particular situation, interrupted monitor calls
cannot be resumed but must be restarted. When the
environment is saved and later resumed, any interrupted
monitor calls will be restarted.

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1970 Page

Panic-Channels

Certain channels including APR PDL overflow, file data
error, illegal instruction, illegal memory read, illegal
memory write, illegal memory execute, machine size exceeded,
etc. are special "panic® channels in that they cannot be
completely turned off. While they will respond normally to
the channel on/off and read channel mask JSYS's, a pseudo
interrupt request received on such a channel which has been
turned off will be considered a fork terminating condition.

Implementation

The fork structure area contains one word for each fork to
indicate pseudo-interrupt channel arming. Each bit
.corresponds to one of the 36 channels and if set means the
channel is armed. Each PSE contains one word with a bit for
each channel to remember a deferred request for a
pseudo-interrupt (because of higher priority request or PSI
system off). There is also a bit for each priority level to
specify a pseudo-interrupt in progress on that level.

Pseudo Interrupt Fork Specification

When a particular pseudo-interrupt condition arises, one
fork will be pseudo-interrupted. It is often not obvious
which fork should be interrupted. For example, when a
terminal pseudo-interrupt character is typed, it is quite
possible that several forks may be armed for that
pseudo~interrupt condition. The following rules specify
which fork gets the various pseudo-interrupts.

1. Terminal Pseudo-Interrupts

Up to 36 terminal keys may be used to specify
pseudo~-interrupts., Each of these may be armed in
multiple forks, but when a fork arms a particular
key, the assignment of that key passes to that
fork alone. When that fork terminates or disarms
the key, the assignment will be passed back to the
fork from which it was taken. See the further
discussion of terminal interrupts below for
implementation details.

2., Directed Pseudo-Interrupts
The generated pseudo-interrupts are directed to

specific fork(s) which completely specifies the
fork to interrupt.

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1979 Page

3.

4.

5.

Terminating Conditions

Some interrupt causes result from conditions
indicating program malfunction and may be received
only by the fork in which they occur. These
include resource allocation exceeded, illegal
instruction, file error conditions, and memory
violation conditions. If one of these conditions
arises and the corresponding channel in that fork
is armed, then an interrupt will be initiated for
that process. If the channel is not armed, the
process will be terminated and the cause of
termination reflected in the job status which is
available to the superior fork.

Program Conditions

Other conditions arising from program execution
including non-error file conditions (such as EOF) ,
inferior fork termination, and APR traps
(overflow, floating overflow, floating underflow,
and no-divide) are handled as for number 3 above
except that the process continues in sequence if

the channel is not armed. The monitor will set’

the actual APR bits in a manner appropriate to
each process each time the monitor begins to run
the process.

Fork Termination
When a fork terminates, only the imquiate

superior will be checked for fork termination
interrupt enabled.

10

TENEX-7, Forks & Pseudo-Interrﬁpts Update-Nov 23 197§ Page

Terminal Interrupts

There are a maximum of 36 codes which can cause interrupts.
18 of the 36 interrupt channels are capable of being used
for terminal interrupts, Each of the 36 codes may be
assigned to any one of these 18 channels. A channel may
have at most, one terminal code assigned. The channels
useable for terminal interrupts are § thru 5 and 24 thru 35.
Each PSB contains a 36-byte table (PSICHA) to record the
assignment of channel to code.

CODE § |CHANNEL §
N CODE 1 CHANNEL #

CODE 35 |CHANNEL #

Channel to use for code N

A second table is used to record the number of the fork
having the code enabled before this one, i.e. the fork from
which the assignment was taken when given to this fork.

CHAN CHAN CHAN Number of fork
) 1l 35 from which was
: : . taken the terminal
code now assigned
to channel N,

When a process is suspended, its code assignments will be
passed back to the fork(s) from which they were taken. When
it is restarted, the PSICHA table will be scanned and the
codes re-assigned.

11

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1979 Page

The JSB has a table (PSIFKA) of 36 bytes indexed by
character code to record the number of the fork currently

assigned for each code.

36 BYTES fo | af {34 | 35|

Number of fork currently interruptable on receipt
of code N.

The terminal service routine need maintain only a single
word for each terminal, in which the 36 bits specify whether
or not any fork of the attached job has the corresponding
code enabled.

Interrupt of code
N enabled anywhere.

This places a minimum time and space demand on the terminal
service routine.

12

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 1970 Page

CHANNEL

VCoNOUAWNHG

(1)
11 (1)

14 (2)
15 (1)
16 (1)
17 (1)
18 (1)

20 (1,2)

Table 1
INTERRUPT CHANNEL ASSIGNMENTS

INTERRUPT

Terminal key or general
| J

APR Overflow (includes NODIV)
APR Floating overflow (includes FXU)
Unassigned :

APR PDL Overflow

File Condition 1, EOF

File Condition 2, data error
File Condition 3, (un-assigned)
File Condition 4, (un-assigned)
Time of Day

Illegal Instruction (I>>)
Memory, Illegal read (MR>>)
Memory, Illegal write (MW>>)
Memory, Illegal execute (MX>>)
Subsidiary Fork Terminated
Machine size exceeded
Presently unassigned

Presently unassigned

Presently unassigned

Terminal key or general

Notes: (1) channel is a "panic-channel"
(2) NOT IMPLEMENTED YET

13

TENEX-7, Forks & Pseudo-Interrupts Update-Nov 23 197§ Page

Perhaps to be added also are:
I/0: Device full and device inoperative
Memory: user-directed trap (MD>>)

This table was constructed in order of expected decreasing
use of interrupt. The assumptions are:

1. One or two terminal interrupts (e.g. RUBOUT) will be
used by most all programs.

2. It is decreasingly likely that programs will use:
a. APR conditions
b. File conditions
c. Timer
d. Instruction or memory trap conditions
e. Fork termination
f. Machine size or other allocation traps
g. More than 6 terminal interrupts

Note that there are some channels indicated for general
interrupts (the initiate interrupt monitor call). However,
an interrupt may be explicitly initiated on any channel,
whether or not assigned to some particular cause. User
programs may occasionally wish to use this feature; normally
explicit interrupts will be initiated on channels logically
assigned for some independent purpose.

The pafticular monitor calls related to fork control and the
PSI System are discussed in the JSYS manual, sections 5 and
6.

14

TENEX-8, Monitor Calls and Interrupts 4 Dec 70 Update Page

Monitor Calls and Pseudo-Interrupts

There are two types of monitor calls, UUO's and JSYS's.
There are two classes of each of these, "fast" and "slow".
"Slow" means that because of some additional overhead, the
routine may be pseudo-interrupted and subsequently resumed.
"Fast" means that the call will take sufficiently 1little time
that pseudo-interrupt requests may be deferred until completion
of the call, and that the additional overhead 1s undesirable and

unnecessary.

The two classes of UUO's are distinguished by a bit in the
left . half of the UUO dispatch word. That is, if a UUO with
opcode n is "slow", then

UUOT+n/ XWD 0,ADR
and if it is "fast", then
UuoT+n/ XwWD 400000,ADR

If the bit is off, the UUO dispatcher will go to the UUO code
via the "slow-call" setup routine (shown later), whereas control
will be transferred directly to the UUO code for a "fast" UUO.

The two classes of JSYS are distinguished by virtue of the
fact that the "slow" JSYS code contains an explicit call to the
"slow-call™ setup routine, whereas the code for a fast JSYS does
not.

Entry Procedure

The "slow-call™ setup routine, called MENTR (MONITOR
ENTER), 1s 1invoked from monitor code by execution of the
Instruction JSYS MENTR. Note that a user-mode program cannot
execute this instruction with the same result because the
effective address is greater than 1000(octal).

The following convention is observed:

All user-executable monitor call instructions (JSYS

and UUO) store their return PC in the same cell. It

is called FPC and is located in the PS block.

1

TENEX-8, Monitor Calls and Interrupts U Dec 70 Update Page

This is necessary to insure correct action on pseudo-interrupt
requests occurring during the execution of monitor code as will

be demonstrated.

The "slow-call" setup routine maintains a stack containing
returns and temp storage for slow monitor &routines. When
executing a user-to-monitor call, this setup routine places the
push pointer 1in ACl7, and saves the return. When executing a
monitor-to-monitor call, the push pointer is assumed to already
exist 1in AC17, so the MENTR routine need only add the return to
the stack (ala PUSHJ).

Returns

The return from a fast JSYS or UUO would appear to be
simply JRSTF @FPC, and it would be, except for the requirments
of the pseudo-interrupt logic. The return of a slow monitor
call 1is effected by the return routine MRETN (MONITOR EEEURﬁ)
which performs the inverse function of MENTR.

Pseudo-Interrupts

Pseudo-interrupt requests can occur at any time. A PSI
(pseudo-interrupt) request may be processed immediately 1if it
occurs while the process 1s in user mode. When the interrupt
request occurs during a monitor call however, it may be serviced
immediately only if 1t can be guaranteed that:

1. Temp storage, including PC and AC's, 1in wuse by the
jnterrupted call is protected from change by the user

directly or by other monitor calls executed 1in the

user's interrupt service routine. Otherwise, the
routine may malfunction on belng resumed, and, since
it 1s running in monitor mode, could possibly destroy

the monitor.

2. The routine can be aborted (by explicit user request)
without leaving anything in inconsistent or transitory

states.

Sometimes these conditions cannot be met, so a PSI request must
be saved and serviced at a later time.

Interruptibility of "Slow" Monitor Calls

In order to meet condition 1 above, it 1s at least
necessary that the temp storage in use at the time of the
jnterrupt be identifiable. The most convenient way to do this
is to establish a stack (push 1ist) in the PS block to be used
for all temp storage for all interruptable monitor routines.

2

TENEX-3, Monitor Calls and Interrupts 4 Dec 70 Update Page

This stack, then, along with the AC's and the process PC would
represent the complete state of the process. When a PSI 1is
requested, the AC's and PC are added to the stack and the stack
pointer increased accordingly. This procedure effectively
protects temp storage as required by condition 1. Additional
monitor calls can be entered from the user's interrupt service
routine, and additional interrupts can be initiated on higher
priority channels ‘to a depth limited only by the size of the
stack and the number of priority levels.

The routines MENTR and MRETN handle the maintenance of the
stack on entering and leaving "slow" monitor routines as

mentioned above.

Fast=-Slow Distinction

As can be seen, there is an overhead involved 1n the stack
maintenance procedure, a cost greater than that of a simple
JSYS-JRSTF call and return sequence. However, monitor routines
which are so short that this overhead time is a significant
fraction of their execution time are 1likewise so short that
there 1s no problem 1in deferring interrupt service to their
completion. This is precisely the distinction between "fast"
and "slow" monitor calls.

Interrupting "Fast" Monitor Calls

Since fast monitor routines are by definition not 1in a
state to be interrunted, it must be possible to save an
interrupt request and service it at a later time, preferably at
the termination of the fast routine. We pronose to do this by
making the return for fast monitor calls be done by executing
the instruction XCT MJRSTF. The contents of MJRSTF will
normally be JRSTF @FPC if there has been no pseudo-interruot
request. Since all returns are saved in FPC, this instruction
is always the approoriate one. If there was a PSI request, the
monitor's PSI control routine will have changed the contents of
MJRSTF to JRST PSISVO which will again consider 1nitlating %an
interrupt, assuming now that the process PC is specified by the

contents of FPC.

PSI Strategy

The process by which the PSI routine decides whether to
interrupt "immediate" or '"deferred" is somewhat comolex. The
first decision factor is the state of the wuser mode flip-floo
available in the process PC word. If the process to be
interrupted is in user mode, the 1interrunt can be done
immediately. If the process is in monitor mode, the PSI routine
must distinguish "fast" vs. "slow" code. The flag SLOWF (in

3

TENEX-8, Monitor Calls and Interrupts 4 Dec 70 Update Page

the PS block) makes this distinction. It is initialized to =-1;
entering slow monitor code (via MENTR) makes it positive,
leaving returns it to its previous state. Therefore 1f SLOWF 1s
negative (and process is in monitor mode), "fast" code 1is
implied and interrupt request is deferred as described above.

One other flag,. INTDF (INTERRUPT DEFER FLAG) 1is also
included to enable "slow™ routines to temporarily defer
interrupts when aborting the routine would leave something in an
inconsistent state (e.g. during a change to the PAC slot 1list
structure). It is also necessary for some of the
monitor-to-monitor calling sequences shown later. This flag 1is
normally -1 (off, i.e. interrupts not deferred). It is turned
on with A0S, and turned off with XCT INTDFF. INTDFF normally
contains SO0S INTDF if no interrupt 1is waiting, otherwise
JSYS PSISV1.

Note that the routines at PSISV0O and PSISV1 do not
necessarily initiate the interrupt whenever they are entered,
rather they reconsider the state of the process as specified by
the various flags and accordingly either initiate the interrupt
or set up another defer trap and resume the sequence.

4

TENEX-8, Monitor Calls and Interrupts 4 pec 70 . Update Page

Monitor Routine Programming Considerations

System programmers writing monitor routlnes called via
these sequences must be aware of the following points.

1. In some cases, an argument given to a monitor call is an
address (in the user memory) which is to be referenced.
Td facilitate -such references, the UMOV group of
instructions (UMOVE, UMOVEI, UMOVEM, and UMOVES) has
been installed on the APR and is described in the system
reference manual. A more general way to reference the
user map from monitor code is the XCT instruction with
ACHAO, (See System Reference Manual section 10.5.2 for
details).

The effect of both types of instructions is to cause the
user map rather than the monitor map to be used for
certain memory references, whether direct or calculated.

Example:
UMOVE A,100 3sCONTENTS OF USER'S 100 => A
UMOVEM B,0(A) ;B => ADDRESS GIVEN IN A

Normal user mode addresses in the range 0-17 go to the
fast AC's as do monitor mode addresses in that range.
To facilitate general monitor references to user
‘addresses, however, monitor mode references to user AC's
(via UMOV or UXCT) are mapped Into a block of 20 ({octal)
words determined by the AC base retister in the pager.
The monitor maintains this register pointing to one of
several blocks in the PSB and updates it each time a
slow routine 1is entered or exited. For example,
UMOVE 1,5 will move the contents of word 5 of the
current AC block 0 to real AC 1. This means that a
monitor routine which 1s given a user address (second
example above) may reference that address without
checking to see if it is an AC. Further, to recelive or
return a parameter in an AC, a monltor routine should
use the UMOV or UXCT instruction thereby avoiding
conflicts with AC's in use as temps.

Example:
UMOVE A,1l 3TO GET PARAMETER FROM AC1l
UMOVEM A,2 3sTO RETURN VALUE IN AC2

Note however that the user AC's must be explicitly moved
between the real AC's and the appropriate AC block when
entering or leaving a monltor routine. We have decided
to 4include in MENTR the saving, and 1in MRETN the

TENEX-8, Monitor Calls and Interrupts U Dec 70" Update Page

2.

3.

u.

5.

restoring of the user AC's. The reasons for this are:

A. If the user AC's are to be saved at all, it 1is
most efficient to do so 1in conjunction with
setting up the PDL which MENTR already does.
Further, this eliminated the need for a separate
call or in-line code to do the save.

B. A routine already usin MENTR can tolerate the
additional overhead 30-40 wusec) of saving the
AC's and will probably need to do read references
at least.

C. The need for PUSH's and POP's to save temp AC's 1s
eliminated.

Monitor routines should use the slow-call procedure
unless a good case can be made against it. In general,
a fast routine must:

a. Be less than 100 usec maximum execution time.

'b. Use no other monitor calls (private subroutines
called by PUSHJ are OK)

c. Not use a push list.

d. Save and restore any AC's used, and avoid use of
UMOV and UXCT instructions which could reference

user AC's.

Monitor routines which are changing tables critical to
the process should use the interrunt defer flag to
prevent interrupts during a transition period. That is,
execute AOS INTDF to become non-interruptable, and
XCT INTDFF to restore interrupts. This prevents
interrupts but does not affect scheduling, so the
noschedule-schedule sequences must be used if the tables
being changed contain job or system global data.

Note that a monitor routine may reference an address
given 1it as a parameter (#1 above) with an indexed or
indirect instruction with no special checks. The "ecall
from monitor" flag in the APR records the state of the
user mode flag in the previous context, and causes UMOV
and UXCT instructions to reference monitor memory
(except that addresses 0-17 always refer to the current
AC Dblock) when the calling program was in monitor mode.
This flag is saved in the PC word and restored on an
MRETN or fast return.

Argument and value conventions for UUO's (after effective
address) and JSYS's:

6

TENEX-8, Monitor Calls and Interrupts 4 Dec 70 Update Page

ACl Pirst argument First value
AC2 Second argument Second value

TENEX-8, Monitor Calls and Interrupts 4 Dec 70 Update Page 8

Sample Routines

Following are the typical routines used for entering and
leaving slow JSYS's and for decoding UUO's.

3 UUO DISPATCH.ROUTINE

41/ JSYS UUOH ;JSYS RATHER THAN JSR TO BE REENTRANT
UUOH: XWD FPC,.+1 sRETURN GOES TO FPC AS FOR JSYS'S
MOVEM 1,XMENTR ;ACLl => TEMP
HLRZ 1, k0 :GET OP CODE
LSH 1,-4D9
CAIL 1,100 ;CHECK FOR OUT OF BOUNDS
JRST ITRAP : ILLEGAL INSTRUCTION
SKIPL 1,UUOT(1) :GET DISPATCH WORD AND CHECK FAST OR SLOW
JRST UUOH2 . SLOW...
EXCH 1,XMENTR FAST, RESTORE ACl, SETUP DISPATCH ADR
JRST @XMENTR :DIRECTLY TO ROUTINE
Comments:

At UUOT is a 100(octal) word dispatch table for
UUO's with indicator bit in each left half as
mentioned. :

Slow UUO's exit with JRST MRETN, fast UUO's exit
with XCT MJRSTF.

TENEX-8, Monitor Calls and

$sSLOW-CALL SETUP ROUTINE
MENTR: XWD XMENTR,UUOH1

UUOH2: EXCH 1,XMENTR

UUOHl1l: SETOM SLOWF
EXCH 0,FPC
TLNE 0,UMODE
JRST MENT1
PUSH P,INTDF
PUSH P,MPP
PUSH P,0
MOVEM P MPP
AOS P, ACBAS
SETACB P

MENT2: MOVE 0,XMENTR
EXCH O0,FPC
SETZ P,
XCTMU [BLT P,P-1]
MOVE P ,MPP
SETZM SLOWF
XCT MJRSTF

MENT1l: MOVEM P,XMENT1
MOVE P,UPP
PUSH P,

PUSH P,

. MOVEM P,MPP
SETOM INTDF
MOVE P,ACBAS1
MOVEM P,ACBAS
SETACB P
MOVE P,XMENT1
UMOVEM P,P
JRST MENT2

Comments:
P is 17

Return is always

Interrupts U Dec 70 Update Page

3SLOW JSYS' BEGIN WITH JSYS MENTR

3sSLOW UUO'S ENTER HERE
$INIT SLOW STATE

$sGET RETURN PC

sUSER OR MONITOR MODE?

s USER

3sSAVE CURRENT DEFER DEPTH
3SAVE PREVIOUS ERRORSET
3SAVE RETURN

3sSAVE CURRENT STACK POINTER
sGET NEXT AC BASE ADR
3GIVE IT TO PAGER

s LOCAL RETURN => FPC

3ACO => 0

¢tMOVE FROM REAL AC'S TO USER BLOCK
sRESTORE P

s NOW IN SLOW CODE
;JRSTF @FPC OR INTERRUPT

sSAVE USER'S AC-P

sGET STACK POINTER

s TWO RETURNS

+SO ONE CAN BE DIDDLED

sINIT INTDF

sFIRST AC BASE TO USE

sINIT AC BASE

sSET PAGER

sRESTORE USER'S AC-P

:PUT USER'S AC-P WHERE IT BELONGS

last entry on stack, so skip return

can be done by AOS #(P), etc.

When coming from user mode, additional procedure is to

setup stack pointer, save original return (in case
regular return is modified).

Interrupt requests occurring during this code will be

deferred (to XCT MJRSTF).

TENEX-8, Monitor Calls and

:SLOW-CALL RETURN ROUTINE

MRETN:

MRETN1:

SETOM SLOWF
MOVE P ,MPP

POP P,#

MOVEM §,FPC
TLNN @,UMODF
JRST MRETN1
SETZ P,

XCTUM [BLT P,P]
XCT MJRSTF

MOVEM P,MPP

SETZ P,

XCTUM [BLT P,P-1]
sos P,ACBAS
SETACB P

MOVE P,MPP

POP P,MPP

POP P,INTDF
SETZM SLOWF

XCT MJRSTF

Comments:

Interrupts 4 Dec 76 Update Page

:RESET FLAG

sGET STACK POINTER AT LAST ENTRY
sPOP RETURN

$SETUP RETURN

;USER MODE?

:NO :

;s RESTORE USER AC'S
sRETURN OR INTERRUPT

$SAVE P

;s RESTORE AC'S

;sRESET AC BASE TO LAST ONE

s RESTORE PREVIOUS STACK POINTER

s RESTORE INTERRUPT DEFERRED STATE

;RETURN OR INTERRUPT

This routine is like a POPJ with flag restoring.
Interrupt requests occurring during this code will
be deferred or immediate as for MENTR.

19

TENEX-8, Monitor Calls and Interrupts 4 Dec 70 -Update Page

Initiation of Interrupt

When an interrupt is to be initiated from a ‘monitor call,
these PS block cells must be added to the stack:

UPP - Initial stack pointer; changed only for
interrupt service (monitor to user transfer),

set to current stack position at start of

interrupt
49, 68 - General UUO temps
SLOWF - Slow code level (flag)

FPC - Temp possibly in use by MENTR or MRETN
XMENTR - * "

Also, the following must be added to the stack:
AC's fi=-NSAC - presumed to be in use by mon code
process PC = pointing into monitor routine
Then:
1. Current stack pointer => UPP
2. Get user AC's (from UPGH) and PC
3. Go to user's interrupt routine
When the user debreaks, the monitor routine will be resumed
if the wuser did not change the interrupt PC, otherwise the
stack will be cleared back one level (using the saved UPP),

and the process will be started in user mode at the
specified location.

11

TENEX-8, Monitor Calls and Interrupts 4 Dec 7§ Update _Page

Nested Monitor Calls

Monitor calls may be executed within other monitor
calls, but extra instructions are required in some cases.
There are four possibilities:

Slow to Slow

Same as user; save 4§ if nested UUO

Slow to Fast

Become non-interruptable first, i.e.

AOS INTDF :DEFER INTERRUPTS
one or more fast calls
XCT INTDFF .$S0S OR JRST

Fast to Fast

Save return on special stack, i.e.

MOVE AC,FPC
AOS FPTR ;SPECIAL STACK POINTER

MOVEM AC,@FPTR

one or more fast calls
MOVE AC,@FPTR

S0OS FPTR

MOVEM AC,FPC

Fast to Slow (Arising where fast routine wants to be
conditionally slow)

Execute slow-routine entry procedure and observe slow
routine conventions.

AOS INTDF ;s DEFER INTERRUPTS
JSYS MENTR s INITIALIZE STACK, ETC.
PUSH P,.. ;SAVE LOCAL TEMPS

XCT INTDFF sENABLE INTERRUPTS,

12

TENEX-8, Monitor Calls and Interrupts 4 Dec 7¢ Update Page 13

The routine is now effectively “slow®, and should return
with JRST MRETN. It can become "“fast"™ again with the
following kludge: (this is not done in current TENEX).

AOS INTDF ;DEFER INTERRUPTS

POP P,.. s RESTORE LOCAL TEMPS

POP P,TAC sORIGINAL RETURN

PUSHJ P,MRETN ;UNDO SLOW SETUP AND RETURN HERE
MOVEM TAC,FPC s REPLACE ORIGINAL RETURN

XCT INTDFF ;ENABLE INTERRUPTS

This last case should be done only rarely and with extreme
caution to be sure that there is not a higher level fast
routine (in which this one is nested) which does not expect
to be interrupted and which may have vulnerable temps.

TENEX-12, Scheduling and Storage Management PAGE 1

Scheduling and Storage Management

The gross functions of scheduling and storage managing will
be handled by a number of inter-related modules of TENEX
monitor software, each with a specific, separable set of

operations to perform.

STARTUP AND DISMISS INTERFACES

BALANCE SF T —»] SWAPPER []
CONTROL _J
PROCESS CORE
CONTROLLER MANAGER P—
REAL-TIME |
SCHEDULER DRUM
MANAGER L;
SCHEDULER STORAGE MANAGER

The modules to the left of the dashed 1line comprise the

scheduler, those to the right are the storage manager.

Scheduler

The process controller performs those functions wusually

associated with a time sharing scheduler. It contailins
tables of all processes existing in the system and their
state of execution (runnable, blocked for I/0, etc.). It
contains routines which change the state of processes on
request from other system modules or as a result of process

activity. A central routine of the process controller

TENEX-12, Scheduling and Storage Management PAGE 2

performs the basic scheduling function, i.e. it coconsiders
the state of the processes in existence and the available
system resources, and selects a process to be glven some CPU
service. It keeps an accounting of the recent activityr of
each process, particularly CPU usage, and allocates each
system resources among the processes competing for it

according to some defined criteria.

The capabilities and requirements of TENEX impose the need
for two other separate modules to handle specific parts of

the total scheduling'function. The real-time scheduler 1is

concerned only with those processes which are currently
making real-time demands on the system by use of the hybrid
or diSplay processors. Its scheduler portion is invoked
whenever an external signal or clock indicates that
re-scheduling may be required. Because the set of processes
in its tables is small, it can very quickly determine which
real-time process 1is to be run. If there are no real-time
processes requiring service, then the selection of a process

to run falls to one of the other two modules.

The real-time scheduler also communicates with user
programs, accepting requests for real-time service, keeping
track of the current demands, ana informing the program

whether service can or cannot be guaranteed.

The balance set control is concerned with making effecient

use of the core and drum channel resources of the system.

TENEX-12, Scheduling and Storage Managsement PAGE 3

It constantly monitors the state of core utilization and
working set requirements of the processes 1n core, and
decides when another process can be admitted or one must be
thrown out. The "balance set" 1s defined as a set of
runnable processes whose working sets can co-exist 1in core.
It 1is thus a subset of the set of all runnable processes,
and normally consists of those runnable processes which are
'most due for CPU service as determined by the process

controller,

The information gathering and decision making procedures
involved in determining working sets and core utilization
are quite complex, and incorrect handling of these functions
in a multi-process paged system can result 1in poor
effeciency and had service. The first step in avoidine this
pitfall is to define a portion of the monitor which 1s
directly responsible for these functions rather than having
them diffused through many parts of the system. This we

have done in the Balance Set Control module.

The function of the startup and dismiss routines 1is fairly
common and strairht forward. Included in this section are

routines to save and restore environments as they go out of

and into execution. ~No important scheduling or other

decisions are made by this module.

TENEX-12, Scheduling and Storage Management PAGE 4

Storage Manager

The swapper handles the communication between the secondary
storage devices (drum and disk) and core memory. It
receives requests from the scheduler to move processes 1into
and out of core, constructs I/0 requests and performs

queuing.

The core manager selects core pages to be used for swap

reads from the drum or disk, performs some "aging"
operations, and handles the selection of core parges to Dbe
swapped to the drum. It has principal use and control of
the Core Status Table (CST) which reflects at all times the
current state of each page of core memory. The CST is also
modified by the paging hardware, recording information about

the activity of the running process.

The drum manager is responsible for assigning storage on the

swapping drum and for selecting pages to be moved to the

disk in the event the drum becomes full.

TENEX-12, Scheduling and Storage Management PAGE 5

Design of Process Control Module

General Scheduling Algorithms

The CPU* is used at least some of the ¢time by all user
processes during the course of their existence, as well as
by the monitor routines which control the ba;ic behavior of
the system. Therefore, ﬁe shall examine first the algorithm
for allocating CPU usage among the various processes.
Real-time considerations aside, there are two main goals

which a scheduler'attempts to attain:

1. Provide both rapid response to interactive users and
"fair share" service to compute-bound users of the
system, This wusually means equal service for
similar processes, but may be affected by externally

defined priorities or privileges.

2. Make effecient use of the resources of the machine,

principally CPU and core.

The actions of the scheduler affect the utilization of all
of the resources in the system since all activity on behalf
of a user is the result of the execution of instructions by
the CPU. Hence the scheduling algorithm must 1nclude

procedures to affect the scheduling as a result of I/0 or

or APR in DEC terminology

- TENEX-12, Scheduling and Storage Management PAGE 6
other non-CPU activity.

As time sharing systems have become more complex, the
importance of goal 2 above has increased greatly. With
all-core systems, any algofithm could easily be efficient,
but with the addition of swapping and much larger processes,
simple time-multiplex schedulers become extremely
ineffecient because they do not take 1into account the

limitations of core and swapping channels.

The TENEX paging concept is designed to allow the existence
of much larger processes than would be possible or feasible
without paging and to permit increased efficiency in
handling all sizes of Dprocesses. This 1mposes an even
greater demand on the scheduling procedures to inter-relate
the use of core with the allocation of the CPU. Thus the
development of the scheduling algorithms presented here will

frequently include considerations of core usage.

Basic Scheduling Concept

The goal of quick interactive response suggests that
processes which have a short amount of computing to do be
given some preference over those with considerably more.
Ideally, a time sharing system running N users would always
be able to give interaction and compute times no worse than

N times as 1long as if the system were running 1 user, and

TENEX-12, Scheduling, and Storage Management PAGE 7

generally the distribution of types of activity of the N
processes means that service can be better than this. To
reach this ideal means that the system would 'have to have
some idea.of how much service was wanted when a request for
service was made. For example, consider a system running
five users. If a process completes a user interaction, will
compute for 0.1 second and interact again, that process must
be scheduled and run within 0.5 second elapsed real time.
If the process is going to compute for an hour, however, it
can easily go for minutes or teﬁs of minutes without being
run, just so it accumulates an hour of run time within the

elapsed time of five hours.

This implies that the scheduler should know how much time a
process 1s going to use when it makes a request for CPU
service. To always do this correctly is obviously
impossible. The scheduler can only guess at the future
behavior of a process based on its past behavior, and in so
doing it must assume that any guess can be completely wrong.
It should guard against cases where a wrong guess or a
strangely behaved vrocess can produce gross inefficiency or

unfair allocation,

The most sipnificant piece of data from the recent history
of a process 1s the amount of time it has used since its
last request for service. 1In what way can this information

be used? We know that within any short period of time, the

TENEX-12, Scheduling and Storage Management PAGE 8

more time a process has used, the closer 1t must be to
completion. However, we know that the number of processes
completing during any fixed period of time decreases as the
total run time increases*, so the longer a process has run
the less are the chances that it will complete "soon". Thus
we have two conflicting ideas about ﬁow to predict time to

completion.

The first premise suggests a scheduler which always selects
for running the process which has already run the longest.
This means, however, the any new request for service would
have to wait wuntil all existing requests were completed
(wvhich could take hours), so the response characteristics of
such a scheduler would be unsatisfactory. The second
premise suppests a scheduler which always selects for
running the process which has run the least. This procedure
would provide quick response characteristics for short
requests, but would cause constant rescheduling of the
longer running processes as each process, when run,

immediately surpassed the others in total time used.

We can find a middle ground by combining these two notions

of process behavior. We say that over the long run, the

*# Statistically, for comoute bound Jjobs, the time to

complete is (roughly) exponentially distributed.

TENEX-12, Scheduling and Storage Management PAGE 9

more time a process has used, the more ¢time it may be
expected to use, but we then break up the run into separate
regions in which we say that the longer a process has run,

the closer it must be to completion.

EXPECTED
TIME TO
COMPLETION

i r T T T T
ACCUMULATED TIME USED

Note that each region (which we shall berin calling a gueue)
includes a longer time than the previous region by some.
factor. If our scheduling algorithm selects for running the
process with the least expected time to run as determined by
the above graph, then the following characteristics will be

observed:

1. If two processes are widely separated in accumulated
run time (are in different queues), the one with the

lesser time will be preferred.

2. If two processes are closely spaced (are in the same
aueue), the one with the greater time will be

preferred.

TENEX-12, Scheduling and Storage Management PAGE 10

We do not extend the graph as shown indefinitely however for

two reasons.

1. A process that had run a very 1long time (e.g. 1
hour) would get no.service 1if another process began
a long compute run until that second process had run
nearly as long as the first. A long running process
could also be shut out of service by a set of short

running processes which used 100% of the CPU.

2. Although the frequency of rescheduling (and
consequently the amount of rescheduline overhead)
goes down as the queue time becomes largg, a point
is reached at which the overhead 1s an insignificant
fraction of the total time and no gain 1is achieved

by reducing it further.

Instead, we define a "last queue" (#5 in the above graph),
and as a process reaches the end of the last queue, it gces
back to the beginning of this gueue. This means that we do
not distingsuish amone processes that have run longer than a
certain amount (typically 10-15 seconds) but schedule them

in a "round-robin" manner.

Use of this graph results in a procedure which has three

parameters.

1. The factor by which the time on each queue 1is

greater than the last.

TENEX~12, Scheduling, and Storage Management PAGL: 11

2. The amount of time of the first queue,.

3. The number of queues.

The actual values are selected on the basis that fewer and
longer queues result in less system overhead but produce a
poorer approximation to 1ideal scheduling. Therefore, we
select the largest valués of 1 and 2 which give the desired
response characteristics, and then a value for 3 as

specified above., Our first set of values are:

1. 4 (i.e. T(I+1)=4#%T(I) for queues I and I+1)

2. 64 msec for queue 1.

3. 5 aqueues (T(5)=T(1)#44+ (5-1)=6L4%#256=16.384 SEC.)

They may easily be changed, however, and we exnect to
expreriment with different combinations. In fact, the
Mini-System is implemented with a table which gives the time
of each queue, so #1 above need not be a constant but can

vary from queue to queue.

To see further how this alrorithm works, consider a process
which has Jjust made its first request for service. It is
placed on queue 1 with a 64 msec quantum. 7This process will
be serviced before any processes on higher queues, but since
this is the largest quantum on queue 1, any other processes
on queue 1 will receive service first. However, there can
be at most N-1 other processes on that queue, so this 1last

process will receive service within 64%(N-1) msec. If the

TENEX-12, Scheduling and Storage Management PAGE 12

process uses all of its 64 msec, it will be placed on queue
2 and given a new quantum of 256 msec. Now it must wait for
other processes on queue 2, and when &running may be
pre-empted by processes appearing on queue 1. So long as it
continues to demand CPU service, it will fall to lower
priority (higher numbered) queues until it reaches queue 5,
Then, each time it uses the 16 sec quantum, it 1is placed
back at the beginning of queue 5 and given another 16 sec.
Thus, the scheduler will "“round-robin" any set of long
running processes, giving each 16 seconds of CPU service

before passing on to the next.

Waits

We must now add to the algorithm the procedures for handling
periods of no-CPU demand by processes. If a process 1s not
demanding CPU service, it 1is explicitly or 1implicitly
waiting for some external condition or event, e.g. an I/0
device to complete or a user to type a character. For CPU
scheduling purposes, we can say that it does not matter what
causes the waiting, we can still proviae at least 1/N of the

CPU to all users by the following procedure:

During periods of I/0 wait, give the waiting process
"credit" for CPU time not used by reducing the
time-used value at the rate of 1/N. Reducing, the

time-used quantity will ¢tend to move the process to

TENEX-12, Scheduling and Storage Management PAGE 13

higher priority queues so it will be preferred over

processes which continue to run.
Some of the effects of this are:

l. A process which waits 1long enough will have 1its
run-time reduced to 0 and so will receive highest
priority when it again requests service. This will
tend to happen to processes which are doing much
teletype interaction and only short compute bursts,

However,

2. A process cannot grab more than its fair share of
the CPU by doing lots of interactions. This happens
in many systems because I/0 waits erase all previous
history of the process, and generally, long or short

waits are treated as equivalent.

3. Use of high-rate I/0 devices will not "swamp" the

system or lock out ordinary processes.

This procedure does not include waits occasioned by disc or
drum transfer because processes cannot directly reqﬁest such
transfers; they arise only indirectly or as a result of
scheduling decisions. When a process cannot be run because
a needed page 1s not in core, this 1s not considered a wait
because 1n fact the process is still demanding CPU service.
The service cannot be given because core, rather than CPU in

this case, 1s not available. Handline this part of the

TENEX-12, Schedulings and Storage Management PACE 14

schedulins function 1is the process ‘of the balance set

control module described in the next section.

Implementation

The foregoing scheduling aléorithm will be 1implemented in
the TENEX process controller., This part of the scheduler is
responsible for continuously monitofing the activity of all
processes on the system and maintaining an equitable
distribution of CPU service, generally to attain the 1/N
conmpute and response rate described earlier. By application
of the algorithms discussed, the process controller can at
any time establish the preferential order of all processes
to receive CPU service. Whenever an event occurs which
could chanse that ordering, the process controller again
checks fhe state of the processes to see 1if the currently
running process 1is now less preferred than some other
process. Such events include:

1. Process in I/0 wait becomes runnable.

2. Currently running process blocks for I/0 wait.

3. Currently running process exhausts time allocation

for its current queue.

Note that the alporithm as presented 1is not 1limited to
scheduling only one process to run at a time. The second

process, third process, and so on can be selected from the

TENEX-12, Scheduling and Storage Management PAGE 15

preferential ordering for simultaneous runnine so long as
processing capability exists. This 1is important for two

reasons:

1., The complete TENEX system will contain two CPU's and
must be capable of running processes on both

simultaneously.

2. Because of the paging mechanisms, portions of
several processes will exist in core simultaneously,
and these processes may be switching rapidly between
the states of runnable and page fault wait. It is
useful to consider these processes as running
simultaneously from the point of view of the process
controller. The final decision of which of these-
processes to actually run can then be made by the
balance set control using additional information and
procedures which are tuned for high core and CPU

.

efficiency.

Therefore we say that in general there are a set of N
processes running and these are the top N processes of the
preferential ordering, The rescheduling procedure,
trigeered by one of the events listed above, causes to be
removed from the running set any process which 1s now of
lower preference than any process outside of the running
set. In the next section, we shall call this running set

the balance set, 1indicating that it is a set of processes

TENEX-12, Scheduling and Storage Management "PAGE 16

whose core and CPU demand balances the available core and

CPU resources of the system.

Balance Set Control

As stated in the introduction, the balance set control is

responsible for making efficient use of core memory. The
existence of paging makes this a critical task and one which
should be centered in a specific module. The lorical
storage organization of TENEX includes the drum and disk as
well as core memory, i.e. core, drum, and disk are part of
the mechanism which implements the virtual memory and file
capabllity of TENEX. This means that these devices and
tﬁeir associated channels are servicing the demands of many
users either simultaneously or over short intervals, and
making efficient use of core is closely related to making
efficient use of the data channels to the drum and disk.
This is why we have placed the emphasis on core utilization
and have specified that drum and disk waits are not handled

like other I/0 waits.
The basic functions of the balance set control are:

1. Maintain the list of processes in the Dbalance set

such that the working set of all of these processes

can exist in core.

TENEX-12, Scheduling and Storage Manarement PAGE 17

2. When the running process must be stopped for a page
fault, select one of the other processes in the

balance set for running.

3. On occurrance of a resheduling event (quantum
overflow, I/0 block, I/O unblock), remove and/or add
processes to the balance set in co;operation with

the process controller.

We believe that even simple alporithms for handling these
functions, working in conjunction with the process
controller described in the 1last section, will provide
reasonable efficiency. The design of the balance set
controller has not been firmly decided at this time, and we
expect the Mini-System implementation to be fairly simple.
We will then experiment with more complex procedures and'
different algorithms to 1imprcve system performance. We
believe that the organization of the scheduler into the
modules shown on page 1 means that such experimentation will
be effected easily and that our first simple implementation
will function satisfactorily. The following discussion will
attempt to clarify the’operation of the balance set control

and give some of the algorithms which have been provrosed.

Function 1 - Maintain Balance Set
As stated earlier, the paging mechanism allows portions
of several processes to be 1in core simultaneously.

Determining how many processes of what size is the central

TENEX-12, Scheduling and Storage Management PAGE 18

function of the balance set control. Usually, an estimate
of the working sets of the running processes must be
maintained. The working set model of program behavior is
developed and discussed in an article by P. J. Denning 1in
the Communications of the ACM, May, 1968, to which the
" reader is referred for an extensive treatment of this
subject. Basically, the model suggests that there is a
relationship between the number of pages of a process in
core and the average time that that process will run before

page faulting (referencing a page which is not in core).

Control of this time to page fault, T, is critical to the
efficient use of core and CPU, because what the balance set
control tries to do is make sure that there 1is always at
least one process to run (page swap completed) whenever the
running process pase faults. It is obvious that T is an
increasing function of the number of pages 1n core. The end
points are clearly T=0 for O pages in core, and T=infinity
for all pages of the process in core. Several suggpgestions
for the shape of this curve in between have been given, and
different programs probably have differently shaped curves,
The working set is defined as that number of pages which
will cause Tav to be large enough so that the process can do

some useful computation between papge faults.

The balance set control must try to keep a balance set which

maximizes the probability that there will always be at least

TENEX-12, Scheduling and Storage Management PAGE 19

one process to run. That 1is, whenever one process page
faults, there should be another ready to run. This suggests
that the processes must run an average time greater than the
average interval, W, over which one page transfer will be
completed for one of the page-waiting processes, i.e. T W,
For example, 1if there are exactly two processes in core,
then one must run for at least as long as 1t takes to swap a

page for the other. Swapping time is write access plus

write (to put the page being replaced back on the drum) plus

read access plus read, or, on the average,

W =2 *¥ (AVERAGF ACCESS + TRANSFER)
for fixed size (one page) transfers., W may be less if the
write operation need not be done because the page was not

changed while in core.

As the number of processes in core (and waiting for a page)
is 1increased, the average time to completion of a page swap
decreases, since there can be several processes completing
during one drum revolution. There are two limits to the
increase however. First, the number of pages that each
process can have will decreasc (as the fixed number of pages
of real core are divided among more processes) and so Tav
will fall, eventually to a value Dbelow the CPU process
switcning time. Secondly, the drum has a maximum data
transfer rate which 1s reached when every sector has a
transfer waiting. That is, if the drum has S sectors and a

rotation time of R, there can be at most S pages transferred

TENEX-12, Scheduling and Storapge Management PAGE 20

and therefore S processes completing during the next R
seconds(1). Thus the minimum approachable average time for
processes to complete page waits is between R/S and 2R/S,
depending on what fraction of pages are changed while in

core,.

So we see that there 1s a rénge into which W will fall, the
maximun

W=2#% (R/2 + R/S) = R(5+2)/S = (approx) R
when there is one process waiting and pages must always De
written, and the minimum

W = R/S
when there are many (> > S) processes walting and pages never

need to be written.

One possible alporithm is to estimate a value of W based on
N, the number of processes in core, e.g.

W = R/N for 0< N< S
then attempt to adjust the size of the processes in core so
that Tav for each one (measured dynamically) is slirhtly

greater than W. This adjustment could cause the allocation

(1) This can only be approached by having at 1lecast one
process waitinpg for a pare on every sector, whicn means
considerably more than S total processes waiting. However,
this situation also means that some processes will be

experiencine delays of several revolutions in receiving a

page transfer, and response time may become unaccentable.

TENEX-~12, Scheduling and Storage Management PAGE 21

of core to change so that there would be room for one more
or one less process, whereupon W must be re-estimated. Note
that, for example, if T< W causes core to become full and one
process to be thrown out, then the new W will be slightly
larger than the old W, thus moving in the desired direction
of T> W, This means that the iterative procedure should tend
to converge, with suitable precautions against oscillations

around T=W,

Function 2 - Reschedule on Page Fault

As described above, the balance set control control
attempts to always have at least one process to run whenever
the currently running process page faults. If there is more
than one process ready, the balance set control must select
one for running, and we may ask what algorithm should be
used for this. One that has been supgested is that the
process with the larrsest number of pages in core (largest
working set) be selected, reasoning that the process tying
up the most resources should be pushed to completion so as
to free the resources for other use. A second procedure
would be to schedule on the basis of the preference value

determined by the process controller for similar reasons.

Whether one of these or some other algorithm is used, we may
also ask 1if rescheduling should be done only on pare fault
or on parge wait completion .also. That 1is, should the

balance set control possibly reschedule when the swapper

TENEX-12, Scheduling and Storage Management PAGE - 22

sigdals that a page transfer has been completed or only when

the running process page faults?

Function 3 - Change Balance Set upon rescheduling event
The three regular rescheduling events affect the

balance set control in similar ways.

1l. Quantum overflow - If the currently running process
exhausts the quantum for 1its queue, it may have
become of lower preference than some other process
not currentiy in the balance set. When guantum
overflow occurs, the balance set control will call
the process control to establish the new
vreferential ordering which will indicate whether
the quantum overflow process is to be thrown out and

one or more new processes admitted.

2. I/0 block means that the process must be removed
from the balance set because it cannot run. Space

is then available for one or more new processes.

3. I/0 unblock - This event 1s detected by the various
I/0 service ©routines which then initiate a request
for rescheduline. If the unblocked process 1is now
preferred over one or more processes in the balance
set, then the unblocked process must be added and

one or more of the other processes removed.

TENEX-12, Scheduling and Storapge Management PAGE 23

There are some other aspects of adding and removing
processes to consider. We believé that the loading of a new
process can be handled strictly by demand page faults rather
than by any scheme of preloading pages. If the balance set
control is successful in keeping several runnable processes
in core, then the rapld page faults of one process loading
its working set will not cause a degredation of efficiency.

Also, the disadvantages of preloading will be avoided, which

are:

1. Need for storage and procedures to record actual

pages of working set for each process.

2. Extra load on drum channel caused by pares which are

preloaded but not needed.

Demand loading insures that any page loaded 1s actually
needed, However, only one or a few processes should be in
the demand loading phase at any time to avoid reducing the

Tav for all processes too seriously.

One provision which could serve to improve efficlency 1is to
record for every process the size (number of pages) of 1its
working set and its Tav at 1last running. Then, when a
process 1is to be brought into core, the balance set control
would know how many pages of core are needed and
consequently how many other processes are to be thrown out.

Further, when room in core becomes available (because of I/0

TENEX-12, Scheduling and Storage Management - PAGE 25

waiting for page transfers. This measurement will be
maintained by the scheduler itself and will be one of our

most closely watched indicators of system performance.

	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-25

