

TENEX TECO

Text Editor and

Corrector Manual

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts #2138

Copyright - October 1973

No part of this document may be reproduced in any form without
the written permission of Bolt Beranek and Newman Inc.

A,
B.
C.

TABLE OF CONTENTS

TUTORIAL - PART I

BASIC EDITING . .

LARGE-SCALE EDITING

SPECIAL EDITING .

HANDBOOK = PART II

THE DATA

THE COMMANDS ., .

THE CONTROL COMMANDS

Interrupt

Execute Command String

-

-

Edit Command String .

Quote a Character
Indent Text . . .

THE ORDINARY ARGUMENTS

Integer Expressions

Mathematical Arguments

Character Code Functions.

Special Functions

Q-Register Functions

Buffer Indices .

Non-Numeric Arguments

ORDINARY COMMANDS
Command String .
Enter/Exit . . .
Insert Characters
Position Pointer
Type-=Out
Delete Characters
Search . « « « &
Replace . « « « &
Flow of Control .
Q-Registers . . .
Bootstrap Feature

. . L] L] L] L] L] L]

Simple Input/Output

Complicated Input/Output

Debugging Aids .

Appendices

Error Messages .
Character Clinic
Command Index . .

@ & e o @ o 5 8 o ¢ o

L]

29
41

50
59

65
66
74
72
74
76

8f
81
84
87
89
91
92
94

96

98
190
103
187
11¢
114
117
124
125
139
136
137
145
152

153
157
161

TENEX TECO October 1973 Page 1
TUTORIAL, Summary

® ® ® @0 060600 0000000006050 8060060000

. PART 1
. TUTORIAL FOR TENEX TECO

® ® ©® 0 0000000000 O S L OO LSS NNl e

This tutorial is designed for a single fast
reading. Its purpose is to convey the details of
TECO to a reader who is acquainted with the TENEX
System and who has some idea of what to expect from
a text editor.

The first chapter describes a subset of TFECO
commands which are sufficient to do any ordinary
editing job. The second chapter describes commands
which are essential for editing large files, and
includes some of the most useful commands in TECO.
The final chapter gives brief descriptions of the
commands of TECO not already described, and
introduces the reader to groups of specialized
commands for which he may later have a need.

TENEX TECO October 1973 Page 2
TUTORIAL, Basic Editing

Chapter 1

BASIC EDITING

The text which TECO edits is a pure character string,
without restrictions or exceptions, A sequence of
characters of almost unlimited length can be accommodated,
and any one of the 128 ASCII characters can appear at any
position in this sequence. Even printer-control operations
such as carriage return or tab are represented by ASCII
character codes, and they require neither a special form of
data to store them nor special commands to manipulate them.

The Character Set

The complete ASCII Character set is described in Appendix B
of this manual. The characters can be divided into three
groups, as follows :

-- Each of the graphic characters (95 of them) prints
a single 1letter, digit, or punctuation mark and
then advances the printing element one position.
The Space character is included in this group.

-- Each of the format control characters (7 of them)
causes the output device to take a special action,
such as starting a new line, spacing to a tab stop,
or ringing the bell.

-- Each of the command control characters (26 of them)
can be used by TENEX software for a one-character,
special-purpose command.

Names for Control Characters

Since a control character does not type a particular
graphic, such as "a" or "+", it must be given an artificial
name. In the text of this manual, a name is wused which
indicates the mode of production of the character on a
terminal. For example, the character produced by holding
down the CTRL key and striking the "D" key is called
Control=D. 1In the listings of interactive dialog between
the user and TECO, a shorter name is used for a control
character, and this name is set off from the rest of the
dialog by an enclosing pair of parentheses. For example,
"(4D)" is used for Control-D.

TENEX TECO October 1973 Page 3
TUTORIAL, Basic Editing

The following table gives the short names of the most
important control characters and suggests the way in which
the characters are used in TECO:

(%) A Carriage Return was transmitted at this
point in the dialog. It was used to end
a line.

(HT) A (Horizontal) Tab was transmitted. It

was produced by Control-I and caused the
terminal to space to the next tab stop.

(+C) A Control-C was transmitted. It
interrupted TECO.

(+D) A Control-D was transmitted. It
terminated the character string argument
of a TECO command.

(ESC) An Escape was transmitted. It was
produced by a key with "ESC" or "ALTMODE"
or "PREFIX" written on it and caused TECO
to execute a string of previously typed
commands.

(DEL) A Delete was transmitted., It was
produced by a key with "DEL" or "RUBOUT"
written on it and caused TECO to abort
the command it was executing.

The functional descriptions just given are introductory
sketches. Subsequent sections will describe the use of
these characters in detail.

Integers

The main activity of TECO is to manipulate character string
data, but TECO can also operate on integers. The commands
make use of integers for three special purposes: to count
off the <characters or 1lines in a string, to specify the
number of times a command loop is to be executed, and to
represent an ASCII character code.

The operators of elementary arithmetic, "+", "=", "*%,
and "/", are available for making up expressions. The
division operator forms the quotient and then drops the
fractional part without rounding. It is rare that the TECO
user needs an expression with more than one operator in it;
if such a case arises, however, the user should use
parentheses to indicate the order of evaluation. For
example, write "3+(4*5)", not "3+4*5,

TENEX TECO October 1973 Page 4
TUTORIAL, Basic Editing

The purpose of TECO is to enable a user to enter a program
or a document into the TENEX System. The essential steps of
this process are (1) start up TECO, (2) type in the text,
and (3) file the result; indeed, if a user could avoid
mistakes and changes, this much would suffice. TECO
commands for these essential steps are included in this
section and the next two sections.

A Complete Session with TECO

The dialog which follows is a sketch of the overall control
of TECO by the user:

@TECO(%) The user (who is at the TENEX

(%) EXECutive Level) types "TECO" and a
Carriage Return.

TENEX loads and starts TECO.

xxx (ESC)$(%) TECO types "" (go ahead sign);
the user types one or more TECO
commands, XXX;
then types Escape (go ahead, TECO);
and
TECO echoes with "$" and a Carriage
Return and then executes the command
string.

*xxx (ESC)$(%) The cycle is repeated until the user
has completed his work and filed the
results.

*;H(ESC) $ (%) Finally, the user gives the Halt
Command (;H) to exit from TECO, and

@ oo TECO returns the user to the
EXECutive Level.

In the dialog just given, xxx represents a command string.
Several commands can be typed in as a single command string,
and no separation is required between the commands. When
the wuser has finished typing a string of one or more
commands, he types the Escape character. Only then does the
execution of the commands begin, proceeding from left to
right.

The examples in this manual make use of both upper and
lower case letters (although some terminals are limited to
upper case). TECO pays attention to the case of a letter
only when the letter is part of the text being edited. When
a lower case letter is typed as part of a command name TECO
treats it as if it were upper case. Thus the Halt Command
illustrated above can be typed in as either ";H" or ";h".

TENEX TECO October 1973 Page 5
TUTORIAL, Basic Editing

An Error

If TECO encounters a command which it cannot execute, it
responds as in the following dialog:

*8C;ADD(ESC) $ (%) A string of four commands has
been typed. TECO executes the
first command, 8C, but rejects
the next command ";A".

242 (%) TECO types an error number

8C;A (%) and types the command string
through the illegal command
(thus pointing out the error).
TECO then discards the
subsequent commands, "DD".
Finally,

* TECO calls for a new and better
command string.

The Error Messages Appendix of this manual lists the error
aumbers used by TECO to report errors. In that appendix,
the interpretation of "42" is "An undefined command
character has been given". Therefore, the reason ";A" was
rejected in the dialog above 1is that there is no such
command in TECO.

The Illustrations

This manual uses both 1isolated examples and dialogs to
illustrate TECO. An 1solated example shows the command
string which a user types but does not show the response
from the computer system.

A dialog is a longer and more complete way to
illustrate TECO; it shows a sequence of interactions between
the user an the computer system. In the dialogs in this
manual, the user type-in is underlined and each use of a
control character is explicitly shown. These conventions
make clear who has done what.

During an actual session with TECO, the underlines and
the control-character names are not typed out. For the
dialog given above (TECO's handling of an error), the actual
listing would therefore be as follows:

*8C;ADDS
242

8C;A

*

TENEX TECO October 1973 Page 6
TUTORIAL, Basic Editing

TYPING IN THE TEXT

The main storage of TECO is the buffer, and it holds the
character string which is being edited. The buffer is
initially empty, but it can expand to a capacity of over a
million c¢haracters as the wuser enters his text. Since a
typed page typically contains 200§ characters, the buffer
can accommodate about 50§ pages of text. Thus it is almost
always the case that the entire program or document being
edited fits in the buffer and can be manipulated as a single
character string.

There is a pointer associated with the buffer. It
specifies the position in the buffer at which the main
editing activity is going on, and it is moved by commands
which are discussed in a later section. Many TECO commands,
including those described in this section, operate relative
to this pointer.

Typing in the Text

The Insert-String Command is the command normally used to
type text into the buffer., The command is entered by typing
an "I", followed by a character string, s, of any length,
followed by a Control-D or ESC. The command inserts the
character string, s, into the buffer just before the
pointer. The inserted string may contain any letter, digit,
punctuation mark (including space), or formatting character.
The only characters excluded are certain control characters
which rarely appear in text.

Two examples of the Insert-String Command follow:

Ia(tD) Insert the letter "a" Jjust before
the pointer.

IThis is (%) Inserts two lines

a test. (%) just before the

(+D) pointer.

A full dialog will now be given to illustrate the
Insert-String Command. In this dialog the user enters the
Upper-case alphabet into the buffer, five characters per
line.

TENEX TECO October 1973 Page 7
TUTORIAL, Basic Editing

*TABCDE (%) The user starts typing
FGHIJ (%) the alphabet...

KLM(ESC) $ (%) Exhausted, and fearful of losing

(%) his work, he terminates the command.
TECO enters 14 characters (including
2 End-of-Line characters) into the

buffer.
*INO($%) After a pause, the user
PQRST (%) completes the typing of
UVWXY the alphabet.
Z(%) Note that input resumed
(ESC) $(%) just where it left off, in
(%) the midst of the line which was left

unfinished in the first
Insert-String Command.

The purpose of the (4D) at the end of a character string
argument 1is to end the arqgument. When the argument is
already at the end of a command string, the (+D) is not
necessary. This useful exception is applied to both
Insert=String Commands in the dialog just given, where (ESC)
is used to end both the command string and the character
string.

A Dangerous Error

Suppose the user, intent on the job of getting some text
into the buffer, starts typing the text without preceding it
with an "I". When the user types Escape, the text is not
entered into the buffer; instead, TECO tries to interpret it
as a command string. If the user is unlucky, TECO will be
able to proceed through several “commands" before being
stopped by an illegal command.

When this error occurs, the user needs to determine
whether the text already in the buffer has been affected by
the execution of the false commands. He can check this in
one of three ways:

-~ He can trace, command by command, the action of
TECO in its runaway interpretation of the text.
Usually this 1is easy; occasionally it is very
difficult.

-- He can type out and read the entire contents of the
buffer.

-- He can start over; that is, he can go back to the
previous version of the file being edited.

TENEX TECO October 1973 Page 8
TUTORIAL, Basic Editing

Usually, TECO stops before the buffer has been modified; but
some damage to the user's text is always a possibility when
a random sequence of commands is executed.

Recovering Lost Type=-in

TECO has a backup register in which it saves the most recent
command string which was over 15 characters long. A command
string is saved just before execution begins, so the whole
string is saved even 1if it contains an illegal command.
This backup register is of great interest to the user who
has just typed a 1long insertion without supplying the
initial "I", as described in the previous paragraphs.

The j;Get-Commands Command (;G) makes a copy of the
command string in the backup register and inserts the copy
into the buffer just before the pointer. The following
dialog illustrates the use of this command:

*Daffodils ... The user is typing a

ese novel as a single

«.. snow fell, (%) Insert-String Command...
(ESC) S (%) But he leaves the "I" off!
232(%) TECO tries to interpret the
D(%) text as a command string and

(fortunately) fails before
executing a single command.

*:G(ESC)S (%) The user recovers with a

(%) ; Get-Commands Command, and the
novel is copied from the backup
register into the buffer.

The Carriage Return

The type-in of a Carriage Return, indicated by "(%)" in the
dialog, requires a special explanation. Strictly speaking,
it is the function of the Carriage Return key only to move
the printing element back to the left margin. A second key,
Line Feed, is provided to advance the paper TENEX intervenes
~as follows:

-- A Carriage Return character (decimal code 13)
coming in from the user's terminal is echoed as a
Carriage Return followed by a Line Feed and is then
entered into storage as an End-of-Line character
(decimal code 31).

-= An End-of-Line character going out to the user'
terminal is converted into a Carriage Retur

followed by a Line Feed.

3 0

-

4

TENEX TECO October 1973 Page 9
TUTORIAL, Basic Editing

This arrangement has substantial advantages. When the user
wants to end a 1line, he needs only a single keystroke
(Carriage Return). Further, the separation between lines in
a stored character string is represented by a single
character used only for that purpose (End-of-Line). of
course, the user must use a special technique to enter a
true Carriage Return character into storage, but the need
for this character is rare.

Typing Tricky Text

The list of allowed characters given in the description of
the Insert-String Command excluded some ASCII characters.
The TFine points of this matter are discussed in the
Character Set Appendix. For the present, it is sufficient
to introduce a command which can be used to insert any ASCII
character into the buffer. The Insert-Code Command (nI)
inserts a single character into the buffer just before the
pointer. inserts the character whose decimal code is
given by the integer value, n, which recedes "“I" in the
command. This command offers full generality but is not, of
course, as convenient as the Insert-String Command.

In the following dialog, the user wants to type out a
line of slashed zeroes by wusing (1) a 1line of "O"
characters, (2) a true Carriage Return (without a Line
Feed), and (3) a 1line of slashes, He must use the
Insert-Code Command to get a Carriage Return (decimal code
I3) into the buffer since a typed Carriage Return would be
transformed by TENEX into an End-of-Line character.

*I000(+D) $13IX1///(ESC)$ (%)
(%)

TENEX TECO October 1973 Page 10
TUTORIAL, Basic Editing

FILING THE TEXT

TECO communicates with the TENEX file system on behalf of
the wuser; that is, certain TECO commands are used to
transmit text between a TENEX file and the editing buffer of
TECO. Since the editing buffer has such a large capacity,
the user can almost always read his entire file into the
buffer rather than process it piece by piece. Under these
conditions, input/output is simple and only three commands
are required, as follows:

~-- The ;Yank-File Command (;Y) is the input command.
It places a copy of the designated file after
whatever is already in the editing buffer and
leaves the file unchanged.

-~ The ;Unget-File Command (;U) is the output command.
It replaces any previous contents of the designated
file with a copy of the entire contents of the
buffer and clears the buffer.

-- The ;Save-File Command (;S) saves the entire buffer

on a new version of the file. The buffer is not
cleared.

File Designators

Each of these commands requires a file designator in order
to continue. A full description of the way in which TENEX
files are designated is outside the scope of an introduction

to TECO. This discussion will assume the simple case that
the desired file is on the main system storage device and is
in the user's own directoy. In that case, a file is

uniquely designated by
-~ the name of the file followed by a ".",
-- the extension followed by a ";", and

-~ the version number.

The name and the extension are each a sequence of letters
and digits; the version number is an unsigned integer. For
example, "HENRY.IV;2" is a file designator.

The Designator Dialog

A ;Yank-File or ;Unget-File Command obtains its argument in
an unusual way: it asks for it. the dialog proceeds as
follows:

TENEX TECO October 1973 Page 11
TUTORIAL, Basic Editing

-- The user types the command (";Y" or ";U" or ";s")
followed by an Escape.

-~ TECO types "INPUT FILE:" or “ouTpPUT FILE:", as
appropriate.

-- The user types all or part of a file designator,
followed by an Escape.

-- TECO types a brief message acknowledging the
correctness of the file designator and asking for
confirmation.

-- The user types a Carriage Return to confirm.

-- TECO performs the input or output operation and
then types "*" when it 1is ready for further
commands.

When things do not go smoothly, one of the following cases
applies:

-~ If TECO finds that a file designator is illegal,
TECO types "?" and prompts the user to try again.
This occurs wlien a file requested for input does
not exist or when a file designator is ill-formed.

-~ If the user decides to abort the command before
typing the confirming Carriage Return, he must type
two Delete characters. TECO will then go to the
await-commands state without performing any
input/output.

-~ If the user decides to abort the command after
typing the confirming carriage return, it is too
late. He should 1let the operation run to
completion and then take whatever action 1is
appropriate. Otherwise, he must cope with a
partially completed input/output operation, and
this requires study of the chapter called
"Complicated Input/Output”.

Designator Recognition

When the user is inputting a file, he can type just enough
of the name and extension to uniquely specify the file in
his directory and then type the Escape character. TECO will
then ascertain and type out the remainder of the designator.
Occasionally, the designator assumed by TECO will not be
what the user wanted, and he can use two Delete characters
to get out of the designator dialog and start a new
input/output command. On other occasions, TECO will decide

TENEX TECO October 1973 Page 12
TUTORIAL, Basic Editing

that the file designator thus far typed is inadequate to
uniquely specify a file and will ring the bell at the user's
terminal to ask for more characters of the designator.

As a special case which is very useful, the user can
reply to the request for a file designator by typing Escape
immediately, without giving any part of the required file
designator. TECO will assume (and type out) the designator
for the file last used in a ;Yank Command in the current
TECO session. —_

It is a good rule to let TENEX £ill in the version
number of a file. That is, even if the user does not make
general use of designator recognition, he should not type
the version number. When the user types Escape, TENEX will
fill in the appropriate version number. For an output file,
TENEX will supply "1" for a new file or a version number one
greater than the highest version of an existing file. For
an input file, TENEX will supply the highest version number
of an existing file.

If the rule just mentioned is followed, a new version
number will be created every time a file is edited, and no
previous version will be overwritten. This convention makes
it easy to keep the previous version of a file until the
integrity of a new version has been established. When an
old wversion 1is no longer wanted, it can be deleted by the
TENEX Executive Command DELETE. Thus the preparation of
text and the housekeeping of the file directory are separate
activities.

Preparing a Long File

It is prudent to pause from time to time in preparing a
large file and save a copy of the file as it currently
stands. This limits the loss which can result from a system
crash, the break down of the communication 1line, or a
serious user error. In the following dialog, the user saves
two intermediate versions of his file before outputting the
third and final version.

TENEX TECO October 1973 Page 13
TUTORIAL, Basic Editing

@TECO (%) The user starts TECO,
* e types in a lot,

then pauses to save a copy.
*;S(ESC) $ (%)
(%)
OUTPUT FILE: HENRY.IV; (ESC)1 [New File] (8)
(%)
* .. The user continues to type in his
file. The next time he saves a
copy, TECO types the designator.

*;S(ESC)S (%)

(%)

OUTPUT FILE: (ESC)HENRY.IV;2 [New Version]i&l

(%)

* .. The user types the remainder of his
file and outputs the complete copy.

*;U(ESC) $ (%)

(%

OUTPUT FILE: (ESC)HENRY.IV;3 [New Version] (%)

(%)

In a complicated project and especially in a project in
which files are shared among many users, it is useful to
maintain a record of the time and source of each new version
of a file. The ;Date-and-Unget-File Command (;D) provides a
way to keep this record within the file itself. This
command is equivalent to the iUnget-File Command (;U) except
that it adds a date line at the beginning of the buffer just
before outputting the buffer. The date line consists of

-- a comment string (usually just a single semicolon),
followed by

-- the complete file designator, followed by

-- the date and time at which the new version is being
written out, followed by

-~ the name of the user who has produced the version.

If this command is used to perform output of every new
version of a file, a log of all modifications to the file
will be accumulated at the beginning of a file. Since each
date line begins with a semicolon, it is ignored by the many
TENEX subsystems which treat such a 1line as a comment.
Since a date line is just an ordinary line of text, it can
be deleted when it becomes superfluous.

TENEX TECO October 1973 Page 14
TUTORIAL, Basic Editing

The pointer is always located between two characters or, as
a special case, at the beginning or end of the huffer. The
pointer is not a character itself, and does not take up any
space in the buffer. TECO editing is built up around the
moving of this pointer back and forth through the text, and
many of the TECO commands operate relative to the current
position of the pointer.

TECO maintains several registers which contain integer
values with special significance. The register named "."
(period) always contains the number of characters in the
buffer before the current position of the pointer. The
register named "Z" always contains the number of characters
in the entire buffer. "B" contains {J, whichi is the
beginning of the text buffer. ";B" is the character address
at the top of the current page, while ";2" is the location
of the bottom of the current page. If ;B is preceded by a
number, its value is the location of the top of that page.
The user can refer to these registers by name wherever an
integer value is required in a TECO command.

The next two commands to be considered are the simplest
in TECO. Each specifies the positioning of the pointer by
an integer arqument. As 1is the case with many TECO
commands, this integer argument can be omitted and the TECO
interpreter will fill in a well-defined default value.

The JumE

The Jump Command (nJ) places the pointer after the n-th
character of the buffer.

28J Places pointer after the first 28
characters of the buffer.

gJ Places the pointer at the beginning of
the buffer (after {} characters).

J Means {1J.

zJ Places the pointer at the end of the
buffer (after all Z characters).

Z2-1J Places the pointer just before the last
character of the buffer.

.+3J Advances the pointer across 3 characters.

TENEX TECO October 1973 Page 15
TUTORIAL, Basic Editing

;BJ Jump to the top of this page.
:2J Jump to the bottom of this page.
24;8BJ Jump to the top of page 24.

The Character Skip

The Character-Skip Command (nC) advances the pointer n
characters through the buffer.

3C Advances the pointer across 3 characters.
C Means 1C.
-29C Moves the pointer 29 characters backward

(toward the beginning of the buffer).

~C Means -1C, moves pointer backward one
character.

The Line-Skip

Certain commands in TECO are line-oriented. They consider
each End-of-Line character ~in the buffer to bhe the last
character of a "line" of characters, and consider any
character after the last End-of-Line character in the buffer
to be a line. They consider the 1line which contains the
character just after the pointer to be the "current" line of
the buffer. The line-oriented commands operate on the
buffer in terms of these imaginary divisions.

The first of the 1line-oriented commands is the
Line-Skip Command (nL). This command advances the pointer
to the beginning of the n-th line after the current line.
The argument to this command does not have to be positive.
When n is zero, the phrase "the n-th line after the current
line" means "the current line" and when n is -5 (for
example), the phrase means "the fifth 1line” before the
current line".

3L Advances pointer to the beginning of the
third line after the current line.

L Advances pointer to the beginning of the
next line (1L is assumed).

gL Moves pointer back tc the beginning of
the current line.

-L Moves pointer back to the beginning of
the previous line (-1L is assumed).

TENEX TECO October 1973 Page 16
TUTORIAL, Basic Editing

-12L Moves pointer back 12 lines.

:L Move to the end of the current line.

-:L Move to the end of the previous line.

2:L Move to the end of the next line.
Combinations

Since an individual TECO command can be just one or two
characters 1long, it is convenient to run a few commands
together when they perform an operation which, from the
user's point of view, is unitary. The first of the
following examples is particularly useful.

L-C Places the pointer just after the text of
the current line (and just before the
End-of-Line character).

J3L Places the pointer at the beginning of
the fourth line of the buffer.

Z2J0L - Places the pointer at the beginning of
the last line of the buffer.

ZJOLC Places the pointer after the first
character of the last line of the bkuffer.

The last example of a command string could give an error
message. If the 1last character of the buffer is an
End-of-Line character then the last line of the buffer is
the empty string of characters between the End-of-Line and
the end of the buffer. In this case, "fL" 1leaves the
pointer at the end of the buffer. This situation arises
often in actual practice.

TENEX TECO October 1973 Page 17
TUTORIAL, Basic Editing

The user examines the contents of the buffer by means of the
Type-Out Commands. The simplest of these is the Type-String
Command (m,nT). It types everything from just after the
m-th character of the buffer to just after the n-th
character. -

TECO has a convenient abbreviation, "H", for the
argument pair, @,Z which designates the contents of the
whole buffer. This abbreviation can be wused with the

Type-String Command.

HT Types the whole buffer.

2-1(¢,2T Types the 1last 1y characters in the
buffer.

g..T Types the buffer up to the pointer.

;B,; 2T Types the current page.

Line-Oriented Type-Out

A more convenient Type-Out Command is the Type-Lines Command
(nT), which types the characters between the pointer and the
beginning of the n-th line after the current line. The
argument, n, can be zero or negative, as with the Line-Skip
Command. -

3T Types characters from the pointer up to
the beginning of the third line after the
current line.

T Types the part of the current line which
is after the pointer (1T is assumed).

gt Types the part of the current line which
is before the pointer.

-12T Types the previous 12 lines and the part
of the current line before the pointer.

The Type-String and Type-Lines Commands have the same code
name, "T", but they are distinguished by having a pair of
arguments and one argument, respectively.

TENEX TECO October 1973 Page 18
TUTORIAL, Basic Editing

A second line-oriented type-out command is the View
Command (m,nV), which types m=1 lines before the current
line, then types the current 1line, then types n-1 lines
after the current line. When the two arguments, m and n
would be equal, the command can be used with a “single
argument (nv).

1¢,2v Starts with the ninth 1line before the
current line and ends with the first line
after.

2V Types the preceding 1line, the current

line, and the following line ("2,2V" is
assumed) .

v Types the current line ("1,1v" is
assumed) .

Three Type-Out Commands have been described here although,
in theory, one would be sufficient. Each has its particular
application. The Type-String Command, with its fussy
generality, is seldom useful except for the special form,
"HT", which types out the whole buffer. The Type-Lines
Command, with its sensitivity to the position of the
pointer, is used to check the pointer position just before
the insertion or deletion of text. Finally, the View
Command, with its convenient simplicity, is used to look at
the general context in which the pointer appears.

Examples of Type=Out

For this dialog, the buffer contains the alphabet as it was
typed in earlier, in the examples of the Insert-String
Command,

*HT (ESC) 5 (%) This command types out
ABCDE (%) the whole buffer and, as
FGHIJ (%) promised, reveals the
KLMNO (%) alphabet, stored 5
PQRST(%) letters per line.

UVWXY (%)

z(%)

(%)

*10,15T(ESC)$ (%) What does this do?

J(%) (Everybody who expected
KLM(%) "KLMNO" raise their hand.)
*15J (ESC) $ (%) Puts the pointer before "N",

(%

TENEX TECO October 1973 Page 19
TUTORIAL, Basic Editing

*2T (ESC) $ (%) Types the remainder of
NO (%) the current line and
PQRST (%) all of the next line.
(%)

*(JT(ESC) $ (%) Types the current line
KLM(%) up to the pointer.
*V(ESC)$ (%) Types the entire

KLMNO (%) current line.

(%)

*2V(ESC) $ (%) Types the current
FGHIJ (%) line and one neighboring
KLMNO(%) line in each

PQRST (%) direction.

(%)

TECO follows the successful completion of any command by
typing out an End-of-Line. It follows that a blank line
will appear after a type-out if and only if the text being
typed out ends with an End-of-Line. For example, the
alphabet typed out above ends with an FEnd-of-Line and is
followed by a blank line, indicated by the solitary " (%)".

Abbreviated Commands

A line feed character simulates the command string "LT(ESC)"
if it appears as the first character in a command. Thus, it
advances the pointer to the beginning of the next 1line and
then types that line.

Backspace (tH) types the preceding line by simulating the
command "-LT(ESC)". As with linefeed, backspace operates in
this fashion only if it 1is the first character in the
command,

Typing Out Integers

The Type~Integer Command (n=) types out the wvalue of the
integer expression, n. The command is useful in obhtaining
the value of "." (the number of characters before the
pointer) or "2Z" (the number of characters in the buffer),
but it is not limited to this purpose.

The Access-Code (1lA) Function of TECO has as its value
the ASCIT code for the character which immediately follows
the pointer. This function can be used wherever an integer
value is allowed. In particular, it can be used as the
argument to the Type-Integer Command just descritked,.

Under certain circumstances, the Access-Code Function
can be essential. The situation is analogous to the problem
of inserting control characters into the buffer, which was
discussed earlier when the Insert-Code Command was

TENEX TECO October 1973 Page 2§
TUTORIAL, Basic Editing

introduced. Just as there are certain characters which can
be inserted only by means of their integer codes, so there
are certain characters which can only be examined in this
way. Some of the characters do not print out anything (not
even a space) when the string of which they are included is
typed out; for example, Control-A. Other characters are
modified by TENEX as they are typed out; for example, a
lower-case letter is capitalized when it is transmitted to a
terminal which does not have lower case.

The following example assumes the buffer contains the
alphabet, as before.

*15J(ESC) $ (%) Puts the pointer after the

(%) 15-th character.

* =(ESC)S (%) Shows that the pointer is
15(%) after the 15-th character.
(%)

*Z=(ESC) $ (%) Shows that there are 32

32 (%) characters in the buffer,

(%)

*]A=(ESC)S$ (%) Shows that the character

78 (%) after the pointer is "N"

(%) (decimal code 78) and not "n"

(decimal code 1f{19).

TENEX TECO October 1973 Page 21
TUTORIAL, Basic Editing

DELETING CHARACTERS

The user can delete a substring from the buffer by any of
three commands., The simplest of the three 1is the
Kill-String Command (m,nK). It deletes everything from just
after the m-th character of the buffer to just after the
n-th character and then moves the pointer to the position of
the deleted characters. The special form "HK" deletes the
contents of the whole buffer.

A given Kill-String Command deletes exactly what a
Type-String Command with identical arguments types out.
This makes it easy to "simulate" a deletion (by typing out
the string to be deleted) before performing the actual
deletion.

The Kill-Lines Command (nK) 1is the line-oriented
Deletion Command of TECO. It deletes the characters between
the pocinter and the beginning of the n-th 1line after the
current line. Again, in parallel with the Type-Out Command,
this command deletes exactly what the Type-Lines types out.

K Kill the (remainder of) current line.

:K Kill the (remainder of) current line, but
not the end-of-line character.

3K Kills the (remainder of) current line and
the two following it.

3:K Same as 3K but the final end-of-line is
left.

1B, 2K Kills this entire page.

.23 2K Kills the part of the page after the
pointer,

-K Kill the preceding line and the initial

portion (before ".") of this line.

0K Kills the part of this line to the left
of the pointer.

-:K Same as -K except an additional
end-of-line character is also killed.

TENEX TECO October 1973 Page
TUTORIAL, Basic Editing

The Delete-Characters Command (nD) operates
relative to the pointer. It deletes the n characters
just after the pointer. There is no Type-Out Command
which 1is directly analogous to this command; but this
command is normally used to delete just a few characters
and is used more casually.

8D Deletes the 8 characters just after the
pointer.
D Deletes the <character Jjust after the

pointer (1D is assumed).

-D Deletes the character just before the
character (-~1D is assumed).

22

TENEX TECO October 1973

Page 23
TUTORIAL, Basic Editing

The End of the Alphabet

In the following dialog, the alphabet (as
Insert-String Command many pages
appearance.

entered by the
ago) makes its farcwell

*JCDDV (ESC) $ (%)
ADE (%)

(%)

*2 7T (ESC)S (%)

E
FGH (%)

*2 TK(ESC) $ (%)

(%

*C6DC4DC (ESC) 5 (%)
(%)

*3T (ESC) S (%)

W EIE

UVWXY (%)

Z(%)

(%)

*3KHT (ESC) $ (%)
ADIOS (%)

(%)

Starts at the beginning, skips
a letter, deletes two, checks.

Simulates deletion of
characters

3 through 7.

Performs deletion.

Does more deletions.

Simulates deletion
from pointer
through next

2 lines.

Performs deletion.
and checks result.

TENEX TECO October 1973 Page 24
TUTORIAL, Basic Editing

At the beginning of this chapter, we observed that the
ordinary commands of TECO are executed only when an Escape
is typed. 1In addition to these ordinary commands, however,
TECO has certain control commands which are single
characters and which are executed 1mmediately. These
commands are used to control TECO itself rather than to edit
the text in the buffer.

Interrupt TECO

The user sometimes needs to access the TENEX EXECutive. For
example, he may want to use the DIRECTORY command to check
existing file names before choosing a name for a new file he
has prepared; he may LINK to another TENEX user without
wrapping up his TECO session; or he may wish to eliminate an
unwanted file by means of the DELETE command. To get back
to the TENEX EXECutive he uses the TECO Control Command
Control-C (+C) and ends with the EXECutive command CONTINUE,
as in the following dialog:

*IA (HT) B(%) The user inserts a line

(*D)=LT (ESC) $ (%) which includes a tab

A B(%) and types it out

(%) with standard tab stops.

* (4C) +C (%) Interrupts TECO.

@STOPS 3(%) Uses Exec to set stop.

@CONTINUE (%) Returns to TECO.

T(ESC) $(%) Types out the line

A B(%) with new tab stops.

(%)
The Control-C Command does not always result in an immediate
interrupt. If TECO is performing input/output, the
interrupt will be delayed until the buffers have been
properly emptied. To obtain an immediate interrupt, the

user can type a second Control-C; when he does so, however,
data in the buffers may be lost. Usually this is acceptable
only during a type-out at the user's terminal.

Abort a Command

A different kind of interrupt 1is produced by the Delete
Command (DEL), also called RUBOUT. Two casces must be
considered:

-- If Delete is typed during execution of a co
that command is immediately aborted and TECO
"*" and enters its await commands state.

TENEX TECO October 1973 Page 25
TUTORIAL, Basic Editing

-~ If Delete is typed during type-in of a command
(when TECO is not executing a command), TECO rings
the bell on the terminal and waits to see what the
user does next.

-- If the user types a second Delete, TECO discards
the command string thus far typed in, types "*",
and enters the await commands state; however,

-~ If the user types anything but a Delete, TECO
assumes the first Delete was a mistake and
forgets it.

The cautious handling of this case 1is appropriate
because the user could type many lines of text as
an unfinished 1Insert-String Command and then
accidentally type a Delete. Rather than wiping out
the type-in, TECO rings the bell to warn the user
not to type Delete again.,

In the following dialog, the user starts an input command,
gives the wrong file designator, and deliberately aborts the
command instead of confirming it. A second try causes the
desired file to be read in. The user instructs TECO to type
the whole file, reads the first few lines, decides it 1looks
right, and aborts further type=-out.

*:Y(ESC) S (%)

(%

INPUT FILE: HENRY.VI(ESC);1 [Confirm] (DEL) (BEL) (DEL)
(%)

*:Y(ESC) $ (%)

(%)

INPUT FILE: HENRY.IV(ESC);3 [Confirm] (%)
21982 Chars (%) -
(%)

*HT (ESC) $ (%)

So shaken are we, (%)

so wan with care, (%)

Find we (DEL) (%)

(%)

(%)

*

Checking up on TECO

An interrupt of a special kind is produced by the Control-T
Command. This command can be used at any time at all and
will promptly report on the status of the System, giving the
user the status of TECO (waiting for input or running), the
TENEX load average, and the CPU and console time used.
Since the command never disturbs the command being executed

TENEX TECO October 1973 Page 26
TUTORIAL, Basic Editing

by TECO, it is a safe and convenient way to check up on TECO
when TECO seems to be taking a long while to execute a
command.

The Control-T Command can be used to determine whether
a delay in the response of TECO is due to a heavy load on
the TENEX System, a minor breakdown in TENEX, or an infinite
loop entered by the user (this facility will be explained
later). But an especially interesting example is the
following recovery procedure.

When there has been a failure in the TENEX System, the
user may find himself in a somewhat uncertain position in
TECO. Either (1) there has been a crash of TENEX TECO and
the system has been restored without the 1loss of its
previous state or (2) the communication 1link between the
user and TENEX has been broken and the user has used the
EXECutive ATTACH command to re-establish the connection and

resume at the point of interruption. The uncertainty
results from certain random processes which may occur during
the breakdown. The user should explore the situation as
follows:

(+4T)IO WAIT AT 4262(%)

TLOAD AV, = §.17, USED P:02:08.6 IN (:48:06(%)
First,the user determines the status
of TECO.

Apparently TECO is waiting for a
command.

Next, the user looks at the current
command string:

(4R) (%)

BTRFSK#: (DEL) (BEL) (DEL) (%)

~ The command string looks like line
noise and the user erases it.

* ... The user proceeds, if necessary, to
check the state of TECO in other
ways appropriate to the situation,

Erasing Typing Errors

A command string is not executed as it 1is typed 1in.
Instead, it is accumulated in a special command register and
is executed only when an Escape 1is typed. The three
commands given here are specialized commands designed to
assist in correcting a command string as it awaits execution
in the command register.

Each erasing command is a single control character, and
acts immediately when it is entered. The Control-A causes
the last character in the command register to be erased.
The Control-Q Command causes the last non-empty line in the
command register to be erased. The Control-R (for "Retype")

TENEX TECO October 1973 Page 27
TUTORIAL, Basic Editing

Command causes the last non-empty 1line in the command
register to be typed out.

In the following dialog, the user inserts three words
and types out the buffer., Along the way, he illustrates the
use of single and multiple erasures and of the retyping of a
line to "clean it up" after it has been cluttered by
erasures.,

*HASTE (%) The user starts

MAKES (%) an insertion.

(1Q) < (%) He notices the "I"
(tQ) (%) is missing, erases
*THASTE (%) the command string

N and starts over,
WATTAY\A(+A)\W(+A)\ (%) He erases "A", "wW",
(+R) (%) and an End-=of«Line
MAKES (%) and Retypes the line.
WASTE. (3)

(ESC)S (%)

(%)

*HK (+A)\ KT (ESC)$ (%) The user almost clears
HASTE (%) the buffer, but

MAKES (%) changes "K" to "T".
WASTE. (%)

(%)

Erasing typing errors using Backspace Key

Some terminals are able to perform the backspace
function. Hardcopy devices do this by moving the print
head; CRT displays can move the cursor. To take
advantage of this, Control-H or Backspace deletes
characters just as Control-A does but indicates what has
been deleted by using the mechanical backspace
mechanism. In order to activate this function, the user
must tell TECO what style terminal he is using. This is
done by commands such as 3+HS. (Four characters: 3, +¢,
H, and ESCape.) Instead of 3 the user should select one
of the following:

TENEX TECO October 1973 Page
TUTORIAL, Basic Editing

Code

0

1

Terminal
No mechanical backspaces (Model 33)

Mechanical backspace but no eraser.
(TI, 2741)

Scope that uses +H to backspace
the cursor.

Bendix scope, Backspace sequence
is ESCape D.

Terminal, VTP6 scope. Backspace
character is +*Y,

Beehive., Backspace character
is +D.

Infoton, Backspace character is +2.

28

TENEX TECO October 1973 Page 29
TUTORIAL, Large-Scale Editing

Chapter 2

LARGE-SCALE EDITING

The previous chapter described a collection of commands.
Those commands can be used to select any position in the
text being edited and then insert or delete any characters
at that position. Additional commands are required when the
file being edited 1is 1large and the modifications being
performed are complicated.

When a file is more than a few dozen lines long, it is
not efficient to 1locate a position within the file by
counting lines or characters; instead, commands are required
which can locate a particular phrase or identifier or number
within the buffer. When a passage of text which is more
than a few words long must be moved, it is not efficient to
delete the passage and then retype it elsewhere; instead,
commands are required which can extract, move, and insert
the passage without retyping. When a particular
modification must be made over and over (as in the case of a
consistently misspelled word), it is not efficient to type
the necessary command string over and over; instead, some
kind of loop command is required.

The commands described in this chapter fill the
requirements just mentioned. Although the commands
described are introduced here by the problems of large-scale
editing, they are useful for all editing jobs. The commands
of the previous chapter are the framework of TECO; the
cormands in this chapter supply the power.

TENEX TECO October 1973 Page 30
TUTORIAL, Large-Scale Editing

The Search Command is used to search the buffer for an
occurrence of a particular substring. It is entered by
typing "S" followed by a character-string argument. The
character-string arqument is a sequence of characters, the
citation, terminated by typing Control-D., The Control-D can
be omitted when a Search Command occurs at the end of a
command string.

Ordinary searches 1look after the pointer for a
character sequence which matches the citation. If the
repetition count (v.i.) is negative, a reverse search has
been specified and the search will proceed backwards from
the pointer. In either case a match is found, the pointer
is moved to the position just after the matched character
sequence; otherwise, the pointer 1s not moved from its
original position and TECO types the error message
"2SEARCH?35",

The Search Command can be preceded by an integer value,
n, and wiTl thereupon be repeated n times. The effect is to
Search for the n-th occurrence of “the citation after the
pointer,

Sa(+D) Finds the first occurrence of "a" after
the pointer and moves the pointer to just
after that occurrcnce.

-Sa(+D) Finds the first occurrence of "a" before
the pointer.

Sit (4D) Finds "it" in any context, either as an
independent word or within another word.

S(%) Finds an occurrence of the
Here (4D) word "Here " at the beginning of a line.

3S; (+D) Finds the third occurrence of a semicolon
after the pointer and moves the pointer
to just after that occurrence.

-38; (tD) Finds the third occurrence of semicolon
before the pointer. The pointer is left
after the find.

A successful search of the buffer always moves the pointer.
This is taken for granted in the explanation of some of the
examples.

TENEX TECO October 1973 Page 31
TUTORIAL, Large-Scale Editing

The Search Command can be deceptive. It 1is quite
natural for a user to give a search command for a particular
pattern, get an error message in response from TECO, and
conclude that the specified substring is not present in the
buffer. However, this conclusion is unwarranted if the user
forgot to set the pointer to the beginning of the buffer
before the search.

The Replace Command

A natural extension of the Search Command is the Replace
Command, which not only searches the buffer but modifies it.
The command is entered by typing "R" followed by two
character string arguments, the citation and the
replacement. Each character string argument is terminated
by typing Control-D. The command does exactly what the
Search Command does and one thing more: if the substring
specified by the pattern is found, it is deleted and a copy
of the replacement is inserted. Replace commands also may
take a repetition count which can be negative to specify a
reverse replace.

Ra(4D)b (+D) Finds the first occurrence of
an "a" after the pointer, moves
the pointer to just after that

occurrence, and replaces it
with "b",

R(%) Replaces the next "Here " which

Here (4D) (%) begins a line with a "“There ".

There (+D)

-3RE#:(+D) (+D) Replaces the past three "@#!"
strings with nothing; that is,
deletes them.,

R(%) Deletes the next End-of-Line.

(+D) (+D)

Ra page(t+D)a (%) Starts a new line between

page (4D) the words "a" and "page".

The Replace Command is perhaps the most frequently used
command in TECO. When a person is making the changes
indicated in a marked-up listing of a file, he can often
proceed from beginning to end with one Replace Command after
another. When there is danger that a Replace Command may
apply in the wrong place, the user can simply include a
little more context in the pattern. Consider, for example,
the following ways of making "big plans" into "big plane”.

TENEX TECO October 1973 Page 32
TUTORIAL, Large-Scale Editing

Rs (4D)e(4D) This works if the site of the
change is just a few characters
after the pointer and there is
no intervening "“s".

Rplans (4D) plane(+D) This is more selective and will
be right unless there 1is
another "plans™ along the way
to the sjte of the change.

Rbig plans(+D)big plane(+D)
This is still more selective.

Sbig plans(4D)=-DIe(4D)
This saves a few keystrokes but
it is more complicated and
error prone.

It is good practice to follow a Replace Command with a View
Command. The type-out verifies that the citation ~and
replacement were correct and that the modification was
applied at the right place in the buffer. Further, when the
user is in the habit of typing out each change, he can risk
small errors, such as a misplaced replacement, in order to
work faster.

Something Extra

Three match control characters are provided for use in the
pattern of a Search Command or Replace Command. They are:

(+X) Matches any character which appears at
the corresponding position in the buffer.

(+S) Matches a Separator; that is, any
character except a letter, digit, ".",
"s", or "%". (These are the characters

which are commonly used in identifiers.)

(tN) Matches any character except the
character which immediately follows the
(#+N) in the citation.

The match control characters can be used in a citation with
other characters in any combination or sequence. However, a
Control-N and the character which follows it act as a pair
to match (or not match) a single character of the buffer.

S[{(+X) (4X)](+D) Finds any two characters
enclosed in brackets.

TENEX TECO October 1973 : Page 33
TUTORIAL, Large-Scale Editing

S(+S)it(+S8) (+D) Finds an "it" which is not a
part of a longer word,

S(+S) (#+N) (+S)a(+D) Finds a word whose second
letter is "a", Note that
"(4N) (tS)" are used in
combination to match anything
except a Separator character.

An Application

The Search Commands cannot be convincingly applied to the
example we have been using (the alphabet). This 1is
precisely because they are designed to look at the content
of the buffer. Accordingly, we assume conventional text has
been typed into the buffer, errors found, and a decision to
correct them.

*Sfield(+D) SV(ESC)$ (%) The user finds a "field",
a grcat battlcficld(s) checks, and sces that

(%) it is the wrong one.

*Sfield(+D)SV(ESC) S (%) The user finds the next
"field",

field as a(%) and makes sure it is

(2) the right one.

*I,(+D)SV(ESC)S (%) He inserts a comma,

field, as a(%) and checks his work.

(%)

*Rbefoer (+D) $before (+D) SV(ESC) $ (8)
remaining before us, (%) The user corrects

(%) a typing error.

*JSbefoer (ESC) S (%) The user checks for
another

?SEARCH?35(%) instance of this error,

JSbefoer$ (%) but there is none.

The last Search Command in the dialog produced an error
message; ~ neverthcless, it illustrates a useful and
legitimate application of the Search Command. The wuser
wanted to know if there was an instance of "befoer" in the
buffer, and the error message supplied the answer "no". A
Search Command which fails does not move the pointer.

TENEX TECO October 1973 Page 34
TUTORIAL, Large-Scale Editing

It is often necessary to transport a string of text from one
place in the editing buffer to another. This operation is
required when multiple copies of a given string must be made
or when a string must be moved which is too long to be
conveniently deleted and retyped. The Q-Registers and their
associated commands are used for this operation.

There are 37 Q-Registers, and each of them can hold a
character string of wvirtually unlimited 1length. Each
Q-Register has one of the 26 letters or the 1§ digits or @
as its name, and all the Q-Register Commands (except one)
end with the name of a Q-Register. The upper and lower case
forms of a letter are equivalent as a Q-Register name, just
as they are when used in a command name,

Setting a Q-Register

There are two commands for moving a substring of the buffer
into the Q-Register. The Extract-String Command (m,nXq)
extracts from the buffer everything from just after the m-th
character to just after the n-th character. ~“The
Extract-Lines Cormand extracts everything between the
pointer and the beginning of the n-th line after the current
line. Each command removes the selected string from the
buffer and places it in the Q-Register g. The pointer is
left where the extracted string was, and the previous
contents of thec Q-Register are lost.

HXF Extracts the contents of the entire
buffer (leaving the buffer empty) and
puts it in Q=-Register F,

g,23xa Extracts the first 23 characters and
places the sequence in Q-Register A.

5XX Extracts a substring and puts it in
Q-Register X. The substring extends from
the pointer to the beginning of the 5-th
line after the current line.

-4Xa Extract the preceding four lines and put
them into Q-Register 4@.

: X1 Extract the remainder of the current line
except the end=-of-line.

The two Extract Commands move exactly that substring of the
buffer which the corresponding Type-String or Type-Lines
Command types out. Thus the wuser can use one of these

TENEX TECO October 1973 Page 35
TUTORIAL, Large-Scale Editing

Type-Out Commands to simulate an extraction.

Using a Q-Register

The Get-QR Command (Gq) inserts a copy of the character
string in Q-Register into the buffer just before the
pointer. The contents of the Q-Register 1is not changed.
When an Extract Command which refers to Q-Register q is
immediately followed by "Gg", the total effect is to copy a
substring of the buffer into a Q-Register without deleting
it from the buffer.

The ;Type-QR Command (Qg;T) types out the complete
character string contained in Q-Register g. It can be used
to check on the successful execution of an Extract Command.
This 1is the one Q-Register Command which does not have the
Q-Register name, g, at the end of the command.

GA Inserts a copy of the contents of
O-Register A into the buffer just before
the pointer.

5,62X3G3 Extracts characters 6 through 62, puts
them in Q-Register 3, and copics
O-Register 3 into the buffer. Leaves the
buffer unchanged.

QZ;T Types-out the character string in
Q-Register 7.

Merging Files

The commands just described can be used for very general and
extensive manipulations of files =-- merging, interleaving,
and so on, For example, to merge parts of File A into File
B proceed as follows:

-= On listings of Files A and B, mark the parts of
File A with the names of Q-Registers, and use these
Q-Register names to indicate where the parts are to
go in File B.

-- Read File A into the buffer, extract the parts into
the appropriate Q-Registers, and delete the
remainder of the file.

-- Read File B into the buffer and, for each
insertion, position the pointer in the buffer and
insert the contents of the appropriate Q-Register.

This is a good procedure for making large-scale patches to
any program or document.

TENEX TECO October 1973 Page 36
TUTORIAL, Large-Scale Editing

An Application

The following dialog places at the beginning of the buffer
an introductory sentence which cites the opening words of
the text which is already in the buffer:

*JSago (ESC) $ (%) Finds end of the opening.
(%)

*(,.XAGA(ESC) $ (%) Extracts and restores

(%) the opening.

*OA;T(ESC) S (%) Types out the contents
Fourscore and seven(%) of Q-Register A

years aqo (%)

*J (ESC) S (%) Moves pointer to the
(%) top of the buffer.

*IThe Address begins(%) Makes up the sentence.
"T{4D) SGAI" (¥)

The entire text is: (%)

(ESC) 5 (%)

(%)

*HT (ESC) S (%) Types the result.
The Address begins (%)

"Fourscore and seven (%)

years ago" (%)

The entire Text is: (%)

Fourscore an(DEL) (BEL) (%)

(%)

(%)

*

TENEX TECO October 1973 Page 37
TUTORIAL, Large-Scale Editing

A Q-Register can also be used to hold an integer value.
This value is almost always used to save the position of the
pointer in the buffer, but it is not restricted to that
purpose. If the user wants to do some integer calculations,
he can use Q=-Registers as his variables.

Only two commands are required and they arec very
simple. The Update-QR Command (nUg) loads the integer value
n into Q-Register g, destroying the previous contents, The
O-value Command %Qq) is actually a function. Its value is
the contents of Q-Register ¢, and it can be used wherever an
integer value is accepted.

230A Puts the integer 23 into Q-Register A.
.U5 Puts the current pointer position (the

number of charactcrs before the pointer)
in Q-Register 5.

Q53 Puts the pointer at the position
specified by the integer in Q=-Register 5.

QA+2UA Increases Q-Register A hy 2.

QA= Types out the integer in Q=Register A.

The Q=Register Commands for character strings and for
integers are not mutually compatible. For example, if a
O-Register is loaded with the character string "398" by an
Extract=-String Command and an attempt is then made to get
its value with the Q-value Function, TECO will okject and
type an error message. All of the Q-Registers initially
contain the integer value ¢ (as if a ¢Uq had been executed).

An Application

In the preceding dialog based on the Gettyskurg Address, the
first sentence of the Address was extracted. That was
relatively easy because the beginning of the sentence had a
known position, @, in the buffer. In the dialog which
follows, a sentence is extracted from the middle of the
Address and both ends must be located. Q-Registcr § is used
to save the position of the beginning of the sentence while
the end is found.

TENEX TECO October 1973 Page
TUTORIAL, Large=Scale Editing

*Sdid here. (ESC) $ (%) Finds previous period,
*V(ESC) $(%) types end of previous
they did here. (%) sentence,

*LT (ESC) S (%) Gets to beginning

It 1s for (%) of desired sentence and
*, UP (ESC) $ (%) saves pointer.
*S. (*D) ST (ESC) $ (%) Finds end of sentence
It(%) and checks.
*Qf, .XC(ESC)$ (%) Picks up sentence.
*QC; T(ESC) 5 (%) Types out sentence.

It 1s for(%)

us the living, (%)
rather, to be(%)

oo o

TENEX TECO October 1973 Page 39
TUTORIAL, Large-Scale Editing

Although TECO has general facilities for both conditional
and unconditional transfer of control, it is the simple and
specialized Iteration Command which is most useful.

In order to repeat any command string n times, (1)
place the command string in angle brackets, "<¥ and ">", and
(2) put n in front of the bracketted string. If n 1is
omitted, an approximation to infinity (2435) is assumed, and
the loop will continue until something in the command string
stops it.

3<R; (4D), (4D); V> Starts at the current position
of the pointer and replaces the
next 3 semicolons with commas.
Types each modified 1line.

5<L18<I.(%D)>> Puts 18 periods at the
beginning of each of the next
five lines.

J<Ryclepped(tD)yclept(4D); V>
Corrects all misspellings of
"yclept" in the buffer, however
many there are.

J<S(+S) command(+S) (+D); V>
Types out every line in which
the word “command" appears.

S and R commands 1inside iteration brackets cause the
iteration to terminate if the search fails. Thus, if the
buffer contains exactly one occurrence of the string “abc"
the command J<Sabc(D)V> will print the line containing the
"abc" twice == once when the search succeeds and again when
it fails. This is because the V command is seen before the
> which will cause the iteration to stop.

A Q-Register can be used to count the number of times a
loop is executed. A special function, %g, is provided which
increases the integer in (Q-Register g by one and then
assumes the resulting integer value. This function can be
used as a free-standing command if the user types Control=D
after it to "absorb" its integer value.

TENEX TECO October 1973 Page 4y
TUTORIAL, Large=-Scale Editing

96UA26<3%AI> Inserts a complete lower-case
alphabet into the buffer.

JUAJ<S; (+D) %A (4D)> Counts the semicolons which
appear in the buffer and leaves
the result in Q-Register A.

A Final Example

The following loop searches the buffer for the occurrences
of the word "command". For each occurrence of the word, the
loop types the line in which the word appears, stops to let
the user type 1in a single character, and then capitalizes
the words if the user typed "Y" (for "yes").

J<Scommand (4D); V4T-44Y"E-~7CRc(+D)C(4D) *'>
This command string uses some commands which have not been

described yet and, in any case, needs some explanation. An
annotated listing follows:

J Puts pointer at beginning.

< Starts loop.

Scommand (D) Searches for "“command".

: vV Skips to end of loop if search
fails. Types out the line
containing "command".

+T=44Y "4T" is a function which assumes the

value of the code for the next
character the user tynes (TECO waits

for the user). "4+4Y" is the code
for "y".
"E If the preceding expressions is

Equal to zero, the following
commands are executed; otherwise,
they are skipped up to the

apostrophe.
-7C Back up to just before "command".
Rc(+D)C(4D) Capitalize "c".
' End conditional expression skip.
> End loop.

This example is important. It represents TECO at its best,
namely in a short, interactive loop in which the user makes
the difficult judgements and TECO carries out the editing
details.

TENEX TECO October 1973 Page 41
TUTORIAL, Special Editing

Chapter 3

SPECIAL EDITING

All the TECO commands which have not been described in the
previous chapters are mentioned in this chapter. Each
section of this chapter describes a group of commands
designed for a particular purpose. The descriptions are
brief because the commands are not of universal intcrest.
The purpose of this chapter is to inform the reader of the
existence of specialized commands of TECO, A conplete
description of each command appears in the TENEX TECO
Handbook and can be found by looking up the command name in
the command index.

Automatic Indentation

An effective technigue for organizing information on a page
is to use the "outline" form; that is, to indent lines by
varying amounts to indicate the grouping and relative
importance of the information. This formatting teciinique is
often applied to improve the readability of programs in
block-structured languages, such as LISP, Algol, and PL/I.

The simplest means of indenting a line is to tvpe in

the appropriate number of leading spaces. For a long
program with many different indentations, this process is
tedious and error prone. TECO has a set of four special

commands which can be used to supply these 1leading blanks
automatically. The commands are:

(+W) Records the number of spaces in a new
indentation.
(+U) Inserts spaces required for the indentation

which is currently in use.

(t+B) Reverts to the indentation which was recorded
just before the current one and inserts the
required spaces.

TENEX TECO October 1973 Page 42
TUTORIAL, Special Editing

(+Y) Reverts to the indentation which was recorded
just after the current one and inserts the
appropriate spaces.

The first time a particular indentation 1is required, the
user types in the necessary spaces himself and uses the
Control-W command to record the indentation. Indentations
are recorded in a 1list which 1is a special part of TECO
storage.

Logical Operators

An integer may be represented as a sequence of binary digits
(as the reader may know). TECO has operators which convert
an integer into a bit string, apply a logical operation to
the strings, and convert the result back to an integer. The
operators are:

m#n the i-th bit of the result is the logical
"or" of the i-th bits of m and n

m&n the i-th bit of the result is the logical
"and™ of the i-th bits of m and n.

Conversion of Integers

In some cases it is useful to convert a sequence of digits
which occurs in the buffer into an integer argument for a
command, Conversely, it may be useful to convert an integer
argument into a character-string representation of the
integer. The necessary commands are:

n;N This function interprets the digit string
which follows the pointer and assumes that
integer value. The argument n specifies the
base to be used in interpreting the digits
(for example, n=38 for octal digits).

n\ This command expresses its argument, n, as a

- (possibly signed) sequence of digits™ of base
1§ and inserts the sequence into the buffer
just before the pointer.

Flow of Control

TECO has a rather complete set of commands for flow of
control. These commands are supplied because even a short
command string occasionally needs a conditional transfer or
a custom-made loop to make it go. The following commands
provide conditional execution of an arbitrary command
string:

TENEX TECO October 1973 Page 43
TUTORIAL, Special Editing

n"Ec' Executes the command string ¢ if n Equals {;
otherwise, skips over c.

n"Nc' Executes ¢ if n Not-equals f.

n"Lc' Executes ¢ if n Less-than {

n"Ge' Executes ¢ if n Greater-than 0

n"Cc' Executes ¢ if n is the character code of a

letter, digit, ".", "s", or "&".

The following commands provide an unconditional transfer of
control:

s2 This is a label.
Os(+D) This is a transfer to the label "isi".

Sometimes it is not appropriate to have a Search Command
produce an error message when the search fails. This is the
case, for example, when a search 1is part of a stored
program. The following alternative is provided:

:Ss(4D) The ":" before a Search Command causes the
- whole command to assume an integer value of
-1 or § according as the command succeeds or
fails. Thus the command can be used wherever
an integer argument 1is accepted. Note:
Search commands and Replace commands inside
iteration brackets (< ... >) act as if they

have the : modifier on.

n; (SP) The ";(SP)" causes a skip out of the

- enclosing loop for non-negative values of n
and otherwise 1is ignored. (The semicolon
must be followed by a Space character.) If a
":"~Search Command 1is used as the argument to
this command, the command will skip out of
the enclosing loop when the search fails.

Stored Programs

TECO has important commands which make it possible to create
a TECO progran, store it, and later execute it.
Specifically, the command string is typed into the buffer
like any other passage of text, is placed in a Q-Register by
an extract Command, and 1is then executed by the Macro
Command, as follows:

TENEX TECO October 1973 Page 44
TUTORIAL, Special Editing

Mg This command causes TECO to execute as a
command string the contents of Q-Register .

Since the character string in the Q-Register g may itself
contain a Macro Command, this command provides for
subroutines which can be called through one another as well
as directly by the user.

A minor difficulty arises in preparing programs. An
ordinary Insert Command cannot be used to enter into the
buffer an Insert or Search Command because the Control-D
which is a part of the stored command will prematurely
terminate the overall insertion. The following commands
solve this problem:

@Itst This command inserts the character string s,
— which may include (4D). Any character which
does not appear in s can be wused as the
character t which delimits the character

string. -

@stst This command searches for the character
string s, which may include (4D).

@Rtslts2t Replace string sl by s2, both of which may
contain the terminator t.

TECO has a few additional commands whose principal use is in
stored programs. They are:

+T This is a function whose value is the integer
code for the next character typed in by the
user. (TECO waits until the character is
typed.)

;Ts(4D) Types out s and is used to output a message
from a running program.

q Pushes down into a special pushdown stack the
current value of Q-Register ¢.

Ig Pops up the pushdown stack into Q-Register (.

? Causes TECO to "trace" 1its execution; that
is, to type out commands as they are

executed. The second "?2" turns the trace
off, the third turns it on again, and so on.

The basic input/output commands of TECO, as described in
Chapter 1, obtain a file designator not from the command
string but from a special dialog with the wuser. This
operation is not appropriate for use in a stored program,
and the following command seguences can be used instead:

TENEX TECO October 1973 Page 45
TUTORIAL, Special Editing

;RE(4D) ;Y
Reads in all of file f and adds it to
whatever is in the buffer.

;WE(+D) ;U
Writes out the entire buffer onto file £ and
clears the buffer.

These commands are further described in the discussion of
paged input/output which follows this section.

The stored program commands and the rather complete set
of flow of control commands combine to make possible some
relatively complicated symbol manipulation. However, the
proper use for the programming facility is to bridge the gap
between simple editing and full scale symbol manipulation.
TECO should not be wused in competition with complete
programming systems like LISP or SNOBOL. TECO does not have
the debugging facilities, the data structures, or the
efficiency to support such an activity.

TECO Paging

The computer on which TECO was originally implemented did
not have virtual memory and its actual memory was relatively
small. It was therefore necessary to devise a means by
which a file could be edited piece by piece. Toward this
end, the Form Feed character (Control-L) was selected as an
"End-of-Page" character and each substring of a file which
ended with a Form Feed was called a TECO page. (There is no
relation between this "TECO page¥, which is purely a
software notion, and the "page" which is the wunit of the
TENEX virtual memory.)

With the introduction of wvirtual storage and the
consequent very great increase in the capacity of the
buffer, the need for paging declined. For TENEX TECO, the
possibility of the division of a file into TECO pages arises
under the following conditions:

-- When a file exceeds the (approximately)
one-million-character capacity of the buffer, it
must be broken into parts.

-- When a file is to be merged with another file or
rearranged in some way, 1t must be broken into
parts.

~- When a file exceeds 6f,{{Jf characters (a very rough
estimate) and will be subjected to extensive
editing (that is, many insertions and deletions),
efficiency considerations suggest that it should be
broken into parts.

TENEX TECO October 1973 Page 46
TUTORIAL, Special Editing

However, a decision to break a file into parts does not
necessarily 1lead to paging the file. It will often be more
appropriate to maintain each part of the file as a file in
itself. Thus the cases in which paging commands are
essential is rare.

For LISTing or TYPEing it is wuseful to have +Ls on at
logical places to make page boundaries simply for human use.
Also can be handy in moving through file using n;BJ.

The commands for handling paged files will now be
described briefly. They fall into several subgroups
according to the steps of the input/output process.

The first step is to open files for input and/or
output, as follows: -

; RE(+D) Selects the file whose designator 1is £ and
opens it for input.

;WE(+D) Selects the file whose designator is £ and
opens it for output.

The following commands read a page from the file which is
open for input.

Y Deletes the contents of the buffer and reads
the next page of the input file into the
buffer,

A Adds the next page of the input file to the

end of the current contents of the buffer.

The following commands output a portion of the buffer which
is specified by its arguments. Two, one, Or no arguments
can be used, and their significance 1is described in the
Handbook.

PW Does output without modifying the buffer.

W Does output and deletes from the buffer the
portion which is output.

The following commands perform a combination of input and
output. The ;Y and ;U Commands which appear helow were
discussed in Chapter 1; but here they have a different
interpretation because they are used when an input or output
file is open.

TENEX TECO October 1973 Page
TUTORIAL, Special Editing

P Outputs the current contents of the buffer
and then reads in the next page of the input
file. 1In effect, the command "turns a page"
of the file being processed.

;Y Reads in the remainder (however many pages)
of the input file and adds it to the end of
the buffer.

;U Repeatedly executes P (Page-Turn) Commands
until the remainder of the input file has
been copied into the output file and then
closes the output file.

The following command concludes the output process:
; C Closes the output file. (For certain
technical reasons, the output file is not

permanently saved until it is closed.)

Two commands are provided to search an entire paged file

47

in

a single operation. Each command starts at the position of
the pointer (as usual) but does not stop at the end of the
buffer; 1instead, subsequent pages are read from the input
file and scanned until a match is found or the end of the

file is reached. The commands are:

nFs (+D)

- Searches page after page. After a page has
been searched wunsuccessfully, it is written
on the output file so that nothing 1is lost.
This command is wused when a file is being
modified.

n;Fs (+D)
-7 Also searches page after page. However,

after a page is searched unsuccessfully, it
is discarded. This command is used when the
file is being examined but not modified.

In contrast to the Search commands Jjust mentioned,
indices described here are designed for wuse with
multiple-page file which is entirely in the buffer;
automatic input/output is involved.

;B Supplies the number of characters in the
buffer before the current page. The current
page is the page which contains the character
just before the pointer.

the

a
no

TENEX TECO October 1973 Page 48
TUTORIAL, Special Editing

;2 Supplies the number of characters in the
buffer through the end of the current page.

n;B Supplies the number of characters in the
buffer before the beginning of the n-th page
in the buffer.

n; BJ Jumps to start of n-th page.

Quoting Control Characters

Certain control characters can be used 1literally in the
character string argument of an Insert or Search Command
when they are properly quoted. The commands for this
purpose are:

(+V) In most cases, when this character is used
immediately before a command control
charcter it will cause that character to be
entered into the command register literally.

(+V) (+Q) When this character pair is used before one
of the three match control characters (as
used in a search command), the match control
character is interpreted literally.

Complete instructions for quoting characters on input,
recognizing them on output, and specifying them in a search
are given in the Character Set Appendix.

Abbreviations

There are a number of commands in TECO which can be
described as abhreviations for commonly used command
strings. Since TENEX TECO is very concise 1in any case,
abbreviations do not play an important role and most of them
are of limited interest. They are:

EDIT f This is an Executive command which 1s an
~ alternative to the "TECO" command. It enters
TECO and then causes the file £ to be read
into the buffer. For a subsequent editing of
the file in the same TENEX session, the user
can just type "EDIT".

EG This is the exit from TECO which is used when
TECO has been called automatically by some
other subsystem of TENEX.

TENEX TECO October 1973 Page 49
TUTORIAL, Special Editing

(LF) This Command (the Line Feed character) moves
the pointer to the beginning of the next line
and types that line. The command must be the
first character in a command string. (The
command was imported from DDT). Note : (LF)
and (+H) are done immediately (i.e. (ALT) is
not needed).

(+H) This command moves the pointer to the
beginning of the previous line and types that
line. The command must be the first
character in a command string. (The command
was imported from DDT).

t4c This is a function whose value is the integer
code of the character c.

;P This is a function whose value is the integer
code of the current character and which moves
the pointer one character to the right. It
thus comhines a "1lA" Function with a "1C"
Command.

B This is an index which is always 0. It is
useful because "B" is slightly easier to type
than "¢".

(SP) This operator (space Character) is

eguivalent to the "+" operator. It is easier
to type than "+".

(HT) s (+D)
This command can be used to insert a string
which begins with a Tab (HT) character. 1In
effect, TECO supplies an "I" at the beginning
and makes this into an Insert-String Command.

This completes the 1list of wuseful TECO commands. The
Command Index contains some other commands; they are either
obsolete names which have modern synonyms or are characters
such as End-of-Line or "$" which have no effect when they
appear as TECO commands.

TENEX TECO October 1973 Page 50
HANDBOOK, The Data

. PART II .

. HANDBOOK FOR TENEX TECO .

® ©® 00 060 00 0000600 00 0000080080000

Chapter 4

THE DATA

A good way to begin the study of a programming system is to
forget the commands, for the moment, and concentrate instead
on the data. This chapter follows that approach, describing
both the wvalues on whicih TECO operates and the buffers and
registers in which these values are stored. An important
supplement to this discussion is Appendix B, which describes
the ASCII character set in detail.

TENEX TECO October 1973 Page 51
HANDBOOK, The Data

DATA TYPES

TECO manipulates two types of data, namely,

-- The character string, a sequence of any number
(possibly zero) of ASCII characters, and

-- The coded integer, an integer value with magnitude
less than 2+35,

The text which TECO edits is, of course, a character string
value. Less obviously, the command string by which the user
controls TECO is also a character string value. The
counters and indices for character string manipulation, and
the repetition counts for loops are coded-integer values.

Character strings and coded integers have distinct
internal representations and this is reflected in the design
of the TECO commands. Commands designed for
character-string values do not work on coded-integer values
and vice versa.

TENEX TECO October 1973 Page 52
HANDBOOK, The Data

In this section, several data structures are defined which
are frequently applied to character strings. In all cases,
the structuring is not "built-in" to the data, but rather is
attributed to the data by particular commands. For example,
a command which handles TECO lines sees a character string
as divided into 1lines by occurrences of the End-of-Line
character; but a command which deals only in characters does
not see any division into lines, and views the End-of-Line
character as just another character. The structure exists
only in the eye of the beholder.

The followlnq are parallel definitions for the line and
the page in TECO: -

== Any character string can be divided into TECO lines
by ending a 1line (1) immediately after ~each
End~of-Line character and (2) at the end of the
given character string.

-- Any character string can be divided into TECO pages
by ending a page (1) immediately after each Form
Feed character and (2) at the end of the given
character string.

These data structures are used to achieve two quite separate
results: the formatting of type-out and the logical division
of data.

The main storage of TECO is the buffer, which will be
described shortly among the other storage registers of TECO.
The buffer stores a single character strlng which TECO
edits. A useful adjunct to this editing is a peointer, which
is a fictitious sliver positioned between two characters of
the buffer (but not taking any space itself) and which can
be moved from one position to another by certain commands.
Useful definitions of "current®"™ objects are made with
respect to this pointer, as follows:

-- The current character of the buffer is the
character just to the right of the pointer. If the
pointer is at the end of the buffer, there is no
character to the right of the pointer, and the
current character does not exist.

-- The current line of the buffer 1is the TECO line
which contains the current character. In the
special case that the pointer is at the end of the
buffer, the current line is everything back to (but
not including) the last End-of-Line character.

TENEX TECO October 1973 Page 53
HANDBOOK, The Data

-=- The current page of the buffer 1is the TECO page
which contains the current character. In the
special case that the pointer is at the end of the
buffer, the current page is everything back to (but
not including) the last Form Feed character.

When the pointer is at the end of the buffer and TECO needs
a current character, TECO assumes the Null character, ASCII
code fI. When the pointer is at the end of the buffer and
the 1last character of the buffer is an End-of-Line or Form
Feed character then the current line or page, respectively,
is an empty string according to the definitions just given.
In this case, TECO performs the required operation (output,
deletion, or so on) on this empty string.

TENEX TECO October 1973 Page 54
HANDBOOK, The Data

Each storage unit of TECO will be described in terms of a
little table. To start with, those registers which are
under the direct control of the user and which are thought
of as the user's data will be given.

MAIN BUFFER

Name: H

Value: character string

Purpose: To hold the text being edited by TECO.

Set by: Input, Insert, Replace and other Commands.
Used by: Output, Search, Replace, and other Commands.

Typed by: HT

POINTER REGISTER

Name: .
Value: coded integer

Purpose: To hold an integer which 1is the number of
characters before the pointer,

Set by: The Position-pointer, Search, and other Commands.
Used by: All position-relative commands and, under its name
" wherever a coded integer argument is

accepted.

Typed by: .=

COUNT REGISTER

Name: Z
Value: coded integer

Purpose: To hold an integer which 1is the number of
characters in the entire main buffer.

TENEX TECO October 1973 Page 55

HANDBOOK,

Set by:

Used by:

Typed by:

Names:

vValue:

Purpose:

Set by:

Used by:

Typed by:

The Data

Any command which inserts or deletes from the main
buffer.

Wherever a coded integer argument is accepted.

7=

Q-REGISTERS (A TOTAL OF 37 REGISTERS)

A, B, C, v0e, 2, 0,1, 2, eo., 9, @

Each register contains a character string or a
coded integer.

(1) To hold an integer, especially a pointer
position, (2) To hold a block of text, or (3) To
hold a TECO command string for execution as a
subroutine.

The X Command (for character string) or the U
Command (for coded integer).

The G Command (for character string) or the Q
Command (for coded integer).

The ;T Command (for character string) or the =
Command (for coded integer).

Executed by: The M Command (for character string).

Values:

Purpose:

Set by:

Used by:

Note:

Q—-REGISTER PUSHDOWN STACK

This is a stack of values, each a character string
or a coded integer.

(1) To save for later restoration the value of a
Q-Register, and (2) To pass on an argument value
to a TECO subroutine,.

The [(pushdown Q-Register) Command.

The] (pop Q-Register) Command.

The stack is cleared every time TECO returns to

the awalt-commands state; it is therefore useful
only when used by a stored TECO program.

TENEX TECO October 1973 Page 56
HANDBOOK, The Data
COMMAND STORAGE
In addition to the data registers just described, TECO has
three registers which are used to hold the command string.
The contents of these registers cannot be manipulated
directly by the ordinary TECO commands, but they are
nevertheless accessible to the user.
COMMAND REGISTER
Value: character'string
Purpose: To accumulate the command string as TECO accepts
it, character byv character, from the type-in
buffer, and hold it until it is ready to be
executed.
Set by: Type-in from the user terminal and the action of
the +A and +Q Commands.
Used by: The TECO command interprecter.

Typed by:

Executed bw:

Values:

Purposc:

Set by:

Used by:

Value:

Purpose:

Used by:

The +R Command.

The (ESC) Control Command.

COMMAND REGISTER PUSHDOWN STACK

This is a stack of character-string values.

To save the current cormmand string when it calls a
subroutine (by the M Command).

TECO, when a M Command is begun.

TECO, when a M Command is completed.

COMMAND REGISTER BACKUP REGISTER

character string

To retain the
16 characters

most recent command string which 1is
or more in length.

TECO

Hh

rom th

le)
wiil

The ;G Command (to put the command string intc the
main buffer).

TENEX TECO October 1973 Page 57
HANDBOOK, The Data

TECO has a specialized facility for controlling indentation
from the left margin which is intended for use with such
block-structured languages as LISP, Algol, and PL/I. The
data required for these commands is as follows:

INDENTATION RING

Values: A list of 16 coded integers

Purpose: Each item in the list specifies the column number
at which a 1line should begin when that entry is
selected by the Indentation Selector.

Set by: The +W Command.

Used by: The other Indent Text Commands.

INDENTATION SELECTOR

Value: pointer to item in Indentation Ring.

Purpose: To select one of the 16 entries in the Indentation
Ring.

Set by: The Indent Text Commands except +tU.

Used by: All of the Indent Text Commands.

TENEX TECO October 1973
HANDBOOK, The Data

Page 58

TENEX BUFFER

Finally, there are several

rather

than

TECO which

interest to the TECO user.

Value:

Purpose:

Set by:

Used by:

Note:

Value:

Purpose:

Note:

TYPE-IN BUFFER

character string
To hold incoming

until TECO 1is
them.

Type-in from the
TECO,
This register is

allows the TECO
TECO is too busy

STORAGE
buffers which belong to TENEX
perform functions which are of

They are the following:

characters from the user terminal
free to echo them and interpret

user terminal.

mentioned because its presence
user to continue typing even when
to accept the type-in.

INPUT/OUTPUT BUFFERS

character string

To hold characters transmitted between
files

the TENEX

TECO and

until they can be accepted at

their destination.

These buffers are mentioned because,

seen in

as will be

the next chapter, a too-sudden exit from
TECO can cause the loss of or duplication

of the

contents of these buffers.

TENEX TECO October 1973 Page 59
HANDBOOK, The Commands

Chapter 5

THE COMMANDS

The remaining chapters of this Handbook are a description of
the commands of TENEX TECO. This chapter includes only that
information which applies to all the commands; namely, (1) a
description of the organization of the Handbook, and (2) a
general discussion of command syntax. Chapter 6 contains
the Control Commands, a small number of single-character
commands by which the wuser directs TECO to interrupt,
execute, edit, and format the Ordinary Commands which are
being typed in. Chapter 7 gives the Ordinary Arguments;
that 1is, all the operators, functions, indices, names, and
constants which can be wused as arguments in Ordinary
Commands ., Finally, Chapter 8 lists the Ordinary Commands;
that 1is, the numerous and varied commands which are
available for the actual business of text editing.

TENEX TECO October 1973 Page 60
HANDBOOK, The Commands

The Organization. of the Command List
This Handbook provides three separate access paths to the
description of a command. They are as follows:

-- Each command can be located by looking up its name
in the Command Index. For example, the Search
Command (which will be cited throughout this
chapter) is indexed under "S".

-~ Each command can be 1located by 1looking in the
function group in the appropriate chapter. The
function groups are 1listed in the Table of
Contents. For example, the Search Command is the
first command in the Search Group in the chapter on
Ordinary Commands.

-- Bach command can be quickly assessed by its
relevance indicator, which appears in a conspicuous
position 1in the command description. This
expedites a casual scan of the Handbook. For
example, the Search Command has relevance indicator
"kxx" which means it is of general interest.

The relevance indicators provide a somewhat unusual summary

of TENEX TECO. They are defined in the following list.

wkx%x" Applies to a command which is wuseful for
all editing activities. An alternative to reading
the entire Handbook is to read only those commands
which are marked "**#*"_ Covers about 1/2 of the
commands.

"paging". Applies to a command which wuses the
division of a file into TECO pages. Such a command
is used in the rare case that l%i a file 1is very
large or (2) extensive interleaving of several
files is recquired. The applications are discussed
at length at the beginning of the Complicated
Input/Output group. Covers about 1/8 of the
commands,

"programs". Applies to a command which is wused
only in the writing or executing of a stored TECO
program, which is an unusual activity. Covers
about 1/8 of the commands.

"special™. Applies to a specialized command other
than those already covered by the "paging" or
"programs" indicators. Covers about 1/8 of the
commands.

TENEX TECO October 1973 Page
HANDBOOK, The Commands

"abbrev". Applies to a command which is a simple
abbreviation of a specialized sequence of commands.
Such a command is valuable to the large-volume user
of TECO. Covers about 1/16 of the commands.

"obsolete". Applies to a command which has an
exact equivalent in a more modern (and possibly
more general) command. Covers about 1/16 of the
commands.

61

TENEX TECO October 1973
HANDBOOK, The Commands

Page

62

A command description is the following list of items,

of which are optional:

-- The headline is always given. It is a single

line

of concise and important information about the

command, and contains:

-- The syntax specification (which is discussed

later) ’

-- The relevance indicator (already described),

-- A brief description of the action of
command, and

-~ A mnemonic informal name.

the

For example, the headline for the Search Command

is:

nSs (4+D) *** (search for string) "Search"

-- The where-clauses give definitions for

the

syntactic variables (if any) which appeared in the
syntax specification of the headline. For example,
the Search Command requlres the definitions "where

n is an integer expression greater than =zero,

and

where s~ 1s a character string of less than 72
characters which does not contain the character

entered by (4D)."

-- Various equivalences and defaults are given

appropriate. If the command 1is obsolete,
modern eguivalent is given; or, if an arqument

as
its
can

be omitted, the default value assumed is given.
For example, for the Search Command, the integer

argument can be omitted and, for that case,
default "Ss(+D) means 1Ss(tD)" is given.

the

-- The main description of the command, in plain

English, is given.

-- Whatever Error Handling conventions or Warnings

apply to the 1llegal or dangerous use

of the

command are given. Examples of both of these
appear in the main listing for the Searcih Command.

Finally,

sOome

TENEX TECO October 1973 Page 63
HANDBOOK, The Commands

-- Somec examples of the command are given. These are
usually Intended to clear up difficult or ambiguous
points, and are not a complete list of the uses of
the command.

TENEX TECO October 1973 Page 64
HANDBOOK, The Commands

The syntax specification with which a command description

begins is composed of syntax variables and literals, as
follows:

-- A syntax variable is a single lower case letter
which 1s underlined. It is always defined hy a
following where-clause and may be subject to
various specilal conditions.

-- Anything which is not a syntax variable is a
literal. Some literals are more literal than
others. The graphic characters are given just as
they would appear, but the control characters,
whose function is something other than typing a
single symbol, are represented by parenthesized
names. These distinctions are clearly made in the
Character Appendix to this Manual.

The syntax specification for the Search Command is
nSs(+D)

This contains the svntax variables n and s, the graphic
character "S", and the control character designated by (+D).
As the Character Appendix points out, when the user types a
Control-D, the TEWEX TECO actually types out a "$", and not
(+D) .

When TECO is interpreting a command name, it does not
distinguish between upper and lower case letters. For
example, the Search Command can be written with a small "s"
as its command name.

Finally, as the examples above have already shown,
control characters are represented in this Handbook by
parenthesized mnemonic abbreviations, such as "(4D)" for the
type in of a Control-D.

TENEX TECO October 1973 Page 65
HANDBOOK, Control Commands

Chapter 6

THE CONTROL COMMANDS

At its simplest, the control of TECO cycles through the
following four steps over and over again:

-=- TECO types "*", asking for commands;

-- The user types a seqgquence of commands;

-- The user types Escape; and

-- TECO executes the commands.
However, various conveniences soon arise, and the control of
TECO becomes more complicated. This chapter describes a
special class of TECO commands, the Control Commands, and
relates them to the remainder of the TECO commands which, in

accordance with their role as the useful and productive
elements of TECO, are called Ordinary Commands.

Every character typed by the TECO user is a command or
part of a command; but the Control Commands are obeyed in a
more direct and immediate way than the Ordinary Commands.
There are only a small number of Control Commands in TECO,
and each of them is a single character. In contrast, there
are about a hundred different Ordinary Command and Argument
forms in TLCCO, and an Ordinary Command can vary in length
from a single character to thousands of characters.

Each Control Cormmand is a single one of the
non-printing ASCII characters called Control Characters.
There are fifteen Control Commands, as follows:

Interrupt: (+C), (+T), (DEL), and (tE);

Execute: (ESC) 3
Edit: (+tA), (+H), (+Q), and (4R);
Quote: (+vV), and (4Q); arnd

Indent: (+w), (+U), (+4B), and (+Y).

TENEX TECO October 1973 Page 66
HANDBOOK, Control Commands

These commands will be discussed in this chapter in five
Groups as indicated by their arrangement above,

The path of a single character will now be traced from
the time it enters the TENEX system until the time it is
executed as all or part of a command.

-- An Interrupt goes through immediately.
The character is accepted from a terminal by the
TENEX system, which supervises and supports TECO in
its interaction with the user. TENEX looks at the
character and acts as follows:

-- If the character is an interrupt Command, TENEX
immediately acts in co-operation with TECO to
obey the command;

-- Otherwise, TENEX places the character at the end
of the type-in buffer. The character is not
echoed at this point, so the user has not yet
gotten arything back for his key-stroke.

-~ Anything else waits for TECO.
TECO usually processes characters without delay;
however, if TECO is finishing up a previous command
(or if the system is heavily loaded) the characters
accunmulate and wait in the input buffer,

-- TECO does a Control Command.
When TECO 1s rcady for the character, it takes it
from the beginning of the input buffer, looks at
it, and acts as follows:

-- If the character is a Control Command, then TECO
executes it immediately;

~~ Otherwise, TECO accepts the character as part of
an ordinarE Command, sends the echo (type=-out)
back to e user's terminal, and adds the
character to the end of the command register.

-- Finally, Escape triggers Ordinary execution.
A character of an Ordinary Command walts in the
Command buffer as other characters accumulate to
form a sequence of Ordinary Commands. When an
Escape 1is entered it causes TECO to execute the
whole command string.

TENEX TECO October 1973 Page 67
HANDBOOK, Interrupt

The TECO user is supplied with four Interrupt Commands.
One, Control-C, allows him to leave TECO and go to the TENEX
EXECutive and then take up in TECO where he left off. The
second, Control-T, provides the user with information on the
status of TENEX. The third, Delete, aborts whatever command
TECO 1is doing and allows the user to enter a new string of
TECO commands. The 1last, Control-E, is an obsolete
equivalent of Delete.

+C *xk (interrupt TECO) "Go-to-EXEC."

The Control-C Command has the effect of interrupting
any TECO command in a relatively non-destructive way and
proceeding to the TENEX EXECutive command level. There are
two cases to be considered:

-- If TECO is not doing input/output, a single
Control-C causes the following actions:

== TENEX stops TECO immediately;

-=- the Control-C is echoed with "s+cC" and
End-of-Line; and

== TENEX turns control over to the Exec, which
types an "@" to request a command.

On the other hand,

-- If TECO is typing out, the interrupt does not occur
until the output buffer is empty. If the user
types Control-C for a second time, however, TENEX
will immediately clear both input and output
buffers whatever their contents and honor the
interrupt in the manner described above.

The TECO user mav find the double Control-C useful when he
wants to exit to the EXEC during a type-out at his terminal.
However, he should not use the double Control-C under other
circumstances since, if TECO happens to be doing
input/output with a permanent file, an unpredictable portion
of the file mav be lost.

The Control-C interrupt can be used according to the
following sequcnce:

TENEX TECO October 1973 Page 68
HANDBOOK, Interrupt

-- Interrupt TECO with one or two Control-C's, as
mentioned above.

-- Perform only those commands at the EXEC level which
do not modify the user's address space, such as
typing, deleting files, and checking the state of
the system.

-=- Return to TECO by means of the Exec Command
CONTINUE.

The net effect of this sequence will be nil from TECO's
point of view. Note however, that some typed input
characters (less than 64) may be lost.

The effect of some system crashes is ecquivalent to one
or two Control=-C Interrupts. If the user was in TECO before
the crash and finds himself in the EXECutive Level when the
system is re-established, he should try recovering with the
CONTINUE Command.

(+7) *kk (state and time report) "gime-Check"

The Time-check Command interrupts TECO, types a brief
message on the status of TECO, and allows TECO to resume at
the point of interruption. The message 1includes the
activity of TECO (running or waiting for input), the
location of the machine instruction which was interrupted
(of interest only to TECO implementers), the TENEX System
load average, and a statement of the total time used in the
current TENEX session.

(DEL) *x % (abort command string) "Abort-Coms."

The Delete Command has the effect of interrupting any
TECO cormand and placing TECO in its basic await-commands
state. There are two cases to be considered:

-- If TECO is executing a command, a single Delete
causes the following sequence:

-- TECO immediately stops whatever it is doing;

-— TECO echoes with a Bell (if TECO was typing out)
or with two End-of-Line characters and the
message "ABORTED" (if TECO was not typing out),
or gives "?search?35 xxxxx" - when doing Search
or Replace,

TENEX TECO October 1973 Page 69
HANDBOOK, Interrupt

-- TECO deletes the contents of both the input
buffer and the command register;

-- TECO types an End-of-Line and "*" to request a
new command.

-- If TECO is waiting for input, a single Delete is
echoed by the Bell. In this case the bell is
asking whether this Delete was a (dangerous!)
typing error or a real abort command. If the user
wants an abort, he types another Delete and the
sequence given above occurs. If the user has made
a typing error or changed his mind, he continues
typing with any character other than Delete and
TECO forgets it saw the Delete.

The type-out from TECO also passes through a TENEX buffer,
and because of this the Delete may sometimes appear to
behave incorrectly. Specifically, the user may type Delete
during type-out and get a response from TECO characteristic
of interruption when TECO is not typing out. This 1is
because TECO has already sent 1ts output off to the output
buffer when the Delete was pushed, and was doing other
things.

(+E) obsolete (ahort command string) "Abort-Coms."

equivalent to (DEL)

TENEX TECO October 1973 Page 70
HANDBOOK, Execute Command String

The single command in this group causes the currently
entered command string to be executed. The basic
interpretation cycle which TECO applies to Ordinary Commands
is included in the description of this command.

(ESC) *k* (execute command string) "Execute-Coms."

The Escape Command takes the following preliminary
action:

-- If there are 16 or more characters in the
previously executed command register, a copy is
written into the command register backup (and the
previous contents of the backup are lost).

Then the command repeats the following command
interpretation process until the entire command has been
scanned, until an erroneous command has been encountered, or
until an abort occurs:

-- Any numeric arguments encountered are scanned,
evaluated, and saved;

-- The command name itself is encountered and
recognized;
-- If the command requires one or two suffix

arqguments, the arguments are scanned and saved;

-- The command 1is applied to the accumulated
arqgquments. Then,

-- If the command is successfully executed, TECO
continues its scan through the command register
by restarting the command interpretation
process; otherwise,

-- If the command was illegal, either in its form,
its arguments, or its action on TECO data, TECO
responds as follows:

-- TECO types an error number (listed in the
Error Message Appendix of this manual), an
English error message, or both; this type-out
will appear on one or more separate lines;
then,

TENEX TECO

October 1973 Page 71

HANDBOOK, Execute Command String

When TECO

TECO types the ten preceding characters of
the command register up to and including the
entire illegal command; next,

TECO clears the command register and the
input buffer; finally,

TECC types an End-of-Line and a A
requesting a new command string.

has successfully executed a complete command

string, TECO

-- clears the command register and the Q-Register
pushdown stack,

-- types

-=- turns
which

an End-of-Line character and a "*", and

to the input buffer to process any characters
have accumulated.

TENEX TECO October 1973 Page 72
HANDBOOK, Edit Command String

EDIT COMMAND STRING

The Control Commands which are in this group constitute a
small but very wuseful editor for correcting errors in a
command string which has been entered but not yet executed.

The first two commands, Control-A and Control-Q, erase
the last character or the last line, respectively, from the
command string which is being entered. The two keys "A" and
0" were not chosen for their names, which are not at all
mnemonic, but for their positions on the keyboard, which are
adjacent to the CTRL key. Each command thus can be entered
by a single motion of the left hand.

These commands can be used in any combination and
sequence; and 1if they are applied often enough, they can
erase a command string of any 1length. The Control-A can
erase any ASCII character, including the End-of-Line
character; so it can be used to erase past the beginning of
the current line of type-in and on into the preceding line.

The third of these commands, Control-R, is used to get
a type-out of the 1last 1line of the command string being
entered. This is useful after the user's image of the 1line
has been confused by applications of Control-A and
Control-Q, by line noise, or by some other interruption.
TECO leaves the typing element just after the last character
typed out, so the user can resume typing just as if he had
typed the corrected line himself,

(+A) * %k (erase last character) "Erase-Character"
TECO responds to Control-A by erasing the last
character of the command register; specifically,
-- If the command register is not empty, TECO
-- deletes the rightmost character and

-- types a "\" followed by the echo of the deleted
character;

-- If the command register is now empty, TECO types
an End-of-Line and "*" (requesting a fresh
start).

TENEX TECO October 1973 Page 73
HANDBOOK, Edit Command String

(+Q) *k ok (erase last line) "Erase~Line"

TECO responds to Control-Q by erasing the last lihe,
complete or incomplete, of the command register;
specifically,

== If the command register is not empty, TECO deletes
the last (non-empty) TECO 1line in the command
register;

== TECO reports the state of the command register as
follows:

-~ If the command register is not yet empty, TECO

types "en and an End-of-Line character
(presenting the wuser with an empty line);
however,

== If the buffer is now empty, TECO types two
End-of-Line characters and a "*" (indicating a
freshi start).

(4R) * k& (retyre last line) "Retype-Line"

TECO responds to Control-R by typing out the last line,
complete or incomplete, of the command register;
specifically,

-- If the command register is not empty, TECO types
the last (non-empty) TECO 1line in the command
register; otherwise,

-- If the command register is empty, TECO tvpes an
End-of-Line character.

TENEX TECO October 1973 Page 74
HANDBOOK, Quote a Character

It is sometimes uscful to include in an Ordinary Command a
character which happens to be a Contro command. For
example, the user may wish to use an Insert-String Command
to 1insert the character in the editing buffer. TECO
normally frustrates this attempt by executing the Control
Command before it reaches the command register. The Quote
Command described here protects any non-Interrupt Control
Command from this fate, and delivers it safely to the
command register. The Interrupt Control Commands must be
handled by other means (the Insert-Code Command) .

This group also includes the Quote-Match Command, which
is used 1in Searches, and the Control-D command, which is
used to terminate the character string argument in an
Ordinary Command.

(+Vv) special (quote control character) "Quote"

The command always combines with the first character
which follows it which is not an Interrupt Control Command.
Its effect is to enter a single character in the command
register, thus adding that character to the Ordinary Command
which is being accunulated, as follows:

-- An Interrupt Control Command bypasses the quotation
mechanisr. It is neither quoted nor does it "use
up" a Quote Command.

-- A non-Interrupt Control Command is protected from
its usual 1nterpretation and 1is entered in the
command register "as itself", that 1is, as the
character code actually generated by the key
stroke.

-- A non-control command is entcred "as itself" just
as 1t would have been if the Quote Command had been
omitted.

(+V) (+Q) special (take match literally) "Quote-Match"

When used in the argument string of a Search Command or
in the first argument string of a Replace Command, the
quoted Control-Q character itself becomes a quoting
character and causes a match control character to be

TENEX TECO October 1973 Page 75
HANDBOOK, Quote a Character

interpreted literally. This command is fully described
under its main entry in Ordinary Commands, Search.

When it appears outside of the contexts just mentioned,
this command does not have a special interpretation; that
is, it is an ordinary application of the Quote Command,
Control-V,

(+D) *** (generate string terminator) "Terminate-String"

This command enters a single Escape character into the
command register. The Escape is the standard delimiter for
a character string in Ordinary commands. The Escape
character cannot be entered directly for this purpose
because it is a control command itself.

The user will naturally tend to think of Control-D
itself as being the character string terminator, since this
is what he types in. This point of view is quite right for
all the ordinary TECO applications, and this manual
encourages it by referring to the string terminator as "the
character entered by (+4D)".

Nevertheless, the conversion can be detected and can
affect attempts to deal with Control-D as a character in
itself (as opposed to its role as the terminator). The
following dialog is a simple example:

*HKQI/ (4D) /J;P=(ESC) (%)
- 27TT(®)

Here the user cleared the buffer, used the special @I
command to insert the "“character entered by (4D)", typed out
the character code, and got "27" instead of "4".

TENEX TECO October 1973 Page 76
HANDBOOK, Indent Text

Programs in a block-structured language like LISP, Algol, or
PL/I 1lend themselves to a formatted arrangement on the page
which greatly improves readability. The main feature of
this format 1is the variation of indentation from the left
margin. The text within a block is indented more than the
surrounding text; and since this is applied recursively to
blocks within blocks (and so on), quite a few different
indentations may be required.

The desired indentation can be achieved in three ways.

-- First, the user can simply begin each line with the
appropriate number of spaces, using the space bar.

-=- Second, the user can set the tab stops
appropriately (using the Exec Command STOPS) and
then use one tab character (Control-I) to get to
the first level of indentation, two tabs to get to
the second level, and so on.

-=- Third, the user can use the commands in this group
to automate the insertion of spaces at the
beginning of each line.

The commands in this group are handy but take a while to
learn; so the choice of indentation method depends on the
volume of text to be typed in.

These commands make use of two data structures which
are built into TECO for this purpose only. The first is the
indentation ring, a list of entries, each of which contains

a column number, The second is the indentation selector,
which always points to one of the 16 entries in the
indentation ring. At any point during type-in, the

indentation selector points to the column number at which
the user wants a line of text to begin. All entries in the
indentation ring are initially 0 (indicating the first
column of a line).

Certain commands in this group move the indentation
selector from one entry to an adjacent entry. For this
discussion, the last entry of the indentation ring is
assumed to be immediately followed by the first entry; and
so it is called a "ring".

TENEX TECO October 1973 Page 77
HANDBOOK, Indent Text

(+W) special (set column entry) "Write-Indent"

The Write-Indent Command advances the indentation
selector to the next entry and stores in that position the
column number at which the next character will be typed.

(+U) special (indent to current level) "Usual-Indent"

The Usual-Indent Command positions the printing element
of the terminal so that the next character typed will be in
the column, c, contained in the currently selected entry of
the indentation ring. Specifically:

~- If the number of characters in the current line |is
less than ¢, the command supplies blank characters
until the line is ¢ characters long;

~-- If the number of characters in the current line is
identical to ¢, the command does nothing;

-- If the number of characters in the current line 1is
greater then ¢ (so the point of indentation has
been passed), the command supplies an End-of-Line
character (starts a new line) and supplies c¢ blank
characters -

(+B) special (indent to previous level) "Back-Indent"

The Back=-Indent Command moves the indentation selector
backward one entry in the indentation ring and then performs
the actions of the Usual-Indent Command. The effect is to
indent, but less than before.

(tY) special (indent to next level) "Yet-More-Indent"

The Yet-More-Indent Command moves the indentation
selector forward one entry in the indentation ring and then
performs the actions of the Usual-Indent Command. The

effect is to indent, but more than before.
WARNING:
Do not use any of these commands in the first 1line of an

Insert-text Command and do not use a Tabk character in a line
before one of these commands; in both cases, the indentation

TENEX TECO October 1973 Page 78
HANDBOOK, Indent Text

will be incorrect. In these cases, the user must type the
blanks which these commands would normally supply.

The reason for these restrictions 1is that these
commands are based on the number of characters in the
current line of the command register, and not on the actual
position of the typing element of the terminal. 1In the case
of the first line of an Insert-text Command, that 1line
begins with an "I" (as well as any commands which precede it
on the same line); and this "I" is counted by the Indent
Text Commands but does not, of course, appear in the final
text. In the case of the Tab character, the character is
entered in the command register and counted as a single
character; but it is echoed and typed out as the number of
blanks required to get to the next tab stop. A use of a Tab
character which is not followed 1in the same 1line by an
Indent Text Command will do no harm.

EXAMPLE:

In the left-hand column which follows, the complete dialog
by which an Algol program is formatted is shown; that is,
the user's Indent Text Commands are shown explicitly, spaces
are 1indicated ((%s) means five spaces), and the system
type-out is underlined. In the right hand column, the
dialog is shown just as the user sees it on the listing.

*T (5s)BEGIN (%) *T BEGIN
(5s) (W) xxx(+U) (%) XXX

(5s8) xxx(4U) (%), XXX
(58)13551+W)BEG1N(+U)(%) BEGIN
(8s) xxx (%) XXX
LOOP: (10) (3s) xxx(+U) (%) LOOP: XXX
(8s) (3s) (+W)BEGIN (*U) (%) BEGIN
(11ls) xxx(4U) (%) XXX
(11s) END; (+B) (%) END;
(8s) xxx (%) XXX
LONGLABEL: (+U) (%) LONGLABEL:
{8s)END; (1B) (%) END;
(58)xxx (1Y) (%) XXX
(8S)BEGINI+U)(%) BEGIN
(8s)xxx(1U) (%) XXX
(BS)ENleBi(%) END
(SS)ENngs END

(ESC) (%) $

Some patterns emerge. It turns out to be convenient to end
almost every line with one of the Indent Text Commands, and
thus save the trouble of typing Carriage Return. This 1is
possible ecause when TECO finds that it has passed the
column required for indentation, it starts a new line and
then indents. The only exception is with a labelled line;
in this case, the user did not want to indent at all and

TENEX TECO October 1973 Page 79
HANDBOOK, Indent Text

used a Carriage Return. When a program label extends into
the part of the line which would normally be occupied bv an
Algol statement, TECO neatly starts a new line.

The user only had to make three settings of the
Indentation Ring (namely, for c¢olumns 5, 8, and 1l1), and
thereafter these were called up automatically. Note that
the wuser waited until the second line to give the first
Write-Indent Command.

TENEX TECO October 1973 Page 8f
HANDBOOK, Integer Expressions

Chapter 7

THE ORDINARY ARGUMENTS

There are two kinds of Ordinary Arguments. The first kind
is the integer expression, which is a prefix argument. One
or two integer expressions can be used at the beginning of a
command, just before the command name. The integer value of
such an expression is usually interpreted by the command as
a count of the characters or 1lines in a string, as the
number of times a command is to be repeated, or as the
integer code for an ASCII character.

The second kind of Ordinary Argument is the non-numeric
argument, which is a postfix argument. One or two of these
arguments can occur at the end of a command. This argument
is always taken llterally, that is, it does not evaluate to
something else. It is used to name a Q-Register or a file,
or to specify a character string.

Most of this chapter is devoted to the various
functions and indices which can occur in an integer
expression. '

TENEX TECO October 1973 Page 81
HANDBOOK, Integer Expressions

INTEGER EXPRESSTONS

Wherever an integer expression is called for in this manual,
any of the following forms can be used:

Mathematical Arguments,

Arithmetic Operators: m+n m-n m*n m/n +n -n
Logical Operators : m#n m &
Parenthesis Pair: (nY
Numerical Constant: funsigned-integer]
Character Functions : ;P 1A AT +4c
Special Functions: n;N AN +H]
O-Register Functions: Qq %q
Buffer Indices: . B VA H n;B HYA

In the expressions just given,

-- m and n are themselves integer expressions;

-= ¢ is an ASCII character;

-- s is a Conditional-Search Command; and

== g is a Q-Register name.

The "-" can be wused by itself as a complete argument
(meaning "=-1"), and ";N" and ";B" can be used without a
prefix argument, n.

The rules for evaluating a TECO numerical expression
are simpler than those of conventional mathematics because,
aside from the usual effect of parentheses, execution
proceeds strictly from left-to-right. That 1is, 1in
evaluating an expressior, TECO repeatedly applies the
leftmost operator to its neighboring opcrands to produce a
single new integer value. This is contrary to conventional
notation which assigns a "precedence" to each operator and
then evaluates in order of precedence, For example, 1in
conventional notation, 2+43%4=24+12=14; but in TECO
2+3*4=5%*4=2(, Since the TECO user rarely uses an expression
with more than one operator, he does not often encounter
this behavior; and the order of evaluation can always be
specified explicitly by using parentheses. For the example
above, one can write 2+(3*4), which is 14 in TECO.

TENEX TECO October 1973 Page 82
HANDBOOK, Integer Expressions

ERROR HANDLING:

Undetected Errors. An ill-formed integer expression is any
sequence of 1integers, parentheses, function names, or
indices which does not satisfy the definition just given for
the integer expression. In most cases, TECO assigns a value
to an ill-formed expression, in one way or another, and does
not detect the error.

This behavior is of no interest to the user until he
makes an error. However, when a user does inadvertently
type in an ill-formed expression, it may be very important
for him to know how TECO interpreted the expression. For
example, see the discussion of "runaway execution" in the
description of the Insert-String Command. TECO interprets
an ill-formed expression as follows:

Empty Parentheses. An empty parenthesis pair is assumed to
be zero. That is, " ()" becomes "§".

Unmatched "(". When an expression has one or more unmatched
left parentheses, the last unmatched left parenthesis
and everything to the 1left of it is ignored. For
example, " (1+(2+(3+4)" becomes "2+(3+4)".

Unmatched ")". When an expression contains an unmatched
right parenthesis, TECO types an error message and
awaits new commands. (This is the only error TECO
detects in the form of an expression.)

Leading Operator. When an expression begins with an
operator, a preceding zero is assumed. (This is not an
error for "+" or "-".,) For example, "*3+4" becomes

Trailing Operator. When an expression ends with an
operator, the operator is ignored. For example, "3+4*"
becomes "3+4",

Adjacent Operators. When two or more operators occur in
sequence, all but the last is ignored. For example,
"6+=-*/2" becomes "6/2".

Adjacent Operands. With the exception noted below, when two
operands appear in sequence a "+" is assumed between
them. For example, " (4*5) (6-7)" becomes " (4*5)+(6-7)".

Exception. When an operand is followed by an n-digit

integer (signed or not), the first operand is
evaluated, n zcros are appended to the result, and the
two operands are added. For example, " (4*5)92" becomes

"2000+92" or "“20192".

TENEX TECO October 1973 Page 83
HANDBOOK, Integer Expressions

Solitary "#". When a Number Sign is used as the entire
argument of a command which takes one argument, it is
interpreted as "-1". For example, "#L" becomes "-1L".

TENEX TECO October 1973 Page 84
HANDBOOK, Mathematical Arguments

There are six mathematical operators, four of them
arithmetic operators and the remaining two logical
operators. They perform operations on coded integers and
regquire no introduction. The parenthesis pair and unsigned
integer are also included here.

mon * % % (arithmetic operators) "Plus,Minus,Times,Over"
where m and n are integer expressions, and
where o is "+", "-", "¥", 6 "/", 6 or the Space character,
(sp).

+n means @+n

-n means g-n

- means -1 (This is allowed as the whole arqgument of a
one-arqgument command.)

E(SP)Q means m+n

The action of plus, minus, and times are in accord with
common usage. The division operation is thought of as first
producing a signed decimal number from which the fractional
digits are then deleted (leaving the "integer part" of the
number). The Space character is allowed as an alternative
to "+" because it is easier to type than "+".

ERROR HANDLING:

Overflow. The result of any of these operations is
undefined if the value of the correct result would be
out of the range (-2+35) through (2+435-1); that is, the
result will be a wrong answer which 1is not worth
specifying precisely. TECO does not report an error in
such a case, but instead uses the resulting value.

EXAMPLES::

~-5%«4 --= is seen by TECO as =-5-4 and equals =9. Always
parenthesize to avoid adjacent operators.

492/1¢¢ =--- equals 4, the integer part of 4.92.

TENEX TECO October 1973 Page 85
HANDBOOK, Mathematical Argquments

mon special (logical operators) "Or,And"

where m and n are integer expressions, and

where o is one of the two characters "#" or "&".

These commands express each of the arguments, m and n,
as 36-bit binary representations of their values, apply the
logical operators to the bit strings, and finally, interpret
the resulting bit string as an integer value. The binary
representation used for a negative number is "twos
complement" (used by the PDP-1(0 hardware).

The operators act on the bit strings as follows:

-- m#n means apply the logical "or" operation to the
corresponding bits. The i-th bit of the result is
thorefore "1l" if the i-th bit of m or n is "1", and

s "g" otherwise. - T

-- m&n means apply the 1oq1ca1 "and" operation to the
corresvponding bits. The i-th bit of the result is
therefore "1" if the i-th bits of m and n are "1",

and is "0" otherwise.

EXAMPLES ¢

QA&l --- is ¥ or 1 according as the coded integer value
of Q-Register A is even or odd.

QA#0QB =--- is zero only if both QA and QB contain zero.

(n) *k* (collect operand) "Parentheses"

where n is an integer expression

The parentheses serve their wusual purpose; that |is,
they groun toaether a sequence of arguments and operators
which are to be evaluated to produce a single coded-integer
value.

ERROR HANDLING:

Missing Left Parenthesis. If an unmatched right parenthesis
1s encountered, TECO types an error message and awaits
new commands.

TENEX TECO October 1973 Page 86
HANDBOOK, Mathematical Arguments

n *xx (unsigned-integer) "Unsigned-Integer"
where n is a sequence of one or more decimal digits.
The unsigned-integer is always interpreted as decimal

(base 1) when 1t appears in an integer argument of a
command.,

ERROR HANDLING:

Out of Range. If the integer is out of the range (2+35)
through (2435-1), it is reduced to an undefined integer
value in that range. No error message is typed out.

TENEX TECO October 1973 Page 87
HANDBOOK, Character Code Functions

There are four functions in TECO which, when applied to a
single ASCII character will produce as the result the value
of the ASCII code of the character. The first two are
applied to the character which follows the pointer in the
buffer. The next is applied to a character solicited from
the wuser's terminal. The last is applied to the character
which is the literal arqument of the function.

1A *kx (get character code) "Access-Code"

The Access-Code Function takes as its value the integer
equivalent of the ASCII code for the current character. The
current character is the character just to the right of the
pointer. If the pointer is at the end of the buffer, this
function takes f§ as its result value.

It is convenient to use "1" in front of "A"; but any
integer will do. The argument is ignored and serves only to
distinguish this command from the Append-page Command, which
has no arqument.

;P abbrev (get code and adv. pointer) ";Pickup-Code"

The ;Pickup-Code Function takes on the same value as
the Access-Code Function. In addition, however, the
;Pickup-Code Function also moves the pointer one character
to the right (unless the pointer is already at the end of
the buffer). Thus the jPickup-Code Function is an
abbreviation for a use of the Access-Code in the argument of
some command followed bv a "1C™ Character-Skip as the next
command. -

+T programs (get code from user) "Take-Code"
where the name is "+" followed by "T", not Control-T.

This function causes TECO to pause and wait for a
single character to be typed in at the user's terminal; when
the character is typed, the function assumes the
coded-integer value of the ASCII code of the character, and
TECO continues execution.

This is the total input facility for writing TECO
programs. It is especially useful for inputting the user's

TENEX TECO October 1973 Page 88
HANDBOOK, Character Code Functions

"Y" or "N" answer to a simple yes or no question; however,
used in a suitable loop, it could input any character string
required.

ttc abbrev (get code from argument) "Lookup-Code"

where the name is "+4" followed by "+", not Control-t,
and

where c is any ASCII character other than an unquoted
control character.

The value of this function is the coded-integer value
of the ASCII code of c. For those characters to which it
can be applied, this function saves the user the trouble of
looking up the ASCII code.

TENEX TECO October 1973 Page 89
HANDBOOK, Special Functions

TECO has two functions which each take an integer which is a
substring of the buffer and convert it into a coded-integer
value. Also included here is a function to measure elapsed
time.

n;N special (get integer) "Eumber—Pickup"

where n is an integer expression

:N means 1l{;N

This function has a coded integer value which is
obtained as follows:

-- If the pointer is followed by an unsigned integer
in the buffer, the pointer is moved to the end of
the string of digits. The integer is interpreted
as being base-n and is taken as the result;
otherwise, -

-- If the pointer is not followed by an integer, the
pointer is not moved and §§ is taken as the result.

ERROR HANDLING:

Bad Radix. Error number 53, "Negative arqument to :N"
1s typed.

EXAMPLE ¢

Suppose the buffer contains the character string
"64ABC-78" and the pointer is at the beginning. The
following sequence of commands are executed:

;N= ~--- which types "64";

;N= ==- which types "@";

3C;N= =--- which still types "J";

C;N= --- which types "78"; and

J8;N= =--- which types "52".

TENEX TECO October 1973 Page 90
HANDBOOK, Special Functions

\

obsolete (get integer) "Old-Pickup"

equivalent to 10;N

(form feed flag) ' "FF-Flag"

where the name is "+" followed by "E", not Control-E,

Set by reading a page. If reading terminates normally
because a +L was seen, subsequent +E commands will
return 1 as a value. If reading terminated because the
text buffers filled, +4E will return f§ as a value.

TENEX TECO October 1973 Page 91
HANDBOOK, Q-Register Functions

Q-REGISTER FUNCTIONS

Two functions which obtain the value contained 1in a
Q-Register are mentioned here. The descriptions given are
summaries of of the main entries which appear in the chapter
on Ordinary Commands under Q-Registers.

Qq fakoded (evaluate Q-Register) "Q-value"

where q is a Q-Register name.

The value of this function is the coded-integer value
contained in the Q-Register whose name is (.

3q *kx (increment and evaluate QR) "Step-QR"

where ¢q is a Q-Register name.

This function increases the Q-Register named ¢ by one
and then assumes the coded-integer value contained in that
Q-Register.

TENEX TECO October 1973 Page 92
HANDBOOK, Buffer Indices

TECO maintains indices which each contain a coded-integer
value and which are always used in a context in which they
represent character counts from the beginning of the buffer.
Thus each index specifies a position in the buffer between
two characters, at the beginning of the buffer, or at the
end of the buffer.

. *k ok (current location) "Pointer-value"

This symbol is the name of the Pointer Register and can
be used wherever a coded-integer value is required. It
contains the number of characters between the beginning of
the buffer and the pointer.

B abbrev (index of beginning of buffer) "Begin-Buffer"

equivalent to

This index, B, was introduced for reference to the
beginning of the buffer, and is useful because "B" is
slightly easier to type than "g". It originated in an
earlier version of TECO in which the buffer did not begin at

llgl'.

Z * %k (index of end of buffer) "End-Buffer"

Z represents the number of characters in the entire
buffer, and 1is, therefore, the position of the end of the
buffer.

H * k% (index~pair for buffer) "Whole"

equivalent to B,Z

This symbol, H, 1is a very specialized abbreviation
which can be used only to replace a pair of coded-integer
arguments. It is, in that context, the name of the entire
contents of the buffer.

TENEX TECO October 1973 Page 93
HANDBOOK, Buffer Indices

n;B paging (beginning of page) "Begin-Page"

where n is an integer expression greater than zero

;B means (see below)

Used without the integer argument, this index 1is the
number of characters in the buffer before the first
character of the current TECO page.

Used with the integer argument n, this index 1is the
number of characters in the buffer before the first
character of the n-th TECO page.

ERROR HANDLING:

Bad Count. If n is not positive, TECO types an error
message and awaits new commands.

Too Big. If n is greater than the number of pages in the
buffer, TECO types an error messagc and awaits new
commands.

;2 paging (index of end of page) "End-Page"

This index is the number of characters in the buffer
before the end of the current TECO page. ;2 is the same as
top of the next page.

TENEX TECO October 1973 Page 94
HANDBOOK, Non-Numeric Arguments

Included in this group are the Q-Register name, the file
designator, and the character string.

c *hh (Q-Register name) "QR-Name"
where ¢ is a letter or a digit.
There are 37 Q-Registers, one each for each letter,

each digit and @. A capital letter and the corresponding
lower case letter refer to one and the same Q-Register.

d:<dn>fn.e;vn * k% (file designator) "File-Designator"
where d is the device;

where dn is the directory-name;

where fn is the file-name;
where e is the extension; and

where vn is the version-number

The file designator is used to specify the origin of
any input to TECO or the destination of any output from TECO
(except for type-in and type-out at the user's terminal).
When the device 1is "DSK" (the system disk file) it can be
omitted (with the following ":"). When the directory-name
is the wuser's name, it can be omitted (with™ the enclosing
"<" and ">"). Both of these omissions almost always apply.
Other abbreviations can be made of a file designator; they
are not uniform and are described under the various
Input/Output Commands.

The file designator is a construct which is native to
the TENEX file system, not TECO; and a full discussion of
the file designator can be found in the TENEX documentation,

s Rk (character string) "Character-String"

where s is a sequence of any number (possibly zero) of
characters drawn from the ASCII set of 128 characters.

The character-string is wused as an arqgument of an
Ordinary Command, usually to specify a substring of the
buffer which is to be inserted or searched for. There are

TENEX TECO October 1973 Page
HANDBOOK, Non-Numeric Arguments

95

several rules which apply to all character string arguments,
as follows:

Aside
chara
Speci

Whenever one of the Control Command characters
(listed at the beginning of the chapter on Control
Commands) is used without protection in a character
string argument, it does not become a part of that
arqument. Instead, it is executed for its own
effect when TECO first sees it.

In addition to the unquoted Control Commands, there
is always one other character which cannot be
included in the character string. It is the
character used to terminate a character string
argument. For all commonly used commands, it is
the character entered by Control-D, and can be
omitted as a terminator when it would be the last
character in a command string. In a tag the
terminator is "!", and in certain specfg%ized
commands it can be any character the user chooses.

from the exclusions Jjust mentioned, any ASCII
cter can be wused in a character string argument.

fically, all of the control characters which

do

formatting (End-of-Line, Tab, and so on) can be used freely.

TENEX TECO October 1973 Page
HANDBOOK, Command Form

Most

Chapter 8

THE ORDINARY COMMANDS

TECO Ordinary Commands have the following form:

Prefix Arguments. A command can begin with two
arguments separated by a comma, with a single
argument, or with no arguments, Each of these
prefix arguments must have a coded-integer as its
value; and the argument can be any combination of
operators, functions, indices, and constants (as
described in the preceding chapter) which will
produce this value, Usually a change from two
arguments to one argument changes the nature of the
command; for example, #,10T types the first ten
characters of the buffer, but 10T types the ten
lines which follow the pointer. On the other hand,
when all prefix arguments are omitted from a
command which needs these arguments, TECO assumes a
specified "default" argument or argument pair for
most commands.

Command Name. The command name is always required.
For most of the important commands, it is a single
mnemonic letter. Most of the commands added to
TECO since it was imported from DECsystem-1¢ (1971
Version) have names consisting of ";" (semicolon)
followed by a mnemonic letter, The remaining
commands use various character combinations as
more-or-less mnemonic names.

Suffix Arguments. A command can end with two
character string arguments, a single character
string argument, or no arguments. In all cases,
these suffix arguments are non-numeric. In the
case of the Q-Register Commands, a single letter or
digit is wused and is the name of the Q-Register
involved. 1In all other cases, these arguments are
character strings. The usual technique for
delimiting a character string argument is to follow
it with the character entered by (t+D); however,
other special purpose methods are occasionally
used. In contrast to Prefix Arguments, the suffix
arguments cannot be omitted; that is, every command

96

TENEX TECO October 1973 Page 97
HANDBOOK, Command Form

has a specific requirement for 0§, 1, or 2 suffix
arguments and this requirement must be filled
explicitly.

The prefix argument policy of TECO contains many exceptions
and anomalies. As an especially remarkable example,
consider the letter "A". When used without any arguments,
this is the Append-page input command; but with a preceding
integer argument it is the Access-Code function, which has
nothing to do with input/output. The interesting point is
that the integer argument is not used by the Access=Code
function; its only purpose 1s to distinguish the function
from the Append-page Command.

The command form just described applies to all Ordinary
Commands except for several in the Flow of Control group.
These latter commands require special forms; for example,
the Iteration Command contains within it a command string,
and it uses the angle brackets, <...>, to delimit this
command string,

When a command which would end with the character
entered by (4D) 1is immediately followed by Escape, then
typing of the final (4D) can be omitted. This abbreviation
is especially useful because it frequently applies. 1In a
typical editing session, Insertion, Search, and Input/Output
Commands, all of which end with the character entered by
(+D), are often given singly (so they constitute a complete
command string) and are terminated by an Escape.

TENEX TECO October 1973 Page 98
HANDBOOK, Command String

COMMAND STRING

A command string is a sequence of Ordinary Commands, The
user responds to TECO's "*" by typing a command string and
then typing an Escape. The Escape is not part of the
command string; rather, it is the means by which the user
causes a command string to be executed. There are other
ways in which a command string can be executed. It can be
part of an enclosing command, as in the case of an Iteration
Command, or it can be 1loaded in a Q-Register and then
executed as a subroutine by the Macro Command.

ERROR HANDLING:

Undetected Errors. An ill-formed command is a character
sequence which 1s not explicitly defined as a legal command.
It may be ill-formed because it contains an ill-formed
argument; this case was described at the beginning of the
preceding chapter. It may be ill-formed because it has an
illegal command~name or the wrong number of arguments; these
cases are described here. In some cases TECO detects an
ill-formed command, types an error message, and asks for new
commands . However, in other cases TECO interprets an
ill-formed command as if it were a (similar) legal command,
as follows:

Too Many Arguments. Unwanted arguments are sometimes
ignored by TECO. For example, "5,12C" becomes "12C",
and if "HT6" is a complete command string it becomes
”HT” .

Parenthesized Argument Pair. When a pair of arguments
(separated by a comma) is illegally enclosed in
parentheses, the parentheses are ignored. For example,
"(3,5)T" becomes "3,5T".

Up-Arrow Commands. Several names of commands and functions
have the form "tc"

Illegal No-Ops. There are many characters which are not
legal command names.

c *kk* (no operation) *No-Op"

where ¢ 1is the End-of-Line character, the Space
character, or the character entered by (+D).

The No-Op Command causes no action. It has two
purposes, as follows:

TENEX TECO October 1973 Page
HANDBOOK, Command String

== A No-Op can be used to help format a long command

string, especially one which is filed for later use
as a stored program, The Space and End-of-Line
No-Ops are used for this purpose.

A No-Op command can be used to "use up" any integer
arguments which precede it (see the description of
the % Command in the Q-Register Group). The (+4D)
No-Op is used for this purpose.

WARNING:

When

a Space character occurs between two integers, it

is interpreted as "+", not No-Op. In addition, Space is

used

as the second character of the Skip-Out Command,

";(sp)".

99

TENEX TECO October 1973 Page 100
HANDBOOK, Enter/Exit

ENTER/EXIT

These commands are used for the initial entry into TECO and
for the final exit back to the TENEX Executive, Other
commands designed for a temporary visit to the EXEC are
discussed elsewhere, under Control Commands, Interrupt.

TECO *kx {call TECO) 'Call-ggxt-gditor-and-ggrrector“

where this is a TENEX Executive Command.

This command calls the TECO subsystem of TENEX and
establishes TECO in its initial state. In this state, those
registers which can accommodate coded integers each contain
a P (zero) and the remaining registers and buffers are
empty. When the initialization process is complete (after a
few seconds of real time), TECO types "*" and waits for the
first string of TECO Ordinary Commands from the user.

EXAMPLE:

A recommended beginning for the usual TECO editing session
is as follows:

@TECO (%)

*7Y (ESC) (%)
INPUT FILE: HENRY(ESC).TEXT;3 [Confirm](%)
389 CHARS (%)

Notice that the ;Yank Command accepted just a small part of
the total file designator (namely, "HENRY"), then informed
the user of the extension and version number ("TEXT;3")
which it had assumed, and finally let the user confirm this
assumption (with a Carriage Return). Other input commands
allow partial specification of a file designator, but none
type out the assumed completion and allow confirmation or
rejection. The :Yank Command is described in the Simple
Input/Output section of this chapter.

EDIT(SP) £ abbrev (call TECO on a file) "Edit-a-File"
where (SP) is a Space character;

where f is a file designator; and

where this is a TENEX Executive Command.

This command is an abbreviation for a particular way of
entering TECO, opening an input file, and reading the entire

TENEX TECO October 1973 Page 101
HANDBOOK, Enter/Exit

file into the buffer. Specifically, the dialog

@EDIT HENRY (%)

is approximately equivalent to the dialog

@TECO(%)
* . RHENRY ;Y (ESC) (%)

As a side effect, the TENEX EXECUTIVE remembers the name and
extension of the file being edited. Subsequent "EDIT"
commands will use these for defaulting so re-edits are done
by typing as little ED% to the EXEC.

ERROR HANDLING:

Not Found. If the designated file does not exist in
storage, TENEX types "?2".

Edit file deleted. The name being remembered by the
TENEX EXEC no longer represents a file.

Bad Designator. If f is not in a legal form, TENEX types
L

- H ok (simple exit from TECO) "Halt"

The ;Halt Command is intended to be used as a final
exit from TECO after the user has completed his editing
session and safely filed his results. This role contrasts
with the role of the Control-C Control Command, which is
intended for a temporary exit from TECO.

In practice, however, the two commands are not so
distinct. In accordance with the general error-forgiving
nature of TENEX, the user can recover from a ;Halt Command
which was given prematurely, provided he acts promptly. If
no command which modifies the user-memory has been given
since exit from TECO, the user can resume his TECO session
with the EXECutive Command CONTINUE.

WARNING:

If the output file is open when this command is given,
portions of the output may be lost. However, this danger
does not apply to most editing sessions since theoutput file
cannot be left open unless commands described in the section
on Complicated Input/Output have been used.

TENEX TECO October 1973 Page 102
HANDBOOK, Enter/Exit

EX paging (close file and exit) "Exit-from-TECO"

equivalent to ;U;H

ED paging (date, close file, exit) "Exit-with-Date"

equivalent to ;D;H

EG special (execute edited program) "Exit-and-Go"

The Exit-and-Go Command exits from TECO and enters the
CCL COMPIL Module. Any required output activities must be
performed before this command is executed.

TENEX TECO October 1973 Page 103
HANDBOOK, Insert Characters

INSERT CHARACTERS

This group of commands is used to insert new text data into
the buffer. The group begins with the Insert-String
Command, which can handle an almost arbitrary character
string and proceeds to related but much more specialized
commands. Next, the Insert-Code Command is given, which 1is
the only command in all of TECO which can deal with ASCII
characters with no exceptions. Then a command is given for
inserting the decimal representation of a coded-integer
value. Finally, the group includes the ; Get=Commands
Command, which 1is wused to rescue the argument string of a
previously given illegal Insert-String Command.

Is(4D) *kk (insert character string) "Insert-String"

where s is a character string which does not contain
the character entered by l+D§.

The Insert String Command inserts the entire character
string, s, immediately to the left of the pointer. The
actual insertion only occurs when the command is executed
(as a result of a terminating Escape), and until that time
the character string (which may be many pages of formatted
text) accumulates as part of one long command string.

If an unquoted Control Command occurs in the argument,
s, of this command, it is not treated as part of the string
To be inserted but instead is executed as a Control Command.
The Control Commands are listed at the beginning of the
chapter on Control Commands.

WARNING:

Because of the importance of the Insert Command, the
mistakes to which it lends itself are also important. The
user can (1) leave off the initial "I" or (2) attempt to
include the character entered by (4D) and thus terminate the
argument character string prematurely. In either case, TECO
will attempt to execute as a command string a character
string which the user intended to be text data. TECO will
continue execution until it detects an illegal command, and
will then print the appropriate diagnostic message and
return to the await-commands state. At this point, the user
should trace the runaway execution which has occurred. The
Command Index Appendix will assist the user in this process.
The runaway usually does no damage to the TECO data; but on
other occasions the buffer may be chewed up, the pointer may
have slipped, a Q-Register may have been clobbered, and so
on.

TENEX TECO October 1973 Page 104
HANDBOOK, Insert Characters

EXAMPLES:

Iknow thyself(+D) === inserts "Know thyself" in the buffer
just before the pointer. The (4D) can be omitted if it
is at the end of a command string.

know thyself(4D) =--- deletes the remainder of the line after
the pointer (the "k" command) and searches for "ow
thyself" (the "n" command).

(HT)§(+D) abbrev (insert tabbed string) "Tab=-Insert"
where (HT) is the (Horizontal) Tab character; and

where s is a character string which does not contain
the character entered by (tD),

equivalent to I(HT)s(4D)

This command allows the user to drop the "I" from the
beginning of a regqgular Insert-String Command if the argument
string of that command begins with the Tab (Control-I)
character.

@Itst programs (special insert string) "@Insert-String"

where t is any character which does not appear in s and
is not an unquoted Control Command; and

where s is a character string which can contain the
character entered by (4D) but no other unquoted Control
Command.

The @Insert-String Command can be thought of as the
result of taking a regular Insert-String Command, changing
the way in which its arqument string is delimited, and
putting an "@" character in front to signal the change.
When the argument is specified in this way, the character
entered by (+D) can be included in the argument but the new
terminator, t, cannot.

Clearly the value of this command over the regular
Insert Command is for the <case when s must include the
character entered by (4D). This case occurs when the user
is preparing a character string which will later be executed
as a TECO command string; specifically, when the user wants
to insert Insert, Search, Replace or Input/Output
instructions into the buffer. This is why the
@Insert-String Command is classified as *programs® (for use
in connection with writing TECO programs).

TENEX TECO October 1973 Page 105
HANDBOOK, Insert Characters

See the "Warning"™ in the description of Insert-String.
ERROR HANDLING:

No Argument Terminator. If TECO comes to the end of the
current command string before finding the second (and
closing) instance of t (whatever character that may
be), then TECO types an error message and awaits new
commands.

EXAMPLES :

@I/Iabc(+D)/ =-- inserts into the buffer a command which (if
later executed by a Macro Command) will insert "abc"
into the buffer.

@I+Iabc(+D)+ =-=-- equivalent to the example above.

nI *xx (insert character by code) "Insert-Code"

where n is an integer expression between f and 127

The Insert-Code Command determines which ASCII
character has a code whose numeric value is identical to the
value of n; then it inserts this character in the buffer
just before the pointer. Any one of the 128 ASCII
characters can be inserted by wusing a suitable integer
value.

ERROR HANDLING:

Out of Range. If n is not in the range g to 127, its value
modulo 128 is used (high order bits are dropped).

EXAMPLES ¢

31 --- inserts a Control-C into the buffer just before the
pointer. Control-C is one of the Interrupt Control
Commands, and this is the only way it can be inserted
into the buffer.

#+TI --- waits for the user to type a character and then
inserts it into the buffer,

TENEX TECO October 1973 Page 106
HANDBOOK, Insert Characters

nG * &k (Get copy) "Get=-copy"
where n is an integer expression

A copy of the next n 1lines is inserted after the
pointer

m,nG *kx (Get copy) "Get-copy)"

where m and n are integers

A copy of the (n-m) characters beginning at m are
inserted after the pointer.

n special (convert and insert integer) "Insert-Number"

where n is an integer expression

This command expresses the coded-integer value of n in
ASCII characters as the shortest possible decimal
representation and inserts that representation into the
buffer just before the pointer.

WARNING:

If an integer argument is not supplied to this command TECO
does not report an error; instead, TECO interprets this as
quite a different command, namely the obsolete version of
the ;Number-Pickup function.

:G * k& (retrieve a bad type=-in) "Get-Commands"

The ;Get-Commands Command copies the contents of the
Command Register Backup Register into the buffer just before
the pointer. The contents of the Command Register Backup
Register are unchanged.

The Command Register Backup Register always contains
the most recent previously executed command string which had
16 or more characters; therefore :his command can be used to
recover from an ill-formed Insert-String Command which had a
long (and therefore valuable) argument string.

TENEX TECO October 1973 Page 107
HANDBOOK, Position Pointer

POSITION POINTER

These commands position the pointer in the buffer as
specified by an integer-valued argument. When the argument
is omitted, the command is accepted and given a default
interpretation.

The argument can designate the number of characters
between the beginning of the buffer and the desired position
of the pointer (for the Jump Command), the number of
characters to move the pointer forward or backward relative
to its current position (for the Character-Skip Command),
or, in an especially useful way, the number of lines to move
the pointer forward or backward relative to the current line
(for the Line-Skip Command).

Several TECO functions move the pointer as a side
effect. They are

-~ The ; Pickup=-Code Command, which gets the
coded-integer value of the character code for the
character just after the pointer and then moves the
pointer one character to the right;

-- The ;Number-Pickup Command, which gets the
coded=-integer value of the unsigned decimal
representation (if any) which immediately follows
the pointer and then moves the pointer to the right
of that integer representation; and

-- The \ Command, which is similar to the
jNumber-Pickup Command.

These three functions are discussed under Ordinary
Arguments, Character Code and Special Functions.

nJ badady (set pointer) "Jump*

where n is an integer expression.

J means (J --- Note exceptional default

nJ places the pointer just after the n-th character of
the buffer. For the case of n={, the command places the
pointer at the beginning of the buffer.
ERROR HANDLING:

Off The Edge. If n specifies a position beyond the
beginning or end of the buffer (n<§ or n>Z), then the

TENEX TECO October 1973 Page 18
HANDBOOK, Position Pointer

pointer is not changed, and TECO types an error message
and awaits new commands.
EXAMPLES :

§J === places the pointer just before the first character of
the buffer.

1J --~ places the pointer just after the first character of
the buffer.

ZJ === places the pointer just after the last character of
the buffer.

QfJ --- If Qf has the numeric value 24, places the pointer
just after the 24-th character of the buffer.

nC *k % (skip characters) "Character-skip"

where n is an integer expression

C means 1C
-C means =1C

Suppose the pointer is just before the i-th character
of the buffer. Then the nC command moves the pointer to
just before the (i+n)-th character of the buffer,

ERROR HANDLING:

Off The Edge. If n specifies a position beyond the
beginning or end of the buffer (.+n<f§ or .+n>Z), then
the pointer is not changed, and TECO types an error
message and awaits new commands.

EXAMPLES :
gC =--- does nothing.
3C --- moves the pointer three characters forward.

-C --- moves the pointer backward one character.

nL k% (skip lines) "Line-Skip"

where n is an integer expression

L means 1L

TENEX TECO October 1973 Page 109
HANDBOOK, Position Pointer

-1, means =1L

Suppose the line which contains the character just
after the pointer is the i-th line of the buffer. Then the
nL command moves the pointer to the beginning of the
{i+n)-th line of the buffer.

The command always leaves the pointer at the beginning
of a 1line or (as a special case) at the end of the buffer.
If this command attempts to move the pointer beyond the
boundary of the buffer, the action is not treated as an
error. Instead, the pointer is left at the beginning or end
(whichever applies) of the buffer.

EXAMPLES :

I, === moves the pointer to the beginning of the current
line.

L --- moves the pointer to the beginning of the next line
(if there is one) or the end of the buffer (if the
pointer was in the last line).

- --- moves the pointer to the beginning of the preceding
line,

I,-C === moves the pointer to the end of the current line.

TENEX TECO October 1973 Page 11§
HANDBOOK, Type=Out

TYPE=-OUT

The most important of these commands type portions of the
buffer at the user terminal, as specified by one or two
integer-valued arguments. When the arguments are omitted,
the command is accepted and given a default interpretation.

A pair of integers can be used with the Type-String
Command to specify character counts for the start and end of
the type-out. A single integer can be used with the

pe~Lines Command to specify the number of lines to be
typed out just before or after the pointer. Finally, a pair
of integers or single integer can be used with the View
Command to specify in a simpler way the number of lines™ to
be typed out before and after the pointer.

The group also includes two commands carried over from
DDT which "turn the platen" one line forward or one line
back.

Finally, this group contains commands which type the
value of a coded-integer or type a message or position the
paper at the user's terminal for a clean type-out.

m,nT kol (type character string) "Type-String"

where m and n are integer expressions

HT means @,ZT

m,nT types out at the wuser terminal the character
string “which begins just after the m-th character of the
buffer and which ends just after the n-th character of the
buffer. (It does not change the buffer or the pointer.)

If this command attempts to type out characters beyond
the boundaries of the buffer, the action is not treated as
an error so long as part of the specified character string
lies within the buffer.

ERROR HANDLING:

Backward Type-Out. If m>n, TECO types an error message and
awaits new commands.

Entirely Off The Edge. If an attempt is made to type
characters none of which are even adjacent to the
actual buffer (that is, n<@# or Z<m), then TECO types an
error message and awaits new commands.

TENEX TECO October 1973 Page 111
HANDBOOK, Type-Out

EXAMPLES:

essT === types nothing.

z2-2§,2T --- types the last twenty characters of the buffer.

01,Q2T --- If (for example) Q1 and Q2 have the integer
values 45 and 873, the command types from the 4éth

character to the 873rd character, inclusive.,

HT --- types the whole buffer,. If the user has second
thoughts about any type out, he can abort the typing
out process with a single Delete.

nT Kk x (type adjacent lines) "Type-Lines"
=Y

where n is an integer expression

T means 1T

=T means ~1T

Suppose the line which contains the character just
after the pointer is the i-th line of the buffer. Then the
nT command types out the characters between the pointer and
the beginning of the (i+n)-th line of the buffer.

If this command specifies lines which are bey nd the
beginning or end of the buffer, it is not treated as an
error. Instead, the command is treated as if it had
specified 1lines up to the beginning or end of the buffer,
respectively.

EXAMPLES :

T --- types that portion of the line after the pointer, and
is the best way to find out where the pointer is.

T --- types that portion of the line before the pointer and
is useful for finding the pointer when it happens to be
at or near the end of a line.

-3T --- types three lines before the current 1line and
continues typing into the current 1line up to the
pointer.

m, nV *xx (type adjacent lines) "View"

where m and n are integer expressions

TENEX TECO October 1973 Page 112
HANDBOOK, Type-Out

V means 1V
nV means E'EV

m,nV types the (m-1l) lines before the current line,
types the current line, and types the (n-1) lines after the
current line. The command does not change the buffer or the
pointer.

If this command attempts to type 1lines beyond the
boundary of the buffer, the action is not treated as an
error. Instead, the command types those specified 1lines
which are within the boundary.

ERROR HANDLING:

Negative Arguments. A negative argument is treated as
infinity (some number greater than 2435). No error
message is typed out.

EXAMPLES :

V === types the current line, and is most useful for finding
the entire 1line in which the pointer appears. Can be

followed by
T -=-- to determine where in the line the pointer is.
2V --- types the current line and gives a context of one

line 1in each direction. It is useful for confirming
the pointer position in a long and repetitive listing.

n= *k ok (type coded integer) "Type-Integer"

where n is an integer expression

The command types out the decimal representation of the
value of n followed by an End-of-Line character.

ERROR HANDLING:
Illegal Value. If the command is not preceded by an

argument, n, which produces a coded-integer value, TECO
types an error message and awaits new commands.

EXAMPLES
.= === types the number of characters before the pointer.

2*(2-QA)= =--- types the value of the given integer
expression.

TENEX TECO October 1973 Page 113
HANDBOOK, Type=-Out

;Ts (+D) programs (type message) "Type-Message"

where s is a character string which does not contain
the character entered by (4D).

The command types out the character string, s, which is
its argument., No End-of-Line character or —any other
character is added to the type-out. The command is used in
a TECO program to prompt input, identify output, or report
on progress.

(LF) abbrev (type next line) "Next-Line"
where (LF) is the Line Feed character.

equivalent to LT (ESC)

The command moves the pointer to the beginning of the
next line and then types that line.

The command must be the first character of a command
string; when a Line Feed character appears as a command
elsewhere in a command string, it is ignored.

(+H) abbrev (type previous line) "Previous-Line"

equivalent to =-LT(ESC)

The command moves the pointer to the beginning of the
previous line and then types the 1line.

The command must be the first character of a command
string; when a backspace character (tH) appears as a command
elsewhere in a command string, it is a terminal-dependent
character delete command, similar to tA, See Chapter 6.

TENEX TECO October 1973 Page 114
HANDBOOK, Delete Characters

These commands delete characters from the buffer as
specified by one or two integer-valued arguments. When the
arguments are omitted, the command is accepted and given a
default interpretation.

A pair of integers can be wused with the Kill-String
command to specify the character counts for the start and
end of the deletion. A single integer can be used with the
Kill-Lines Command to specify the number of lines to be
deleted before or after the pointer. Finally, a single
integer can be wused with the Delete-Characters Command to
specify the number of characters to be deleted just before
or after the pointer.

m,nkK * k% (delete character string) "Kill-String"

where m and n are integer expressions

HK means 0,2ZK

m,nK deletes the character string which begins just
after the m-th character of the buffer and which ends just
after the ngh character of the buffer. Then it places the
pointer just after the m-th character of the buffer.

If this command attempts to delete characters beyond
the boundaries of the buffer, the action is not treated as

an error as long as part of the character string lies within
the buffer.

WARNING:

In contrast to the other deletion commands, this command ggx
move the pointer relative to the surviving characters. This
command does not delete relative to the current pointer
position, and the pointer may be anywhere in the buffer
before the deletion. After the deletion, it will be at the
point where the deleted character string began.

ERROR HANDLING:

Backward Deletion. If a "backward" deletion 1is requested
(that 1s, m>n), then the buffer and pointer are not
changed, and TECO types an error message and awaits new
commands.

Entirely Off The Edge. If an attempt is made to delete
characters none of which are even adjacent to the

TENEX TECO October 1973 Page 115
HANDBOOK, Delete Characters

actual buffer (that is, n<f or 2Z<m), then TECO types an
error message and awaits new commands.

EXAMPLES :

§,2PK --- deletes the first twenty characters and places the
pointer at the beginning of the buffer.

20,2K --- deletes all but the first twenty characters and

places the pointer after the 2f-th character (at the
end of the buffer).

z-2p,2K --- deletes the last twenty characters and places
the pointer at the end of the buffer.

nK * kX (delete adjacent lines) "Kill-Lines"

where n is an integer expression

K means 1K
-K means =-1lK

Suppose the line which contains the character just
after the pointer is the i-th line of the buffer. Then the
nK command deletes the characters between the pointer and
the beginning of the (i+n)-th line of the buffer.

If this command specifies lines which are beyond the
beginning or end of the buffer, it is not treated as an
error. Instead, the command is treated as if it had

specified 1lines up to the beginning or end of the buffer,
respectively.

EXAMPLES :
K --- deletes that portion of a line after the pointer.
fK --- deletes that portion of the line before the pointer.

-3K --- deletes all characters from the beginning of the
third line before the current line to the pointer.

nD *k*x (delete adjacent chars.) "Delete-Characters”

where n is an integer expression

D means 1D

-D means =1D

TENEX TECO October 1973 Page 116
HANDBOOK, Delete Characters

Suppose the pointer is just before the i-th character
of the buffer. Then the n I command deletes the characters
between the pointer and the (i+n)-th character of the
buffer. -

ERROR HANDLING:

Off the edge. If an attempt is made to delete characters
beyond the boundaries of the buffer (.+n<f or .+n>2),
then the buffer and pointer are not changed and ~TECO
types an error message and awaits new commands.

EXAMPLES:
gD --- does nothing.
-DD --- deletes one character on each side of the pointer.

D-D ==- and so does this.

TENEX TECO October 1973 Page 117
HANDBOOK, Search

These commands position the pointer in the buffer by
searching for a particular substring of the buffer and
placing the pointer after the substring when and if it is
found. They are a valuable complement to the Position
Pointer Commands, which operate by counting characters.

TECO will also search backward from the current
location by supplying a negative repetition count. Thus,
~3Sfoo$ will find the third occurrence of "foo" before "."
Note that ~Sfoo$ is short for -1SfooS.

When a backward search finishes, the pointer will be
left at the end of the string found. Thus, one cannot tell
whether a forward or backward search was used to find the
string.

A backward search begun with the pointer at the
beginning of the buffer will automatically bring the pointer
to the end.

The first of the commands, Search, is adequate for most
applications. Two special commands (and their obsolete
alternative forms) are given which search through a file
which is divided into TECO pages. Two "modifiers" are given
which can be applied to the commands in this group (1) to
cause a search to affect the flow of control of a TECO
program and (2) to allow the inclusion of the character
entered by (4D) in the search argument string. Finally,
four "match control" characters are given which have a
special, non-literal meaning when they appear in the
argument string of a Search Command.

nss (+D) il (search for string) "Search"

where n is an integer expression which is negative to
specify reverse search direction, and

where s 1is a character string of less than 72
characters which does not contain the character entered
by (+D)

S§(¢D) means lS§(+D)

The Search Command seeks to match its argument string,
s, against the contents of the buffer. Suppose that s
Specifies a string of i characters. The first attempt at a
match is made with the string of i buffer characters which
begins with the first character after the pointer; the

TENEX TECO October 1973 Page 118
HANDBOOK, Search

second attempt at a match is made with the string of i
characters which begins with the second character after the
pointer (or first character beFforc the pointer if reverse
search), and so on.

The magnitude of the integer argument, n, of the
command specifies how many times the argument string must be
successfully matched with the contents of the buffer. The
search must conclude in one of the following ways:

-- If an attempted match succeeds on n separate
occasions, the pointer is moved to the position
immediately after the n-th successfully matched
substring of the buffer; and the execution of the
command is complete and is said to "succeed". If n
is @, the search succeeds immediately without
moving the pointer. Otherwise,

-- If n separate matches cannot be found before the
end” of the buffer is reached, the pointer is left
in its original position (where it was just before
this command); and the execution of the command is
complete and is said to "fail".

For the purposes of matching with the buffer, the
argument in the Search Command, s, is interpreted character
by character as follows:

-- If a character is an unquoted Control Command, it
is executed when it is first seen by TECO and is
not included in the argument;

-- If the character is the character entered by (4D),
it causes the premature termination of the argument
and is not, of course, included in the argument;

-- If the <character 1is one of the four control
characters Control-X, Control-S, Control-N, or
quoted Control-Q it is handled as indicated under
the separate entries in this group, below. The
Control-N and quoted Control-Q each "uses up" the
character which follows it; finally,

-~ If the character is none of the above, it is
matched literally against the corresponding
character of the buffer.

WARNING:

In entering the Search Command, the user can (1) leave
off the initial "S" or (2) attempt to include the
character entered by (+D) and thus terminate the

TENEX TECO October 1973 Page 119
HANDBOOK, Search

argument character string prematurely. In either case,
TECO will attempt to execute as a command string a
character string which the user intended to be a text
substring. After such a "runaway" execution has
occurred, the user should carefully trace its effect.

WARNING:

When a Search Command is aborted (by the Delete Command)
TECO will type out the error message which normally
means the search was completed and failed. This
indicates that the search had not yet succeeded when the
command was aborted (and thus the pointer was not
moved) . It does not necessarily mean that the search
was completed and failed.

ERROR HANDLING:

Not Found. If a Search Command without the ":" modifier
fails to find a match, TECO types an error messadge
and awaits new commands.

Too Big. If the string being searched for, S, contains
72 or more characters, TECO types an error message
and awaits new commands.

EXAMPLES :

Sis(4D) =--- searches for the next "is"™ in the buffer.
The (4D) can be omitted if it is at the end of a
command string.

S(+S)is(4S) (4D) =--- searches for the next "is" which is
preceded by and followed by a separator character
(and is therefore a complete word).

nFs (4D) paging (search page after page) "Find"

where n is an integer expression which is not negative,
and

where s 1is a character string of 1less than 72
characters which does not contain the character entered
by (4D)

Fi(fD) means lF§(+D)

The Find Command is intended for use only when a file
is being edited according to its division into TECO pages,
that is, it is a member of the large family of TECO "paging"
operations. The command is identical to the Search Command
except for the extent of its search.

TENEX TECO October 1973 Page 12f
HANDBOOK, Search

The search begins at the current pointer position, but
continues, if necessary, until the end of the input file is
reached, not just to the end of the current contents of the
buffer. Specifically, if n matches are not found before the
end of the buffer, the contents of the buffer are written
out on the output file, the buffer is cleared, and the next
page of the input file 1is read in. This page-turning
process 1is continued until one of the following conditions
apply:

-=- If the nth match is made, the buffer is moved to
the position immediately after the successfully
matched substring of the buffer; and the execution
of the command "succeeds". Otherwise,

-~ If the n-th match is not found before the end of
the file is reached, the effect is that the entire
remainder of the input file has been copied, page
by page, through the buffer to the output file and
the buffer has been cleared; and the execution of
the command "fails".

This command does not close the output file in any case.

The command makes its last attempt at a match for a
given page with the last characters in the buffer; and it
makes its first attempt for the next page with the first
characters of the new buffer contents. Accordingly, it will
not match a substring which extends from the end of one
buffer load into the beginning of the next buffer load.

nNs (+D) obsolete (search page after page) "Next"

equivalent to nFs(4D)

n;Fs(4D) paging (search pages without output) "Find"

where n is an integer expression which is not negative,
and

where s 1is a character string of 1less than 72
characters which does not contain the character entered
by (4D)

;Fs(+D) means l;Fg(&D)

The Find Command is intended for use only when a file
is being edited according to its division into TECO pages
and the pages searched over can be discarded. The command
is identical to the Find Command, except that whenever the
buffer would normally be written on the output file (as the

TENEX TECO October 1973 Page 121
HANDBOOK, Search

search reaches the end of a page), the contents of the
buffer are instead discarded.

The main application of the command is to a situation
in which the user is reading through a file but not
modifying it.

n«s(4D) obsolete (search pages without output) "0ld-Find"

equivalent to n;Fs(4D)

:c programs (convert search to test) “Conditional-Search"

where ¢ is any Search Command from this group which is
not already a conditional search.

Each of the five Search Commands described has a
"snccess® or "fail" termination, In the absence of the
":"-modifier, a "fail"™ exit produces an error message. The
®:"-modifier has the curious effect of combining with a
search command to produce a function which has an integer
value. This function has the value -1 if the search command
"succeeds" and f# if the search command "fails"

A Conditional Search Command is used in a TECO program
when the program flow depends on the success or failure of
the search., Specifically, the Conditional Search is used as
an argument to the Conditional Commands in the Flow of
Control group; and these commands execute one sequence of
commands if the wvalue of the Conditional-Search is =1 and
another if it is f.

@ctst programs (special search) "@Search"

where ¢ is any Search Command from this group which is
not already an "@"-search and which has had its search
argument, s(4D), removed;

where t is any character which does not appear in s and
is not a Control Command; and,

where s is a character string.

The @Search command can be thought of as the result of
taking any other Search Command in this group, changing the
way in which its argument string is delimited, and putting
an "@" character in front to signal the change. When the
search argument is specified in this way, the character
entered by (4D) can be included in the argument but the
special terminator, t, cannot.

TENEX TECO October 1973 Page 122
HANDBOOK, Search

The "@"-modifier and the ":"-modifier may be used
together to begin a Search Command, in either order, "@:" or
":@"; but only one of each may appear in a command.

The Conditional-Search Commands are similar to the
@Insert-String Command described earlier in this chapter.
The @Insert a Command was included in TECO so the user could
conveniently type strings into the buffer which would
eventually become TECO programs, Similarly the
Conditional-Search Commands exist so that a program-to-be in
the buffer can be searched for a substring containing the
character entered by (4D).

ERROR HANDLING:

No Argument Terminator. If TECO comes to the end of the
current command string before finding the second (and
closing) instance of t (whatever character that may
be), then TECO types an error message and awaits new
commands.

(+X) *kx (accept any character) "Any-Match"

When usea in the argument string of a Search Command,
the Control-X character matches any character whatever. It
can thus be used as a "don't care"™ position in a search
argument.

(+S) (**x (accept separator character) "Separator-Match"

When used in the argument string of a Search Command,
the Control-S character matches any separator character. A
separator is any character other than a letter, a digit, a
period, a dollar sign, or a percent sign; that is, a
separator is any character except those commonly used in
names.

(+N) kx % (reject what follows) "Not-Match"

When used in the argument string of a Search Command,
the Control-N character works in conjunction with the
character which immediately follows it. It specifies that
the next character of the buffer will be accepted as a match
only if it does not match the character which follows the
Control-N. - The Control-N can be applied to any literal
character. In addition, it can be applied to the Control-S
character. The result quite properly matches a buffer

TENEX TECO October 1973 Page 123
HANDBOOK, Search

character which is not a separator.
(V) (+Q) special (take match literally) "Quote-Match"

When used in the argument string of a Search Command,
the quoted Control-Q character works in conjunction with the
character which immediately follows it. If the following
character would normally be interpreted literally, then the
quoted Control-Q has no effect, and could be omitted;
however, if the following character is one of the match
control characters, namely Control-X, Control-S, Control-N
and the quoted Control-Q itself, then that character is
matched literally against the corresponding character of the
buffer. Thus the match control characters do not take
anything out of the repertoire of possible searches.

Outside of the context just mentioned, this command
does not have a special interpretation; that is, it is an
ordinary application of the Quote Command, Control-V, which
is described under Control Commands.

TENEX TECO October 1973 Page 124
HANDBOOK, Replace

REPLACE

This group contains a single command, Replace, which
searches for a particular string in the buffer and, if the
search is successful, replaces the string with another
string, also specified.

nRs (4D) £ (+D) *kx (replace string) "Replace"

where n is an integer expression which is negative to
specify reverse direction of the "SEARCH" implicit in
"REPLACE", and

where s and t are character-strings which do not
contain the character entered by (+D).

Rg(fD)E(fD) means le(fD)E(%D)

The command performs n replacements. Each replacement
searches for s, deletes s, and inserts t. The command is

equivalent to n<Ss(4D)-cDIt(+D)>

where c is the number of characters matched by s.
s - -

EXAMPLES:

Rnot (4D) now (+D) ==~ replaces the next “not"™ by "now" and
leaves the pointer after "now". The (4D) can be
omitted if it is at the end of a command string.

Rnot (4D) (4D) =-- deletes the next "not™ and 1leaves the
pointer at the position of the deletion. The two
(4D) 's can be omitted if they are at the end of a
command string.

-3Rthis (+D) these (+D) --- proceeding towards the beginning of
the buffer from the correct location, three instances
of "this"™ are replaced by “these".

TENEX TECO October 1973 Page 125
HANDBOOK, Flow of Control

FLOW OF CONTROL

The commands in this group together with the Macro command
of the Q-Register Group provide many of the features of a
full-scale high=~level programming language. They provide
for nested 1loops with conditional exits, for conditional
exits, for conditional execution based on a general integer
expression, and for unconditional transfer of control. But
because the normal use of TECO is not as a programming
language system but as an interactive text editor, the most
valuable control mechanism is the most specialized: the
single Iterate Command.

Two commands in this group, the Iterate and Conditional
Commands, have an unusual form (for TECO); they each contain
an arbitrary string of commands as one of their arguments.
These commands must be properly "nested"; that is, if a
command contains rt of another command, it must contain
all of that comman%.

n<c> ko (repeat a command string) "Iterate"

where n is an integer expression which is not negative,
and

where ¢ is a command string.

<c> means 34359738368<g>

where 34359738368 is 2+35, which, for most purposes, is
equivalent to infinity.

The Iterate Command causes the command string, ¢, which
is delimited by the angle brackets to be executed n times.

The O Transfer Command (the transfer of control,
described below) can be used to transfer within an Iterate
Command but not into or out of an Iterate Command. In the
latter cases, the effect of the transfer of control is not
reliable (that is, it is undefined).

ERROR HANDLING:
Missing Left Bracket. If TECO finds a right angle bracket

without a preceding left angle bracket, TECO types an
error message and awaits new commands.

Bad Count. If n is negative TECO types an error message and
awalts new commands.

TENEX TECO October 1973 Page 126
HANDBOOK, Flow of Control

n; (SP) programs (test in iteration) ®"Skip-Out"

where n is an integer expression; and

where (SP) is a Space character.

The Skip-Out Command takes one of two actions,
according to the value of n:

-=- If n is negative, TECO proceeds to the immediately
following command; but

~- If n is positive or zero, TECO skips to the next
unmatched right angle bracket, >, and resumes
execution immediately after it.

The user can think of this command as being a lazy command
which asks the question, "can I exit the loop now?" If the
argument is negative, the answer is "No".

The most important wuse of this command is its
combination with a Search Command. Any Search or Replace
Command which is contained in an Iterate Command is. treated
as if it were a Conditional-Search, whether the ":"-modifier
is actually present or not. Thus each Search Command has a
value -1 or § (according as the search succeeds or fails),
and can be used as the argument n to the Skip-Out Command.
Specifically, any Search Command immediately followed by a
Skip~Out Command takes one of two actions, as follows:

-- If the search succeeds, TECO proceeds to the
command which immediately follows the Skip-Out
command; but

-- If the search fails, TECO skips to the next
unmatched right angle bracket, >, and resumes
execution immediately after it.

The user can think of this sequence of commands as asking
the question, "Shall I exit repeat loop?"; and, if the
search succeeded (and found something to work with), the
answer is “No".

Any number of Skip-Out Commands can be used in a given
Iterate Command; each one will skip to the end of the
Iterate Command if its argument is non-negative.

WARNING:

The space after the ";" is part of the command name, just
as, for example, the "H" is part of the command name in the
iHalt Command.

TENEX TECO October 1973 Page 127
HANDBOOK, Flow of Control

WARNING:

Do not use an angle bracket, "<" or ">", in a character
string argument between a Skip-Out Command and the end of
the smallest Iterate Command which contains the Skip-Out
Command.

This Sklp to the "unmatched® right bracket will usually
get to the "right"™ one; that is, if TECO encounters embedded
Iterate Commands it will skip them properly. However, if
TECO encounters an angle bracket in a character string
argument (of an Insert or Search Command, for example), it
will mistakenly treat this Tangle bracket as the beginning or
end of a Iterate Command and will be misled in its search
for the correct right angle bracket,

EXAMPLE:

J<Sword (+D) ; Is(4D)>HT --- changes all occurrences of "word"
to "words"™ and then tvpes out the entire buffer.

ZJ<-R/PUSHJ P,/CALL/; .=V> Goes through the buffer from end
to beginning replacing "“PUSHJ P," by “CALL", typing the
pointer after each replacement and Viewing the entlre line.

n"xc' programs (conditional execution) "Conditional"

where n is an integer expression;

where

jQ

is a command string; and

where x is one of the letters: g%, "N, "L", "G", or
!CN .

The Conditional Command is actually a set of five
different commands, as follows:

-- n"Ec' means "If n Equals @, then execute c";

-- n"Nc' means "If n Not-equals @, then execute c";

-- n"Lc' means "If n Less-than g, then execute c";

-- n"Gec' means "If n Greater-than g, then execute c";

and”

-~ n"Cc' means "If n is the ASCII code of a character
which 1S a normal Constituent of a name
(specifically, a letter, ~a digit, a period, a
dollar sign, or a percent sign), then execute c

TENEX TECO October 1973 Page 128
HANDBOOK, Flow of Conrol

In every case a test of n is made and then the command
string ¢ 1is executed or skipped according as the test
succeeds or fails.,

The O-Transfer Command (the transfer of control,
described "below) can be wused in any way in relation to a
Conditional Command; that is, to jump into, within, or out
of the command string c.

WARNING:

Do not use a quote (") or an apostrophe (') in the command
string argument of a Conditional Command. When the test for
one of these commands fails, TECO will usually skip to the
"right" apostrophe, that 1is, if TECO encounters embedded
Conditional Commands, it will skip them properly. However,
if TECO encounters a quote (") or an apostrophe (') in a
character string argument (of an Insert or Search Command,
for example), it will mistakenly treat this character as the
beginning or end of conditional and will be misled in its
search for the correct apostrophe.

ERROR HANDLING:
Missing Apostrophe. If TECO fails to find the apostrophe

which closes this command, TECO types an error message
and awaits new commands.

EXAMPLE:

+T=4+4Y"Exxx' --- does xxx if the user types "Y" when the +T
Command asks for a character.

HE programs (program label) "Tag"

where s is a character string which does not contain
the "!¥ character.

This "command" does nothing; its purpose is to label a
point in a program to which an O Transfer command will
transfer.

Because the tag does nothing, it can be used as a
comment as well as a label; and this is the conventional way
of annotating a complicated TECO program.

ERROR HANDLING:
Missing "!"., If TECO fails to find the exclamation point

which closes a tag, TECO types an error message and
awaits new commands.

TENEX TECO October 1973 Page 129
HANDBOOK, Flow of Control

Os (4D) programs (transfer of control) "O-Transfer"

where s is a character string which does not contain
the character entered by l*ﬁ;.

The O-Transfer command is the unconditional transfer of
control. It searches the complete command string for a tag
which has the same character string, that is !s!, and
continues execution with the command which follows that tag.

WARNING:

Do not use an O-Transfer Command to transfer into or out of
the command string contained in an iterate Command.

ERROR HANDLING:
Undefined Label, If there is no tag with the same s which

appears as the arqument of an O-Transfer Command, TECO
types an error message and awaits new commands.

Multiple Labels, If there is more than one tag with the
same s which appears as the argument of an O-Transfer
Command, TECO chooses one of them in a way not defined
here and continues execution after that tag. No error
message is typed out.

EXAMPLE :

$+T=4+Y"ExxxOT (4D) 'yyy!T?! === does xxx if the user types "Y"
when the 4T Command asks for a character; otherwise
(when the user types something else), does yyy.

TENEX TECO October 1973 Page 130
HANDBOOK, Q-Registers

Q-REGISTERS

The commands in this group do not have a particular action
in common as do the other command groups. Instead, they are
the commands which supply the full range of actions for a
particular set of data registers, the Q-Registers. Included
are commands to set, use, save, and restore both types of
values (character-string and coded integer) contained in
these registers. There is a special command to increment a
coded-integer, and commands to type-out or even execute a
character-string value in a Q-register.

For each of the Q-Register Commands the following
applies:

ERROR HANDLING:

Illegal Q-Register Name. If the command has a character
other than a letter, digit, or @ as the name of the
Q-Register, TECO types an error message and awaits new
commands.

nUq *kx (set Q-Register to integer) “Use-QR"

where n is an integer expression, and

where g is a Q-Register name.

nUq places the coded-integer value of n in the
Q-Register whose name is g. The previous contents of the
Q-Register are lost.

ERROR HANDLING:
Missing Arqument., If the command is not supplied with a

coded-integer prefix argument, TECO types an error
message and awaits new commands.

Qq okl (evaluate Q-Register) "Q-vValue"

where q is a Q-Register name.

This is a function, not a free-standing command. Its
value is the coded-integer value contained in the Q-Register
whose name is (.

The %gype-Q-Register Command (described below), which
has the form ;T, does not constitute a use of the Q-Value
command, even though it begins with "Qg". Instead it is a

TENEX TECO October 1973 Page 131
HANDBOOK, Q-Registers

separate command, complete in itself.
ERROR HANDLING:
Wrong Type. If the Q-Register contains a character-string

value, TECO types an error message and awaits new
commands.

tq k% (increment and evaluate QR) "Step-QR"

where g is a Q-Register name.

The command adds one to the Q-Register named g and then
assumes the coded~integer value contained in that
Q-Register.

If the function is followed by a (+D) (which will
"absorb™ the numeric value), it can be used as an Ordinary
Command.

ERROR HANDLING:
Wrong Type. If the Q-Register contains a character-string

value, TECO types an error message and awaits new
commands.

m, nXq kk % (put string in Q-Register) "eXtract-String"

where m and n are integer expressions, and

where g is a Q-Register name.

HXq means #,ZXq.

m,nXq removes from the buffer the character string
which™ extends from just after the m=th character to just
after the n-th character, and places this character string
in the Q-Register named g. Then it places the pointer just
after the m-th character of the buffer. The previous
contents of the Q-Register are lost.

If this command specifies lines which are beyond the
beginning or end of the buffer, it is not treated as an
error. Instead, the command is treated as if it had
specified lines up to the beginning or end of the buffer
respectively.

ERROR HANDLING:
Backward Substring. If m>n, then the buffer, pointer, and

O-Register are not changed, and TECO types an error
message and awaits new commands.

TENEX TECO October 1973 Page 132
HANDBOOK, Q-Registers

Entirely Off the Edge. If an attempt is made to pick up
characters none of which are even adjacent to the
actual buffer (that is, n<@ or Z2<m), then TECO types an
error message and awaits new commands.

nXgq badaded (put lines in Q-Register) "eXtract-Lines"

where n is an integer expression, and

where g is a Q-Register name.

Xq means le
-Xq means -ng

The command removes a substring from the buffer and
places it in the Q-Register named q. The previous contents
of the Q-Register are lost. Suppose the line which contains
the character just after the pointer is the i=-th line of the
buffer. Then the nXq command extracts “the characters
between the pointer and the beginning of the (i+n)-th line
of the buffer.

Gg *** (copy Q-Register into buffer) "Get-Q-Register"

where q is a Q-Register name.

The Get-Q-Register Command makes a copy of the entire
character string in the Q-Register named q and inserts the
copy in the buffer immediately before the pointer, The
contents of the Q-Register is unchanged.

ERROR HANDLING:
Wrong Type. If the Q-Register contains a coded-integer

value, then TECO types an error message and awaits new
commands.

Qq;T k% (type-out a Q-Register) "Type-Q-Register®

where g is a Q-Register name.

This Command types out the entire character string
which is the contents of the Q-Register named (.

TENEX TECO October 1973 Page 133
HANDBOOK, Q-Registers

ERROR HANDLING:

Wrong Type. If the Q-Register contains a coded-integer
value, then TECO types an error message and awaits new
commands.

Mg programs (execute commands in Q-Register) "Macro"

where g is a Q-Register name.

The Macro command is executed as follows:

-=- TECO marks its execution position in the command
string currently being executed as just after this
Command;

-- TECO pushes the current command string down into
its private pushdown 1list (separate from the one
mentioned under the two Q-Register pushdown
commands) ;

-~ TECO takes the contents of the Q-Register named ¢
as the current command string and executes it;

-- TECO pops up the command pushdown stack (to get the
command string in which the Macro Command appears);

-=- TECO continues executing the restored command
string where it 1left off, just after the Macro
Command in question.

The commands in this group require the following definition:

-- A complete command string is (1) a command string
which was accumulated in the Command Register and
placed in execution by an Escape or (2) a command
string which was loaded into a Q-Register and
placed in execution by a Macro Command (see
O-Register Group).

No flow of control structure ever reaches across the
boundary of a complete command string.

WARNING:

It has been stated earlier that when a command string is
typed in, a (4D) at the end of the string can be omitted.
However, this convention cannot be applied to a command
string which is stored in a Q-Register and executed by a

Macro Command.

TENEX TECO October 1973 Page 134
HANDBOOK, Q-Registers

ERROR HANDLING:

Wrong T¥ge. If the Q-Register contains a coded-integer
value, TECO types an error message and awaits new
commands.

EXAMPLES:

MA --- if Q-Register A contains "@T;T+(4D)T", then this MA
command types out the current line with a "t+" where the
pointer is.

JIS(+D) 3I@I/(4D)/PXBMB --- inserts the command "S(+C)(+D)",
puts it in Q-Register B, and executes it. This is the
only way to search the buffer for an occurrence of
Control-C since Control-C is an Interrupt and cannot be
typed into a command string directly.

lq programs (push Q-Register down) "pPush-Stack"

where g is a Q-Register name.

where the mnemonic for this command is: Jjust as left
bracket must precede a right bracket (in ordinary
usage), so a push must precede a pop (in stack usage) .

This command makes a copy of the contents of the
Q-Register named q (whether character string of
coded-integer) and pushes it into the Q-Register Stack. The
contents of the Q-Register named g are unchanged.

ERROR HANDLING:

Pushdown Overflow. The pushdown stack is 512 deep. When it
is already full, this command causes a machine language
error and interrupt to the Executive Level. An attempt
to return to TECO by the CONTINUE Command will just
cause the error interrupt to occur again. A return to
TECO by the REENTER Command will loose the current

command string, but will otherwise recover
successfully.
WARNING:

The stack is cleared each time TECO returns to the
await-commands state.

Iq programs (pop Q-Register up)

where g is a Q-Register name.

TENEX TECO October 1973 Page 135
HANDBOOK, Q-Registers

where the mnemonic for this command is: just as a right
bracket must follow the left bracket (in ordinary
usage), so must a pop follow a push (in stack usage).

This command pops the Q-Register stack and places the
value produced (whether character-string or coded-integer)
in the Q-Register named g. The previous contents of the
Q-Register named are lost. If the stack is empty, it
delivers the value %.

TENEX TECO October 1973 Page 136
HANDBOOK BOOTSTRAP FEATURE

Frequently sophisticated programs are written in TECO
macros and the author wishes to save the program in a way
that it automatically starts itself when run, without having
to type TECO commands at all., This can be accomplished
using the Bootstrap Feature described below.

If a TECO command string is put into Q-Register @, TECO
halted with ;H, and all of core saved using the EXEC
SSAVE command, the result will be a RUNable .SAV file.
When this file is RUN, the TECO it contains
automatically executes the command left behind in @
(that is, it does an M@ command). The canned command
string may contain any legal TECO commands, including
those which read files, load Q-Registers, and execute
Q-Registers.

TENEX TECO October 1973 Page 137
HANDBOOK, Simple Input/Output

SIMPLE INPUT/OUTPUT

The commands in this group are used to move information
between the TECO editing buffer and any TENEX file. They
are recommended for all applications except those rare
processes which operate on extremely large files or perform
input/output without interaction as part of a stored program
of TECO commands.

A single execution of one of these commands performs a
complete input or output operation, including the opening
and closing of the file. These commands were introduced
especially for wuse in TENEX TECO because the TENEX system,
with its large virtual memory, can accommodate the entirety
of almost any file the user wants to edit. 1In contrast, the
earlier systems for which TECO was originally designed had
smaller memories. The user usually had to divide his file
into TECO pages and then process it page by page, using a
sequence of more complicated Input/Output Commands.

Although TENEX has a very 1large memory, there are two
practical factors to be mentioned. First, virtual memory
has 256K words and so a file of somewhat more than a million
characters cannot be loaded into the TECO buffer. This is
not a limitation, because very large files can be editted
using "paged" commands.

Second, the cost of editing a file increases as the
file becomes larger. Each command which inserts or deletes
characters from the buffer causes the shifting of all the
characters which follow the position of the change. When
the size of a file exceeds about 6f8,0ff characters, it
becomes appropriate to consider dividing it into TECO pages,
doing the extra work of processing it page-by=-page, and thus
saving a considerable fraction of CPU time. However, the
figure given (60,000 characters) is not a sharp cutoff, and
is given for "typical®™ work. If the user is performing an
exceptional number of modifications to a file of this size,
he should consider using paging; but the expected saving in
cost must be balanced against the considerable increase in
the complexity of the editing process.

Large files arise in the wuse of TENEX to prepare
documentation; for example, a page of a single-spaced
document prepared on TENEX is about 20@¥ characters long, so
a few dozen pages are enough to exceed the efficiency limit
(68,000 characters) just mentioned. However, considerations
of convenience and prudence usually lead to the dispersal of
a large document into several files (along the 1lines of
chapters, for example), and the problem is solved in a
natural way.

TENEX TECO October 1973 Page 138
HANDBOOK, Simple Input/Output

;Y *kk (append full file) "Yank-File"

This command reads into the buffer from a file. There
may or may nhot be a file open for input at the time this
command is executed. The usual case is no file open for
input. 1In this case, the command conducts a dialog wi the
user to obtain a file-designator, opens the designated file
for input, copies the entire file contents into the buffer
after any characters already in the buffer, and closes the
input file. In short, it appends the designated file to the
buffer.

The rare case is file already open for input. This can
occur only when commands from the Complicated I/0 Group have
been used or when an input command has been aborted {(due to
a Delete or I/0 error interrupt) during the input process.
In this case, the command proceeds immediately to the file
which is open for input, begins reading at the point at
which any previous input process left off, copies the entire
remainder of the file into the buffer after any characters
already in the buffer, and closes the input file. In short,
it appends the remainder of the designated file to the
buffer.

In both cases, the pointer is not moved. If the buffer
was empty, the pointer stays at the beginning of the buffer.

In the "usual™ case, TECO types "INPUT FILE: " to
request a file designator from the user. The dialog is
patterned after the similar dialog at the TENEX Executive
level. Principal features are

-- Explicit Designation. The user can type the full
designator of the required file and terminate it
with an Escape.

-- Recognition Designation. The wuser can start to
type the file designator and then, when he thinks
he has specified it uniquely, he can type Escape
and let TECO try to finish the whole designator.
Alternatively, the user may type (+F) and let TECO
try to finish Jjust that descriptor which is
currently incomplete; that is, a directory name, a
file name, an extension or an (empty) version
number, each with its appropriate terminator.
Should TECO find the input wanting, it will ring
the bell to invite the user to type several more
characters followed by Escape or (+F). The loop
continues until TECO can decide what is wanted.

TENEX TECO October 1973 Page 139
HANDBOOK, Simple Input/Output

-- Same 0ld Input. If the last file name used for
Input in the current TECO session happens to be the
one now required, the user can just type Escape
right away, and TECO will type the entire file
designator.

-- Version Number. If the user lets TECO type the
version number, then the version number supplied
will be that of the highest-numbered version of the
designated file which exists in storage.

-- Confirmation. When the correct file designator has
been typed by any of the methods just described,
the system types a request for confirmation; the
user types a Carriage Return or another Escape; and
finally, the system performs the input and then
types the number of characters in the whole buffer.

-=- Abort. The user may decide to abort. This can
occur because he has made a typing error, or, more
frequently, because TECO made an unexpected
recognition and filled in the wrong file
designator. The user should then type Delete twice
to abort both the dialog and the Yank Command which
started it. The result of a single Delete followed
by, say, Escape is anomalous: if TECO has decided
on the file requested, it will go ahead (in spite
of the single Delete, and open the file, and read
one(!) character into the buffer.

-- Other Devices. Ordinarily, the user will be doing
his input/output with the TENEX disk files;
however, this command can be used with any TENEX
file device which is available to the user for
input.

WARNING:

If this command is aborted after the user has confirmed
the file designator, the input file may be partially
read into the buffer and may be left open. A subsequent
input command will continue reading the file.

ERROR HANDLING:

Not Found. If the designated file does not exist 1in
storage, TECO does not abort; instead, it repeats
its "INPUT FILE " request and the dialog begins
again. The user can escape giving a legitimate
reply only by aborting the command.

Bad Read. If the file cannot be read because of various
equipment failure, TECO types an error message and

TENEX TECO October 1973 Page 149Y
HANDBOOK, Simple Input/Output

awaits new commands. Usually one will type =;Y
(¢+D) to remember where the bad character is and
attempt to read the rest of the file.

EXAMPLE:

The following is a typical Yank dialog:
*:Y(ESC)
INPUT FILE: HENRI(ESC) 2

INPUT FILE: HENRY(ESC).TEXT;3 [Confirm] (%)
389 CHARS

The user first supplied the name of a non-existent file,
then corrected himself and had the designator recognized
and completed.

;U *kk (output full buffer) "gpget-File"

This command writes from the buffer onto a file. There
may or may not be a file open for output at the time this
command is executed. The usual case is no file open for
output. In this case, the command conducts a dia?og with
the user to obtain a file designator, opens the designated
file for output (clearing it of any previous contents),
copies the entire contents of the buffer into the file,
closes the output file, and clears the buffer. 1In short, it
outputs the buffer to the designated file and then clears
the buffer.

The rare case is file already open for output. This
can occur only when commands from the Complicated 1/0 Group
have been used or when an output command has been aborted
during the output process. In this case, the command
appends characters to the file which is already open for
output as follows: first, the contents of the buffer are
written out and the buffer is cleared; then, if there is a
file open for input, the portion of that file which has not
yet been read is copied directly over and appended to the
output file, When this output is complete, the output file
is closed, assuring its safe storage. In short, the command
completes the process of copying the pages of an input file
onto a previously designated output file.

In the "usual" case, TECO types "OUTPUT FILE: " to
solicit a file designator from the user. The dialog is
parallel to that for Yank, but there are quite a few points
of difference. Principle features are

-- EXplicit Designation. The user can type the full
designator o the required file and terminate it

TENEX TECO October 1973 Page 141
HANDBOOK, Simple Input/Output

with Escape. The recommended version number for a
new file is 1 (one), of course. If § (zero) is
typed by the user, however, then TECO will use the
version number of the highest-numbered version of
the designated file which exists. This, of course,
will destroy the previous contents of that file.
It avoids proliferations of versions, but it can
lead to unexpected and irreversible losses. As a
third possibility, the wuser can type everything
(including a final semicolon) up to the version
number, and let TECO supply a safe version number,
as described below.

-- Version Number. If the user permits TECO to type
the version number, then the version number
supplied will be one greater than that of the
highest-numbered version of the designated file
which exists in storage.

-- Recognition Designation. When a wuser wishes to
write a new version of an old file, he uses Escape
or (tF) as described under "recognition" for Yank.

-- Same 0ld Input. If the last file name used for
input in the current TECO session happens to be the
one now required for output, the user can just type
Escape right away, and TECO will type the entire
file designator.

-- Confirmation. When the correct file designator has
been typed and terminated, the system types
" [New filel]" or "[New version]" or "[0ld version]".
The wuser types Carriage Return or another Escape;
and finally, the system performs the output. In
the case of an "[0ld version]", the designated file
is overwritten and, unlike the effect of the
executive command DELETE, this 1loss 1is not
reversible. -

-- Abort. The user may decide to abort an Unget
Command. The procedure is the same as for Yank;
two Delete's should be used. A single Delete
followed by, say, Escape is anomalous: if TECO has
decided on the file requested, it will go ahead and
append the first character of the buffer to the
current contents of the output file (but will not
close the output file or change the contents of the
buffer).

-=- Other Devices. This command can be used with any
TENEX file device which is available to the user
for output.

TENEX TECO October 1973 Page 142
HANDBOOK, Simple Input/Output

WARNING:

If this command is aborted after output has begun, the
buffer may be partially written out and the output file
may be left open. A subsequent input command can
produce unexpected results.

ERROR HANDLING:

Incomplete Designation. If the user tries to create a
new file designator (not just a new version) and
fails to type the name, a period, the extension,
and a semicolon, TECO does not abort; instead, it
repeats its "OUTPUT FILE: " request and the dialog
begins again. The user can answer or abort the
command.

Not Found. If the user tries to write a version of an
existing file but the file does not exist, TECO
responds as for an incomplete designator.

Bad Write. If the file cannot be written out because of
various equipment failures, TECO types an error
message and awaits new commands.

No Storage. When there is no disk space available, it
will be impossible for TENEX to accept the output
request. This may be reported as
"ERROR IN OUTPUT".

EXAMPLE:
The following is a typical Unget dialog:
*.U(ESC)

OUTPUT FILE: HENRY.(ESC) ?
OUTPUT FILE: HENRY.;(ESC)1l [New file] (%)

Oon his first try, the user tried to use a new designator
but forgot the extension terminator, semicolon; when
this was corrected the output was performed.

;S kk% (save copy of buffer) "save"

This command is identical to ;U except that the text
buffer is not cleared after the output. Frequently one may
name LPT: as the output file,

TENEX TECO October 1973 Page 143
HANDBOOK, Simple Input/Output

;D *** (date & output full buffer) "Date-and-Unget~File"

This command is a variant of Unget. If a file is not
open for output when this command is initiated, the command
generates a date line and places it at the beginning of the
output. It action is otherwise identical to ;U. A date
line is a

-- comment string (set 4D), followed by
== the full designator of the file , followed by

-- the date and time of the output operation, followed
by

-- the name of the user who commissioned the output.

Since the date line begins with a comment string (usually ;)
it will be ignored when the file is used as a source
program, If the Date-and-unget Command is used for
successive versions of the same file, the date lines will
accumulate at the beginning of the file and provide a
history of its development.

+D kN (declare comment string) "+D command"®

;D unloads the text buffer to a file, prefixing it with
date and time informations and the editor's name. ;D looks
at the extension of the file being written and picks an
appropriate comment character (or string) to shield this
information with., The current table includes the following:

EXT. COM. CHR.

.MAC H

.FAT H

.P11 ;

« PAL /

«BCP //

.BLI .

.PPL coo (3 .'S and a space)
.F4 C (C and a space)
LFap C (C and a space)
.FOR C (C and a space)
F10 C (C and a space)

If a ;D is done to a file which has an unknown extension, a
semicolon will be used.

TENEX TECO October 1973 Page 144
HANDBOOK, Simple Input/Output

The default ;D comment character (string) may be overridden
by the ;4D command. Examples: +D%$ or +D.COMMENTS or +DS.
The string following the two characters UP-ARROW and D are
stored as the default heading comment string. 4D $ is
terminated by an altmode or control-=D. A comment string set
by 4D will be wused without regard to the file extension.
Normal defaulting may be restored by setting the default
string to be null (+DS$).

TENEX TECO October 1973 Page 145
HANDBOOK, Complicated Input/Output

COMPLICATED INPUT/OUTPUT

The commands in this group are required (1) to input, edit,
and output a file in parts rather than as a whole or (2) to
include non-interactive input-output in a stored TECO
program.

The commands in this group were originally designed to
contend with the limitations of a user memory of 32K words
or less. Although the main justification for the commands
is removed by the large capacity of the Tenex TECO buffer
(more than a million characters), the following marginal
applications remain:

-=- Ve Large Files. If the user has more than about
Gﬁ,ﬁﬂﬁ characters to edit, he may want to partition
the file in some way. The 1longer the character
string after the site of any deletion or insertion
operation in the buffer, the more the operation
costs. The user can either distribute his text
over several files or divide the single file into
TECO pages by inserting (+L's) (form feeds) into
the file. If the user chooses the latter course,
he needs the commands in this group.

-- File Manipulation. If the user wishes to merge,
split, or rearrange large text files, he may find
it convenient to use the page-turning commands in
this group to shuffle parts in from several files
and out to several other files. But the user
should consider the alternative of reading all the
files involved into the buffer, one after another,
and using a Q-register repeatedly to pick up a
piece of one file and put it down into another
file.

== 0ld Habits. If the user has developed methods of
editing, or even actual TECO programs, which are
based on the turning of TECO pages, then these
commands are available.

Those commands of this group which open files have a second
special |use. Because they accept a file designator as an
ordinary argument and do not require dialog with the user,
they can be wused in a stored TECO program which will do
editing without interaction.

The commands given here fall into three subgroups, as
follows:

TENEX TECO October 1973 Page 146
HANDBOOK, Complicated Input/Output

-- Open. The first step in an input or output process
1s the opening of the file. The basic commands for
this purpose are ;R and ;W for reading and writing,
respectively, and their (older) alternative
spellings, ER and EW.

-- Transmit. The second step of input or output is
the transmission of one or more TECO pages between
the buffer and the input-output device. The input
Commands are A and Y. The output Command is W, and
(when used with two arguments) P, When used with
less than two arguments, P is a ®"leafing" command;
that is it writes out a page and then reads the
next one in.

-- Close. The third step of input-output is the
closing of the file. This step is critical for
output, since the new file is not sent to storage
unless it is closed. The EF command explicitly
closes the output file. No special command is
required to close an input file; this is adequately
handled by TECO.

With the exception of magnetic tapes, a file must be read
from the beginning toward the end. The only way to back up
is to re-open the input file and start again from the
beginning.

;RE(4D) paging (open input file) "Read-Open"

where f is a file designator

This command closes any file which 1is currently open
for input; opens the file £ for input; and prepares to begin
input at the first character of the file. (The command does
not do any actual input, and it leaves the buffer
unaffected.)

This command always positions the file specified by £
so that input will begin with the first character of the
file, even if that file was opened and partially read
earlier 1in the same TECO session. The file opened by this
command remains open for input wuntil the user exits
permanently from TECO, or until execution of another command
which opens an input file,

The user may leave tne file designator incomplete 1in
certain ways, as follows:

TENEX TECO October 1973 Page 147
HANDBOOK, Complicated Input/Output

DESCRIPTOR DEFAULT POLICY

device name: May be omitted. DSK: will be
assumed

<directory name> May be omitted. The name of the

currently connected directory will
be assumed.

file name. Must be typed in full, although the
. (period) may be dropped if
extension and version number are
omitted.

extension; May be omitted if the version

number is also omitted. A null
extension will be assumed.

version number May be omitted. The version number
of the highest-numbered version of
the designated file will be
assumed.

Note that this policy differs at several points from that
used by ;Y and in different ways from that used by the TENEX
Executive command EDIT.

ERROR HANDLING:

Not Found. If the designated file does not exist in
storage, TECO types an error message and awaits new
commands .

EXAMPLE:
Consider the dialog which follows:

*:R ALPHA (ESC)
?NOT FOUND

212

;R ALPHA

* + RALPHA (ESC)

This example emphasizes the fact that a blank cannot be used
before or after a file name. In his first try, the user
preceded the file designator with a blank, so TECO took
" ALPHA" as the file designator. In his second try he
leaves the blank out.

TENEX TECO October 1973 Page 143
HANDBOOK, Complicated Input/Output

;WE(4D) paging (open output file) "Write-Open"

where f is a file designator

This command closes any file which is currently open;
opens the file f for output; and deletes the contents of the
file. (The command does not do any actual output, and it
leaves the buffer unaffected).

This command always deletes the contents of the file
specified by £, even if that file was open earlier in the
same TECO session. The file opened by this command remains
open until the execution of a command which closes the file
because (1) it is opening another file for output or (2) it
is intended to close the output file.

The user may leave the file:. designator incomplete in
certain ways. The default policy for open-Write differs at
only one point from open-Read, as follows:

DESCRIPTOR DEFAULT POLICY

version number May be omitted. the version number
assumed will be greater by one than
the version number of the

highest=-numbered version of the
designated file.

ERROR HANDLING:

Bad Designator. If £ is not in a legal form TECO types an
error message and awaits new commands.

EXAMPLE :
Consider the command

* ;WBETA,.TXT; 3 (4D) PW(ESC)

Here the user had to include the the character entered by
(4D) after the file designator because there was another
command in the string. Since the user included a version
number, that version of the file is opened and cleared,
whether it previously existed or not.

ERf (4D) obsolete (open input file) "Edit-Read"

equivalent to ;R£(+D)

TENEX TECO October 1973 Page 149
HANDBOOK, Complicated Input/Output

EWE (4D) obsolete (open output file) "Edit-Write"

equivalent to ;WL£(+D)

EAf (¢D) *** (open output file for appending) "“End-Append"

Causes current file output operations to append to the
end of the named file rather than writing a new version.

A paging (append input page) "Append-Page"

This command goes to the file which is currently open
for input, begins input where any previous input command
left off (or at the beginning, if this is the first input);
and reads characters in at the end of the buffer until a
termination condition is satisfied. (The previous contents
of the buffer remain, and the position of the pointer is
unchanged. If the buffer was initially empty, the pointer
remains at the beginning of the buffer.)

The termination condition for page input is any of the
following:

-= The end of the input file is reached;

-=- A form feed is read;

== The buffer is two=thirds full (or is filled within
128 characters of capacity) and a (LF) line feed is
read;

-~ The buffer is completely filled.

Obviously the last two conditions will rarely apply for
TENEX TECO.

ERROR HANDLING:
Bad Read. If the page of the file cannot be read because of

equipment failure, TECO types an error message and
awaits new commands. See error index for details.

Y paging (clear buffer & input page) "Yank-Page"

As its first action, this command clears the buffer,
After this, the action of the command is

TENEX TECO October 1973 Page 15§
HANDBOOK, Complicated Input/Output

equivalent to A

- - — e — e — - - - —-—

m,nwW paging (move string to file) "Write-string"

where m and n are integer expressions

HW means {,2ZW

equivalent to m,nPWm,nK

(This command is analogous to the Extract-String
Command; it 1is to the output file as the latter is to a
O-Register.)

nw paging (move lines to file) "Write-lines"

where n is an integer expression

W means 1W

-W means =1W

The command removes a substring from the buffer and
places it at the end of the output file. Suppose the line
which contains the character just after the pointer is the
i-th 1line of the buffer. Then the nW command outputs the
characters between the pointer and the beginning of the
(i+n)-th line of the buffer.

If this command specifies lines which are beyond the
beginning or end of the buffer, it is not treated as an
error. Instead, the command 1is treated as if it had
specified 1lines up to the beginning or end of the buffer,
respectively.

(This command is analogous to the Extract-Lines
Command; it 1is to the output file as the latter is to a
Q-Register.)

ERROR HANDLING:

No Qutput File. If there is no file open for output, TECO
types an error message and awaits new commands.

m,npP paging (buffer output) "Page-Output”

where m and n are integer expressions.

TENEX TECO October 1973 Page 151
HANDBOOK, Complicated Input/Output

HP means #,ZP

equivalent to m,nPW

np paging (turn page) "Page-Turn"

where n is an integer expression.

P means 1P

equivalent to n<§,ZPY>

(The Page-Turn command advances from the page which is
currently in the buffer to the n-th page which follows.)

:C paging (close output file) "Close"

If there is a file open for output, this command closes
that file. Otherwise, the command does nothing.

This command is necessary because an output file is not
guaranteed to be in storage until the file has been closed.
Exit from TECO without closing the output file can result in
the loss of all or part of the data which was output to that
file since it was opened. Such an exit can occur only
through a (+C) or through system failure. All other exits
perform a ;Close as part of their action. The command is
not required for the commands in the Simple Input/Output
Group; those commands close the files they use.

EF obsolete (close output file) "End-File"

equivalent to ;C

TENEX TECO October 1973 Page 152
HANDBOOK, Debugging Aids

DEBUGGING AIDS

TECO can be used effectively for the development of small
programs for text editing and string manipulation. TECO has
several simple aids for the debugging of such programs. One
of these 1is the Trace Command, "?", which can cause the
commands of a program to be typed as they are executed: this
command is described here. A second debugging aid is the
iType-Message Command, which can be used to report as the
program passes various points of its execution, this command
is described in the Type-Out Group.

programs (trace or untrace execution) “Trace"

~

The first time "?2" is encountered in the command
string, TECO enters trace mode; the next time, TECO leaves
trace mode; the next time, TECO enters trace mode; and so
on. When TECO is in trace mode, each command is typed out
as it is executed.

TENEX TECO October 1973 Page 153
HANDBOOK, Error Messages

ABBendix A
ERROR MESSAGES

Error numbers range from 1 to 49. Those not used are not
shown here,

2n Meaning

1 TECO attempted to read commands beyond the end of the
command string. This diagnostic is caused by (1) an
unterminated @I or @S, (2) an unsatisfied O command,
(3) a " Command not matched by a closing ', or (4) an !
not matched by a closing !.

2 ?ERROR ON OUTPUT DEVICE; FILE CLOSED. An output error
has occurred. The output file was closed at the end of
the last good block of data.

3 An attempt was made to supply more than two arguments
to a command, either by the use of two commas or by an
H followed by a comma.

4 There is a right parenthesis not matched by a left
parenthesis.

5 No argument given for an = Command.

6 No argument given for a U Command.

7 An illegal Q-register name (i.e., other than A through
Z or @ through 9) is specified for a G, Q, U, X, or §&
Command.

9 Q-Register contains a coded-integer where a character

string is required.
11 In an Ec Command (e.g., ER, EW, EF), c is illegal.

12 ?INPUT ERROR...filnam.ext FILE NOT FOUND. Specified
input file not found on LOOKUP.

13 ?0UTPUT ERROR...ILLEGAL NAME FORMAT. Blank filename
specified for output to a directory device.

TENEX TECO October 1973
HANDBOOK, Error Messages

14

15

le

17

18

19

20

26
27

28

29

30

31

32

33

34

?INPUT/OUTPUT ERROR...filnam.ext

2 INPUT/OUTPUT ERROR...filnam.ext
The specified file is read- or
the user.

2INPUT/OUTPUT ERROR...filnam.ext
The specified file cannot be
currently being written.

2INPUT/OUTPUT ERROR...filnam.ext
The monitor has returned an
condition on a LOOKUP or ENTER.,

Page 154

WRONG USER NAME.,

FILE PROTECT FAILURE.
write-protectedagainst

FILE BEING MODIFIED.
accessed because it is

UNDEFINED I/O ERROR.
undefined I/0 error

?NO DEVICE ASSIGNED. The monitor has returned a

no-device error condition on a
encountered, this error indicate
bug.)

?DIRECTORY IS FULL. The output
because the device directory is

?DEVICE dev NOT AVAILABLE. The
not available.

Illegal character in filename.

Illegal character in user name.

LOOKUP or ENTER . (If
s a TECO or monitor

file cannot be created
full.

requested I/0 device is

?NO FILE FOR INPUT. An input command -has been given

without opening a file for inpu
be given.

?ERROR ON INPUT DEVICE. An erro
input. The input file is relea
to try to read the file agai

t. An ;R command must

r has occurred during
sed. The user may want
n, but if the error

persists, the user must return to his backup file.

2NO FILE FOR OUTPUT. An output command has been given

without opening a file for outp
be given.

ut. An ;W Command must

Two arguments are supplied for an L Command.

Attempt to move the pointer beyo
delete characters beyond the buf

A two-argument command has its

nd the buffer or to
fer.

second argument less

than the first or specifies a character string which is

outside the buffer.

Attempt to search for too long a

character string.

TENEX TECO October 1973 Page 155
HANDBOOK, Error Messages

35

36

38

39

40

42

44

46

48

49

?SEARCH. A Search Command not preceded by the
":"-modifier and not within an iteration failed to find
the requested character string. The conditions
resulting from such an error are explained

A Q-register that does not contain text is referenced
by an M Command.

There is a 1xight angle bracket not matched by a left
angle bracket.

Use of a ; when not in an iteration is illegal.

The " Command is used either without a numeric argument
preceding it or without one of the letter G, L, E, N,
or C following it.

An undefined command character has been given.

2STORAGE CAPACITY EXCEEDED., Insufficient core is
available for required expansion, The command
requiring this core expansion cannot be executed.

No argument should be used with an EX or EG Command.

If TTYn is the user's console, or any other attached
user's console, device TTYn may not be specified in an
7 For ;W command.

If an argument is used preceding an iteration, n<...>,
it must be greater than 0.

TENEX TECO October 1973 Page 156
HANDBOOK, Character Clinic

AEEendix B
CHARACTER CLINIC

This appendix lists the 128 ASCII characters and describes
the most convenient methods to insert a character into the
buffer, to search for a character, or to identify a
character. The main part of the appendix is a table which
has seven columns, as follows:

1. The character code is given in decimal. This is the
only radix available in TECO.

2. The character code is also given in octal. This is the
radix usually used for character codes.

3. The Symbolic Name used in dialogs in this manual is
given. For a graphical character, it is the character
itself (on the device which printed this document); but
for other characters it is a parenthesized mnemonic and
does not represent the type-out literally.

4, The English Name used in descriptive text in this
manual 1is given. It 1is based on DEC usage ana the
language of the ASCII standard.

5. The Key-In which causes a Model 33 Teletype to generate
the character code is given. When a Carriage Return is
transmitted, TENEX transforms it into an End-of-Line
character. When a Control Command is transmitted, it
is intercepted and executed.

6. The Type-Out produced at a Model 33 Teletype when the
character code is encountered in the buffer is given.
When a control character (except BEL, LF, or CR) or a
lower case letter is actually received at a Teletype,
nothing happens. However, as the entries in this
column show, TENEX and TECO transform many outgoing
characters into printed forms. When this
transformation fails to identify the character
unambiguously, the Access-Code Function can be used.

7. A reference to Insert and Search techniques 1is given.
This entry refers +to the "notes" which follow the
table. If there is no entry, the character can be used
normally in any Insert or Search Command.

TENEX TECO October 1973
HANDBOOK, Character Clinic

Codes:

Dec (Oct)
4} (0@9)
1 (6P1)
2 (862)
3 (603)
4 (gg4)
5 (095)
6 (0p6)
7 (807)
8 (610)
9 (p11)
10 (912)
11 (¢§13)
12 (¢14)
13 (015)
14 (ple)
15 (917)
1l (920)
17 (921)
18 (@22)
19 (§23)
20 (924)
21 (#25)
22 (@26)
23 (§27)
24 (039)
25 (@31)
26 (@32)
27 (§33)
28 (034)
29 (¢35)
30 (036)

or

31 (937)
32 (P49)
33 (@41)
34 (p42)
35 (043)
36 (U44)
37 (P45)
38 (U46)
39 (p47)

Names:

Symb English
(NUL) Null

(+A) Control=-A
(+B) Control-B
(tC) Control-C
(+D) Control-D
(*E) Control-E
(4F) Control-F
(BEL) Bell

(BS) Backspace
(HT) [Hor] Tab
(LF) Line Feed
(VT) Vert. Tab.
(FF) Form Feed
(CR) Car. Ret.
(tN) Control=N
(t0) Control-0O
(+P) Control-P
(tQ) Control=-Q
(4+R) Control=-R
(+S) Control-=S
(+T) Control-T
(4U) Control=-U
(4V) Control-Vv
(tW) Control-w
(+4X) Control=X
(4Y) Control=Y
(+2) Control=-Z
(ESC) Escape
(+\) Control-\
(+]) Control-]
(++4) Control-t
(~~) Control--~
(%) End-of-Line
(sP) Space

s EXCL.

" Quote

Number Sign
$ Dollar Sign
% Percent

& Ampersand
]

Apostrophe

POINT

Teletype
Key-In

CTRL=-SHIFT-P

CTRL~A
CTRL-B
CTRL~-C
CTRL=-D

CTRL-E
CTRL-F
CTRL~-G
CTRL~H
CTRL~1

LINE FEED
CTRL~K
CTRL~L
RETURN
CTRL=N

CTRL~-O
CTRL-P
CTRL~Q
CTRL=R
CTRL-S

CTRL-T
CTRL~-U
CTRL~V
CTRL~W
CTRL-X

CTRL-Y
CTRL—-Z
ALTMODE

CTRL=-SHIFT=-L
CTRL-SHIFT=-M
CTRL-SHIFT-N
CTRL-SHIFT-N
CTRL-SHFT=0
(space bar)

SHIFT-1
SHIFT=2

SHIFT=-3
SHIFT-4
SHIFT=5
SHIFT-6
SHIFT=-7

Page 157
Type Insert
Out & Search
+d
none (+V) (+A)
none (+V) (+B)
1+C use 31
none (+V) (+D)
none use 5I
+F
+G
+H use 81
spaces
line feed
+K
+L
return use 131
+N match
+0
+P
none match
none (4V) (+R)
4S8 match
AT use 201I
none (+V) (+rU)
none (+V) (+V)
none (+V) (tW)
+X match
none (+V) (+Y)
+2
+$ use @
+\
+]
+4
CR & LF use (CR)
space
]
M
#
$
%
&
[]

TENEX TECO October 1973
HANDBOOK, Character Clinic

Codes:
Dec (Oct)
49 (959)
41 (@51)
42 (P52)
43 (P53)
44 (054)
45 (¢55)
46 (§56)
47 (057)
48 (P60)
49 (¢6l)
59 (g62)
51 (963)
52 (p64)
53 (#65)
54 (0#66)
55 (067)
56 (07¢)
57 (071)
58 (672)
59 (973)
60 (074)
61 (£75)
62 (P76)
63 (077)
64 (199)
65 (101)
66 (1p2)
67 (1¢3)
68 (194)
69 (105)
78 (106)
71 (167)
72 (119)
73 (111)
74 (112)
75 (113)
76 (114)
77 (115)
78 (116)
79 (117)

Names:

Symb

« 4 ¥~~~

ws 00 \O 00) AWM WN ol >)

uHIDGO™ mouQEy ®9VviIa

ozzmp =R

English

Left Paren,
Right Paren.
Asterisk
Plus

Comma

Hyphen
Period
Slash
Olull
l'ln

nzu
!3"
-4'|
“5.
"6"

ll7ll

uau

n9n

Colon
Semicolon

Less Than
Equals
Greater Than
Question Mrk
At Sign

"A"
HBN
ﬂcll
”Dll
nEn

nFn
ﬂGll
BH"
UIIW
"J.‘

HK"
"LN
”Mll
iiNii
NO”

Teletype
Key-In

SHIFT-8
SHIFT-9
SHIFT=-:
SHIFT=-;

’

O WN N |

e o0 \D 00 ~J

SHIFT=-,
SHIFT=--
SHIFT-.
SHIFT-/
SHIFT-P

UHIZO™ HOoOOQoP

ozZzxxP =

Page 158

Type Insert
Out & Search

. 4 B~

ooV WwN HeNe |

we o0 \O 00 ~J

OZRHER®R QHIOHW BHOOQOWY @9V Ia

TENEX TECO October 1973 Page 159
HANDBOOK, Character Clinic

Codes: Namess Teletype Type Insert
Dec (Oct) Symb English Key=-In Out & Search
80 (12¢) P wpw P P
8l (121) ¢ "o Q Q
82 (122) R "R" R R
83 (123) s wgw S S
84 (124) T wpw T T
85 (125) U i O U U
86 (126) V A TA v \"
87 (127) W bl 7 Al w w
88 (139¥) X "x" X X
89 (131) Y wyw Y Y
99 (132) z ng" pA VA
91 (133) [Left Bracket SHIFT=K [
92 (134) \ Backslash SHIFT-L
93 (135)] Right Brackt SHIFT-M]
94 (136) ¢+ Up-Arrow SHIFT=-N +

or - Caret SHIFT=-N ~
95 (137) + Left Arrow SHIFT-O «

or _ Underscore SHIFT=-0O _
96 (l49) ° Grave Accent none Q use 96I
97 (141) a "a" none A use 971
98 (142) b "pv none B use 98I
99 (143) c ok none C use 991
168 (144) 4 nqv none D use 100@I
161 (145) e ot none E use 1011
162 (146) £ ngw none F use 1li2I
103 (147) g gt none G use 103X
184 (156) h ®"h* none H use lu4l
165 (151) i nwje none I use 105I
106 (152) 3 nyw none J use 16l
197 (153) k S none K use 1071
198 (154) 1 wlw none L use 1¥8I
169 (155) m "m" none M use 1091
119 (156) n “n" none N use 114I
111 (157) o "o" none o] use 1ll1lI
112 (le¥) p "p" none P use 1121
113 (1lel) g "gq" none o) use 1131
114 (162) «r b o none R use 1141
115 (163) s - none S use 1151
116 (164) t b none T use 1ll6I
117 (1l65) u "u" none U use 1171
118 (l66) v g™ none v use 1181
119 (167) w wh none W use 1191

TENEX TECO October 1973 Page 16y
HANDBOOK, Character Clinic

Codes: Names: Teletype Type Insert
Dec (Oct) Symb English Key~-In Out & Search
120 (179) x "x" none X use 1201
121 (171) 'y "y" none Y use 121I
122 (172) =z nz® none pA use 122I
123 (173) | Left Brace none [use 123I
124 (174) | Verticl Line none none use 1241
125 (175) } Right Brace none none use 1251
126 (176) ™ Not none none use 126I
or ~ Tilde none none use 1261

127 (177) (DEL) Delete RUBOUT none use 1271

NOTES ON INSERT & SEARCH

(4V) (¢+X) == This note applies to any Control Command not

use

mentioned in other notes below. To use such a Control
Command literally in either an Insert or Search Command,
quote it; that is, precede it with a (tVv).

nI -- This note applies to the Carriage Return and the
Interrupt Control Commands. To insert such a character
into the buffer, use the Insert-Code Command. To search
for such a character, create a Search Command in the
buffer as a character string, load it into a Q-Register
by an Extract-Command, and execute it by a Macro
Command.

match -- This note applies to the Match Control characters,

use

use

(+xX), (+s), (+N), and (tQ), described in the Search
Command Group. To use one literally in an Insert
Command, type (+x), (+s), (+N), or (+v) (+Q),
respectively. (Control-Q must be quoted because it is
also a Control Command.) To wuse one literally in a
Search Command, precede each with a quoted Control=-Q
giving (tV) (1Q) (#X), (4V) (+Q) (+8), (+V) (+Q) (#N), and
(V) (tQ) (+V) (tQ), respectively.

@ -- This note applies to an unquoted (+D) or a quoted
(ESC), either of which enters an Escape character into
the command register. When such a character is included
in an 1Insert or Search Command, the "@" option of the
command must be used.

(CR) =-- This note applies to the End-of=-Line character.
This important character is normally entered by striking
RETURN (which TENEX converts to an End-of-Line) and not,

TENEX TECO October 1973 Page 161
HANDBOOK, Command Index

Appendix C
COMMAND INDEX

The entries given here refer to characters as typed in at a
terminal. For example, "(4A)" means a typed Control-A
(which is a Control Command) and not a Control-=A which is
actually in the Command Register (and which would be an
illegal No-Op Command) .

An entry with a star (*) is an illegal command which is
not detected as an error by TECO and is instead given the
interpretation mentioned in the entry. In particular, the
entry (+Xx) means that any control character which does not
have a legal interpretation is treated as a No-Op Command by
TECO rather than as an error.

S comand"’s trlng . L . . L) . [° . . . 98
f file-designator . . « o« « ¢« « o o o o 94
i unsigned=-integer . . « « o o ¢ o « o 86
m integer-expression . « « o o ¢« o o o 81
n integer-expression . . ¢« +« « + .+ o o 81
q O-Register name . « « o « o o o o o 94
i Character—string e o e e o s o e e o 94

: ce e : program label ¢« ¢ ¢ ¢ ¢ o o o o o o o 128

"...' conditional execution . . « o o o o o 127
logical operator . « « o o o o o o o 85
*[as a complete argument] = "-1" . . . 83
% increment & evaluate QR « « « « « « o 91, 131
& logical operator .« ¢« « o o« o o o o o 85
(%) no operation .« « ¢ ¢ o o o o o o o o 98
(c..) collect operand « « o« « o« o« o o o« o « 85
(BS) type previous line . . « ¢ o o o o o 113
(CR) NO OperatioOn .+ « o « o o o o o o « o« 98
(DEL) abort command String . « « « « « « o 68
(ESC) execute command String .« « « « « o« o 10
(HT) insert tabbed string . . . « . . o . 104
(LF) type next line . ¢ o« o o « ¢ « « o o 113
(sp) [m(SP)n] same as "+" 84
(sp) [other] no operation . « « « « « « o 98
(+34) erase last character . . « ¢« ¢« ¢ « o 72

TENEX TECO October 1973
HANDBOOK, Command Index

(+B) indent to previous level . .
(+C) interrupt TECO .+ ¢« ¢ « o o+ &
(+D) generate string terminator .
(+D) [other] no operation
(+E) abort command string
(+N) reject what follows
(+Q) erase last line . o« ¢ o o« o o
(+R) retype last line . « ¢ o « &
(+S) accept separator character .
(+T) state and time report
(+U) indent to current level . . .
(+V) quote control character ., . .
(4V) (ESC) *string terminator
(+v) (+Q) take match literally . .
(+W) set column entry =« « o o o o
(+X) accept any character
(+Y) indent to next level
* arithmetic operator . « « . &
+ arithmetic operator
- arithmetic operator . . . « &
. pointer indeXx « ¢« « o ¢ o o o
/ arithmetic operator . « « « &
1A get character code . . « .« &
: convert search to test . . .
; (SP) skip out of iteration
:B beginning of page « « ¢« o« o &
;C close output file « « o« o o &
;D date & output full buffer . .
i F search pages without output .
;G retrieve a bad type-in . . .
sH simple exit from TECO
s N get integer . « ¢ ¢ ¢ o o o o
;P get code and adv. pointer . .
s R open file for input « . . . «
iS save copy of buffer
: T [;Ts(4D)] type message . .«
;T [0g; T] type-out a Q-Register
;U output full buffer
W open file for output
;Y append full file . « « « « &
Y index of end of page . « «
<...> repeat a command string . . .

type coded integer . . « . .

L] L] () L] L] L L] L] L] L] L] L] * L[] L] L] L)

* L] L [] L] L] L [] L] L] [L] L L[] L] . L4

. L] . L] [] . L] [] [) [] [) ° L] . . L] L

L] L[] L[] L] [] L] L] [] L] L[] L] L] . L[] o L] L[]

L] [] [] [] L] L] L[] L] L] L] L[] L] [) L[]

77
67
75
98
69
122
73
73
122
68
77
74
75
74,

122
77

84
84
84
92
84
87
121

126
93

151
143
120
1U6
161
89

87

146
142
113
132
149
148
138
93

125

112

123

Page 162

TENEX TECO October 1973
HANDBOOK, Command Index

eI
@s

EAf
ED
EDIT
EF
EG
ER
EW

RR 4 HH I QOO M

o =2 =2 r

o

trace or untrace execution

BOOTSTRAP FEATURE o o « o o o o o o
special insert string . ¢« « ¢ ¢ o
special search . ¢« « ¢ ¢ ¢ o ¢ o

append input PAgE « o o o o o ¢ o o
index of beginning of buffer . . .
skip characters « « o« « o o ¢ o o
delete adjacent characters

open output file for appending . .
date, close file, exit . . .« .
call TECO on a file (EXEC. Command)
close output file
execute edited program
open file for input . .
open file for output .
close file and exit . .

L] L] * L]

L
L]
.
L)
L]

L[] [L] L]
L] L] L] L]

* @ o

search page after page . . ¢ « o o«
copy Q-Register into buffer o o o
[m,n]G insert copy of characters. .

i insert copy of line . « . . .

index—pair fOI’ buffer . . [o . ° [

[nI] insert character by code . . .
[Is(+D)] insert character string .

set pointer « « ¢ ¢« ¢ ¢ ¢ o o o o o

[m,nK] delete character string
[nKT delete adjacent lines . .

Skip lines =« o« o ¢ o o« o o o o o o
execute commands in g-Register . .
search page after page . « « o ¢ &
transfer of control . ¢« « ¢ ¢ ¢ o

[m,nP] buffer output
[NPT turn page .« « « o o « ¢ o o &

evaluate Q-=Register . « « « o o« « &

L] . L] L] L] L] * L]

152
136
164
121
149
92

148
115
149
102
106
151
162
148
149
102
119
132
106
106
92

105
1p3

1v7

114
115

108
133
120
129

150
151

91, 13y

Page 163

TENEX TECO October 1973 Page 164
HANDBOOK, Command Index

R replace string . « « ¢ o ¢ o o o o o 124

n

search for string « « ¢« ¢« ¢ ¢ o o« « « 117

[m,nT] type character string 11§
(nTT type adjacent lines . « « « o o 111
ECO call TECO (EXEC., Command) . « « « . o 100

H

U set Q-Register to integer . « « . « o 130
v type adjacent lines « « ¢« o« o« o o « o 1ll1
W [m,nW] more string to file 150
W [AWT move lines to file . . . « « . . 150
X [m,nX] put string in Q-Register . . . 131
X [nXT put lines in Q-Register 132
Y clear buffer & input page . « « « . o 149
A index of end of buffer . . « « « « o 92
[push Q=-Register down . « « « « o « o 134
\ [n\] convert and insert integer . . . 106
“\ [\] get integer e @ e e o e o o » o o 9¢
] pOp Q-Register up e o ® o o o e ¢ o o 134
4D set comment string for ;D . « « o« . . 143
+E form feed £lag .« o« o o o o o o o o o 90
+H [n] H declare terminal type « « « o . 27
4T get character from TTY . . « « « « o 87
+4 get code from argument . . « o« o o o 88

+ search pages without output « 121

Bolt Beranek and Newman inc.

Text Editor and
Corrector Manual

TENEX

NIC. No.19937

	0000
	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	xBack

