
Bolt Beranek and Newman Inc.

Ts:

T

TUG
INDEX TENEX Users' Guide - October 1977

TENEX USERS' GUIDE

Bolt Beranek and Newman Inc.

50 Moulton Street

Cambridge, Massachusetts 02138

ADDENDUM - October 1977
2nd Revision - January 1975
1st Revision - January 1973
Copyright - May 1971

1-1 ADD-10-26-77

TUG
INDEX TENEX users' Guide - October 1977

INTRODUCTION

New Additions or Changes to TENEX Users Guide

For users of this guide the
since 1975 will be flagged
side with the character "I".
page for your convenience in

most recent additions or changes
on the replacement page on the right

Date of replacement is shown on
updating the manual.

A user will find NETWORK related subsystems in the concluding
section of the TENEX USERS' GUIDE.

If there are any questions regarding any of the subsystems
mentioned in this manual, please contact the Operations Manager
at Bolt Beranek and Newman, (617) 491-1850 Ext. 484, or
617-491-6169 for a direct line to the Research Computer Center.

I-2 ADD-10-26-77

-

... .. .

TUG
INDEX

Name

ALGOL

BASIC

BCDTAP

BCPL

BDDT

BEDIT

BINCOM

BLISS10

CACCT

1

3

6

1-1

11

CALENDAR 2-1

CCL

TENEX users' Guide - October 1977

TENEX SUBSYSTEMS

Description

An implementation of the ALGOrithmic Language
ALGOL-68. See DECsysteml0 ALGOL Manual.

A conversational problem-solving language.
DECsystemlB BASIC Manual.

See

BCDTAP reads or writes a BCD magnetic tape, file
by file.

language
system

TENEX

BCPL is a simple recursive programming
designed for compiler writing and
programming. For more information see the
BCPL Manual.

A debugger for BCPL, see the TENEX BCPL Manual.

A Binary File Editor

DEC version of Binary Compare.

Compiler for system implementation.

CACCT is a program for systematically changing
account numbers for files.

A subsystem to help
and daily tasks.
reminder for

people keep track of schedules
CALENDAR can also serve as a
birthdays, appointments,

anniversaries, etc.

The Command Control Language is
speed program development by
communication between a user and
programs. See NCCL

I-3

intended to
simplifying

the system

ADD-HJ-26-77

TUG
INDEX

COBOL

CO PYM

CREF

DDT

DELVER

DFTP

DO

DTACPY

DUMPER

ECAP

F40

FAIL

20

29

31

37

41

3-1

42

44

45

TENEX users' Guide - October 1977

(Common Business Oriented Language) is a large
DEC-supplied compiler and operating system.

Program designed to facilitate copying groups or
lists of files.

CREF is a program to make
listings.

cross reference

An interactive debugger, also see SDDT, !DDT, and
UDDT.
For additional information on DDT, please refer to
DECsystem 20 User's Guide.

A program to assist in the management of file
versions.

A user invoked program which stores and retrieves
local files on the Datacomputer. See Network
Section.

A subsystem
string from
execution.

for passing
a specified

Copies full dectapes to full

A program for dumping and
magtape.

a parameterized text
file to the EXEC for

dee tapes

restoring files on

An Electronic Circuit Analysis program. See IBM
1620 ECAP manual GH20-0170-2.

The DEC FORTRAN-4 compiler, no longer current. See
FORTRAN for more details. The current FORTRAN
compiler is FORTRA.

An advanced assembler (Modified Stanford version).
See SRI Op. Note No. 26.1

I-4 ADD-10-26-77

TUG
INDEX

FASBOL

FILCOM

FI LEX

FIOCNV

FL I ST

FLOW

FORDDT

FORT RA

FORTRAN

FRKCOM

FTP

FUDGE2

GLOB

4-1

46

47

48

49

51

53

89

246

90

92

TENEX users' Guide - October 1977

Is a SNOBOL compiler for the PDP-10.

DEC file compare program. See DECsystem 21/J User's
Guide.

DEC general file transfer program, useful on
DECtapes.

Produces FLEXO or DURApaper tape from ASCII files.

Does format conversion of FORTRAN output.

Flow charts FORTRAN source programs.

FORTRAN debugging
FORDDT.INFO

aid. See

The current FORTRAN-10 compiler.

<DOCUMENTATION>

The user guide describes the use of F40, old
FORTRAN-4, with the old loader LOADER. The
current FORTRAN-10, FORTRA is used with the
current loader LINKlf/J. For more information see
the DEC System 21/J FORTRAN Programmer's Reference
Manual.

A program which allows the user to compare an
address space with the address space of a file
(such as a subsystem).

FILE TRANSFER PROTOCOL. See NETWORK section of
the TENEX Users' Guide.

(File Update Generator) Updates files containing
one or more relocatable binary programs and
permits the user to manipulate individual programs
within program files.

DEC Global symbol cross reference list.

I-5 ADD-lf/J-26-77

TUG
INDEX

GRIPE

GRPSTS

HERMES

HG

HOS TAT

HTYPE

!DDT

IMGPTP

LB LOCK

LINK HJ

LISP

LOADER

93

5-1

6-1

256

7-1

94

104

105

106

109

TENEX users' Guide - October 1977

A subsystem where a user can "gripe" about other
subsystems.

A subsystem which prints the current status of all
the pie-slice groups and a per group summary of
currently logged-in jobs. GRPSTS may be run at
any time without affecting a user's current
program.

A message system for sending
messages.

A message reading program.

and receiving

Obtains the network site status information
maintained by the network survey site (MIT-DMS as
of Dec. 1, 1973). It then types this out in
columnated form, grouped by status. See NETWORK
Section of the TENEX Users' Guide.

A program for printing files on the Xerox 1700
printer.

This is an extended version of DDT which debugs
programs in an inferior fork.

Copies binary file to paper tape.

LBLOCK is a subsystem to perform "line-blocking"
of text files.

A program which loads relocatable binary files.
The current loader.

Symbol manipulating language.
Reference Manual.

A program (no longer current)
relocatable binary files. DEC
modified by BBN.

I-6

See INTERLISP

which loads
distribution,

ADD-10-26-77

-

·-

TUG
INDEX

LOGOS lH.I

LPTPLOT 113

MACRO 115

MAILBOX 8-1

MAILER 116

MAILSTAT 118

MAILSYS

MIDAS 12121

MINCOP 121

MRUNOFF 9-1

TENEX Users' Guide - October 1977

An interpreted procedure-based language
strings as its fundamental data type.

with

A program which permits a fairly coarse X-Y plot
of data contained in any ASCII disc file to be
prepared for listing on the line printer.

DEC Assembler modified by BBN. For further
information on MACRO refer to DECsystem-10 MACRO
Manual and TENEX users' Guide.

A mailbox finder to find the appropriate user name
and site an individual's mail should be sent.

The subsystem that delivers queued mail.

Lists all queued mail in connected directory.

A New mail system soon to be documented.

Project MAC Assembler.
#90.

See Project MAC AI-Memo

A program for copying MINIDUMPER (same as DUMPER)
format tapes with optional listing of tape
contents and optional comparison of th~ copies.

A program that will produce a formatted manuscript
from a source file.

MSG 10-1 A program for reading, writing message
format.

file

MT AC PY 122 A Magtape producing tape image files.

I-7 ADD-10-26-77

TUG
INDEX

NCCL

NETDMP

NETED 258

NETSTAT 269

NOTIFY 125

PA1050 126

PAL10 128

PALllX

PCSAMP 131

PPL 132

PTIP 11-1

TENEX users' Guide - October 1977

The Command Control Language is intended to speed
program development by reimplifying communication
between a user and the systems programs. See
<DOCUMENTATION> NCCL.INFO. NCCL defaults to
current versions of all programs. CCL defaults to
F40, the old FORTRAN-4, but is otherwise identical
to NCCL.

A modified version of DUMPER which dumps and loads
to a file which may be a network file.

An ARPA Network common editor which new users can
pick up quickly. See NETWORK section of the TENEX
Users' Guide.

Program to print information about the status of
the ARPA Network. See NETWORK section of the
TENEX users' Guide.

Sends messages to selected teletypes.

Compatibility -- Simulates 10/50 Monitor

PDP-8 Assembler.

PDP-11 Cross Assembler for TENEX for further
information, see the PALllX Manual.

A program to measure the operation of other user
programs.

PPL is an interactive, extensible programming
language. Reference PPL USER'S MANUAL, 6 Sept
1972, Harvard University, Center for Research in
Computing Technology, Aiken Computation
Laboratory.

Instructions on use of a terminal that is
connected to the BBN PTIP.

I-8 ADD-10-26-77

. -

TUG
INDEX

RD 135

READMAIL 137

RELRIM 138

RENBR 139

REPORT 148

RJS

RS EXEC 280

RUNFIL 149

RUNOFF 151

SDDT

SECURE

SNDMSG 165

SNOBOL 171

TENEX users' Guide - October 1977

Subsystem used to look at and manipulate the mail
entries _ in your MESSAGE.TXT file (see also
READMAIL & SNDMSG) •

A subsystem which allows you to
MESSAGE.TXT files.

read your

Converts absolute REL file to RIM10B paper tape.

Renumbering program.

Allows interrogation of a data base which contains
a running commentary on the status of the
BBN-TENEX system.

Remote Job Service.

Experimental multi-computer Executive Program.
See NETWORK section of the TENEX Users' Guide •

Program to use a file instead of teletype to
supply an input command stream.

A document preparation program.

A version of DDT which is called into service by
the EXEC @DDT command when no user-defined symbols
are available. See DDT writeup.

A subsystem which allows users opportunity to lock
their terminal when away from their office, so no
one can destroy their programs.

Sends message to any user.

SNOBOL is a PDP-10 version
processing language, SNOBOL4.

I-9

of the string

ADD-10-26-77

TUG
INDEX

SORT

sos

SPELL

SRCCOM

SYSDPY

TAINT

TAPCNV

TAP RD

TECO

TELNET

TENEX Users' Guide - October 1977

172 SORT is a column-oriented text file sorter. See
also the COBOL section of the user Guide for
further details.

12-1 A line number oriented editor for text files.

13-1 A program designed to read text files and check
them for correctness of spelling. In addition to
the spelling check, the program provides a means
for correcting words that it thinks are
misspelled.

183 A program to compare edited files.

184

187

189

296

Displays system statistics, WATCH, etc.

This is not a TENEX program. It is a TOPS10
program which reads TENEX MINI-DUMPER tapes. It
is supplied to installations running a TOPS10
system with a need to read such tapes. Complete
documentation on TAINT is supplied in RUNOFF
format, with the program itself. TAINT's
operation is conversational and self-explanatory.

Converts IBM formatted card image tapes to be
compatible with TENEX.

A magnetic tape program for reading tapes.

TENEX TECO is a BBN created editor.
TECO Manual for further information.

See TENEX

Telnet is a TENEX subsystem which provides a user
with access to host computers via the ARPA
network. It provides the user with the capability
to communicate with a remote computer as if he
were using a terminal at the remote site. See
NETWORK section of the TENEX Users' Guide.

TIPCOPY 316 A subsystem which provides a means of sendin9
TENEX text files to a TIP port via a separate data
connection. See NETWORK Section of the TENEX
Users' Guide.

I-10 ADD-10-26-77

TUG
INDEX

TT YT RB

TTYTST

TYPBIN

TYPREL

UDDT

WATCH

XED

ZTYPE

CHESS

DOCTOR

JOTTO

LIFE

MAXIM

233

234

235

236

TENEX users' Guide - October 1977

An on-line teletype trouble report form.

Tests teletypes.

Analyzes contents of BINARY files.

Analyzes contents of a .REL file.

A version of DDT which is called into service by
the EXEC @DDT command when a user defined symbol
table is available. See DDT writeup.

238 System Monitoring Program which makes continuous
on-line measurements of system activity.

14-1 Experimental editor.

15-1 A program for listing text files on a 3f/Jf/J baud
terminal.

HACKS

242 Chess-playing program

244 Simulated Rogerian Psychiatrist

A word game for two players.

245 A Mathematical Game.

t-- TENEX User Quotations.

I-11 ADD-lf/J-26-77

-

TENEX USER'S GUIDE
ALGOL

.January 1975

ALGOL

The ALGOL Compiler responds by typing an asterisk on the user's
terminal. The user then types a command string to the comoiler,
s9ecifying the source file(s) from which the program is to be
compiled, and the output files for listinq and output of
relocatable binary. The command string, in common with other
PDP-10 compilers, takes the form:

OUTPUT-FILE,LISTING-FILE=SOURCE-FILES

A file takes one of the forms
DEVICE: FILE-NAME. FILE-EXTENSION

or
DEVICE:FILE.NAME

for directory devices (disk and DECtape)

or
FILENAME.FILE-EXTENSION

or
FILE-NAME

where OSK is assumed to be a default device.

In the case of non-directory devices, the format is simply

DEVICE:

In cases where no FILE-EXT~NSIONS are specified, the standard
defaults REL for the relocatable binary output file, LST for the
listing file, and ALG for the source file are assumed.

SOURCE-FILES

consists of one file or a list of files separated by commas. If
a DEVICE is specified for the first file, and not for succeeding
files, the second and following files are taken from the same
device as the first.

Example:

EULER,TTY:=EULER

[read source from DSK:EULER.ALG,
DKS:EULER.REL, and listing on the

-1-

write relocatable
user's terminal].

binary on

TEN~X USER'S GUIDE
ALGOL

January 1975

MTA0:,DSK:SIM26=SIM26,PARAM.TST

[read source from DSK:SI~26.ALG, DSK:PARAM.TST, write relocatable
I binary on device MTA0, and listing on file DSK:SIM26.LST].
I

Certain switches mav be set by the user in
These are:

L list source program

N no listing of source program

the command string.

nD (where n is an unsigned decimal integer) set the
dynamic storage region for own arrays etc. (known
as the "heao") to n words.

These switches are set by preceding them with a I after
for example:

PROD,PROD/1000D=PROD1/L,PROD2/N

a file,

causes file PRODl.ALG to be compiled with listing, file PROD2.ALG
to bE~ compiled without listing, and causes the size of the heao
to be set to 1000 words.

The ALGOL compiler reoorts all source pro~ram errors both on the
user's terminal and in the listing ~evice (if it is other than
the terminal). After compiling a program the compiler returns
with another asterisk, whereupon the user may compile another
program, or type AC to return to monitor level.

-2-

TENEX USER'S GUIDE
BASIC

January 1975

8ASIC

The following is a short description of some of the most commonly
used EASIC commands. For more information, see the DECsysteml0
BASIC manual.

BYE Logs the user's job off the system.

CATALOG DEV:

Lists onto the user's terminal the names of the user's
files which exist on the specified device. Ex:
CATALOG DTA4:

COPY DEV:FILENM.EXT > DEV:FILENM.EXT

Copies the first file onto the second.

DELETE LINE NUMB~R ARGUMENTS

Erases the specified lines from core. For example:
DELETE 11,44-212,13

erases line 11, lines 44 through 212, and line 13. If
no arguments are specified, an error message is
returned. (It is not necessary to use the delete
command to erase lines. You can erase a line simply by
typing its line number and then depressing the return
key.)

LIST LINE NUMBER ARGUMENTS

Lists the specified lines of the program currently in
core onto the user's terminal. The line number
arguments are of the form described under the DELETE
command. If no arguments are specified, the entire
program is listed.

NEW DEV:FILENM.EXT

The program currently in core is erased from core and
the specified FILENAME is established as the name of
the "PROGRAM CURRENTLY IN CORE". N.B., at the end of
execution of this command, no lines exist in core.

OLD OEV:FILENM.EXT

The proqram currently in core is erased from core and
the specified file is pulled into core to become the
new "PROGRAM CURRENTLY IN CORE".

-3-

TENEX US8R'S GUIDE
31\SIC

January 1975

QUEUE f:"I LENM. F::X'I'

Queues the specified file from the user's disk area for
output to the line printer. Two optional switches
available with this command are /UNSAVE and /&COPIES,
where & is a number from l to 63. The switches follow
the FILENM.EXT argument: for example:

QUEUE OUT.A/UNSAVE/2COPIES

REPLACE

See SAVE.

RESEQUENCE

RUN

Changes the line numbers of the program currently in
core to 10,20,30, (line numbers within lines (as,
GO TO 1~~0) are chanqed appropriately.).

Compiles and executes the program currently in core.

SAVE DEV:FILENM.SXT

Writes out the program currently in core as a file with
the specified name. BASIC will return an error message
if SAVE attempts to write over an existing file: to
write over a file you must type "REPLACE" instead of
"SAVE".

SCRATCH

Erases from core the program currently in core.

SYSTEM

Exits from 3ASIC to MONITOR level.
of core are lost.

UNSAVE DEV:FILENM.8XT

N.8., the contents

Deletes the specified file.
specified; for example:

More than one file can be

UNSAVE DSK:ONE.F4, DTA4:TEST.BAK

In the ~ommands above which accept such arguments, if "DEV:" is
omitted, "DSK:" is assumea; if ".EXT" is omitted, ".BAS" is
assumed: if "EXT" is omitted, a null extension is assumed. The

-4-

TENEX USER'S GUIDE
BASIC

January 1975

SAVE, REPLACE, and UNSAVE commands allow the "FILENM" part of the
argument to be omitted, in which case ".EXT" must be omitted also
and the name and extension of the program currently in core are
assumed.

The keywords of commands (CATALOG, LIST, ETC.) may be abbreviated
to their first three letters. Only the three letter abbreviation
and the full word form are legal; intermediate abbreviations
such as CATAL, for example, are not allowed. If an intermediate
abbreviation is used, the extra letters will be seen as part of
the command argument (because BASIC does not see blank spaces or
tabs at command level.). For example: CATAL DSKB: would be
seen as a request to cataloq the device ALDSKB. An example of a
legal abbreviated command is: CAT DTA4:

Whenever BASIC finishes executing a command, it types "READY".
It does not answer "READY" after deleting a line by the alternate
method described under the DELETE command or after receiving a
line for the program currently in core from the user's terminal.
(To insert or reolace a line in the program currently in core,
simply type the line and then depress the return key. BASIC
distinguishes between lines (which must be stored or erased) and
commands (which must be processed) by the fact that a line always
begins with a digit (part of the line number) whereas commands
#neverdo.).

-5-

TENEX USER'S GUIDE
BCOTAP

January 1975

BCDTAP

BCDTAP reads or writes a 7 track, even parity BCD magtape
file-by-file. BCD here means the code produced by an IBM 026
keypunch or equivalent. The program first asks:

MAGTAPE UNIT NO.=

to which the user replies "0" or
heing used. The magtape on
ooint, then the progra~ asks,

USE 556 BPI?(Y ORN)

"l" depending on the unit
that unit is moved to its load

A response of "Y" sets tape density to 556 bits per inch, while
a reply of "N" causes the further auestion:

DESIRED OENSITY(200 OR 800):

when response is com?lete and density is set, the program asks:

TO OR FROM MAGTAPE?(T OR F):

if the direction is from magtape, ("F" response) the program
requests a target file-na~e by:

OUTPUT FILE:

The correct response here is any writable ASCII file. Each
record read is converted from 026 BCD code to ASCII, trailing
blanks are suppressed and carriage return-line feed is
appended, then the line is written to the output file.

If the file name supplied above is null, (just carriage return)
then one file is skipped over on the magtape and the program
again asks,

OUTPUT FILE:

At the~ completion of each file transfer, BCDTAP types out the
number of characters read from the magtape.

On encountering two successive end-of-file marks, the program
types out:

LOGICAL END OF TAPE.

It then rewinds the tape and exits.

If the specified direction of information transfer is to the
magtape, the program requests a source file bv:

-6-

TENEX USER'S GUIDE
BCDTAP

INPUT FILE:

January 1975

the correct response here is any readable ASCII file. Each
line is read from the input file, tabs are converted to spaces,
the codes are converted from ASCII to 026 BCD, the line is
filled out to 80 characters, and the result is written on the
magtape as one record.

When the entire file is transferred, the program types out the
number of characters written on the magtape.

If a null file name is supplied for the input file,
carriage return) the program asks:

DONE? (Y OR N)

(just

If the response is "N", the program again asks for an inout
file. If the answer is "Y", the program writes eight
successive end-of-file marks, rewinds the tape, and exits.

-7-

'I' E~ N I" 1: !JS F: P ' c; (~ U I DE
rrnnr·.c

Jcinuary 1975

13EDI'r

BEDIT is a oroqram which allows a user to examine, modify,
and create files which are interpreted as strings of bytes of
arbitrary size. The "random b~te I/O" nature of BEDIT
operations restricts its use to disk files.

BEDIT has no in-core buffer as ~any text editors do. ~11
access to files is bv means of pointers into the files
themselves. In T8NF.X fiies, the bytes. are numbered 1, 2, 3, •••
The BEDIT byte pointers (one each for input and output files)
refer directly to the byte to be referenced, i.e., set to 1 to
have the next oceration refer to byte 1. (Notice that this
contrasts with the usual TENEX byte pointer convention, which
is that a byte pointer noints to the byte before the one to be
referenced. The difference is not profound, just easier to use
when confronted with snecific byte numbers.)

Commands to BEDIT are single letters. Most of them
reauire arguments, which are explicitly asked for by the
program. Arguments are numbers or single letters. Numbers
should be terminat~1 by carriage return. Numbers are
interpreted as dccin31 unless ?refixed bv a sign, which means

I octal. The RUBOUT kev may be used at ~ny time to return to the
t command input level. Typing a "?" at the command input level
or at some other places in the program will produce a typed
summary of what tv~0ins are appropriate at that point.

I :

0:

Specify innut file. If an input byte size has not been
S?ecified, it is re0uested. If an inout file is already
open, it is closej. On commands which imoly an input file
(C, T, L), if an input file has not been specified, this
command is automatically performed.

Specify output file. If an output byte size has not been
s9ecified, it is reauested. If an output file is already
open, it is closed. Jn commands which imply an output
file (C, E, Z), if an output file has not been specified,
this com~and is automatically performed.

-8-

-

TUG
BED IT

BED IT

BEDIT is a program that allows a user to examine, modify, and
create files which are interpreted as strings of bytes of
arbitrary size. The "random byte I/0" nature of BEDIT operations
restricts its use to disk files. BEDIT operates on both TENEX
and TOPS-20, but editing your typein is a little odd on TOPS-20.
On TOPS-20, file name type-in is edited with RUBOUT and AU (for
character-delete and line-delete) , as is the usual TOPS-20
convention; however numbers typed to BEDIT are edited with AA and
AQ, according to the (old) TENEX convention.

BEDIT has no in-core buffer as many text editors do. All access
to files is by means of pointers into the files themselves. In
BEDIT, the bytes are numbered slightly differently from normal
TENEX usage, in that the bytes of the file are numbered 1, 2,
3 ... (The usual TENEX byte pointer convention is that the first
byte is number 0.)

Commands to BEDIT are single letters. Most of them require
arguments, which are explicitly asked for by the program.
Arguments are numbers or single letters. Numbers should be
terminated by carriage return. Numbers are interpreted as
decimal unless prefixed by a # sign, which denotes octal. AE may
be used at any time to return to the command input level. Typing
a "?" at the command input level or at some other places in the
program will produce a summary of the typeins that are
appropriate at that point.

I: Specify input file. If an input byte size has not been
specified, it is requested. If an input file is already
open, it is closed. On commands that imply an input file (C,
T, L, X, P), if an input file has not been specified, this
command is automatically performed.

0: Specify output file. If an output byte size has not been
specified, it is requested. If an output file is already
open, it is closed. On commands which imply an output file
(C, E, P), if an output file has not been specified, this
command is automatically performed.

S: Set byte size or pointer. Choice of Input file, Output file,
or Both. Choice of Size or Pointer. The effect on the byte
pointer of changing the byte size is as described in the
TENEX-4 system memo. Failing that, try it yourself and see.
For pointer typein only, user may specify "N", ".+N", or
".-N", where N is an integer. In the first case, the byte

1-1 ADD-10-26-77

TUG
BED IT

C:

pointer is set to N. In the latter two cases, "." is
interpreted as "current value of the byte pointer," so the
effect is to skip it forward or back by N bytes. A byte
pointer specified as -1 means to the end of fil~.

Copy bytes from input file to output file.
number of bytes to be copied (0 or just a
means until end of input file).

User must specify
carriage return

E: Enter bytes from TTY into output file. User must specify if
the bytes to be typed in are to be interpreted as Floating
point (only legal for byte size of 36) , Decimal integer (here
also, a # preceding the number will cause interpretation as
octal), or Octal. Numbers may be separated by carriage
return, line feed, space tab, comma, slash, or semicolon.
Enter mode is terminated by typing alt mode (escape). In
addition to typing in the values of individual bytes, the
Enter command also permits a number of bytes of the same
value to be specified by means of the construction "n@value",
where "n" is a decimal integer (or octal if preceded by #),
and "value" is a number in the Mode specified. For instance,
to specify 19 bytes of pi, type 19@3.14159.

X: Search for a byte sequence. First, it asks you to specify
the byte sequence, which you do in the same manner as the
Enter command. Then it scans the input file, starting at the
current position of the byte pointer. If the sequence is
found, the pointer is left positioned BEFORE that sequence.
If not found, the pointer is left at its original position.

P: Overlay. Identical to Enter, except that the input byte
pointer is moved forward by the number of bytes put in the
output file (or to the end of the input file, if that's
encountered first). This command makes it easier to change
one or more bytes of a file.

T: Type bytes from input file. User must specify mode (Floating
point, Decimal integer, Octal, or Text) and number of bytes
to be typed out. If the number is 0 (or just a carriage
return) , the typeout will continue until end of file is
reached or a AE is typed. This command does not change the
input file byte pointer.

In Text mode, bytes greater than 177 octal are typed out in
octal. If the user's terminal does not have lower case, then
lower case characters are printed as upper case prefixed with
a period. The following characters are indicated as shown
below.

1-2 ADD-10-26-77

TUG
BED IT

11
12
14
15

L: List bytes

tab *t
line feed *l
form feed *f
car. rtn. *c

from input file

37 TENEX EOL *n
40 space *s
177 rubout *r

onto a listing file. Sarne as
Type, except output to any TENEX file or device.

K: Klose output file. Must be confirmed by a carriage return.

F: File status. Gives the name, byte size, length (in bytes) of
the given size), and value of the byte pointer for each file.

V: Verbose typeouts (initial setting).

N: Nonverbose typeouts where practical.

Q: Quit,, closing input and output files. Must be confirmed by a
carriage return. Returns to TENEX Exec. Typing CONTINUE
will resume BEDIT.

1-3 ADD-10-26-77

TENEX USER'S GUIDE
BLIS10

January 1975

SLISS-10 COMMAND STRINGS

BLISS-10 does not use the standard -10 command scanner.
However, command string interpretation is similar to that of
other -10 CUSPS.
@BLIS10
*RELFIL,LSTFIL_SRC1,SRC2, •••

1. Each file descriptor [RELFIL,LSTFIL,SRC] has the form:
DEVICE:FILENAME.EXT

2. RELFIL receives the machine code generated by the
compiler. If no code is desired, leave this position empty in
the command string. If FILESPEC appears, FILESPEC is assumed
to be the RELFIL S?ec and no listing output is generated.

3. LSTFIL receives the program listing produced by the
compiler. If no listing is desired, leave this position-em?ty
in the command string.

4. SRC1,SRC2, ..• are the BLISS-10 source files
when concatenated together form one BLISS-10 module.

5. If "DEVICE" is omitted "DSK" is assumed.

which

6. If "EXT" is omitted, ".REL" is used for the RELFIL,
".LST" is used for the LSTFIL, and ".Bl0," ".BLI", and the null
extension in that order are tried for the source file until
either a file is found or all three defaults have failed.

7. SWITCHES: (-) implies that (switch name) will result
in the opposite of the switch action. *indicates that the
switch is assumed on by default.

-11-

TENEX USER'S GUIDE
BLISH~

January 1975

NAME

c

E (-)

F (-)

G (-)

H

I(-)

K

*L(-)

M (-)

N (-)

*O (-)

R (-)

s

T (-)

u

v

x

ACTION

Generate a cross referenced listing.

Expand all MACROS in the listing.

Set up stack frame register (SREG) on every routine entry.

All routines are to be made GLOBAL ROUTINES.

This entire module is to be loaded into the high segment.

Generate special inspection word immediately prior to each

routine or function body.

Disable listing of the source text (same as -L).

Enable listing of the source text.

Enable listing of the machine code generated.

Do not print error messages on the controlling TTY.

Optimize subexpressions across all "~"s.

Do not save all declarable registers around an EXCHJ.

Output routine names as compiled and compilation statistics

to TTY.

Generate calls to a timing routine at the start and end

of each routine.

Do not optimize across "~"s (same as -0).

Entire module is to be loaded into the low segment.

Perform a syntax only (no code generation) compilation.

-12-

-

TUG
TENEX CALENDAR SUBSYSTEM

TENEX CALENDAR SUBSYSTEM

Introduction

The CALENDAR subsystem is a program which is especially for
people who like to keep lists of things to do daily. It is
also useful for people who need reminders of things like
birthdays, appointments ..•

Commands

The CALENDAR subsystem gets its commands from the terminal.
The commands are very simple and are designed to handle
those operations most frequently performed on the calendar
data. They do not constitute a general set of primitives
which one might consider the basis for programs to operate
on calendar data. CALENDAR is not intended to be a
programming language.

Entering Appointments, Deadlines, Things to Do

There are two primary commands for entering appointments,
deadlines, and things to do in the data base; the ~nter
command and the ~pointment command.

When the Enter command is invoked (by inputting E on the
terminal)~ CALENDAR asks for the date which is terminated by
carriage return. Dates are read by the TENEX time and date
monitor calls which permit relatively free format to be
used. If the date input is null (only a carriage return is
typed), the current date is assumed. Whenever CALENDAR asks
for a date, the preceding comments apply. Next CALENDAR
types a task number (maximum of 256 tasks per day) to be
assigned to this task or thing-to-do. This number is useful
only for addressing the task at a later time, you need not
remember it because it is always output when CALENDAR types
a reminder or a task. Next calendar waits for the user to
input an arbitrary length description of the task. Editing
may be done on this description with control A or control Q
consistent with standard TENEX editing. A carriage return
may be put into the description for multi-line tasks. Tasks
are terminated by z or ESC (altmode key).

A normal Appointment is input by typing A on the terminal.
CALENDAR will now ask for the date of the appointment, the
number of days between reminders you want to see before the
appointment, the total number of reminders you want to see,
and finally some arbitrary length text about the appointment
or deadline. It should be noted that appointments are
considered by CALENDAR to be simply tasks which have some

2-1 ADD-10-26-77

TUG
TENEX CALENDAR SUBSYSTEM

reminder criteria. All operations which can be done on
tasks can be done to appointments.

Another type of appointment may be input via the Appointment
command. This is a so called "forward" appointment for
which you would like to see a reminder every specified
number of days (up to a particular count) starting from a
given date and going forward in time. This is specified by
terminating the date field of an appointment command by a
left arrow, carriage return (or ~ or escape) sequence.

Forward reminders are distinguished in task typeouts (see
List command) by an " " preface. When the number of times a
forward reminder has been given equals the requested count,
the preface is changed to an "=" and the reminder is listed
every day until it is explicitly marked as finished,
cancelled, or deleted in the normal fashion.

The reminder typeouts are very diligent about reminding you
when you asked. For example, if you asked for 4 reminders 4
days apart and then didn't use CALENDAR until 10 days before
the deadline, you will get reminded this time as well as the
very next time you use CALENDAR so that it can "catch up".
This is accomplished by keeping a count of the actual number
of reminders given. A reminder is unconditionally forced on
the work day before an appointment or deadline. CALENDAR
knows about weekends but not holidays ...

If the input for the total number of reminders you want to
see is null (just carriage return typed in), CALENDAR will
put in a count sufficient for enough reminders to cover the
entire period from the current day to the deadline at the
frequency you specified.

Updating the Calendar Data

The EntE!r and ~pointment commands will not have permanent
effects on the data base until the Update command is given.
This is true of all commands which modify the data base.
The output by CALENDAR of a reminder modifies the data base
and an !!.Pdate should be done to have a permanent effect.
Qpdate requires a confirming carriage return before it is
executed.

Relative Dates

When CALENDAR asks for a date, you can type in a date
relative to the current date by typing a small number (1-9).
If you want this to be a relative number of workdays
(Saturday and Sunday will be skipped over) , preface the

2-2 ADD-10-26-77

-~-

TUG
TENEX CALENDAR SUBSYSTEM

small number with colon (:). For convenience,
equivalent to :1.

alone is

The character " " is used to mean the most recently typed-in
explicit date (i.e. 5/15/73 and null are explicit date
type-ins, :3 is an implicit date meaning plus three work
days. Explicit date typeins re-establish the meaning of "."
Implicit date typeins have no effect on the meaning of".").
It is possible to use signed, small numbers as arguments to
the ":" relative date operator. Signed small numbers also
work as arguments to"." the sequence :.-2 is interpreted to
mean two work days before the last explicit date typed in.
Most combinations of the date operators which make sense are
accepted and do what you might expect.

Listing the Calendar Data

Selected portions of the data base are listed by the List,
Total list, and Individual list commands. The normal
command used is List. List asks for a date, and normally a
null input should be-typed which means to use the current
date and 'to invoke the standard reminder option. This will
result in the current date and time being output followed by
a list of reminders (if any) followed by a list of tasks (if
any).

Each reminder or task is prefaced by the date of the task
and its task number: then the text associated with the task
is output. The preface date field is omitted if the task is
for the current date. Reminders and tasks are always output
in chronological then increasing task number order. Tasks
should be marked as either Finished, Cancelled, Rescheduled,
or Deleted to get them to disappear from the List printout.
If -you don't do one of these, the List printout of the task
is repeated in the task list ad nauseum. The List output
can be directed to a file by using the Output command.
Output is initially set to the terminal. - The standard
reminder option causes the reminder counts to be updated.
Recall this is invoked by inputting a null date. If List is
given a date input, the reminder counts are not updated:
instead, the CALENDAR program outputs reminders and task
lists as though the current date were the date that was
input. Note that if this is a future date, all unfinished
tasks through that date are output. Appointments and
deadlines are both treated as tasks (except that they are
prefaced by an "!" for normal appointments or " " or "=" for
"forward" reminders), and this becomes obvious is they jump
from the reminder to the task list as the List date is the
same or greater than the appointment date.

2-3 ADD-10-26-77

TUG
TENEX CALENDAR SUBSYSTEM

There are times when you want to see only the tasks for a
given date with no reminders of old, unfinished tasks. This
is done by using the Individual list command which is
otherwise exactly like List. There are also times when you
want to see everything including Finished tasks and
Cancelle!d tasks. This is accomplished by using the Total
fist command. With this command a single character
indicator prefaces finished tasks (F) and cancelled tasks
(C) . Appointments are prefaced by three numbers of the form
(l,m,n) where 1 is the number of days between reminders, m
is the number of reminders, and n is the current count of
reminders issued.

Format Control

CALENDAR normally outputs multi-line tasks in a "balanced
format" which tests to see if words will fit on lines and
inserts a carriage return,line feed if the word would over
run the line. In the normal mode all explicit carriage
returns are translated to spaces. This mode may be turned
off by use of the "Balancing Format Switch ON (Y or N?: "
command - answer that question N to turn the mode off.
Within each task the user has some degree of multi-line
format control. The first V (control V) encountered in a
task turns balance formatting off. Each successive V
complements the state of balancing format from off to on, on
to off... Remember that Vis the "quote next character"
control so to input one, v must be itself input twice.
Also, when balanced formatting is off, y_ is ignored.

The Print Command

The "Print" command is available for printing sections of
the calendar data such as for a month at a time. It
prints a week at a time per page (which may over run a page
for a busy week). On hard copy controlling terminals, it
will await the input of any character (such as a space)
between pages to allow the user to tear off output. Print
expects the user to input a beginning and ending date- for
the period. If the first date is null (default for the
current date), a standard "List" command for that first date
will be executed including reminders and any incomplete
tasks before the current date. If an explicit date is typed
for the first date, a listing will be made for the first
date only for that date with no reminders. Successive dates
are typed with only the data for that date with no
reminders.

Modifying the Calendar Data

Tasks or appointments are marked as finished with the
Finished command which takes a task address of the form task

2-4
ADD-10-26-77

TUG
TENEX CALENDAR SUBSYSTEM

number, date. They a~e marked as cancelled by the Cancelled
command which takes a task address of the same form. The
Delete command takes a task address and marks the space to
be reclaimed during the update process. The Gain command is
used to reclaim space in a similar fashion for all tasks
with a date as old or older than the date supplied. Deleted
and gained tasks literally disappear from tHe data base.
Gain will optionally gain space only for completed or
finished entries.

There is a provision for rescheduling tasks
Reschedule command which marks the original entry
cancelled (it's still there) and makes a copy of
with the newly specified date.

with the
as
the entry

An individual task may be itself modified with the
command. This expects a task number and date.
invokes Teco which is used to edit the task. When
finished, type ":H$(alt-mode)" to Teco to get
CALENDAR.

Returning to the EXEC

"Modify"
It then

you are
back to

The Quit command (if confirmed by a carriage return) will
get you back to the EXEC. Quit closes any opened output
file and switches output back to the terminal for subsequent
CONTINUE's. CONTINUE will get you back into CALENDAR. Do
not use re-enter: for one thing there is no re-enter address
and TENEX won't let you.

Encrypting the Data

The Key command enables a change in the optional Key for the
encrypting of the data base in a way that is believed to be
relatively crack proof. The encrypting algorithm uses this
key to form the basis or seed of a double word pseudo-random
number generator sequence. Successive high order parts from
the generator are exclusive-ored with the data thus
encrypting the data. A checksum is included with the data
to be encrypted. This is used on input to determine if the
user typed in the correct Key.

If you are down on keys, passwords, and privacy ... , then
don't specify a key. When you first use CALENDAR it asks
you whether or not you want the data encrypted. Of course
you can always encrypt or change the key with the Key
command. Don't forget the key! It is very likely the data
will be impossible to decrypt without it! If you want to go
from encrypted to non-encrypted data, type a null key (just
CR) to the Key command.

2-5
ADD-10-26-77

TUG
TENEX CALENDAR SUBSYSTEM

With encrypted data, CALENDAR will ask you the key whenever
you use the CALENDAR subsystem. If you mistype the key, you
are returned to the TENEX EXEC.

Managing other CALENDARS

The Yank file command enables the user to specify another
file- for CALENDAR to work with. This can be a file in the
connected directory or any other directory to which the user
has access. Simply input a standard TENEX file name after
the Yank file command is given. This command is most useful
for -a secretary to manage her supervisor's calendar. The
dafault fields are set to
"<connected-directory>CALENDAR.DATA:l".

Miscellaneous Commands

There i~~ an Xor command which allows the undoing of
deletes,finishes, cancels, etc. This is accomplished by
specifying a task and date then typing D for delete,F for
finished,C for cancelled in any combination to accomplish an
exclusive OR of that operation with the present state of
that operation for the specified task; thus, you can also
mark a task, for example, as finished with this command.

Interrupting CALENDAR

The rubout key is enabled in CALENDAR to abort operations
and output whenever it is safe to do so. Control c followed
by CONTINUE is safe as with all subsystems. Reenter would
not be safe and is not allowed.

The Data Base

The data base is stored in the users file CALENDAR.DATA:!.
This is an ordinary TENEX file, and if it is deleted, it
will go away in the ordinary way. (This is by contrast with
MESSAGE. 'l~XT: 1) . The file is read into the address space of
CALENDAR when it starts up. This makes data base references
very fast but limits the maximum useable size of the file to
246K data words. This is effectively infinite, but if it
gets nearly full, the user will be so warned and expected to
make use of the Delete and/or Gain commands. Of course it
can be Total listed prior to doing this. Users should be
aware thit many files of this size tax disc space
enormously. Since CALENDAR.DATA:! is an ordinary file,
accounting for it's space is done in the standard way.

The update operation was written to immunize the data base
from crashes. Namely the file CALENDAR.NEW;! is used to
write the updated version then this is renamed to
CALENDAR.DATA;!. Of course like any file, it may be wise to

2-6 ADD-10-26-77

-

TUG
TENEX CALENDAR SUBSYSTEM

back it up and/or list it periodically.

Calendar 6-11-73 THU 12/27/73 15:26:11
Do you want to encrypt your data (Y or N)?: Y
Key is: COMPACT
If you forget this key, your data is likely to be irretrievably lost! It
is printed here again, enclosed in square brackets.
[COMPACT]
#Appointment or deadline for date: January 7, 1974
Number of days between reminders: 1
Number of reminders~ 3
Task(l): 1400 PLANNING MEETING
#Enter task for date: 12/31/73
Task(l) TURN IN TIME SHEET$
#Enter task for date: •
Task(2): FINISH INPUT FOR ARPA QPR$
#Enter task for date: .+1
Task(l): HAPPY NEW YEAR, OUT ALL DAY TODAY$
#List tasks date: 12/28/73
THURSDAY, DECEMBER 27, 1973 15:29:49-EST for FRIDAY, DECEMBER 28, 1973
#List tasks date: 12/31/73
THURSDAY, DECEMBER 27, 1973 15:29:59-EST for MONDAY, DECEMBER 31, 1973

1 TURN IN TIME SHEET
2 FINISH INPUT FOR ARPA QPR

#List tasks date: 1/1/74
THURSDAY, DECEMBER 27, 1973 15:30:12-EST for TUESDAY, JANUARY 1, 1974
12/31/73 1 TURN IN TIME SHEET
12/31/73 2 FINISH INPUT FOR ARPA QPR

1 HAPPY NEW YEAR, OUT ALL DAY TODAY
#Individual Listing date: Jan 3, 1974
Want to see F and C entries (Y or N)?: N
Want to see reminders (Y or N)?: Y
THURSDAY, DECEMBER 27, 1973 15:30:42-EST for THURSDAY, JANUARY 3, 1974
#Individual Listing Date: Jan 4, 1974
Want to see F and C entries (Y or N)?: N
Want to see reminders (Y or N)?: Y
THURSDAY, DECEMBER 27, 1973 15:30:53-EST for FRIDAY, JANUARY 4, 1974
Reminders
! 1/07/74 1 1400 PLANNING MEETING
#Update [Confirm]
#Quit [Confirm]
@;NOW CALENDAR IS CALLED AT A LATER SESSION
@CALENDAR
Calendar 6-11-73 THU 12/27/73 15:31:35

Key is:
#Cancel Task Number: 1 Date: 1/7/74
#Reschedule task number: 2 Date: 12/31/73
to new date: 1/2/74$
#Update [Confirm]
#List tasks date: 1/2/74

2-7 ADD-10-26-77

TUG
TENEX CALENDAR SUBSYSTEM

THURSDAY, DECEMBER 27, 1973 15:33:15-EST for WEDNESDAY, JANUARY 2, 1974
12/31/73 1 TURN IN TIME SHEET
1/01/74 1 HAPPY NEW YEAR, OUT ALL DAY TODAY

1 FINISH INPUT FOR ARPA QPR
#Quit [Confirm]

@

2-8 ADD-10-26-77

TENEX USER'S GUIDE
CALENDAR

.January 1975

1 FINISH INPUT FOR ARPA OPR
#Quit [Confirm]
@

-19-

TENEX USER'S GUIDE
COBOL

January 1975

COBOL

COBOL (Common Business Oriented Language) is a large DEC-supplied
compiler- and operating-system. -Full documentation on COBOL will
be found in the DECsysteml0 COBOL manuals.

The COBOL user can create his programs and data on-line using one
of the system editors TECO or LINED. He can transfer his
program and data files from different media by means of PIP or
FILEX. After the COBOL compiler translates the source programs
into relocatable binary code, the linking loader of the loads the
compiled programs and assigns addresses to the relocatable code.

The COBOL system offers a group of utility programs to aid the
COBOL user in doing some of his COBOL-oriented tasks. These
programs are:

LI BARY
SORT
RERUN
ISAM
COB DDT

to prepare and maintain source libraries
to sort user data in stand-alone mode
to restart a program from a user-specified checkpoint
to build and maintain indexed sequential files
to enable the COBOL programmer to debug COBOL proqrams
at source level (both interactively and in batch mode)

1.

2.

3.

4.

5.

6.

COBOL Command Strings

@COBOL
*RELFIL,LSTFIL=SRC1,SRC2, ••• /SWITCH/SWITCH

Each file descriptor has the form:
device:filname.ext[project,programmer]/switch/switch •••

RELFIL receives the machine code generated by the
If no code is desired, replace "RELFIL" by"-".

compiler.

LSTFIL receives the program listing produced by the compiler.
If no listing is desired, replace "LSTFIL" by "-".

SRCl, SRC2, ••• are the
produce one input program.

COBOL source files required to

If "DEVICE:" is omitted for RELFIL
assumed. If "DEVICE:" is omitted for
the preceding device name is used, or
was no preceding device name.

or LSTFIL, "DSK:" is
any source file, either
"OSK:" is used if there

If the filename for RELFIL or LSTFIL is omitted, the filename
of the first source file is used.

-20-

··--

TENEX USER'S GUIDE
COBOL

.January 1975

7.

8.

:fl:

:fl:
:fl:

:fl:
:fl:

:fl:
:fl:
:fl:
:fl:

:fl:

:fl:

:fl:

:fl:

:fl:

:fl:

:fl:

If ".EXT" is omitted from the RELFIL
used. If ".EXT" is omitted from
".LST" is used. If ".EXT" is omitted
descriptor, ".CBL" is assumed.

descriptor, ".REL is
the LSTFIL descriptor,

from any source file

Switches:

A

c

E

H

I

J

L

M

N

p

R

s

w

List the machine code generated in the LSTFIL.

Produce a cross-reference table of all user­
defined symbols.

Check program for errors, but do not generate
code.

Type description of COBOL command strings and
switches.

Sul;)press output of start address. (Program is to
be used only by CALL's.)

Force output of start address in spite of the
presence of subprogram SYNTAX.

use the ~receding source file as a library file
whenever a COPY verb is encountered. (If the
first source file is not a /L file, LIBARY.LIB is
used as the library file until the first /L file
is encountered. (The default extension for
library files is ".LIB".)

Include a map of the user defined items in the
LSTFIL.

Do not type compilation errors on the user's TTY.

Production mode. Omit debugging features from
RELFIL.
Produce a two-segment object program. The high
segment will contain the Procedure Division: the
low segment all else. When the object program is
loaded with the linking loader, LIBOL.REL will be
added to the high segment.

The source file is in "conventional" format (with
sequence numbers in cols. 1-6 and comments
startin.q in col. 73) •

Rewind the device before reading or writing.
(Maqtape onlv.)

-21-

=If:

=If:

=If:

=If:

=If:

=If:

=If:

TENEX USER'S GUIDE
COBOL

January 1975

z Zero the directory of the device
(DECtape only.)

before

LI BARY

LIBARY -- Editor for creating, maintaining,
and listing COBOL library files

Command String Format:

@ LIBARY
*outputfil,listfil=inputfil

Notes:

If listfil is not specified, no listing is produced.

If inputfil is omitted, it is assumed that there
library. In this case only insertions can be done.

is

writing.

no input

If the device-name is omitted from any field, "DSK: II is assumed.

If the extension is omitted from the outout
file specification, ".LIB" is assumed. -

If the extension of the listing file is
assumed.

file or the input

omitted, II .LST" is

If the input file and the output file have the same filename and
extension, and both are on disk~ the extension of the input file
is changed to ".BAK" at the end of the run.

Switches:

/Z

Clear output device directory (for DECtape only)

/W

Rewind (magtape only)

SORT Command Strings:
@SORT n

SORT

*outfil/swl/sw2 •.• =infil/sw3/sw4 •••

-22-

TENEX USER'S GUIDE
COBOL

January 1975

Notes:

If the core argument is specified, nK core is used for the sort:
otherwise SORT uses half of available user core for the
sort buffer.

If the device name is omitted from either file specification, it
is assumed to be DSK:.

For multireel magtape input or output, specify multiple devices,
e.g., *MTAl:MTAl:MTAl:=MTA2:MTA2:MTA2:.

The command string can be continued on another line by placing a
hyphen at the end of the current line.
*@dev:cmdfil.ext causes commands to be obtained from the specified

command file. (Default extension: ".CCL")

Switches:
/A

/Bn

/Kabcm.n

used.

The associated file is recorded in ASCII.

A logical block of the associated file contains n
records (n is a decimal number). If the /B switch
is omitted for any file, that file is assumed to
be unblocked.

Defines a sort key as follows:

a

a = S
a = U

a omitted

b = x
b = N
b = c
b = F
b omitted

c = A
c = D
c omitted

m

n

If the field is not numeric, this
parameter is ignored.

The field is signed.
The field is unsigned: its magnitude only is

If the field is numeric, a = S is assumed.

The field is alphanumeric.
The field is numeric display.
The field is COMPUTATIONAL.
The field is COMP-1 (floating point)
If parameter a also omitted, b = x is assumed.

If parameter a is given, b = N is assumed.

The field is to be sorted in ascending order.
The field is to be sorted in descending order.
c = A is assumed.

Relative position within the record of the
first byte of the key.

Size of the field in bytes (digits if numeric).

More than one key can be entered with a single /K by

-23-

TENEX USER'S GUIDE
COBOL

January 1975

-24-

* #

* #

TENEX USER'S GUIDE
COBOL

.January 1975

TYPE CONTINUE WHEN DONE
user responds by assigning the logical name, then types CONTINUE.

5) After reloading the COBOL program, RERUN turns
that program.

ISAM

control over to

ISAM - Indexed Sequential File Maintenance Program

/B Mode
Build Indexed File from Sequential Access File

@ISAM
*indexfil,isamdatafil=sequfil/B

This mode is assumed by default if no mode switch is supplied.

If the device name is not specified for any file,
is assumed.

"DSK: II

The default extensions are, respectively, ".IDX", ".IDA", and ".SEQ".

index If the ISAM data file name is omitted, the name of the
file is used. If both the index file name and the IS~M
data file name are omitted, the name of the input file
them.

is used for

Answers to questions:

MODE OF INPUT FILE: S(IXBIT) or A(SCII)

MODE OF (ISAM) DATA FILE: S(IXBIT) or A(SCII) (may differ from input)

MAXIMUM RECORD SIZE: (size of largest record of input file
in bytes)

KEY DESCRIPTOR: sxm.n
where s = s indicates the key is signed

s = u indicates the key is unsigned
x = x indicates the key is alphanumeric
x = N indicates the key is numeric display
x = c indicates the key is COMPUTATIONAL
x = F indicates the key is COMP-1

(floating po int)
m = the number of the byte in the record

where the key begins

-25-

TENEX USER'S GUIDE
COBOL

January 1975

n = the size of the key in bytes or digits

RECORDS PER INPUT BLOCK: number of records per logical
block of the input file (0 if unblocked)

SIZE OF LARGEST INPUT BLOCK: number of characters per block
(asked only if input file is unblocked and on magtape)

TOTAL RECORDS PER DATA BLOCK: number of records per logical·
block of the ISAM data file

EMPTY RECORDS PER DATA BLOCK: number of records to initially
leave empty in each data block (to
facilitate later random insertions)

TOTAL ENTRIES PER INDEX BLOCK: number of index entries to
be contained in each logical block
of the index file

EMPTY ENTRIES PER INDEX BLOCK: number of entries to initially
leave empty in each index block

PERCENTAGE OF DATA FILE TO LEAVE EMPTY: essentially, this specifies
number of additional empty blocks to be

initially added to the file (in order to
speed up later growth)

PERCENTAGE OF INDEX FILE TO LEAVE EMPTY: similar to above

MAXIMUM NUMBER OF RECORDS FILE CAN BECOME: a number in excess
of what the file is ever likely to

grow to

/M Mode
Maintain Existing Indexed File

@ISAM
*outputindexfil,outputdatafil=inputindexfil/M

Default devices are all "OSK:". Default extensions are,
respectively, ".IDX", ".IDA", and ".IDX". Default filenames are as
with the /B mode.

Answers to questions are the same as for /B, except that only the last
5 questions are asked, and the existing values for these parameters
are typed in parentheses. Any of these parameters may be left
unchanged by typing just carriage-return.

/P Mode
Pack Indexed File Back into a Sequential File

-26-

TENEX USER'S GUIDE
COBOL

.January 1975

@ISAM

* #

*sequfil=indexfil/P

Default devices are "OSK:". Default extensions
".SEQ" and ".IDX", respectively.

are

If the sequential output file name is omitted,
index file is used.

the name of the

Answers to questions:

MODE OF OUTPUT FILE: S(IXBIT) OR A(SCII)

RECORDS PER OUTPUT BLOCK: blocking factor of output file

SIZE OF LARGEST OUTPUT BLOCK: number of characters per block
of the output file
(asked only if output is on magtape and unblocked)

Indirect commands:

@ISAM
*@cornrnandfil.ext

Load COBDDT as follows:

@ LINK/0
*userprogram/DEBUG:COBOL/G

@ LOADER
*/Suserprogram,SYS:COBDDT$

COB DDT

or

When program is executed, it will first ty9e "STARTING COBOL DDT".
The user may then set breakpoints, examine locations, etc., before
proceeding.

COBDDT Commands:

ACCEPT data-name (accept data typed on next line

ACCEPT

BREAK paragraph or section-name
CLEAR paragraph or section name
CLEAR
DISPLAY date-name

-27-

as new value for specified
data item)

(assumes data-name of last
DISPLAY or ACCEPT)

(set breakpoint)
(clear breakpoint)

(clear all breakpoints)

TENEX USER'S GUIDE
COBOL

January 1975

DISPLAY (assumes data-name of last
DISPLAY or ACCEPT) #

MODULE program-name
PROCEED
PROCEED n
breakpoint)

STOP
TRACE ON

TRACE OFF
WHERE

(use symbol table of named program)
(proceed from breakpoint)

(proceed to nth occurrence of

(stop run)
(type each paragraph or section

name as it is encountered)

(list all breakpoints)

All command verbs and arguments may be truncated, so long as the
part type is enough to identify that item.

COBRG

COBRG -- COBOL Report Program Generator

Since the implementation of the Report Writer module in
DECsystem-10 COBOL, COBRG has been rendered unnecessary.
However, for a time COBRG will continue to be supported so that
old user programs written in this language can be maintained. It
is recommended that new report programming be done with the
Report Writer module.

The output from COBRG consists of one or more COBOL source files
and a listing file. The name of each COBOL source file is that
given in the NAME specifications contained in the input file,
with ".CBL" as extension. The listing file contains a list of
input specifications for each file generated, plus any error
diagnostics. All output is always to DSK:. Also the input file
must be on DSK:. Command String Format:

@ COBRG
*listfilinputfil

Defaults:

If the name of the listing is omitted, the name of the input file
is used. If the listing-file extension is omitted, ".LST" is
assumed. The input-file name and extension must be specified.

-28-

~-

TENEX USER'S GUIDE
CO PYM

,January 1975

CO PYM

COPYM (COPY Multiple) is a program designed to facilitate copying
groups or lists of files from place to place. It will accept a
file containing a list of files, or information may be entered
from the controlling terminal. It will copy each input file to a
similarly named destination file, e.g. <JONES>FOO.MAC to
<SMITH>FOO.MAC.

It has particular features for copying to DECtape; it keeps
track of the amount of free space remaining on the DECtape and
will ask for another DECtape to be mounted if the next file to be
copied won't fit.

The copy command of the EXEC may eventually be modified so as to
dominate all of the functions available with COPYM, but until
then, COPYM should be useful.

Oper~!i~~ ~£££~du£~

COPYM first requests the name of a file from which to obtain the
source file descriptors. TTY: may be used for this.

The source file names, whether from a file or a terminal, may
contain *'s in anv fields except the device name, e.g.
DTAl:*.MAC. If the source device is a multiple directory device
(DSK:), a directory name may be entered and will be used for all
source files until a subsequent directory name is entered.

COPYM next requests the cutout designator (see Limitation 1).
Use of *'s here is permitted and should be appropriate to the
form of the input designator. For example, if the input is to be
.MAC;, then *.FOO;* and *.*;* are both appropriate. A* here
means the same string for the field as in the source file,
therefore, if a * is used in a field of the source designator,
one should also be used in the corresponding field of the output
designator.

If the output device is DECtape, COPYM will next ask whether or
not the directory is to be cleared before beginning the copying
(2) •

Answer Y or N.

COPYM will then begin processing input file descriptors. If
input file names are being entered on the terminal, a ready
character will be typed each time COPYM is ready for another
descriptor. Each of the files identified by the source
descriptor will be copied to a file on the output device having a
name constructed by replacing the *'s of the output descriptor
with the strings from the corresponding fields of the actual

-29-

TENEX USER'S GUIDE
COPYM

January 1975

source file being copied. The name of each actual source and
destination file is reported as copying proceeds,

If the output device is DECtape and the tape becomes full, COPYM
will again ask for an output designator, and when one is
supplied, copying will be resumed.

Current Limitations

The following limitations exist in the current version, but
should be removea-In-a-Iuture version.

1. The output designator may consist only of a device name,
e.g. DTAl:, OSK:. The program behaves as if all other
fields were specified as *.

2. If the dire~tory of a DECtape is not cleared, COPYM will not
know how full it is, and so the facility which detects the
condition of insufficient space for next file will not
operate correctly.

3. SSAVE files created by TENEX before version 1.29 could not
be sequentially copied, and hence could not be placed on
DECtape. Therefore, if the source file extension is .SAV,
COPYM does a GET of the source file into an inferior fork.
Then, if the destination device is OTA:, it does a SAVE of
the entire core image onto the output file. If the
destination device is OSK:, it does an SSAVE of the entire
core image. This works correctly for all but a few
specially constructed types of SSAVE files, e.g. LISP

SYSOUT's.

-30-

TENEX USER'S GUIDE
CREF

January 1975

CREF

I CREF produces a sequence-numbered assembly listing followed by
one to three tables, one showing cross references for ~11
operand-type symbols (labels, assignments, etc.), another showing
I cross references for all user-defined operators (macro calls,
OPDEFs, etc.), and another (if the proper switch is specified)
I showing the cross references for all op codes and pseudo-op codes
(MOVE,XALL, etc.) A number sign (I) appears on the definition
line of all symbols. The input to CREF is a modified assembly
I listing file created during a MACR0-10 assembly or FORTRAN IV
compilation when the /C switch is specified in the command
string.

I

·#

jf

I
I
I
I

I

I
I

Detailed information on CREF is contained in the
Assembly Language Handbook in the Utilities Section.

DECsysteml0

WARNING

The following changes have been made
CREF:

to the TENEX version of

1.

2.

3 •

After CREF has processed a source file, it is
the user's direct0ry.

deleted from

The output listing from CREF is generated for wide line
printer paper (132 characters per line). Unless wide paper
is in the line printer, output to a disk file and request
that the operator list the file on wide paper. (Narrow
paper is standard for the TENEX line printer. Wide paper
must be explicitly requested.)

If an output file name is specified without an output
device, the default output device will be DSK. If neither
an output devi~e nor an output file name is specified, the
default output device will be LPT.

FORMAT

Two input formats are acceptable to CREF. The first is produced
by early versions of MACRO (prior to version 30), the PALX
assembler for the POP-R, an~ early versions of FORTRAN (prior to
version 06). The second input format for CREF is produced by
current versions of MACRO (version 30 and later), version 06 and
later of FORTRAN, FORTRAN-10, and the Stanford FAIL assembler.

-31-

TENEX USER'S GUIDE
CREF

January 1975

EARLY INPUT FORMAT

The codes listed below are produced by early versions of MACRO
and FORTRAN as input to CREF. They are ignored by CREF if the
control characters produced by the current versions of MACRO and
FORTRAN are present.

ASCII Code

33

34

35

36

37

Meaning

Indicates that the code type
is an op code, a pseudo-op
code, or an op code defined by
the user by OPDEF.

Indicates that the
is a macro name.

code

Indicates the end-of-line.

type

Indicates a normal symbol~
i.e., a symbol defined with an
equal sign (=) or a colon (:).

Indicates a program break
(between FORTRAN subroutines).

This input format to CREF should not be used
are being developed.

when new programs

CURRENT INPUT FORMAT

The control characters described below are placed on the listing
produced by current versions of MACRO ,FORTRAN, and FORTRAN-10 as
input to CREF.

Normally, each line of the listing contains CREF input data
followed by the line of the listing. The CREF input data on each
line is preceded by RUBOUT B and terminated by RUBOUT C. Each
symbol or instruction type in the listing is defined in the CREF
input by a control character (described below). The number of
characters in each symbol or instruction is also defined by a
control character. The set of control characters for defining
symbols and instructions is identical to the set of control
characters for defining the number of characters in the symbol or
instruction. The position of a control character in the CREF
input data determines the use of the control character. For
example, in the input CREF data B~C~CENDC, the B indicates the
beginning of the data, the first ~C defines the instruction END
as a pseudo-op code, the second ~C defines the number of
characters in the instruction END as 3, and the C terminates the

-32-

TENEX USER'S GUIDE
CREF

,January 1975

CREF data.

Optionally, CREF information may be terminated by either RUBOUT A
or RUBOUT D. If RUBOUT D is used, more than one block of CREF
information may be placed on a single line.

The control characters and their meanings are described below.

Beginning and Ending Control Characters

The control characters that begin and end the CREF input
are:

RUBOUT B (prints as B)

RUBOUT C (prints as C)

RUBOUT A (prints as A)

RUBOUT D (prints as D)

RUBOUT E (prints as E)

Signals the beginning
CREF data on each line

of the

Terminates the CREF data on
each line and inserts the line
number to the listing

Terminates the CREF data on
each line and inserts the line
number and a horizontal tab to
the listing.

Terminates
data in
inserting
information

a block of CREF
a line without

any additional
in the listing

Indicates program break
(between FORTRAN subroutines)

Symbol-Definition Control Characters

data

The control characters that define
and macros are:

symbols, instruction types,

Character ASCII Code

CONTROL-A ("A) 001

-33-

Meaning

Precedes each symbol that
is defined with an equal
sign (=) or a colon · (:)
each time the symbol
appears in the listing;
e.g., FOO:

TENEX USER'S GUIDE
CREF

002

003

004

005

006

007

015

016

January 1975

Immediately follows
defining occurrence
the symbol defined
equal sign or colon.

the
of
by

Precedes the use of an op
code (either hardware­
defined or defined by
OPDEF) or a pseudo-op
code.

Precedes the defining
occurrence of an op code
defined by OPDEF.

Precedes a macro call.

Precedes the
of a macro.

definition

Precedes the definition
of a line number

Signals the beginning
a FAIL symbol block.

of

Signals the end of a FAIL
symbol block.

Although CREF recognizes and accepts all of the above control
characters, current versions of MACRO do not produce all of these
characters. As shown above, CREF recognizes a symbol defined by
OPDEF as an op code because it is preceded by AD when it is
defined, and by AC when it is used. MACRO treats a symbol
defined by OPDEF as a macro and thus precedes it by AF when it is
defined, and by AE when it is used. CREF also recognizes these
symbols as macros because of the control characters produced by
MACRO. The fact that symbols defined by OPDEF are treated as
macros has no effect on the cross- reference listing from CREF
because OPDEF's and macros are grouped into the same table.

Character-Count-Definition Control Characters

The octal value of the control characters described below is used
by CREF to determine the number of characters in a symbol or
instruction. The same set of control characters define the
symbol as well as the number of characters in the symbol. The
position of the control character in the input data determines
the use. The character-count control character immediately
precedes the symbol with no intervening spaces or characters
(e.g., ACEND). The control characters and their meanings ar~ as

-34-

-·-

TENEX USER'S GUIDE
CREF

January 1975

follows:

ft
ft
• #

Character ASCII Code

CONTROL-A (.. A) 001

CONTROL-B (.. B-) 002

CONTROL-C (.. C) 003

CONTROL-D ("o) 004

CONTROT..-E ("E) 005

CONTROL-F (.. F) 006

Meaning

The symbol contains 1
character

The symbol contains 2
characters

The symbol contains 3
characters

The symbol contains 4
characters

The symbol contains 5
characters

The symbol contains 5
characters

No symbol or instruction can contain more than six characters.

Example of the Current Input Format

The example below shows a small MACRO
produced by MACRO to cre input to CREF •

program and the

.MAIN
;CREF SPECIAL CHARACTER DEMONSTRATION

MACRO 44.0 09:30 10-DEC-70 PAGE l

FOO:

;CREF SPECIAL CHARACTER
M=6
MOVE! M

SIXBIT /123/

MOVE! 6+FOO
OPDEF TTYCAL (51911]
DEFINE TEST (X) <TLNE X>

TTY CAL

DEMONSTRATION
;l CHAR SYMBOL DEFINITION
;5 CHARACTER OPCODE
;l CHAR SYMBOL USE
;3 CHAR SYMBOL DEFINITION
;6 CHAR PSEUDO INSTRUCTION
;MORE OF THE ABOVE
;OPCODE DEFINITION
;MACRO DEFINITION
;OPCODE USE

listing

TEST M
END

;MACRO CALL & SYMBOL USE
;PSEUDO INSTRUCTION OCCURRENCE

.MAIN MACRO 44.0 ~9:30 10-DEC-70 PAGE 1
TEST .MAC
BC
B .. A AM"BC

-35-

;CREF SPECIAL CHARACTER DEMO
000006 M=6

TENEX USER'S GUIDE
CREF

January 1975

** :1 CHAR SYMBOL DEFINITION
BACAEMOVEIAAAAMC 000000' 201000 000006 MOVE! M
** :5 CHARACTER OPCODE
BC :1 CHAR SYMBOL USE
BAAACFOOABACAFSIXBITC 000001' 212223 000000 FOO: SIXBIT /123/
** :3 CHAR SYMBOL DEFINITION
BC :6 CHAR PSEUDO INSTRUCTION
BACAEMOVEIAAACFOOC 000002' 201000 000007' MOVE! 6+FOO
:MORE OF THE ABOVE
BACAEOPDEFAFAFTTYCALC OPDEF TTYCAL [51811]
** :OPCODE DEFINITION
BACAFDEFINEAFADTESTC DEFINE TEST (X) <TLNE X)
** :MACRO DEFINITION
BAEAFTTYCALC 000003' 005100 000000 TTYCAL
** :OPCODE USE
BAEASTESTC TEST M
** :MACRO CALL SYMBOL USE
BACADTLNEAAAAMC 000004' 603000 0000006 TLNE M-
BACACENDC END
** :PSEUDO INSTRUCTION OCCURRENCE

NO ERRORS DETECTED
PROGRAM BREAK IS 000005
2K CORE USED

.MAIN MACRO 44.0 09:30 10-DEC-7~ PAGE 2
TEST .MAC SYMBOL TABLE
FOO
M
TTYCAL 005100

000001'

-36-

TENEX USER'S GUIDE
DDT

,January 1975

DDT

DDT is the debugger for most of the
processors. It is described in detail
Assembly Language Handbook. The differences
and DEC DDT are specified here.

TENEX/DEC language
in the DECsysteml0
between TENEX DDT

1. The "undefined symbol" assembler has several improvements.
"LOADER" leaves a table of undefined symbols Pc>Tntea-to-5y
the contents of a ".JBUSY" (117). DDT now uses this same
table (rather than its own separate table) for assembling
undefined symbols. The result is that DDT may be used to
define and automatically patch locations for symbols that
LOADER said were "undefined externals". This will work
correctly for "linked" references or for "additive requests"
in either the right or left half of a location.

2. Using symbol# on a symbol that is already defined will qive
the ubiquitous ? message.

3. DDT will assemble undefined symbols only when:

1. There exists a reasonable .JBUSY pointer.

2. A register is open and being modified,
not valid.)

("symbol#=" is

3. Only the arithmetic operations plus or minus may be
used on the symbol. Multiply or divide or parentheses
may not be used.

4. The problem of user defined tags being confused with machine
operation codes finally has a reasonable solution. An inout
symbol is considered to be a machine operation code (and
searched for first in DDT's OP code table, then in the
user's symbol table) if:

1. It is the first symbol or number input as part of an
expression, and

2. It is terminated by a space.

The input symbol is searched for first in the user's symbol
table (then in DDT's OP code table) if the above conditions
are not both true.

-37-

TENEX USER'S GUIDE
DDT

January 1975

EXAMPLES: Suppose MOVE is defined to be 6 (6<MOVE:), then:

MOVE=6
MOVE =2001?100,,0
MOVE MOVE=21?ll?ll?l00,,6
MOVE MOVE =200000,,6
MOVE+MOVE=l4

Note that "space" and "+" are not equivalent. As a general
rule, use spaces and pluses the same way that they are used
in MACRO. Also, to force a· symbol to be interpreted as a
machine operation code, type it first and terminate it with
a space.

5. The form "symbol?" will list all the program names where
"symbol" is defined. The program name will be followed by
"G" if "symbol" is a global symbol.

6. "FOO l,,FOO l" will now give the same results as
"FOO+l,,FOO+l". Note again that space and plus are not
normally equivalent, but have been made to be so in this
special case. People insist on the "FOO l,,FOO l" form even
though the DDT manual doesn't allow it. Remember, MACRO
won't allow it either.

7. The PC word flags are now saved and restored correctly for
all cases in the breakpoint logic.

8. For the instructions JRST, JFCL, and XCT, the accumulator
field is always typed out in numeric mode, not symbolic.

In addition to the above, the "GO" command ($G)
improved. In general, commands with two altmodes such
clear the interrupt system before qoing to FOO. With
altmode, the interrupt system is not affected.

has been
as FOO$$G
a single

If there is a small number between the altmode(s) and the G, and
no argument supplied, the command will start the program at the
specified entry vector location. Thus, $$0G is the equivalent of
the EXEC command @START, while $$1G is the same as @REENTER, $3G
starts the program at the third entry vector location.

If the fork has a DEC 10/50 style entry
254000), only 0 or 1 is legal between the
In such cases, the contents of location 121?1
contents of location 124 for SlG for
conventions.

vector ("length" =
altrnode(s) and the G.
is used for $0G and
consistency with DEC

There are two special cases: $$G is an abbreviation for $$1?JG and
will start the P,rograrn at its normal start address. $G means the
same as $I which is where the user's flags,,PC are stored while

-38-

-

TENEX USER'S GUIDE
DDT

in DDT.

,January 1975

When DDT is entered, it will attempt to automatically set the
program name {i.e., MAIN.$:) by finding which program contains
the start address.

The following commands were added earlier in the history of
TENEX:

$$Q has the value of the last quantity typed with
halves swapped.

$V has the value of the left half of the last
quantity typed.

$$V has the value of the left half of the last
quantity typed with sign extended.

thus

FOO/ -4,,3 $0 -4,,3 $$Q_ 3,,-4 $$0_ -4,,3

FOO/ -4,,3 $$V -4

FOO/ -4, , 3 $V= 777774

For completeness, the followinq is a list of differences between
BBN DDT and DEC DDT.

DEC DDT $G with no argument is done with $$G in TENEX DDT.

BBN DDT does not have paper tape commands: $J, ~Rand $L.

BBN DDT uses the Stanford block structured symbol table code
which permits debugging FAIL-assembled programs. The
command FOO$& will make the symbols in block named FOO
current. This is relevant only for FAIL-assembled programs.

CONTROL-A in DDT causes its argument to be taken as RADIX-50
SQUOZE code.

DOUBLE-QUOTE (") sets up to accept a string in the same
the ASCII pseudo-instruction does in MACRO.
"/STORED TXT/" will exactly fill two PDP-10 words
7-bit characters.

way
That
with

that
is,
ten

$$".FOO MONG. This is the sixbit text storage command. The
point {.) is a jelirniter, as was the slash in the above
example. This example will fill one and one-half words (9

-39-

TENEX USER'S GUIDE
DDT

characters) •

.January 1975

"Q$= will type the octal value of ASCII Q.

"/Q/= will type a 36 bit number containing ASCII Q in the left
seven bits.

Note that if a register is not open, DDT will not permit
inputting more than one word's worth of characters.

The BBN hardware instructions have been added to the OPCODE
table.

In floating point type out mode ($F) unnormalized numbers are
printed as ordinary decimal numbers with a decimal point.

-40-

--

-.

TENEX USER'S GUIDE
DELVER

January 1975

DELVER

DELVER is a program for assisting in the management of file
versions. It provides the ability to delete excess* versions of
files according to the most frequently needed algorithms. DELVER
will delete excess versions of files as specified by a standard
TENEX file group designator. For each group of files, two
options are provided. The oldest (lowest version number) version
may be optionally deleted and the version numbered one less than
the most recent (highest numbered) version may be optionally
deleted. This provides the ability to save a version which may
be closest to the most recent in case that version gets lost, and
the ability to save a version which is the most likely base for a
series of changes for source comparisons etc. If any version
number is greater than one of most recent, second most recent, or
oldest, (time-wise) it must satisfy all tests before it will be
deleted.

To use DELVER, type DELVER<cr> to the TENEX EKEC. Then answer
the two questions about whether or not to delete the second most
recent an~ oldest versions with either Y or N depending on which
options are desired. DELVER will then ask for the file group
designator over which deletion is to occur. Default group
designator is *.*;*, i.e. everything in the connected directory.
Each file deleted is printed on the TTY. If DELVER deletes any
files you do not wish to have deleted, the EXEC command UNDELETE
may be used to correct the error. Note that if DELVER is being
overzealous, the best way to stop it is to type a single
control-C (ETX) . This will allow printout of all files actually
deleted to appear on the terminal. Using multiple control-C
(ETX) will not stop the program any faster, but will clear the
output buffer of the terminal and thus lose any record you might
have of what has actually happened.

*(i.e. all but the most recent, second most recent, and oldest,
with the optional exceptions described below)

-41-

* #

TENEX USER'S GUIDE
DO

January 1975

DO

DO is a new subsystem
string from a specified
Parameters are indicated in
followed either by

for passing
file to the

the text file

a parameterized text
EXEC for execution.

by a % character,

1 . a digit, or

string not containing the character, followed by the
instance of the character.

second

For each parameter, the user is asked for a text word
(arbitrary text delimited by space, tab, or er.) to substitute
for each instance of the parameter in the input text string. He
is prompted for this word by the digit, if a parameter of type 1,
or by the text string, if a parameter of type 2. Each uniquely
named parameter is prompted for once, even if it is used several
times in the input text string. See the attached example.

The DO program simply dumps the expanded text string into
the input buffer, then HALTF's. It behaves just as if the user
had typed the expanded text string ahead to the EXEC. Therefore,
Control-C can be used to clear the input buffer and return to the
EXEC. Before stuffing the input buffer, the program waits,
checks for other input characters from user type-ahead, and, if
so, rings bells, waits again, buffers the characters, and appends
them to the expanded text string. Thus, the user may type ahead,
even while DO is running, and is warned to stop while the program
is stuffing the input buffer.

NOTES:

1 •

2.

A % character which is followed by another % character
expands to a single % character (this is an escape
convention for % characters in the expanded text string).

Beware: the TTY input buffer is currently limited in size;
if the expanded text string is too long (>119 characters),
the extra characters will get lost, just as if you had typed
too far ahead. A change to TENEX to allocate more TTY input
buffer space in such situations is planned.

-42-

-

TENEX USER'S GUIDE
DO

January 1975

<XBCPL>DO.EXAMPLE;3 WED 10-APR-74 3:49 PM PAGE 1

@teco.SAV;l2908

*;Y$

#INPUT FILE: EXAMPLE.;l [confirm]
47 CHARS

i *zt$
LOADER
sys:bcplib
dsk:%#Program#$ssa$$$%#Proqram#.sav

* #
*;u$

#OUTPUT FILE: EXAMPLE.;2 [New version]

*;h$
@do

#Input file: exAMPLE.;2 [Old version]
Program: t
@LOADER
*sys:bcplib
*dsk:t$

FIRST 4K CORE, 461 WORDS FREE
LOADER USED 7+4K CORE

EXIT.
"c
@ssaVE (PAGES FROM) 0 (TO) 777 (ON) t.sav [New version]

-43-

TENEX USER'S GUIDE
DTACPY

January 1975

DTACPY

DTACPY copies full DECtapes to full DECtapes. There is an option
to write a copy of DTBOOT onto the front of a DECtape without
having to copy it from another ta9e. Also it can relocate the
bootstrap for any size of core.

Functions by reading a REL FILE of DTBOOT, produced by assembling
DTBOOT with REL==l, and keeping it in core. This file is then
used and relocated when needed.

DECtape.

EXAMPLE:

COPY TAPE OR NEW BOOTSTRAP (CORN)?

(which does the old COPY functions if you say "C" and does the
new BOOTSTRAP function if you say "N". If the BOOTSTRAP has
not been put into DTBOOT, it will ask for it. The version
currently on SUBSYS has the BOOTSTRAP in it.

COPY DTAl: (TO) DTA2:
COPY BOOTSTRAP? Y -
COPY REST OF TAPE ? Y
VERIFY? Y
"c
@ST

COPY DTAl: (TO) DTA2:
COPY BOOTSTRAP? Y -
COPY REST OF TAPE? N
VERIFY? N
"'c
@ST

[CONFIRM]!._

[CONFIRM].!._

COPY DTAl: (TO) DTA2: [CONFIRM]~,
"'c
@

-44-

TUG
DFTP

DFTP user's Guide

Overview

The Datacomputer is a shared large-scale data base utility
offering data storage and data management services to other
computers on the Arpanet. The system is intended to be used as a
centralized facility for archiving data, for sharing data among
various network hosts, and for providing inexpensive on-line
storage for sites needing to supplement their local capability.
The Datacomputer is implemented on dedicated hardware, and
comprises a separate computing system specialized for data
management. Logically, the system can be viewed as a closed box
shared by multiple external processors and accessed in a standard
notation called Datalanguage.

The Datacomputer File Transfer Program (DFTP) is a
user-invoked program that stores and retrieves local files on the
Datacomputer. DFTP translates simple user commands into
Datalanguage, sends the Datalanguage and data to the
Datacomputer, processes the messages and data returned from the
Datacomputer, and notifies the user of the results. DFTP also
manages local file input/output and secondary network connections
to and from the Datacomputer.

3-1 ADD-10-26-77

TUG
DFTP

The Directory

The DFTP Datacomputer directory is a tree, with site nodes
anchored to a common root node, user nodes subordinate to site
nodes, optional subdirectories of arbitrary depth and breadth
beneath user nodes, and user files stored in special leaf nodes
(called '<FILES>' nodes). Pictorially,

<ROOT>
I \

SITE SITE
I \

USER USER
I

<FILES> SUBDIRECTORY
I \

<FILES> SUBDIRECTORY
\
<FILES>

The <FILES> nodes are the repositories of all data. The
user files they contain are not known individually to the
Datacomputer {unlike nodes), but are separate entities only to
DFTP. There can be only one <FILES> node directly under any
given user or subdirectory node. DFTP users do not reference a
<FILES> node directly: a reference to a file under a specific
user or subdirectory node is expanded into a reference to that
file in the <FILES> node under the specified node. {If a node is
not specified a default is supplied).

There are two basic types of commands those that
reference only nodes and those that reference user files. Node
level commands operate at the global level of sites, users, and
subdirectories. File level commands operate at the local level
(inside a <FILES> node) storing, retrieving, and modifying data
within that node. The argument to a file level command can
consist only of a file name, or of a file name preceded by a node
argument (such as the node level commands take).

The mechanism for referencing a node, called a node path,
consists of a context and a node list. A context is an anchoring
point for node name references (indicated by one, two, or three
left-angle-brackets): if none is specified, DFTP supplies a
default. A node list is a sequence of node names, starting from
the anchor, defining the desired branch of the directory tree.

3-2 ADD-10-26-77

TUG
DFTP

There are three contexts, TOP, ATTACH, and CONNECT.

1. The top context ('<<<') anchors the node path at the
root node and is used primarily for referencing other
site and user nodes.

2.

3.

The attach context (I< (I) is a node path, set by the
ATTACH command (and by DFTP automatically at the
beginning of a session) , and usually indicates a user
node. It is used mainly as a reference point for name
space division beneath the user node.

The connect context ('<') is a node
same as the attach context) , set by
and conventionally indicates
subdirectory.

path (initially the
the CONNECT command,
a user node or

A node list consists of a sequence of node names
(consecutive levels in the tree) separated by right angle
brackets. A password may be necessary in acqu1r1ng access
privileges at a particular node, in which case the node name is
followed by a colon and the password. Sets of nodes can be
referenced all nodes at a particular level are indicated by
'*',and all inferior nodes are designated by '**' (which can
occur only at the end of the node list) .

For example,

<<<CCA>HACKER:>WALDO

Starting at the top context, the node path references the
subdirectory WALDO under user HACKER at site CCA (with a password
supplied to gain access to HACKER).

<<WALDO>**

Starting at the attach context, the node path references the
subdirectory WALDO and all inferior nodes (note that WALDO is
included -- the REMOVE command, for example, would delete the
node WALDO as well as its inferiors).

Referencing Files

User file names have the same form as TENEX file names: a
file designation, an optional extension, and an optional version
number. The file designation is separated from the extension by
a period, and the extension from the version number by a
semicolon. File sets may be indicated by an asterisk in any or

3-3 ADD-10-26-77

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TUG
DFTP

all of the file designation, extension, and version number
fields.

Version numbers allow unambiguous reference of files with
the same file designation and extension. Each file has a version
number assigned to it by DFTP (which is unrelated to its TENEX
version number) -- version numbers cannot be set by the user.
Later versions of a file with the same file designation and
extension receive higher version numbers. A version number may
be explicitly supplied in referencing an existing file, otherwise
a default is provided.

All commands that accept as input a file name will also
accept a file path, which consists of a node path followed by a
file name, with the two parts separated by a right angle bracket
(unless the node path is only a context, in which case the right
angle bracket is omitted). If a node path is given, the file
name is used in the <FILES> node under the node referenced. If a
node path is not given, the file name is used in the <FILES> node
under the connect context the default context for a file
reference is the connect context.

For example:
MAIL.TXT

The file name references the file MAIL.TXT in the <FILES> node
under the connect context.

<*.SAV~*
The file name references all versions of all files with the
extension SAV in the <FILES> node under the connect context.

<<MACROS>COMMON>SYSMAC.MAC
Starting at the attached context (presumably a user node) , the
file path references the file SYSMAC.MAC in the <FILES> node
under the COMMON subdirectory of the MACROS subdirectory.

Command Summary

DFTP command and argument input is similar
command recognition and TENEX editing controls.

<control-A> deletes a character,

<control-R> retypes the line,

<control-X> and <rubout> delete the line,

<escape> and <space> are separators, and

~4

to TENEX, with
In particular,

ADD-10-26-77

TUG
DFTP

<carriage return>,
terminators.

<line feed> and

The DFTP commands and their arguments are:

ATTACH <node path>

CONNECT <node path>

DELETE <file path>

DIRECTORY <file path>

TERSE

VERBOSE

EXPUNGE <node path>

GET <file path> [local synonym]
RETRIEVE is exactly equivalent to GET.

LIST <node path>

NO-DATALANGUAGE

PUT <file path> [remote synonym]
STORE is exactly equivalent to PUT.

QUIT

REMOVE <node path>

SHOW-DATALANGUAGE

TIME-TRANSFERS

UNDELETE <file path>

UNTIME-TRANSFERS

<eol> are

Items in angle brackets are required arguments; items in square
brackets are optional ones.

3-5 ADD-10-26-77

TUG
DFTP

The connect context is the default context for
commands except ATTACH and CONNECT, which have as
respective defaults the top context and the attach context.

all
their

Many commands have default arguments and trailers which
are invoked by giving a space or escape as the argument or
argument terminator. The default argument is '<<' for the
CONNECT command, '<' for EXPUNGE, and '**' for LIST and
REMOVE, which is also the default trailer. For DIRECTORY, GET,
PUT, DELETE, and UNDELETE, the default argument and trailer
(after a '>') is '*.*:*'

Node Oriented Commands

The ATTACH command sets the attach context and initiates
Datacomputer accounting functions.

The CONNECT command sets the connect context (and creates
new subdirectories).

The EXPUNGE command removes files marked as deleted from the
<FILES> node under the node given as the command argument. If
the <FILES> node contains no files (deleted or undeleted) it is
deleted from the Datacomputer directory.

The LIST command
subdirectories, and
information displayed
the Datacomputer.

lists Datacomputer nodes (sites, users,
<FILES>) and information about them. The
by the VERBOSE option comes directly from

The REMOVE command removes nodes from the Datacomputer
directory: they must either have no inferior nodes, or be part
of a node set specified using "**"· In the latter case, data
stored under the nodes will also be deleted.

File Oriented Commands

File deletion operates as with TENEX. The DELETE command
marks files as deleted, but does not eliminate them. They can be
listed via the VERBOSE option of the DIRECTORY command, and their
deleted status can be changed by the UNDELETE command. The
removal of deleted files is deferred until an EXPUNGE is
performed on the <FILES> node containing them. The default
version number is the lowest undeleted, unless a file set is
indicated, in which case all versions in the set are deleted.

The DIRECTORY command lists files and information about
them. The VERBOSE option lists deleted and undeleted files (with

3-6 ADD-Hl-26-77

,_

TUG
DFTP

deleted ones indicated by a D after the name), the date and time
created (for TOPS-10 sites), the date and time last written (for
TENEX sites), the date and time stored, and the size. For files
stored from TENEX sites the size information is in the form
<number of bytes>(<byte size>). For files stored from TOPS-10
sites the information is in the form <number of 36 bit
words>(-<data mode)). The TERSE option lists undeleted files and
their sizes (as with the VERBOSE option). The default version
number is the highest undeleted, unless a file set is indicated,
in which case information for all versions in the set is listed.

The GET and PUT commands retrieve and store local disk files
on the Datacomputer. Files of any type (text or binary image, for
example) can be stored. If a synonym is not supplied, the
Datacomputer file name is used as the local file name. If the
first argument to either command is completed with an escape or a
space, the synonym option is invoked and the commands then
operate in the form

GET Datacomputer file [AS] local file, and
PUT local file [AS] Datacomputer file.

For the GET command the default version number is the highest
undeleted, unless a file set is indicated, in which case all
versions of the set are retrieved. The PUT command sets the
version number of the file being stored to be one greater than
the highest version of existing files with the same file
designation and extension (note that a file set indicated in any
file name field is treated as if all existing files had the same
field -- storing *·* results in the stored files receiving
version numbers one greater than the highest version number found
in any existing file) .

The UNDELETE command rescinds a file's deleted status. The
default version number is the highest deleted, unless a file set
is indicated, in which case all versions in the set are
undeleted.

Miscellaneous Commands

ENABLE causes DFTP to recognize an expanded set of commands,
including the privileged commands discussed below. Its action
is marked by a change in the prompt character, from "*" to"!".

The SHOW-DATALANGUAGE and NO-DATALANGUAGE commands
respectively allow and inhibit the output to the user's terminal
of the messages sent to and received from the Datacomputer.

Data transfer rates are calculated and given to the user
when the TIME-TRANSFERS command has been invoked. The
calculations are avoided with the UNTIME-TRANSFERS command.

3-7 ADD-10-26-77

TUG
DFTP

QUIT exits
connections.

gracefully from DFTP, closing network

Site Dependent Features

For the TOPS-10 version, the LOCAL-DIRECTORY command lists
the user's local file directory.

For the TENEX version, the EXEC command provides the user
with an inferior exec, which is flushed when the user returns to
DFTP. Where a local file name is possible (in the GET and PUT
commands) an initial space or escape invokes TENEX name
recognition, indicated by a right angle bracket prompt. A
control-0 can be used to halt the output from the LIST and
DIRECTORY commands.

Responses

There are three types of messages that DFTP gives the user.
Comments surrounded by square brackets are primarily
informational messages, and are never errors. Parentheses
enclose non-fatal errors and informational Datacomputer messages,
such as '(LEBAR2: ERROR: NO SUCH FILE)', resulting from an
attempt to DELETE a nonexistent file, and '(SXPF9: STAGING DATA
FOR FILE = DFTP.CCA.DFTP.<FILES>)', indicating that data is being
moved from tertiary mass memory to secondary buffer memory.

These messages come directly from the Datacomputer, indicated by
the name and colon at the head of the message. Fatal error
messages are surrounded by question marks, and of course never
occur.

Access Control

Access control in DFTP uses a subset of the full
Datacomputer facilities. The full discussion of Datacomputer
privilege facilities is in the current Datacomputer User manual;
however, the following summary should suffice for most DFTP
users. Access privileges are specified in "privilege blocks"
attached to nodes in the directory. A node may have any number
of privilege blocks attached to it; each specifies a particular
set of access privileges, and a class of users to whom that set
applies. DFTP provides two classes of access:

CONTROL allows users to create and allocate nodes under
the node at which it is granted, change privileges at
that node and below, and read, write, and delete data
stored below that node.

3-8 ADD-10-26-77

--

TUG
DFTP

READ allows users to attach to a node and read data
stored under it, but not to perform any of the other
functions granted by CONTROL.

All other users are prevented from any access to the data. users
may be may be identified in DFTP by their network identity
(defined by the host and socket from which they access the
Datacomputer} , and by passwords. (Some systems enforce
assignment of socket numbers according to the user's identity on
that system, thus providing a convenient automatic identification
to DFTP.}

When a user attempts to ATTACH to a node, or to read or
write data stored under it, the Datacomputer checks to see if the
user is in any of the user-sets identified in privilege blocks on
that node, and if so, assigns the corresponding class of
privileges. If no set matches the user, then no privileges are
allowed. The scan is done in the order of creation of privilege
blocks, and if a user matches more than one, the first one takes
effect. Access controls are set by the CHANGE and CREATE
commands, described in the following section.

Privileged Commands

Certain administrative functions are performed by a set of
restricted commands, known as "privileged commands." These are
not normally available to the user1 they are recognized by DFTP
only after execution of the ENABLE command.

The ALLOCATE command is used to set the maximum number
of megabits a user may consume (it can also be used to
set subdirectory limits). Allocations are made and
reported in Megabits (actually 1,013,760 bits), which is
55 512-word pages, or 220 128-word blocks.

The CHANGE command resets the access control information
for a given node. It first deletes all existing access
control specifications {privilege blocks)1 then it
builds new privilege blocks interactively with the user.
The PROTECTION subcommand of the LIST command can be
used to examine the privilege blocks of nodes.

The CREATE command is used to create a node for a new
user1 after the node has been created, it falls into
the same access control specification as . the CHANGE
command.

The DISABLE command returns the user from Privileged
Command mode to normal use1 this is signalled by a
return to an asterisk as a prompt character.

3-9 ADD-10-26-77

TUG
DFTP

The LINK command allows the user to send Datalanguage to
the Datacomputer directly. In this mode, prompted by a
left angle bracket, each line typed by the user is sent
directly to the Datacomputer. It is terminated by
submission of an empty line, whereupon DFTP returns to
ENABLE mode, as signalled by an exclamation-point
prompt.

DFTP Command Summary
Paths

<node path> : := <context>

<context> ::=

<node list>

<node> ::=

.. -.. -

<file path> : :=

<file name> : :=

<file> : :=
<extension> ::=
<version> ::=

Notes:

I <node list>
I **
I <context> **
I <context> <node
I <context> <node
I <node list> > **

list>
list> > **

< (connect context)
I < (attach context)
I <<< (top context)
<node>

I <node> > <node list>
<name>

I <name> <password>
I *
<file name>

I <context> <file name>
I <node list> > <file name>
I <context> <node list> > <file name>
<file>

I <file> .
I <file> • <extension>
I <file> <version>
I <file> • : <version>
I <file> <extension> <version>
<name> I *
<name> I *
<number> I *

Underscored angle brackets should be included literally.
Any printing ASCII characters except<, >, ., :, *, ?,

and " may be used in a <name>.
Any printing ASCII characters (plus space) except>, .,

and " may be used in a <password>.

3-10 ADD-10-26-77

TUG
DFTP

ATTACH <node path>

CONNECT <node path> (1)

Commands

DELETE <file path> (4) (5)

DIRECTORY <file pa th> (4) (6)
TERSE
VERBOSE

ENABLE

EXPUNGE <node path> (2)

GET (RETRIEVE) <file path> [local file name synonym] (4) (6)

LIST <node path> (3)
TERSE
VERBOSE

NO-DATALANGUAGE

PUT (STORE) <file path> [remote file path synonym] (4)

QUIT

REMOVE <node path> (3)

SHOW-DATALANGUAGE

TIME-TRANSFERS

UNDELETE <file path> (4) (7)

UNTIME-TRANSFERS

Notes:
Required input is indicated by angle brackets.
Optional input is indicated by square brackets.
The connect context is the default context for all commands

except ATTACH and CONNECT, which have as their
respective defaults the top context and the attach
context.

(1) The default argument is <<.
(2) The default argument is <.
(3) The default argument (and trailer) is **
(4) The default argument (and trailer) is *.*:*.
(5) The default version is the lowest undeleted.
(6) The default version is the highest undeleted.

3-11 ADD-10-26-77

TUG
DFTP

(7) The default version is the highest deleted.

Privileged Commands and Their Subarguments

ALLOCATE <node path>
Megabits: [decimal integer]

CHANGE <node path>
Add a new privilege? [Y(es)] or [N(o)]

Allow write? [Y(es)] or [N(o)]
Restrict via network? [Y(es)] or [N(o)]

Restrict via local host? [Y(es)] or [N(o)]
Host number {octal): [octal integer]

{if host not local)
Restrict via user? [Y{es)] or [N(o)]

Socket number {octal): [octal integer]
{if user restricted and host not local)

User: [user name]
(if user restricted and host local)
(a directory name if TENEX)
{a programmer number if TOPS-10)

Restrict via password? [Y(es) or N(o)]
Password: [string]

CREATE <node path>
{see CHANGE)

LIST
PROTECTION

LINK
{A null input line returns the user to command mode.)

Examples Using Privileged Commands

:Attach to a node.
: {gain control at site CCA by supplying the proper password)
*ATTACH <<<CCA:

*ENABLE

:Create a user and privileges.
{the first privilege allows creation and deletion for

local user HACKER upon supplying the password "ETAOIN")
(the second privilege allows creation and deletion for

~ anyone from Harvard {host 11) upon supplying the password "SHRDLU")

3-12 ADD-10-26-77

TUG
DFTP

; (the third privilege allows anyone read)
!CREATE HACKER

[OK]
Add a new privilege? Yes

Allow control? Yes
Restrict via network? Yes
Restrict via local host? Yes
Restrict via user? Yes
user: HACKER

Restrict via password? Yes
Password: ETAOIN

[OK]
Add a new privilege? Yes

Allow control? Yes
Restrict via network? Yes
Restrict via local host? No
Site: 11

Restrict via user? No
Restrict via password? Yes

Password: SHRDLU
[OK]

Add a new privilege? Yes
Allow control? No
Restrict via network? No
Restrict via password? No
[OK]

Add a new privilege? No

;List the privileges.
; (in Datacomputer format (passwords are never listed))
!LIST HACKER
!!PROTECTION

CCA
HACKER

) (1) ,U=**,H=31,S=l2582928,G=CLWRA
] (2) ,U=**,H=9,S=ANY,G=CLWRA
] (3) ,U=**,H=ANY,S=ANY,G=LR

;Replace the privileges.
(the first privilege allows creation and deletion for

; local user HACKER)
; (the second privilege allows anyone read
; upon supplying the password "WALDO")
; (the "[OK]" indicates that the previous privileges have been delete)
!CHANGE HACKER

[OK]
Add a new privilege? Yes

Allow control? Yes
Restrict via network? Yes
Restrict via local host? Yes
Restrict via user? Yes

User: HACKER

3-13 ADD-10-26-77

TUG
DFTP

Restrict via password? No
[OK]

Add a new privilege? Yes
Allow control? No
Restrict via network? No
Restrict via password? Yes

Password: WALDO
[OK]

Add a new privilege? No

;List the privileges.
!LIST HACKER
!!PROTECTION

CCA
HACKER

] (1) ,U=**,H=31,S=l2582928,G=CLWRA
] (2) ,U=**,H=ANY,S=ANY,G=LR

;List all information.
; ("MX-U" indicates the maximum allocation in megabits)
!LIST HACKER
! ! VERBOSE

CCA
HACKER

] MX-0=10.00 CHRG=0.00
] IN-N=0 IN-F=0
] CREA=761101~52805

;Change the allocation.
; (decrease the allocation from 10 megabits to 2 megabits)
!ALLOCATE HACKER

[Megabits:2]

;List all information.
!LIST HACKER
! ! VERBOSE

CCA
HACKER

] MX-U=2.00 CHRG=0.00
] IN-N=0 IN-F=0
] CREA=761101052805

3-14 ADD-10-26-77

TENEX USER'S GUIDE
ECAP

January 1975

ECAP

ECAP is an Electronic Circuit Analysis Program.

This is an integrated system of programs which can be used for
design and analysis of electronic circuits. The system of
programs can produce DC, AC, and/or transient analyses of
electrical networks from a description of the connections of the
network (the circuit topology), a list of corresponding circuit
element values, a selection of the type of analysis desired, a
description of the circuit excitation, and a list of the output
desired.

The user requires neither a knowledge of the internal
construction of the system of programs nor computer programming
techniques to use ECAP effectively.

This subsystem was originally distributed as DECOS No. 10-34.
It is documented in The IBM 1620 Electronic Circuit ~~ysi~
~:~Ma~~~~' #GH20-0171f-:2°. ---- ---- --~------ -------

ECAP accepts input from the file DSK:INPUT.DAT and writes its
output on DSK:OUTPUT.DAT.

It is started by ty?ing ECAP to the EXEC.

-45-

TENEX USER'S GUIDE
FILCOM

January 1975

FI LC OM

FILCOM compares two files in either ASCII mode or binary
depending upon switches of file name extensions. All standard
binary extensions are recognized as binary by default.

Switches are:

/A
/B
/C
/S
/H
/#L

/#U
/Q
/U
/W
/X

compare in ASCII mode
allow compare of Blank lines
ignore Comments and spacing
ignore Spacing
type this Help text
Lower limit for partial compare
or number of Lines to be matched
(# represents an octal number)
Upper limit for partial compare
quick compare only, give error message
compare in ASCII Update mode
compare in Word mode but don't expand
expand files before word mode compare

-46-

if files differ

files

--

TUG
FASBOL MANUAL

FASBOL II

FASBOL II is a SNOBOL Compiler for the
Joseph Santos, Jr.

ABSTRACT

PDP-10 written by Paul

I
I
I
I
I
I
I
I
I

The FASBOL II compiler system represents a new approach to the I
processing and execution of programs written in the SNOBOL4 language. I
In contrast to the existing interpretive and semi-interpretive sytems, I
the FASBOL compiler produces independent, assembly-language programs. I
These programs, when assembled, and using a small run-time library, I
execute much faster than under other SNOBOL4 systems. I

While being almost totally compatible with SNOBOL4, Version 3,
FASBOL offers the same advantages as other compiler systems, such as:

1. Up to two orders of magnitude decrease
over interpretive processing for most problems.

in execution times

2. Much smaller storage requirements at execution time than
in-core systems, permitting either small partitions or large programs.

3. Capability of independent compilation of different program
segments, simplifying program structure and debugging.

4. Capability of interfacing with FORTRAN and MACRO programs,
providing any division of labor required by the nature of a problem.

5. Measurement and runtime parameter facilities to aid in
optimizing execution time and/or storage utilization.

CHAPTER 1

1. Introduction

The first FASBOL [l] was a similar system designed and written
for the UNIVAC 1108 under the EXEC II operating system, and
operational as of October 1971. FASBOL II, the PDP-10 system , is an
enhanced version which is in addition compatible with Version 3 of
SNOBOL4. It is presumed that the reader is fa~iliar with SNOBOL4,
Version 3, as described by the second edition (1971) of the
Prentice-Hall publication [2]. Using [2] as a base description of
SNOBOL4, the following chapters explain any differences and additions
present in FASBOL II, as well as describe how to use it to compile and
run programs.

4-1 ADD-10-26-77

I
I
I
I
I
I

TUG
FASBOL MANUAL

The FASBOL II compiler is itself written in FASBOL and is like
FORTRAN and MACRO in that it accepts specifications for source,
listing, and object files (the object is a MACRO program which must be
assembled). The reason for writing the compiler in FASBOL was for
speed of implementation, automatic checkout of the run-time library,
and ease of modification. If after some use the compiler should prove
to be unsatisfactory in terms of core utilization or execution speed,
the MACRO stage can be hand-tailored, using the measurement techniques
available in FASBOL, into a more efficient program. A further
enhancement would be the direct production of relocatable code by a
one-pass compiler written in either FASBOL or MACRO.

The FASBOL II run-time library is written in MACRO, since its
efficiency is paramount, and is searched in library mode, after
loading all FASBOL programs, in order to satisfy program references to
predefined primitives and system routines. Sections of the FORTRAN
library may also be loaded, provided they do not compete with FASBOL
for UUO's and traps.

Internal documentation of the operation of the run-time system is
available as a separate document.

Use of the male gender in third-person references in this manual
in no way implies that FASBOL is not useful for female persons; the
author is simply not aware of any easy way to write in neuter.

CHAPTER 2

2. Language D~scription

The Syntax for FASBOL II is given in Appendix 1. In
addition to the detailed changes mentioned below, this syntax
differs from that given in [2] only in that it is more
restrictive of compile-time syntax. For example, since FASBOL II
does not permit redefinition of operators, the expression

(A.B)+(C.D)

is flagged as a compilation syntax error, whereas the interpreter
(i.e. the system described in [2]) would accept it and then
produce an "illegal type" error message during execution. Most
SNOBOL4 programs should run "as is" under FASBOL II; Sections
2.1.1 and 2.1.2 describe exactly all features that may cause
incompatibility, and the remaining sections deal with
enhancements.

2.1 General Language features

The following three sections discuss, respectively, features
of SNOBOL4 not implemented in FASBOL II, features of SNOBOL4

4-2 ADD-10-26-77

TUG
FASBOL MANUAL

implemented differently in FASBOL II, and additional features
available in FASBOL II and described more completely in sections
2.2, 2.3, 2.4, and 2.5.

2.1.1 SNOBOL4 features not implemented

The predefining primitives EVAL and CODE, the datatypes CODE
and EXPRESSION, and direct gotos (as used with CODE) are not
implemented. They imply a run-time compilation capability which
is not available in the FASBOL library at this time.

The redefinition of operators via OPSYN, or the redefinition of
predefined primitive pattern variables (e.g. ARB) or functions (e.g.
SPAN) is not permitted in FASBOL, which considers all these items as a
structural part of the language essential to generating efficient
code. For this reason, the keywords &ARB, &BAL, &FAIL, &FENCE, &REM
and &SUCCEED are not needed and therefore not implemented. Also,
&CODE has no meaning for the PDP-10, and is not available either.

The SNOBOL4 tracing capability is not implemented in FASBOL at
this time. However, the &STNTRACE keyword (see section 2.5) provides
some tracing capability.

Although QUICKSCAN mode for pattern matching is implemented in
FASBOL, two features of this mode, available in SNOBOL4, are not
implemented. They are a)continual comparison of the number of
characters remaining in the subject string against the number of
characters required by non-string-valued patterns, and b) assumption
that unevaluated expressions must match at least one character. This
implies that some matches may last a little longer and perhaps have a
few more side-effects (e.g. via $), and that left-recursive pattern
definitions will loop indefinitely (see Section 3.2.3).

2.1.2 SNOBOL4 features implemented differently

The FASBOL I/0 structure is time-sharing oriented and does not
use FORTRAN I/O, so that it differs somewhat from the SNOBOL4 I/O.
Both input and output can be either line or character mode. Line mode
is similar to SNOBOL4 I/O, with input records being terminated just
prior to a carriage return, line feed sequence, and with this sequence
being added to output records. Trailing blanks seldom occur on input,
and so the &TRIM keyword is not implemented (but the TRIM function
is). Character mode gets one character (including a carriage return
or linefeed) on input, and outputs a string without appending a
carriage return, linefeed sequence to it. INPUT, INPUTC, OUTPUT and
OUTPUTC have predefined associations (see 2.4.2, I/O primitives)
corresponding to line and character mode teletype input and output,
respectively. PUNCH does not have a predefined association. There
are additional predefined primitives for device and file selection,
etc., discussed in Section 2.4.2.

4-3 ADD-10-26-77

TUG
FASBOL MANUAL

Changes in program syntax are as follows:

a) Compiler generated statement numbers are always on the left.

I
I
I
I

b) Source
characters.

lines (not statements) are truncated after 132 I

c) The character codes and extended syntax are like the S/360
version, except the character ! (exclamation point) replaces I
(vertical stroke) and\ (back slash) replaces\ (not sign).

d) Binary $ and • (immediate and conditional pattern assignment)
have lower precedence than the binary arithmetic operators, but higher
precedence than concatenation. Thus, the expression

X A + B $ C

is taken to mean

X ((A + B) $ C)

In SNOBOL4, $ and • have the highest precedence of all binary
operators, and would give the meaning

X (A+ (B $ C))

to the above expression.

e) The number of arguments in a function call, formal arguments
in a function definition, and fields in a datatype definition are
limited to a maximum of 15.

f) The object of the unary * (unevaluated expression) operator
cannot be an explicit pattern structure (e. g. use LEN(*n) instead
of *LEN(n) and (*patl ! *pat2) instead of *(patl ! pat2).

Changes in program semantics and operation are as follows:

a) The binary . (name) operator always returns a value of type
NAME (SNOBOL4 sometimes returns a STRING). Names of TABLE entries are
permitted.

b) Some predefined primitive functions operate differently than
in SNOBOL4 (see section 2.4.2).

4-4 ADD-10-26·-77

I
I
I
T

TUG
FASBOL MANUAL

c) &MAXLNGTH is initially set to 262143 (in SNOBOL4, the value is
5000). This value is also the absolute upper limit on string size.

d) If &~BEND is nonzero at program termination, an abnormal {EXIT
1,) exit to the system is taken.

e} Primitive functions may be called with either too few or too
many arguments, even via OPSYN or APPLY.

2.1.3 Additions to SNOBOL4

Declarations are provided in FASBOL for the enhancement of
programs. No declarations are ever required, but if they are used
they must all precede the first executable statement in a program.
Declarations are described in Section 2.2.

Additional control cards and compilation features are
discussed in Section 2.3, and additional predefined
functions and keywords are described respectively in Section
2.5.

Additions to program syntax are as follows:

available,
primitive

2.4 and

a} Quoted strings may be continued onto a new line, with the
continuation character removed from the literal.

b} Single and double quotes may be included in a literal that is
bracketed by the same, by use of the construction '' to stand for '
and "" to stand for " inside of literals bracketed by and "
respectively.

c} Comment and control lines (i.e. starting with * or -) may
start inside a line image {i.e. after a;}, and consume the remainder
of the line image.

d} The run-time syntax for DEFINE and DATA prototypes has been
loosened to conform with the rest of FASBOL syntax by permitting
blanks and tabs after ((open parenthesis} , around L (comma}, and
before L (close parenthesis} .

2.2 Declarations

FASBOL declarations have two primary purposes. One purpose is to
optimize a program in space and/or time. The second purpose is to
allow inter-program linkage and communication. The general form of a
declaration is a call on the pseudofunction DECLARE, with two or three
arguments, the first of which is always a string· literal identifying
the type of declaration, and the remaining arguments specifying the
parameters or program symbols upon which the declaration has effect.
As has been noted, all declarations must precede the first executable
statement; this also implies no declaration line may contain a label.
A FASBOL program with declarations can be made otherwise compatible

4-5 ADD-10-26-77

TUG
FASBOL MANUAL

with a SNOBOL4 interpreter by inserting the statement

DEFINE('DECLARE() I, 'RETURN')

at the beginning of the program.

2.2.1 PURGE and UNPURGE

Normally, a FASBOL application will involve a main program and
several independently compiled subroutines. During execution, the
run-time system maintains a run-time symbol table for each separately
compiled program, as well as a global symbol table. In the absence of
declarations to the contrary, all explicitly mentioned variables,
labels, and functions are put into the local symbol table for that
program. Thus, program X and program Y may both have labels LAB to
which they perform indirect gotos. The global symbol table contains
such global symbols as OUTPUT and RETURN, and any new symbols that
arise during execution of any of the programs. A symbol lookup in
program X first searches the local symbol table for program X, then
the global symbol table, and then, if still not found, creates a new
entry in the global symbol table. Thus a local symbol table never
grows beyond the size determined for it at compilation time.

The purpose of the PURGE.VARIABLE, PURGE.LABEL, and
PURGE.FUNCTION declarations is to eliminate symbols from the local
symbol table and thus conserve space. This can be safely done for
labels provided that the label is never referenced indirectly ($
goto), or explicitly and/or implicitly in a DEFINE call. A similar
criterion applies to safely eliminating variables, only the number of
cases to watch for is greater: any situation that requires an
association between the string representing the variable name,. and the
actual location assigned to that variable, is such a case. For
example, the statement

INPUT (I VARB I , 0, 6 0)

implies that the variable VARB, if it is mentioned explicitly in the
program and thus assigned a location, must be in the run-time symbol
table. An explicit reference to VARB would be, for example,

TTYLIN = VARB

On the other hand, a variable that is never referenced explicitly need
not be in the local symbol table, but the first symbol lookup for it
will create an entry for it in the global symbol table. In the case
of functions, the only symbols that can be safely purged are the ones

4-6 ADD-10-26-77

TUG
FASBOL MANUAL

corresponding to predefined primitives, since all others are needed to
be able to define the user functions, via DEFINE or otherwise.

When there appear to be more symbols of a given type to be purged
than left in the symbol table, the second argument to the declaration
can be the pseudovariable ALL: then, the UNPURGE.VARIABLE,
UNPURGE.LABEL or UNPURGE.FUNCTION declarations can be used to place
specific symbols into the symbol table.

2.2.2 GLOBAL. ENTRY. and EXTERNAL

These declarations permit interprogram . communication on an
indirect (i.e. symbol lookup) and/or direct (i.e. loader linking)
basis. The GLOBAL.LABEL, GLOBAL.VARIABLE, and GLOBAL.FUNCTION
declarations override PURGE/UNPURGE and cause the specified symbols to
be placed in the global symbol table instead of the local one. Only
one subprogram may globalize a particular symbol, since the
implication is that the variable, label, or function belongs to that
program. Any other program that does not have a similar symbol in its
local symbol table will then be able to reference the global symbol.

While GLOBAL provides for interprogram communication via the
symbol table, the ENTRY/EXTERNAL declarations provide for more direct
interprogram communication by using the linking loader to connect
external references. The ENTRY.VARIABLE, ENTRY.LABEL, and
ENTRY.FUNCTION declarations make the specified local entities
accessible to external programs. The second and third arguments to
the ENTRY.FUNCTION declaration are like the arguments to DEFINE, and
the function is automatically DEFINED the first time it is called, so
no extra DEFINE is necessary. The ENTRY.FORTRAN.FUNCTION declaration
is similar to ENTRY.FUNCTION except that the compiler assumes the
entry will be called by a FORTRAN program. Any combination of FASBOL,
FORTRAN, and MACRO programs is permitted, provided the main program is
FASBOL, and certain restrictions on FORTRAN code (see Section 3.2.5)
are observed.

The EXTERNAL.VARIABLE, EXTERNAL.LABEL, EXTERNAL.FUNCTION, and
EXTERNAL.FORTRAN.FUNCTION declarations are the converse of the ENTRY

literal) to FORTRAN is to use a variable declared to are STRING, which
is the only real use for that declaration: a fixed amount of storage
is allocated for the variable based on the max character count given
in parenthesis after each name in the parameter list (second
argument). The only restrictions on these variables, referred to here
as dedicated mode variables, is that they may not have I/O
associations. All keywords (except for &RTNT~PE and &ALPHABET) are
treated as dedicated integers.

4-7 ADD-10-26-77

. .'UG
FASBOL MANUAL

2.2.4 Other declarations

The OPTION declaration serves to specify various compilation
options. The HASHSIZE=n declaration, ignored in all but the main
program, is used to cause a larger or smaller than normal hash bucket
table to be allocated for use by the run-time symbol table. The
number n should be a prime and represents the number of buckets in a
linked hash table~ the standard value is 127. This bucket table is at
the center of all symbol lookups in the runtime system, including
TABLE references, so that there is a distinct tradeoff between the
sparsity of the table and the time required for a lookup. The NO.STNO
option causes the compiler to eliminate the normal bookkeeping on
&STNO, &STCOUNT, etc. that occurs each time a statement is entered,
and is helpful to speed up slightly the execution of debugged
programs. The TIMER option, which is incompatible with NO.STNO in the
same program, adds to the normal bookkeeping a valuable statement
timing feature (see Section 3.2.4). The timing statistics on each
program being timed are printed out at the end of execution, and
intermediate timing statistics can be printed out during execution by
using the primitive EXTIME (see Section 2.4.2).

The SNOBOL.MAIN and SNOBOL.SUBPROGRAM declarations indicate
whether the program is a main program or a subprogram, and give it a
name (i.e. TITLE in MACRO). In the absence of either declaration,

DECLARE ('SNOBOL.MAIN', I .MAIN. I)

is assumed.

The RENAME declaration is used primarily to rename predefined
symbols (see Appendix 2) that would otherwise conflict with a given
user's. For example, if a user wished to have a variable called ARB,
or his own IDENT function while retaining the primitive also, he
should rename them some other names. On the other hand, if a user
wants to re-define !DENT, for example, no RENAME should be used, and
!DENT will become redefined when his own DEFINE is executed.

Although usually the order in which declarations
important, all ('PURGE.x',ALL) declarations should
which also refer to entities desired to be purged. For
sequence

DECLARE('ENTRY.VARIABLE' ,'A,B,C')

DECLARE('PURGE.VARIABLE' ,ALL)

occur is not
precede others

example, the

will cause the variables A, B and C to be missed and included in the

-

symbol table, since the purge flag only has effect on new symbols. .._,

4-8 ADD-10-26-77

TUG
FASBOL MANUAL

It should also be noted that whereas the syntax of variable and
function name lists uses a comma as a separator, label lists are
separated by blanks. The reason for this is that the synatx for
labels includes commas, but a blank is a valid label terminator.
Also, all quoted strings in declarations are delimited by single
quotes. A single quote may be entered inside such a string (for
example, in a label) by using the '' convention mentioned in Section
2.1.3.

2.3 Control

In FASBOL there is an expanded repertoire of control cards for
controlling listing, cross-referencing, and failure protection. In
the following list, the first of a pair controlling a switch is the
initial mode.

LIST, UNLIST

NOCODE, CODE

EJECT

SPACE n

NOCROSS, CROSREF

turns program listing on,off.

turns object listing off, on (the generation of
object code can be inhibited by not specifying an
object output file).

causes a page eject (form feed).

spaces n lines (or 1 line if n is absent).

turns symbol cross-referencing off, on. This can
be done for a whole program or selectively for
parts of it. I

I
FAIL, NOFAIL*
(1)

turns off a compiler feature that traps unexpected I

statement failures. When the feature is on
(NOFAIL), any statement within its scope that does
not have a conditional GOTO, and which fails, will
cause an error exit. An unconditional GOTO is
equivalent to none at all, and will be trapped if
the statement fails.

2.4 Predefined Primitives

In the following sections, only those primitives which differ
from SNOBOL4 or are new in FASBOL will be discussed. Appendix 2 has a
complete list of primitives available in FASBOL.

(1)
*Credit for this idea goes to the authors of SPITBOL [3], who also
inspired the inclusion of DUPL, LPAD, RPAD, and REVERS.

4-9 ADD-10-26-77

I
I
I
I
I
I
I
I
I
I
I
I
I
I

TUG
FASBOL MANUAL

2.4.1 Pattern Primitives

Three new primitives in the SPAN/BREAK clas~; have been added:
these are structural, like the other pattern primitives, and cannot be
redefined.

NSPAN(class)

BREAKQ(class)

BREAKX (class)

is like SPAN, but may match the null string.

is like BREAK, but does not look for break
characters inside of substrings delimited by
single (') or double (") quotes.

is like BREAK, but has alternatives that extend
the match up to each succeeding break character.
Operates like

BREAK(class) ARBNO(LEN(l) BREAK(class)).

2.4.2 Expression Primitives

A number of SNOBOL4 primitives work somewhat differently in
FASBOL, and new primitives have been added for I/O, string
manipulation, and communication with the run-time system.

COLLECT(n) forces a garbage collection, returns the total number of
words collected, and fails if no block of size n or larger is
available.

CONVERT(table,'ARRAY') and CONVERT(array, 1 TABLE 1) are implemented
differently, by removing the above facilities from CONVERT and
putting them in ARRAY and TABLE. See below.

ARRAY(table) converts a TABLE datatype to an ARRAY as described in
[2] , pp .122. An empty TABLE causes ARRAY tc) fail.

TABLE(array) converts certain types of ARRAY datatypes to a TABLE as
described in [2], pg. 122. The TABLE datatype is different
from all others in that, once it has been created, it exists
independently from its use in the program. Thus, to reclaim the
storage, it must be explicitly deleted by TABLE(table). Once a
table has been deleted, further references to it are illegal.

APPLY(fun,args) will accept either more or fewer arguments than
required by the function: it will reject extra ones or fill in
missing arguments with null values.

OPEN(device,chan) opens an I/O device on a software channel, assigns
buffers and returns the channel number.

4-10 ADD-10-26-77

-

-

TUG
FASBOL MANUAL

If chan < 0 or > 15, illegal I/O unit error.
If chan = 0, an unused channel is assigned; if channel

table is full (> 15 channels), error.
If chan is already in use, illegal I/0 unit error.
If device is not a string of the form:

devnam £1[outbuf] [L[inbuf]])]
it is a bad prototype or illegal arg error.

If devnam is not recognized, or is not a file structure
and is already assigned to a channel, illegal I/O unit.

If ([outbuf] [1_[inbuf] 1) is missing, Chl> is assumed.
If either outbuf and/or inbuf is missing, 0
is assumed for the missing value.

If the device allows only input (or output), the other
buffer parameter is ignored.

Examples:

OPEN (I DTA3 ('4) I '5)
OUTPUT(1 DUMP',OPEN('MTA0') ,1000)

RELEASE(chan) releases the software channel and all associations to
it, returns all buffers to free storage, and returns a null
value.

If chan < 0 or > 15, illegal I/O unit error.
If chan = 0, release all channels in use.
If channel not in use, ignore and return.

LOOKUP(file,chan) opens file
channel, returns channel.

for input (reading) on
Fails if file is not found.

software

ENTER(file,chan) opens file for
channel, returns channel.
found.

output
Illegal

(writing) on software
I/O error if file is not

If chan < 0 or > 15, illegal I/O unit error.
If chan = 0, a preliminary OPEN('DSK') is performed,

the new channel returned.
If file is not of the form

filnam [!.. ext] Cl ~ L ~ 1]
, a bad prototype error.

If channel is not open for operation, illegal I/O
unit error.

If input (LOOKUP) or output (ENTER) side of channel
already selects a file, the old file is closed.

CLOSE(chan,inhib,outhib) closes the input and/or output side of the
software channel, returns null.

4-11 ADD-10-26-77

TUG
FASBOL MANUAL

If outhib is non-null, the output side is not closed.
If inhib is non-null, the input side is not closed.
If chan < 1 or > 15, illegal I/O unit error.
If channel is not in use, ignore and return.

INPUT(var,chan,len)
OUTPUT(var,chan,len) create an input (output) association between

the variable var and software channel chan, with line/character
mode and association length specified by len, and return null.

If len > 0, line mode.
If len = 0, line mode with default length (72).
If len < 0 or not integer, character mode.
If chan > 15, illegal I/O unit.
If chan > 0 use channel table to determine I/0 device.
If chan = 0 use TTY I/O.
If chan < 0 or not INTEGER, disconnect association but do

not DETACH it.
If the input (output) side of the channel has not been

opened, illegal I/O unit error.
If var is not a string, illegal arg.
If an association for var already exists, it is changed.
If variable is dedicated, illegal arg.

Examples:

INPUT('SOURCE' ,LOOKUP('SRCELT.SNO') ,80)

OUTPUT('TYPEOUT.CHARS' ,0,-1)

The initial I/O configuration is equivalent to:

INPUT (I INPUT I)

INPUT('INPUTC',0,-1)

OUTPUT (I OUTPUT I)

OUTPUT('OUTPUTC' ,0,-1)

During execution, all
variables OUTPUT and
associated to the same
output to the printer,

system messages are
OUTPUTC (which should

channel). In order to
for example,

output
always

switch

via the
both be

system

4-12 ADD-10-26-77

-

TUG
FASBOL MANUAL

LPT = OPEN (I LPT I)

OUTPUT('OUTPUT',LPT,132)

OUTPUT('OUTPUTC' ,LPT,-1)

Channel 0 is never assigned, but when used in INPUT and OUTPUT
associations implies the user TTY and TTCALL operation. On
input, line mode reads up to (but not including) the next
carriage return, line feed (CR,LF) sequence, and then these are
discarded. Character mode reads only one character (including
CR or LF). Line mode discards any characters beyond the
association length. An EOF causes failure in either mode, but
cannot occur on some devices (such as the user TTY).

On output, line mode writes out the string value with a CR, LF
appended, whereas character mode does not append the CR, LF. In
line mode, if the string length is greater than the association
length, extra CR, LF characters are inserted every association
length substring.

DETACH(var) disconnects input and output associations for the
variable and detaches it from I/O processing, returns null. If
the variable had no association, ignore and return.

SUBSTR(string,len,pos) returns the substring of string starting at
pos of length len, and fails if len < 0, pos < 0, or pos + len >
SIZE(string). The position convention is the same as that for
patterns, and the operation is similar (but faster and less
space-consuming) to:

string TAB(pos) LEN(len) • SUBSTR

INSERT(substring,string,len,pos) returns the new string formed by
substituting substring for the one specified by the last 3
arguments into string, failing under the same conditions as:

string TAB(pos) • PART! LEN(len) REM • PART2

INSERT = PART! substring PART2

LPAD(string,len,padchr) returns the string formed by padding string
on the left with padchr characters to a length of len. If
string is already too long, it is returned unchanged; if padchr
has more than one character, only the first is used. If the
third argument is null, blanks are used.

4-13 ADD-10-26-77

TUG
FASBOL MANUAL

RPAD(string,len,padchr) is like LPAD, but pads to the right.

REVERS(string) returns the string formed by reversing the order of
the characters of its argument.

EXTIME(progname) causes the runtime system to output current timing
statistics for the program progname and returns null, or fails
if the program is not being timed.

REAL(x) is like INTEGER for reals.

EJECT () causes a page eject (form feed) to be assigned to OUTPUTC.

DAYTIM() returns an 11-character string representing the time of day
(since midnight) , as

HH:MM:SS.HH

meaning hours, minutes, and seconds to the nearest hundreth.

2.4.3 FORTRAN Primitives

These are predefined EXTERNAL.FORTRAN functi<>ns that, except for
FREEZE, merely perform some simple arithmetic task and have integer _.
values.

FREEZE() can be called to freeze the state of the FASBOL execution
for resumption at some future date. When FREEZE is called, it
exits to the monitor; the job may be SAVED, and when run again,
it will start off by returning from the call to FREEZE. This is
particularly useful for some applications that perform a
considerable amount of initialization and wish to be able to
start after that point on a repeated basis;. No I/O devices
(other than the console TTY) may be open at the time of the
FREEZE and the call should be made from function level 0 if any
timing is active.

ILT(int,int) or ILT(real,real)
[also ILE, IEQ, INE, IGE, IGT] Like LT, etc. except more efficient

for dedicated variables or expressions.

AND (int' int)
[also OR, XOR, RSHIFT, LSHIFT, REMDR] perform the specified

arithmetic or logical operation on their integer arguments and
return the value (logical AND; inclusive OR; exclusive OR;
logical right and left shift of first by second argument;
remainder of integer division of first by second argument).

NOT (int) returns one's complement of its argument.

4-14 ADD-HJ-26-77

-·

TUG
FASBOL MANUAL

2.4.4 Library functions

These are additional library functions that add new features
without changing the list of predefined primitives in the compiler.
They are accessible via the EXTERNAL.FUNCTION declaration.

MEMBER(table,key) can be used to directly replace any occurrence of
a table reference (i.e. table<key>), except that if the key is
not already in the table, the reference fails (i.e. FRETURNs)
and a new table entry for the key is not created. A normal
table reference always suceeds and always creates a new entry if
one does not already exist. Notice that, like a normal table
reference, MEMBER() may appear on either the left or right side
of an assignment.

2.5 Keywords

Three new keywords, all unprotected, have been added in FASBOL.

&STNTRACE is initially B, but if assigned a nonzero value it causes
a trace output for each statement, giving statement number,
program name, and time. This slows down execution considerably,
so it is best to turn it on as close to the suspected bug as
possible. Programs compiled under the NO.STNO option will
ignore the value of &STNTRACE, however, so another approach is
to run with all but the suspect program under NO.STNO, with
&STNTRACE on all the time.

&DENSITY is initially 75, and represents the desired density of free
storage immediately following a garbage collection. For
example, &DENSITY = 75 means that the free storage system will
try to maintain at least a 1:4 ratio between available and total
storage immediately following a garbage collection, and will
expand total storage as far as necessary or possible in order to
try to maintain this ratio. See Section 3.2.4.

&SLOWFRAG is initially B, but if assigned a nonzero value it serves
to switch in a heuristic in the free storage mechanism that
slows down the rate of fragmentation of blocks at the expense of
some wasted storage. See Section 3.2.4.

CHAPTER 3

3. FASBOL II Programming

Using FASBOL involves two separate stages,
compilation and execution. The first requires
absolute program named FASBOL.SAV (or FASBOL.DMP,

4-15

as in FORTRAN:
the compiler, an

depending on the

ADD-lB-26-77

TUG
FASBOL MANUAL

operating system) . Execution of compiled (and then assembled)
programs requires a library search, during loading, of the FASBOL
library~ this is a collection of relocatable programs named
FASLIB.REL. The relative accesibility of these programs will depend
on the installation. The compiler requires a minimum of 35K to run,
and requires more core in proportion to the program being compiled.
The core requirements for execution of user programs depends on the
size of the compiled programs plus at most SK (if every single
facility in the library is used) for the library.

3.1 Using the compiler and runtime library

To compile a FASBOL program, type

.RUN FASBOL n

where the CORE argument (n) is optional. It is best to give the
compiler an amount of core commensurate with the size of program being
compiled: this will increase compilation speed by minimizing garbage
collections, since the compiler will expand core on its own only when
it absolutely has to.

The compiler will respond with

, to which the user is expected to respond with a set of file
specifications of the form

*macfil,lstfil_srcfil

Each file specification is of the standard form, as would be
given to MACRO, for instance. The MACRO output file, macfil, is given
a default extension of MAC if not specified. Lstfil is the listing
file, and both macfil and lstfil are optional. The source file,
srcfil, is given a default extension of SNO if not specified. Only
one source file is permitted.

Examples:

*DTA3:SAMPLE,LPT: SAMPLE
*,TAPE,LST MTA0:
*NEW.NEW,_TEST.NEW

Once the compiler produces the MACRO output file, it must be
assembled, using the Q flag to supress anxiety messages from MACRO:

.COMPILE macfil(Q)

The MACRO file can be deleted after assembly, as it will be of
little interest to most users~ it is mainly a shortcut for the

-

compiler to avoid having to generate relocatable c:ode. On the other _.

4-16 ADD-10-26-77

TUG
FASBOL MANUAL

hand, those individuals who understand the workings of the run-time
system may wish to hand-tailor these intermediate programs to suit
their own needs; Caveat Emptor.

To prepare any collection of FASBOL and other programs for
execution, the command list should be terminated with a library search
of FASLIB, for example:

.LOAD fill,fil2, • ,filn,FASLIB/LIB

It is important that FASLIB be searched only once, after all FASBOL
programs have been loaded, since it is very carefully sequenced to
provide dummy versions of elements that are somehow referenced, but
not really needed. The automatic search of the FORTRAN library should
take place after searching FASLIB, since FASLIB may require some
FORTRAN routines.

While FASBOL may call or may be called by FORTRAN or user MACRO
programs, the main program must be a FASBOL program. Furthermore, the
FASBOL runtime system enables traps and uses user UUO's 1 through 10,
so it is incompatible with the FORTRAN runtime system. What this
means is that FORTRAN programs used within a FASBOL execution must not
do any I/0 or otherwise cause FORSE. to be loaded. FASBOL does
provide an infinite stack (all FASBOL stacks are infinite, up to user
core limits) in register 17, however, so a broad class of FORTRAN user
programs and library routines are permissible.

Unless changed by the user's program, all system output during
execution is sent to the user's console; upon either error or normal
termination of execution, the appropriate messages and statistics will
be printed out, and control returned to the monitor. The error
numbers are described in Appendix 3.

3.2 Programming techniques

Because of the basic differences between interpretive and
compiler systems, and the additional features available in FASBOL,
some programming techniques besides those discussed in [2], Ch. 11,
are described here. An interested user may wish to get a listing of
the compiler itself to see examples of some of these techniques.

3.2.1 Dedicated expressions

Dedicated expressions in FASBOL are those that are known, because
of some component, to have a numerical value of a predetermined type.
At one extreme is the totally dedicated statement that involves
nothing but declared dedicated variables, constants, and perhaps
FORTRAN calls. For example, if I were declared INTEGER, the statement

I = 2 * I + 10

4-17 ADD-10-26-77

TUG
FASBOL MANUAL

would be totally dedicated, and compile into

MOVE 1, I
IMULI 1,2
ADDI 1,10
MOVEM l,I

Even if an expression is mixed, with both dedicated and
descriptor-mode subexpressions, in-line arithmetic code is compiled
for as much of the expression as is possible to commit to a specific
type of value (i.e. INTERGER or REAL) at compile time. It is
therefore to the user's advantage to declare as many variables as he
perceives will be dedicated in use to be of that dedicated type. Not
only will the program run faster, it may even use less core. In a
situation where all entities are descriptor mode, even arithmetic
operators have to check the type of, and possibly convert each
argument.

In this connection it should also be noted that the predefined
FORTRAN primitives ILT, ILE, IEQ, !NE, !GE, !GT have been provided in
order to do a much more efficient job than LT, ••. , GT when the
arguments are dedicated. For example, if R and s are REAL, the test

ILT(R,S)

takes up several fewer words and runs about 100 times faster than the ·--
test

LT (R,S)

FASBOL permits mixed mode (INTEGER and REAL) arithmetic, the
general rule being that the result of an operation is INTEGER only if
both sides are integer; furthermore, an arithmetic operation involving
dedicated and descriptor mode values always has a dedicated result. A
value being combined with a stronger mode is first converted, and then
the operation is performed in that mode; for example, if I is INTEGER
but D has not been declared dedicated,

I + D

implies the value of D will first be converted
added to I. The only exception to
(exponentiation) operator which permits a REAL
power.

to an integer, and then
this rule is the **
raised to an INTEGER

Finally it should be noted that whereas the range of values of
dedicated variables is the same as in FORTRAN, descriptor mode
integers have a range two powers of 2 less in magnitude, and
descriptor mode reals have two fewer bits of precision in the
mantissa. The reason for this is that the two bits are needed for the
descriptor type.

4-18 ADD-10-26-77

TUG
FASBOL MANUAL

3.2.2 Use of the Unary? and . operators

Unary ? (interrogation) is useful to indicate to the compiler
that an expression is evaluated for its effect, rather than value.
For example, a frequent occurence in SNOBOL programs is the
concatenation of null-valued functions for their sequential effects
and/or succeed/fail potential. If the compiler knows that an element
has a null value, it does not generate code to include it in the
concatenation. Therefore it is efficient to precede predicates and
other null-valued elements in a concatenation with the ? operator.
This technique is especially valuable when combining predicates and
dedicated arithmetic, as in

I = ?IDENT(A,B) ?IGT(I,25) I + 1

, since concatenation is avoided entirely and the dedicated arithmetic
is performed after the execution of the predicates without any need
for conversion between dedicated and descriptor values.

Another frequent occurence in SNOBOL programs is the repetitive
access of the same indirect variable, array element, or field of a
programmer-defined datatype. Each of these accesses, whether to
retrieve or store a value, involve some overhead which is repeated for
each access. For example, in the statements

$X = $X + l

, the variable represented by the string value of X is looked up in
the symbol table twice, the first time to retrieve its value, the
second time to store into it. The unary • (name) operator can be
used to save the result of one lookup by creating a NAME datatype, and
then the NAME can be used in an indirect reference wherever the
original expression was used. Instead of the above statement a more
efficient sequence would be

Z = .$X
$Z = $Z + l

, where Z contains the NAME of the variable pointed to by X. The same
considerations apply to array references and field references as apply
to indirection; it is efficient to save the NAME of the variable
referenced if it will be used more than once in close succession. For
example, the statements

A<25> = F(A<25>)
NEXT(LIST) = NODE(VAL, NEXT(LIST))

would be more efficient if coded as

Z = .A<25>
$Z = F($Z)
Z = • NEXT (LIST)

4-19 ADD-10-26-77

TUG
FASBOL MANUAL

$Z = NODE(VAL, $Z)

It should be noted that TABLE references, and the symbol lookup
involved makes it even more efficient to save the NAME. The NAME of
an array or TABLE element, or of a field of a programmer-defined
datatype, is only valid as long as that array table or datatype exist:
attempts to retrieve or store using the NAME afterwards will have
unpredictable results. Also, the NAME of a variable evaluated before
that variable acquires an I/0 association, does not reflect that
association.

3.2.3 Pattern matching

Frequently a programmer wishes to write a degenerate-type
statement consisting of a concatenation of elements executed for their
effect, as in

F(A) F(B) F(C) F(D)

This syntax, however, is parsed as a pattern match, and, though having
the same effect as intended (providing the match is successful), is
less efficient in both space and time. The original intent can best
be achieved by enclosing the concatenation in parentheses, and in this
case, using the ? operator

(?F(A) ?F(B) ?F(C) ?F(D))

,which will suppress string concatenation.

One particularly unique feature of FASBOIJ is that explicit
pattern expressions, i.e., those involving the pattern operators
and/or primitives, are compiled as re-entrant subroutines, rather than
constructed at run-time into intermediate-language structures. The
significance of this to the programmer, aside from the increase in
execution speed, is the there is less of a need to pre-assign
subpatterns that will appear in pattern matches later on; in fact, an
unnecessary pre-assignment will be slightly less E~ff icient because the
pattern match will have to recurse one level deeper than otherwise
during execution. The way to determine the need for pre-assignment is
to note how much evaluation is actually required :Ln a subpattern; if
little or none is required, it can just as efficiently be included in
the body of the match. Of course, if a subpattern is large and/or
used in several matches, the programmer may wish to pre-assign it
anyway for convenience sake. Pattern evaluation involves only the
elements of the pattern, not the structure itself. Literals and other
constant values do not require evaluation, so the pattern

TAB(7) (SPAN('XYZ') ! BREAK(';'))$ SYM ';;??'

requires no evaluation at all.
FASBOL programming is that

A generally applicable rule for all
it is more efficient to use, wherever

4-20 ADD-10-26-77

-

-

TUG
FASBOL MANUAL

possible, literals instead of variables with constant value. Simple
variables appearing in a pattern require little evaluation (only a
determination if they have a string or pattern value}, and even
character class primitives (i.e. SPAN, BREAK, etc,) require little
evaluation, if their argument is non-literal, provided the argument is
a variable with a constant value. Examples of pattern elements
requiring more extensive evaluation are (non-pattern primitive}
function calls, non-pattern expressions requiring considerable
evaluation in their own right, and character-class primitives whose
arguments are other than literals or simple variables. An example of
the latter case would be

ANY (I XYZ I OTHER}

~ even if the value of OTHER remains constant, the concatenation
produces a new string each time, which prevents ANY from immediately
using the break table it has generated on the last execution of that
call. It has been assumed in all this discussion of pattern
evaluation that the value of the pattern element would not change
value between the time of assignment of the subpattern and its use in
a match. Should this not be the case, of course, the alternative of
including the subpattern in the match does not exist.

Even when integer constants cannot be used, it is still helpful
to use dedicated integer variables or expressions in patterns, if
possible. Dedicated integer expressions are ideally suitable as
arguments to the positional pattern primitives (i.e. POS, LEN, etc.),
and integer variables are ideally suitable as objects of the cursor
assignment operator (@}. For example, suppose one wishes to take a
string composed of sentences separated by semicolons (and terminated
by a semicolon} and output the sentences on separate lines. A single
pattern match to do this would be

(P is INTEGER} :

STRING @P SUCCEED TAB(*P) BREAK('~ 1) $OUTPUT LEN(l)
+ @P RPOS(0)

Note that the pattern requires no evaluation.

Since FASBOL does not employ the QUICKSCAN heuristic of assuming
at least one character for unevaluated expressions, left-recursive
patterns will loop indefinitely at execution time, as they would in
SNOBOL4 under FULLSCAN. Usually a set of patterns involving left
recursion can be re-written to eliminate it. To take a simple
example, the pattern

p = *P I z I ! I y I

, which matches strings of the form 'Y', 'YZ', 'YZZ',
could be re-written as the pair of patterns

'YZ z z ' , etc. ,

4-21 ADD-10-26-77

TUG
FASBOL MANUAL

Pl = I z I
p = 1y I

*Pl
Pl

I I

3.2.4 Timing and storage management

The TIMER option permits the programmer to monitor the operation
of any (or all) separately compiled programs, and provide feedback on
where the time is being spent. Initial programming of some problem
can be done rapidly with not much attention being paid to
optimization. It is usually the case that some small sections of a
program account for a large percentage of the execution time; these
are identified using the TIMER option. The programmer's time is then
spent most efficiently optimizing the critical areas and. ignoring the
rest. Of course, after a series of optimizations, a new bottleneck
will develop: the process can then be iterated until the law of
diminishing returns takes hold. Finally, the TIMER declarations can
be removed and the programs run in production mode.

The programmer has a large degree of control over storage
management in FASBOL, which in turn means control over the space/time
tradeoff that exists due to the dynamic storage allocation system
(free storage). To begin with, requests from the free storage system
prior to the first garbage collection (regeneration of dynamic
storage) have very little overhead compared to ones subsequent to the
first garbage collection. Unless there are good reasons for the
contrary, the user should capitalize on this by starting his execution
with approximately the amount of core he expects will eventually be
required past experience with the program is the best guide. Thus
the number of garbage collections will be reduced to a minimum, and
initial execution speeded up. In the absence of a core specification,
the program will begin with the minimum required for loading, and will
expand core as it becomes necessary, but undergoing more garbage
collections.

The &DENSITY keyword is also useful in controlling the space/time
tradeoff. &DENSITY may be set dynamically to any value between 1 and
100: immediately following a garbage collection, the dynamic storage
allocation mechanism attempts to satisfy this value, interpreted as
the percentage of total storage allocated that is in use at that time.
Nothing is done unless the actual ratio is greater than the desired
one, in which case core is expanded to satisfy thi~ desired ratio, or
until user core limits are reached. For example a user who sets
&DENSITY to 99 is saying he wishes to keep his core size to a minimum,
and is willing to pay a (rather large) premium in repeated garbage
collections. On the other hand, a user who sets &DENSITY to 1 is
asking for all the core he can get, in order that his program execute
as rapidly as possible. It is also perfectly feasible to use a
strategy where &DENSITY is set to different valuE~s at different times
during execution. The initial value of &DBNSITY is 75 1 which
represents a general-purpose compromise.

4-22 ADD-10-26-77

-

TUG
FASBOL MANUAL

If a user's application will occasionally require large
contiguous blocks of storage, he may give himself 100% insurance by
reserving dummy arrays of the appropriate size at the very beginning
of his program. An alternative is to turn on the keyword &SLOWFRAG,
which activates a heuristic which tends to slow down the fragmentation
of large blocks at the expense of some wasted storage. While not 100%
guaranteed, it will give the desired effect in most cases, minimizing
the situation where a large block is called for, and though enough
total storage is available, no contiguous area is large enough to
satisfy the request.

Finally, the COLLECT primitive may be invoked at appropriate
times, both to force a regeneration and also measure the amount of
storage that is available.

3.2.5 FORTRAN interface

External FORTRAN subroutines, whether user-written or from the
FORTRAN library, must be declared, including the number of arguments
expected. A function call to the external subroutine may have any
expression (except patterns) as arguments, but all but a few
recognized expressions are assumed to evaluate to integers and will
cause an error exit if not. Dedicated integer and real variables are
passed directly to the subroutine, as they would in a call from a
FORTRAN program. Also, dedicated integer and real expressions are
evaluated, the value is saved in a temporary location, and this
location passed to the FORTRAN routine. Finally, dedicated string
variables and literals are passed to FORTRAN as a vector, the first
word of which is pointed to by the calling sequence, and the FORTRAN
routine may interpret it as one-dimensional array of ASCII characters
packed five to a word. In addition to returning an integer or real
value, the function may modify the value of any dedicated integer,
real, or string variable that is passed to it. In the last case, not
only may the characters be modified, but the character count may be
changed by storing it in the right half of the word immediately
preceding the first word of the string (array(0)). For example,
suppose a FASBOL program contains the declarations

DECLARE('INTEGER' ,'I')
DECLARE('REAL','R')
DECLARE('STRING' ,'5(15) ')
DECLARE('EXTERNAL.FORTRAN.FUNCTION','GETDAT(3)')

and the FORTRAN function GETDAT is defined as

FUNCTION GETDAT(INDEX,ISTR,IDAT)
COMMON IDATA(l000,4)
EQUIVALENCE (RDATA,IDATA)
DIMENSION ISTR(3) ,RDATA(l000,4)
ISTR(l)= IDATA(INDEX,l)
ISTR{2)= IDATA(INDEX,2)
ISTR(0)= (ISTR(0)/2**18)*2**18+10

4-23 ADD-10-26-77

TUG
FASBOL MANUAL

!DAT= IDATA(INDEX,3)
GETDAT= ·RDATA(INDEX,4)
RETURN
END

, then a typical use of GETDAT within the FASBOL program might be

R = GETDAT(2,S,I)

,which would have the effect of setting I to some integer value, R to
some real value, and S to a 10-character string.

Entries that are expected from FORTRAN must be declared with the
ENTRY.FORTRAN.FUNCTION declaration. This works like ENTRY.FUNCTION in
that an automatic DEFINE is performed on the first call. Valid actual
arguments in the FORTRAN call to FASBOL can be integers, reals, and
Hollerith arrays (as described above, denoted by the codes 0,2, and 5
in the calling sequence. Upon entering FASBOL, the actual arguments
are copied, and converted if necessary, into the! formal arguments,
which are dedicated or descriptor mode FASBOL variables. The right
half of the word immediately preceding the first word of a Hollerith
array is considered to be the character count, and may be modified by
FASBOL if the string argument is modified. Upon return to FORTRAN
(via RETURN), the function value is determined by dedicated or
descriptor value in the variable corresponding to the function name,
but must be integer or real. The formal argument values are copied
back (and re-converted, if necessary) into the actual arguments in the
FORTRAN calling sequence, thus providing a means of passing back
additional values, besides the function value, to FORTRAN.

It should be noted that FORTRAN is not recursive, and therefore
any recursive combination of FASBOL and FORTRAN calls will not work.
Even when a series of calls is not recursive, care must be taken not
to re-enter a FASBOL routine which has a FORTRAN call pending, because
the FASBOL routine uses the same temporary storage~ locations for all
FORTRAN calls, including the predefined primitives IGT, etc.

In writing FORTRAN programs to
should be taken not to perform
facility that requires the FORTRAN
loaded.

4-24

be used with FASBOL programs, care
any I/O, or use any other FORTRAN
runtime system (FORSE.) to be

ADD-10-26-77

-

TUG
FASBOL MANUAL

APPENDIX 1

Syntax for FASBOL II

Explanation of syntax notation

1. All terminal symbols are underlined, the remainder of the syntax
consisting of non-terminals and syntax punctuation.

2. The ::=operator indicates equivalence.

3. The I operator indicates a series of alternatives.

4. The blanks between consecutive elements indicate concatenation.

5. The \ operator
immediately following
concatenation.

indicates
element

the
as

specific ruling
a precondition

out
for

of the
further

6. The ••. operator indicates the indefinite repetition of the
immediately preceding element.

7. The < > brackets serve to group expressions into a single element.

8. The] brackets indicate the optional occurence of the expression
contained within brackets, and also serve to group the expression into
a single element.

9. The order of precedence for the operators, from highest to lowest,
is: \ •.• (blanks) I ::=.

Syntax

program::= [declaration I comment] ••• [execute.body] end.statement
declaration::=bl DECLARE([bl] declaration.type [bl] 1 eos
comment::=* [char] •.• eol I - [bl] control.type [bl]-eol
execute.body::= statement [statement] ...
end.statement::= END [bl label] eos
bl:= <blank I tab>[bl] I eol <+ I .> [bl]
eos::= [bl] <:~1-eol> -
eol::= carriage.return linefeed [formfeed] .••
statement::= comment I [label.field] [statement.body] [goto.field] eos
label.field::= \<END bl> label
goto.field::= bl :[bl] <goto I S goto [bl] [F goto] I F goto [bl]

[S goto]>- -
goto::= 1-[bl] <identifier I ~string.primary> [bl] l
statement.body::= degenerate I assignment I match I replacement
degenerate::= bl string.primary
assignment::= bl variable equals [bl expression]

4-25 ADD-HJ-26-77

TUG
FASBOL MANUAL

match::= bl string.primary bl pattern.expression
replacement::= bl variable bl pattern.expression equals [bl

string.expression]
equals::= bl <= I >
variable::= \pattern.identifier identifier I !. unprotected.keyword

I string.variable
expression::= string.expression I \<string.primary

[bl string.primary] ••. >pattern.expression
pattern.expression::= conjunction [bl ! bl conjunction] •••
conjunction::= pattern.term [bl pattern.term] •..
pattern.term::= pattern.primary [<bl • bl I bl $bl>

pattern.variable)... - -
pattern.primary::= pattern.identifier I pattern.primitive I @

pattern.variable I [*] string.primary I sum I ([bl)
pattern.expression [bl]) -

pattern.variable::= [*) variable-
string.expression::= sum [bl sum] ..•
sum::= term [<bl+ bl I bl - bl> term] •••
term::= factor [<bl* bl I bl I bl> factor] •.•
factor::= string.primary [bl<** I >bl string.primary] .•.
string.primary::= \pattern.identifier identifier I literal I &

< unprotected.keyword I protected.keyword> I string.variable
<£ I ~ I ~ I +> string.primary I ~variable I l
[bl) string.expression [bl])

literal::= integer.literal I real.literal I strin9.literal
string.variable::=$ string.primary I array.element I

procedure.call
procedure.call::= \pattern.primitive < identifier ([bl]

[parameter.list] [bl])> -
array.element::= \pattern.identifier identifier << l> [bl]

[parameter.list] [bl] <> I]>
parameter.list::= expression [pc expression] •••
pc::= [bl] L [bl)
identifier::= letter [letter I digit I • I -] •••
label: : = \<blank I tab I • I + I - I *>-char [\<blank

I tab I ;> char).:-. - - - ---
integer.literal::= digit [digit] .•.
real.literal::= digit [digit) .•.. [digit] •••
string.literal::=' [\<' \'> <" T cont.char>) •.• ' I " [\<,: \:>

<"" I cont:-char)] -
cont. char :7 = char [eol <+ I •)] •••
letter::= A I B I C I DTE T F I G I H I I I J I

KTLTMTNToTPTOTRTsTTTu
v I w I x I Y I z I a I b I c I d I e I f
~ I h I I I i I ~ I 1 I ~ I n I o I ~ I g
£.I ~I ~I }!I y_I !?_I !_I yl _!

digit: : = 0 I 1 I 2 I 3 I 4 I s I 6 I 7 I a I 9
char::= any print1ng.character - - - -
protected.keyword::= STECOUNT I LASTNO I STNO I

FHCLEVEL I STCOUNT I ERRTYPE I RTHT'YPE I ALPHABET
unprotected.keyword::= ABEND I ANCHOR I FULLSCAN I

STNTRACE I MAXLNGTH I STLIMIT I ERRLIMIT I

4-26 ADD-10-26-77

-

--

TUG
FASBOL MANUAL

DENSITY I INPUT I OUTPUT I DUMP I SLOWFRAG
pattern.identifier::= FAIL I FENCE--r-A°BORT I ARB I

BAL I SUCCEED !REM -
pattern.primitive::= <LEtri TAB I RTAB I POS I RPOS

SPAN I NSPAN ll3REAK-l-BREAfOCI A~I --
NQ'iii'ANY> ([bl] <string.expression I * string.primary>
[bl]) I ARBNO([bl] pattern.expression [bl])

control.type::= LIST I UNLIST I NOCODE I CODE I -
EJECT I SPACE [bl integer.literalr-i-NOCROSS I
CROSREF I FAIL I NOFAIL

declaration.type::;;---
'OPTION' pc <'NO.STNO' I 'TIMER' I 'HASHSIZE=

integer.literal '> I
'SNOBOL.MAIN' pc ' identifier ' I
'SNOBOL.SUBPROGRAM' pc ' identifier ' I
'PURGE.VARIABLE' pc <ALL I ' identifier.list '>
'UNPURGE.VARIABLE' p-c--'-identifier.list ' I
'PURGE.LABEL' pc <ALL T ' label.list '> T
'UNPURGE.LABEL' pc--'-label.list ' I -
'PURGE.FUNCTION' pc-<ALL I ' identifier.list '>
'UNPURGE.FUNCTION' pc--'-identifier.list ' I
'STRING' pc ' string.specifier.list ' I
'INTEGER' pc-' identifier.list ' I -
'REAL' pc ' identifier list ' 1-
'RENAME' pc ' identifier ' pc ' identifier '
'GLOBAL.VARIABLE' pc ' identifier.list ' I
'GLOBAL.LABEL' pc ' label.list ' I -
'GLOBAL.FUNCTION' pc ' identifier.list ' I
'EXTERNAL.VARIABLE' pc • restricted.identifier.list '
'ENTRY.VARIABLE' pc I restricted.identifier.list I I
'EXTERNAL.LABEL' pc T restricted.label.list ' I -
I ENTRY. LABEL I pc I restricted. label .1 ist I I-
' EXTERNAL. FUNCTION' pc ' restricted.identifier.list '
'ENTRY.FUNCTION' pc ' restricted.identifier ([bl] -

[identifier.list [bl]) [[bl] identifier.list]' [pc
• label '] I - -

'EXTERNAL.FORTRAN.FUNCTION' pc • fortran.identifier.list '
'ENTRY.FORTRAN.FUNCTION' pc ' restricted~identifier ([bl]

[identifier.list] [bl]) • [pc ' label '] -
identifier.list::= identifier [pc identifier].~. -
label.list::= label [bl label] •••
string.specifier.list::= string.specifier [pc string.specifier] •••
string.specifier::= identifier (integer.literal)
restricted.identifier.list::= restricted.identifier

[pc restricted.identifier] .••
restricted.label.list::= restricted.identifier

[bl restricted.identifier] •••
fortran.identifier.list::= fortran.identifier

[pc fortran.identifier] •••
fortran.identifier::= identifier [= <INTEGER I ~>]

(integer.literal) -
restricted.identifier::= letter [lnd [lnd [lnd [lnd [lnd]]]]]

4-27 ADD-l~-26-77

TUG
FASBOL MANUAL

lnd::= letter I digit I •

APPENDIX 2

Predefined symbols

1. GLOBAL and EXTERNAL variables
INPUT INPUTC OUTPUT OUTPUTC

2. GLOBAL and EXTERNAL labels
END FRETURN NRETURN RETURN

3. EXTERNAL.FORTRAN functions (all integer valued) AND(2) FREEZE(0)
IEQ(2) IGE(2) IGT(2) ILE(2) ILT(2) INE(2) LSHIFT(2) NOT(l) OR(2)
REMDR(2) RSHIFT(2) XOR(2)

4. Primitive pattern variables
ABORT ARB BAL FAIL FENCE REM SUCCEED

5. Primitive pattern functions
ANY ARBNO BREAK BREAKQ BREAKX LEN NOTANY NSPAN POS RPOS RTAB SPAN TAB

6. Predefined primitive functions
APPLY ARRAY CLOSE COLLECT CONVERT COPY DATA DATATYPE DATE DAYTIM
DEFINE DETACH DIFFER DUPL EJECT ENTER EQ EXTIME GE GT !DENT INPUT
INSERT INTEGER ITEM LE LGT LOOKUP LPAD LT NE OPEN OPSYN OUTPUT
PROTOTYPE REAL RELEASE REPLACE REVERS RPAD SIZE SUBSTR TABLE TIME TRIM

7. Predefined library functions
MEMBER

APPENDIX 3

Runtime Errors

Conditionally Fatal

1. Illegal Data Type
2. Error in Arithmetic Operation
3. Erroneous Array or Table Reference
4. Null String in Illegal Context
5. Undefined Function or Operation
6. Erroneous Prototype
7. Dedicated String Overflow
8. Variable Not Present Where Required
9. Real to String Conversion Overflow

10. Illegal Argument to Primitive Function

4-28 ADD-10-26-77

-

-

-

TUG
FASBOL MANUAL

.-

11. Reading Error
12. Illegal I/O Unit
13. Limit on Defined Datatypes or Tables Exceeded
14. Negative Number in Illegal Context
15. String Overflow

Unconditionally Fatal

17. Error in FASBOL System
18. Return from Zero Level
19. Failure During Goto Evaluation
20. Insufficient Storage to Continue
21. Illegal Memory Reference
22. Limit on Statement Execution Exceeded
23. Object Exceeds Size Limit
24. Undefined or Erroneous Goto
25. [unused]
26. [unused]
27. Writing Error
28. Execution of Statement with Compilation Error
29. Failure Under NOFAIL
30. Divide Check
31. Arithmetic Overflow

4-29 ADD-10-26-77

-

TENEX USER'S GUIDE
FI LEX

January 1975

FI LEX

The FILEX program is a general file transfer program intended to
convert between various core image formats, and to read and write
various directory formats. It is primarily useful for DECtapes.

A writeup on FILEX can be found in the DECSYSTEM10 Users
Handbook, second edition, page 557.

Following are the only three command strings which will work for
11 format tape:

1) to put files A.A,B.B,C.C on 11 format tape:
*DTAl: (ZQV)_DSK:A.A,B.B,C.C

2) to read the whole 11 DTA onto DISK:
DSK:_DTAl:.*(QV)

3) to list a directory from an 11 format tape:
*_DTAl: (VL)

WARNING:

Since FILEX was written for the DECsysteml0 Monitor, not all
forms of the command string will work under TENEX.

-47-

TENEX USER'S GUIDE
FIOCNV

January 1975

FIOCNV

Program to convert standard TENEX text files (ASCII) to
paper tape for either flexowriter (FIO-DEC code)
typewriter. FIO stands for Flexowriter !nput Qutput.

punched
or Dura

@FIOCNV

Asks all necessary questions including name of source file
format of output. Prints message for any character
translatable into object code set.

@FIOCNV

TO OR FROM PAPER TAPE? (T-F) T
INPUT FILE: WIN.MOVES~!!

FLEXO OR DURA? (F OR D) D
CAN'T CONVERT AA (36)

INPUT FILE:

-48-

and
not

,_

TENEX USER'S GUIDE
FL I ST

.January 1975

FL I ST

FORTRAN LISTING

FLIST copies FORTRAN-generated ASCII disk files to the line
printer or another disk file. The first character (column 1) of
each ASCII record is not printed, but is interpreted as a
carriage control character according to the DECsystem-10 FORTRAN
Standards. Characters other than those listed have the same
effect as a space in column 1.

Character Effect ------- ------
space skip to next line with a FORM FEED

after every 60 lines

0 zero skip a line

1 one form feed-go to top of next page

+ plus suppress skipping - will overprint line

* asterisk skip to next line with no FORM FEEDS

minus skip 2 lines

2 two skip to next 1/2 of page

3 three skip to next 1/3 of page

I slash skio to next 1/6 of page

period skip to next 1/20 of page

comma :=;kip to next 1/30 page

FLIST also has the option of replacing all line feed
characters with a DC3 character, which has the properties of a
line feed character but inhibits the automatic FORM FEED after
every 60 lines.

FLIST asks for the name of the file to be listed as shown below.
TENEX file name recogniton is in effect. A confirming carriage
return must follow the file name. FLIST then asks if the output
is to go to the lineprinter (LPT:) or a file (filename). A
confirming carriaqe return must follow either the LPT: or the
file name. FLIST then asks if the DC3 option is to be activated.

-49-

TENEX USER'S GUIDE
FLIST

EXAMPLE:

@FL I ST%

January 1975

INPUT FILE: TEST.DAT% [CONFIRM]!

OUTPUT FILE (LPT: OR FILENAME) :TST.LST [CONFIRM]!

CONVERT LINEFEED TO DC3 (Y OR N)?Y
INPUT FILE: TEST2.DAT:l [CONFIRM]!

OUTPUT FILE: LPT: [OK]!

CONVERT LINEFEED TO DC3 (Y OR N)?N
INPUT FILE: "c
@

NOTE: Output disk files which have used the DC3 option should be
listed on the lineprinter with the COPY command instead of the
LIST command.

-50-

-

TENEX USER'S GUIDE
FLOW

January 1975

FLOW

FLOW is an automatic flowcharting program which produces a
!IOWchart from a FORTRAN source file.

This subsystem was originally distributed by Digital Equipment
Corporation as DECUS 10-38 and has been modified by BBN.

FLOW requests an input file name. This should be answered with
the name of 3 FORTRAN source file on the OSK. (A maximum of 5
characters is allowed.) It then requests the input file extension
and an extension of up to 3 characters should be supplied. An
output file name is requested and a file name of up to 5
characters should be supplied for the OSK output file. An output
file extension is then requested and an extension of up to 3
characters shoula be suoolied.

During processing, a binary scratch file FOR20.DAT will be
created on the DSK for each main program and subroutine. 'FLOW
will delete FOR2~.DAT after it has been processed. The ASCII
output file will consist of a program listing of the main program
and each subroutine/function with each associated flow chart
followed by a list of all statement numbers used by the
associated main program or subroutine/function.

@FLOW

OUTPUT BINARY SCRATCH FILE ON DSK:FOR20.DAT
BEGIN EXECUTION

INPUT FILE NAME (5 CHARS)=FLOW%
INPUT FILE EXTENSION (3 CHARS)~F4%
OUTPUT FILE NAME (5 CHARS)=FLOW% -
OUTPUT FILE EXTENSION (3 CHARS);LST%
FLOW-CHARTING PROGRAM MAI~ -
FLOW-CHARTING PROGRAM PRNT
FLOW-CHARTING PROGRAM GORT
FLOW-CHARTING PROGRAM ASSIGN
FLOW-CHARTING PROGRAM MOVE
FLOW-CHARTING PROGRAM REPT
FLOW-CHARTING PROGRAM NUM
FLOW-CHARTING PROGRAM NUMAL

-51-

TENEX USER'S GUIDE
FLOW

FLOW-CHARTING PROGRAM
FLOW-CHARTING PROGRAM
FLOW-CHARTING PROGRAM
FLOW-CHARTING PROGRAM
FLOW-CHARTING PROGRAM
FLOW-CHARTING PROGRAM
FLOW-CHARTING PROGRAM

END OF JOB

,January 1975

BLOCK DATA
ERROR
I REFIN
SORT
XTRACT
TAB FIX
TAB PAK

CPU TIME: 4:0.96 ELAPSED TIME: 17:10.00
NO EXECUTION ERRORS DETECTED

EXI'r.
""c

Note: Before doing FLIST of output file put WIDE
paper in the Line Printer.

@FL I ST%
INPUT FILE: FLOW.LST![CONE'IRM]%

OUTPUT FILE (LPT: OR FILENAME) :LPT:%[0K]%

CONVERT LINEFEED TO DC3 (Y OR N)?Y
INPUT FILE: ""C%
@

EXECUTION TIME:
TOTAL ELAPSED TIME:
NO EXECUTION ERRORS
EXIT.
"c

q.88 SEC.
2 MIN. 18.00 SEC.

DETECTED

-52-

TENEX USER'S GUIDE
FORTRAN

January 1975

FORTRAN System

t The DEC FORTRAN-IV Compiler, for further information see
DECsysteml0 FORTRAN-IV Manual.

To obtain the FORTRAN compiler call F40.

COMPILING AND RUNNING A FORTRAN PROGRAM

It is assumed that the user has a FORTRAN program on a file in a
t card image format (one FORTRAN statement per line with the
statement body starting in column 7 or greater as usual. Lines
may be up to R0 characters terminating with a carriage return
t line feed) • In the examples below we will call the FORTRAN
program file x.

The FORTRAN compiler, F40, takes only one command of the form

object-file, listing-file input-filel,input-file2, •••

All file names may include a device, but not a version number.
t Furthermore, the name part is limited to 6 characters and the
t extension (if any) to 3 characters.

The object-file is the relocatable binaries output by the

-., # compiler, and will assume a default extension of .REL if no
extension is given.

The listing file is for the compiler listing (error messages will
also appear on the user's terminal as compilation proceeds), and
will assume a default extension of .LST if no extension is given.

As shown, there may be several input files separated by commas.
The compiler will first look for an extension of .F4 (not .F40),
and failing to find that, look for a file with no extension.

EXAMPLES:

To get both relocatable binaries and listing:

@F40
*X,X_X

The first X will be X.REL, the second x.LST
The last x could have no extension or an extension of .F4.

To get just relocatable binaries with no listing:

@F40
*X X The first X will be X.REL

-53-

TENEX USER'S GUIDE
FORTRAN

THE LOADER

January 1975

After the FORTRAN programs are compiled, the relocatable binaries
output by the compiler must be loaded along with required
routines from the FORTRAN library. Assuming the output from F40
is on X.REL, this is done by:

@LOADER
*/SX$ (S represents the escape character - it causes
the load process to be completed with a search of
the FORTRAN library and a return to the EXEC)

If several relocatable binary files representing the separate
compilations of the main program and subroutines of a system are
to be loaded together (say X.REL, Y.REL, and Z.REL), then do:

@LOADER
*/SX,Y,Z$

The '/s' is not required, but is desirable if the program is to
be debugged via DDT. It causes the Loader to leave the user's
FORTRAN symbols (variables and statement numbers) in core for use
by DDT. If no debuqging is to be done, the /S may be left off,
but its use is encouraged.

SAVING THE ABSOLUTE CORE IMAGE _..

The Loader has no "output file". Instead, everything is loaded
into core and left there. Thus after the escape ($) completes
the load and causes the exit to the EXEC, it is necessary to save
the assembled core image (if repeated executions are desired - if
they are not, the program may be immediately started, but then
the load process must be repeated for another execution) • This
is done by:

@SAV$$$X$ ret (the S is escape so there are four escapes
here altogether)

This will echo as

@SAVE (CORE FROM) 20 (TO) 777777 (ON) X.SAV~l [NEW FILE]

and commands that the entire core image be saved on file X.SAV
(which is here assumed to be a new file - a new version would be
created if an earlier version of X.SAV already existed).

The program may then be started by

@START ret

-54-

·-

TENEX USER'S GUIDE
FORTRAN

January 1975

and may be repeatedly executed by simply typing

@X ret

NOTES ON DEBUGGING FORTRAN Programs via DDT
"#

These notes are not a complete explanation of DDT. it is assumed
that the reader has at least glanced at the DDT manual and that he has
a copy convenient for reference. it is also assumed that the reader
knows how to compile, load, and run a FORTRAN program.

We use the following conventions below:

$ represents the altmode or escape character.

"'x represents control-x, e.g., "'c is control-C.

lf represents line-feed.

ret represents carriage return.

No convention is established for distinguishing user type-ins
from the system's res~onse. Most DDT commands are short and
the system will respond as soon as the command is typed (that
i~, no carriage return is necessary with DDT commands). Thus,
the novice user should be able to get started by typing slowly
and waiting for the system's response.

PREPARATION FOR DEBUGGING - THE LOADER

Although it is possible to get an assembly language listing from
the FORTRAN compiler and a load map from the Loader, this is not
usually necessary in debugging a FORTRAN program. It is however
necessary to instruct the Loader to save the symbol table that is
automatically output by the compiler, so that the user's symbols will
be in core and available for reference after the loading process.
This is done by using the /S switch during loading. Example: assume
the user intends to debug program PROG. The Loader command would then
be

@LOADER
*/SPROG$ (the $ is the altrnode)

After the load is complete, the usual TENEX SAVE command is executed,
and whenever the program is loaded into core to be run, the user's
FORTRAN symbols will also be brought in for debugging.

-55-

TENEX USER'S GUIDE
FORTRAN

USER AND OTHER SYMBOL NAMES

January 1975

In addition to the user's symbols (that is, his variable and
subprogram names) , there are several types of symbols created by the
compiler which the user will need to reference:

1. The user's FORTRAN statement numbers will all be suffixed by
a 'p'. Example: if the following statement appears in the
program,

110 A = B

then the machine instruction to load B will be labelled with
the symbol 110P.

2. The main program is always labelled MAIN. (the is
included as part of the name) , and all FORTRAN programs
start at location MAIN.

3. When the compiler needs to generate a label for a jump
instruction, it uses the form nM where n is an integer
starting at 1 for the first label generated. Examples: lM,
3M, 17M, etc. In particular, the first executable statement
of any FORTRAN program (not containing arithmetic statement
functions) will be labelled with 'lM' (if not labelled by
the user). --

GETTING !DDT AND THE RUNNING FORTRAN PROGRAM TOGETHER

There are two approaches - !DDT and DDT. The best is to use
IDDT. IDDT contains many useful features including the ability to
interrupt a running program and then restart it (as opposed to
break-pointing it as required by the old DDT). Documentation for IDDT
is available in the TENEX users' Guide.

To use !DDT, the user may do one of two things: he may first run
his program and when it terminates invoke IDDT, or he may start IDDT,
use it to load the program via the :Y (for Yank) command, and then
start it with $$G (two altmodes, G), possibly after setting
breakpoints.

Example of the first method (assume program named PROG):

@RUN PROG

(assume program fails and the system reports errors on
the TTY and returns to the EXEC: or alternatively, the
program stopped for TTY input and the user interrupted it
with AC.)

-56-
-

-

* #

TENEX USER'S GUIDE
FORTRAN

January 1975

@IDDT
The user is now in IDDT in the context of the program
just run, and he may proceed with the commands described
below. If the program was interrupted with Ac, it may be
continued with $P (altmode, P for Proceed).

Example of the second method:

* #

@IDDT

:Yank file: PROG.SAV$ ret

MAIN.$: 110P$B $$G

(If the program requests TTY input before reaching the
breakpoint, it may be typed in normally - if a user's
program is waiting for input there is no confusion over
whether the input goes to the program or to IDDT.)

$1B>>lHJP

(!DDT signals the break as shown and waits for commands.
The user may now examine variables, insert or remove
breakpoints, and continue the program from the break or
from some other location, etc., as described below.)

EXAMINING FORTRAN AND OTHER VARIABLES

Indicating the Routine to be Debugged

We must first consider the establishment of the proper context
when referring to variable (or any other kind of) names. Consider a
program that consists of a main routine and a subroutine called SUB.
The compiler will automatically give the name MAIN. to the main
routine (including the period). The command for establishing ·a
routines symbols as the current context is of the form 'name$:' (
routine name, altmode, colon). Thus, if we wish to debug the main
routine we first type

MAIN.$:

To then debug the subroutine we type

SUB.$:

Thus we may refer to the symbols of several different routines by
first establishing the context as that routine with the colon command.

The
variable

colon command is not always absolutely necessary. If
X exists in the main routine but not in routine SUB, and if

-57-

TENEX USER'S GUIDE
FORTRAN

January 1975

#we have issued SUB$:, and we then type 'x/', the system
with

will respond

X/[MAIN.$:X]

This does not change the context, but shows us that there is no x in
the current context. Note that if several different x's exist outside
of the current routine, then the colon command may be necessary to
refer to the desired one.

Typing Out a Location and the Current Type-out Mode

In general, typing any location name followed by a slash (/) will
cause IDDT to type out the contents of the location in the current
type-out mode. This mode is initially symbolic. Thus, typing '110P/'
will cause IDDT to type out the instruction which starts statement
110. For variables, however, we would like the type-out to be
numeric. The mode may be set permanently to floating point by '$$F'
(two altrnodes followed by 'F'), or temporarily by '$F'. (The floating
point mode will also type integers correctly.)

Examples:

110P/ MOVE 2,A ret
X/ MOVEI ll,@146315(3)
X+l/ 1.3000

lf

$F; 1.2000

$SF
X+l/
lHJP/

X/ 1.2000
1.3000 ret

17196647924. $S; MOVE 2,A

lf

In the first three lines, the user first opens location 110P which
types out symbolically. Then X is opened which also types out
symbolically, and then the altmode-F-; is used to show the
corresponding numeric interpretation (the '; ' - semicolon, space -
command causes !DDT to retype the last value typed, presumably in a
new mode). Finally a line feed causes the cell after X to be opened
(assume X is an array), and typed out in the temporary mode. This
temporary mode will continue until a carriage return is typed, after
which the mode will revert to the current permanent mode. Thus,
multiple line feeds will continue in the temporary mode, or additional
cells may be opened by name in the temporary mode:

$FX/ 1.2000 Y/ 16.

In the second example above, the user set the
floating point. then, when 110P was opened,
representation was converted back to symbolic with
as with F, '$$5' would be used to set the type out
symbolic.

-58-

mode
its

the
mode

permanently to
floatinq point
'$s' command.
permanently to

-

TENEX USER'S GUIDE
FORTRAN

January 1975

Examining Related Locations

* * #

* #

* #

Once a word has been typed out, related words may be examined by:

lf

I

line feed examines the next word.

up arrow (shift N) examines the previous word.

examines the word specified by the
of the current word, but does not
move the location pointer thus, lf and ~
are still relative to the first original
word) •

address

tab (control-I) changes the location pointer to the word
specified by address of the current word, and types out
the contents of this new current word (especially useful
for examining array parameters - see below) .

Examining Arrays Passed as Parameters to Subprograms

Assume we have a main program with an array x, and that the array
is passed as parameter Y to subprogram SUB. That is, we have

REAL X(l00)

CALL SUB(X)

SUBROUTINE SUB(Y)
REAL Y (100)

The following shows how the user may examine the
floating point format while in the subroutine:

SUB$: Y/ JUMP MAIN.X tab
MOVEI ll,@146315(3)

1.34 lf
MAIN.X/
MAIN.X+l[
MAIN.!+2[6.21

$F: 1.2 lf

contents of x in

As may be seen, when the user opened Y within the subroutine, he got
not the contents of array X, but the address of array X (for simple
scalar variables passed as parameters, examining the parameter gets
the contents of the actual parameter as it is used within the

-59-

TENEX USER'S GUIDE
FORTRAN

January 1975

subprogram) • These array parameter addresses are always of the form ~-
'JUMP ADDRESS', and in fact, seeing a parameter of that form is a
reliable way of telling that a routine has been passed an array as
opposed to a scalar variable or expression. To return to the example,
the user then moved the location pointer to the array X by using the
tab command (which moves the pointer to the address specified by the
word last typed, in this case the MAIN.X). He then changed the
type-out mode to floating point and continued to examine successive
words of the array with successive line feeds.

Value of LOGICAL Variables

Logical variables set to the values .TRUE. and .FALSE. have the
values -1 and 0 respectively in core.

BREAKPOINTS, PROCEEDING, AND OTHER CONTROL

We now present a nonsensical example of a FORTRAN program in both
the FORTRAN form and as typed out by IDDT. The example will be used
throughout the discussion of breakpoints and other control commands.

@COPY TST.~3 (TO) TTY: [OK]

REAL A(l0)
READ(-1,60100) A,B
60100 FORMAT(llF10.0)
c
110 IF (A (1) • EO. B) GO TO 12 0
B=l.2
120 CALL SUB(A,B)
END
SUBROUTINE SUB(X,Y)
REAL X(l0)
END

@LOADER
*/STST$
LOADER 2K CORE
5+4K MAX 522 WORDS FREE
EXIT.
Ac
@SAVE (CORE FROM) 20 (TO) 777777 (ON) TST.SAV [New version]
@IDDT

lf MAIN.$: lM/ MOVE I l,60100P

lM+l/
1M+2/
1M+3/
1M+4/
1M+5/
60H'J0P/

16040,,-1 lf
25100, ,A lf
JUMP 12 lf
20100, ,B lf
21000,, QI lf

JRST 2M lf

-60-
-

t

TENEX USER'S GUIDE
FORTRAN

January 1975

60HJ0P+l/ ROT 10,@143142(6) $T1
60100P+2/ 0. 0) ret
lf
2M/ MOVE 2,B lf
2M+l/ CAMN 2,A lf
2M+2/ JRST 120P lf
2M+3/ MOVE 2,CONST. lf
2M+4/ MOVEM 2,B lf
120P/ JSA 16,SUB lf
120P+l/ JUMP 2,A lf
120P+2/ JUMP 2,B lf
120P+3/ JSA 16,EXIT lf
MAIN./ 15000, ,0 lf
MAIN.+l/ JRST lM lf
CONST./ MOVE! ll,@146314(3) $F1
lf

B/ 0 lf
A/ 0 lf
A+l/ 0 lf
A+2/ 0 lf
A+3/ 0 lf

(llFl lf

1.1999999

we first note several things about the !DDT output:

ret

1. The "instructions" from lM+l to lM+S are system calls to
perform the READ statement. In general, the user cdn expect
to find similar code wherever I/O is done.

2. FORMAT statements and any other text in the user's program,
when typed out in instruction mode will appear as strange
looking instructions with unusual address as shown at
60100P+l. Note the jump instruction around the FORMAT (JRST
2M) , and also note the use of the 1 $T1 ' command to
temporarily change the type-out mode to text at 60100P+l.
This mode was continued for one word with a line feed, after
which a carriage return returned us to the original mode.

3. The instruction labelled 2M is in fact the first instruction
of the statement numbered 110, and if the user typed '110P',
!DDT would have opened the same cell. This illustrates that
there may be several labels which all refer to the same
location (the user's plus additional labels generated by the
compiler). This also occurs with variables at times, where
the compiler may assign a name like '%TEMP.' to a variable
which the user has called 'B', for example. If that had been

-61-

* #

* #

*
* #

TENEX USER'S GUIDE
FORTRAN

January 1975

4.

5.

6.

the case here, then the instruction at 2M+4 might
out as 'MOVEM2,%TEMP.' instead of 'MOVEM2,B'.
'B' would then represent the same location, and
either would show the same contents.

have typed
'%TEMP. ' and
typing out

Subroutine calls are of the form 'JSA AC,ADR' as shown at 120P
The JSA subroutine jump instruction saves the AC (accumulator)
at the ADDRess, and jumps to the .ADR+l to start the
subroutine. thus, the first executable instruction of out
subroutine is not at SUB but is at SUB+l. The first few
instructions of the subroutine do initialization and are not
usually of interest to the user. After the initialization
there will be a jump to a label lM which usually labels the
first executable FORTRAN statement of the subroutine.

Following the JSA instruction is the parameter list where
each parameter's address is part of a JUMP instruction. These
JUMP instructions are never executed because the subroutine
will return to the instruction following the last JUMP. This
shows why variable length calling sequences to subprograms may
not be used with DEC FORTRAN since the return point is always
based on the number of parameters in the SUBROUTINE or
FUNCTION statement, not on the number in the call.

The first instruction of the main program is at label MAIN.
This is a system call for initialization, followed by a jump
instruction to the first executable FORTRAN statement (the
JRST lM instruction). This first statement will always have
the label lM for all programs (main, subroutine and function),
unless the program starts with arithmetic statement functions.
In that case, the first executable statement may be at 2M, or
3M, etc. It can be found either by typing out instructions
starting from MAIN. (or from the subprogram name} looking for
the JRST, or by typing out instructions starting at label lM
until the first executable statement is recognized.

Following the code is space for constants and variables. Note
the use of the '$F~-' command to examine the constant at
CONST.

i We now give some of the breakpoint and other control commands,
i and then describe with reference to the example how they might be
i used. A breakpoint is a way of stopping a program at a particular
location. When the execution reaches the breakpointed location, IDDT
regains control (before the instruction at the breakpoint is
executed) , and types something of the form

* * #

$nB>>adr

where 'n' is a number from 1 to 8 and 'adr' is the address of the
breakpoint. The user may have u~ to 8 hr~akpoints at any one time.

-62-

TENEX USER'S GUIDE
FORTRAN

January 1975

Commands:

adr$b to set the next
location 'adr'.

unused breakpoint {from 1 to 8) at

x,,adr$B to set the next unused breakpoint which will
automatically type out the contents of location x when
the breakpoint is reached.

0$nB

$B

$P

n$P

adr$G

to remove specific breakpoint n.

to remove all breakpoints.

to proceed from a breakpoint - that is, after stopping at
a breakpoint {and possibly examining cells, setting other
breakpoints , removing breakpoints, etc.), $P causes IDDT
to restart the program with the instruction that was
broken.

to proceed from the current breakpoint, and not stop at
that breakpoint the next 'n' times it is reached, but to
then break on the n+l'st time the breakpoint is reached.
Note that unless the number n contains an 8 or a 9 digit
or a decimal point that it will be interpreted as octal.
Thus, 20$P means to proceed past the current breakpoint
20 octal = 16 decimal times, while 20.$P means 20
decimal.

to start the program at location adr. after a breakpoint
it is usually safe to restart the ?rograrn at a different
place {instead of proceeding) if the new statement is
labelled with a FORTRAN statement number. Starting
within a statement will seldom be desirable and starting
at an unnumbered statement may occasionally fail if a
previous statement is needed to initialize some
accumulator or temporary. An example of starting at a
new numbered statement is 110P$G.

Examples of Use of the Commands with Reference to the
Above:

Sample Program

1 . @IDDT

;Yank file: PROG.SAV$ ret

MAIN.$: 110P$B $$G

The user GETs the program, enters !DDT, establishes the main
program as the context for names, sets a breakpoint at
FORTRAN statement 110 {equivalent to label 2M in the IDDT
output), and starts the program at the beginning.

-63-

TENEX USER'S GUIDE
FORTRAN

January 1975

2.

3 •

4.

The program will first request the input of the A array
and B, and after the user has typed in the data, will
proceed to the breakpoint and stop by typing:

$1B>>2M

At this point the user may want to insert a breakpoint at
the statement 'B=l.2', but this statement does not have a
FORTRAN statement number so the location of its first
instruction is not known. The easiest course of action is
to start typing out instructions starting at 110P (the
nearest preceding statement with a number) until the start
of the 'B=l.2' statement is recognized. The type-out is
done by first typing '110P/' and then continuing with line
feeds (alternatively, the user could start at 120P and go
backwards with successive up arrows = shift-N). Even though
the user may not know PDP-10 assembly language, it is fairly
easy to recognize the statement boundaries because the
instructions contains references to the user's FORTRAN
variables and statement numbers (but only if they were
requested during loading with the /S switch as described
above in the section Preparation for Debugging) . In this
case, the user may recognize the 'JRST 120P' as the 'GO TO
120' at the end of the previous statement, or the 'MOVEM
2,B' as the storage of B in the assignment statement to be
broken. We see that the instruction to be broken is at 2M+3
and so the IDDT command 2M+3$B will insert the breakpoint as
desired.

It is frequently useful to stop the program as soon as it
has entered a subroutine. This may be conveniently done by:

SUB$: 1M$B

The first command establishes the context for names as that
of the subprogram (here named SUB} , and the second command
inserts the breakpoint at the first executable statement of
the subprogram at label lM (but see note 5 above for
exceptions to the lM label). This will be after the
parameters have been set up during subprogram
initialization, and so when the breakpoint is reached, the
subprogram's parameters may be examined.

Although it is possible to set and remove specific
breakpoints, the novice may find it easy to start by simply
setting the next unused breakpoint (with the adr$B command),
and when all eight breakpoints have been used (!DDT will
give a message when the user attempts to set a ninth
breakpoint), to remove them all with the $B command and then
reset any that are still desirable.

-64-

TENEX USER'S GUIDE
FORTRAN

January 1975

FORTRAN-IV Library Subroutines.

MODIFICATIONS TO THE FORTRAN LIBRARY

1. !FILE and OFILE include the addition of an optional
extension. The formats for these subroutines now are:

CALL IFILE(device,filename,extension)
CALL OFILE(device,filename,extension)

where device = file device number (required)

filename = ASCII filename of up to 5 ASCII characters
(required)

extension = ASCII extension
set to 0 for
extension first
to 0 for OFILE,
(optional only
specified.)

of up to 3 ASCII characters. If
!FILE, system will search for DAT
and then blank extension. If set
system will set extension to DAT.
if a user-code is not to be

2. The format for DEFINE has been modified from

CALL DEFINE FILE(U,S,V,F,PJ,PG,CODE)

to

CALL DEFINE FILE(U,S,V,F,USBR,CODE)

where USER is 0 and only required if it is to be followed by
CODE which is an optional protection code field.

3. The CalComp Plotter routines have been modified for
operation on the TENEX CalComp Plotter, Model 665 which uses
12" wide paper and has 2 step sizes.

CalComp subroutines enable plotting of lines, curves, text,
and graphs by calls from FORTRAN programs. The subroutines
also control pen position, labeling of plots, scaling, and
data identification. Detailed subroutine discussions follow
standard FORTRAN notation conventions so that variables
beginning with I,J,K.L,M, or N, are fixed point while all
others are floating point.

OPEN PLT: causes about 6" of paper to be slewed. The
system routines maintain a "fence" that prevents a user from
going off the edge of the paper. The pen is assumed to be
centered in the Y direction when PLT: is opened, and users
should leave the pen in a similar place when PLT: is

-65-

TENEX USER'S GUIDE
FORTRAN

January 1975

PLOTS

closed.

The plotter accepts 5-bit bytes to direct its motion as
shown below:

+y
7 33 0 32 1 PEN UP=ll
31 27 20 21 30 PEN DOWN=l2
6 26 22 2 +X OTHERS ARE NOP'S
35 25 24 23 34
5 37 4 36 3

Moving in the +X direction slews paper on to the floor. The
+Y direction is arranged so that the coordinate system is
right handed.

PLOTTING CONTROL

CALL PLOTS(I) OPENS the "Hardware" file PLT:
If successful, I is set to QI (a
logical TRUE). Otherwise, I is
set to -1.

Output goes directly to the
plotter.

CALL PLOTS(I, 'FILE NAME') Uses the named file instead of
PLT: Any legal TENEX file name
will do. I is returned as
described above.

CALL PLOTS(I,0)

CALL PLOTS ('FILE NAME')

As above but the file name is
requested from the Teletype
similar to what TECO does with
;U$.

No value returned

In addition each of the above has an integer function
counterpart which returns the success/fail value to IPLOTS
as well as the argument I.

NOTE: Call PLOTS before any other plotting subroutine and
once and only once in a plotting program. It prepares the
to do plotting, setting its current position as the origin
and raising the pen from the paper.

use it
system

(0 , 0)

-66-

TENEX USER'S GUIDE
FORTRAN

PLOT

CALL PLOT (X,Y,IPEN)

X,Y

!PEN

January 1975

moves the pen in a straight line
from its current position to the
position specified by the
floating point coordinates X,Y,
in inches.

specifies pen position during
motion:
1 unchanged from previous
action
2 - lowers pen before motion so a
line is drawn
3 - raises pen before motion
-1,-2,-3 - same action as for
positive values, except that
after motion is completed, the
pen position is taken as a new
origin.

Call PLOT after completing all plotting in order to move the pen
past the last plot.

WHERE

CALL WHERE (X,Y)

PLTEND
CALL PLTEND

X,Y set to the current position
of the pen, in inches, and
returns these values to the
program.

Call PLTEND after completing all
plotting to close the plotter
output file.

-67-

TENEX USER'S GUIDE
FORTRAN

SYMBOL

January 1975

LABELING

CALL SYMBOL (X,Y,HEIGHT,CHAR,THETA,NS)

NUMBER

SCALE

X,Y

HEIGHT

CHAR

THETA

NS

coordinates of the
lefthand corner of the
alphanumeric character.

lower
first

height of the character (s) in
floating point inches

an array containing a Hollerith
string of letters, numbers of
special characters.

direction, in degrees, of the
base-line on which the text is
plotted~ normal orientation, X
direction, is 0.0.

length of the string CHAR in
characters.

CALL NUMBER (X,Y,HEIGHT,FPN,THETA,NN)

FPN

NN

floating point number to be
plotted: assumes the ASCII
character set using the digits 0
through 9, "-" and ".".

the number of decimal digits to
be plotted to the right of the
decimal point~ a negative value
suppresses the decimal point,
printing only the integer part
of the number.

SCALING

CALL SCALE (X,N,AL,XMIN,DX)

x

N

a real vector containing the
data to be plotted.

length or number of points in

-68-

TENEX USER'S GUIDE
FORTRAN

AL

XMIN

DX

January 1975

the array

axis length in floating point
inches

set to the minimum value found
in X, truncated to be multiple
of DX

set to the X-increment, a
"reasonable" interval allowing X
to be plotted in s inches and
still be read, equal to A*l0**B,
where A and B are integers and A
is either 1,2,4,5 or 8.

Scans the data to be plotted for the maximum and minimum values,
adjusting these to optimize the plot and determine scale values
that are easy to interpolate between divisions.

AXIS

DATA IDENTIFICATION

CALL AXIS (XO,YO,TITLE,NC,AL,THETA,XMIN,DX)

XO,YO

TITLE

NC

AL

the coordinates of the starting
point of the axis, relative to
the current origin.

name of an alphabetic array for
the axis title, may be of the
form
NH THIS IS AN N CHARACTER TITLE

number of characters in the
title: standard position is the
counterclock-wise side of the
axis, a negative NC places the
title on the clockwise side

NORMAL
I
I
I
I
I TITLE
I--------

NEGATIVE NC
I
I
I
I

I----------
TITLE

length of the axis in inches

-69-

TENEX USER'S GUIDE
FORTRAN

January 1975

THETA

XMIN

DX

angle, in degrees, of the axis:
standard X-axis is 0, standard
Y-axis is 90

minimum value on the
determined by SCALE

axis,

increment size, determined by
SCALE

Draws a line with tic marks and scale values at one-inch
intervals labeling the axis.

LINE

LINE OR CURVE GENERATION

CALL LINE (X,Y,N,K)

x

y

N

K

array of data for standard X
direction

array of data for standard Y
direction

number of points to be plotted

skip factor, usually set to 1:
for K>l, every Kth point is
plotted.

Draws a line (or curve) through the specified points.

ADDITIONS TO THE FORTRAN LIBRARY

1. ACPT -- accept an arbitrary number of characters from the
controlling teletype, float each ASCII code character and
dump into an equal number of variables. The calling
sequence is:

CALL ACPT(CHl,CH2, •.. ,CHn) where CHl,CH2, .•• ,CHn are the
variables into which the results are to be dumped.

2. ATN -- Arctangent Function which may be called with one or
two floating point arguments. The subroutine decides
whether it has one or two arguments and then calls the
appropriate routine (ATAN or ATAN2). The format is:

ATN(X) or ATN(X,Y)

-70-

TENEX USER'S GUIDE
FORTRAN

January 1975

3 • COT -- Cotangent Function which computes COT(X) by the
simple expedient of COT(X}=COS(X)/SIN(X). The format is:

COT(X)

4. CPUTIM -- Subroutine to return the job CPU time in seconds.
The calling sequence is:

CALL CPUTIM(X)

5. CRAND -- Complex Random Number Generator which generates a
complex random number between two given complex limits. The
format is:

CRAND((A,B), (C,D)) where (A,B) is the lower limit and
(C,D) is the upper limit

6. DRANO -- Double Precision Random Number Generator which
generates a double precision random number between two given
double precision limits. The format is:

DRAND(A,B) where A is the lower limit and B is the upper
limit.

7. DTE -- Subroutine to return the real result of the current
date in the form MMDDYY. The calling sequence is:

CALL DTE (X)

8. FILES -- A collection of file handling utility subroutines
which include DELETE, FILOOK, PROTEC, RENAM, UNPROT.

a. DELETE -- perform a deletion on a specified filename.

The calling sequence is:

CALL DELETE(NAME,EXT,IANS)

where:

NAME -- file name of up to 5 characters
EXT -- file extension of up to 3 characters
!ANS -- indicates the result of the deletion

=0 Deletion successful
=l No such file
=2 File open for output
=3 Error in filename
=4 Error during LOOKUP
=5 Error in deletion

b. FILOOK perform a LOOKUP on a specified filename.

-71-

TENEX USER'S GUIDE
FORTRAN

January 1975

The calling sequence is:

CALL FILOOK(NAME,EXT,IANS,IDCODE)

where:

NAME -- filename of up to 5 characters
EXT -- file extension of up to 3 characters
IANS -- indicates the result of the LOOKUP

=0 LOOKUP successful
=l No such file
=2 File read-protected or open for output
=3 Error in filename
=4 Error during LOOKUP

IDCODE Optional 6-character ASCII IDcode

c. PROTEC set the protection code on a specified
filename so that only the owner can access, modify or
delete the file. The calling sequence is:

CALL PROTEC(NAME,EXT,IANS)

where:

NAME -- filename of up to 5 characters
EXT -- file extension of up to 3 characters
IANS -- indicates the result of setting the protection

=0 Protection set successfully
=l No such file
=2 File open for output
=3 Error in filename
=4 Error during LOOKUP
=5 Error in setting protection

d. RENAM -- performs a RENAME operation.
sequence

The calling

CALL RENAM(NEWNAM,NEWEXT,OLDNAM,OLDEXT,IANS)

where:

NEWNAM,NEWEXT filename and extension of resultant
file
OLDNAM,OLDEXT filename and extension of original
file

!ANS -- indicates the result of the RENAME
=0 RENAME successful
=l No such old file
=2 Old file read-protected or open for

output
=3 Error in filename (old or new)

-72-

TENEX USER'S GUIDE January 1975
FORTRAN

e.

=4 New name in use
=5 Error during RENAME

UNPROT set the protection code on a specified
filename so that anyone can access the file, but only
the owner can modify or delete it. The calling
sequence is:

CALL UNPROT(NAME,EXT,IANS)

where:

NAME -- filename of up to 5 characters
EXT -- file extension of up to 3 characters
!ANS -- indicates the result of unprotecting the

file
=0 File unprotected successfully
=l No such file
=2 File open for output
=3 Error in filename
=4 Error during LOOKUP
=5 Error in unprotecting the file

9. FPLOT -- a collection of FORTRAN Subroutines for the Calcomp
Plotter. All the subroutines use the FORTRAN PLOT Routine.

a. CIRCLE -- draws a circle, arc or spiral.
sequence is:

The calling

CALL CIRCL(X,Y,ANS,ANF,RS,RF,DI)

where:

X -- X-coordinate of the starting point
Y -- Y-coordinate of the starting point
ANS Starting angle of the radius vector

relative to the x-axis
ANF Finishing angle of the radius vector

relative to the x-axis
RS -- Length of the radius at ANS
RF -- Length of the radius at ANF
DI -- Either a 0 or l: where 0 means a solid line

and 1 a dashed line

NOTE: The user can cause many types of curves to
drawn by changing various parameters.

RS=RF draws a circle
RS<RF draws a spiral

If RS and RF span zero, a curlycue shaped figure

-73-

be

is

TENEX USER'S GUIDE
FORTRAN

drawn.

,January 1975

b. DASHL -- draw dashed lines connectinq- a series of data
points. The calling sequence is:

CALL DASHL(X,Y,N,INC)

where:

x Name of the array containing x-coordinates
of the points

y Name of the array containing Y-coordinates
of the points

N Total number of points in the x and y
arrays

INC -- Skip factor, i.e. set to 1 for all points,
set to 2 for every second point.

NOTE: If using INC greater than 1 be sure to start at
correct point. That is the arguments X and Y should be
X(INC), Y(INC) respectively.

c. DASHP -- draw a dashed line to a specified point. The
calling sequence is:

CALL DASHP(X,Y,DASH)

where:

x -- x-coordinate of point
Y -- Y-coordinate of point
DASH -- Length of dash (also space length).
If distance is less than dash length, DASH is
automatically reset to 1/2 the distance.

d. ELIPS -- draw an ellipse or elliptical arc. The
calling sequence is:

CALL ELIPS(X,Y,A,B,ANG,ANS,ANF,IPEN)

where:

x
y
A
B
ANG

ANS

ANF

x-coordinate of the starting point
Y-coordinate of the starting point
Length of semi-major axis
Length of semi-minor axis

-- Angle of semi-major axis with respect
to the x-axis

Starting angle of the radius
relative to the X-axis

-- Finishing angle of the radius vector

-74-

vector

--

TENEX USER'S GUIDE
FORTRAN

January 1975

relative to the X-axis
IPEN -- Pen position for first move

3=Pen up
2=Pen down

e. GRID -- draw a linear grid. The calling sequence is:

CALL GRID(X,Y,DX,DY,NXS,NYS)

where:

X X-coordinate of lower left hand corner
(origin)

Y Y-coordinate of lower left hand corner
DX -- Distance between lines parallel to Y-axis
DY -- Distance between lines parallel to X-axis
NXS Number of lines parallel to Y-axis
NYS -- Number of lines parallel to X-axis

NOTE: Two calls to GRID can be used to emphasize major
division lines. Example: First call with spacing of
.1 inches, second call with spacing every inch with
(X,Y) offset slightly from that of first call.

f. POLY -- draw an equilateral polygon.
sequence is:

CALL POLY(X,Y,SL,SN,ANG) where:

The calling

X X-coordinate of lower right hand corner
of polygon

Y Y-coordinate of lower right hand corner
of polygon

SL -- Side length
SN -- Number of sides
ANG -- Orientation angle of base with respect

to X-axis and point (X,Y)

g. RECT -- draw a rectangle. The calling sequence is:

CALL RECT(X,Y,XW,YH,ANGLE,IPEN)

where:

X -- X-coordinate of the starting point
Y -- Y-coordinate of the starting point
XW -- Width of the rectangle
YH -- Height of the rectangle
ANGLE -- Angle
IPEN -- Pen position of first move

-75-

TENEX USER'S GUIDE
FORTRAN

January 1975

3=Pen up
2:Pen down

10. GETRAN -- get both halves of random number routine which
gets the origin of the random number sequence and is used in
conjunction with ZETRAN to allow a "random" number sequence
to be repeated. The first random number generated after a
call to GETRAN will be the same as the arguments. The
calling sequence is:

CALL GETRAN(X,Y) where X is the location to store the high
part of the random number and Y is where to put the low part
of the random number.

11. GRAND -- Gaussian Random Number Generator which uses the
Gaussian method to generate a random number. The format is:

GRAND(X,Y) where X is the mean and Y is the variance.

12. !RAND -- Integer Random Number Generator which gets a random
integer uniformly distributed between two limits. The
format is:

13.

IRAND(I,J) where I is the lower limit and ,J is the upper
limit.

KJOB
job.

FORTRAN callable subroutine to
The calling sequence is:

CALL KJOB

logout the curt"ent

14. RAND -- Random Bits Random Number Generator which generates
a 36-bit integer random number. The result is returned in
AC0. The calling sequence is:

CALL RAND

15. RANDOM Random Real Number Generator which generates a

16.

random real number uniform between two limits. The format
is:

RANDOM(A,B) where A is the lower limit and B is the upper
limit.

REENTR -- FORTRAN
point within a
returned by the
interruption by
sequence is:

CALL REENTR

callable subroutine which sets a reentry
FORTRAN program to which control should be

monitor command REENTER after an
a Control-C or an error. The calling

-76-

TENEX USER'S GUIDE
FORTRAN

January 1975

which sets the reentry point at the next sequential FORTRAN
statement.

17. RN -- Random Real Number Generator which generates a random
real number between 1.0 and 131071.0. The calling sequence
is:

CALL RN(X)

18. SEC -- Subroutine to return the real result of the number of
seconds since midnight. The calling sequence is:

CALL SEC(X)

19. SEND -- type out an arbitrary number of characters on the
controlling teletypewriter which have been converted to
ASCII teletype code from an equal number of fixed and/or
floating point arguments. Floating point arguments are
first converted to fixed. The calling sequence is:

CALL SEND (CHl,CH2, ••• ,CHn) where CHl,CH2, ••• ,CHn are the
variables containing the arguments

20. SETDEV -- makes an entry in the FORTRAN Device Table so that
references to device number !DEV refer to device name DEV.
The calling sequence is:

'CALL SETDEV('DEV' ,IDEV)

21. SHIFT -- shift a word a given number of bits. An optional

22.

Mask may also be specified. (SHIFT is convenient for
character manipulation in FORTRAN.)

The calling sequence is:

CALL SHIFT(ARG,ARG2,ARG3,ARG4)

where:

ARG = Location of word to be shifted
ARG2 = Shift factor and direction of shift

(A "+" indicates left and a "-" indicates right)
ARG3 = Destination location for shifted word
ARG4 = Optional Mask factor

SUBTMP -- contains the FORTRAN subroutines RDTMP and
for reading and writing temporary files. The
sequences are:

CALL WRTMP(FILNAM,ADDR,LENGTH,IERROR)

-77-

WRTMP
calling

TENEX USER'S GUIDE
FORTRAN

January 1975

CALL RDTMP(FILNAM,ADDR,LENGTH,IREAD,IERROR)

where:

FILNAM -- hollerith string or any variable containing the
one to three character alphanumeric name of the TMP file

ADDR -- array name containing or receiving the contents of
the TMP file

LENGTH -- number of elements in array to be transferred

IREAD -- optional return argument giving the actual length
in words of the TMP file which was read. If the array is
too small for the TMP file, as much of the file as can fit
is transferred. If the file is shorter than the array, the
rest of the array is filled with zeroes.

IERROR -- optional return argument giving the following
error codes:

0
1
2
3
4

5
6

no errors
FILNAM not alphanumeric
an argument was of the wrong type
length out of range

core had insufficient soace and disk
available for TMP files
RDTMP: file not found
transmission error

not

23. TAN -- Tangent Function which computes TAN(X) by the simple
expedient of TAN(X)=SIN(X)/COS(X). The format is:

24.

25.

TAN(X)

TIM Subroutine to return the real result of the time of
day as HHMM. The calling sequence is:

CALL TIM(X)

ZETRAN -- sets the random number "initial value" and is used
to set the or1g1n of the random number sequence and in
conjunction with GETRAN to allow a "random" number sequence
to be repeated. The first random number generated after a
call to GETRAN will be the same as the first random number
generated after a call to ZETRAN with the same arguments.
The calling sequence is:

CALL ZETRAN(X,Y) where X contains the high order part and Y
contains the low order part

-78-

--

TENEX USER'S GUIDE
FORTRAN

January 1975

OTHER FORTRAN SUBROUTINES

See DECsysteml0 FORTRAN-IV Manual for further information on
subroutines.

FORTRAN ~£!~£ific Subr~~t!~ Package

The FORTRAN Scientific Subroutine Package is now available on the
TENEX System. To incorporate routines from the Package into a
FORTRAN Program, use the following command when loading with
LOADER after the main program has been loaded and before the alt
mode {$) key is struck:

SYS:SSP/L

This will invoke a search of the Scientific Subroutine Package.
The alt mode ($) invokes a search of the Standard FORTRAN
Library, and also terminates the loading procedure.

A complete description of all the subroutines is contained in the
IBM application Program Manual entitled, "System/360 Scientific
Subroutine Package, {360A-CM-03X) Version III, Programmer's
Manual". The IBM Manual Number is H20-0205-4. Copies of the
manual can be purchased from IBM and also from bookstores of many
of the universities.

DATA SCREENING

TALLY Totals, means, standard deviations, minimums,
maximums
BOUND - Selection of observations within bounds
SUBST - Subset selection from observation matrix
ABSNT - Detection of missing data
TABl - Tabulation of data {one variable)
TAB2 - Tabulation of data {two variables)
SUBMX - Building of subset matrix

CORRELATION AND REGRESSION

CORRE - Means, standard deviations, and correlations

and

MISR - Means, standard deviations, third and fourth moments,
correlations, simple regression coefficients and their
standard errors~ considers that data may be missing

ORDER - Rearrangement of intercorrelations
MULTR - Multiple linear regression
GDATA - Data matrix generation for polynomial regression
STPRG - Stepwise multiple linear regression
PROBT - Probit analysis
CANOR - Canonical correlation

DESIGN ANALYSIS

-79-

TENEX USER'S GUIDE
FORTRAN

January 1975

AVDAT - Data storage allocation
AVCAL - Sigma and Delta operation
MEANQ - Mean square operation

DISCRIMINANT ANALYSIS

DMATX - Means and dispersion matrix
DISCR - Discriminant functions

TRACE - Cumulative percentage of eigenvalues
LOAD - Factor loading
VARMX - Varimax rotation

TIME SERIES

AUTO - Autocovariances
CROSS - Cross covariances
SMO - Application of filter coefficients (weights)
EXSMO - Triple exponential smoothing

NONPARAMETRIC STATISTICS

KOLMO - Kolmogorov-Smirnov one-sample test
KOLM2 - Kolmogorov-Smirnov two-sample test
SMIRN - Kolmogorov-Smirnov limiting distribution values
CHISQ - Chi-square test for contingency tables
KRANK - Kendall Rank correlation
MPAIR - Wilcoxin's signed ranks test
QTEST - Cochran Q-test
RANK - Rank observations
SIGNT - Sign test
SRANK - Spearman rank correlation
TIE - Calculation of ties in ranked observations
TWOAV - Friedman two-way analysis of variance statistic UTEST
Mann-Whitney U-Test
WTEST - Kendall coefficient of concordance

GENERATION OF RANDOM VARIATES - DISTRIBUTION FUNCTIONS

NDTR - Normal Distribution function
BDTR - Beta distribution function
CDTR - Chi-square distribution function
NDTRI - Inverse of normal distribution function

ELEMENTARY STA'rISTICS AND MISCELLANY

MOMEN - First four moments
TTEST - Test on population means
BISER - Biserial correlation coefficient
PHI - PHI coefficient
POINT - Point-biserial correlation coefficient

-80~

-

TENEX USER'S GUIDE
FORTRAN

January 1975

TETRA - Tetrachoric correlation coefficient
SRATE - Survival rates

MATRICES: STORAGE

MCPY - Matrix copy
RCPY - Copy row of matrix into vector
CCPY - Copy column of matrix into vector
DCPY - Copy diagonal of matrix into vector
XCPY - Copy submatrix from given matrix
MSTR - Storage conversion
LOC - Location in compressed-stored matrix
CONVT - Single-precision/double-precision conversion
ARRAY - Vector storage/double-dimensioned storage conversion

MATRICES: OPERATIONS

GMADD - Add two general matrices
GMSUB - Subtract two general matrices
BMPRO - Product of two general matrices
GMTRA - Transpose of a general matrix
GTPRO - Transpose product of two general matrices
MADD - Add two matrices
MSUB - Subtract two matrices
MPRO - Matrix product (row into column)
MTRA - Transpose a matrix
TPRO - Transpose product
MATA - Transpose product of matrix by itself
SADD - Add scalar to matrix
SSUB - Subtract scalar from a matrix
SMPY - Matrix multiplied by a scalar
SDIV - Matrix divided by a scalar
SCLA Matrix clear and add scalar
DCLA - Replace diagonal with scalar
RADD - Add row of one matrix to row of another matrix
CADD - Add column of one matrix to column of another matrix
SRMA - Scalar multiply row and add to another row
SCMA - Scalar multiply column and add to another column
RINT - Interchange two rows
CINT - Interchange two columns
RSUM - Sum the rows of a matrix
CSUM - Sum the columns of a matrix
RTAB - Tabulate the rows of a matrix
CTAB - Tabulate the columns of a matrix
RSRT - Sort matrix rows
CSRT - Sort matrix columns
RCUT - Partition by row
CCUT - Partition by column
RTIE - Adjoin two matrices by row
CTIE - Adjoin two matrices by column
MPRC,DMPRC - Permute rows or columns

-81-

TENEX USER'S GUIDE
FORTRAN

January 1975

MFUN - Matrix transformation by a function
RECP - Reciprocal function for MFUN

MATRICES: INVERSION, SYSTEMS OF LINEAR EQUATIONS & RELATED
TOPICS

MINV - Matrix inversion
SINV, DSINV - Invert a symmetric positive definite matrix
SIMQ - Solution of simultaneous linear, algebraic equations
GELG, DGELG - System of general simultaneous linear equations
by gauss elimination
RSLMC Solution of simultaneous linear equations with

iterative refinement
FACTR - Triangular factorization of a nonsingular matrix
MFGR,DMFGR - Matrix factorization and rank determination
GELS,DGELS - System of general simultaneous linear equations

with symmetric coefficients
GELB,DGELB - System of general simultaneous linear equations
with band structured coefficients
MTDS,DMTDS - Divide a matrix by a triangular matrix
MLSS,DMLSS - Solution of simultaneous linear equations with

symmetric positive semidefinite matrix
MCHB,DMCHB - Triangular factorization of a symmetric positive
definite band matrix
MFSS,DMFSS - Triangular factorization and rank determination of
a symmetric positive semidefinite matrix
MFSD,DMFSD - Triangular factorization of a svmmetric positive
definite matrix
LLSQ,DLLSQ - Solution of linear least-squares problems

MATRICES: EIGENANALYSIS AND RELATED TOPICS

EIGEN EIGENVALUES and EIGENVECTORS of a real, symmetric
matrix

NROOT - Eigenvalues and eigenvectors of a special nonsymmetric
matrix
ATEIG - Eigenvalues of a real almost triangular matrix
HSBG - Reduction of a real matrix to almost triangular form

POLYNOMIALS: OPERATIONS

PADD - Add two polynomials
PSUB - Subtract one polynomial from another
PMPY - Multiply two polynomials
PDIV - Divide one polynomial by another
PCLA - Replace one polynomial by another
PADDM - Multiply polynomial by constant and add to another

polynomial
PVAL - Value of a polynomial

-82-

TENEX USER'S GUIDE
FORTRAN

January 1975

PVSUB - Substitute variable of polynomial
PILD - Evaluate polynomial and its first derivative
PDER - Derivative of a polynomial
PINT - Integral of a polynomial
PQSD - Quadratic synthetic division of a polynomial
PCLD - Complete linear synthetic division
PGCD - Greatest common divisor of two polynomials
PNORM - Normalize coefficient vector of polynomial
PECN,OPECN - Economization of a polynomial for symmetric range
PECS,DPECS Economization of a polynomial for unsymmetric

range

POLYNOMIALS: ROOTS

POLRT - Real and complex roots of a real polynomial
PRQD,DPRQD - Roots of a real polynomial by QD algorithm with

displacement
PRBM,DPRBM - Roots of a real polynomial by Bairstow's
PQFB,DPQFB - Determine a quadratic factor of a real

algorithm
polynomial

POLYNOMIALS: SPECIAL TYPES

CNP,DCNP - Value of N(th} Chebyshev polynomial
CNPS,DCNPS - Value of series expansion in Chebyshev
TCNP,DTCNP Transform series expansion in

polynomials to a polynomial

polynomials
Chebyshev

CSP,DCSP - Value of N(th} shifted Chebyshev polynomial
CSPS,DCSPS - Value of series expansion in shifted

polynomials
Chebyshev

TCSP,DTCSP - Transform series expansion in shifted Chebyshev
polynomials to a polynomial

HEP,DHEP - Value of hermite polynomial
HEPS,DHEPS - Value of series expansion in hermite
THEP,OTHEP - Transform series expansion in hermite
to a polynomial
LAP,DLAP - Value of Laguerre polynomial
LAPS,DLAPS - Value of series expansion in Laguerre
TLAP,DTLAP - Transform series expansion in Laguerre
to a polynomial
LEP,DLEP - Value of Legendre polynomial
LEPS,DLEPS - Value of series expansion in Legendre
TLEP,DTLEP Transform a series expansion

polynomials to a polynomial

ROOTS OF NONLINEAR EQUATIONS

polynomials
polynomials

polynomials
polynomials

polynomials
in Legendre

RTWI,DRTWI - Refine estimate of root by Wegstein's iteration
RTMI,DRTMI Determine root within a range by Mueller's

iteration
RTNI,DRTNI - Refine estimate of root by Newton's iteration

-83-


~~~~x ugRn'g GUID~ 
FORTRAN 

EXTREMUM OF FUNCTIONS 

FMFP,DFMFP - Unconstrained m1n1mum of a function of several 
variables -- Davidon method 

FMCG,DFMCG - Unconstrained m1n1mum of a function of several 
variables -- conjugate gradient method 

PERMUTATIONS 

PPRCN - Composition of permutations 
PERM - Operations with permutations and transpositions 

SEQUENCES: SUMS AND LIMITS 

TEAS,DTEAS - Limit of a given sequence 

ALI,DALI -
AHI,DAHI -
ACFI,DACFI 
ATSG,DATSG 
ATSM,DATSM 
ATSE,DATSE 
SG13,DSG13 

functions 

SE13,DSE13 
SE15,DSE15 

INTERPOLATION, APPROXIMATION, AND SMOOTHING 

Aitken-Lagrange Interpolation 
Aitken-Hermite Interpolation 
- Continued fraction interpolation 
- Table selection out of a general table 
- Table selection out of a monotonic table 
- Table selection out of an equidistant table 

Local least-squares smoothing of tabulated 

SE35,DSE35 - Local least-squares smoothing of equidistantly 
tabulated functions 
APFS,DAPFS - Solve normal equations for least-squares fit 
APCH,DAPCH - Least-squares polynomial approximation 
AR.AT,DARAT 
FRAT,DFRAT - Rational least-squares approximation 
APLL,DAPLL - Linear least-squares approximation 
FORIF - Fourier analysis of a given function 
FORIT - Fourier analysis of a tabulated function 
HARM,DHARM - Complex three-dimensional fourier analysis 
RHARM,DRHARM - Real one-dimensional Fourier Analysis 
APMM,DAPMM - Linear Chebyshev approximation over a discrete 

range 

NUMERICAL QUADRATURE 

QTFG,DQTFG - Integration of monotonically tabulated function by 
trapezoidal rule 
QTFE,DQTFE - Integration of equidistantly tabulated function by 
trapezoidal rule 

-84-
-



TENEX USER'S GUIDE 
FORTRAN 

January 1975 

QSF.DQSF - Integration of equidistantly tabulated function 
Simpson's rule 

by 

QHFG,DQHFG - Integration of monotonically tabulated function 
with first derivative by Hermitian formula of first order 

QHFE,DQHFE - Integration of equidistantly tabulated function 
with first derivative by Hermitian formula of first order 

QHSG,DQHSK - Integration of monotonically tabulated function 
with first and second derivatives by Hermitian formula of 

first order 
QHSE,DQHSE - Integration 

with first and second 
second order 

of equidistantly tabulated function 
derivatives by Hermetian formula of 

QATR,DQATR - Integration of a given function by trapezoidal 
rule together with Romberg's extrapolation method 
QG2,QG10,DQG4-DQG32 Integration of a given 

Gaussian Quadrature formulas 
# QL2-QL10,DQL4-DQL32 Integration of a given 

Gaussian-Laguerre quadrature formulas 
QH2-QH10,DQH8-DQH64 Integration of a given 

Gaussian-Hermite quadrature formulas 
QA2-QA10,DQA4,DQA32 Integration of a given 

associated Gaussian-Laguerre quadrature formulas 

NUMERICAL DIFFERENTIATION 

DGT3,DDGT3 Differentiation of a tabulated 
parabolic interpolation 

DET3,DDET3 

function 

function 

function 

function 

function 

by 

by 

by 

by 

by 

DETS,DDETS Differentiation of an equidistantly tabulated 
function 

DCAR,DDCAR - Derivative of a function at the center of an 
interval 

. DBAR, DD BAR - Derivative of a function at the border of an 
interval 

ORDINARY DIFFERENTIAL EQUATIONS 

RKl Solution of first-order differential equation by 
Runge~Kutta method 

RK2 - Tabulated solution of first-order differential equation 
by Runge-Kutta method 
RKGS,DRKGS Solution of system of first-order ordinary 

differential equations with given initial values by the 
Runge-Kutta method 

HPCG,DHPCG - Solution of general system of first-order ordinary 
differential equations with given initial values by Hamming's 
modified predictor-corrector method 
HPCL,DHPCL - Solution of linear system of first-order ordinary 
differential equations with given initial values by Hamming's 
modified predictor-corrector method 
LBVP,DLBVP - Solution of system of linear first-order ordinary 

-85-



# 
# 

TENEX USER'S GUIDE 
FORTRAN 

January 1975 

differential equations with linear boundary 
method of adjoint equations 

SPECIAL FUNCTIONS 

GMMMA - Gamma function 
DLGAM - Log of Gamma function 
BESJ - J Bessel function 
BESY - Y Bessel function 
BESI - I Bessel function I(0) 
BESK - K Bessel function 
EXPI - Exponential integral 
SICI - Sine cosine integral 
CS - Fresnel integrals 

conditions by 

CELl,DCELl - Complete elliptic integral of the first kind 
CEL2,DCEL2 - Complete elliptic integral of the second kind 
ELil,DELil - Generalized elliptic integral of the first kind 
ELI2,DELI2 - Generalized elliptic integral of the second kind 
JELF,DJELF - Jacobian elliptic functions 

EISPACK 

# EISPACK is the FORTRAN Eigensystem Subroutine Package which was 
# developed at Argonne National Laboratory and is now available on 
# BBN/TENEX. To incorporate routines from the package into a 
# FORTRAN Program, use the following command when loading with 
# LOADER after the main program has been loaded and before the 
# altmode ($) key is struck: 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

SYS:EISPACK/L 

This will invoke a search of the Eigensystem Subroutine Package. 
The altmode ($) invokes a search of the Standard FORTRAN Library, 
and also terminates the loading procedure. 

A list of the routines 
follows. 

in the Eigensystem Subroutine Package 

BALA NC 

BAL BAK 

CBAL 

CBABK2 

ELMHES 

EIGENSYSTEM SUBROUTINE PACKAGE (EISPACK) 

BALANCES A REAL GENERAL MATRIX. 

BACK TRANSFORMS THE EIGENVECTORS OF 
TRANSFORMED BY BALANC. 

BALANCES A COMPLEX GENERAL MATRIX. 

THAT REAL MATRIX 

BACK TRANSFORMS THE EIGENVECTORS OF THAT COMPLEX MATRIX 
TRANSFORMED BY CBAL. 

REDUCES A REAL GENERAL MATRIX TO UPPER HESSENBERG FORM 

-86-

·-· 



TENEX USER'S GUIDE 
FORTRAN 

January 1975 

# 
# 
# ELMBAK 
# 
# 
# ORTHES 
# 
# 
# ORTBAK 
# 
# 
# TREDl 
# 
# 
# TRED2 
# 
# 
# 
# TRBAKl 
# 
# 
# FIG! 
# 
# 
# BAKVEC 
# 
# 
# COMBES 
# 
# 
# COMBAK 
# 
# 
# 
# HTRIDI 
# 
# 
# HTRIBK 
# 
# 
# HQR 
# 
# 
# HQR2 
# 
# 
# INVIT 
# 
# 
# 
# TQLl 

USING ELEMENTARY TRANSFORMATIONS. 

BACK TRANSFORMS THE EIGENVECTORS OF 
HESSENBERG MATRIX DETERMINED BY ELMHES. 

THAT UPPER 

REDUCES A REAL GENERAL MATRIX TO UPPER HESSENBERG FORM 
USING ORTHOGONAL TRANSFORMATIONS. 

BACK TRANSFORMS THE EIGENVECTORS OF 
HESSENBERG MATRIX DETERMINED BY ORTHES. 

THAT UPPER 

REDUCES A REAL SYMMETRIC MATRIX TO A SYMMETRIC 
TRIDIAGONAL MATRIX USING ORTHOGONAL TRANSFORMATIONS. 

REDUCES A REAL SYMMETRIC MATRIX TO A SYMMETRIC 
TRIDIAGONAL MATRIX ACCUMULATING THE ORTHOGONAL 
TRANSFORMATIONS. 

BACK TRANSFORMS THE EIGENVECTORS OF THAT SYMMETRIC 
TRIDIAGONAL MATRIX DETERMINED BY TREDl. 

TRANSFORMS A CERTAIN REAL NON-SYMMETRIC TRIDIAGONAL 
MATRIX TO A SYMMETRIC TRIDIAGONAL MATRIX. 

BACK TRANSFORMS THE EIGENVECTORS OF THAT SYMMETRIC 
TRIDIAGONAL MATRIX DETERMINED BY FIG!. 

REDUCES A COMPLEX GENERAL MATRIX TO COMPLEX UPPER 
HESSENBERG FORM USING ELEMENTARY TRANSFORMATIONS. 

FORMS THE EIGENVECTORS OF A COMPLEX GENERAL MATRIX FROM 
THE EIGENVECTORS OF THAT UPPER HESSENBERG MATRIX 
DETERMINED BY COMHES. 

REDUCES A COMPLEX HERMITIAN MATRIX TO A REAL SYMMETRIC 
TRIDIAGONAL MATRIX USING UNITARY TRANSFORMATIONS. 

BACK TRANSFORMS THE EIGENVECTORS OF THAT SYMMETRIC 
TRIDIAGONAL MATRIX DETERMINED BY HTRIDI. 

DETERMINES THE EIGENVALUES OF A REAL UPPER HESSENBERG 
MATRIX. 

DETERMINES THE EIGENVALUES AND EIGENVECTORS OF A REAL 
UPPER HESSENBERG MATRIX. 

DETERMINES THOSE EIGENVECTORS OF A REAL UPPER 
HESSENBERG MATRIX CORRESPONDING TO SPECIFIED 
EIGENVALUES. 

DETERMINES THE EIGENVALUES OF A SYMMETRIC TRIDIAGONAL 

-87-



TENEX USER'S GUIDE 
FORTRAN 

January 1975 

# 
# 
# TQL2 
# 
# 
# IMTQLl 
# 
# 
# IMTQL2 
# 
# 
# TSTURM 
# 
# 
# BISECT 
# 
# 
# COMLR 
# 
# 
# COMLR2 
# 
# 
# CINVIT 
# 
# 
# 
# RATQR 
# 
# 
# ELTRAN 
# 
# 
# ORTRAN 
# 
# 
# FIGI2 
# 
# 
# 
# TINVIT 
# 

MATRIX. 

DETERMINES THE EIGENVALUES AND EIGENVECTORS OF A 
SYMMETRIC TRIDIAGONAL MATRIX. 

DETERMINES THE EIGENVALUES OF A SYMMETRIC TRIDIAGONAL 
MATRIX. 

DETERMINES THE EIGENVALUES AND EIGENVECTORS OF A 
SYMMETRIC TRIDIAGONAL MATRIX. 

DETERMINES SOME EIGENVALUES AND EIGENVECTORS OF A 
SYMMETRIC TRIDIAGONAL MATRIX. 

DETERMINES SOME EIGENVALUES OF A SYMMETRIC TRIDIAGONAL 
MATRIX. 

DETERMINES THE EIGENVALUES 
HESSENBERG MATRIX. 

OF A COMPLEX UPPER 

DETERMINES THE EIGENVALUES AND EIGENVECTORS OF A 
COMPLEX UPPER HESSENBERG MATRIX. 

DETERMINES THOSE EIGENVECTORS OF A COMPLEX UPPER 
HESSENBERG MATRIX CORRESPONDING TO SPECIFIED 
EIGENVALUES. 

DETERMINES SOME EXTREME EIGENVALUES OF A SYMMETRIC 
TRIDIAGONAL MATRIX. 

ACCUMULATES THE TRANSFORMATIONS IN THE REDUCTION OF A 
REAL GENERAL MATRIX BY ELMHES. 

ACCUMULATES THE TRANSFORMATIONS IN THE REDUCTIONS OF A 
REAL GENERAL MATRIX BY ORTHES. 

TRANSFORMS A CERTAIN REAL NON-SYMMETRIC TRIDIAGONAL 
MATRIX TO A SYMMETRIC TRIDIAGONAL MATRIX ACCUMULATING 
THE DIAGONAL TRANSFORMATIONS. 

DETERMINES SOME EIGENVECTORS OF A SYMMETRIC TRIDIAGONAL 
MATRIX. 

-88-

·-

-



TENEX USER'S GUIDE 
FRKCOM 

January 1975 

FRKCOM 

The program FRKCOM allows the user to compare an address space 
with the address space of a file (such as a subsystem) whether or 
not the file has shared pages (BINCOM does the wrong thing on 
such files). FRKCOM is primarily useful for determining if the 
loading of a number of .REL files matches a SAVE or SSAVE file. 

FRKCOM will complain if there are any significant differences in 
the spaces by telling the starting address where changes begin in 
a page, then hopping to the next page. No attempt is made to get 
things back into sync a la SRCCOM since this is virtually 
impossible with relocated binary code. Comparisons begin at 
location 140 and end at 775777(inclusive). The top two pages of 
the EXEC's immediately inferior fork's address space are used by 
FRKCOM itself. An example of FRKCOM's use follows. 

@GET <CHIPMAN>RUNOFF 
@MERGE <SUBSYS>FRKCOM 
@GO 777000 

TYPE FILE TO COMPARE WITH FORK CONTENTS: <SUBSYS>RUNOFF.SAV% 

COMPARE FINISHED 
@ 

-89-



# 
# 
# 

TENEX USER'S GUIDE 
FUDGE2 

January 1975 

FUDGE2 

# The FUDGE2 program is used to update files containing one or more 
# relocatable binary programs and to manipulate programs within 
# program files. Three files are used in the updating process. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
:It 
# 
# 
:It 
:It 
# 
# 
# 
# 
# 
:It 
# 
# 
:It 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

1. 

2. 

3. 

A master file containing the file to be updated. 

A transaction file containing the file 
used when updating. 

of 

An output file containing the updated file. 

programs to be 

All three files can be on the same device if th~ device 
The two input files can be on the same DECtape. 

is DSK. 

The desired function of FUDGE2 is specified by a command code at 
the end of the command string. Only one command code can be 
specified in each command string. The command string is then 
terminated with an ESCApe (ALTMODE). Switches can also be used 
to manipulate file directories and to position a magnetic tape. 

For further information on FUDGE2 please refer 
Assembly Language Handbook, UTILITY Section. 

to DECsysteml0 

@FUDGE2 

*output dev:file.ext=master dev:file.ext<programs>, transaction 
aev:file.ext<programs> (command)$ 

output dev: 

master dev: 

transaction dev: 

file.ext 

= the device on which the updated file 
written. If omitted, DSK is assumed. 

is 

= the device containing the file to be updated. 
If omitted, the default is OSK. 

= the device containing the files of programs 
to be used in the updating process. When 
more than one file is transferred from 
magnetic tape or paper tape, a colon must 
follow the device name for each file. For 
example, 

MTA: Transfer 3 files 

If the device is omitted, OSK is assumed. 

= the file name and extension of each file. 

-90-

·-



TENEX USER'S GUIDE 
FUDGE2 

January 1975 

# File names must be specified for directory 
# devices, but the extension can be omitted. 
# If the extension is not given, it is assumed 
# to be .REL unless the /L switch appears in 
# the command string. In this case, the output 
# extension .LST is assumed. 
# 
# Project-programmer numbers appearing after a 
# file name apply to that file only. If the 
# project-programmer number appears before the 
# file name, it applies to all subsequent files 
# until another device is specified. 
# 
# 
# <programs> = Names of programs (on OSK or DTA only) to be 
# used in the updating process. They are 
# grouped within angle brackets in the same 
# order as they appear in the file and are 
# separated by commas. When manipulating all 
# the programs within a file, only the file 
# name need be specified. Program names cannot 
# appear for the output file. 
# 
# 
# (command) = Code for the function to be performed. This 
# code can be either preceded by a slash or 
# enclosed in parentheses and must appear at 
# the end of the command string. Each command 
# results in the updated file being output to 
# the output device. 
# 
# Switches are: 
# 
# /A append 
# /B backspace one file 
# /C copy and delete local symbols 
# /D delete 
# /E extract 
# /H type this text 
# /I insert 
# /K skip one file 
# /L list programs 
# /R replace 
# /S list entries 
# /T skip to logical eot 
# /W rewind 
# /X index 
# /Z zero directory 
# 

-- # 

-91-



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
GLOB 

January 1975 

GLOB 

GLOB reads multiple binary program files produced by MACRO and 
FORTRAN and generates an alphabetic cross-referenced list of all 
the global symbols encountered. It may also search specified 
files in Library Search Mode, checking for globals only if the 
program was loaded by the LOADER in Library Search Mode. For 
further information on Glob read DECsysteml0 Assembly Language 
Handbook, Utilities Section. 

Standard Command String Format: 

*outputfile=inputfile,inputfile,inputfile/switch/switch<Altmode> 

Switches: 

# /A include All global symbols in the GLOB listing (this is the 
# default) 
# /E include only Erroneous global symbols (undefined or multidefined) 
# in the GLOB listing 
# /F include only Fixed global symbols in the GLOB listing 
# /H type the Help message 
# /L Library search mode on 
# /M Library search mode off 
# /N include only Unreferenced global symbols in the GLOB listing 
# /P include multiple specifications in references lists 
# /Q exclude /P 
# /R include only Relocatable qlobal symbols in the GLOB listing 
# /S include only multiply Specified global symbols in the GLOB listing 
# /X complement title switch 
# 
# 
# 
# 
# 
# 

Defaults: DSK:.REL[selfl on input 
DSK:same as infile.GLB[self] on output if no out, TTY: 

Flags used in listings: 

# M 
# N 
# s 
# u 

multiple definitions 
never referenced 
defined several times 
undefined 

with the same value 

-92-



TUG 
HERMES 

HERMES 

The HERMES Message System is a computer program for sending and 
receiving messages over a computer network. The HERMES System 
has features that help the user read messages, compose messages 
for sending, and create and manage files of messages. 

BASIC INSTRUCTIONS FOR USING THE HERMES SYSTEM 

ENTERING AND LEAVING 

Type HERMES<CR> to the TOPS-2121 prompt 11 @11 • The HERMES Message 
System responds with the HERMES prompt ">", and surveys any 
messages that have arrived since your last session. 

For example: 

@HERMES<CR> 
HERMES 4.0.22 l-OCT-77 
-+ 8 252 3121 Sep 77 MYER at BBN-TENEXA Plans for visit 

When you want to leave HERMES, type: 

>QUIT<CR> 

If you have DELETED any messages, HERMES asks whether you want to 
EXPUNGE them. When messages are EXPUNGED, they are physically 
removed from the file, and the remaining messages are renumbered. 

If you see the prompt ">>" or ">>>", you must first type "DONE"> 

>>DONE<CR> 
>QUIT<CR> 

After you QUIT, you may continue by typing CONTINUE to the @ 
prompt: 

@CONTINUE<CR> 
> 

If you wish to logout directly from HERMES, type 

5-1 ADD-10-26-77 



TUG 
HERMES 

>LOGOUT<CR> 

READING MESSAGES 

HERMES tells you when you have messages that have arrived 
recently. HERMES prints a "survey" of each message, when you log 
in or when a new message arrives: 

-+ 1 536 15-Jul-77 MOOERS at BBN-TENEXA HERMES HELP INFORMATIO 

For a quick survey of all messages in your current message-file, 

>SURVEY<CR> 

To print the text of a single message: 

><LF> The LINEFEED key (NOT followed by <CR>) 
prints the NEXT message, AND 
sets it to be the CURRENT message. 

When a new message arrives, it is generally the NEXT message, 
unless you have been skipping around in your file. 

>~ 

PREVIOUS 

>PRINT<CR> 

READING SPECIFIC MESSAGES 

>SURVEY 4,2,5:7<CR> 

>PRINT 4,2,5:7<CR> 

SENDING MESSAGES 

The UP-ARROW or CARET key (NOT 
followed by <CR>) prints the 

message AND 
message. 

sets the CURRENT 

prints the CURRENT message. 

surveys messages 4,2,5,6,7. 

prints the messages in the sequence 
AND sets the CURRENT message to 7. 

5-2 ADD-10-26-77 



TUG 
HERMES 

To send a message, type "COMPOSE" to the HERMES prompt ">": 

>COMPOSE<CR> 

COMPOSE gives you a series of prompts that guide you through 
composing a message. The To: and Cc: fields must be filled in 
with names of "directories" on BBN computers. The To, Cc and 
Subject fields end with <CR> but the Text field ends with 
<CTRL-Z>. 

After you type <CTRL-Z>, the system asks 

SEND?: You may answer YES<CR> or NO<CR>. 

If you answer YES<CR>, HERMES SENDS your message. If HERMES is 
able to deliver it immediately, it tells you that the copy of the 
message to an addressee is "delivered". If not, HERMES queues 
the message for another program,named MAILER, which picks the 
message up a few minutes later and delivers it. HERMES does not 
tell you which messages are queued. 

If you type NO<CR>, HERMES does not SEND the message. Instead, 
you can do more work on the message. For example, you can add 
another name to the CC: field: 

>>CC: YOURNAME<CR> Notice the double prompt ">>". 

When you want to send the message, type SEND<CR> and "confirm" 
with a second <CR>. 

>>SEND<CR> (CONFIRM) <CR> 
Using the SEND command takes you 

back to the ">" prompt. 

If you change your mind about sending, after the computer prints 
(CONFIRM), you can stop it with <CTRL-U> on TOPS-20. 

REPLYING TO MESSAGES 

To reply to a message in your message-file: 

>REPLY<CR> gives you prompts for your reply to 
back to the CURRENT message. 

5-3 ADD-10-26-77 



TUG 
HERMES 

>REPLY 5<CR> 

FORWARDING MESSAGES 

replies to Message 5. 

To forward a message in your message-file to someone else: 

>FORWARD <CR> 

MESSAGE MANAGEMENT 

forwards the CURRENT message, and 
prompts you for addressees and 
comments. 

To organize your messages, HERMES provides facilities for 
grouping messages into named sequences. A named sequence is an 
ordered set of messages. Individual messages can appear in as 
many different named sequences as you wish. 

For example, to create a sequence named ANSWERED, you type: 

>CREATE SEQUENCE ANSWERED<CR> 

This enters 
double arrow. 

the sequence editor and HERMES prompts you with a 
To add messages 3,4,5 and 7 to this sequence: 

>>ADD 3: 5, 7<CR> 
>>DONE 

Once a sequence is created, you can add messages without entering 
the sequence editor. You use the ADD command and specify both 
the messages and the named sequence: 

>ADD 9 ANSWERED<CR> 

To find out which sequences a message is in, use the WHEREIS 
command: 

>WHEREIS 9 
9 is in ANSWERED 

To see a list of all messages in a sequence, for example in 
ANSWERED, type: 

5-4 ADD-10-26•77 

·-



TUG 
HERMES 

>SHOW ANSWERED<CR> 
3:5,7,9 

Sequences can be used in all message handling commands. For 
example, to survey all messages in ANSWERED, type: 

>SURVEY ANSWERED<CR> 

To list all of them on the line-printer, type: 

MESSAGE-FILES 

The message-file you see when you enter the HERMES system is your 
INBOX, which has the file-name MESSAGE. 

To direct the attention of the HERMES system to 
message-file, type 

>GET <f ile-name><CR> 

another 

If your FILENAME-INPUT switch is set to HERMES, all files have 
single-word names, which are extended and recognized like other 
words in HERMES commands. If you have a file named NEWFILE, and 
no other files beginning with NEW, you can type: 

>Get NEW<CR> (CONFIRM)<CR> 

To see a list of your message-files, type 

>Show MESSAGE-FILES<CR> 

For more information, type 

>DESCRIBE FILENAME-INPUT-SWITCH<CR>. 

PANIC BUTTONS 

<CTRL-0> stops print-out of 
<RUBOUT/DELETE> TENEX: stops 
<CR>. 

text anywhere; prints AO. 
a command before the final 

<CTRL-U> 
<CTRL-E> 

TOPS-20: stops a command before the final <CR>. 
stops a command at any time; prints AE. 

5-5 ADD-10-26-77 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



TUG 
HERMES 

<CTRL-C> stops HERMES anywhere and returns you to the 
operating system; prints Ac. You can 
recover by typing CONTINUE to the @ prompt. 

To type a control character, e.g., <CTRL-C>, hold down the CTRL 
key while you type the letter c. 

NOTE: Occasionally, by accident, you may get into a 
that runs under HERMES in a "lower fork". Such a 
will have a different prompt (such as "*"). 
situation, <CTRL-C> will return you to HERMES. 

EDITING CHARACTERS 

<CTRL-A> TENEX: deletes a single character. 
<RUBOUT/DELETE> TOPS-20: deletes a single character. 
<CTRL-W> deletes a single word. 
<CTRL-Q*> deletes a line of text. 
<CTRL-R> retypes a line of text. 
<CTRL-S*> retypes an entire field. 
<CTRL-Z> ends the Text:-field: prints AZ. 

program 
program 
In this 

*On TOPS-20, in "terminal page mode", <CTRL-Q> freezes the 
screen of the scope and <CTRL-S releases the scope. 

TYPING IN COMMANDS 

You can use either the space character or the Escape-key (or ALT 
MODE) to separate the different sections within a command. 

The Escape-key <ESC> causes HERMES to print out completely any 
word used in command and then to print "noise words" to introduce 
the next word, if it is possible to type one. At such a point, 
typing <ESC> causes HERMES to insert the "default" word. Most 
commands have a set of defaults, chosen to be most useful to the 
beginning user. 

For example, PRINT prints the current message in the form 
specified by the PTEMPLATE onto your terminal (symbol TTY:). 

ADD-10-26-77 



TUG 
HERMES 

If the current message is No. 10, and you type "PR", followed by 
a series of <ESC>'s you will see: 

>PRINT (messages) 10 (using template) PTEMPLATE (on file) TTY: 

You may type "?" at almost any point in the HERMES system to see 
what words you are allowed to type in next. 

>? gives a list of top-level HERMES commands. 
>SU? lists commands that begin with "SU". 
>SURVEY ? lists all the things that you may type in at 
that position in the "SURVEY" command. 

Use ? and <ESC> freely. 

? tells what choices you have. 
<ESC> tells what defaults the system has set up. 

HERMES "LIFE-STYLES" 

The FILENAME-INPUT switch controls whether file-handling is done 
entirely through the HERMES system or whether TENEX file-names 
and TENEX commands for showing and deleting files must be used. 

The SPACE-FUNCTION switch and the CR-FUNCTION switch, change the 
way the space character and <CR> behave. 

>DESCRIBE LIFE-STYLES<CR> 
for more information. 

NEWS, HELP AND SUGGESTION COMMANDS To print the latest News on 
your terminal, type NEWS. 

>NEWS<CR> 

You can also output News or Help to the line-printer or a file. 

>NEWS LPT:<CR> 
or 
>NEWS <f ile-name><CR> 

5-7 ADD-10-26-77 



TUG 
HERMES 

>HELP LPT: <CR> 
or 
>HELP <f ile-name><CR> 

If you have suggestions or questions, please use the SUGGESTION 
command: 

>SUGGESTION<CR> 

This command prompts you for Subject and Text, then creates a 
message addressed to the HERMES staff. 

ON-LINE DOCUMENTATION 
basically a reference 
associated examples. 
contents or OUTLINE. 

>OUTLINE<CR> 

The on-line documentation material is 
manual arranged as short topics with 
The topics are organized in a table of 

shows the first two layers of topic names, 
and is equivalent to the command 

>OUTLINE HERMES (to depth) 2<CR> 

You may use the OUTLINE command with any topic, and with the 
depth argument set to 2, 3, 4 ••. All. 

To see the contents of a topic, type 

>DESCRIBE <topic><CR> 

The topic defaults to "HERMES" at top command level, to 
"MESSAGE-EDITOR" when you are creating a message, and to other 
appropriate topics in other parts of the system. For more 
information, type 

>DESCRIBE DOCUMENTATION<CR> 

5-8 ADD-10-26-77 -



TUG 
HG Manual 

HG Manual 

HG is a simple message reading program. It is designed to allow 
manipulation of files of messages in an unobtrusive manner. The 
following is a summary of HG's commands. (As of 8-Aug-77) 

An item list can be any of the following things: 
n - where is a given item 
nl,n2,n3 where each nn is an item number (need not be 
increasing values 
nl-n2 - where n2 > nl (Note that nl:n2 will also work) 
altmode or % - which is shorthand for the highest numbered item 
Any combination of the above se·parated by commas. 
(nl,n2-n3,<altmode>) 
carriage return - use the list that showed up with the last brief 
print out (1 line) of the messages. 

ALWAYS-SHOW - Set a list of items to be always shown when HG starts 
up; as if they were new items. This is for messages that one might 
want to be reminded about. 

BEFORE - Have the filter show only messages before a given date and 
time. The time may be omitted, 00:00 of the date will be assumed. 

CC - Require a given name in the CC list. This is part of the global 
filter. 

DELETE - Delete a specified list of items. 
asked for when the list is given. 

Confirmation will be 

DON'T-ALWAYS-SHOW - Negates the setting of ALWAYS SHOW. 

FILTER-STATUS - Current settings of the global filter. (BEFORE, CC, 
SINCE, FROM, SUBJECT, & TO settings). 

FORWARD - Forward a list of items to a list of addressees. The 
following subcommands exist: 

CC Add to the current carbon copy list (even if previously 
null). 

DELETE - Remove any addressees starting with the given string 
(partial string match) from the TO and/or CC lists. 

DISPLAY - Display any or ALL of the various fields. 

FROM - Set the "FROM" field to a specific name. The SENDER field 
remains the logged in user name. 

QUIT - Exit, aborting what was in progress. 

6-1 ADD-HJ-26-77 



TUG 
HG Manual 

SUBJECT - Set the subject field to a desired string. 

TEXT - Insert text that is to be inserted before the forwarded 
text. Z (control-Z) to end input, E (control-E) to abort. 

TO - Add to the current list of addressees. 

A carriage return to the "For>" prompt will cause "[Confirm]". 
Confirming with another carriage return will cause the message to 
be sent. 

FROM Have filter show items from a single user name. Enough 
characters to make the name unique is sufficient. 

GET - Bring a specified message file into the working area. If the 
current message file has been changed (any deletes done), the user 
will be asked if the file should be updated before the new file is 
read in for use. 

HELP Help works one of two ways. HELP<cr> gives a short more 
general help message. HELP <command name> will give a help string 
specific to that command. 

LIST Give a brief list of the messages. A single line is printed 
for each item in the file. The filter is applied for this command & 
those items coming through the filter set the default item list. 
Each single line contains the item number, the size of the message 
(**** means > 9999 chars in the message) the date the message was 
received, the author of the message (unless the user authored it, in 
this case the first entry of the TO list is given), and as much of 
the subject line that will fit on the rest of the line. LIST's 
subcommands may be invoked by using a"," and carriage return to 
terminate the list command. Subcommands are: 

LPT - Put the brief list out to the line printer. 
short form for OUTPUT (to file) LPT: 

This is a 

OUTPUT - Put the brief list out to a specified file. 

NO Turns off various parts of the filter. (NO SUBJECT, NO BEFORE 
etc.) 

NOT - Negates various commands; like PERPETUAL. 

PERPETUAL - Sets a specified list of items to be UNDELETABLE. 
perpetual setting is currently only honored by HG. 

This 

PROFILE Allows the user to set various parameters that will be 
retained from session to session. They are as follows: 

CC-LIST - Show the CC list when printing the message (read 
command) 

6-2 ADD-Hl-26-77 



TUG 
HG Manual 

COMBINE Ties together the ALWAYS SHOW & PERPETUAL commands. 
This means that using one of these commands automatically invokes 
the other. 

CONFIRM-UPDATES - Require that the user be asked if a file should 
be updated. This is asked if items have been deleted. HG will 
expunge these deleted items if YES is given in response the 
confirm request. 

DELETE - Set default parameters for deletion as follows: 

REPLY - Delete the message after a REPLY has been made. 

WRITE - Delete the message after it has been written to a 
file. 

DISPLAY-PROFILE Prints the current settings of the various 
parameters settable in the profile. Also displays the last date 
& time various files were read with HG. 

DON'T -

COMBINE 
together. 

Don't tie the ALWAYS SHOW & PERPETUAL commands 

CONFIRM-UPDATES - Don't request confirmation when an update 
of a message box is to be done. 

DELETE - Negates the various settings of DELETE as follows: 

REPLY Don't delete messages after a REPLY (system 
default) . 

WRITE - Don't delete messages after writing them to a 
file (system default). 

ERASE Erase the screen (of scopes only) with the following 
string of characters. This allows a user to use the hardware 
erase feature in his scope. 

FORM-FEED Do a form feed before printing each message. This 
setting works only on scope terminals. 

FROM - Sets the default FROM field. This string will be used 
whenever none is given when SENDing, REPLYing, or FORWARDing a 
message. 

HG-NEWS - In the normal setting, new items of interest are shown 
to the user at start up. (Once only). These items are from the 
file <DOCUMENTATION>HG.CHANGES. 

6-3 ADD-10-26-77 



TUG 
HG Manual 

NO - Negates various settings of the profile. 

PAUSE - Pause in READ subcommand mode after each message. (This 
is the default setting) 

PROTECTION - Sets the default protection for files written by HG. 

QUIT - Return to main command level. 

REMOVE Remove a file name/date & time entry from the profile. 
Note that this command re-numbers the entries. 

TO-LIST - Show the TO list when printing the message (read 
command) 

VERBOSE - Show all of the message during the read command. 

QUIT Exit from HG. If any changes have been made to the file 
(deletes) the user will be ask if the file should be updated. 
Respond with a Y or an N and confirm either with a carriage return. 

READ Reads a specified item list. If the user is in PAUSE mode 
after each message the user will have the following options: 

ADDRESS-LIST - Print the TO LIST & CC LIST that the current 
message was sent to. 

ALWAYS-SHOW - Mark this item to always be shown at start up. 

CC-LIST - Print the CC LIST the message was sent to. 

DELETE - Delete the current item. 

DON'T - Negates ALWAYS SHOW or DELETE. Don't delete negates the 
delete on write & delete on reply settings. default or the 
DELETE command. 

FORWARD Forwards the current item to the supplied list of 
addressees. See the main command level documentation about 
FORWARD for subcommands. 

LPT Write a copy of the current message to the line printer. 
The DELETE settings are completely ignored on this command 
(DELETE can't ever happen). The LPT command also attempts to 
break lines longer than 72 characters so that they don't run off 
the print page. 

NOT Currently only NOT PERPETUAL. Makes the current item 
deletable. 

PERPETUAL - Make the current item UNdeletable. 

6-4 ADD-10-26-77 

-· 



TUG 
HG Manual 

QUIT - Abort the rest of the read command. 

REPLY - Reply to the current message. Fills in the TO, CC and 
subject fields with those of the message just read. It also 
places the string "In response to your message of <date & time>" 
into the body of the message. Subcommands are as follows: 

CC - Add to the current carbon copy list of addressees. 

DELETE - Delete any addressees starting with the given string 
(partial string match) from the TO and/or CC lists. 

DISPLAY - Display the current state of the various fields or 
ALL. 

FROM - Fills in the FROM field with the desired string. 

QUIT - Exit from REPLY aborting what has been done. 

SUBJECT - Override the default subject with the supplied one. 

TEXT - Allows the text body of the REPLY to be typed in. B 
(Control B) maybe used to insert a file or invoke TECO. Z 
(control-Z) to end input, E (control-E) to abort). 

TO - Add to the current list of addressees. 

A carriage return will request a confirmation ([Confirm]) 
which if confirm with another carriage return will send the 
reply. 

SEND Compose and send a message. See main level commands for 
details on the commands to the "Send>" prompt. 

STATUS - Gives the current status of this item. 

TO-LIST - Print the TO list the current message was sent to. 

UNDELETE - Undelete a list of items. Items can be undeleted up 
to the time an "update" is done on the mailbox. 

WRITE - Write the current message to a specified file. 

SAVE - Write all items to a specified file. 

SEND Compose and send a message. The commands to the "Send>" 
prompt are: 

CC - Add to the current carbon copy list of addressees. 

DELETE - Delete any addressees from the TO and/or CC lists that 
start with the specified string (partial matches). 

6-5 ADD-10-26-77 



TUG 
HG Manual 

DISPLAY Display any cf the various fields. ALL will display 
all of them. 

FROM - Specify the FROM field. Used when one wishes to have 
"Jimmy Carter" rather than 11 CARTER@WASH 11 as the from field. 

QUIT - Exit aborting anything that been done so far. 

SUBJECT - Specify the subject field for this message. 

TEXT Type in the body of the message. 
used to insert a file or invoke TECO. Z 
input, E (control-E) to abort. 

B (Control-B) can be 
Tcontrol-Z) to end 

TO - Add to the current list of addressees. 

A carriage return will respond with "[Confirm]". Confirming with 
another carriage return will cause the message to be sent. 

SINCE - Set the filter so that item after a given date an time are 
seen. 

STATUS - Reports the current status of specified list of items. 

SUBJECT - Set the filter so only items of a specified subject will be 
seen in the LIST command. 

TO - Set the name to be required in the TO list by the global filter. 

UNDELETE - Undelete a list of items. 

VERBOSE - A temporary (current session only) setting that causes the 
entire message to be printed in the READ command. (Over-rides the 
current profile settings) . 

WRITE - Write an item list to a specified file. Terminating the file 
name with a comma will give the user the following options: 

ABORT - Abort the write & return to command mode. 

BEGIN 
purpose. 

Start the write. Carriage return serves the same 

DELETE - Causes each item to be deleted after writing it to the 
file. 

SEPARATE Put each item on its own piece of paper. 
you only use this when writing to the LPT: or a file 
want to read with HG or similar program. 

Make sure 
you don't 

6-6 ADD-10-26-77 



TUG 
HG Manual 

WRAP Attempts to break lines longer than 72 characters so the 
end of long lines aren't lost on the LPT:. As with SEPARATE, use 
this only when writing to the LPT:. 

6-7 ADD-10-26-77 



-



TUG 
HTYPE 

HTYPE 

HTYPE is a program for printing files on the XEROX 1700 printer. 
It utilizes reverse printing and other features of the 1700 
printer to print text at a very high speed. Right justified text 
may be re-adjusted using the variable character pitch feature to 
improve the quality of such documents. HTYPE also includes a 
facility for producing multi-column formats. 

Preparation of Documents for HTYPE 

No special preparation of documents is necessary for using HTYPE 
unless certain special features of HTYPE are to be utilized. In 
the absence of such special needs, HTYPE will print documents as 
exact replicas of those documents as they would appear on an 
ordinary terminal. There are four special features which might 
want to be used. These are: rejustification, HTYPE parameter 
setting, special escape sequences for subscripting and so forth, 
and multi-column capability. Each of these is discussed below. 

HTYPE has the capability of re-justifying text which has been 
previously justified by one of the RUNOFF programs. The method 
employed is to first remove the additional spaces which RUNOFF 
added to achieve right justification and then expand or compress 
all inter-word spaces equally so that the desired column width is 
achieved. Generally, the only special step needed in preparing a 
document which is to be rejustified is to set the right margin 
about 5 characters greater than the final width desired. For 
example, if the final width is 65 characters (6.5 inches), then 
use a right margin of 70. The extra width is desirable so that 
lines will be compressed as well as expanded so that the average 
character density is normal. The use of hyphenation might also 
be considered since excessive expansion may be necessary when 
long words fall at the end of lines. 

The parameters which govern HTYPE's actions may be set from the 
.DOC file as well as from the terminal. Such parameters are 
flagged in the file by the appearance of an SOH character 
(control-A). Each parameter consists of a single letter followed 
by as many numbers as necessary to specify the parameter setting. 
Each parameter is terminated by either another SOH (if another 
parameter follows) or by a carriage-return or by an STX 
(control-B). Generally these parameters will appear at the very 
beginning of the file but may appear anywhere within the file. 

7-1 ADD-10-26-77 



TUG 
HTYPE 

In this case these parameter changes will take effect when that 
point is processed for printing. However, beware that if the 
page on which such parameters appear is not printed, then those 
parameter changes will not occur. A special case is madP. for the 
first page of the file. If that page begins with a SOH, then all 
the parameters following that SOH up to the following STX or FF 
(form-feed) are processed prior to entering the parameter setting 
dialog with the user. This happens whether the first page is 
printed or not. Also, if that first page consists of nothing but 
parameters then that page is not counted as a page; the 
following page is numbered "l". 

The parameters which may be set are as follows ([] is used to 
indicate optional numbers): 

J Turns off rejustif ication. 

J[ nn[ f]] Sets rejustification to column nn with flag 
character f. 

H nn sets the horizontal character spacing to nn. 

V nn sets the vertical line spacing to nn. 

P turns on pause mode. 

N turns off pause mode. 

M turns off multiple column mode. 

M nn[ mm[ 11[ kk[ jj]]]] turns on multiple column feature 
with column spacing of nn, first line of mm. lines per 
column of 11, number of columns of kk and rejustification of 
jj. See below for further explanation of these parameters. 

Special Escape Sequences 

It is possible to include special sequences of characters in the 
.DOC file for HTYPE to process. These character sequences are 
enclosed between and initial DLE (control-P) and control-]. 
Generally, these sequences should have zero net width; that is, 
if they position the carriage horizontally, they should return 
the carriage to its starting point. Exceptions to this rule may 
be made if a subsequent such sequence on the same line undoes the 

7-2 ADD-10-26-77 



·---

·-

TUG 
HTYPE 

horizontal movement. If 
rejustification is applied 
unpredictable. 

this 
to the 

rule is 
line, 

violated, 
the result 

and 
is 

The multi-column feature is described below. Preparing a 
document with multiple columns is largely a trial and error 
procedure since the page length of each page must be altered to 
account for the number of lines on the page which are in multiple 
column format and the number which aren't. 

Running HTYPE 

TO run HTYPE, type to the EXEC: 

@HTYPE<cr> 

In order to determine the parameters needed to do its job, HTYPE 
interrogates the user with a series of questions. These 
questions are arranged in order of decreasing need of 
specification. To terminate the questioning, end the answer with 
a carriage return. HTYPE will immediately space to the top of 
the next page and wait for paper to be adjusted etc. Terminating 
the answer with a comma causes HTYPE to advance to the next 
question. Terminating with an uparrow (circumflex) goes back to 
the preceding question. If no answer precedes the carriage 
return, comma, or circumflex, the default setting (or previously 
specified setting) is kept. The default setting is printed in 
brackets at the end of the question. 

HTYPE first asks for the name of the file to be printed. 

Input file: text.doc 

This may be any disk file containing text. On TENEX, the default 
extension is .DOC. On TOPS20, the extensions of .DOC, .TXT are 
searched for in that order.· If no file with either extension is 
found, then no default is assumed which, if the name is unique, 
will find that file. Otherwise, the extension must be given. 

Next, HTYPE asks for a list of pages to print. These should be 
specified as a list of page groups separated by commas. A page 
group is specified as n:m and means pages n through m inclusive. 
The symbol % may be used to indicate the last page of the file 
and the symbol * may be used to indicate all pages. 1:% is 

7-3 ADD-10-26-77 



TUG 
HTYPE 

equivalent 
all pages. 

to *· The default setting for this parameter is * or 
A typical specification might be: 

Pages[l:%] 1,3:5,% 

If the number before the colon is greater than the number after 
the colon, the pages are listed from the higher number through 
the lower. 

Next, you must say whether the text should be re-justified. If 
this question is answered N, then the resultant output will be an 
image of the file as if it had been copied to a normal terminal. 
Answering Y, causes text which was right justified by 
(M)RUNOFF(OUT) to be re-justified as explained above. This 
results in a much improved appearance. To avoid rejustifying 
lines ·which were not justified by RUNOFF, lines will not be 
rejustified which are shorter than the specified column, which 
contain tabs, which contain a sequence of more than 6 spaces, or 
in which the length of the minimum string of spaces is smaller 
than two less than the length of the maximum string of spaces. 
These checks serve to detect almost all of the cases where the 
line was not originally justified. There is the possibility, 
however, that text may be re-justified which was not justified 
originally and which is not detected by the above criteria. This 
is unavoidable. 

Two parameters are associated with rejustification. The right 
margin must be specified. This is usually 65 but may vary from 
document to document. This parameter determines the location of 
the rightmost end of the output line. The location of the 
leftmost end is the same as it is in the file being printed. If 
a flag character is specified, then that character is considered 
a space for determining where a line begins and ends. The flag 
character is often vertical bar. Type just a terminator if there 
is no flag character. A typical specification for 
re-justification might be: 

Rejustify with variable spacing?[No] Yes, 
Location of right margin: [65] 68, 
Flag character: I, 

Next you will be asked if you want to pause between pages. The 
default pause, is suitable for individual sheets of paper. No 
pause is suitable if continuous forms are being used. 

7-4 ADD-10-26-77 ·-



TUG 
HTYPE 

Next, you can specify the horizontal character spacing. 
Horizontal spacing is often expressed as a pitch of so many 
characters per inch, for example, Elite 12 pitch font. However, 
the number given to HTYPE must be the actual character spacing in 
1/120 of an inch increments. Thus for a 12 pitch font, you 
specify 120/12 = 10 as follows: 

Horizontal character spacing (1/120 of an inch) [12]: 18 

For a 10 pitch PICA font, use 120/10 = 12 (this is the default). 
Larger numbers mean greater spacing of characters. Other values 
may be used in order to squeeze or expand the text horizontally. 

Next, you can specify the vertical spacing. As for horizontal 
spacing, the number specified is the actual space between lines. 
In this case, it is expressed in 1/48 of an inch increments. A 
10 pitch font usually has 6 lines per inch for single spaced 
copy. The number you would specify to HTYPE is 48/6 = 8. 8 
lines per inch is standard for a 12 pitch print wheel. For this, 
you would specify 48/8 = 6 as follows: 

Vertical line spacing (1/48 of an inch) [8]: 6 

Other spacings might be used for special purposes. 
Next, you may enable the multi-column feature. When this feature 
is enabled, lines of text may be caused to appear in multiple 
columns. Text to be printed in this fashion should be prepared 
with an initial full width section which might contain page 
headers etc. followed by a reduced width section which will be 
printed in multiple columns followed by a final full width 
section. There are four parameters which control the 
multi-column feature. First is the column spacing which 
determines the distance (in characters) from the left edge of one 
column to the left edge of the next. The default value for this 
is 33 characters. Next is the first line on which multiple 
columns should begin. This is one greater than the number of 
lines which are printed full width. Next is the number of lines 
per column. If two columns are to be printed, then the text 
being printed should contain twice this number of narrow lines. 
Next is specified the number of columns. The default for this is 
two. Finally, the rejustification margin is specified for the 
multiple column region. This number serves the same purpose as 
the rejustif ication margin above except that it applies to the 
multiple column region of the file. After the final column is 

~s ADD-10-26-77 



TUG 
HTYPE 

finished, the left margin reverts to the original 
the paper. 
The remainder of HTYPE's operation is similar to 
Note that the special graphics control characters 
for the 1700 than for the Bedford terminal. 
version of the "SUBSUPER" file should be used. 

left side of 

that of ZTYPE. 
are different 

The appropriate 

The commands which may be typed at page pauses are summarized 
below. Note that echoes are turned off as these commands are 
typed to avoid the necessity of inserting a piece of scrap paper. 

Pnnn<sp> Print page nnn next. The set of pages rema1n1ng to be 
printed is not altered and the page which would have been printed 
next will be printed after the page specified by the command. 

X Exit to the exec. 

B Jumps back to the beginning of the parameter setting dialog. 
Thus certain parameters may be altered without re-specifying the 
rest. The parameter setting dialog is not conducted invisibly. 

Any other character indicates that the paper is ready and 
printing begins. 

Two special characters are recognized while HTYPE is printing. 
Control-X aborts printing the current page and enters a page 
pause. Use this character if the page has been garbled somehow 
and you wish to start again. Note, that the next page printed 
will normally be the next one specified at the initial dialog. 
If the same page is to be printed, use the Pnnn<sp> command. 
Control-P may be typed to force a page pause at the end of the 
current page. This is useful when operating in no pause mode and 
you want to re-adjust the paper or reprint a garbled page. 

7-6 ADD-10-26-77 

--



TENEX USER'S GUIDE 
GRIPE 

January 1975 

# GRIPE 
t 
t GRIPE allows you to send complaints or suggestions about 
# subsystems to system personnel. 
# 
#When it asks you "Griping on subject of ", type the name of the 
# subsystem. If it doesn't accept that name, try "general" instead 
# of the subsystem name. 
# 
#When it asks you for "Message", type your message terminated by 
# control-Z. For details on entering the message, see "Message" 
# under SNDMSG in this manu~l. 

-93-



TENEX USER'S GUIDE 
IDDT 

1. Introduction 

January 1975 

IDDT 

IDDT is a debugger for TENEX programs. It has many of the 
same commands as the standard DDT10X (SDDT and UDDT) and 
ordinarily may be used without regard to the fact that it is a 
different debugger. The user is directed to the DDT section of 
the DECsystem-10 ASSEMBLY LANGUAGE HANDBOOK for information 
regarding the basic features and use of DDT. 

The primary feature of IDDT is that it operates on user 
programs which run in an inferior fork under IDDT. Thus, an 
errant user program cannot destroy the debugger or its symbol 
table because the debugger is in a totally different address 
space. This relation between the program being debugged and IDDT 
is much the same as the relation between current user programs 
(including IDDT) and the EXEC. Because of this, IDDT must 
simulate many of the services ordinarily provided by the EXEC, 
such as @GET, @LOADER, @RUN, etc. 

The following describes the new features in IDDT and how 
they may be used for debugging. Some of the features are bound 
to change, and others will be added. 

2. Using IDDT 

IDDT may be called into service either before or after 
programs have been loaded into memory. This is done by telling 
the EXEC 

@IDDT 

This command causes the EXEC to splice a fork containing 
IDDT in between itself and the program to be debugged. This 
operation is done in a way that preserves the state of the user's 
p~ogram including its fork structure. It is possible to AC out 
of a running program and get IDDT. If this is done, a $P 
(Proceed) command will resume running the user program. 

The EXEC command "NO IDDT" will unsplice the fork 
containing IDDT in the event the user wishes to continue his 
program without having an IDDT above it. 

-94-



TENEX USER'S GUIDE 
!DDT 

January 1975 

A fairly common practice is to get !DDT first and use it to 
load the program to be debugged. One of three !DDT commands may 
be used to load the object program: $L (run the LOADER in the 
user fork) , ;L (Loadgo of named file) , or ;Y Yank the named 
file) • The first of these is essentially the same as the EXEC 
command, @LOADER. The second is comparable to @RUN, while the 
last is similar to @GET. 

3. Symbol Table Considerations 

When initially started, and after successful execution of a 
;L or ;Y command, !DDT will obtain a new symbol table if it 
exists. It does this by copying (and sometimes sharing) pages of 
the user fork. Thus, those user programs which need access to 
their own symbols will behave the same, and IDDT will have its 
own copy of the symbol table which is protected from the user. 

The $L command causes !DDT to run the LOADER in the user's 
address space. Upon completion, the LOADER returns control to 
!DDT. At this point !DDT will have the LOADER's symbol table. 
In order to switch to the symbols of the program which was 
loaded, the ;S command should be typed. :S tells !DDT to look 
for a standard symbol table pointer in location 116 (.JBSYM). If 
the user has merged in a file which contains its own symbols, he 
may switch to that table by typing a;S where "a" is the address 
of the location containing a pointer to the new table. 

# :? with no argument causes !DDT to type the error string 
i associated with the most recent error in the user program fork. 
# With an argument (600121;? or IOXS;? ) , the corresponding error 
# string will be typed. 

;O Obtains a symbol file directly into !DDT without 
modifying the user's memory. The old symbol table is replaced, 
and a new entry vector is taken only if there was no old one. 
This makes it possible to debug one file with symbols obtained 
from a different file. 

Symbols may be written out on a specified file by using the 
:W command. This saves the symbols in a way that they may be 
obtained later with the ;O command. Along with the main symbol 
table, the undefined symbol table is saved in symbol files. One 
should be careful that symbol files and core image (;U) files are 
kept paired if any undefined symbols exist. Executing a GET JSYS 
on a symbol file will get both tables. The default file 
extension for symbol files written by !DDT is .SYMBOLS. 

Note: Symbols added to or deleted from IDDT's symbol table by 
commands to !DDT will not be seen by the user program. 

-95-



TENEX USER'S GUIDE 
!DDT 

January 1975 

4. EXEC-like Features 

For convenience, the EXEC has several commands which provide 
the same services as some EXEC commands. These are: 

;A 

;F 

;Y 

;M 

;L 

$$G 

$$1G 

$$nG 

$P 

$L 

;W 

TYPES THE USER'S ADDRESS SPACE. (MEMSTAT) 

DOES A FORKSTAT ON THE USER FORK. (THIS 
FEATURE WILL BE OPERATIONAL AS SOON 
AS JSYS 166 IS IMPLEMENTED.) 

@GET 

@MERGE 

@RUN 

@START 

@REENTER 

@START AT n-TH ENTRY VECTOR LOCATION 

@CONTINUE 

@LOADER 

@SSAV 0 777 (I.E. "UNGET") 

OBTAIN SYMBOL FILE -- NO EXEC EQUIVALENT 

WRITE SYMBOL FILE -- NO EXEC EQUIVALENT 

@QUIT (HALT, RETURN TO EXEC) 

;W, ;M, ;Y, ;O, ;L, and ;U ask for a file name from the user. 
The default extension will be .SAV or .SYMBOLS as required. 
5. Access Control 

An EXEC-like feature has been included in IDDT which has no 
analogy in the current EXEC. This is the $U command (UNPROTECT}, 
which allows the user to manually change the protection on 
various pages of his fork. This command has several forms: 

a<b$nU 

a$nU 
$nU 

CHANGE PROTECTION ON PAGES a 
THROUGH b INCLUSIVE 
CHANGE protection of page a 
CHANGE PROTECTION OF THE CURRENT PAGE 

-96-



TENEX USER'S GUIDE 
!DDT 

January 1975 

(WHERE POINT"." IS) 

N is always a three-bit number (0-7). The 4-bit means allow read 
access, the 2-bit should be on to allow write access, and the 
1-bit for execute access; If N is not specified at all, it will 
be taken as 7. Thus, the command $U frees up the current page, 
giving it read, write and execute access. 

$U changes the protection on pages of the user's fork. It 
does not affect the protection of a file page which might be 
mapped into that fork. Because it is sometimes convenient to 
change the contents of fork pages which have write-protected 
files mapped into them, $U commands which ask for write access 
will either get it, or will get write-copy access. 

While !DDT is running, it temporarily changes the access of 
each page that it maps to have read, write, and execute access. 
The user's access is reset when the page is mapped out. This 
allows !DDT to insert breakpoints, retrieve trapping 
instructions, etc. The $U command allows the user to protect 
pages from his own program by effecting a permanent change in the 
page access. 

6. Rubout 

!DDT arms the RUBOUT button as an interrupt character. If a 
user program has been started under !DDT, pressing RUBOUT will 
gracefully suspend that process and give control to !DDT which 
then types a message of the form 

XXX:F00+5/ MOVE A,DAT+21 

The interrupt is understood to have occurred immediately before 
this instruction, and that if a $P (proceed) command is typed, 
this instruction will be the next one executed by the user. 

RUBOUT's typed while in !DDT behave much the same as they do 
in normal DDT's. That is, the current command is aborted. This 
is particularly convenient for stopping long searches ($W, $N and 
$E COMMANDS), with !DDT because it is an interrupt and does not 
have to be read by a PBIN to initiate action as it does with 
old-style DDT's. RUBOUT's typed while !DDT is in control cause 
the terminal output buffer to be cleared. 

# Since some programs such as TECO use RUBOUT as a command, 
# the !DDT :E command can be used to change the !DDT interrupt 
# character from RUBOUT to any other control character. 

-97-



TENEX USER'S GUIDE 
IDDT 

7. "GO" Commands 

.January 1975 

IDDT has several variations of the standard $G command 
available. GO commands with two ALTMODES, such as $$G, FOO$$G, 
and $$2G, cause the user's pseudo interrupt system to be cleared 
before they take effect. If there is a number between the 
ALTMODE(s) and the G, this number is taken as an index into the 
entry vector of the user's fork, and the program is restarted as 
indicated by the corresponding entry vector element. Thus, $$0G 
is the same as the EXEC command "START", while $$1G is equivalent 
to "REENTER". The command $$G is an abbreviation for $$0G. 

Ordinary GO commands still exist. They look like FOO$G and 
BEGIN$$G. The user's program counter is stored in the "GO" 
register, which is named $G. This can be examined by commands 
such as $G/ • 

8. Control-T 

# Frequently the user would like to know whether his program 
# is making progress. To facilitate this, the EXEC arms T 
# (control-T) as an interrupt character, which types the program 
# state, the load average, amount of CPU and CONSOLE time used (in 
# seconds), and the ratio of console to CPU time (the "activity 
# ratio"). Note that the user's program is not stopped while his 
# information is being typed and if his program is typing out, AT 
# will result in a garbled typescript. 

9. Interface with the EXEC 

The EXEC command "FORK n" may be used to switch the EXEC's 
attention between the fork containing IDDT and the one containing 
the user's program. This may be done for the purpose of doing a 
"MEMSTAT" or AT. The EXEC examine and deposit commands (/ and \) 
also pertain to the currently selected fork. 

Regardless of which fork has been selected, a "CONTINUE" 
will always resume a AC If the user has returned to the EXEC 
by typing :H to !DDT, IDDT may be resumed by a "CONTINUE". A 
HALTF in the user's program will return to IDDT. It may be 
continued by a $P to IDDT. 

10. Zero-ing core 

THE $$Z COMMAND behaves the same as it does with old DDT 
except that if it is used to zero whole pages, they are PMAP~ed 
out of existence, rather than being actually cleared. If such a 
page is brought into existence again by a reference, it will be 
cleared by TENEX when created. 

-98-

. ---

·-



TENEX USER'S GUIDE 
!DDT 

January 1975 

If a $$Z command is used to clear any word(s) between 700000 
and 712777, compatibility code for the user is dismissed. 
Ordinary register operations like slash can be used to examine or 
modify the compatibility code (PA1050) as usual. 

The Zero· command has been generalized 
# core with a specific decimal number. 
# through 177 with the number 12 {decimal) 
# 100<177$$12Z. 

11. Internal Registers 

so that it can fill 
To fill locations 100 

the user would type 

IDDT maintains several "internal registers" wnich may be 
manipulated as if they were in the user's address space. These 
are listed below, and will be described in detail in subsequent 
sections. 

$G CONTAINS FLAGS,,PC FOR THE USER PROGRAM 

$M MASK FOR SEARCHES 

$X LOCATION FOR SPECIAL EXECUTE 

$W PAGER TRAP STATUS WORD AT MEMORY VIOLATION 

$W+l PAGER WRITE DATA AT MEMORY VIOLATION 

$I INTERRUPT CHANNELS WITH BREAKS WAITING 

$I+l INTERRUPT CHANNELS ASSIGNED FOR USER 

$I+2 BREAKS IN PROGRESS WORD 

$I+3 0 IF USER'S INTERRUPT SYSTEM IS OFF. NON-0 OTHERWISE. 

$!+4 !DOT'S FORK HANDLE ON USER 

$I+5 SIXBIT OF SAVED USER SUBSYSTEM NAME 

(This may be made inaccessible in the future!) 

$nB+k BREAKPOINT REGISTERS. n is between 1 and 8 
inclusive {i.e., IDDT has eight breakpoints), k is 
between 0 and 6. Thus there are seven registers 
of information associated with each of the 
breakpoints. 

As an example of an internal register reference, consider looking 
at the proceed count of breakpoint 3: 

$3B+2/ 105 3 

-99-



TENEX USER'S GUIDE 
IDDT 

January 1975 

The user changed the proceed count from 1~5 to 3. 

IDDT's 
allows the 
registers. 
things like 
symbols. 

current location may be internal to IDDT. This 
user to use linefeed and up-arrow to look at i~tetnal 
IDDT has special address printing routines that print 
$I+3 instead of this address in terms of user defined 

Attempts to define address tags when "point" is at · an ·roDT 
internal register will be given IDDT's ubiquitous."?" error. 
Also, !DDT will not allow expressions with more than one mention 
of an internal symbol name. Thus, $M+3 is allowed, but $I+$M is 
not. 

12. The User Program PC 

The internal register $G contains the user's PC and FLAGS. 
This is defined to always point at the next executable 
instruction. The proceed command ($P) simply starts the user at 
the address in $G. Illegal instruction tra?S back up the user's 
PC so that it points at the offending instruction, in hopes that 
he will repair it and proceed. In such a case, the repaired 
instruction will be executed first. 

$G is setup from the entry vector after every 7Y, 7L, and 78 
command. Thus, the user can 7Y (yank) a file and immediately 
start it with a $P. 

Bit 5 of the "GO" word $G is the user-mode bit which will 
normally be on if $G is examined. It may be off due to an 
interrupt out of a JSYS or after an illegal instruction. Because 
this· bit is essential to the restarting of the user's fork, it is 
not left entirely under his control. In particular, the 
user-mode flag may be turned on by changing the contents of $G, 
but it may not be turned off. This means that if a JSYS (such as 
GTJFN) has been interrupted, the usermode flag turned oh, and $P 
typed, that the interrupted JSYS will be re-executed, rather than 
resumed. 

13. Saving a Core Image 

The 7U command aski for a file name and then does an SSAVE 
from page 0 through page 777 on this file. The entry vector will 
be copied if it exists. If no entry vector has been declared for 
the fork, IDDT will set a length one entry vector at "." A 
message is typed to this effect. 

-100-

·-

-

-



TENEX USER'S GUIDE 
!DDT 

January 1975 

14. Single Instruction Executes 

When the user types an instruction followed by $X, IDDT 
pushes down several words of state information, plants the 
instruction in the user's address space followed by three 
breakpoints, and restarts the user at this special location. 
When the instruction completes, IDDT types the proper number of 
$-signs to indicate how many times the instruction skipped, and 
pops back the saved state information. The state information 
currently includes the program counter ($G), and which breakpoint 
(if any) the user was stopped at. This makes it possible to hit 
a breakpoint, execute an instruction (which might be a PUSHJ to a 
subroutine), and then, upon completion of the $X, do a $P to 
proceed the breakpoint. 

IDDT's $X/ register points in the user's address space to 
the four words which will be used for $X commands. $X initially 
contains 777774 so that the top four words are used. The user is 
free to change the contents of $X. 

If a RUBOUT has interrupted the program being debugged while 
it was in the middle of a JSYS -- usually a "long" JSYS like SOUT 
or PBIN -- and then an instruction executed with the $X command, 
a $P will not resume the original sequence back in the middle of 
the interrupted JSYS. Flag bit 5 will be off if the interrupt 
came out of a JSYS. A proceed ($P) immediately after a RUBOUT, 
with no intermediate $X will always resume exactly at the 
interrupt point however. 

15. Break?oints 

Associated with each breakpoint are seven internal 
registers. The first four of these are the same as those in 
older DDT's, while the last three have been added. 

# $nB/ TRACEVALUE,,LOCATION 
# 
# $nB+l/ 0 OR CONDITIONAL BREAK SKIP 
# 
# $nB+2/ PROCEED COUNT (>0 for normal, <0 for auto, 0 for none) 
# 
# $nB+3/ 0 OR STRING POINTER (fed to !DOT when this BPT breaks) 
# ***Not implemented yet*** 
# 
# $nB+4/ SAVED INSTRUCTION WHILE USER IS RUNNING 
# 
# $nB+5/ 0 OR ELSE -1 FOR AUTOPROCEED MODE 
# 
# $nB+6/ ASCII NAME OF THIS BREAKPOINT, USUALLY "$nB" 

-101-



TENEX USER'S GUIDE 
!DDT 

January 1975 

Usually these values are changed only by setting and 
clearing breakpoints with the $8 command. if he wishes, the user 
may change these quantities. For instance, if he wants hits on 
breakpoint three to print as 

HELP>> F00+23 

he would type the following: 

$38+6! "/HELP/ 

This stores the ASCII string for the new name in the print name 
cell of breakpoint three. 

Proceeding after a breakpoint hit happens much in the same 
way as a single instruction execute command ($X). Again four 
words of memory are written into. However, in this case the four 
words are the instruction at the break location and three JRST's 
to the three locations following the break location. The JRST's 
account for possible skips by the break instruction. 

If a breakpoint is hit, and the user changes the contents of 
$G, and then proceeds (with $P) , the break instruction is not 
executed. Control simply resumes at the new location given by 
$G. Old DDT's execute the instruction under the breakpoint, and 
then transfer control to the new olace. 

16. JSYS Typeout Format 

When IDDT attempts to print an opcode 104 instruction 
symbolically, it first looks for an exact match in the user's 
symbols. If one is found, the corresponding user-supplied name 
is printed. Otherwise, !DDT checks its own internal JSYS symbol 
table (hopefully, the same as JSYS's defined in 
<SYSTEM>STENEX.MAC) for an exact match. If none is found in 
either place, the instruction will print as JSYS 501, i.e., 
"JSYS" and address. 

17. Other Features 

'The search commands ($W, $N, and $N) have been generalized 
to take an argument which specifies the maximum number of ''finds" 
that shall occur before the search will terminate. An example 
is: 

FOO<BAR>QQZZ$5E 

This command will stop after typing five instructions lying 

-102-



-

# 
# 

TENEX USER'S GUIDE 
!DDT 

January 1975 

between locations "FOO" and "BAR" which have an effective address 
of "QQZZ". 

Internal register $1+4 contains the fork handle that IDDT 
uses to reference the user. This register is writeable. 

$0 has the value of the last quantity typed, as always. $$Q 
has this value with halves swapped. Thus, ($$Q}= will type the 
same value as $0= will. 

$V is the value of the left half of the last quantity typed. 
$$V is the same with the sign extended. Thus, assuming the last 
value typed to be -3,,FOO , $V= would yield 0,,-3 whereas, $$V= 
would type -3. 

• ? , . prints the most recent error encountered in the program. 

# ;<space> prints the contents of $Q in the current typeout 
# mode. 

-103-



# 
# 
# 

TENEX USER'S GUIDE 
IMGPTP 

.January 1975 

IMGPTP 

# Copies image-mode binary files (one byte per word) , such as those 
# written by PALX, to the paper tape punch. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

IMGPTP is designed to operate in quasi-command style (TENEX 
Executive Manual, p. 13). To use the program in this manner: 

@IMGPTP (INPUT FILE) filename.ext [CONFIRM]! @----- -----~-------

Filename recognition operates for entry of the input file name, 
with the extension .BIN supplied automatically (if it exists). 
If the filename typed is in error, a ? is typed and the name 
entry must be begun again. If the PTP: is unavailable the 
subsystem so informs the user and terminates. 

If there are no errors, IMGPTP first punches some blank leader at 
the PTP:, then punches a visible (human-readable) identifying 
leader, then copies the contents of the input file to the punch, 
and finally punches blank trailer before returning control to the 
EXEC. The identifying leader consists of the full name and 
date-last-written of the input file, e.g., 
<DIREC>NAME.BIN;2 10-JUN-73. 

-104-

--

--



TENEX USER'S GUIDE 
LBLOCK 

January 1975 

LB LOCK 

LBLOCK is a small subsystem to perform "lineblocking" of text 
files. Its function is to read a text file, and write another 
text file, after inserting NULL characters where necessary to 
satisfy the condition that no line of text may be split across a 
record boundary (as defined in the DEC terminology). 

The input file may be any TENEX text file, with the usual name 
recognition and defaults. The output file is specified in the 
shorter DEC form of "device:name.ext" where DSK is assumed for 
device and "name" may be up to 6 characters long, and "ext" may 
be up to 3 characters long. 

Sample dialogue: 

@LB LOCK 
INPUT-FROM FILE UNBLOCKED.DATA;3 
OUTPUT TO FILE BLOKED.DAI 
DONE. 
@ 

-105-



TENEX USER'S GUIDE 
LINK10 

January 1975 

LINK10 

# LINK-10, the DECsystem-10 Linking Loader is a utility program which 
# can merge independently-translated modules of a person's program into 
# a single module. It prepares and links this input with other 
# modules required by the user into a form that can be executed by 
# the operating system. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The general command format is 
*/Switches File spec /Switches , /Switches File spec /Switches -
, /Switches File spec /Switches /GO 

Lines may be continued by use of hyphen (minus sign) at end of line. 

A File spec is some of DEVICE:FILE.EXT[directory] 
Output file specs may be separated from input ones by = 
in which case they must be first on the line. 

Switches 
Keyword 
Symbol 
Value 
Value 
Core size 

version 

take optional arguments, these are :­
a symbolic keyword 
a sixbit symbol names (in ascii) 
in decimal (octal if preceded by# ) 
in octal 

in K (2000 words) or P (1000 words) 
as in nK or lK+hK 
standard version number 

switches and keywords preceded by * are unique to one character. 
Switches enclosed in parentheses are switches known to SCAN but 
not used by LINK-10. 

Switches enclosed in angle brackets are only available with 
non-standard assembly options. 

Switches are :-
BACKSPACE decimal value 
(BEFORE) 
COMMON 
CORE 
CONTENTS 

COUNTER 
DATA 
*DEBUG 

DEFAULT 

DEFINE 
(DENSITY) 

symbol:decimal value 
core size 
keyword 
Default, All, None, Global, Noglobal, Local, Nolocal, 
Entry, Noentry, Relocatable, Norelocatable, Absolute, 
Noabsolute, Common, Nocommon, Zero, Nozero 

keyword 
Macro, Ddt, Fortran, Mantis, *Cobol, Cobddt 

keyword 
Input, Output 

symbol:decimal value 

-106-

--

-

-



. # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
LINK10 

ENTRY 
(ERNONE) 
(ERPROTECTION) 
ERRORLEVEL decimal 
ESTIMATE decimal 
EXCLUDE 
*EXECUTE 
FOROTS 
FORSE 

value 
value 

FRECOR decimal value 
*GO 
HASHSIZE decimal value 
*HELP 
INCLUDE symbol 
*LOCALS 
<KLUDGE> 
LOG 
LOG LEVEL decimal value 
*MAP keyword 

January 1975 

(0-30) 

(0-30-) 

#. End, Now, Error 
# MAXCOR core size 
# MPSORT keyword 
# Alphabetical, Numerical 
# MT APE keyword 
# Mtwat, Mtrew, Mteof, wmtskr, wMskt, Mtbsr, 
# Mtunl, Mtblk, Mtskf, Mtbsf, Mtdec, Mtind 
# NEW PAGE keyword 
# Low, High 
# NO ENTRY symbol 
# NO INITIAL 
# <NOKLUDGE> 
# *NO LOCAL 
# {NOOPTION) 
# (NOPHYSICAL) 
# NOREQUEST symbol 
# NO SEARCH 
# NOST ART 
# (NOSTRS) 
# NOSYMBOL 
# NOSYSLIB keyword 
# Default,F40,Cobol,Algol,Neliac,Fortran 
# (OKNONE) 
# (OKPROTECTION) 
# (OPTION) 
# OTSEGMENT keyword 
# Default, Low, High 
# (PARITY) 
# PATCHSIZE decimal value 
# (PHYSICAL) 
# PROTECTION octal value 
# REQUEST 

-107-

Mteot 



TENEX USER'S GUIDE 
LINK10 

,January 1975 

# REQUIRE 
# REWIND 
# RUN 
# RUNAME 
# RUNCOR 
# (RUNOFFSET) 
# SAVE 
# *SEARCH 
# SEGMENT 
# 
# SEVERITY 
# SET 
# (SINCE) 
# SKIP 
# SSAVE 
# START 
# ( STRS) 
# SYMBOL 
# 
# SYMSEG 
# 
# SYSLIB 
# 
# SYSORT 
# 
# TEST 
# 
# *UNDEFINED 
# UNLOAD 
# VERBOSITY 
# 
:fl: VALUE 
# VERSION 
# XPN 
# ZERO 

symbol 

file spec 
symbol 
core size 

core size 

keyword 
Default, Low, High 
decimal value (0-31) 
symbol:symbol or octal value 

decimal value 
core size 
symbol or octal value 

keyword 
radix50, triplet 

keyword 
Default, Low, High 

keyword 
Default,F40,Cobol,Algol,Neliac,Fortran 

keyword 
Alphabetical, Numerical 
keyword 
Macro, Ddt, Fortran, Mantis, *Cobol, Cobddt 

keyworj 
Short, Medium, Long 

symbol 
version 

-HJB-



TENEX USER'S GUIDE 
LOADER 

January 1975 

LOADER 

The LOADER is essentially the most recent PDP-10 LOADER release 
with a few modifications for use on TENEX. It is capable of 
loading REL files produced by all language processors including 
FAIL, SAIL and ALGOL. 

1) The /Y switch causes the high segment load point to be moved 
to the next 1000 word page boundary. /Y does the same for 
the low segment. 

2) /nH where n is a biq number, behaves for the high segment 
the way /no does for the low segment. 

3) Multiple listings of undefined and multiply defined globals 
is suppressed. 

4) A special block type is implemented to handle the ASSIGN 
pseudo-op. See MACRO writeup for more details. 

5) /S and /B switches are defaulted to be "ON". 

6) Just before the LOADER finishes, it sets the current 
subsystem name to "(PRIV)". This name is saved and restored 
by the EXEC and !DDT when the loaded program is started. 

For further information refer to DECsysteml0 Assembly Language 
handbook. 

-109-



# 
# 
# 
# 
# 
# 
# 
# 
i 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
i 
# 
# 
# 

TENEX USER'S GUIDE 
LOGOS 

January 1975 

LOGOS (The LOGO Language) 

LOGO is an interpreted, procedure-based language with strings as 
its fundamental data type. It was designed at BBN to be used by 
students across a wide range of educational situations. LOGO has 
been used by students at all levels from the second grade through 
college to write programs ranging from a couple of lines to 
complex procedure structures embodying several hundred lines in 
all. Such use is enhanced by LOGO's very clean syntax and good 
error evaluation. 

LOGO permits recursion in user-defined procedures, in fact, this 
is the basic form for repetition. Recursion, together with a 
primitive which evaluates its input as a LOGO command string (an 
EVAL) and with primitives which access procedure lines make 
possible fairly complex program structures. 

A complete reference manual describing 
The introduction is appended here 
language. 

LOGO REFERENCE MANUAL 

LOGO has 
to give 

been written. 
a "sense" of the 

# 1. 
# 

A Look at LOGO 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

We introduce LOGO by writing several small procedures. The 
following examples serve to show what LOGO "looks like". Several 
features are used without definition or even explanation, where 
we think their meanings are clear from context. All of LOGO is 
comprehensively described in later sections. 

LOGO, as an interpretive language, can 
directly. Thus, 

execute single commands 

PRINT SUM OF 2 AND 2 (The user s typing is underlined) 4 

But, the most important feature of LOGO is that such commands can 
be incorporated in user-written procedures. The definition of 
any procedure results in an object which is treated just like any 
primitive. Thus, in a very real sense, as the user writes his 
own procedures, he is gradually extending the basic language to 
more exactly fill his needs. 

A very simple (although by no means simplest) 
example, prints the double of its input. 

TO DOUBLE :N: 
10 PRINT SUM OF :N; and iNi 
END 

-110-

procedure, for 



TENEX USER'S GUIDE 
LOGOS 

January 1975 

# This procedure, DOUBLE, is now "part" of LOGO. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

DOUBLE 123 246 __ _ 

DOUBLE WORD OF 1 AND 1 
~--- ---

If the concatenation of 
DOUBLE should OUTPUT 
meaning that the result 
modified procedure is: 

DOUBLE with other procedures is desired, 
rather than PRINT its results: OUTPUT 
is given to the calling procedure. The 

TO DOUBLE :N: 
10 OUTPUT SUM OF :N: and :N: 
END 

This new version of DOUBLE can be used in direct commands, 

PRINT DOUBLE DOUBLE DOUBLE 3 
~- ------ ----

or can be used as the basis for other procedures, 

TO QUADRUPLE :N: 
10 OUTPUT DOUBLE OF DOODLE OF :N: 
END 

and so on. This very natural use of functions in LOGO is 
particularly valuable, since to program a problem a user can keep 
on breaking it up until he sees subproblems which he feels will 
be easy to program. This heuristic is used by sophisticated 
problem-solvers generally, whether or not computer programming is 
involved. 

An extension of this LOGO facility for using procedures in 
defining other procedures is its ability to handle recursive 
procedure definitions. The recursive can be a linear one, which 
is equivalent to iteration, as in the following procedure which 
calculates the factorial function: 

TO 
10 
20 
30 

END 

n! = n • (n-1) ••• 2.1. 

FACTORIAL :NUMBER: 
TEST IS :NUMBER: 1 
IF TRUE OUTPUT l 
OUTPUT PRODUCT OF :NUMBER: AND 

(FACTORIAL OF DIFFERENCE OF 
:NUMBER: AND 1) 

-111-

(l! = 1) 

( n ! = n • (n-1)!) 



# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
LOGOS 

,January 1975 

PRINT FACTORIAL OF 100 
9332621544394415268169923885626670049071596826438162146859296389521 
7599993229915608941463976156518286253697920827223758251185210916864 
000000000000000000000000 

LOGO makes few distinctions between numbers and more general types of 
string. Thus, a procedure to reverse a string looks very much like 
FACTORIAL. 

# TO 
# 10 
# 20 
# 30 
# 

REVERSE :STRING: 
TEST IS :STRING: :EMPTY: 
IF TRUE OUTPUT :EMPTY: 
OUTPUT WORD OF LAST OF :STRING: 

AND (REVERSE OF BUTLAST OF 
: STRING:) 

(The reverse of the empty string 
is the empty string.) 
(The reverse of the nonempty 
string is the string formed by 
following the last character by 
the reverse of the rest of the 
string.) 

jf: 

# 
# 
# 
# 
# 
# 
# 
# 
# 

END 

("AND", "OF", and parentheses are optional 
convenience in writing expressions.) 

PRINT REVERSE OF "JABBERWOCKY" 
YKCOWREBBA_J__ -----------

-112-

"noise words" for 



TENEX USER'S GUIDE 
LPTPLOT 

January 1975 

LPTPLOT 

Permits plotting graphical data on the line printer. 

@RUN LPTPLOT.SAVE;l 

WOULD YOU LIKE INSTRUCTIONS? ANSWER Y OR N:Y 

THIS PROGRAM PERMITS A FAIRLY COARSE X-Y PLOT OF DATA 
CONTAINED IN ANY ASCII DISK FILE TO BE PREPARED FOR LISTING ON 
THE LINE PRINTER. THE PLOTTING GRID CONTAINS 61 POINTS 
(6 INCHES) HORIZONTALLY AND 49 POINTS (8 INCHES) VERTICALLY. 
THE PROGRAM REQUESTS XMIN AND YMIN COORDINATES (WHICH WILL 
FALL IN THE LOWER LEFT CORNER OF THE PLOT) AND SCALE FACTORS 
XINT AND YINT FOR EACH ONE-INCH INTERVAL HORIZONTALLY AND 
VERTICALLY. A ONE-LINE TITLE MAY BE ENTERED. THEN YOU CAN 
CYCLE THROUGH THE PROGRAM AN UNLIMI'rED NUMBER OF TIMES, 
DRAWING LINES (BY SPECIFYING THE COORDINATES OF THE END 
POINTS) , DRAWING CIRCLES (BY SPECIFYING THE ORIGIN 
COORDINATES AND THE RADIUS) , OR PLOTTING X-Y DATA FROM AN 
ASCII DISK FILE. AT EACH STEP, ARBITRARY PLOTTING SYMBOLS 
(*,@,X,ETC) CAN BE SPECIFIED, AND THE PLOTTED DATA WILL 
OVERLAY PREVIOUSLY PLOTTED DATA. DISK FILE NAMES ARE LIMITED 
TO 5 CHARACTERS PLUS A 3 CHARACT8R EXTENSION. AN ARBITRARY 
NUMBER OF FILE LINES CAN BE SKIPPED ·ro AVOID TI'rLE 
INFORMATION' AND AN ARBITRARY FOR'rRAN FORMAT (UP ·ro 25 
CHARACTERS) CAN BE SPECIFIED FOR READING DATA. AN EXAMPLE: 
(45X,2F7.0). THE PARENTHESES MUST BE PRESENT. NORMALLY, THE 
FIRST NUMBER READ WILL BE CONSIDERED THE X-VARIABLE AND 
THE SECOND NUMBER THE Y-VARIABLE. BUT IF A "Y" ANSWER IS 
GIVEN TO "REVERSE X ANDY?", THE SECOND NUMBER WILL BE 
CONSIDERED THE X-VARIABLE. WHEN ALL PLOTTING IS DONE, ANSWER 
"N" TO "MORE?". THE PROGRAM WILL THEN PRODUCE A DISK FILE 
NAMED PLOT.DAT, WHICH CAN BE LISTED. 

XMIN AND INTERVAL (THERE ARE 6 INTERVALS) :-3. 1. 

YMIN AND INTERVAL (THERE ARE 8 INTERVALS) :-4. 1. 

TITLE: 
THIS IS A SAMPLE PLOT OF A CIRCLE, A SINE WAVE, AND A LINE. 

DRAW LINE?N 

DRAW CIRCLE?Y 

X0, Y0=0. 0. 

-113-



TENEX USER'S GUIDE 
LPTPLOT 

RADIUS=3. 

PLOTTING SYMBOL=@ 

READ INPUT DATA?Y 

FILE NAME(5 CHARS)=SINE 

FILE EXT (3 CHARS)=TEL 

SKIP FIRST N LINES. N=0 

INPUT FORMAT FOR X,Y=(2F6.0) 

REVERSE X AND Y?N 

PLOTTING SYMBOL=* 

MORE?Y 

DRAW LINE?Y 

Xl,Yl=-3. 4. 

X2,Y2=3. -4. 

PLOTTING SYMBOL=0 

DRAW CIRCLE?N 

READ INPUT DATA?N 

MORE?N 

.January 1975 

CPU TIME: 7.47 ELAPSED TIME: 5:20.00 
NO EXECUTION ERRORS DETECTED 

EXIT. 

-114-



TENEX USER'S GUIDE 
MACRO 

January 1975 

MACRO 

The TENEX MACRO is a slightly modifigd vgrgion of tha most recent 
DEC MACR0-10. 

The modifications are: 

1) The /D switch causes tabs to be included in MACRO 
arguments. This is the DEC standard and may be necessary for 
assembling certain programs such as SNOBOL. 

2) ASSIGN SYMl, SYM2, N pseudo-op causes the global SYMl to 
have the same value as SYM2 and then increments the value of SYM2 
by N. If N is not specified, it is assumed to be one. Note: a 
special REL file block type and appropriate LOADER modification 
were created to complement ASSIGN. 

3) JSYS and UMOVEx are included in the OP-code table. 

4) ORG ADDR pseudo-op behaves like either a LOC or RELOC 
depending on the mode of ADDR. ADDR may be an expression. 

5) The version of MACRO on the system has all of the STENEX 
(JSYS and error mnemonics) definitions already included by use of 
the UNIVERSAL pseudo-op. This means that any program previously 
assembled with SYS:STENEX can now be assembled by including the 
statement SEARCH STENEX source file at the beginning. That is, 
if you add the search statement to the beginning of the program 
(immediately after the TITLE is a good place), you don't have to 
include SYS:STENEX in the command input. This results in a 
considerable saving of time, particularly significant in the case 
of small programs. 

The only difference in this procedure is that MACRO will include 
in the output symbol table (for DDT) only those JSYS and error 
mnemonic definitions actually used in the program. This means 
that DDT* will not know about the other JSYS definitions which 
you may have occasion to use while debugging. If you want DDT to 
know all JSYS and error definitions, you can include 
SYS:STENEX.REL with the loading of your program. This has all of 
the JSYS and error mnemonic definitions defined as global 
symbols. 

*!DDT does have the JSYS definitions built in, but it does not 
have the error mnemonics. For further information refer to 
DECsysteml0 Assembly Language handbook. 

-115-



TENEX USER'S GUIDE 
MAILER 

January 1975 

MAILER 

# MAILER is the subsystem that delivers queued mail (i.e. mail 
# which has been queued by SNDMSG) . It runs in the background 
# automatically, so it is ordinarily unnecessary for a user to run 
# it. The following description is in two parts: the first gives 
# general information on the handling of mail and is relevant to 
# all users; the second is only relevant to a person who runs 
# MAILER. 
# 
# 1. Handling of mail 
# 
# Mail that has been queued (by SNDMSG) is placed in the file 
# [--UNSENT-MAIL--] .address in the directory of the user who sent 
# it. (If a single message was sent to more than one address, 
# there is a separate queued file for each.) MAILER, running 
# automatically at frequent intervals (several times an hour) 
# attempts to deliver each such file to the specified address. 
# 
# If it succeeds, it deletes the file. 
# 
# If it fails for some transient reason (such as the host being 
# unavailable), it leaves the file alone and tries it again next 
# time it runs. 
# 
# If it decides the file cannot be delivered (for example, there is 
# no such address) it renames it to be /UNDELIVERABLE-MAIL/.address 
# (thus MAILER does not try again to send it, but it is not 
# destroyed). MAILER also sends you (i.e. to your mailbox) a 
# message (called a negative acknowledgement) telling you that the 
# message was undeliverable and why. You may delete the 
# undeliverable file, requeue it with a corrected address, etc. 
# using MAILSTAT. If for some reason the negative acknowledgement 
# cannot be delivered (for example, your mailbox is in use), 
# it too is queued (it is placed in the file 
# ]--UNSENT-NEGATIVE-ACKNOWLEDGEMENT--[.address in your directory, 
# where "address" is still the address of the original, 
# undeliverable message) and delivered later. 
# 
# 2. Running MAILER 
# 
# Here is a sample run, which was done while logged in as and 
# connected to SUSSMAN. 
# 
# @MAILER 
# 
# No acknowledgments for SUSSMAN 
# Queued mail from SUSSMAN 
# BURCHFIEL@, sent ok, deleted. 
# CLEMENTS@, sent Ok, deleted. 
# @ 

-116-



TENEX USER'S GUIDE 
MAILER 

January 1975 

# MAILER processes queued mail and queued negative acknowledgements 
# in the logged in directory and the connected directory {if 
# different from the logged in directory) • Before processing a 
# message, it types its address. After processing the message, it 
# types the outcome, which is one of: 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

1) deleted the file was deleted {after successful 
transmission) 

2) requeued - the file was left alone it couldn't 
delivered now, but will be processed again later 

3) renames - the message was undeliverable, and the file 
renamed as described above 

Between the address and the outcome, messages may tell 
the file was undeliverable, that it was sent OK, etc. 

-117-

you 

be 

was 

why 



* # 
# 

TENEX USER'S GUIDE 
MAILSTAT 

January 1975 

MAILSTAT 

# MAILSTAT lists all queued and undeliverable mail in the connected 
# directory. It also accepts commands to manipulate the 
# undeliverable messages - they can be deleted or put back on the 
# queue to be mailed (with a different address if desired). 

* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 

* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

* # 
# 

See Examples below of MAILSTAT features upon usage. 

EXAMPLES ---­
@mails tat 
MAILSTAT-lB(ll) 
Type ? for help 
*? 

(user typing is underlined) 

MAILSTAT lists existing queued and undeliverable mail 
connected directory. It also permits manipulation of 
undeliverable mail. 

Commands are: 

Q - list queued mail 
U - list or manipulate undeliverable mail 
H - halt - exits program 
? - types this message 

in the 

carriage return - lists both queued and undeliverable mail 

*Queued mail: 

AIGHES 
AMSDEN 
CWILLIAMS 

27-JAN-75 12:04:53 
27-JAN-75 12:04:54 

27-JAN-75 12:04:57 

No undeliverable mail. 

*u 
type ? for help 
**? 
Commands are: 

L - list undeliverable mail 
carriage return - same as L 
H - halt - exit to higher level (back to *) 
? - types this message 
M - manipulate undeliverable mail -

Same as L, but after each item is listed, waits for you to 
one of the following options. Except as noted below, the 
option must be confirmed with a carriage return, or may be 

-118-

choose 

-

--

-



TENEX USER'S GUIDE 
MAILSTAT 

January 1975 

# aborted with rubout (del). 
# 
# S - save - does nothing - status of mail is unchanged 
# carriage return - same as s, but no confirmation required 
# D - delete message 
# Q - requeue message 
# A - address change - allows you to specify a different address for the 
# mail and requeues the mail for the modified addressee. 

-119-



TENEX USER'S GUIDE 
MIDAS 

January 1975 

MIDAS 

MIDAS is the assembler normally used at M.I.T. PROJECT MAC on 
their PDP10's, and under their ITS timesharing system. A version 
of MIDAS has been modified to run under TENEX. It does not use 
10/50 uuo·s or ITS uuo·s. It uses TENEX JSYS's. 

Documentation on the MIDAS language will be found in PROJECT MAC 
AI memo number 90, "MIDAS", by Peter Samson". 

The following are the only changes to MIDAS for the TENEX 
version. 

1. The default input file extension is "MID" instead of ">". 

2. MIDAS's initial symbol table contains the TENEX JSYS 
definitions (but not the error codes). 

It should be noted that the binary output of MIDAS is not 
compatible with LOADER. PROJECT MAC's loader has not yet been 
TENEX-ized. A loader for the SBLK format produced by MIDAS is 
being worked on. 

-120-



TUG 
MAILBOX 

MAILBOX 

The "mailbox finder" is a TENEX subsystem used to determine the 
appropriate user name and site name to which an individual's mail 
should be sent. It may be run directly from a terminal or called 
as an inferior procedure. This latter mode may allow mail 
forwarding by FTP, SNDMSG and MAILER. For instance, 

The mailbox data is a text file stored at each TENEX site 
supporting the mailbox finder. Individual sites may wish to 
maintain mailbox information particular to their needs. An 
example is the forwarding of mail to either the BBN-TENEX system 
or the BBN-TENEXA system, depending on where the addressee 
maintains his mailbox, and independent of which system initially 
receives the mail. 

The mailbox finder returns a mailbox specification as 
"user@site". The input to the mailbox finder is also a user@site 
pair, where the site may be omitted. (The default site is the 
local site.) When a person wishes to receive mail under any of 
several synonyms, he has the text file updated to include all 
such synonyms. Whenever a person or program asks the mailbox 
finder about such a synonym (including the mailbox itself), the 
mailbox user@site pair will be returned. Thus, for example, the 
text file entry for user JONES with mailbox on BBNA could look 
like 

\ 
JONES@BBN-TENEXA 
JONES@BBN-TENEX 
JJJ@(NIC ID) 
\ 

;backslash delimits mailboxes 
first entry is mailbox 
;synonym for mail forwarding 
;network information center identification 

A person at a terminal could produce the typescript 
@MAILBOX JONES@BBN 
JONES@BBN-TENEXA 
* 
@ 

An additional feature of the mailbox finder is the ability to 
limit the search to the specified site. This is accomplished by 
a "V" and an "S" on the second argument line, which is shown 
blank in the example above. The V says begin matching only to 
the specific site given, and the s says suppress hunting. If 
hunting is allowed (which is the default case), the mailbox 
finder would find all matches to JONES@BBN, and then continue to 
find any matches to JONES at any other site, and finally any NIC 
IDs which are "JONES". 

8-1 ADD-10-26-77 



TUG 
MAILBOX 

Other possible arguments are "N", which says begin matching only 
NIC IDs, and "A", whih says begin matching all actual sites (but 
not NIC IDs). The default, as shown in the example above, is 
"A", begin matching all sites, then hunt to NIC IDs. 

The text file format includes a mechanism for flagging a mailbox 
as belonging not to a person, but rather to a group. In this 
case a file name is returned. The group's secretary may update 
the file so named as the group's constituency changes. Systems 
programs such as FTP may use this feature to automatically 
distribute copies of group mail. When run from a terminal, the 
mailbox finder types an error comment when the user name supplied 
is a group name. 

As suggested by the example and discussion above, NIC IDs are 
treated as users at a site named "(NIC ID)". Matching to them is 
under separate control, however, as specified by the N argument. 
For example, either 

or 

@MAILBOX JJJ 
NS 

@MAILBOX JJJ@(NIC ID) 
vs 

would produce the single reply 
JONES@BBN-TENEXA 
* 
@ 

and would not match, for instance, a mailbox 
\ 
JJJ@BBN-TENEXA ;Johnson, J.J. 
\ 

On the other hand, 
@MAILBOX JJJ 
AS 

would match only Johnson 
JJJ@BBN-TENEXA 

* 
@ 

To match both, a user could type 
@MAILBOX JJJ 
JJJ@BBN-TENEXA 
JONES@BBN-TENEXA 
* 
@ 

8-2 ADD-10-26-77 



TUG 
MRUNOFF 

MRUNOFF 

MRUNOFF is a program which will produce a formatted manu­

script from a source file. With MRUNOFF it is quite simple to 

achieve presentable results. However, MRUNOFF contains a number 

of sophisticated capabilities which allow the seasoned user a 

great deal of flexibility and control over the resulting manu-

script. 

The original MRUNOFF was called ROFF and was written for 

Multics by Doug Mcilroy of Bell Labs in March, 1969. Art Evans 

made extensive modifications to it in May and June, 1969. Dennis 

Capps added footnoting in 1970. Harwell Thrasher maintained the 

program during 1971. Bob Mabee added many new features (during 

1971-1972) and brought the program to the 6180 Multics (from the 

645) in 1973. Bernard Cosell converted the program to TENEX BCPL 

in February, 1975. 

9-1 ADD-10-26-77 



TUG 
MRUNOFF 

Running MRUNOFF 

When you call MRUNOFF, it will first ask you for an input 

file - the main input file to be formatted - and then will await 

the specifictions of any desired options. Typing in a null line 

will start the processing of the input file. The option acceptor 

uses a standard TENEX command recognition routine. 

Output to file filenaae 
Manuscript output will be directed to the .indicated 
file. Any underscoring will be done on a line-by-line 
basis rather than the default per-character basis. In 
the absence of this option, output will appear on the 
controlling terminal. 

Paginate Page breaks in the output are retained. This is the 
normal mode. Page breaks in the output can be sup­
pressed by use of the "Don't Paginate" option. 

Pause between pages 
or 

Stop between pages 
The program will wait for a carriage-return on the con­
trolling terminal before beginning a new output page. 
The default mode is "Don't Stop between pages". 

Wait before beginning 

Number lines 

Indent nnn 
or 

Margin nnn 

The program will wait for a carriage-return on the con­
trolling terminal before starting the first page, but 
will not otherwise pause. The default mode is "Don't 
Wait before beginning". 

source line numbers wil be printed in the left margin. 
This option forces a minimum indentation of ten spaces. 
The default mode is "Don't Number lines". 

The output will be indented "nnn 11 spaces from the left 
margin. The default mode is "Margin 0". 

From page nnn 
Specifies the lowest numbered page of the output that 
will actually be printed. Default is "from page 0". 

9-2 ADD-Hl-26-77 

-



TUG 
MRUNOFF 

To page nnn 
Specifies the highest numbered page of the output that 
will actually be printed. Default is "To page 99999". 

Passes to be done nnn 
Specifies that nnn passes should be made over the 
file. Output will be produced only on the last 
The default mode is "Passes to be done l". 

input 
pass. 

Parameter to be set to xxxxxx 
Establishes an initial value for the variable "Parame­
ter". The default is for "Parameter" to be set to the 
null string. 

Hyphenate 
Enables the hyphenation package. The operation of the 
hyphenation package is discussed on page 36. The de­
fault mode is "Don't hyphenate". 

Chars File 
When this option is selected, various key characters in 
the output file will be flagged. The flags will be 
written to a file with the same directory and name as 
the main source file, but with extension .CHARS. The 
default mode is "No Chars File". 

Start numbering with page nnn 

Don't 
or 

llo As 

Output page numbering will begin with the first page of 
output being assigned number nnn. The default mode is 
"Start numbering with page 1". 

indicated in the affected 
mand may be used 
sense. For example, 
undo the effects of 

options above, this com-
with some options to reverse their 
a "Don't hyphenate" command would 
any preceding "Hyphenate" command. 

9-3 ADD-1~-26-77 



TUG 
MRUNOFF 

The Basics of MRUROFF 

An MRUNOFF source file contains two type of lines: con-

trol lines and text lines. A control line begins with a period; 

all other lines are considered to be text lines. The control 

lines are, in general, directives to MRUNOFF and will not appear 

in the output file. Text lines are formatted as directed by pre-

ceding control lines and program-initiation options and written 

to the controlling terminal or the selected output file. 

File name defaults. MRunoff attempts to make its defaults 

for the various fields in the file names it uses as reasonable as 

possible in order to allow the User as much abbreviation as pos-

sible. For its main input file, MRunoff will look in the connec-

ted directory for extension .MRN~ the file name must always be 

specified. For all other files, MRunoff will always default to 

the directory used for the main input file. If hyphenation is 

desired, the default file for the dictionary is 

BYPBERATIOR.DICTIORARY. The output and chars files default to 

have the same name as the main input file with extensions .DOC 

and .CHARS, respectively. Inserted files have default extensions 

of .llRll, and the file name must always be specified. 

Pilling. When the text is being "filled" all ends-of-

lines in the input file are ignored beyond identifying control 

lines. Material is taken from the input file and added to an 

output line as long as there is room. A line will be written on-

ly when either there ia in5uff icient room for the next input file 

9-4 ADD-10-26-77 

-

-



TUG 
MRUNOFF 

word or a "break" is encountered. If the output is being "ad-

justed" (the default mode), before the filled output line is 

written it will be padded with sufficient spaces so that it ex-

actly fills the specified output line length. Successive lines 

are padded alternately from the left end and from the right end. 

Breaks.. A "break" insures that the text following it will 

not be run together with the text that preceded it. Breaks can 

be introduced into the text explicitly by use of a .br control 

line. In addition, many other control lines will cause a break. 

If an input line begins with a space, it will cause a break. 

Tabs. MRUNOFF maintains a table of tab stop locations. 

Tab stops are initialized to occur at locations 11, 21, 31, etc., 

and can be changed with a .tb control line. As text is prepared 

for output, tab characters (I, ASCII 011) are replaced with the 

required number of spaces (but always at least one) to fill out 

to the next tab stop counting locations from the first print po-

sition on the line, independent of where that print position may 

fall on the page due to .in or .un control lines. Tab characters 

in control lines are not handled any differently than any other 

character. 

Sentences. When an input text line ends with any of the 

characters II II . ' "?", "!", "~", or ":", or with ".", "?", or "!" 

followed by a double quote or ")", two blanks will precede the 

following word (if it is placed on the same output line), instead 

of the normal single blank. te that if these characters appear 

9-5 ADD-10-26-77 



TUG 
MRUNOFF 

anywhere else on the input line no special action will be taken; 

however, within a text line, any multiple spaces are preserved. 

Thus, if there are three spaces between a pair of words and they 

get put on the same output line, then they will be separated by 

at least three spaces, and perhaps more if the line is adjusted. 

The layout of the page. verticlly, an output page con-

tains three areas. The first consists of headers, which are 

printed at the top of each page. There may be up to twenty lines 

of headers. Header lines are numbered from the top down. Next 

comes the text body, which contains both text and footnotes. 

Lastly, come footers, which are printed at the bottom of each 

page. Again, there may be up to twenty lines of footers, but 

footers are numbered from the bottom line upwards. These three 

areas are spaced by four margins. The first margin on the page 

is the number of blank lines above the first header; the second 

is the number of blank lines between the last header and the 

first line of text; the third is the number of blank lines be-

tween the last line of text and the last footer; the fourth is 

the number of blank lines below the first footer. These margins 

are set up, respectively, by .ml, .m2, .mJ, and .m4 control 

lines, and the current values of these may be referenced through 

the symbols Mrl, Mr2, Mr3 and Mr4: the default margins are four 

lines at the top and bottom of the page, and two lines around the 

text body. 

Line spacing is always done just before a line is printed. 

For example, when a "page break" occurs (say, because of a .bp 

9-6 ADD-10-26-77 



TUG 
MRUNOFF 

control line), the footnotes and footers for the current page are 

written immediately, but the headers on the new page are not 

written until the first line of text is ready to be written on 

it. In particular, when MRUNOFF begins processing a file, it 

considers itself just "above" the first page, and if any headers 

are set up before any text is placed on the first output page, 

the headers will be printed on the first page. 

Character Set. MRUNOFF expects its input to utilize the 

full ASCII character set. However, it will perform case conver-

sion if that is necessary. The variable CASECORTROL should be 

set to the ASCII code for the character to be used for signalling 

case information; setting CASECONTROL to zero disables the case 

conversion facility, and it is initialized that way. MRUNOFF 

performs case conversion by interchanging characters with ASCII 

codes #100 through #137 with those of codes #140 through #177. 

Double occurrences of CASECONTROL will complement the overall 

mode of converting either all characters or none, while single 

occurrences will complement the effect of the overall mode for 

the immediately following character only. 

MRUNOFF is nominally set up to produce output using the 

full set of ASCII graphics. However, MRUNOFF contains various 

facilities for dealing with devices with other character sets. 

The variable TrTable is a table whose nth entry provides the 

translation for the character with ASCII code n. If the entry is 

a number, then that number is the ASCII code which will be added 

to the output file (or sent to the terminal); if the entry is a 

9-7 ADD-10-26-77 



TUG 
MRUNOFF 

string then the entire string will be used as the translation. 

Note that these translations are used for all output including 

the formfeed (via the translation for ASCII 12.) used to eject 

pages and the carriage return line feed sequence (via the 

translations for ASCII 13. and 10.) used to advance from line to 

line. TrTable is initialized to have all of the ASCII graphics 

and all of the ASCII format effectors translate to themselves, 

and all other codes translate to 0 (ASCII NUL). By use of .tr 

control lines or .st control lines, TrTable can be modified to 

suit MRUNOFF's output to the desired device. For example, if the 

User's device has some special graphics the User has the choice 

of using the appropriate control code directly and declaring the 

code to translate to itself, or for more convenient source pre­

paration in a standard ASCII environment some little used ASCII 

graphic could be translated into the appropriate control code. 

Further, if the output device has some special capability (e.g., 

subscripting), the User can have any convenient character trans-

late into the appropriate escape sequence. 

In order to do filling and justifying correctly, MRUNOFF 

must know the printing width each ASCII code takes up on the out-

put device. This is done by means of another table, Widths. The 

nth entry of this table specifies how much space the character 

with code n will occupy on a line. This width is calculated be-

fore any TrTable translation is done: that is, the code n refers 

to the ASCII code of a source file character. 

9-8 
ADD-10-26-77 

--



TUG 
MRUNOFF 

MRUNOFF also has a facility to assist in the preparation 

of manuscripts for devices with an inadequate collection of 

graphics for the job at hand. For these cases, by requesting the 

Chars file option and using .ch control lines, or .st control 

lines directly upon the table CharsTable, the User can specify 

that whenever MRUNOFF encounters a particular character, in addi-

tion to translating it into the output, MRUNOFF should make an 

entry into a second output file to indicate that that particular 

location in the manuscript will require some attention after it 

is typed out. CharsTable is indexed by the ASCII code of the in-

put file character (i.e., before it has been translated). If the 

entry for a code contains a SPACE (ASCII 32.), then the character 

will be passed to the .CHARS file with its TrTable translation 

and will not be flagged. If the entry for a character contains 

any other number, then that code will be sent to the .CHARS file 

instead of the normal translation and the character will be flag-

ged. Unless an output line contains at least one flagged charac-

ter, it will be suppressed from the .CHARS file. MRUNOFF ini-

tializes CharsTable so that all of the ASCII graphics and format 

effectors print as themselves, unflagged, the other control char-

acters print as an appropriate lower case letter, flagged, NUL 

becomes a flagged accent grave, and RUBOUT becomes a majuscule R, 

flagged. 

Page nUJlbering. As the output is being prepared, a page 

number counter is kept. In addition to being set by the Start 

nwnbering with page option, the counter can be incremented or set 

9-9 ADD-10-26-77 



TUG 
MRUNOFF 

directly from the source file (e.g., by a .pa control line). A 

page is called odd (even) if the current value of the counter is 

odd (even). To facilitate preparing manuscripts to be printed 

"double sided", the headers and footers can be specified indepen-

dently for odd and even pages. 

Symbols. Many of the variables internal to MRUNOFF are 

avaiable to the user by means of the symbol facility. In addi-

tion, the user may define and use his own symbols. This facility 

combined with the conditional command (.ts) and the looping corn-

rnands (.gf, .gb and .la) allow the user, in effect, to write a 

program within MRUNOFF to "build" his output text. Details on 

the use and definition of symbol appears on page 18. In general, 

though, there is a special character which is reserved to indi-

cate symbol substitution. This character is nominally %, but can 

be changed by a .cc control line or by resetting the value of the 

symbol SpecChar. When a symbol is to be substituted, the name of 

the symbol is surrounded by SpecChars. The SpecChars and the 

name of the symbol are replaced in the line with the value of the 

symbol before the line is processed. In order to include a 

SpecChar in the text, it must be doubled. Also, if a single 

SpecChar occurs in the text, it will b replaced by the current 

page number. For example, .ts %=42 would test whether the cur-

rent page number were 42, or .ts •%Parameter%"=•%%• would test 

whether the symbol Parameter was equal to a per-cent sign. 

9-10 ADD-10-26-77 



TUG 
MRUNOFF 

Underscoring and Multiple Printing. MRUNOFF contains a 

facility for underscoring the output text. When this facility is 

enabled, a character is usurped for use as an underscoring flag. 

MRUNOFF maintains a global underscoring mode which indicates 

whether all output characters are being underscored or not. Un-

derscoring is enabled, and a control char is selected, by means 

of a .uc <char> control line. Double occurrences of the selected 

character reverse the global underscoring mode, while single oc-

currences of the selected character reverse the global mode for 

the following character, only. For example, if the user included 

a .uc $ control line at the beginning of his input file, then the 

text $$Row is t$he $$time for $a$1$1 good men would appear in the 

output as Now is the time for all good men. 

While MRunoff does not contain any facility for specifying 

changes of font (and for that matter, most output devices don't 

have the capability, anyway), MRunoff does have the ability to 

multiply strike characters which results in a fairly attractive 

simulation of a boldface font. The facility can be enabled by 

setting the variable OverprintCount to be greater than zero; 

is disabled by setting OverprintCount to be less than or equal to 

zero. This facility replaces the normal underscoring facility 

when it is being used. In particular, when enabled any character 

which would normally be underscored will instead be repetitively 

struck a number of additional times as given by the value of 

OverprintCount. Setting OverprintCount zero or negative will re-

store normal underscoring; disabling underscoring does not af-

9-11 ADD-10-26-77 



TUG 
MR UNO FF 

feet OverprintCount (and thus multiple printing, and not under-

scoring, would continue when underscoring is next enabled). 

Titles. Several command lines accept a title line as an 

argument. A title line consists of a line with three distinct 

fields: the first is text to be placed flush with the left mar-

gin, the second centered, and the third flush with the right mar­

gin. The first non-blank character in the title will be used as 

the delimiter to separate the three fields. If fewer than four 

delimiters are present on the line, the missing parts of the ti­

tle are taken to be blank. The justification and centering is 

done relative to the line length and margins in effect at the 

time the title line is processed, and is independent of their 

values at the time of use. For example, this document used the 

commands: .he 1 'MRUNOFF''%FancyDate%' and .fo 1 ••- % -

Flagging blocks of text. MRunoff has the capability to 

print a marginal flag (usually a vertical bar, I) along side the 

output text. The flagging character may be put to the left of 

the text or to the right of the text, or even in the middle of 

the text. If on an even numbered page and the variable 

EvenFlagCol is neither less than nor equal to zero, then its val-

ue gives the absolute print position in which a flag is to be 

printed, otherwise, no flags are added; the variable OddFlagCol 

functions similarly for the odd-numbered pages. The character 

which would normally be printed in that position is replaced by 

the character whose ASCII cod@ is given by the value of FlagChar. 

9-12 ADD-10-26-77 

·-



TUG 
MRUNOFF 

An MRunoff output line will always have ExtraMargin spaces 

at its beginning which are totally invisible to the formatting 

processes. An absolute print position is one which takes these 

"free" spaces into account (as, for example, the tab stop speci-

fication does not}. Thus, if EztraMargin were set to three, then 

a flag specified to occur in column 1 would appear three spaces 

to the left of the output text. If the flagging column is beyond 

the right end of the line, MRunoff will add spaces to the line as 

necessary to place the flagging character in the correct column. 

MRunoff will never flag headers or footers. 

To make the use of this facility more convenient, a .fl 

control line will set FlagChar and both EvenFlagCol and 

OddFlagCol. 

Footnotes. The occurrence of a .ft control line will 

cause all of the text and commands until the next occurrence of a 

.ft control to be collected as a footnote. The text of all foot-

notes defined on a page is accumulated and written together at 

the bottom of the page. The footnote text is completely set up 

at the time MRUNOFF encounters the defining .ft control line~ 

thus, any commands embedded within the footnote will be executed 

while the footnote is read, not when the footnote is eventually 

inserted into the output. In particular, it is not possible to 

nest footnotes. 

In order to make it more convenient to number footnotes, 

MRUNOFF maintains a special symbol, Foot. The value of this sym-

bol is incremented by one whenever a .ft control line which ends 

9-13 ADD-10-26-77 



TUG 
MRUNOFF 

a footnote is encountered. Thus, while in the main text, Foot 

will yield the next number to be assigned to a footnote, and 

while in the body of a footnote %Foot% yields the number of the 

footnote in progress. The user may select whether he prefers 

footnotes to be numbered consecutively through the entire docu-

ment or whether he prefers that the numbering revert to "l" with 

each new page. Also, the automatic incre~enting of Foot may be 

suspended entirely if desired. 

The body of a footnote should occur immediately after the 

word which is to include the footnote reference. MRUNOFF will 

insure that the output line containing the reference will be kept 

on the page which receives the footnote. When MRUNOFF encounters 

a .ft control line beginning a footnote, it will append the value 

of the value of the TextRef to the last word on the preceding line 

TextRef is initialized to be (1Foot%). Since a footnote does not 

cause a break in the main text, the only effect on the output is 

that the footnote reference has been appended to a word. Simi-

larly, the value of the value of the symbol FootRef will be in-

eluded as the first line of the footnote input text; FootRef is 

also initialized to be (1Foot%). 

Pictures. The User may set, and format, blocks of space 

for pictures. The formatting possible includes top- or bottom-

of-the-picture captions, footnotes within the captions, etc; in 

fact, the full power of MRUNOFF* is available for use in laying 

*Witn-Ehe-exceptIOn of the .gb command. Due to the organization 
of the deferred text processor there is no way to loop back and 
re-execute any of the deferred text. If this is necessary, it 

9-14 ADD-10-26-77 

·-



TUG 
MRUNOFF 

out a space for a picture. A pair of .pc control lines ("Picture 

with caption") are used to delimit a section of text and commands 

which should do any desired formatting (including actually leav-

ing any blank space needed) • The first .pc control contains an 

expression which specifies how much space the picture (including 

all captions, etc.) will require. The entire section between the 

.pc lines will be queued and deferred until a point is reached 

where all previously queued pictures have been processed and the 

indicated amount of space is available. Then the queued text and 

commands will be processed before any further text is taken from 

the input file. Notice that no space is "automatically" set 

aside: any desired empty space must be explicitly provided for. 

The space requested in the opening .pc control and the space ac-

tually taken up during the eventual processing of the caption 

need have no relation to one another. Also, regardless of how 

much space is actually requested, if MRUNOFF reaches the top of a 

new page at least one caption will be processed as the first 

thing (after the headers) on the new page: beyond the first cap­

tion, though, captions will only be processed if the space left 

on the page is at least as large as was originally requested for 

the caption. 

can be done by putting the loop in a file and using .if to in­
clude it in the caption. 

9-15 ADD-10-26-77 



TUG 
MRUNOFF 

E:xpressions 

Several commands require numeric or string arguments. For 

all such commands, the argument may be the result of evaluating 

an expression. The basic arithmetic operators, in order of de-

creasing precedence, are: 

(, ) grouping 
- (bit-wise negation), - (unary) 
*, I, II {remainder) 
+, - (binary) 
=, <> and >< (not equals), <, >, <=, >=, =<, => 

{Comparison operators. Yield -1 {if true) or 
0 {if false)) 

& {bit-wise AND) 
\ {bit-wise OR) 

Octal number are indicated by prefixing the number with a "#". 

All other numbers are considered to be decimal. 

Strings can also be dealt with. However, the only way 

that strings are handled is by building up a single string "con-

stant" from other string constants in a strictly left-to-right 

manner. The basic string constant is a sequence of characters 

surrounded by double quote characters. Certain special charac-

ters are represented by sequences, as follows: 

** asterisk 
*" double quote 
*b backspace 
*n new-line 
*t horizontal tab 
*s space 
*cnnn character whose ASCII code {in decimal) 

is nnn (one to three digits). 

If two string constants are placed next to one another, the re-

sult is a new string constant which is the concatenation of the 

original two strings. Placing (i) or (i,k), where i and k are 

9-16 ADD-HJ-26-77 



TUG 
MRUNOFF 

arithmetic expressions, after a string constant results in a new 

string constant consisting of a substring of the original con-

stant, defined as follows: i indicates the character position at 

which the substring is to begin, if i is negative, it indicates 

an offset from the right end of the string; k (or -1 if k is not 

supplied) indicates the length of the substring to be extracted, 

or if k is negative it· specifies the distance from the right end 

of the string at which the substring is to end. There are no 

other string operations; the presence of any arithmetic operator 

in the expression will convert it to being a numeric expression. 

The comparison operators work on strings: if "=" (or "<>" or 

"><") is used to compare two strings, the comparison will be done 

over their entire lengths, in order to result in "true" (or 

"false") the two strings must exactly match - in both content and 

length; if any other comparison operator is used between two 

strings, the result will be appropriate to the collating sequence 

(independent of case) of the two strings. One other numeric op-

eration is defined for strings: if a string constant is immedi-

ately followed by a"#", it will evaluate to be the length of the 

string. In any other context in a numeric expression, a string 

is converted to a number in such a way that a one-character 

string results in the ASCII numeric value of the character; the 

numeric value of multi-character string constants is undefined. 

For example, "ab" "cd" = "abed"; "abcdefg" (3) = "cdefg"; 

"abc" "defg"(2,5) = "bcdef"; "abed" "efgh" (3) "ijkl" (2,-2) = 

"defghij k II• 

9-17 ADD-10-26-77 



TUG 
MRUNOFF 

Definition and Substitution of variables. 

Names of variables are composed of upper- and lower-case 

alphabetic characters, decimal digits, and " " (underscore). 

Variables have either "string" or "numeric" values. 

Values will be substituted for variables under the follow-

ing circumstances: 

1) In expressions if a SpecChar (normally %) is found 
as either the first or second character following 
the spacing after the control word. Note: any such 
% is not used as a flag and removed. Thus, there 
will be expressions in which symbol substitution is 
desired but which cannot be reordered to bring a 
(desired) symbol reference to the beginning. For 
example, .sr Symbol •(1Date%)•. In such cases, you 
must specify substitution explicitly with a .ur 
control line. 

2) All .ur control lines. 
3) In all title lines. 

To indicate a symbol substitution, you enclose the name of the 

variable in % characters. % in any other context will be re-

placed by the value of the page counter~ to include a %, you must 

code it as %%. If it is inconvenient to use %, you can change 

the substitution control character by means of a .cc control line. 

When a substitution takes place, the %nam.e% is removed 

from the line being processed and is replaced with the value of 

the variable: either the value itself if the variable is a 

string, or the appropriate string of (decimal) digits if the var-

iable is numeric. Notice, then, that if you wish to preserve the 

"stringness" of a variable in an expression, you must surround 

the variable reference in double-quote characters. For example, 

9-18 ADD-10-26-77 



TUG 
MRUNOFF 

to test if %Parameter% is equal to the string "abc•, you must 

write .ts •%Parameter% = "abc•. 

If a variable is defined to be a table, references to its 

entries have a somewhat different syntax. The sequence 

%Bamelnnn% will be replaced by the nnnth entry of the table Name. 

The index must be a decimal number; it may neither be an expres-

sion nor supplied by another substitution. Thus, to retrieve an 

element whose index has been saved in another variable, some 

technique like .ur ••• %%Namel%Index%%% ••• would have to be 

used. Each element of a table may be a string or a number inde-

pendent of the table's other elements. 

Many of the variables internal to MRUNOFF are available to 

the user (a complete list will be found on page 33); these in-

elude control argument values (or their defaults), values of 

switches and counters, and certain special functions. Most are 

user settable, but for the ones that are not, any attempt to re-

define them will merely make their system values inaccessible. 

This will cause no harm, and the user may freely use the name for 

a private variable. 

A special symbol is provided for use in footnote number-

ing: Foot contains the value of the next footnote number avail-

able (or the current footnote if referred to from within the body 

of a footnote). The value of Foot is incremented by one when the 

closing .ft control line of a footnote is encountered. The user 

may select whether Foot should maintain a running count through-

9-19 ADD-10-26-77 



TUG 
MRUNOFF 

out the manuscript or whether it should be reset at the end of 

each page. 

Also, by use of .me control lines, variables can be set up 

to be counters. Any reference to such a variable provides its 

current value, and causes its value to be incremented by one 

automatically. This facility is useful for numbering equations, 

numbering references and other applications where the ability to 

maintain a sequential counter through the manuscript is conven-

ient. 

9-20 ADD-10-26-77 



TUG 
MRUNOFF 

Control Line Formats 

This section gives a description of each of the control 

lines which may be interspersed with the text for format control. 

Control lines do not cause an automatic break unless so speci-

fied. If a control line's command is defined as a string valued 

variable, the value of the variable will replace the period and 

the variable name and the line will be reprocessed (and hence 

might not be a control line when rescanned). This substitution 

and rescanning takes precedence over any definition of a particu-

lar control as described below; thus, this capability would al-

low one to redefined the built-in commands. Arguments of the 

control words are in the following form: 

t integer constant 
integer expression I n 

+n integer expression preceded by optionial plus 
or minus sign 

sign I 

exp 
c 
cd 
f 
ttl 
xxx 
+n, 

name 

str 

(blank line) 

arbitrary expression (string or integer) 
single character 
sequence of character pairs 
file name 
a title line 
remainder of the control line 
a sequence of integer expressions (with optional 
preceding signs) , separated by commas 
a character sequence to be interpreted as a vari­
able name (Note: the name sho~ld not be surrounded 
by %S) 
string expression 

A blank line occurring in the text is treated as if it 
were a .sp 1 control line unless the blank line would be 
the first line on a page, in which case the line is treat­
ed as though it were a .br control line. 

(form feed) 
Any line beginning with a form feed will be treated as 
though it were a .bp control line. 

9-21 ADD-10-26-77 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



TUG 
MR UNO FF 

.name xxx 
If name is string valued, then the .name portion of the 
line will be replaced by the value of name and the line 
will be reprocessed. This line is similar to the control 
line .ur %name% xxx excepp that no symbol substitution in 
the xxx portion of the line will take place • 

• ad Adjust: text is printed right justified. Fill mode must 
be in effect for right justification to occur. Fill mode 
and adjust mode are the default conditions. This control 
line causes a break . 

• ap name str 
Append: If name is 
be appended to that 
name). Otherwise, 
as .sr sym str • 

a string valued symbol, then str will 
string (and left as the value of 
this control line has the same effect 

• ar Arabic page numbers: when the page number counter is sub­
stituted into text or control lines by means of % (not by 
%Hp%} it will be done in Arabic notation. All other nu­
meric substitutions are always done in Arabic. This is 
the default condition. 

.bp Begin page: 
output page . 

the next line of text will be put on 
This control line causes a break. 

a new 

• br Break: the current output line is written as is, and the 
next input text line will be put on a new output line . 

• cc c Control charcter: this control line changes the character 
used to surround the names of variables when they are ref­
erenced to be c. This changes all uses of the control 
character: a single c will become the current page num­
ber, and c will have to be doubled to be get a c into the 
output text. The default control character is %. If c is 
omitted, the control character will be reset to % . 

• ce n Center: the next n lines of source text are centered be­
tween the current margins •. If n is omitted, 1 is assumed. 
Filling and adjusting are suspended until the centering is 
completed. This control line implies .ne %Ms%*n so that 
all lines centered will be on the same page. This control 
line causes a break. · 

.ch cd Characters: each occurrence of the character c will be re­
placed in the .CHARS file by the character d, and the 
character will be flagged. If the d character is blank, 
or an unpaired c character appears at the end of the line, 
the c character will not be flagged, and will occur as it­
self in the .CHARS file, or not at all if no other charac­
ter in the line is to be flagged. 

9-22 ADD-10-26-77 



TUG 
MRUNOFF 

.ds Double space: begin double spacing the text. This control 
line is equivalent to .ms 2. This control line causes a 
break • 

• dt name n 
Define a table: Name will be defined to be a table of 
length n. The elements of name will be initiaized to 
zero (not the null string) and can be assigned values by 
means of a .st control line. The elements can be accessed 
by use of the %namelnnn% construct. The indexes for the 
table range from zero to n-1 • 

• eh t ttl 
Even footer: this defines even page footer line number t. 
If the title line is omitted, the footer line with that 
number is cancelled • 

. eh I ttl 
Even header: this defines even page header line number t. 
If the title line is omitted, the header line with that 
number is cancelled. 

I 
.eq n Equation: the next n text lines are taken to be equations. I 

.fh ttl 

.fi 

.fl c, 

If n is omitted, 1 is assumed. This ccntrol line implies I 
.ne %Ms%*n so that all equations will be on the same page. I 
Each equation shold be formatted as a title line. I 

Footnote header: before the first footnote on a page is 
printed, a demarcation line is printed to separate it from 
the text. The format of this demarcation line is speci­
fied by the ttl. The default footnote header is a line of 
underscores from column one to the right margin. 

Fill: this control line enables fill mode. This is the 
default condition. This control line causes a break. 

n 
Flag control: The character c is set up as the flagging 
character. If n evaluates to be negative or zero flagging 
will be turned off, otherwise a flag will be printed in 
column n of every output line. 

I 

.fo I ttl 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Footer: even and 
This control line 

.ef t ttl 

.of I ttl 

odd footers are set at the same time. 
is equivalent to: 

9-23 ADD-10-26-77 



TUG 
MRUNOFF 

.fr c Footnote reset: this control line specifies footnote num­
bering according to the argument c. Permissible values of 
the argument are: 

t Footnote counter is reset at the top of each 
page. This is the default condition. 

f Footnote counter runs continuously through the 
text. 

u Suppress numbering the next footnote. That is, 
the next closing .ft line will not change the 
value of Foot. 

If any other value for c is supplied, f is assumed . 

• ft Footnote: when .ft is first encountered, all subsequent 
text until the next .ft line is treated as a footnote. 

. gb xxx 

• gf xxx 

Any further text on the .ft line will be ignored. If a 
footnote occurring near the bottom of a page will not fit 
on the page, as much as necessary will be continued at the 
bottom of the next page. If a .ft line occurs when there 
are fewer than two lines remaining on the current page, 
the last text line on the current page will be removed, 
the page will be terminated, and the text line will be 
written as the first line on the next page • 

Go back: the current input file is searched from the be­
ginning until a line of the form .la xxx is found. Pro­
cessing is continued with the line following the matching 
.la control line • 

Go forward: same as .gb except that the search begins at 
the current position in the input file . 

• be I ttl 
Header: even and odd header lines I are set at the same 
time. This control line is equivalent to: 

.eh I ttl 

.oh I ttl 

.if f exp 
Insert file: the indicated file is inserted into the text 
at the point of the .if control line. The default direc­
tory is the currently connected one, and the default ex­
tension is ".MRN"~ it is wise to cultivate the habit of 
always including <directory> in the file name. The in­
serted file may contain both text and control lines. No 
break occurs. Insertions may be nested to a maximum depth 
of thirty. If exp is provided, it will be evaluated and 
its value and type will be assigned to the variable Parame­
ter~ otherwise, the value of Parameter remains unchanged. 

9-24 ADD-10-26-77 



TUG 
MR UNO FF 

.in +n Indent: the left margin is indented n spaces by padding n I 
leading spaces on each line. The right margin remains un- I 
changed. If n is omitted, 0 is used. If n is preceded by I 
a plus sign or a minus sign, the indentation is changed by I 
n rather than reset. This control line causes a break. I 

.la xxx 

.Ii n 

.11 +n 

Label: defines the lable xxx for use as the target of 
either .gb or .gf control lines. 

Literal: this request causes the next n lines to be treat­
ed as text, even if they begin with " " If n is omitted, 
1 is assumed. 

Line length: the line length is set to n. The left margin 
stays the same, and no break occurs. The default for n is 
65 both initially and if n is omitted. If n is preceded 
by a plus sign or a minus sign, the line length is changed 
by n rather than reset. 

.Im +n Left margin: this control line has the same 
.in +n control line. 

effect as a 

.ma +n Margins: top and bottom margins are set to n lines. If n 
is preceded by a plus sign or a minus sign, the margin is 
changed by n rather than reset. The margin is the number 
of blank lines left above the first header and below the 
last footer. The default is four lines. This control 
line is equivalent to 

.ml +n 

.m4 +n 

.me name 

Make counter: defines name to be a counter variable. 
Name will be initialized to one. If name is reset (by a 
.sr control line), it will retain its counter property so 
long as it is only reset to a numeric value. When a 
counter variable is referenced its value is returned 
first, and then incremented. 

.mp +n Multiple pages: format the output text so that it prints 
on every nth page. The defaut value is 1. 

.ms +n Multiple space: begin spacing the text so as to leave (n-
1) blank lines between text lines. If n is preceded by a 
plus sign or a minus sign, the acing is changed by n 
rather than reset. If n is not given, 1 is assumed. This 
control line causes a break. 

9-25 ADD-10-26-77 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



TUG 
MRUNOFF 

.al +n Margin 1: the number of blank lines left above the first 
header is set to n. If n is preceded by a plus sign or a 
minus sign, the margin is changed by n rather than reset. 
The default is 4 • 

• a2 +n Margin 2: the number of blank lines left between the last 
header and the first line of text is set to n. If n is 
preceded by a plus sign or a minus sign, the margin is 
changed by m rather than rset. The default is 2 • 

• m3 +n Margin 3: the number of blank lines left between the last 
line of text and the 1st footer is set to n. If n is 
preceded by a plus sign or a minus sign, the margin is 
changed by n rather than reset. The default is 2. 

.•4 +n Margin 4: the number of blank lines left beteen 
footer and the bottom of the page is set to n. 
preceded by a plus sign or a minus sign, the 
changed by n rather than reset . 

the first 
If n is 
margin is 

. na No adjust: justification mode is disabled. This control 
line causes a break . 

• ne n Need: a block of n lines is needed. If n or more lines 
remain on the current page, text continues as before: 
otherwise, the current page is ejected and text is contin­
ued on the next page. No break occurs unless it is neces­
sary to advance to a new page • 

. nf No fill: fill mode is disabled, so that a break is caused 
after every text line. Adjustment mode is ignored, and 
adjusting is not performed. Upon a .fi control line, ad­
justment will continue if it is enabled at that time . 

. of t ttl 
Odd footer: this defines odd page footer line number t. 
If the title line is omitted, footer line t is cancelled. 

.oh t ttl 
Odd header: this defines odd page header line number •• If the title line is omitted, header line I is cancelled. 

.op Odd page: the next page is forced to be odd by adding one 
to the page number counter if necessary. A break occurs 
and the current page is ejected . 

• pa +n Page: The page number counter is set to n. If n is pre­
ceded by a plus sign or a minus sign, the counter is 
changed by n rather than reset. A break occurs and the 
current page is ejected. 

9-26 ADD-10-26-77 



TUG 
MRUNOFF 

.pc n Picture with caption: if n lines remain on the present 
page, then the text and commands up to the next .pc con­
trol line are immediately processed, after which normal 
text processing continues without a break occurring (inde­
pendent of anything that might appear within the body of 
the caption). Otherwise, the text and commands up to the 
next .pc control line are queued up and will be processed 
when the next page is reached • 

• pi n Picture: Set aside a blank space n lines long. This con-
trol line is equivalent to: 

.pc n 

.sp n 

.pc 

.pl +n Page length: the page length is set to be n lines. The 
default is 66. If n is preced by a plus sign or a minus 
sign, the page length is changed by n rather than reset . 

• rd Read: one line of input is read from the controlling ter­
minal. This input line is then processed as if it had 
been encountered instead of the .rd control line. Thus, 
it may be either a text line or a control line. A break 
occurs only if the processing of the terminal line causes 
one • 

• rm +n Right margin: this control line has the same effect 
.11 +n control line. 

as a I 
I 
I 

.ro Roman numerals: establishes that whenever the page counter I 
is substituted for a % (not for %Np%) it will be done with I 
Roman, rather than the default Arabic, numerals. I 

.rt 

.sk n 

.sp n 

Return: terminates processing characters from the current 
input file and continues processing from the line follow­
ing the .if control line of the previous input file. 

Skip: n page numbers are skipped before the new page 
by adding n to the current page number counter. No break 
in the text occurs. This control line may be used to 
leave out a page for a figure. If n is omitted, 1 is as­
sumed. 

Space: space n lines. If n is not given, 1 is assumed. 
If not enough lines remain on the current page, footers 
are printed and the page ejected, but the remaining space 
is not carried over to the next page. However, if MRunoff 
is already at the top of a new page (even though it may 
not have printed the headers on that page yet), the space 
will be left immediately after the headers are printed. 
This control line causes a break. 

9-27 ADD-10-26-77 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



TUG 
MRUNOFF 

.sr name exp 
Set reference: associate· the value (and type) of exp with 
the variable name. Naae may be either a user-defined 
identifier or one of the built-in symbols • 

• ss Single space: begin single spacing text. This control 
line is equivalent to .ms 1. This is the default condi­
tion. This control line causes a break . 

• st name n,exp 

• tb +n, 

Set a table entry: Entry n of table name will be set to 
exp. Notice that the comma is required . 

Tab stops: Sets a tab stop at the position indicated by 
the value of each expression in the remainder of the con­
trol line. If an expression is preceded by a plus sign or 
a minus sign, the expression will specify an offset from 
the previous tab stop location • 

• tr cd Translate: the nonblank character c is translated to d in 
the output. An arbitrary number of cd pairs can follow 
the initial pair on the same line without intervening 
spaces. An unpaired c character at the end of the line 
will cause c to be translaaed to a blank. (translation of 
a character to a blank in the output is useful for pre­
serving the identity of a string of characters, so that 
the string will not be split across a line, nor have pad­
ding inserted within it.) 

.ts n Test: the next input line will be ignored if the value of 
n equals zero (false). The default value is non-zero • 

• ty xxx 
Type: write xxx onto the ccntrolling terminal. Substitu­
tion of variables may occur if the first or second charac­
ter of xxx is % . 

• uc c Underscore character: establishes the character to be 
used to indicate underscoring. If c is omitted, under­
scoring is cornpletlely disabled and no character is inter­
cepted for this purpose. This is the default mode • 

• un n Ondent: the next ouput line is indented n spaces less 
than the current indentation. Adjustment, if in effect, 
will occur only on that part of the line between the nor­
mal left indentation and the right maagin. If n is not 
specified, its value is the current indentation (i.e., the 
next output line will begin at the left margin). This 
control line causes a break. 

9-28 ADD-10-26-77 

·-.... 



TUG 
MRUNOFF 

.ur xxx I 

.wt 

·* 

• 

Use reference: xxx will be scanned, and any indicated var- I 
iable substitutions will be performed. The line thus con-I 
structed is then processed as if it had been encountered I 
in the original input file (e.g., it may be another con- I 
trol line - even possibly aaother .ur). I 

I 
Wait: read one line from the controlling terminal and dis- I 
card it. I 

This line is treated as a comment and ignored. 
occurs. 

This line is treated as a comment and ignored. 
the line is copied into the .CHARS file. 

No break 

However, 

9-29 
ADD-10-26-77 

I 
I 
I 
I 
I 
I 



TUG 
MRUNOFF 

Control Line Summary 

The following conventions are used to specify arguments on con-

trol lines: 

c a single character 
cd a sequence of character pairs 
exp expression (either numeric or string) 
# integer constant 
n numeric expression 
+n + or - indicates update by n, otherwise set to n 
f file name 
t title line ('partl'part2'part3') 
+n, sequence of +n expressions separated by commas 
sym variable name 
str string valued expression 

An asterisk at the beginning of "Meaning" indicates that the con­
trol line causes a break. 

Request 

{blank line) 
(form feed) 
.ad 
. ap sym str 
.ar 
.bp 
.br 
.cc c 
.ce n 
.ch cd 
.ds 
• dt sym n 
.ef # t 
.eh # t 
.eq n 
.fh t 

.fi 

.fo # t 

.fr c 

• ft 
.gb xxx 
.gf xxx 

Default Meaning 

*Equivalent to .sp 1 
*Equivalent to .bp 
*Right justify text 

Append str to sym • 
Arabic page numbers 

*Begin New page 
*Break, begin new line 

% Change special character to c 
n=l *Center next n lines 

Flag c in .CHARS files as d 
*Equivalent to: .ms 2 

Define sym to be a table of length n . 
Define even footer line # 
Define even header line # 

n=l *Next n lines are equations 
line of underscores 

Format of footnote demarcation line 
*Fill output lines 
.fl c,n Set to flag 
output with a c in column n. 
Equivalent to: • ef # t 

.of # t 
t Controls footnote numbering: "t": reset 

each pagei "f": continuous numberingi 
"u": numbering suppresed for next foot­
note 
Delimits footnotes • 
"go back" to label xxx 
"go forward" to label xxx 

9-3~ ADD-10-26-77 



TUG 
MRUNOFF 

.if f exp 

.in +n 

.la xxx 

.li n 

.11 +n 

.lm +n 

.ma +n 
• me sym 
.mp +n 
.ms +n 
.ml +n 
.m2 +n 
.m3 +n 
.m4 +n 
.na 
.ne n 

.nf 

.of t t 

.oh t t 

.op 

.pa +n 

.pc n 

.pi n 

.pl +n 

.rd 

.ro 

.rm +n 

.rt 

.sk nn=l 

.sp n 

.sr sym exp 

.ss 
• st sym n,exp 
.tb +n, 
• tr cd 

Default 

n=0 

n=l 
n=65 
n=0 
n=4 

n=l 
n=l 
n=4 
n=2 
n=2 
n=4 

n=l 

n=+l 
n=l 

n=l 

n=66 

n=65 

n=l 

Meaning 

Equivalent to: .eh # t 
.oh # t 

File f inserted; value of exp assigned 
to Parameter 

*Indent left margin n spaces 
Define label xxx 
Next n lines treated as text 
Set line length to n 

*Indent left margin n spaces 
Set top and bottom margins to n 
Define sym to be a counter • 
n-1 blank pages between output pages 

*Multiple space of n lines 
Margin above headers set to n 
Margin between headers and text set to n 
Margin between text and footers set to n 
Margin below footers set to n 

*Do not right justify 
Need n lines; begin new page if not 
enough remain 

*Don't fill output lines 
Define odd footer line t 
Define odd header line t 

*Next page number is odd 
*Begin page n 
If n lines remain on the page, 
processing text and ignore the 
control line. Otherwise, save 

continue 
next .pc 
all the 

text and commands up to the next .pc 
control line and process it at the top 
of the next page. 
Equivalent to: .pc n 

Page length is n 

.sp n 

.pc 

Read one line of text from the terminal 
and process it 
Roman numeral page numbers 
Set line length to n 
"Return" from this input file 
Skip n page numbers before next new page 

*Space n lines 
Assign value of exp to variable named 
sym 

*Equivalent to: .ms l 
Set entry ~ of table sym to be exe • 
Set a tab stop at each n in the list 
Translate c into d on output 

9-31 ADD-10-26-77 



TUG 
MRUNOFF 

Request 

.ts n 

.ty xxx 

.uc c 

.un n 

.ur xxx 

.wt 

* 

Control Line Summary 

Default Meaning 

n=l Process next input line only if n is 
non-zero. 
Write xxx onto the terminal 

none Sets underscore control char: if c is 
omitted, underscoring disabled. 

left margin 
*Indent next text line n spaces less 
Substitute values of variable in xxx 
and then process xxx. 
Read one line of text from the terminal 
and discard it 
Comment line: ignored 
Comment line: ignored, but written to 
.CHARS file 

9-32 ADD-10-26-77 



TUG 
MRUNOFF 

Only those symbols marked with an asterisk before their value are 

settable by the user. All symbols are numeric unless they are 

specified to be a string or a table. Control words and control 

arguments which afffect the values of the variables are indicated 

in parentheses: (x/y} indicates that x sets the switch to true 

(-1), and y sets if false (fil} ~ (a} or (a,b,c} indicates that it 

is affected by a, or by a, b and c. 

Sy~bol 

Ad 
AskHyphenations 

CASECONTROL 

Ce 

CHANGECASE 

CharsTable 

Charsw 

Console 
Date 

Eq 
EvenFlagCol 
ExtraMargin 

Fi 
FileName 
Filesw 
FlagChar 

Foot 
Foot Ref 

Fp 

Fr 
From 

Value 

*Adjust (.ad/.na} 
*User is to be interrogated about word hy­
phenations. 

*ASCII code of character signalling casa con­
version 

*Number of lines remaining to be centered 
(. ce) 

*Overall mode is to interchange upper- and 
lower-case letters. 

*Translation table for .CHARS file [table] 
(.ch} 

*".CHARS" file is being created (character 
option) 
Reads one line from the terminal [string] 
Date of this invocation of MRUNOFF~ format 
is mm/dd/yy [string] 

*Equation line counter (.eq} 
*Column in which to flag even pages (.fl} 
*Indent entire text this many spaces (margin 
option, indent option} 

*Fi 11 i ng ( . f i I . n f) 
Name of primary input file [string] 
Output is going to a file (output option) 

*ASCII code of character to be used to flag 
output lines (.fl} 

*Footnote counter (.ft, .fr) 
*Footnote reference string to be inserted in 

footnote body [string] 
*First page to print (reset each pass to 

"From"} 
*Footnote counter reset switch (.fr) 
*Argument of "from" option 

9-33 ADD-10-26-77 



TUG 
MRUNOFF 

Symbol 

Hyphenating 
In 
InputFileName 
InputLines 
LinesLef t 

Ll 
Lp 
Mal 
Ma2 
Ma3 
Ma4 
Ms 
MultiplePagecount 

NestingDepth 
Nl 
NNp 
NoFtNo 
NoPaging 
Np 

OddFlagCol 
OverprintCount 

Pad Left 

Parameter 

Passes 

Pl 
Print 
PrintLineNumbers 

Roman 
Start 
Stopsw 

Tab Stops 
TextRef 

Time 
To 
Tr Table 

Un 

Built-in ~mbols 

value 

*Hyphenation switch (hyphenate option) 
Amount to indent (.in, .lm) 
Name of cur rent input file [string] (.if) 
Line number in current input file 
Number of usable text lines left on this 
page 

*Line length ( .11, . rm) 
*Last page to print (reset each pass to "To") 
*Space above header (.ma, .ml) 
*Space below header (.m2) 
*Space above footer (.m3) 
*Space below footer (.ma, .m4) 
*Spacing between lines (.ms, .ss, .ds) 
*Number of form feeds between output pages 

(.mp) 
Index into stack of input files (.if) 
Number of last used output line 

*Next page number (.pa, start option) 
*Don't number next footnote (.fr) 
*Suppress page breaks (paginate option) 

Current page number (.pa, start option, re­
set each pass from "Start") 

*Column in which to flag odd pages (.fl) 
*Number of addtional times characters should 

be overprinted 
*Pad from left end of line (.ad, complemented 
at end of each output line, set false at 
each break) 

*Passed argument betwen files (.if, paramter 
option) 

*Number of passes left to make (=l when 
printing is being performed) (passes option) 

*Page length (.pl) 
*Print output ((Fp <Np< Lp) & (Passes< 1)) 
*Source line numbers are-being printed (num-
ber option) 

*Number pages with Roman numerals (.ro/.ar) 
*Initial page number (start option) 
*Pause between output pages (pause, stop and 
wait options) 

*Locations of tab stops [table] (.tb) 
*Footnote reference string inserted in main 
text [string] 
TENEX internal format of Date 

*Last page to be printed (to option) 
*Translation table for output substitutions 

[table 1 ( • tr) 
*Number of positions to decrease indenting 

(. un) 

9-34 ADD-10-26-77 

-



-· 

TUG 
MRUNOFF 

Under Char 

Underscoring 

Waitsw 
Widths 

value 

*Character which is controlling underscoring 
(. uc) 

*All characters are to be underscored (.uc, 
occurrences of double "UnderChar"s comple­
ment this) 

*Wait before beginning output lwait option) 
*Print width of output characters [table] 

9-35 ADD-10-26-77 



TUG 
MRUNOFF 

Hyphenation 

By use of the "hyphenate" option, the user may request 

that the hyphenation routines attempt to break a word whenever 

the space available on an output line is less than the length of 

the next word (including attached punctuation, if any). 

The hyphenation routines will split an already hyphenated 

word only at its hyphens. Beyond that, they do no syntactic ana­

lysis. They will interrogate the user for permissible hyphena-

tions of every word that is a candidate to be split. When the 

user indicates the permissible hyphenation locations within a 

word, the word together with its hyphenations is entered into a 

dictionary so that if multiple passes are being done or if the 

word happens to be eligible again, the user will not be re­

interrogated. The lookup in the dictionary for a match is a full 

string compare. 

Before processing any of the input file, the user will be 

asked if he would like to pre-load the hyphenator's dictionary 

with a saved dictionary. If he does, the requested dictionary 

will be loaded and the user will not be interrogated about any 

words appearing in it. The format of a saved dictionary is an 

ASCII file containing words with embedded hyphens to indicate 

permissible hyphenation points. Tabs, carriage returns or form­

feeds can be used to separate the words in the dictionary. All 

words should be entirely upper-case •. 

9-36 
ADD-10-26-77 

-



TUG 
MRUNOFF 

When during the course of processing the input file the 

user is interrogated for a hyphenation, the word in question will 

be typed out and the user should type in the same word, with hy­

phens to indicate where the word may be divided, or the user may 

type just a "." to indicate that the word should not be split. 

The user may edit his hyphenation with ~' g or g, and should 

terminate his input with a carriage return. Be careful that hy-

phenations are typed in upper-case~ the hyphenator will always 

interrogate with words in that form. 

At the end of each pass, if there have been any additions 

to the dictionary the user will be asked if he would like the ac-

cumulated dictionary saved. If so, the entire contents of the 

hyphenator's dictionary will be written out in a format suitable 

for later reloading. 

If the user would like the capability of having words hy-

phenated as per a pre-loaded dictionary and at internal hyphens, 

but would rather not be interrogated about additional hyphena-

tions, he should set AskHyphenations false. 

9-37 ADD-10-26-77 



----- ---------· 



TUG 
MSG Manual 

MSG MANUAL 

MSG was written by John Vittal for USC Information Sciences 
Institute. 

MSG 'is a program for reading, writing, and subsectioning files 
which have a "message file format". It is very simple and 
straightforward to use. Commands are initiated by typing one 
character, which causes the program to type out the rest of the 
command name and wait for input from you. 

Before the commands are described, there are a few general 
statements about how MSG works and some conventions used in describing 
the commands that you should know about. The prompt characters 
letting you know that MSG is waiting for a command character to be 
typed are "<-". When MSG is started up (by typing MSG<return> to the 
EXEC) it will first try to read your MESSAGE.TXT;l file in your 
directory. If this file does not exist MSG will say so. If you were 
not connected to your login directory, MSG will try to find a 
MESSAGE.TXT;l there. If that also fails, it will say so and wait for 
a command to be typed. If you have a MESSAGE.TXT;l, it will scan it 
and type out the header information (i.e. the date, from, and subject 
fields) for each message since the file was last read, preceded by a 
message number sequentially assigned by MSG. These message numbers 
are used in association with the various commands. 

However, if you started MSG by typing MSG<space> to the EXEC, it 
will ask you for a file to be read. Typing an escape as the first 
character will cause MESSAGE.TXT;l to be typed out, and. confirmation 
requested from the user to ensure that that was what was intended. 
Once a file name has been specified and positively acknowledged, then 
the same information as described in the previous paragraph will be 
outpu~ to your terminal. 

When reading a message file in MSG, either when starting up MSG 
or with the Read command described below, the file must be in the 
so-called "message file format". If MSG recognizes that the file does 
NOT conform to this format, you will be told so. However, you will be 
given the opportunity to keep everything that has been ·read so far, 
but NOT overwrite the 'bad' file. These two exceptional circumstances 
and some suggestions for getting around them are described at the end 
of this manual. 

The following conventions and symbols are used in the command 
descriptions below. There are only five types of input MSG expects: 

(1) a MSG command (or sub-command) character 
(2) a message sequence specification 
(3) a TENEX file name 
(4) a confirmation character 

10-1 ADD-10-26-77 



TUG 
MSG Manual 

(5) a local user name or remote site name 
To abort output to the terminal type O (control-0). If MSG does not ·~ 
understand your input, it will return to command input mode, or 
reprompt you. The following are symbols and their associated meanings 
used in the command descriptions: 

<FILE-NAME> 
Stands for any TENEX file descriptor, including TTY: or LPT:. If 
you are requested to input a file name, the appropriate TENEX 
confirm will be given (e.g. [Old version]). 

<MSG-SEQUENCE> 
This input is prompted by 
verbose typeout mode. A 
following format. 

the string (message sequence) in 
sequence of message numbers has the 

(1) Any single message number. 
(2) Any two numbers separated by">" or ":". This means message 

numbers delimited by the two outside numbers (e.g. 2>5 
means messages 2,3,4,and 5 in that order). NOTE: if the 
first number is greater than the second number, it means the 
sequence in reverse order (e.g. 5>2 means messages 5,4,3, 
and 2) • 

(3) A pair of numbers separated by "-". This is so that the 
standard interpretation of the string "21-4" (that is not 
"21-24") means message numbers 21, 22, 23, and 24. Using 
this interpretation, the string and "24-1" is an error. 

(4) Any sequence of the previous three types separated by 
commas. This is the way to group several non-adjacent 
messages together. For example: 1,3,5:7,10 means messages 1 
and 3 and 5 through 7 and 10. 

<MSG-SEQUENCE> of the types described above are ALWAYS terminated 
by <return>. . 

(5) However, there are special types of message sequences. All 
are determined by the first character that you type in the 
<MSG-SEQUENCE> stream. The following are the twelve 
possibilities: 
a. <escape> is typed, which causes the current message 

number to be echoed to you and the relevant process 
performed on that message only. 

b. <control-I> is typed, which causes the previous 
completely specified <MSG-SEQUENCE> to be echoed and 
processing performed on that message stream. 

c. R which stands for "Recent messages" only. 
d. O standing for "Old messages" only. 
e. A standing for "All messages" and which is equivalent to 

1: (last message number). 
f. D standing for "Deleted messages". This is valid ONLY 

in the context of the Headers, Undelete, and Delete 
commands. Everywhere else, the headers of the deleted 
messages will be printed. Of course, you can delete the 
typeout of those headers by typing control-0. 

l~-2 ADD-10-26-77 



TUG 
MSG Manual 

9. U standing for "Undeleted messages". 
h. I standing for messages in inverse order. This is the 

opposite of the A (for all messages) sub-command. 
i. S for "Subject field search for string" which asks you 

to provide a string which will be used as a mask match 
on the subject field of the message headers. 

j. F for "From field search for string" which is like S but 
searches the Author field of the message headers 
instead. NOTE: the header command prints the initial 
part of the To: line of the message (if it exists) is 
the message was sent by the login-directory. Therefore, 
to search for messages sent by yourself, specify the 
string "To:" rather than the login directory name. 

k. E standing for "Examined messages", i.e. all messages 
which have been completely typed (with the T command) or 
listed (with the L command). 

1. N standing for "Not examined messages", which is the 
opposite of the E sub-command. 

m. L standing for the "Last message sequence" that was 
completely specified. 

Types (i) and (j) require you to type a string terminated by 
<return>. Typing just a <return> (i.e. the null string) 
means that searching is not to be performed. Otherwise, the 
search will be performed on the string typed up to (but not 
including) the <return>. The string you type must be an 
exact match to some substring of the appropriate field, but 
all alphabetic characters are treated as being upper case. 
(Note: carriage-retuns in the subject field of the header 
listing are ignored.) 

(6) (Note: This is an experimental feature which may change 
in the future.) If you type comma or "M" as the first 
character of the message sequence that you are specifying, 
you will be able to specify more than one of the options 
drawn from the first five items mentioned here. You will 
then be entered into a sub-command mode. Any of the 
standard message sequences are acceptable as input. To 
terminate the specification of the list of message 
sequences, just type a carriage return in response to the 
prompt. If you wish to abort the acquisition at any time, 
type "Q" (for Quit) or control-N (N) • To abort the 
acquisition of a single message sequence (like 3:14), type 
rubout. Typing rubout at the sub-command level (i.e. at 
the prompt without typing anything first) will have the same 
effect as typing control-N. 

The default message sequence is 'All messages'. Any 
message sequence specified causes an intersection to be 
taken between that single message sequence (like 
'Examined'), and the previous total. For example, the 
sequence: 

10-3 ADD-10-26-77 



-------------------···----- --

TUG 
MSG Manual 

<- Headers , 
<<- Examined 
<<- From string: SYSTEM 
<<-

would cause only the headers corresponding to messages from 
SYSTEM which have already been typed to get listed on your 
terminal. 

If you just want to add a message sequence to the list, 
preface the actual message sequence with a "P" (for Plus) or 
"+". If you want to just subtract a message sequence from 
the list, preface the actual message sequence with an "M" 
(for Minus) or "-". For example, 

<- Headers Multiple message sequences 
<<- Examined 
<<- From string: SYSTEM 
<<- Plus: Subject string: MSG 
<<- Minus: Deleted 
<<-

will list the headers for all undeleted messages about MSG 
or which are examined messages from SYSTEM. No further 
associations between msg-sequence specifications are 
currently allowed. 

In the command format below, everything that the program types will be 
lower case and everything you type will be in UPPER CASE. This is not 
the case when using MSG, but is used here for clarity. 

MSG COMMANDS 

<- Headers (message sequence) <MSG-SEQUENCE> 
The headers for messages will be typed out for those messages 
defined by the message sequence typed. Headers corresponding to 
deleted messages have an asterisk printed before the header for 
that particular message. The headers for recent messages are 
preceded by a plus sign (+); messages which have not yet been 
typed are preceded by a minus sign (-) , and deleted messages are 
preceded by an asterisk (*). If the message was sent by the user 
of the LOGIN directory, the initial part of the To: field of the 
message will be printed in the author field of the header, if the 
To: field exists in the message. In order to get the length of 
the message typed out along with the header, use the I command 
(which stands for Inclusion of length in header). 

10-4 ADD-10-26-77 



TUG 
MSG Manual 

<- Delete (message sequence) <MSG-SEQUENCE> 
This command will indicate (by a preceding asterisk) in the 
header information for the messages specified by <MSG-SEQUENCE> 
that those message are deleted. NOTE: This command marks each 
message in the actual message file indicating that it is deleted. 
If you reread the file for some reason, the messages will still 
be marked (and treated) as deleted (but not expunged) . This 
command does however effect message numbers specified in later 
commands in the following way. If you have deleted message 
number 5 and then try to "Type" or "Put" message number 5 either 
directly or implied by the use of the":" option, the deleted 
messages will NOT be included. 

<- Undelete (message sequence) <MSG-SEQUENCE> 
Of coursel If you can delete a message, you certainly ought to be 
able to undelete it. This command undoes the action of the 
Delete command for the messages specified by this <MSG-SEQUENCE>. 

Commands to See and Move Messages 

<- Type (message sequence) <MSG-SEQUENCE> 
This command will type on your terminal the messages specified by 
<MSG-SEQUENCE>. All messages which are completely typed are 
treated as having been 'examined'. 

<- Put (message sequence) <MSG-SEQUENCE> 
into file name: <FILE-NAME> 

This command will put the messages specified by <MSG-SEQUENCE> 
into the file specified by <FILE-NAME>. If the file does not 
exist, it will create that file and write the messages into it. 
If the file already exists, it will append the messages to the 
messages already in the file. This command is useful if you want 
to keep separate files containing messages concerning different 
topics. 

<- Move (message sequence) <MSG-SEQUENCE> 
into file name: <FILE-NAME> 

This command is a convenient combination of the Put and Delete 
commands. As the messages are put into the file, they are marked 
for deletion. If any of the messages are already deleted, you 
will be informed, and those messages will NOT be moved to the 
file. 

<- List (message sequence) <MSG-SEQUENCE> 
on file: <FILE-NAME> 

This command lists all the specified messages on the file 

10-5 ADD-10-26-77 



TUG 
MSG Manual 

specified. All messages specified by the <MSG-SEQUENCE> are 
treated as having been examined (typed). If you are listing more 
than one message, a preface page on the file will be created 
which contains the headers for those messages. You will be asked 
if you want each message on a separate page. This command is 
intended to allow a user to obtain a reasonable hard copy listing 
of some messages. (Note: the preface page of headers might have 
the length of each message included depending on the setting by 
the I(nclusion of length ih header) command.) 

Commands to Update Your Message Files 

<- Overwrite old file <FILE-NAME> [confirm] 
This command will overwrite the current file (specified by 
<FILE-NAME>), reflecting the fact that you have deleted messages. 
That is, if you delete message 2 and then "overwrite" your file, 
message 2 will disappear from that file. It also rereads your 
file, renumbering your messages. You are warned if any 
unexamined messages (which are also not deleted) exist in the 
file that you are overwriting. 

<- Quit [confirm] 
This command returns you to the TENEX EXEC without rewriting any 
file (almost equivalent to typing control-C). You are warned if 
any unexamined messages (which are also not deleted) exist in the 
current message file. 

<- Exit and update old file <FILE-NAME> [confirm] 
This command is another way to Overwrite your old message file, 
but instead of rereading the file it returns you to the TENEX 
EXEC. This is equivalent to doing an overwrite followed by a 
Quit, but without the overhead of rereading the file. You are 
warned if any unexamined messages (which are also not deleted) 
exist in the file that you are overwriting. 

<- Write file <FILE-NAME> sorted by message arrival time 
This is similar in nature to the Overwrite command, except that 
the messages are sorted into ascending sequence by their arrival 
time before the overwriting is attempted. The file is then 
rescanned. You are warned if any unexamined messages (which are 
also not deleted} exist in the file that you are sorting. 

10-6 ADD-10-26-77 

-



TUG 
MSG Manual 

Commands to Read Other Message Files 

<- Read file name: <FILE-NAME> 
You can use MSG on any file which has a "message format." This 
means you can peruse or modify files created with the "Put" or 
"Move" commands (but NOT the "List" command). If, for example, 
you have a file containing messages pertaining to MSG problems, 
you can read it to make sure you've taken care of them. Read is 
the command which lets you read files other than your standard 
mailbox, file MESSAGE.TXT;l. It also prints out the recent 
header information for that file. If that file has old messages 
which have not yet been 'examined', you will be informed. You 
will also be told if any of the old messages in the file are 
deleted. 

Commands to Sequence through the Messages 

<- Current message is nn of mm messages. 
in file: <FILE-NAME> 

This command tells you (1) the number of the current message, (2) 
the total number of messages, and (3) the file name of the 
currently active file. The current message is either the last 
message typed on your terminal or, if you have not typed one yet, 
either after the last message if the file had no recent messages, 
or before the first recent message. This command will let you 
know where the Next and Backing up commands will start, i.e. the 
first message they will type if used. Finally, it will tell you 
what the currently active message file is. 

<- Go to message number: <NUMBER> 
This will allow you to change the Current message number 
explicitly. If <NUMBER> is not in the range of acceptable 
numbers (i.e. it is less than 1 or greater than the number of 
messages in the file), or you did not type a number, you will be 
told and the Current message number will not be changed. 
However, there are several other options which are specified by 
the FIRST character typed: 
a. E for the end of messages (the last message) 
b. L for the last message (same as E). 
c. B for the beginning of messages (message number 1) 
d. escape (alt-mode) for current message number 

<- Next message is: 
This command types the message following the current message (if 
one exists) and sets the "current message" to be that message. 
Deleted messages will not be typed, but the "current message 

10-7 ADD-10-26-77 



TUG 
MSG Manual 

number" will still be incremented. 

<- <line feed> 
Same as Next. Types the message following the current message, 
and sets the current message to be that message. 

<- Backing up -- previous message is: 

<-

<- H 

This command always types the previous message (i.e., Current 
message number - 1). It is the inverse of the Next command. It 
always decrements Current message number. 

This is equivalent to the Back command. It types the previous 
message and sets the current message to be that message. 

The <control-H> (or New-line) command is equivalent to the Back 
command. It types the previous message and sets the current 
message to be that message. 

Other commands 

<- Verbose 
This is a binary switch which causes the program to go into 
either 'Short typeout mode' or 'Long typeout mode', and tells you 
which is the setting that it changes to. The default is 'Short 
typeout mode'. Long typeout mode gives additional prompting 
regarding what is expected to be typed in. 

<- Koncise 
This is a binary switch which causes the program to go into 
either 'Concise typeout mode' or 'Short typeout mode' (the 
default), and tells you which is the setting that it changes to. 
Concise typeout mode shortens some of the typeout that MSG gives 
when it is interacting with the user. It is meant for 'advanced' 
users only. 

<- Inclusion of length in header 
This command is a binary switch which causes the program to go 
into a mode where header listings caused by the Header command 
will have the number of characters in the message included as 
part of the subject field. The default is that the length will 

10-8 
ADD-10-26-77 

-· 



TUG 
MSG Manual 

not be included. Note that when you read a file 
length of 'recent' messages will always be 
initial listing of recent headers. 

<- Zap profile [Confirm] 

initially, the 
included in the 

The Zap profile command will allow you to set up a user profile 
file for yourself without having to know the format of such a 
file. For the time being, the profile information will be 
limited. Typing control-N will exit you to the command level of 
MSG. Typing E at any point will 'Exit' the dialogue and ask you 
if you want the changes made permanently. At any point, type "?" 
to determine the appropriate responses. The following is a 
summary of the questions posed: 
1. Normal, Verbose or Koncise typeout mode? 
2. Always include the length of messages in all headers 

listings? 
3. When in SNDMSG (from any of the Sndmsg, Forward or Answer 

commands), when you type control-N, do you want to abort 
Sndmsg without confirmation? 

4. Do you want to be required to confirm all commands with a 
single carriage return? 

5. Do you want to be told that some messages have been 
'not-examined' whenever you try to quit MSG (by any of the 
Quit, Overwrite, or Exit and Update commands)? 

6. Do you want to receive copies of your 'answers' to messages? 
7. If the answer to (6) is yes, then you will be asked if you 

want to save all your 'answers' on the file SAVED.MESSAGES. 
8. Do you want a list of headers for all messages: 

a. being deleted with either the "Move" or "Delete" 
commands 

b. being moved with the "Put" command 
c. being listed with the "List" or "Xerox" command 
d. being marked or unmarked with the "'" or "-" commands. 

At the end of the dialogue, you will be asked if you want these 
changes in mode settings to be made permanent. If you answer 'Y' 
then each time you start up MSG, the settings of the modes noted 
here will be set to the values you indicated. Otherwise, the 
settings are set only for this session. They are NOT permanent, 
and can be changed any time. 

<- (prints current time and date) 

<- ' Mark messages as examined (message sequence) <MSG-SEQUENCE> 
This command will mark all the messages specified by 
<MSG-SEQUENCE> to be "examined", so MSG will thi'nk they have been 
typed or listed even though they may not have been. 

10-9 ADD-10-26-77 



TUG 
MSG Manual 

<- - Unmark messages to be Not examined (message sequence) 

This command 
<MSG-SEQUENCE> 
NOT been typed 
been seen. 

<- <COMMENT> 

<MSG-SEQUENCE> 
will mark all the messages specified by 

to be "NOT examined", so MSG will think they have 
or listed, even though they might have already 

This command is mainly intended to allow you to talk with 
somebody over a link while you are in MSG. It eats all 
characters except <return>, control-Z (Z) and control-N (~), 
which return you to the command level of MSG. Two other 
characters have special effects. <delete> (<rub-out>) will type 
the string ' XXX ' and is useful in indicating that the previous 
word (or phrase) should be ignored. <line-feed> will cause 
effectively a carriage return and tab sequence to be typed. This 
way you can type more than one line of text. NOTE: the standard 
TENEX editing characters (e.g. control-A) are treated as any 
other character and perform no special function. 

Command to Run Other Programs 

<- Sndmsg [confirm] 
This command will start up SNDMSG and give control of the 
terminal to it. When SNDMSG is finished (i.e. when you have 
sent the message), it will turn control back to MSG in the same 
state as it was before you sent the message. Control-N (N) will 
ask if you wish to abort. If you provide a positive 
confirmation, then you will be returned to the top level of MSG. 
Otherwise, you will be returned to SNDMSG. 

<-Answer message number: <MESSAGE-NUMBER> 
Reply to those whom the message is: <ANSWER SUB-COMMAND> 

This facility allows you to send a message to the sender of a 
message, and (at your discretion) those people to whom that 
message was sent, without having to type their addresses to 
Sndmsg. 

The <ANSWER SUB-COMMAND> can be any of the following: 
F From (indicating the sender of the message only) 
T To (indicating the sender of the message and those 

addresses in the To: list) 
C Cc (indicating all recipients of the original message 

in addition to the sender in the message) 

Typing anything else aborts the command. 

ADD-10-26-77 
10-10 



TUG 
MSG Manual 

The <MESSAGE-NUMBER> can be any argument that the Go command 
takes: 

a. a message number 
b. E for the end of messages 
c. L for the last message (same as E) • 
d. B for the beginning of messages (message number 1) 
e. escape (alt-mode) for current message number 
f. <return> for current message number. 

The header of the message specified is also typed so 
be sure you are answering the correct message. 
header is typed after you have specified the message 
before you are asked to supply the sub-command. 

that you may 
In fact, the 
number, but 

When prompted for additional addresses, any that you specify 
will be passed to SNDMSG as part of the cc: list. Some of the 
SNDMSG conventions are NOT implemented. These are the control-B 
feature which allows specification of a file, and the feature 
which allows you to specify a global host name (which spreads 
across several user names). Also, control-N aborts the Answer 
command! Local user names and remote host names are checked for 
validity. 

An attempt is made to insure that all addresses are valid 
(i.e. all host names on remote addresses, and user names on 
local addresses), and that no duplications are present. If 
clarification is necessary from the user, you may be asked some 
questions. If these questions are posed, all type-ahead is 
deleted. If relevant, MSG will issue a warning if either the To: 
or cc: destination fields of the message have a destination list 
as part of the field (like LISP-USERS:). When control is given 
to you to type your answer, you will be typing to the message 
acquisition portion of SNDMSG (i.e. that part which normally 
would prompt you by typing "Message (? for help):"). rrmtrol-N 
(N) will ask if you wish to abort. If you give~, itive 
confirmation, then you will be returned to the top level > MSG. 
Otherwise, you will be returned to SNDMSG. 

There are two relevant profile mode settings. One is 
whether you wish to receive copies of the answers you send. It 
is initially assumed that you do. If you do not want copies of 
the replys you send, then your name will not appear in any of the 
destination lists unless you specify it as part of the additional 
carbon-copy list. However, if you do want copies of your 
messages, you will always receive one. In addition, if you have 
also indicated in your profile that you want all your responses 
to go to a file called SAVED.MESSAGES, then if that file exists, 
your responses will go in that file and NOT into your 
MESSAGE.TXT. 

10-ll ADD-10-26-77 



TUG 
MSG Manual 

However, if you do not always want your answers to go to 
SAVED.MESSAGES, but do want copies of your answers, if there is a 
file named SAVED.MESSAGES in the login directory, you will be 
asked if you want your copy of the message to go to that file.· 
If a positive response is given, then the login directory name 
will NOT appear in the destination lists. 

<- Forward (message sequence) <MSG-SEQUENCE> 
This facility will allow you to send copies of messages you have 
received to other people. The headers of the messages being 
forwarded are typed, after which you will be asked to provide the 
subject of this forwarded message. Then it will hand SNDMSG the 
subject and those messages you want forwarded, and leave you in 
SNDMSG in such a way that the message being forwarded can be 
edited, or your own comments added. You will be left in SNDMSG 
as though you had typed the forwarded message in yourself. When 
done, type a control-Z and then specify, in the standard way, to 
whom the mail is going. Once in SNDMSG, typing control-N (N) 
will ask if you wish to abort. If you give a positive 
confirmation in the standard way, then you will be returned to 
the top level of MSG. Otherwise, you will be retur~ed to SNDMSG. 

<- Jump into lower fork running: <FILE-NAME> 
This command is an escape in MSG in case you wish to run another 
program such as TECO, PUB, the EXEC, and so on. It searches 
directories to try to find the program you are asking it to run. 
The search list is, in order, <SUBSYS>, <SYSTEM>, your connected 
directory, and the login directory (if it is different from your 
connected directory). This way, you can run EXEC without having 
to type the complete information (i.e. <SYSTEM>EXEC.SAV). 

If you decide to leave the lower fork, but want to continue 
it at a later time, all you need do is type an escape as the 
first character of the file name you are requested to provide. 
This will cause the old file name (preceded by an appropriate 
message) to be printed, and then you will be asked to confirm in 
the standard way. If you provide a positive confirmation, you 
will be asked if you want to continue or start that ·program. 
Typing 'C' for continue will put you back in the lower fork at 
the place where you exited: typing 'S' for start will restart the 
program. 

<- Xed (editor) [confirm] 
This command will start up XED (a text editor written at ISI). 
It has the capability to give SNDMSG the text built while in the 
editor as the body of the message. When you "Quit" XED you will 
return to MSG. Each additional time that you execute the XED 
command, you will be returned to the SAME copy of XED that you 
previously left with the XED "Quit" command (the old text buffers. 

10-12 ADD-10-26-77 

...__ 



TUG 
MSG Manual 

are left intact) . 

<- Exec [confirm] 
- When you type control-E, the program will type "Exec" to you and 

ask for confirmation. This command is intended to give you a new 
copy of the EXEC with a minimum of hassles To leave that EXEC 
and return to MSG, type "QUIT". If you deci<le that you want a 
copy of the EXEC again, and you use this command, you will be 
given the same EXEC with all of your context intact. 

This completes the list of MSG commands. There is only one item left 
to mention. 

Receiving New Messages While Using MSG 

MSG, on typing a command or returning from the execution of a 
command, checks to see if your currently active message file usually 
MESSAGE.TXT:l, has been written into. If it has, it prints out that 
fact and the headers for the new messages. The "current message 
number" is not modified. It then executes your command or returns to 
command mode, accordingly 

Command Summary 

Cmnd. Char. Meaning 
A Answer message number: <MESSAGE-NUMBER> 

Reply to whom the message is: 
F - From 
<return> -- same as F 
T - To list plus original sender 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

B 

H 
c 

D 
E 
E 
F 
G 
H 
I 
J 
K 

C -- Cc list plus To: list plus original 
Backing up - previous message is 

Same as Backing up 
Same as Backing up 

Current message is nn of mm messages 
in file: <FILE-NAME> 
Delete (message sequence) <MSG-SEQUENCE> 

Exec [confirm] 
Exit and update old file <FILE-NAME> [confirm] 
Forward (message sequence) <MSG-SEQUENCE> 
Go to message number: <MESSAGE-NUMBER> 
Headers (message sequence) <MSG-SEQUENCE> 
Inclusion of length in header 

sender I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Jump into lower fork running file: <program name> [confirm] 
Koncise -- provides shorter prompting 

10-13 ADD-10-26-77 

I 
I 
I 



TUG 
MSG Manual 

L 

M 

N 
<lf> 

0 
p 

Q 
R 
s 
T 
u 
v 
w 
x 
z 

? 

List (message sequence) <MSG-SEQUENCE> 
on file name: <FILE-NAME> 
Move (message sequence) <MSG-SEQUENCE> 
into file name: <FILE-NAME> 
Next message is~ 

(line feed) same as Next message is: 
Overwrite old file <FILE-NAME> [confirm] 
Put (message sequence) <MSG-SEQUENCE> 
into file name: <FILE-NAME> 
Quit [confirm] 
Read file name: <FILE-NAME> 
Sndmsg [confirm] 
Type (message sequence) <MSG-SEQUENCE> 
Undelete (message sequence) <MSG-SEQUENCE> 
Verbose -- provides more prompting 
Write file <FILE-NAME> sorted by message arrival time [confirm] 
Xed [confirm] 
Zap profile [confirm] 
' Mark messages as 'examined' (message sequence) <MSG-SEQUENCE> 

Unrnark messages to be NOT 'examined' (message sequence) 

? 

<MSG-SEQUENCE> 
(the time and date is then printed) 
Type command character for its description, ? for summary 
Comment -- <return> or ~ returns you to command level 

Abort commands on typein and terminal output with control-N (~). 
Confirm with Y or <return>. 

Errors While Reading a Message File 

When reading a file in MSG (either at startup or with the 'Read' 
command), the file MUST be in the so-called "message file format". If 
MSG recognizes that the file does NOT conform to this format, you will 
be told so. The following are the circumstances which might cause the 
file to become unreadable, and some suggestions for getting around the 
problems. 

The file is a message file (that is, one or more valid 
messages have been read from it), but somewhere in the middle it 
does not conform to the message file format. It could be: ( 1) It 
has a hole in it. Read the file with a text editor to get rid of 
the hole, and write it back out, and reuse MSG. Try this first. 
If this doesn't work, MSG will give you an error at the same 
place. Then you can try the second suggestion: (2) If suggestion 
1 didn't work, then the file has internal byte counts which do 
not match the actual file. Either you used a text editor on your 
message file changing the number of bytes but not the byte counts 
or your file was mysteriously altered. The date of a message 
could not be read. Either the byte count for the last message 
read was wrong, or there is junk between the last message read 

10-14 ADD-10-26-77 



TUG 
MSG Manual 

and the one with the error. Using some editor, find the last 
message read. The first line of that message contains a 
date-and-time followed by a byte count indicating how many 
characters are in the message body starting on the following 
line. Skip that many characters of the message body. You should 
be at the date-and-time line of the next message. If there is 
junk there, delete it. Otherwise, try to fix the count so it is 
pointing at the date-and-time of the next message. 

The beginning of the file does not conform to the message 
file format. It could be: (1) the file is not a message file -­
sorry, we can't help you there. (2) It is a message file with a 
bad first line -- probably a blank line. Read the file with a 
text editor. If the second line begins with a time and date then 
delete the first line and reuse MSG on the new file. (3) It is a 
message file with a hole at the beginning. Read it with a text 
editor to get rid of the hole, write it out and reuse MSG. 

10-15 ADD-10-26-77 



-



TENEX USER'S GUIDE 
MIN COP 

January 1975 

MINCOP 

MINCOP asks the user to respond to the request: 

"TYPE C TO COPY, V TO VERIFY, L TO LIST ONLY." 

COPY makes a copy of a MINIDUMPER format tape. VERIFY compares 
two MINIDUMPER tapes and complains if there are any differences. 
LIST ONLY simply lists the files on a MINIDUMPER format tape 
(which requires a read pass on the entire tape) • 

The user is also asked to type the tape unit numbers and the 
densities of the tapes involved (L for Low(200), M for Medium 
(556), H for High (800)). 

The MINIDUMPER Format tape being read is checked for both tape 
errors and format errors. MINCOP will not copy arbitrary format 
tapes! 

-121-



TENEX USER'S GUIDE 
MTACPY 

J'anuary 1975 

MT AC PY 

MTACPY is a program which reads 7-track magtapes in any format 
and writes tapes in DECsysteml0 format. 

MTACPY initializes with: 

MAGTAPE UNIT NO.= 

The user should respond 0 or 1 depending on where his tape is 
mounted. After moving the tape to its load point, MTACPY asks: 

USE 556 BPI?(Y ORN): 

An N response here causes an additional query: 

DESIRED DENSITY (200 OR 800): 

After the density response, MTACPY asks: 

NORMAL ODD PARITY?(Y ORN): 

Most tapes are odd parity, with the exception of BCD card image 
tapes, which are usually even parity. 

The next question is: 

TO OR FROM MAGTAPE? (T OR F) : 

The response to this specifies which way information is to be 
moved. If the answer was "T", it would ask: 

SOURCE FILE(S): 

At this point, it accepts a list of file names separated by 
commas and terminated by carriage return. File names may contain 
"*" in the name or extension field to specify automatic iteration 
over all files which match the other fields. 

For each file transferred, MTACPY types out the number of six-bit 
bytes written onto the tape. When the list of source files is 
exhausted, (all have been transferred), it again asks: 

SOURCE FILE(S): 

in order to collect another list of source files. If the user 
supplies an empty list by typing carriage return, the program 
asks: 

DONE?(Y ORN): 

-122-

-



TENEX USER'S GUIDE 
MTACPY 

January 1975 

An N response returns to ask for another list of source files. A 
Y response finishes up the rnagtape by writing ten successive 
end-of-file marks, then rewinding the tape. 

If data were to be read from the tape, the answer to the 
question: 

TO OR FROM MAGTAPE(T ORF): 

would have been "F". Then the program asks: 

TARGET FILE: and the user should respond with a writable 
file name. If the user responds with, for example, file name 
"XYZh, the program will move an image of the tape data into file 
XYZ. In addition, to preserve formatting information, MTACPY 
creates an auxiliary file with name XYZ.RECSIZ, which is an ASCII 
file which reports the number of six-bit bytes read from each 
successive record of the magtape. Programs which do later code 
conversion of each record make use of this auxiliary file to 
define record boundaries. 

It is possible to skip over uninteresting files on the tape by 
responding with null target file names, i.e. carriage returns. 
Answering the question: 

TARGET FILE: 

with three carriage returns will cause the first three files on 
the tape to be skipped over, then the question is repeated. 

For each file transferred, MTACPY reports the number of six-bit 
bytes read from the tape. 

The logical end of tape is denoted by two successive end-of-file 
marks. On encountering this, the program asks: 

LOGICAL END OF TAPE.KEEP READING?(Y ORN) 

A "Y" response here causes the program to continue. 
causes the tape to be rewound, and the program exits. 

EXAMPLE: 

@MTACPY 

MAGTAPE UNIT N0.=0 
USE 556 BPI?(Y OR-N) :Y 
NORMAL ODD PARITY?(Y 5R N) :! 
TO OR FROM MAGTAPE(T ORF) :F 
TARGET FILE:ABC[NEW FILE] 
1600 (DECIMAL)-SIX-BIT BYTES. 

-123-

An "N" 



TENEX USER'S GUIDE 
MT AC PY 

TARGET FILE: 

January 1975 

LOGICAL END OF TAPE.KEEP READING?(Y ORN)~ 
EXIT. 
"c 
@ 

At this point, the file ABC.RECSIZ might contain, for example: 

DECIMAL LENGTH OF EACH RECORD IN SIX-BIT BYTES 

80 
80 

80 
80 

80 
80 

80 
80 

80 
80 

-124-

80 
80 

80 
80 

80 
80 

80 
80 

80 
80 

-



# 
# 
# 

TENEX USER'S GUIDE 
NOTIFY 

January 1975 

NOTIFY 

# Notify is a program which allows for "canned" messages. Thus 
# often used messages can be prepared in advance of the time of 
# need. Notify allows the composition of messages with all the 
# editing capabilities of SNDMSG. A description of commands 
# follows. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

APPEND TO CURRENT MSG - This allows the user to append 
to the currently buffer message. This includes "canned" 
and composed messages. 

COMPOSE MSG - This clears the current buffer and allows 
the user to type up a message. 

GET CANNED MSG - Brings a "canned" message into the 
buffer. It will be appended to any message already there. 
These canned messages are kept in the file CANNED.MSGS. The 
file format is discussed later. 

LIST CANNED MSG'S - Types a list of the current canned 
messages. What is listed is a summary of the actual 
message. The number is an index for use in the GET command. 

PRINT CURRENT MSG Prints the currently buffered 
message (that which will be sent) on the user's teletype. 

SEND MSG - Sends the message to the desired set of 
terminals. Two questions will be asked here, 1) Emergency 
(Y or N)? This is asking how important the notice is. If 
answered no, those users who have REFUSE LINKS on will not 
receive the message. Answering yes will cause all users to 
get the message. 2) TTYS: This is as before, either a list 
of tty's or a -1 for all teletypes on the system. 

The format for the CANNED.MSGS file is: MESSAGE 
SUMMARY<CRLF> MESSAGE TEXT<Z> .•.... MESSAGE SUMMARY<CRLF> 
MESSAGE TEXT<Z> The text of each message can be any number 
of lines and contain any characters except z (control z). 
The program can currently handle up to 30 canned messages. 

-125-



TENEX USER'S GUIDE 
PA10/50 

,January 19 7 5 

In order to make immediate use of the large body of existing user 
programs written for the 10/50 system and to accommodate future 
distributions of CUSP programs from DEC, TENEX provides 
facilities for operating in a 10/50 compatible fashion. Under 
such operation, most existing user programs (including CUSPS) can 
be assembled without change, loaded, and run. In fact, it is 
possible to RUN immediately most SAVED binary DECtape files. 

Limitations 

There are two types of limitations on 
under 10/50 compatibility: system 
file system limitations. 

the programs to be run 
call (UUO) limitations and 

Much of the information maintained by the TENEX monitor is kept 
in tables completely different from the tables of the 10/50 
monitor. It is not practical to provide complete translation of 
the TENEX monitor tables into 10/50 format, so the GETTAB, PEEK, 
SPY, LOGIN, and LOGOUT uuo's are not permitted, and trap to an 
error routine. 

These restrictions mean that the 10/50 Support Cusps (LOGIN, 
LOGOUT, REACT, FAILSAFE, MONEY, CHECKPOINT, and COMPILE} are not 
supported under 10/50 compatibility. In fact, these programs are 
superseded by the TENEX EXEC, BSYS (file backup system), CHKPNT, 
and ACCT10 (accounting system}. 

The second major limitation on compatibility operation is due to 
the fact that the TENEX file system is different from 10/50~ in 
particular, the user file directory is not available as a 
ordinary file (c.f. UFO in 10/50). Programs which rely on 
reading sequentially through such a file, such as PIP directory 
listing, are therefore not supported. PIP is, however, 
superseded by the TENEX EXEC. 

Impl~me~.!:_~ti~~ 

Since TENEX itself makes no use of the MONITOR UUO calls (opcodes 
40 through 77} these are reserved for compatibility operation. 
When any program executes one of these calls, it is defined as a 
compatibility program and the TENEX monitor notes this in the PSB 

# of that fork. The compatibility support code is then mapped from 
# the file <SUBSYS> PA1050.SAV into pages 700 through 717 of that 
# fork's address space. 

RECENT expansions of the compatibility package have made use of 

-126-

--



TENEX USER'S GUIDE 
PAHJ/50 

January 1975 

two of the Terminal Interrupt channels of the PSI system. 
Unfortunately, the choice of channels conflicted with existing 
programs which share the PSI channel table with the compatibility 
package. To remedy this we took a survey of known users in this 
category to determine what channels were mutually available. ~s 
a result of this survey we changed over to using channels 30 and 
31 (decimal) in the current compatibility package, and will 
define that future expansion will use the group from 30 through 
35. 

Note that this should have no effect on most programs, which are 
written strictly for TENEX or strictly for 10/50 operation. The 
only problem is with those attempting to use the PSI system AND 
the compatibility package. 

The initial UUO is trapped by the monitor into the second 
location of the entry vector specified in PA1050.SAV. Subsequent 

# uuo's are trapped into the first location of the entry vector. 
# During UUO calls, 40 is copied to the location pointed to by 
# entry vector 14. The return PC is stored in the location pointed 
# to by entry vector 15. (See SCVEC) in the JSYS Manual) 

The uuo calls which are not supported give 
LOCATION" message and halt the fork. 
simulated correctly. 

an "ILLEGAL uuo AT 
All other uuo's are 

Since addresses >700000 are not accessible in most medium sized 
10/50 systems, merging compatibility code into the user's fork 
poses no new limitation. The compatibility code itself, of 
course, is reentrant and shared. 

TECHNICAL INFORMATION - INSTALLATION INSTRUCTIONS 

# THE SOURCE FOR PA1050.SAV is <SOURCES>PAT.MAC. This code has a 
# 'PHASE 700000' around it so it will load into the low segment 
# using LOADER. After completion of loading, enter DDT and start 
# at LINIT. This first BLT's the symbols down on top of the 
# program, PMAPS the previous compatibility code (pages PATORG to 
# 777) out of existence, then BLT's the new program (plus symbols) 
# up to PATORG. The entry vector is declared and an updated symbol 
# table pointer is copied into DDT, and control returns to the 
# EXEC. 

At this point, it is convenient to SSAV pages 700 to 777 on 
PAT.SAV, which provides a copy of the program with symbols and 
DDT for debugging purposes. 

To put up this new compatibility package as the current operating 
version, enter DDT and start at MAKEPF. This SSAVEs the code 
with read and execute permission only as a new version of 
PA1050.SAV. This can then be placed on <SUBSYS> as PA1050.SAV. 

-127-



# 
# 

TENEX USER'S GUIDE 
PAL10 

January 1975 

PAL10 

# PAL10 offers several advantages over the 
# assembler. Some of these improvements are: 

antiquated PALX 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
~ 
# 
# 
# 
# 

A. PA110 runs in 4K as compared to 7K for PALX. 

B. Has a binary search on symbol table which significantly 
reduces processor time for any given assembly. 

c. Stacks symbol table listing in four vertical columns per 
page, reducing listing time and size. 

D. Has conditional assembly and literals. 

E. Two flavors of text handling. 

F. Assembler generated literals or links have been modified 
to flag the generated statement with a hash mark next to 
the object code and be counted as a link and not as an 
error. 

PSEUDO 

*EXPUNGE 
*FIXMRI 

*FIX TAB 

*NOTE, PAL10 

ZBLOCK 
DECIMAL 
OCTAL 
DEFINE 
*DTORG . 
DUBL 
ENPUNCH 
NO PUNCH 
FIELD 

CONDITIONAL 

PAL10 CODES 

OP CODES 

DELETE ALL SYMBOLS EXCEPT PSEUDO OPS 
ARG=X000 DEFINE MEMORY REFERENCE 
INSTRUCTION HAVING VALUE "X000" 
ESTABLISH ALL SYMBOLS CURRENTLY DEFINED AS 
ASSEMBLER SYMBOLS 
INITIALIZES ITS SYMBOL TABLE BEFORE EACH ASSEMBLY 
I.E. FIXTAB, FIXMRI, AND EXPUNGE FUNCTIONS ARE VALID 
ONLY FOR THE ASSEMBLY IN WHICH THEY OCCUR 

ARG 

ARG 

ARG 

ASSEMBLY 

GENERATE BLOCK OF ZEROES 
CHANGE TO RADIX 10 
CHANGE TO RADIX 8 
DEFINE MACRO 
GENERATE DECTAPE ORIGIN 

ACCEPT DOUBLE PRECISION 
ENABLE BINARY OUTPUT 
DISABLE BINARY OUTPUT 

GENERATE FIELD ORIGIN 

PSEUDO OPS 

IFDEF TAB <ARG> ASSEMBLE "ARG" IF "TAG" IS DEFINED. 

-128-



TENEX USER'S GUIDE 
PAL10 

January 1975 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

IFNDEF 
IF ZERO 
IFNZRO 

PAGE 
PAUSE 
TEXT 

# XLIST 
# 

TAG <ARG> 
TAG <ARG> 
TAG <ARG> 

ASSEMBLE "ARG" IF "TAG" IS NOT DEFINED. 
ASSEMBLE "ARG" IF "TAG" IS DEFINED AS ZERO. 
ASSEMBLE "ARG" IF "TAG" IS DEFINED AS NON-ZERO. 

Automatic origin at beginning of next core page 
NO-OPERATION 

/ARG? Generate text table. "/" is the next delimiter. 
If number of characters is odd, table will be 
terminated with a 6 bit zero, if even table will 
be terminated by a 12 bit zero. 
Toggle listing flip flop. 

# Literal Facility 
# 
# [ARG] 
# 
# (ARG) 
# 
# 
# Operators 
# ---------
# 
# 
# .,.. 
# <> 
# 
# II 

# 
# 

Defines a location (determined 
which contains "ARG". 
Defines a location (determined 
page which contains "ARG". 

Logical Shift 6-bits left 
Logic al .And 
Integer Multiply 

by assembler) on page 0 

by assembler) on current 

Special, Alpha only, text mode when not used in Macro 
definitions or conditional assembly delimiters. 
Generate a word which contains the eight bit ASCII 
equivalent of the next character. 

# Error Indicators 
# ----- ----------
# C Illegal Character Error (this includes comment field) 
# D Illegal Redefinition 
# G Link Generated 
# I Illegal Indirect 
# L Literal error (overlap) 
# M Macro Error 
# N Number Error 
# O OP code error 
# P Phase or Multiply defined error 
# Q Questionable format? 
# T Illegal Text Character 
# U Undefined Character 
# Z Page Zero Literal or Exceeded Error 
# 
# COMMAND 
# 
# 
# 
# 
# 

STRING 
A 
B 
c 

D 

SWITCHES 
Advanced Magtape One File 
Back Space Magtape One File 
Enable "CREF" Format (Switch must be set 
before listing device) 
Enable DECtape Origins i.e. "DTORG" 

-129-



# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
PAL10 

January 1975 

M 

N 
T 
w 
z 

Suppress Symbol 
Suppress Errors 
Skip to Logical 
Rewind Magtape 

Table Output 
on TTY 
End of Tape 

Zero DECtape Directory 

# In addition to the command string switches mentioned 
# above, there are a group of special switches which are designed 
# to tailor the assemblers symbol table to match up with other PAL 
# assemblers. These switches modify only the symbol table 
# including Pseudo-op codes. Operators including and ! remain as 
# their current function. 
# 
# 
# 
# 
# 
# 

/P3 
/P8 
/PD 
/PS 

PAL III 
MACRO 8 
PALO 
Super PAL or PAL 8 

-130-

-· 



TENEX USER'S GUIDE 
PCS AMP 

January 1975 

PCSAMP 

A program to measure the operation of other user programs. 

PCSAMP is used to take runtime statistics on another user program 
by sampling its program counter at fixed intervals. The sampled 
PC values are sorted in ascending order and written to a file. 
By comparing this file with a LOADER map of the user program, one 
can get an idea of the relative runtime spent by the user program 
in each of its subroutines, thus discovering bottlenecks in the 
program. 

Upon starting PCSAMP asks: 

PROGRAM TO BE SAMPLED: (answer with any RUNable SAV file) 

FILE TO STORE SAMPLE PCS: (any writable ASCII file) 

SAMPLING INTERVAL (MSEC): (20 to 50 is reasonable) 

Then PCSAMP types 

SAMPLING MAY BE FINISHED BY CNTL-Z. 

and starts up the requested user program. Type input to the 
9rogram in the normal fashion. If the program terminates with a 
HALTF, the sorting and writing out of the PC sam~les happens 
automatically. If the program instead hangs waiting for more 
input, type a control-Z to finish the sorting and outputting of 
the sample PC values. 

The result is an ASCII file which may be LIST'ed or COPY'ed to 
LPT:. 

-131-



TENEX USER'S GUIDE 
PPL 

January 1975 

PPL 

PPL is an interactive, extensible programming language. It was 
designed by T. A. Standish and implemented for the PDP-10 by 
Standish and E. A. Taft at Harvard. 

The version of PPL on TENEX consists of a typeless conversational 
language similar to Iverson's APL in which the Iversonian 
mechanics of arrays have been subtracted out, and to which data 
definition facilities as well as operator definition facilities 
have been added. PPL's conversational mechanics include the 
abilities to trace running programs, to set and remove 
breakpoints, to write programs that converse with users, and to 
edit the text of programs. Running time is proportional to the 
demand for computation, and, in particular, trivial requests are 
satisfied rapidly. Defined operations may be associated with 
unary and binary operators of the user's own choosing, including 
redefining the meaning of operators given in the initial state of 
the language. 

The program below is an example of PPL programming using 
both the operator definition capabilities and the data definition 
capabilities of PPL to define a small language extension that 
differentiates formulas. Formulas are tree-like objects that 
constitute an example of structured data. The example reveals 
how PPL can be used to write programs that manipulate structured 
data and how the normal syntax for arithmetic expressions can be 
shared for new types of arithmetic, such as formula arithmetic. 
In the following transcript, comments are preceded bv three 
dashes. Abbreviations are as follows: 

FORM means formula 
UF means Unary Formula 
BF means Binary Formula 
LO means Left Ooerand 
OP means Operator 
RO means Right Operand 
INT means Integer 
CHAR means Character 

---Data Definitions 

$FORM = UF!BF!ATOM 
$UF = [OP:CHAR,RO:FORM] 
$BF = [LO:FORM,OP:CHAR,RO:FORM] 
$ATOM = INT!REAL!CHAR 

---Operator Definitions 

BINARY("+" ,FADD) 

-132-



TENEX USER'S GUIDE 
PPL 

January 1975 

BINARY("-".FSUB) 
UNARY("-",FMINUS) 
BINARY("*",FMUL) 
BINARY ( "/", FDIV) 
BINARY("\",DERIV) 
UNARY (II @11 'SHOW) 

---The Derivative of F with respect to X 

$DERIV ( F, X) 
[l] DERIV (IF F==ATOM THEN (IF F=X THEN 1 ELSE 0) ELSE 

IF F==UF THEN UF(OP(F) ,RO(F)\X) ELSE 
L LO ( F) ; R RO ( F) ; 0 OP ( F) ; 

- IF O='+ THEN (L\X)+(R\X) ELSE 
IF O='- THEN (L\X)-(R\X) ELSE 
IF O='* THEN (L*R\X)+(R*L\X) ELSE 
IF O= '/ THEN ( (R*L\X)- (L*R\X)) / (R*R) 
$ 

---Functions that Print Formulas 

$SHOW ( F) 
[ 1] FPRINT ( F) ; 1111 

$ 

$FPRINT (F) 
[l] IF F==ATOM THEN PRINT(F); GOTO %0 
[2] PRINT('(); IF F==UF THEN GOTO %4 
[3] FPRINT(LO(F)) 
[4] PRINT(OP(F)) ;FPRINT(RO(F)) ;PRINT(')) 

---Functions that Construct Formulas 

$FADD(A,B) 
[l] FADD BF(A,'+,B) 

$ -

$FSUB(A,B) 
[l] FSUB BF(A,'-,B) 

$ -

$FMUL(A,B) 
[l] FMUL BF(A,'*,B) 

$ -

$FDIV(A,B) 

-133-



TENEX USER'S GUIDE January 1975 
PPL 

(X*(X-3)) 

[l] FDIV BF(A,'/,B) 
$ -

$FMINUS(A) 
[l] FMINUS UF('-,A) 

$ -

---Examples 

X ·x ---Assign character 'x to be value of variable x 
F-(X*(X-3)) ---Assign formula (X*(X-3)) to be value of F 
@F ---Print formula F using defined formula print 

operator @ 

F ---Print F without using defined print operator @ 
[LO:X,OP:*,RO: [LO:X,OP:-,R0:3]] 

@F\X ---Print Derivative of F with respect to X 
((X*(l-0))+((X-3)*1)) 

-134-



TUG 
PTIP User's Information 

(FOR USE ONLY AT BBN CAMBRIDGE SITE) 

PTIP User's Information 

Getting the PTIP's attention Once you have connected your 
terminal to the PTIP, by turning it on and switching it 
on-line (or by dialing a dataset and pressing "DATA"), you 
must get the PTIP's attention and tell it your terminal's speed. 
This is done by typing the Hunt Character. 

The Hunt character for the PTIP is "Control Q". 

After you connect your terminal and type a control Q, you 
should receive the immediate response "BBN RCC n.m" where n 
and m are the PTIP software version number. If you do not 
receive this response, or if you· receive a garbled response, 
press the "BREAK" key, wait a second, and type the control Q 
again. 

Connecting to TENEX After receiving the PTIP version number, 
type a Control C. This will cause the PTIP to attempt a 
connection to a TENEX. The PTIP message "Trying" means that a I 
connection attempt is being started. When the connection I 
opens, you will receive a standard TENEX greeting from one of the I 
BBN systems. Check the message to make sure you are on the I 
right TENEX. I 

I 
If you are not on the TENEX you want, use the the TENEX I 

"MOVE" command to move your connection to the right system. Type I 
"MOVE ?" to see the list of systems to which you can move. It is I 
just the list of BBN TENEXes. Example: Q BBN RCC I.7 C I 
Trying BBN-TENEX 1.99.99, BBN-SYSTEM-B EXEC- 1.98.98 @MOVE$ I 
(TERMINAL TO HOST) C<return> I 
BBN-TENEX 1.97.97, BBN-SYSTEM-C EXEC 1.96.96 @ I 

I 
Note that the PTIP will not connect you to any site except a I 

BBN TENEX site. I 
I 

Disconnecting from TENEX There is nothing special to do to I 
disconnect from the PTIP. After logging out of TENEX, and I 
after a minute's delay to allow you to log back in, the I 
connection from PTIP to TENEX will be closed. The PTIP message 
"Closed" will be printed, but there is no need to wait for it. 
After the "Closed" is printed, you are back to the beginning 
and should type "Control Q" to use the PTIP again. 

Error messages and problems After a "MOVE" command, the PTIP 
will wait indefinitely for a response from the requested host. 
This removes the need to try connecting every few minutes after 
a host has crashed. If you want to give up and quit waiting, 
type the "BREAK" key. This will produce the message "Aborting", 
and a moment later the message "Connection failed, trying other 
hosts", followed by a connection to some other TENEX. 

11-1 ADD-10-26-77 



TUG 
PTIP User's Information 

After a "MOVE" command, you might get a "TENEX RESTARTING, 
WAIT" message or a "TENEX NOT AVAILABLE" message from the TENEX 
system. You can break the connection in this situation, too, and 
in any situation before logging in, by typing "BREAK". 

If you are connected to a TENEX, you may receive the 
message "Host reset, connection closed" if the TENEX 
crashes. This will usually not come immediately after the 
crash, but will be delayed until the restart begins or 
until the operator forces the PTIP to discard connections to the 
host. 

If the PTIP crashes, you may receive the "BBN RCC n.m" 
message, or some garble, as if you had typed "Control Q". In 
this case, the PTIP has reinitialized and forgotten your 
connection. You should reconnect to the TENEX you were using 
and you will probably find your job there detached (unless, of 
course, the crash caused a complete TENEX restart). 

command 
to the 
of no 
TENEX. 
At the 

Other features or their lack The PTIP has no 
language, per se. The only characters of interest 
PTIP are Control Q, Control C and BREAK. Even those are 
interest to the PTIP once you have logged in to a 
There is no need to double "at-sign"s as on the TIP. 
same time, there is no way to find out whether the PTIP is 
there but the TENEX is not there when your terminal 
responding, as you could do on the TIP by typing "@X". 

still 
stops 

The PTIP does not do padding for terminals. Rather than 
using @D C E and the like on the TIP, you use TERMINAL (TYPE 
IS) on the TENEX to get your padding. The PTIP does not 
support 274l's or other non-ASCII terminals. It does support 
a wide range of baud rates, and can hunt to rates up through 2400 
baud. This is why the new hunt character, control Q, was 
chosen rather than the "E" of the TIP or some other more familiar 
character. 

Default hosts and rates When the installation of lines to 
the PTIP has been completed, we will set default baud rates and 
default hosts for users who request them. This will remove the 
need for typing Control Q to set a baud rate, and will cause 
the Control C to request a connection from the TENEX you 
normally use, if that TENEX is up. 

11-2 ADD-10-26-77 

--



TENEX USER'S GUIDE 
RD 

January 1975 

# RD 
# 

* # 
# The RD subsystem is used to look at and manipulate the mail 
# entries in your MESSAGE.TXT files (see also READMAIL and SNDMSG). 
# 
# 
# It is actually a version of TECO with a set of TECO macros 
# preloaded. All commands are thus calls of these macros, or other 
# normal TECO commands. some knowledge of TECO is desirable if you 
# plan to use RD. 
# 
# 
# When started it reads your MESSAGE.TXT file and, unless 
# there are no entries, types a summary of the heading information 
# (date, author, subject) for each entry. You may then go through 
# them-,-11st1ng and/or copying them to other files for later use. 
# 
# 
# The intention is that you will dispose of all entries in 
#your MESSAGE.TXT file by reading and/or copying them to.other 
# files, so that you can use the MK command to clear your 
# MESSAGE.TXT file at the end of each RD session. 
# 
# 
# Below is a typescript of a session with RD showing what is 
# typed at startup, and the help text string (given by MH$) which 
# describes all the commands. Underlined characters were typed by 
# the user. 
# 
# 
# @RD 
# 
# 1941 CHARS 
# 1 29-MAY-73 HGM at CCA-TENEX 
# 2 29-MAY-73 ROBERTS RD 
# 3 29-MAY-73 HGM at CCA-TENEX RSSER - 'up' TIMING 
# 4 29-MAY-73 PLUMMER RD 
# 5 29-MAY-73 PLUMMER NETLOAD 
# 6 29-MAY-73 PLUMMER RSYSTAT 
# TYPE MH$ FOR HELP 
# MH$ 
# ALL COMMANDS ARE TECO MACROS, TERMINATE WITH ESCAPE KEY 
# TO ABORT PRINTOUTS HIT DELETE KEY TWICE 
# DISPLAY COMMANDS 
# 
# MN TYPE NEXT MESSAGE 
# #MJ JUMP TO MESSAGE NUMBERED # 

- # #MT TYPE MESSAGE NUMBERED # 
# ML LISTS ALL MESSAGES IN BUFFER 

-135-



* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
RD 

January 1975 

FILE READ COMMANDS 

M@ 
MY 

#MR 

READS IN 
ASKS FOR 
READS IN 

MESSAGE.TXT AND LISTS IT (AUTOMATIC 
FILE NAME-READS IN AND LISTS 
SPECIAL MSG FILES #=0 :MESSAGE.TXT 

#=l :ACTION.MSG 
#=2 :FILE.MSG 

FILE WRITE COMMANDS 

#MW WRITES MESSAGE NUMBERED # TO NEW FILE T.MSG:T 
EACH USE CREATES A NEW FILE (:1,:2, .• ) 

TO APPEND MESSAGES TO SPECIAL FILES 

ON START) 

#MS SAVE- APPEND CURRENT MSG (THE ONE JUST READ VIA MT OR MN) 
TO SPECIAL FILE #=l or 2. (OPENS, APPENDS, AND CLOSES) 

#MV 

#MO 

#MA 
EF 

OPEN NEW VERSION OF SPECIAL FILES. 
#=l :ACTION.MSG 
#=2 :FILE.MSG 

OPEN OLD VERSION OF FILE - #=l : ACTION.MSG 

(TO OPEN OTHER 
EAFILE.NAME$ 

APPEND MESSAGE 
CLOSE FILE 

#=2 : FILE.MSG 
FILES FOR APPENDING, USE 

FOLLOWED BY #MA'S.) 
NUMBERED # TO OPEN FILE 

(NOTE: ACTION.MSG & FILE.MSG MUST EXIST FOR MO TO WORK. 
TO START THEM, USE THE #MV COMMAND.) 

EXIT COMMAND 

MK 

*:H$ 

CHECKS TO SEE IF CURRENT BUFFER IS SAME LENGTH AS 
MESSAGE.TXT AND IF SO CLEARS (KILLS) MESSAGE.TXT AND 
TO EXEC. IF NOT IT LEAVES NEW MESSAGE.TXT IN BUFFER 

WATCH OUT! THIS COMMAND IS INTENDED TO BE 
USED AFTER WRITING OUT USEFUL MSGS SINCE IT WIPES OUT 
MESSAGE.TXT (BUT DOES NOT RESET SIZE) 

EXITS 
AND LISTS. 

# @ 

-136-

·-

·-



TENEX USER'S GUIDE 
READMAIL 

January 1975 

READ MAIL 

READMAIL is a subsystem which does exactly what is implied in the 
name. When a user logs in and finds he has a message he then 
calls for READMAIL. Below is a sample of the dialogue. 

I @readmail 
I READMAIL 2C(l3) 
# TYPE ? FOR HELP 
# *? 
I Type just a CR or EOL to get your MESSAGE.TXT printed from ~oint of 
# last reading on your terminal. Use "D" to specify another date. Use 
I "F" to specify another input file. Use "O" to specify another output 
I file. Use "R" to specify reverse order (ie. oldest last). While 
I printing, typing rubout will skip to the next message in the file if 
I the output file specification is not used. 
# 
# 
I 
# 
# 
# 
# 
# 
I 
# 
# 
# 
I 
# 
# 
# 
# 
# 
# 
# 

Commands to READMAIL are a single character. 

Reading does not actually begin until you give the 
carriage-return command, at which point READMAIL prints on the 
output file in the specified order all messaqes from the input 
file received after the date. 

Default values (i.e. 
for) are: 

l 

for those items you do not give 

Inout file: <connected-directory>MESSAGE.TXT;l 
date: read date of file 
output file: TTY: (your terminal) 
forward order (oldest first) 

commands 

Oates may be entered in almost any reasonable form, but must 
include month, date, and year. A time may also be s~ecified 
after the date, separated from it by a space. 

Normal TENEX editing characters apply when typing in file names, 
but no editing is possible while typing dates. 

-137-



TENEX USER'S GUIDE 
RE LR IM 

January 1975 

RE LR IM 

Converts a .REL file created by MACRO, FAIL, or FORTRAN into a 
RIM10B self-loading paper tape containing standard check-summed 
blocks. 

When started, RELRIM asks: 

INPUT FILE: 

to which the user responds appropriately. After the paper tape 
is punched, the program EXITS to the EXEC. 

-138-



# 
# 

TENEX USER'S GUIDE 
RENBR 

January 1975 

RENBR, the FORTRAN Renumbering Program 

# RENBR is a program written in hardware independent FORTRAN which 
# sequentially statement numbers and/or forms cross-reference 
# listings of FORTRAN orograms read as data. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Instructions for Use 

When started, RENBR will ask the user to supply the input, 
output, lister and scratch unit numbers and file names as well as 
other necessary information. If the only response to a request 
is a carriage return (blank line), a default answer is assumed. 
A negative response to anv request for numeric information 
(except statement number increment) will cause the default values 
to be assumed for the present and all remaining requests the 
asking of which will then be suppressed. The default names of 
all files except the scratch file are defined by DATA statements 
in subroutine REUNIT. The default value of the lowest statement 
number is the absolute value of the statement number increment. 
All other default values are defined by executable statements 
prior to the call of subroutine REUNIT in the main program. 
Possible requests and their default values are as follow: 

Request 

IS RENUMBERING DESIRED (Y OR N) 
IS OUTPUT TO BE IN CARD FORMAT (Y OR N) 
IS LISTING DESIRED (Y OR N) 
TITLE FOR LISTING 
INPUT UNIT NUMBER 
INPUT FILE NAME 
LISTER UNIT NUMBER 
LISTER FILE NAME 
OUTPUT UNIT NUMBER 
OUTPUT FILE NAME 
SCRATCH UNIT NUMBER 
SCRATCH FILE NAME 
INITIAL PAGE NUMBER 
LOWEST STATEMENT NUMBER 
STATEMENT NUMBER INCREMENT (NEGATIVE IS LEGAL) 

Default 

YES 
YES 
YES 

1 
INPUT 
20 
LIST 
21 
OUT PU 
22 
SPARE 
1 
1 
1 

The tab character will separate statement number fields from 
statement text in the output if the question concerning out9ut 
format is answered with an "N". 

Input File Limitations 

The input file must have a name of 5 or fewer characters and the 
extension DAT, must be line blocked and must not contain internal 

-139-



TENEX USER'S GUIDE 
RENBR 

,January 1975 

# control characters such as form feeds. 
# cause no difficulty. 

A final form feed will 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
. jj: 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The input file can contain tag characters if the FORTRAN compiler 
and operating system allow these. If the compiler and/or 
operating system do not allow tabs but the input program contains 
tabs, such tabs should first be converted by the text editor to 6 
or more blanks or else be converted to sufficient blanks to fill 
to the normal tab stops if the left tab stop is in, or to the 
right of, column 7. The tab character is used in FORTRAN 
programs on some non-card systems to separate the statement 
number field from the statement. 

RENBR detects the end of the input file by end-of-file tests 
its READ statements. If the end-of-file test feature is 
available, the input file should be terminated by an extra 
statement which will not appear in the generated-output. 

in 
not 
END 

Restriction 
Continuation 
continuation 
unchanged. 
statements, 

lines following a comment line are taken as a 
of the comment and are written into the output 

For this reason, comment lines can separate 
but cannot ~~oeer within a sinqle statement • 

Restriction 
A line with a non-blonk non-tab non-digit character other than C 
(which would indicate a co~~ent) in column 1 followed bv a tab, 
or by a number (formed of no more than 4 digits) and a tab, or by 
4 characters formed of anv combination of blanks (also known as 
the space character) and/or digits will be taken as a legal 
FORTRAN statement. If the line begins a new statement, then the 
initial character will aopear in the output at the start of each 
line of the statement including all continuation lines (whether 
or not the character originally appeared at the start of these 
continuation lines). Some compilers require B, D or I in column 
1 to specify variable type. Also, DEC PDP-10 FORTRAN allows D in 
column 1 to indicate a debu~ging line the compilation of which is 
optional. In DEC FORTRAN, the use of the D at the start of lines 
which continue a debugging line is acceptable but not necessary. 

Restriction 
Blanks are trimmed from the right end of lines prior to output 
regardless of syntax. If alphameric strings are specified as the 
number of characters followed by the letter H and the characters 
of the string, then lines which end in alphameric strings 
containing terminal blanks will have these blanks removed. 
Therefore, unless the outout is written onto cards, a statement 
such as 

A=lH 

should instead be written as 

-14(1-

-



# 

TENEX USER'S GUIDE 
RENBR 

A=(lH 

January 1975 

# or 
# A=' , 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Restriction 
A single statement can be continued on no more than 19 lines. 
Unless the dimensions of the storage arrays are increased, a 
single main program or routine being renumbered can contain at 
most 1000 numbered statements {or 25 less than this if a listing 
is also being made). There is no restriction on the number of 
statement number references within a single main program or 
routine. 

Restriction 
The END statement at the end of a program must a~pear on a single 
line {alth~ugh the letters of the word END can be preceded bv or 
be separated by blanks or tabs) • The inout can contain any 
number of programs or routines, each with its own END statement. 
If the end-of-file test in a read statement is not available, an 
additional END statement, after the final program or routine in 
the input, can be used to force a normal exit which includes 
printing of the table of contents. 

Restriction 
A line beginning a new statement must have one of the following 
formats. 

A) A line beginning with a non-tab character other than C 
followed by 4 blanks and/or digits followed in column 6 by a 
blank or by a zero. It is possible for the character in 
column 1 to be a blank or a digit of the statement number. 

B) 

C) 

D) 

E) 

A line beginning with a tab followed by the first 
of the statement which cannot be a diqit. 

character 

A line beginning with a non-tab non-blank non-diqit 
character other than C followed by a tab followed by the 
first character of the statement. 

A line beginning with a digit or digits of the statement 
number followed by a tab followed by the first character of 
the statement. 

A line beginning with a non-tab non-blank non-digit 
character other than C followed by the digit or digits of 
the statement number followed by a tab followed by the first 
character of the statement. 

If {BLANK) represents a blank, {TAB) represents a tab and {TEXT) 
represents the text of the statement, then the following are 
typical lines which start new statements. Of course, the text of 
the statement can itself begin with one or more blanks or tabs. 

-141-



# 

* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
RENBR 

January 1975 

(BLANK) (BLANK) (BLANK) (BLANK) (BLANK) (BLANK) (TEXT) 
(BLANK) (BLANK) (BLANK) (BLANK) (BLANK)0(TEXT) 
D(BLANK) (BLANK) (BLANK) (BLANK) (BLANK) (TEXT) 
D(BLANK) (BLANK) (BLANK) (BLANK) (BLANK)0(TEXT) 
(BLANK) (BLANK) (BLANK)22(BLANK) (TEXT) 
(BLANK) (BLANK) (BLANK)220(TEXT) 
D(BLANK) (BLANK)22(BLANK) (TEXT) 
D(BLANK) (BLANK)220(TEXT) 
22(BLANK) (BLANK) (BLANK) (BLANK) (TEXT) 
22(BLANK) (BLANK) (BLANK)0(TEXT) 
D22(BLANK) (BLANK) (BLANK) (TEXT) 
D22(BLANK) (BLANK)0(TEXT) 
(TAB) (TEXT) 
D{TAB) {TEXT) 
22 (TAB) (TEXT) 
D22(TAB) (TEXT) 

# Restriction 
# A continuation line must have one of the following formats. 
# A) A line beginning with a non-tab non-digit character other 
# than C followed by 4 blanks followed by a non-blank non-tab 
# non-zero character which is ignored. The initial character 
# can, of course, be a blank. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

B) 

C) 

A line beginning with a tab (or with 5 or 
followed by a non-zero digit which is ignored. 

:nore bl an ks) 

A line beginning with a non-tab non-blank non-digit 
character other than C followed by a tab (or by 4 or more 
blanks) followed by a non-zero di1it which is ignored. 

The following are typical continuation lines. 

(BLANK) (BLANK) (BLANK) (BLANK) (BLANK)2(TEXT) 
(BLANK) (BLANK) (BLANK) (BLANK) (BLANK)A(TEXT) 
D(BLANK) (BLANK) (BLANK) (BLANK)2(TEXT) 
D(BLANK) (BLANK) (BLANK) (BLANK)A(TEXT) 
(TAB)2(TEXT) 
D(TAB)2(TEXT) 

Description of the Listing Produced by RENBR 

RENBR can, at the user's request, produce a listing of the 
programs read as data. (IF renumbering has not been requested, 
RENBR assumes by default that a listing is to be made.) The 
listing of each separate main program or routine is begun on a 
new page. In the upper right corner of each page are printed 
both the current page number and the name of the program or 
routine. To the left of each non-comment statement is printed 
the count or sequence number of the statement within the current 
program or routine. 

-142-



TENEX USER'S GUIDE 
RENBR 

January 1975 

# Following the listinq of the program or routine is a list of 
# statement numbers and of the sequence numbers of the statements 
# in which these statement numbers are referenced. If renumbering 
# is not being performed, this list will also include as negative 
# numbers the sequence numbers of the numbered statements 
# themselves. These negative numbers are not included in the list 
# of statement number references if renumbering is being performed, 
# since then the resulting statement numbers will be in order so 
# that it is assumed that further assistance is not needed to 
# locate them. 
# 
# After the list of statement number references is a list of all 
# key words, names and constants used in the program or routine and 
# of the sequence numbers of the statements in which these are 
# used. A sequence number is given as negative if the referenced 
# variable or array is defined in the statement by the equals sign 
# operator. Key words such as GO TO are considered to be single 
# words in the index, but blanks and tabs are otherwise used as 
# word separators. Except for the initial key words, items 
# appearing either in a DATA statement or in a FORMAT statement are 
# not included in the list. 
# 
# Changing Length of Uninterrupted Listing 
# 
# The tables of statement number references and indexes are printed 
# at the end of each program or routine, or when the necessary 
# storage fills. As supplied, RENBR will produce uninterrupted 
# listings of FORTRAN routines of aporoximately 800 non-comment 
# lines (dependent on programmer style). This requires 2 arrays of 
# 1000 locations each to store the statement references, and 1 
# array of 7000 locations to store the symbol dictionary. If the 
# storage necessary to run RENBR must be reduced, it is suggested 
# that all appearances of the number 1000 be changed to 500 and 
# that all appearances of 7000 be changed to 3000. This will cause 
# the tables and indexes to be dumped after processing of about 250 
# non-comment lines, but the listings will still be correct. 
# 
# Maintaining Logical Blocks of Statement Numbers 
# 
# Some programmers select statement numbers used within a logical 
# division of a program from a different range than those used 
# elsewhere within the same program. RENBR can maintain these 
# regions when renumbering. However, since a single normal 
# renumbering would destroy such regions, a command card within the 
# program is used to specify the step size rather than querying the 
# user for this information. This command card is a comment card 
# with C in column 1 followed by the word RENBR and those switches 
# for which values are being specified. A typical command card 
# would be 
# 
# CRENBR I-10 B 10 0 200 N 400 

-143-



TENEX USER'S GUIDE 
RENBR 

January 1975 

# The switches are 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

B = the base number. The number following this switch will be 
the smallest generated statement number which will appear 
within the renumbered program or routine. Normally this 
would be the first statement number in the renumbered 
program, but if the increment between generated statement 
numbers is specified to be negative, then the base number 
will be the number of the final numbered statement within the 
program. If the B switch does not appear on the CRENBR card, 
then the value used as the base number will be that specified 
by the user when RENBR was started, or will be the absolute 
value of the statement number increment if the user did not 
specify a base number when RENBR was started. 

# I = 
# 

the statement number increment. The number following this 
switch will be the increment between generated statement 
numbers. If the I switch does not appear on the CRENBR card, 
then the value used as the increment will be that specified 
by the user when RENBR was started, or will be 1 if the user 
did not specify a statement number increment when RENBR was 
started. 

# 
# 
# 
# 
# 
# 
# N = 
# 

the new region size. The number following this switch 
specifies the jump in qenerated statement numbers from the 
start of one region to the next in the renumbered program. 
If the N switch does not ap9ear on the CRENBR card, then the 
old region size as specified by the O switch is also used as 
the new region size. 

# 
# 
# 
# 
# 
# 0 = 
# 

the old region size. The number following this switch 
specifies the jump in the original statement numbers from the 
start of one region to the next in the program which is being 
renumbered. If the values specified by the N and o switches 
differ, then the value of the O switch should probably be 
converted after renumbering to that which the N switch had 
before renumBering. If the o switch does not appear on the 
CRENBR card, then no regions will be preserved. 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The switches can appear in any order on the CRENBR card. Only 
the I switch will accept a negative value. Blanks or tabs can 
appear anywhere after the initial C of the CRENBR card, but are 
not necessary. 

The values specified by the CRENBR card apply to all the 
statement numbers within a single ?rogram, but the CRENBR card 
can appear anywhere in the ~rogram before the terminal END 
statement. If multiple CRENBR cards appear within a single 
program or routine, the values used are the final values 
specified for each switch. The CRENBR eara applies only to the 
program or routine in which it appears. The default values of 

-144-

-



TENEX USER'S GUIDE 
REN BR 

January 1975 

# the switches (set by the user when RENBR was started) are 
# restored for the next program or routine read. In the case of 
# the N and O switches, these defaults are to not preserve regions. 
# 
# 
# 
fl: 
# 
# 
# 
# 
# 
# 
# 
# 
fl: 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
fl: 
fl: 
fl: 
# 
# 
# 
# 
# 
# 
fl: 
fl: 
fl: 
# 
fl: 
fl: 
# 
# 
# 
fl: 
# 
# 

* fl: 

The sample CRENBR card show above would specify that original 
regions 1-199, 200-399, 400-599 etc. would be translated to 
regions such as 1-399, 400-799 and 800-1199. The actual 
translation would depend on the relative placement of the 
original regions. For example, using the above sample CRENBR 
specification, the· statement number sequence 

270 350 260 351 15 2 6 150 99 16f.ll0 1622 

would be translated to the following sequence 

830 820 8HJ 800 440 430 420 4HJ 400 20 HJ 

To allow addition of new statements to a region, statement 
numbers which would normally be outside the region are taken as 
part of the surrounding region if statement numbers both before 
and after the addition are within the region. Therefore, the 
statement number sequence 

270 8350 4260 351 15 2 6 150 99 1600 1622 

would be renumbered to the same sequence as given before. 

Statement Types Recognized by RENBR 

RENBR will renumber statement numbers contained in the following 
types of FORTRAN-II and FORTRAN-IV statements. These key words 
can also be used for variable names or for array names without 
causing any difficulties. The ability to handle statement 
numbers in other types of statements can be easily added. 

ACCEPT 
ASSIGN 
CA1'L 
DECODE 
DO 
ENCODE 
FREQUENCY 
GO TO 
IF 
IF DIVIDE 
PRINT 
PUNCH 
READ 
REREAD 
TYPE 
WRITE 

CHECK 

ACCEPT TAPE 

IF ACCUMULATOR OVERFLOW 
IF QUOTIENT OVERFLOW 

PUNCH TAPE 
READ INPUT TAPE 

WRITE OUTPUT TAPE 

-145-



TENEX USER'S GUIDE 
RENBR 

,January 1975 

# In addition to the above, the FIND statement is recognized so 
# that the unit and record numbers can be separated before being 
# entered into the index. To prevent filling and index with often 
# useless information, the DATA and FORMAT statements are also 
# recognized so that items following these keywords are not 
# indexed. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

RENBR handles as single units alphameric strings which are 
designated .either as a decimal number of characters followed by 
the letter H and the characters of the string, or else are 
preceded and followed by apostrophes. It is likely that no harm 
will result if programs containing other alphameric string 
designations are renumbered. If some character other than 
apostrophe is used as the delimiting character in programs to be 
renumbered, the only situation likely to give trouble will be 
when IF statements are used to test character data against 
alphameric strings containing either left or right parentheses. 
RENBR was used for several years before the ability to handle 
alphameric strings as single units was even added to it. 

Statement numbers appearing in CALL statements can be preceded 
either by an asterisk, by a dollar sign or by an ampersand. The 
RENBR program must be changed if some other character is used to 
indicate such statement numbers in CALL statements. 

Format of Statements in the Output File 

The text of statements in the renumbered output file begins in 
column 7 if card format has been selected, or else following the 
tab which separates the statement number field from the statement 
text field. Original indentation in the form of additional 
blanks or tabs is not oreserved. Where possible, in a 
continuation line the original number of blanks separating the 
statement continuation character from the text of the continued 
statement is maintained. All other spacings are left unchanged. 

RENBR.F4 

RENBR.DAT 

RENBR.LST 

RENBR.RNO 

REFMT.F4 

Files Provided 

Source of the FORTRAN renumbering program. 

Test data for RENBR. Directions for use are given 
as comments at start of file. 

This file. 

File which generates this file when processed 
the PDP-10 text justifier program RUNOFF. 

by 

FORTRAN program used with RENBR BLOCK DATA routine 
and with the DATAST package to reorder the RENBR 
syntax recognition table. Directions for use are 

-146-

·-



TENEX USER'S GUIDE 
RENBR 

January 1975 

# 
# 
# DATAST.F4 
# 
# 
# 
# 

given as comments at start of file. 

FORTRAN subroutine package which generates as 
output the FORTRAN DIMENSION, EQUIVALENCE and DATA 
statements which represent an input single 
prec1s1on singly subscripted integer array, 
calling sequence is described in subroutine DATA. 

..... 

-147-



# 
# 

TENEX USER'S GUIDE 
REPORT 

January 1975 

REPORT 

# The REPORT subsystem is used to interrogate a data base which 
# contains a running commentary on the status of the BBN-TENEX 
# system. The data base includes system Interruption Reports, 
# System Restart Reports and Scheduled Downtime Reports. The 
# program is self-explanatory. It asks the following questions: 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

ENTER DATE FROM WHICH TO LIST STATUS: 

(The default reply is carriage return which implies 
earliest date of entry in data base: otherwise, enter 
date in form MM/DD/YY, e.g. 03/12/74) 

OUTPUT TO: 

(The default reply is carriage return which implies 
TTY:: otherwise, enter a file specification or LPT:) 

REVERSE OR FORWARD ORDER (R OR F) : 

(the default reply is carriage return which implies R, 
i.e., reverse chronological order for output: 
otherwise, enter R or F) 

-148-



TENEX USER'S GUIDE 
RUNFIL 

January 1975 

RUNFIL 

Provides a means for usinq a file instead of a terminal to supply 
an input command stream. A file is prepared containing the 
character stream which would be typed on the terminal to perform 
some desired set of operations. The stream is initially received 
by the EXEC but may start any subsystem, and primary input will 
continue to come from the file. All output is directed to the 
controlling terminal in the usual manner, and the resultant 
typescript is indistinguishable from that produced when input is 
from the keyboard. Optionally, output may be directed to a file 
other than the terminal. However, such a file may contain 
"errors" in echoing, that is, the source file "echoes" present in 
the output file may be out of phase with the output. 

@RU NF IL 

COMMANDS FROM FILE: name 

The user supplies the name of the file from which commands are to 
be taken. If the name is confirmed with carriage return, output 
will be directed to the terminal and process1ng-wTlI begin. If 
the name is confirmed by comma, the program will ask: 

OUTPUT TO FILE: name 

and the name of the file to receive primary output should be 
entered. 

The program begins by starting an EXEC in an inferior fork, with 
primary input and output set as determined by the dialogue above. 
The command file must contain EXEC commands to start any desired 
subsystem. The last command should leave control at the command 
level of the EXEC. When the end of file is reached in the 
command file and any processing is completed, the inferior 
fork(s) will be killed and control returned to the top-level· 
EXEC. 

Format of Command File 

As stated, the command file contains exactly what would be typed 
on a controlling terminal to perform some desired set of 
operations. To facilitate certain operations, however, the 
following actions cause special interpretations by RUNFIL. 

-149-



# 
# 
# 
# 
# 
it 

TENEX USER'S GUIDE 
RUNFIL 

January 1975 

Control-"' acts as a warning character and interprets the 
immediately following character(s) as follows: 

1) A- Z , [ , \ , ] , ... , , @ 

Converts the single character in this group to its control 
by C) equivalent. Eg. ""c (i.e. control _.... followed 

becomes ""c, etc. 

Note: Control-C in an input stream causes an immediate 
termination of processing as usual. However, for some 
subsystems, "'c is the only way to return to the EXEC, and 
the user would normally not type ""c for this purpose until 
processing had been completed. In a command file, "'""B 
serves this function, i.e. RUNFIL waits until the inferior 
program is ready for more input (an indication that 
processing is completed), and then sends a ""c. 

2) Decimal number 

The number will 
milliseconds) to 
command file. 

be taken as a length of time (in 
wait before taking further input from the 

The number must be terminated by a non-numeric character 
(e.g., space), which will have no other effect in the input 
stream. This "pause" facility is furnished to allow orderly 
input from the terminal at desired points in the file 
stream. 

# Note that once processing has begun, any characters typed on the 
# controlling terminal will be intermixed with the file stream, 
# usually producing undesired results. In particular, a "'c typed 
# on the controlling terminal will be handled by the lower-level 
# EXEC, and so is not a way to abort command file procesSTng. The 
# character "'a is enabled in RUNFIL for this purpose. ("'B is the 
# only character which has a different effect when input from the 
# terminal.) 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

In most cases "'a from the terminal will cause an immediate 
termination of command-file processing and a return to the 
top-level EXEC. However, ""a typed during a requested "pause" in 
command-file input ("'"'<decimal number> above) will break the 
pause, i.e., RUNFIL will "wake up" and immediately resume command 
file input. Thus processing can be caused to continue after 
manual terminal input without waiting out the remaining specified 
delay. An actual ""a (as opposed to ...... followed by B in the file 
stream is treated as ordinary input and is passed to the 
subsystem running under RUNFIL. 

-150-

-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

RUNOFF 

RUNOFF is a TENEX program to facilitate the preparation of typed 
or printed manuscripts, such as memos, manuals, etc. 

The user prepares his material on any regular TENEX terminal, and 
writes it onto a file using TECO. The user includes not only 
textual material, but also case and formatting information. 
RUNOFF then takes the file and reproduces it onto the line 
printer, teletype, any terminal or other file to produce a final 
copy or final file image. It performs the formatting and case 
shifting as directed, and will also perform line justification, 
page numbering and titling, etc., as desired. 

The principal benefit of such a program is that files prepared 
for use with it may be edited and corrected easily. Small or 
large amounts of material may be added or deleted, and unchanged 
material need not be retyped. After a set of changes, the 
program may be operated to produce a new copy which is properly 
paged and formatted. Documentation may thus be updated as 
necessary without requiring extensive retyping. 

-151-



TENEX USER'S GUIDE 
RUNOFF 

.January 1975 

TENEX Operating Procedure 

RUNOFF is a regular TENEX subsystem, and is started by the EXEC 
command 

@RUNOFF 
(In this document, 
carriage return.) 

will be used to mean 

The program will print its name and version and ask for the input 
file name: 

(1) INPUT FILE: 

The user should ty~e the name of the source file (using alt-mode 
for name recognition) and confirm the name with a carriage return 
or comma. If a carriage return is typed, RUNOFF will assume 
standard settings for all modes and immediately begin to produce 
output to the line printer. Typing a comma allows the user to 
specify various additional options as follows. 

(1) INPUT FILE: name, 
(Comma to ask for options) 

(2) ASCII, DURA OR FLEXO? 

( 3) 

(Ty9e A, D, or F. If D or F typed, cutout 
will be to paper tape ounch with no further 
questions asked.} 

OUTPUT FILE: 
(Confirm (c) 
questions,­
options.) 

with carriage return for no more 
comma to specify following 

(4) UNDERSCORE (L, C, B OR N) 
(Underscore by line, character, backspacing 
or none. Use L (normal) for line printer, C 
for flexo or dura, N for anything which does 
not have underscoring capability.) 

(5) SIMULATE FORM FEED (YORN)? 
(Yes means use repeated line feeds to eject 
to top of each new page. No means use real 
form feed character. Use N (normal) for line 
?rinter, flexo and dura.) 

-152-

·-

-



TENEX USER'S GUIDE 
RUNOFF 

(6) PAUSE? 

January 1975 

(Answer Y or N. Yes means stop program at 
completion of each page so that pa?er can be 
adjusted in on-line output device. Used only 
for direct output to TTY. Use N (normal) for 
line printer, flexo or dura.) 

When finished with the current input file, RUNOFF will type DONE 
and await specification of a new input file. 

summary of Operations 

1. For output to line printer: 

Type carriage return after input file name. 

2. For Dura typewriter paper tape: 

Type comma after input file name, 

Type D to question 2. 

3. For Flexowriter paper tape: 

Type comma after input file name, 

Type F to question 2. 

-153-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

SOURCE FILE FORMAT 

As stated above, the source file contains the textual material 
which will appear on the final copy, plus information to specify 
formatting. Most importantly, upper and lower case information 
may also be suoplied so that copy can be prepared on the teletype 
or other such device which can normally input only upper case 
letters. All command information consists of regular ASCII 
printing characters so that a listing of the source file may be 
examined if the final copy is not exactly as desired. 

All material in the source file is taken to be source text except 
those lines beginning with a period. A line beginning with a 
period is assumed to be a command, and must match one of those 
listed below. The commands provide the formatting information, 
and control various optional modes of operation. 

Usually the text is filled and justified as it is processed. 
That is, the program FILLS a line by adding successive words from 
the source text until one more word would cause the right margin 
to be exceeded. The line is then JUSTIFIED by making the word 
spacings larger until the last word in the line exactly meets the 
right margin. 

The user may occasionally wish to reproduce the source text 
exactly which is done by disabling filling and iustification. 
The program may be set to fill but not justify, in which case the 
output will be normal except that lines will not be justified to 
the right margin. The program may also be set to justify but not 
fill, although this would probably produce peculiar results and 
is not recommended. 

When the fill mode is on, spaces and carriage returns 
in the source text are treated only as word separators. 
separators are ignored. 

occurring 
Multiole 

Some of the commands cause a BREAK in the output. ~ break means 
that the current line is output without justification, and the 
next word goes at the beginning of the next line. This occurs at 
the end of paraqra?hs. 

The program will advance to new page~ as 
title (if given) and the page number 
The user may explicitly call for a page 
and may inhibit the occurrence of a page 
material. 

-154-

necessary, placing the 
at the top of each page. 
advance where desired, 
advance within specified 



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

CASE INFORMATION 

Specification of case for files prepared on the teletype is done 
with two characters, up-arrow (A, shift-N), and back-slash (\, 
shift-L) • The appearance of an up-arrow causes the letter 
immediately ·following to be transmitted in upper case. The 
appearance of a back-slash causes the letter immediately 
following to be converted to lower case. Any letter not preceded 
by one of these characters is transmitted in the current mode. 
The mode is initially lower case, and is changed by the 
occurrence of two successive case control characters. Two 
up-arrows (AA) cause the mode to be set to upper case, and two 
back-slashes (\\) cause the mode to be set to lower case. 

The use of the above corresponds to the use of the shift and 
shift-lock keys on a typewriter. Usually, typing appears in 
lower case. To type one letter in upper case, the shift key is 
used. The shift-lock is set to type a series of upper case 
letters, after which it is released. 

The following shows the uses of the case control characters: 

AHERE IS A ASAMPLE ASENTENCE IN AAUPPER CASE\\ AND LOWER CASE. 

becomes: 

Here is a Sample Sentence in UPPER CASE and lower case. 

Note: Case conversion takes place only on ASCII codes 101 to 132 
octal, that is, the upper case letters. Any actual lower case 
letters (codes 141 to 172 octal) appearing in the source will be 
transmitted unchanged. If the source is prepared on a device 
such as a flexowriter or model 37 teletype or any terminal which 
produces letters of the proper case, the mode should be set to 
upper case at the beginning of the file and left unchanged for 
the remainder. 

-155-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

Special Characters 

The character ampersand (&, shift-6) is used to specify 
underscoring. The ampersand will cause the character following 
it to be underscored, e.g. &f&o&o becomes foo. 

Underlining of a string of characters can also be specified, 
similarly to the use of the shift lock operations described 
above. An appearance of ampersand preceded by-up-arrow (~&) will 
cause underlining of all followinq characters except space. An 
appearance of ampersand preceded by backslash (\&) will disable 
this mode. 

It is occasionally necessary to include spaces in the text which 
should not be treated as word separators. For this purpose, 
RUNOFF treats numbersign (#) as a quoted space; i.e. it will 
print as exactly one space in the output, will never be expanded 
nor changed to a carriage return. 

To allow the appearance of the special characters (ampersand, 
number-sign, up-arrow, or hack-slash) in the output, the 
character-left-arrow ( , shift-0) is used as a quote character. 
The character immeaiately following a left-arrow will be 
transmitted to the output with no formatting effect. The 
left-arrow itself is just another case requirinq the usual quote 
characteristic. The following five cases occur: &, ~ _\, 
and #. 

-156-

-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

COMMANDS 

The following commands will be recognized if they are at the 
beginning of a line started with a period. Any line in the 
source file beginning with a period is assumed to be one of these 
commands. I£ it is not, an error diagnostic will be typed and 
the line will be ignored. Some commands take one or more decimal 
numbers following. These are separated from the command by a 
space. 

Formatting 

.BREAK 

Causes a break, i.e. the current line will be output with 
no justification, and the next word of the source text will 
be placed at the beginning of the next line • 

• SKIP n 

Causes a break after which n*(line spacing) lines are left 
blank. If the skip would leave room for less than two 
printed lines on the page (i.e. if there are less than 
n+2*(line spacing) lines left), the out9ut is advanced to 
the top of the next page . 

. BLANK n 

Exactly like SKIP, except that n (rather than n*(line 
spacing)) lines are specified. BLANK is used where space is 
to be left independent of the line spacing: SKIP, where the 
space should be relative to the size of line space . 

• FIGURE n 

Like BLANK except that if less than n lines remain on the 
current page, the page will be advanced, and n blank lines 
will be left at the top of the new page. Principally used 
where it is desired to leave room for a figure to be drawn 
in manually. 

-157-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

.INDENT n 

Causes a break and sets the next line to begin n spaces to 
the right of the left margin. n may be negative to cause 
the line to begin to the left of the left margin (useful for 
numbered paragraphs) • 

• PARAGRAPH n 

• PAGE 

The number is optional and, if present, sets the number of 
spaces which paragraphs are to be indented. The initial 
setting is 5. The command causes a break and leaves (m+l)/2 
blank lines, where m is the regular line spacing. The next 
line will be indented as indicated above • 

Causes a break and an advance to a new page. Does nothing 
if the current page is empty. Titling and numbering as for 
automatic page advance • 

• TEST PAGE n 

Causes a break followed by a conditional page advance. If 
there are n or more lines remaining on the current page, no 
advance is made and no lines are skipped. Otherwise, the 
page is advanced as for PAGE. This command should be used 
to ensure that the following N lines are all output on the 
same page • 

• NUMBER n 

Turns on page numbering (normal) and, if n is supplied, sets 
the current page number to n . 

• NONUMBER 

Turns off page numbering. Pages will continue to be 
counted, so the normal page number will appear if numbering 
is re-enabled. 

-158-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

Mode Setting 

.JUSTIFY 

Causes a break and sets subsequent output lines to be 
justified. (Initial setting) 

.NOJUSTIFY 

• FILL 

Causes a break and prevents justification of subsequent 
output lines • 

Causes a 
filled. 
the last 
setting) 

break and specifies that subsequent output lines be 
Sets the justification mode to be that specified by 
appearance of JUSTIFY or NOJUSTIFY. (Initial 

.NOFILL 

Causes a break and prevents filling of subsequent output 
lines. Also turns off justification. 

Note: 

1. The nofill-nojustify mode need be used only where 
there are several lines of material to be copied 
exactly. A single line example will not require using 
these commands if there are breaks before and after. 

2. Normally FILL and NOFILL are used to turn both filling 
and justification on and off. It is usually desirable 
to do both. A subsequent appearance of a 
justification command will override the fill command 
however. 

3. Because of the action of FILL, a single occurrence of 
NOJUSTIFY will cause the remainder of the file to be 
unjustified, with filling as specified. In order to 
justify but not fill (not recommended), a JUSTIFY 
command must follow every NOFILL command. 

-159-



TENEX USER'S GUIDE 
RUNOFF 

.LEFT MARGIN n 

January 1975 

Parameter Settings 

Causes a break after which the left margin is set to n. n 
must be less than the right margin, but not less than 0. 
The initial setting is 0. The amount of any indent plus the 
left margin must not be less than 0 • 

• RIGHT MARGIN n 

Causes a break after which the right margin is set to n. n 
must be greater than the left margin. The initial s.etting 
is 60. 

The number 
than the 
indenting 
disabled, 

of characters on a line will be equal to or less 
right margin minus the left margin minus any 

which may be specified. Even if filling has been 
lines will not be extended past the right margin • 

• SPACING n 

Causes a break after which the line spacing will be set to 
n. n must be within the range 1 to 5. Single spacing is 1, 
double spacing is 2, etc. (Initial setting is .SPACING 2) 

.PAGE SIZE n 

Sets the number of lines per page to n. n must be 
than 10. The initial setting is 58. n includes 
margin of 5 lines. The page number and title appear 
third line • 

• TAB STOPS n •.. n 

greater 
the top 
on the 

Clears all previous tab stops and sets new tab stops as 
specified. The several n (max 32) must be greater than zero 
and in increasing order. They are the positions of tab 
stops independent of the setting of the left margin, 
although any which are less than the left margin will not be 
seen. There are no tab stops initially. 

Tabs should be used only in lines which will be unjustified 
and unfilled, i.e. where filling is disabled or a break 
immediately follows. Clearly, the spaces specified by a tab 
character should not be expanded to justify the line--this 
would defeat the effect of tab formatting. The appearance 
of a tab in the source text will be translated to one or 
more spaces, the amount necessary to advance to the next tab 
stop. If a tab appears at a point where no further tab 
stops have been set on a line, the tab will be treated as 

-160-
-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

though it had been a space. 

Miscellaneous 

.TITLE tttt ... tttt 

This command takes the rema1n1ng text on the line as the 
title. This text will appear at the top of all subsequent 
pages, at position 0, on the third line with the page 
number. The title is initially blank • 

. SUBTITLE tttt •.. tttt 

This command takes the rema1n1ng text on the line as the 
subtitle. This text will appear on the line immediately 
following the title and page number. The subtitle is 
initially blank. The subtitle is not indented, but may 
contain leading spaces to achieve the same effect, if 
desired . 

. CENTER 

This command causes a break after which it centers the next 
line following in the source file. The centering is over 
position 30, independent of the setting of the left and 
right margins . 

. FOOTNOTE n 

Allocates n*(line spacing) lines at the bottom of the 
current page for a footnote(!). If insufficient room 
remains on the current page, space will be allocated at the 
bottom of the following page. The text for the footnote 
should begin on the line following the command, and it may 
contain any appropriate commands (e.g. CENTER, SKIP) 
necessary to format the footnote. The footnote is 
terminated by a line beginning with an exclamation point 
(the remainder of which is ignored). The lines delimited by 
this line and the FOOTNOTE command are put into a buffer to 
be processed when the output moves to within the stated 
distance of the bottom of the page. If a page has multiple 
footnotes, the allocated space is the sum of the allocations 
for all footnotes assigned to the page. The user must 

(1) This is a footnote. This text and the dividing line above 
were specified by text and commands following a FOOTNOTE 5 command. 

-161-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

include his choice of footnote-designating symbols within 
the text. 

The current values of left and right margin and line spacing 
are saved and restored after processing of footnotes. 
Therefore, a footnote may contain commands which change 
these parameters, and the effect will be limited to the 
footnote text. 

The actual space taken by the footnote may be more or less 
than that specified by n. The n merely allocates space and 
should be the user's best guess. If it is considerably off, 
the footnote lines may overflow the page, or extra space may 
be left at the bottom. The user may wish to adjust n after 
examining a first draft printout • 

• INDEX tttt •.• tttt 

This command takes the remaining text on the line as a 
word or words and adds it, along with the current 
number, to the internal index buffer. The command does 
cause a break. It should appear immediately before the 
to be indexed. A key word or words may be indexed more 
once • 

. PRINT INDEX 

key 
page 

not 
item 
than 

Causes a break after which it prints the entire contents of 
the index buffer. Entries are printed in alphabetical 
order, and are set against the left margin. Regular line 
spacing is used, except that a blank line is left between 
entries of different first letters. The number of the first 
page on which each entry appeared is put on the same line as 
the entry, beginning at the middle of the line (midway 
between the left and right margins). Additional page 
numbers for multiple entries follow, separated by commas. 
The index buffer is left empty. 

-162-



TENEX USER'S GUIDE 
RUNOFF 

January 1975 

INDEX 
(Entries entirely in upper case are command names.) 

BLANK n 
BREAK 
Break 

157 
• 157 

• • • 154 

Case specifying • • • • • • • • 155 
CENTER • • • • • • • • • • • 161 
Command format • • ••••• 154, 157 
Commands, formatting •••••• 1S7 
Commands, mode setting ••• 159 
Commands, parameter •• 160 

Double spacing ••• . . . • 160 

Exclamation point • 161 

FIGURE n • 
FILL • • • 
Filling of 
FOOTNOTE n 

INDENT n 
INDEX tttt 

. . • . . . . . • . . 157 
• • . . . . . . . . . 159 
text • • • • • • 154 

• • • • • • • 161 

• • 15 8 
tttt • • 162 

Justification of text • • • 154 
JUSTIFY • • • • • • • • • • • • 159 

LEFT MARGIN n • 160 

NOFILL • • 
NOJUSTIFY 
NONUMBER • 
NUMBER n • 

. . . . . . . . . . . 159 

. . . . . . . . . . . 159 

. . . . . . . . . . . 158 
. . • . • . . . . 15 8 

PAGE . . . . . 
Page Numbering 
PAGE SIZE n 
PARAGRAPH n . 
PRINT INDEX 

Quote character 
Quoted Space 

. . 

. 

RIGHT MARGIN n • 

. . . . . . . . 158 

. . . . . . . . 154, 

. . . . . . . . 160 . . . . . . . . 158 
. . . . 162 

• • 156 
• • 156 

• • 160 

Single spacing ••••••••• 160 
SKIP n ..•••.••••••• 157 

158 

Source file format • • • • • • • 154 
Space •••••••••.••• 154, 156 

-163-



SPACING n ..•••.••••• 160 
Special Characters ••••••• 156 
SUBTITLE tttt ••• tttt ••••• 161 

TAB STOPS n ••• n 
TEST PAGE n . . . 
Title •..• 
TITLE tttt ••• tttt 

Underscoring • 

Word spacing 

160 
158 
154 
161 

• • 156 

• • • 154 

-164-



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
SNDMSG 

January 1975 

SNDMSG 

SNDMSG is used to send messages to users throughout the ARPANET. 
It prompts for the addresses to which to send the message, then 
for the subject and text of the message. It automatically fills 
in the date and who the message is from. Finally it sends the 
message. If the message can't be delivered immediately, it is 
queued and automatically sent later by the background MAILER 
process. 

The following sections describe the various stages of SNDMSG 
(telling how to enter each kind of information) and the form of 
the message that is actually sent. 

TO SUPPRESS TYPEOUT FROM SNDMSG, TYPE AO (CONTROL-0) WHILE IT 
TYPING. 

IS 

# A. 
# 

The Addresses 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
:fl: 
:fl: 

Addresses are divided into "To" and "cc". SNDMSG prompts 
separately for each. When SNDMSG prompts for addresses, enter 
them separated by commas. Carriage return terminates the list 
and goes on to the next section unless it is preceded by a comma, 
in which case address input continues on the next line. There 
must be at least one "to" address, but there needn't be any "cc". 
If you don't enter any "To" addresses, SNDMSG will skip to the 
subject and message, then will come back to the addresses. 

The following kinds of items may appear in the address list 
separated by commas. (angle brackets are not typed - they are 
just used in this description to enclose a type of item) 

1) <user name> - The mail is addressed to that user at the 
default host. 
Normally the default host is the local host (i.e. the one 
on which you are running SNDMSG) but you can change it as 
desired (see below). 

2) @<Host name or octal host number> 
Changes the default host to be the given host. The default 
remains in effect for the rest of the address list until 
explicitly changed. To set the default back to local, type 
just"@" (i.e. omit the host name) 

3) <user name>@<host name or octal host number> 
The mail is addressed to the given user at the given host. 
Putting the host name together with the user name makes it 
apply only to that user. That is, it does not change the 
default host, but overrides it just for the user. A blank 
host name means the local host. 

-165-



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
SNDMSG 

January 1975 

4) <Group name>: - All subsequent addresses will be considered 
part of the specified group (which can be any name you care 
to define). This group remains in effect until explicitly 
changed by another "<qroup name>:" item. Typing just ":" 
with no name in front sets the group to none i.e. 
subsequent addresses are ungrouped. Group names do not 
affect the sending of the message (they are not addresses), 
just what appears in the heading of the transmitted message 
(see section E). 

(Note: It is not necessary to separate the group name from 
the next address by a comma - the colon implies a comma.) 

5) *<File name> - The message will be sent to the 
Files are always local and must already exist. 
fields you omit are: 

directory: logged in directory (not connected) 
name: SAVED 
extension: MESSAGES 
version: highest existing 

given file. 
Defaults for 

File name addresses are omitted 
(see section E) • 

from the message heading 

# Special characters for editing, etc. are as follows: 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

1) recognition 

altmode (ESC) - If typed part way through a user or 
name, causes recognition of the name if possible. 
remainder of the name is typed out. If the name typed 
far is ambiguous, a bell is rung. 

2) correcting mistakes 

host 
The 

so 

There is no way to edit anything but the current item being 
typed (i.e. editing won't go past the preceding comma). 
The following control characters edit the current item or 
kill the whole address list. 

"'A - deletes preceding character - will only go back as 
as preceding "@", ",", ":", or "*" 

"'H - same as "'A 

"'Q - deletes current word 

"'w - same as "'Q 

"'x - deletes whole address list, starts over 

-166-

far 



# 
# 
# 
# 
# 

* * # 
# 
# 
# 
# 

* * # 

* # 
# 
# 
# 
# 
# 

* # 
# 
# 
# 

* # 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
SNDMSG 

January 1975 

rubout - deletes current item (back to 

3) Viewing addresses 

AR - retypes current word 

AS - retypes whole address list 

4) Inserting a file 

II II , or ": ") 

A file containing addresses may be prepared ahead of time 
and inserted into the SNDMSG address list. Addresses are 
entered on the file exactly as they would be typed to SNDMSG 
except that carriage returns from a file will not terminate 
the address list - thus addresses on a file may appear on 
separate 1 ines without co·mmas if desired. 

To insert the file, type AB (control-B) during SNDMSG 
address input. You will be asked for a file name (which you 
type in the usual TENEX way) and for confirmation (type 
space or carriage return to confirm). The file is read into 
the address list exactly as if you had typed its contents. 
When SNDMSG types EOF (End-of-file) you continue entering 
addresses as usual. 

Note: Although files are often used to hold definitions of 
groups (i.e. they often start with a "<group name>:"), 
files and groups are two distinct features. The purpose of 
a file is to permanently hold some list of addresses. The 
purpose of a group name is to prevent the component 
addresses from cluttering up the message heading. Although 
groups may be defined in files, they may also be typed 
directly into SNDMSG, and files inserted into SNDMSG need 
not define groups. 

# B. 
# 

The Subject 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

When SNDMSG prompts for "Subject", type in up to one line, 
terminated by carriage return. You may type just carriage return 
to omit having a subject. If a subject is entered, it appears in 
the heading of the message. The same control characters 
described below under "Message" (section C) apply to the subject 
as well, with the following additions and exceptions. 

AZ has no special meaning 
AB automatically means insert file, never invoke 
AX deletes the whole subject and starts over 
rubout is same as AX but echoes differently. 

-167-

TECO 



TENEX USER'S GUIDE 
SNDMSG 

January 1975 

# c. 
# 

The message 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

When SNDMSG prompts for "Message" type in the text of the 
message. When you are done composing the message, type AZ 
(control-Z) to finalize it and to go on to the next stage. 

Various control characters invoke features that aid in 
the message. They are: 

1) Correcting typing mistakes 

"A - deletes previous character 
"a - same as "A 

composing 

"Q deletes current line (if typed at beginning of 
line, deletes previous line) 

"w - deletes previous word 

2) Viewing the message 

"R - retypes current line 
"s - retypes whole message 

3) Inserting pre-composed text and editing 

Especially when dealing with large messages, you may wish to 
prepare your message ahead of time on a file or you may find 
the local editing characters above insufficient. If you 
type "B (control-B) SNDMSG asks whether you want to insert a 
file or invoke TECO (a general text editor). 

If you answer "T" TECO is started up with your message in 
its buffer. When you exit TECO (with "~H") the edited 
message is passed back to SNDMSG and you continue composing 
the message as usual (you are positioned at the end of the 
message, as if you had just typed it into SNDMSG). 

If you answer "F" SNDMSG asks for the name of the file to 
insert. Type the file name in the usual TENEX way (the 
usual editing characters and recognition apply) • You will 
then be asked to confirm it. If you do (for example, you 
type space or carriage-return) the file is read in and 
appended to any text you have already entered, and "EOF" is 
typed. You then continue message composition as usual. NB: 
Characters read from the file are treated just like teletype 
input, so be sure the file doesn't contain any of the 
control characters which have special meanings in SNDMSG! 

-168-

·..._.. 

-

-



TENEX USER'S GUIDE 
SNDMSG 

January 1975 

I MESSAGE.COPY 
I 
I 
I 
I 
I 
I 
I 
I 

When you terminate input (AZ) or invoke TECO, the message is 
saved on the scratch file MESSAGE.COPY in the connected 
directory. Thus if you mess up your text in TECO or simply 
decide not to send the message yet you can quit SNDMSG (AC) and 
run it later, inserting the copy with AB. Note that since 
MESSAGE.COPY is a scratch file, it is deleted when you log out! 

# CAVEAT - The message must not contain a line consisting of the 
I single character "." if it is to be sent over the network. 
# 
# 
# 
# D. Sending the message 
# 
# When all information has been entered (addresses, message, etc.) 
# SNDMSG asks whether to send the mail now or queue it for later 
# delivery (the question is: "Q,S,?,carriage-return"). Type "?" 
I for an explanation of the commands. If you just answer with 
# carriage return, the message is sent immediately. The queueing 
# or sending begins after this command is given -- i.e., when you 
# terminate it with carriage return. (Note: If you have addressed 
# the message to a file using * in the address list, SNDMSG will 
# try to deliver it even if queueing is in effect.) The message is 
# queued for or delivered to each of the addresses. For local 
# addresses (ones in which no host was specified) duplicates are 
# .. eliminated. 
# 
# SNDMSG types each address as it starts to process it, then the 
I outcome. There are three possible outcomes: 
I. 
# 
# 
# 
# 
# 
# 
# 
# 
I 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

1. 

2. 

3. 

"ok" - the message has been successfully delivered 
address. 

to the 

"queued" - the message·was not delivered, but has been 
queued for later delivery. If SNDMSG was supposed to 
deliver the message (because of the commands you gave) the 
reason it had to be queued is typed. The message is placed 
on the file [--UNSENT-MAIL--] .address in the directory under 
which you are logged in. MAILER, running in the background, 
will deliver it a soon as possible (see writeup of MAILER). 
In some cases (SNDMSG will tell you if this is the case) you 
may have to run MAILER yourself. 

"can't" - the message could not be delivered, and SNDMSG 
did not queue it because the reason for the failure looked 
permanent. The reason is typed out, and the message is 
placed on the file /UNDELIVERABLE-MAIL/.address in the 
directory under which you are logged in. Thus, for example, 
if the problem was that you misspelled the person's name, 

-169-



# 
# 
# 
# 

TENEX USER'S GUIDE 
SNDMSG 

January 1975 

you can correct it and requeue the message without having to 
compose it all over again. (See the writeup of MAILSTAT in 
this manual.) 

# For an explanation of what happens to queued mail see the writeup 
# of MAILER. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

For information on checking the status of 
writeup of MAILSTAT. 

E. What the message looks like 

The message has the following form: 

queued 

Date: <date and time the message was composed> 

mail see the 

From: <name under which you were logged in when you sent it> 
Subject: <whatever you typed - omitted if you didn't give a subject> 
To: <all the addresses you send the message "To" except for file 
(as opposed to user) addresses - addresses entered as part of a 
group are replaced by the group name> 
cc: <same as "To" but for the "cc" addresses - omitted if none> 

<the message> 

-170-

-· 



TENEX USER'S GUIDE 
SNOBOL 

January 1975 

SNOBOL 

The TENEX SNOBOL is identical to the one distributed by DEC with 
the following exception! 

Vertical Tab and Form Feed characters in a user's data will 
be passed to his program like any other character, instead 
of faking an end-of-line. 

SNOBOL users may obtain the following excellent references: 

1) Wade, L.P., "SNOBOL4 
Corporation, DECUS no. 

Version 3.4", Digital 
10-104, Nov. 24, 1970. 

2) Griswold, Poage, Polonsky, "The 
Language", Prentice - Hall, 1968. 

SNOBOL4 

-171-

Equipment 

Programming 



TENEX USER'S GUIDE 
SORT 

January 1975 

SORT 

SORT is a column-oriented text file sorter. It is described in 
Appendix E of the DEC COBOL manual, and also under the COBOL 
section of this User Guide. 

Example: 

To sort a file called SORT.IN which contains the sorting 
information in columns 5 through 10 of each line, and where each 
line is no more than 72 characters, type the following: 

@SORT 
*SORT.OUT/A/R72 SORT.IN/K5.6 
SORTED 423 RECORDS 
comment % 

-172-



TUG 
SOS Manual 

SON OF STOPGAP 

N 0 T E T 0 U S E R S 

This manual has been updated to reflect changes made at Utah 
which include Tenex implementation, removal of bugs, and new commands. 
It has been updated.through program revision Vl.2 which was the SOS 
version in existence at Utah from October 1972 up to October 1974. 
Since then, sos has been using a Help-command and a helpfile called 
SOS.SUPPLEMENT to document revisions and enhancements. The reader of 
this file SOS.MANUAL should be aware therefore that certain aspects 
of SOS have changed or been extended, and that the SUPPLEMENT or, 
equivalently, the Help command is the up-to-date reference guide ... 
but only a guide or quick summary. 

In particular, for new users, the FILE= syntax herein has been 
changed to ask for just an input file or a <er> deferral. All other 
changes are essentially "upwardly compatible" with this manual, but the 
user should browse through the SUPPLEMENT (via the Help command) to 
check recent revisions and new command-options. 

ABSTRACT 

SOS is a line-number oriented editor for text files. It features two 
flavors of intraline editing (for Teletypes and displays), string 
search and substitution, hyphenless text justification, and other 
glories. 

CREDITS 

The original STOPGAP text editor was designed and programmed by Bill 
Weiher. Steve Savitzky added tex~ justification (JU, JC, JR, and JL 
commands) and more extensive string search features. Dan Swinehart 
subsequently added display line editor commands (Z and Q) and 
automatic file saving (SAVE and !SAVE). This manual has been 
rewritten by Les Earnest, and at Utah by Kevin Kay. 

12-1 ADD-10-26-77 



TUG 
SOS Manual 

1. INTRODUCTION 

SOS provides the ability to insert, delete, modify, and print lines 
of text. While most commands are line-number oriented, string search 
and substitution commands are available. Commands are discussed 
below roughly in order of increasing complexity. It is suggested 
that you begin by reading Sections 1 and 2, then do some text 
editing. Successive sections describe more elegant functions and may 
be consumed one at a time. 

A command to the editor consists of one or two characters followed by 
a list of arguments. The input format is free field i.e., spaces are 
ignored except that they delimit numbers and identifiers. Tabs are 
treated as multiple spaces. 

1.1 OPERATION 

To start SOS, simply type SOS to the Exec's @. Alternately, there 
are provisions within LISP, RLISP, REDUCE, and SAIL, to link directly 
into the SOS editor at need. 

When SOS is started from Exec-level, it will inquire 'FILE='. You 
may reply in any of three different ways, depending upon your 
immediate purpose: 
1) If you want to read an existing file, then simply type in the 10X 

filename, followed by a return; e.g., <SOMEONE>FOO.BAH<cr> 
2) If you want to create a new file, and name it now (rather than 

later), then type an altmode followed by the desired name, and a 
return. The name will be remembered at W- or E-time. 

3) If you want to create a file, but prefer to defer naming it until 
later (the first World or End command), then reply with just a 
return. 

When SOS is ready to accept a command, it will type '*' If FOO 
isn't found or is illegally specified, SOS will say so, then re-type 
'FILE=' and expect you to give another name. 

If the file name includes a directory name other than the one you are 
connected to, the original file will not be changed, but a new 
version will be created in your area. Similarly, if the file being 
read is on Dectape, it will not be deleted by SOS (since it can't be 
undeleted in the event of error). 

12-2 ADD-10-26-77 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



TUG 
SOS Manual 

If you wish to read a file but not modify it, you may type ',R' after 
the input filename, which puts you in read-only mode. In this case, 
any attempt to modify the file will give a non-fatal error message. 

1.2 FILE HANDLING 

SOS currently works by recopying the text of your file with 
corrections and additions onto a file whose name it invents. The 
name of this file is of the form $ED$jj.TMP, where jj is your current 
job number. When the edit is finished, SOS renames this temporary 
file to the name of the user's original file unless a new name is 
specified (see the E command). 

If the user attempts to reference a line which occurs earlier in the 
file than the one last referenced, SOS may have to finish the current 
copy and start copying over again. This process is automatic but 
does take time, so there may be a delay in executing certain 
commands. Notice that the form of editing used means that if the 
user calls the system without saying either "W" or "E", his original 
text file will be unchanged, so any editing will have been lost. 

SOS keeps a portion of the file in core during the editing process so 
that a certain amount of backup can be done without recopying. SOS 
will use all the core it is given for this purpose. However, note 
that running sos in a large amount of core may result in much poorer 
response time. 

There are certain error messages which may occur at almost any time 
during an edit and which cause the editor to call exit. Note that 
this will cause the edit to be lost, but the original file will not 
be harmed. These errors are as follows: 

DEVICE OUTPUT ERROR Output error. No recovery will be attempted. 

DEVICE INPUT ERROR Input error. No recovery will be attempted. 

INTERNAL CONFUSION or ILLEGAL UUO or TENEX CONFUSION 
SOS has just discovered a bug in itself. 

In addition to the above, there are two messages which are primarily 
warning messages. The first of these is *LINE TOO LONG*. This means 
that some line in your text is too long (more than 147 characters). 

12-3 ADD-10-26-77 



TUG 
SOS Manual 

The line will be shortened to 147 characters and printed. The second 
message is *OUT OF ORDER*, which indicates that some line of your 
input has a number lower than the line before it. The line which is 
out of order will be printed. In both of the above cases, the page 
number on which the error occurs will also be printed. 

The error *ILLEGAL LINE FORMAT* may occur at any time. This probably 
means that you have a line containing a <return> not followed by a 
<line feed> or a <line feed> not preceded by a <return>. The best 
cure is to replace the line completely (R command). 

1.3 SPECIFYING LINES AND RANGES 

The text file is organized in terms of pages which are subdivided 
into lines. The pages are numbered sequentially starting at 1 and 
continuing to the end of the file. The division into pages is 
determined by the user rather than by the editor. Page marks (which 
indicate the start of a page) may be inserted and deleted by the 
user. Page numbers are "floating"; that is if page mark 2 were 
deleted, the page which was formerly numbered 3 would now be page 2. 

In contrast to this each line on a given page has a line number which 
is "sticky". That is, a given line will retain the same number 
regardless of insertions or deletions. The lines are usually 
numbered by 100 or some other increment larger than 1 to allow room 
to insert new lines. Several pages may have lines of the same 
number. 

Most SOS commands refer to either a single line or a range of 
successive lines. A single line is specified by giving both the line 
number and the page number in the form <line number>/<page number> as 
100/3 for line 100 on page 3. A range is specified by giving the 
first and last lines of the range separated by a colon as 
100/3:4702/6 for line 100 on page 3 through line 4702 on page 6. 
Alternatively, a range may be specified by a starting line and a 
number of lines. For example, 200/4!10 refers to the 10 lines 
beginning on line 200 of page 4. In either case, this construction 
is referred to as a range specifier. 

Instead of a number the symbol "." may be us~d. "." means either the 
current page or the current line depending on whether it appears 
after or before the /. Thus 100/. means line 100 on the current 

12-4 ADD-10-26-77 



-

TUG 
SOS Manual 

page and ./3 means the current line on page 3 (the line on page 3 
which has the same line number as the current line}. The current 
line and page are determined by the last command which was executed 
(see the individual commands for further details). 

For ease of use, some of the specifications may be omitted. If the 
page number of the specification is omitted, it is assumed to be the 
current page (in this case the slash is also omitted). Thus 400/. 
and 400 specify the same line. If the page number for the end of a 
range is omitted, it is assumed to be the same as that for the start 
of the range. Thus 400/7:3120/7 and 400/7:3120 specify the same 
range. So do 400/.:700/. and 400:700. 

If just a page number is given with no line number, it means all the 
lines on that page. Thus /3 means all the lines on page 3 (except 
for the delete command). Omitting the first line number of a range 
means the first line of that page, while omitting the second line 
number means the last line on that page. Thus /3:/5 specifies all 
the lines on pages 3 through 5. It is not legal to omit both the 
line and page number (thus :100/6 is not legal). 

Relative page and line numbers may be used instead of absolute ones. 
Thus 100+3/. .+27/4 and .-5/.+6 are all legal specifications. For 
pages this has the obvious meaning (if you are on page 5, then /.-4 
is page 1). For line numbers however, .+n means the nth line after 
the current one. Thus if a file has lines numbered 100, 103, 106, 
le9, 111, 142, and 2ee and if the current line is 100, then .+3 is 
line 109 not line 103. The start and end of the page act as 
boundaries for relative line numbers as follows: If a page has lines 
numbered ie0, 2e0, 3e0, 400, see, and 6e0, and if 3ee is the current 
line, then .+3, .+4, etc. are all line 60e. Similarly .-2, .-3, 
etc. are all line 100. 

The symbol "*" may be used to specify the last line on a page. "*" 
may not be used to specify a page (use =BIG to find the last page 
explicitly). Expressions such as "*-4" are permitted. 

If you are not used to line-numbers, and/or would prefer not 
them, and/or are used to TECO or another string editor, 
suppress the appearance of line-numbering by the ' Suppress' 
(see the Set command}. -

to see 
you may 

switch 

12-5 ADD-10-26-77 



TUG 
SOS Manual 

1. 4 TRANSLITERATION 

SOS is capable of using the full 128 character character set through 
Teletype keyboards. To do this it uses ? to give each character on 
the teletype a second meaning. Thus, typing ?2 on the teletype 
causes ~W to be entered into the file (octal code 027). Similarly a 
~W in the file will type out as ?2 on the teletype. To enter a ? one 
must type ??. To enter lower case characters through an 
upper-case-only keyboard, precede each letter with a "?", or use the 
shift commands (_LOWER and _UPPER, see Section 4). 

Below is a list of the 
non-alphabetic characters: 

alternate meanings of the various 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Ascii ?x x Stanford name Ascii ?x x Stanford name I 

1 
2 
3 
4 
5 
6 
7 

10 
11 

16 
17 
20 
21 
22 
23 

? ! 
?" 
?# 
?$ 
?% 
?& 
?' 
? ( 

?) 
?* 
?+ 
?, 
?-
?. 

down-arrow 
alpha 
beta 
and 
not 
member,epsilon 
pi,bell 
lambda 
tab 

infinity 
del 
horseshoe-right 
horseshoe-left 
horseshoe-down 
horseshoe-up 

24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 

140 
173 
174 
175 

?/ 
?0 
?l 
?2 
?9 
?6 
?4 
?= 
?< 
?> 
?7 
?8 
?@ 
? [ 
? : 
?] 

------------- I 
for-all 
there-exists 
circlex 
iff 
underline 
right-arrow 
tilde 
not-equals 
<= 

I 
I 
I 
I 
I 
I 
I 
I 
I 

>= I 
equivalence I 
or (see App.A) I 
accent breve I 
left-bracket I 
vertical stroke! 
right-bracket I 

All other characters have the same meaning whether preceded by a 
question mark or not. SOS will also do this sort of conversion on 
Teletype output. Vertical tabs and formfeeds are ignored. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

If you are on a display, no question-mark conversion will 
because the displays have the full character set. If you 
TTY Model 37 or an ARDS display, use the "_M37" command (one 
Set commands) to see lowercase and the curly-brackets. 

be done, 
are on a 
of the 

12-6 ADD-10-26-77 

I 
I 

·-



TUG 
sos Manual 

2. BASIC COMMANDS 

Whenever SOS types a '*' in column 1 (except after a 'P,S' command), 
it is in command-mode, ready for input, and waiting for you to enter 
a command. You can edit any command with -A (or rubout), -R, and ~x. 
Except in the case of giving a filename, AX will always abort the 
current command. When typing in a filename (Copy, End commands, 
etc.), AX may only clear the current partial filename and expect 
anotheri you can tell by whether a '*' appears. 

As at Exec-level, you may preface a command-line with a 'i' and the 
line will be ignored as a comment. This is handy if someone links to 
you. Similarly, a '?' will inform you of all possible sos commands, 
though not the details of individual syntax. You may also type Help, 
and SOS will interact and try to explain what you don't understand. 

The syntax of each command below is shown with optional arguments 
enclosed in parentheses. Where two or more arguments are shown with 
"I" between them, it means that any one (but only one) may be used. 
Thus the I command, below, may take any of the following forms: 

I 
!,<increment> 
I<line> 
I<line>,<increment> 

Insert--! (<line>) (,<increment>) 

The insert command is used to insert new lines into the file. Insert 
accepts a single line specifier as its argument and begins inserting 
at that line. Each time you complete a line, SOS will add the 
current increment to the number of the line just inserted and try to 
insert that line. The current increment may be set by giving a 
second argument to the insert command. Thus 1100,30 will start 
inserting at line 100 and set the increment to 30. The increment is 
set to 100 at the start of editing. 

When inserting, SOS will type out the number of the next line to be 
inserted. The user should then type the desired text of that line 
followed by a return. SOS will then either print the line number of 
the next line to be inserted or will return to command mode and print 
a "*" • 

To stop 
appears 
altmode 
used if 

inserting, type an ALTMODE. This causes the line in 
not to be inserted and returns SOS to command mode. 
is given, the number of that line is remembered and 
the next "I" command is given with no arguments. 

which it 
When an 

will be 

If the first line to be inserted specifies a page which does not 
exist, SOS will respond with *NO SUCH PAGE*. While inserting, you 
may correct typing errors using the system editing commands (i.e., 

12-7 ADD-10-26-77 



TUG 
SOS Manual 

AA or RubOut, AR, and AX). 

Example: 

*Il00 
00100 
00200 
00300 
*pl00 
00100 
*I 
00300 
00400 

NOW IS THE 
TIME FOR ALL 
<altmode> 

NOW IS THE 

GOOD MEN 

If the line at which inserting is to start already exists, an insert 
will be done on line <number> + <current increment> unless there is a 
line with a number between <number> and <number> + <current 
increment> in which case the line number will be halfway between 
<number> and the number of the next line in the file. If, however, 
any subsequent line which is to be inserted already exists, or if a 
line with number between two consecutive lines of the insert exists, 
then the insert will terminate and SOS will return to command mode. 
As an example, suppose a file has lines numberd 100, 200, 300, 400, 
and 500. The command Il20,40 would allow lines 120 and 160 to be 
inserted and then would automatically return to command mode. The 
command Il20,20 would allow lines 120, 140, 160, and 180 to be 
inserted and then would return to command mode. 

The current line and page are set to the last line actually inserted 
(not the one terminated with altmode) on the specified page. If an 
attempt is made to insert a line containing more than J.47 characters 
(not counting the return at the end) the error *LINE TOO LONG* will 
be given, the line will not be inserted, and SOS will return to 
command mode. If the next line to be inserted would have a number 
greater than 99999, SOS will stop inserting and return to command 
mode. 

Delete--D<range> 

The delete command will accept a range specifer as its only argument 
and will delete all of the lines specified. If there were no lines 
in the range specified, SOS will respond with *NO SUCH LINE(S)*. 
There are two exceptions to the normal manner of specifying lines. 
The delete command will not allow a page specification for the second 
line number of a range. Thus the command Dl00/5:200/6 is illegal and 
will result in the error message *ILLEGAL COMMAND*. 

The second exception is that the command D/5 will not dE~lete all of 
page S, but will instead delete page mark S. This may result in the 
error message *OUT OF ORDER*, indicating that the deletion results in 

12-8 ADD-10-26-77 



TUG 
SOS Manual 

a page on which there are some 
(e.g. 100, 200, 300, 150, 200). 
made. The correct procedure at 
lines on the appropriate page (4 
Number command. 

sequence numbers not in proper order 
Note that the deletion has been 

this point is to renumber all of the 
in the above example). See the 

All of the lines on page 5 may be deleted by the command 00/5:99999. 
An attempt to remove page mark 1 (D/l) or some page mark which does 
not exist will result in the error message *NO SUCH PAGE*. The 
current line and page are set to the last line deleted on the 
specified page. Note that after a deletion, the command P. will 
give *NO SUCH LINE(S)*. 

Print--P(<range>) (,S) 
Output--O(<range>) 

The print command accepts a range specifier as its argument. The 
lines specified will be printed on the teletype. The current line 
and page will be set to the last line actually printed. If the range 
specified has no lines in it, the error *NO SUCH LINE(S)* will be 
given. If the range of printing includes the boundary between two 
pages, "PAGE n" will be printed to indicate the presence of the page 
mark. The command P<return> is the same as P.116<return>. 

If a second argument of ,s is given, line numbers will be suppressed 
in the printout. This is useful for clean copies on a TTY model 37. 
In addition, page numbers will not be printed, and the * for the next 
command will be suppressed, so that copies so generated will be 
absolutely clean. The O command is equivalent to P,S • 

When the ' Suppress' switch is on, then the sense of 'P,S' and 'O' 
are reversed: the line-numbering IS shown for the given range. 

List--L (<range>) ( ,S) 

The List command is not yet applicable at Utah, since we lack an 
online printer. Use RQLIST. 

List is like Prin~ in format and error messages, but the output goes 
to the line printer instead of the teletype. Page headings will be 
printed at the top of each line printer page: the name of the file, 
the time and date·of printing, and the page number. Page numbers are 
given in the form M-N. where M is the actual SOS page number on 
which this text can be found and N denotes the N-th page of line 
printer paper required for logical page M. The current line and page 
are set to the last line printed. If no range specification is 
given, the entire file will be listed. 

12-9 ADD-10-26-77 



TUG 
sos Manual 

The S option for suppressing line numbers and headings also applies 
to the List command. Unlike the print command, however, the * for 
the next command will print, as there is no reason for it not to. 

End--E(<file name>) (,S) 

This command is used to terminate the edit. If no arguments are 
given, the old copy of the file being edited will be deleted and the 
new copy will be renamed to the old name, with a higher version 
number. If an argument is given it will be taken as a file name (it 
should be of the form foo. or foo.baz) and the new copy of the file 
will be given this name. 

If the original source file (assuming you're not creating) had a non­
standard protection code, this will be propagated to the new output. 

You may, if pertinent, give the old filename with a ';0' suffix. In 
this case, the old file is deleted (irredeemably by 10X) and the new 
one is substituted. 

If you wish the file to be pristine, without line-numbers, then add 
the ',S' tail. The SOS file will be saved and then stripped, just as 
if by the CUSP Pippy (see Appendix A -- Data Conversion). 

SOS will return to the monitor when it has finished. 

To abort the E or W command, use rubout (and AX after a comma). 

No spaces are permitted between the E and the filename or comma; 
E. is not correct. 
Efilename (when the input had an extension) will produce a file with 
that extension --- as is the Tenex usual convention. To avoid this, 
use a period after the filename. 

3. INTERMEDIATE COMMANDS 

save World--W(<file name>) 

The W command is the same as the E command except that it leaves you 
editing in the same place. This command is useful for saving the 
current version of the file in case the system should die. File 
names given to W commands are "sticky", and need not be given twice. 

In case the system dies and you have not done a W recently, try the 
following procedure: type the system command 'DIR *.TMP'; a 
temporary file with your previous job number may exist. If one does, 
it should be the one SOS was using when the system died. Edit the 
file to see if it is. If it is not, delete it and try again. If 
this fails, you are authorized to tear your hair (and ask yourself 

12-10 ADD-10-26-77 

·-



TUG 
SOS Manual 

why you didn't do a W). 

Every now and then, say "DEL *.TMP" to the system to get rid of 
accumulated garbage temporary files, which are caused by system 
crashes or by saying AC during editing. 

The SAVE and !SAVE parameters may 
operations at regular intervals. 
parameter-setting details. 

Go--G(<file name>) 

be set to cause automatic "W" 
See the Section 4 for 

This command is the same as the E command, at Utah. It ignores the 
',S' if any, however. 

Mark--M<line> 

This command is used to insert a page mark into the text. It accepts 
a single line specifier as argument and places the page mark 
immediately before the line specified. Note that this will increase 
the page numbers of all following pages by 1. The current line is 
set to 0 and the current page is set to the new page. Thus if the 
command M4720/5 is given the current page will be set to 6. 

If the line specified does not exist, the page mark will be inserted 
immediately before the line of next higher number on that page. If 
the page specified does not exist, the error *NO SUCH PAGE* will be 
given and no page mark inserted. 

Hint: When inserting new text, to insert a page mark at the end of 
the current page use M99999. 

Number--N(<increment>(,<range>(,<starting number>))) 

This command is used to alter the numbers of currently existing lines. 
It takes 0, 1, 2 or 3 arguments. The command "N" with no arguments 
causes the entire file to be renumbered with an increment of 100. 

The first argument is the increment to use in the renumbering. The 
first line renumbered will be given this number (unless there is a 
third argument) and each succeeding line will be given a number which 
is the sum of this argument and the number given the last line. If 
the renumbering crosses a page boundary, the first line on the new 
page will be given this number again. The current line and page will 
be set to the new number of the last line renumbered. Thus if page 3 
has numbers 107, 254, 500 and page 4 has numbers 27, 39, 108, and the 
command N20,/3:/4 is given, the new numbers on page 3 will be 20, 40, 
60 and on page 4 will be 20, 40, 60 and the "current position" will 
be line 60 on page 4. 

12-11 ADD-10-26-77 



TUG 
SOS Manual 

If there is no second argument, the entire file will be renumbered. 
If the second argument specifies only a single line, only that line 
will be renumbered. If there are no lines in the range specified, 
the error *NO SUCH LINE(S)* will be given. 

Note that if only portions of a page are renumbered, a situation can 
be created in which sequence numbers are out of order. If this 
happens the error message *OUT OF ORDER* will be given, however the 
renumbering has already been done. The best way to correct this 
situation is to renumber the entire page on which the error occurs. 

If the third argument is present, it is used as the number for the 
first line renumbered. Thus if page 3 has lines 400, 700, 905, 1233 
and the command Nl00,/3,47 is given, page 3 will now have numbers 47, 
147, 247, 347. This feature is useful in renumberinq a page before 
deleting a page mark in order to avoid an *OUT OF ORDER* error. 

If the renumber increment is 0, the error *ILLEGAL COMMAND* will be 
given. If the increment is too large, i.e. some of the line would 
have numbers greater than 99999, the high order digits of the large 
numbers will be lost and the error *WRAP AROUND* along with the page 
on which the error occurs will be printed. Note that this leaves the 
page with line numbers out of order so it should be renumbered with a 
smaller increment. 

Display Alter-- Z(<range>) 

This command is valid only if you are using a Stanford display 
console or an Imlac. Each line in the range is sent back to the 
time-sharing system for alteration. Initially, the text-editing 
cursor will be set at the first character in the line. All editing 
features which are operative while inserting text (using the "I" 
command) are available for altering the line. 

Alter--A<range> 

This command is used to make changes within a line without having to 
retype the entire line. It accepts a range specifier indicating the 
lines to be altered. For each of the lines in the range, it prints 
the line number and then enters a special intra-line editing mode 
which has its own commands. These commands are not echoed on the 
teletype, so that the line shown on the teletype at the end of the 
intra-line edit is nearly the same as the line which will appear in 
the text. 

The intra-line editor maintains a pointer within the line being 
changed. This pointer points to the character which the next command 
will effect. The pointer is initially placed pointing to the first 
character of the line. In general, any command in this mode may be 

--

-

preceded by a number which will cause it to be repeated that number -

12-12 ADD-10-26-77 



TUG 
SOS Manual 

of times. For example, the command 10D causes 10 characters to be 
deleted. 

next--< space> 

This command causes the character pointed to to be printed on the 
teletype and the pointer to be moved right one character. If the 
pointer is already at the extreme right of the line, the command is 
ignored. 

back--<rubout or AA> 

Moves the pointer to the left one character. If the pointer is 
already at the extreme left of the line, a <return><line feed> is 
done and the number of the line is printed again. The pointer then 
points to the first character of the line. The characters moved over 
are printed surrounded by \'s. 

Thus, if the line being edited is "How now " and th~ intra-line 
commands ?<space>, 3<rubout>, <space> are given, the printed line 
will say "How now\won\n" and the pointer will be on the "o". 

Change--C 

This command causes a character to be accepted from the teletype. 
This character is printed and replaces the character pointed to. If 
the pointer is at the extreme right of the line, the command will be 
ignored. <rubout> from the teletype will be ignored, but -A, -R, or 
-x will be used as legitimate replacements. <line feed>,<return>, or 
<altmode> will cause the remainder of the C command to be aborted. 
This is useful if a number was used which proves to be too large. 

Delete--D 

This command deletes the character pointed to. The deleted 
characters will be printed surrounded by \\'s. If the pointer is at 
the extreme right of the line, the command is ignored. After the 
command, the pointer will be pointing to the character to the right 
of the one deleted. If this command is preceded by a number, only 
the last 3 characters deleted will be printed, surrounded by \\'s. 

Insert--! 

This command causes 
inserted into the line 
is seen. The pointer 
of those inserted. 

characters from the teletype to be printed and 
just ahead of the pointer until an <altmode> 
is left pointing at the character to the right 

<rubout or AA> causes the character to the left of the pointer to be 
deleted. This character will usually be the last character inserted, 
but it is possible to delete more characters than were inserted. 
Typing <rubout> when at the left end of the line has no effect. The 

12-13 ADD-l~-26-77 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



TUG 
SOS Manual 

characters deleted are printed surrounded by \'s. 

-R will perform as if '<altmode>PI' were done. 
-x will abort the line alteration as if '<altmode>Q' were done. 

If enough characters are inserted to make the total length of the 
line more than 147, the error *LINE TOO LONG* is given and SOS 
returns to command mode without having made any changes in the line 
being altered. 

If a <return> or <line feed> is seen, a <return><linE• feed> will be 
inserted at that point. This will create a new line whose contents 
are that part of the line to the right of the present pointer 
position. The number of this new line will be determined as follows: 
If the I command was preceded by a number, this number will be added 
to the current line number to produce the "provisional line number". 
If there was no number preceding the I command, the "provisional line 
number" will be created by adding the current insert increment to the 
current line number. If the "provisional line number" can be used 
without producing an order or wrap around error, it will be used. If 
not, the new line will be given a number which is halfway between 
that of the current line and the number of the next line. If the 
number of the next line is only one more than the current line 
number, an *OUT OF ORDER* error will be given, sos will retype the 
line number and the contents of the line to the left of the pointer. 
SOS will then be ready to accept more characters to be inserted. 

If no errors occur the pointer will be left pointing at the first 
character of the new line and the current line will be set to the new 
line created. 

finish--<line feed> or <return> 

Causes the part of the line to the right of the pointer to be printed 
and the intra-line edit to be finished. If any lines remain in the 
range specified for the alter command, the intra-line edit of the 
next line is started, otherwise SOS returns to command mode. 

Quit--Q (or -x) 

Causes intra-line editing to be terminated without havin~ made any 
changes in the line being altered. SOS returns to command mode. 
This command is useful if you discover that a mistakE! is being made 
since it restores the line being altered to its original state. 

Start over--<control U> 

This command causes SOS to start the intra-line edit of this l.ine 
over. The line is restored to its original state and intra-line 
editing is re-started. It is equivalent to typing <altmode> and then 
giving the alter command again. 

12-14 ADD-10-26-77 



TUG 
SOS Manual 

Skip--S 

This command accepts one subsequent character from the teletype 
without echoing it (note that on a teletype ?l is counted as a single 
character) and moves the pointer to the right until it points to the 
next occurrence of that character. For example to go to the next M 
type SM; to get to the third m type 3Sm. It will print all of the 
characters that it passes over. The character currently pointed to 
is printed but not compared. If there are no further occurrences of 
the specified character the pointer will be moved to the extreme 
right end of the line. ~A, ~R, and ~X are legitimate. 

Kill--K 

This command is the same as S except that it deletes all of the 
characters it passes over instead of printing them. If there are no 
further occurrences of the specified character on the line, the 
command will be ignored instead of deleting the remainder of the 
line. As with the D command, the last 3 characters deleted will be 
printed, surrounded by \\'s. 

Replace--R 

<number>R is exactly equivalent to <number>DI. 

Line--L 

This command prints the remainder of the line to the right of the 
pointer, then returns and prints the line number and leaves the 
pointer on the first character of the line in Alter mode. 

Pr int--P (or ~R) 

This command prints the remainder of the line to the right of the 
pointer, then returns and prints the line up to the position it was 
in when the command was given. 

Justify--J 

This command inserts a <return> <line feed> at the place the pointer 
is currently pointing and then concatenates the portion of the line 
to the right of the pointer onto the start of the next line. The 
pointer is left positioned at the start of the next line. The 
current line will be set to the new line number. 

This command is intended to be useful principally in hand justifying 
text. The error *LINE TOO LONG* will be given if the new line 
created is longer than 147 characters. The error *NO NEXT LINE* will 
be given if this line is the last one on this page. Either of these 
errors will cause the J command to be ignored and the line number and 
portion of the line to the left of the pointer to be typed out. 

12-15 ADD-10-26-77 



TUG 
SOS Manual 

Any other commands to intra-line edit mode will be ignored. 

4. OTHER USEFUL COMMANDS 

Replace--R<range>(,<increment>) 

This command is the same as a delete command followed by an insert 
command. It accepts a range specifier and an optional second 
argument (separated from the first by a comma) which if present will 
be used to set the increment. It performs a D command using the 
range specifier given and then an I command with the first line 
specified by the range specifier. 

There are some slight differences 
Whereas D/3 will delete page 
lines on page 3. In addition, 
*NO SUCH LINE(S)* error messages. 

between the R and D commands. 
mark 3, R/3 will replace all of the 

the R command will never give 

Beginning--B 

This command simply repositions you to the start of your file. It is 
chiefly useful in avoiding a range specifier to Find or Substitute 
commands, i.e., always saying 1/1: .... 

next line--<line feed> 

This command causes the next line of the file to be printed. If the 
current line is the last of the file, the error NO SUCH LINE(S) will 
be given. If the current line is the last one on 
PAGE n will be printed where n is the number of the 
there are several blank pages the following typeout 
PAGE 10 
PAGE 11 
PAGE 12 
PAGE 13 
00100 This is the first line on page 13. 

previous line--<altmode> 

the current page, 
next page. If 

may result: 

This command prints the line before the current line. If the current 
line is the first line of the file, the error NO SUCH I~INE(S) will be 
given. Page numbers may be printed as in the <line feed> command. 

Copy--C<dest> (_<file> (, S)) , <source range> (,<incl>) (, < inc2>) 

12-16 ADD-10-26-77 



--

TUG 
sos Manual 

The Copy command will insert a copy of a given piece of text in a I 
given location. The source for the text may be on the file being I 
edited or on some other file. The basic form of the Copy command is: I 

C<destination>,<source range >,<increment> I 
The Copy command acts as if an I<destination>,<increment> had been I 
done and then all of the lines specified by the <source range > had I 
been typed in. The current line is set to the last line entered. I 

I 
If the <increment> is large enough that it would cause an *ORDER* or I 
a *WRAP AROUND* error, the Copy command will pick a smaller I 
increment. The message "INCl=<number>" will be printed to show what I 
increment was chosen. If it is impossible to choose a small enough I 
increment, either "INCl=ORDER" or "INCl=WAR" messages will appear and I 
the given increment will be used. I 

I 
Since all of the text to be copied must be contained in core at one I 
time, copying huge blocks of text may result in the error message I 
*INSUFFICIENT CORE AVAILABLE*. This should never happen, of course. I 
The only possible solution is to copy several smaller blocks. I 

I 
If the source lines contain page marks, the renumbering of lines will I 
cease when the first page mark is reached. Lines between the first I 
and last page marks will be inserted with their original numbers. I 
Lines after the last page mark will be inserted with their original I 
line numbers unless a second increment is given. This increment I 
should appear immediately after the first increment and be separated I 
from it by a comma. If the second increment is so large that *ORDER* I 
or *WRAP AROUND* errors would occur, or if no second increment is I 
given and an *ORDER* error would occur if no renumbering were done, 
SOS will choose an increment to use. SOS will print "INC2=<number>" 
to indicate the increment chosen. If there is no suitable increment, 
SOS will print "INC2=0RDER" and use the specified increment or the 
original line numbers if no second increment is given. 

If the source lines are to be on some file other than the one being 
edited, the Copy command is given as: 

C<destination> <source file name>,<source range specifier> ... 
This command may give the error *FILE NOT FOUND*. 

A special form of the Copy command is available for copying lines 
from another file when the line numbers are not known. The command: 

C<destination> <source file name>,S 
will cause SOS to ~espond with a "*". The file indicated is now 
being edited in read-only mode. The P,L, and F commands may be used 
to find the desir~d lines. After the lines have been found, say "E". 
SOS will respond with "SOURCE LINES=". At this point, type the 
remainder of the C command string (<source range specifier> ... ). 

Tr an sf er--T<dest>, <source> (,<incl>) (, < inc2>) 

12-17 ADD-10-26-77 



TUG 
sos Manual 

The Transfer command moves a set of lines from one place on a file to 
another. It acts like a Copy command followed by a Delete cnmmand. 
It has only two differences from the Copy command. The first 
difference is that the source lines must be on the file being edited. 
The second difference is that the error message 
*ILLEGAL TRANSFER DESTINATION* may be given. This error w:lll occur 
when the destination is inside the source rangE~. (i.e. 
T400/5,/2:/9) 

If the deletion would produce an order error because of the removal 
of a page mark, SOS will reinsert one page mark and type 

PAGE MARK INSERTED TO PREVENT ORDER ERROR 
If the destination specified is on a page which does not E~xist, sos 
will insert the text at the end of the file and type 

TEXT INSERTED AT END OF FILE 

eXtend--X<range> 

This command is like the Alter command except that on each line it 
automatically puts the pointer at the right end of the line in insert 
mode. It is useful for adding comments to lines. 

display extend-- Q(<range>) 

Ignore this command at Utah, unless you are an Imlac. 
This command is like the extend command, except that the syi;tem line 
editor is used. The pointer is positioned to the end of the line: 
you are therefore in a mode ready to append characters. 

set--_<parameter>(=<number) 

The set commands enable you to change certain modes and parameters 
that control the operation of SOS. For the various modE~ commands 
below, the first one given represents the initial condition of the 
editor, while the parameter commands show the initial valueB. 

case shift-- UPPER LOWER 

When operating on a Model 33 Teletype, it is often con•1enient to 
invert alphabetic case shifts. This makes it easier to edit text 
which is largely lower case. The command LOWER will cause the 
editor to enter the characters A through z as their lnwer case 
counterparts and ?A through ?Z as upper case. The command UPPER 
reverses this so that A through z are taken as upper case l•~tters and 
?A through ?Z are taken as the lower case. 

Note that this may result in confusion if you are using .3 model 37 
where it is possible to type in lower case letters directly. If this 
is the case, saying LOWER will cause the state of shift to be 

12-18 ADD-l 0·-26-77 



TUG 
SOS Manual 

inverted for letters. This case inversion also happens in a similar 
fashion on output. 

character set-- DPY (for displays) 
-M33 (for teletypes) M37 

If you are running on a Model 37 Teletype, you should say M37, which 
will cause both upper and lower case letters as well as "IT, "{",and 
n-n to be printed directly rather than in the form ?A, ?:, etc. To 
set to "not a 37" use M33. 

The DPY lets you get back into the right mode when running on a 
display, even though you may have been so foolish as to get into one 
of the other modes. 

transliteration-- Cl28 C64 

If you are operating on a teletype and would like to be able to type 
a single ? for ? instead of ??, a mode is provided which turns off 
the special properties of ? on input. Note that ? will still print 
as ?? unless you have said DPY. To enter this mode type C64. To 
leave it use Cl28. 

messages-- _NOVICE EXPERT 

After you have used SOS for some time, you may want to have messages 
printed in a shorter form. Saying EXPERT will cause all error 
messages to be abbreviated to three characters (thus *ILC* for 
*ILLEGAL COMMAND*). To go back to full printout of error messages 
say _NOVICE. 

line numbers-- SHOW SUPPRESS 

The initial mode of sos is to always show line-numbers on Teletype 
output. This mode may be reversed by SUPPRESS', which also 
reverses the sense of the commands 1 P,S 1 and 'O'. The line-numbers 
will still appear in the output file unless you choose to do an 
IE, s I • 

justification-- PMAR=l LMAR=l RMAR=69 MAXLN=99999 

You may change the parameters used by the justification commands (JU, 
JL, JR, JC). PMAR is the beginning column for the first line of each 
paragraph, LMAR is the left margin for all other lines, RMAR is the 
right margin, and MAXLN is the maximum line number. Thus, to indent 
the first line of each paragraph 4 spaces (to column 5), say _PMAR=5. 

line spacing-- INC=l00 

The line increment used by the I command and others may be set 
directly. 

12-19 ADD-10-26-77 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



TUG 
sos Manual 

file saving-- SAVE=34359738367 ISAVE=34359738367 

You can cause the W command to be executed automatically at certain 
intervals, thus causing your edit file to be saved. ISAV~ controls 
the number of lines of text which will be inserted (using the "I" or 
"R" command) between "W" operations. When SOS decides to save your 
file, it types "SAVING" on a new line. When the "W" operation is 
complete, SOS proceeds with the I or R operation. You may wait 
quietly while all this is happening, or continue to type -- SOS will 
catch up with you when it is through saving your file. 

SAVE indicates the number of file-altering commands (A, 
etc) SOS will accept between automatic "W" operations. 
saving operation is similar to that described for ISAVE, 
the editor is in command mode, not insert mode, after the 
Note that the initial values of SAVE and ISAVE, given 
cause automatic file saving to occur rather infrequently. 

X, D, I, R, 
T·1e actual 
eiccept that 

<>per at ion. 
a:Jove, will 

give information--=<parameter> 

This commaod is 
information which 
by the command. 
available: 

used to determine any of several pieces of 
are not otherwise available, such as the modes set 
The following variants of this command a~e 

Prints a summary of this list of things you may inq11ire about. 

= Prints a short list of the parameters you may set with _. 

= Prints the current line and current page (e.g. "500/3"). 

=BIG 

=CASE 

=PMAR 

=LMAR 

=RMAR 

=MAXLN 

=INC 

Print the page number of the largest page in the file. 

Prints out either UPPER or LOWER to indicate the mode set by 
the command. If the user has done a M37 command, SOS will 
print either MODEL 37 UPPER or MODEL 37-LOWER. If the user 
is on a display, SOS will print DPY in front of th•~ UPPER or 
LOWER. If a _C64 has been done, C64 will also be p:· inted. 

Prints the current left margin for the first line of a 
paragraph not begun with a tab, as used by JU. 

Prints the current left margin used by JU, JL, and .re. 

Prints the current right margin used by JU, JR, and JC. 

Prints the maximum line number currently allowed by JU. 

Prints the current increment (for I or R commanda). 

12-20 ADD-Hl·-26-77 



TUG 
sos Manual 

=!SAVE Gives the current !SAVE figure. 

=SAVE Gives the current SAVE figure. 

=ERROR Prints out the last error message 
always be done in full regardless of 
which may have been given. 

given. Printout will 
any EXPERT commands 

=FILE Prints the current name and version of the file you're 
editing, or the fact that you deferred the naming. 

=STRING Prints out the three strings used by the Find and Substitute 
commands. (See next section for further details). The 
strings are printed with the titles SEARCH, SUBSTITUTE, and 
FOR. The titles are indented while the strings start at the 
left margin. 

5. ADVANCED COMMANDS 

Join--J<line> 

The join command is used to join two successive lines into one. Its 
argument is the first of the pair of lines to be joined. The new 
line formed will be given the number of the first of the pair. The 
error message *LINE TOO LONG* may be given, in which case, the lines 
will be unchanged. If the line given is the last line on a page, the 
error message *NO NEXT LINE* will be given. The current line will be 
set to the line created if there are no errors. 

JUstify--JU<range> 

This command takes a range as its argument. Note that there are two 
letters in the command. It justifies the text in the range by 
ignoring all line numbers, carriage returns and line feeds in the 
range, and inserting its own in such a way that adding an extra word 
to a line would cause its length to exceed RMAR(right margin) -
LMAR (left margin) +l characters. (See the 11 11 command, above, for a 
list of initial values for parameters.) A word is taken to be 
anything between blanks. The end of a line is considered a blank. If 
a word ends in 11 • 11 , 11 ? 11 , or 11 ! 11 , two blanks are permitted after it. 
Otherwise, only one blank is permitted, and others are ignored. 

Next, extra blanks are inserted between words, starting from the left 
and right on alternate lines, to make the length of the line exactly 
RMAR-LMAR+l. Then LMAR-1 blanks are inserted in front of the new 
line, and it is given a line number which is the same as if the new, 
justified text had been numbered with a N<INC>,<range> command. A 
pagemark is automatically generated if the line number for the next 
line would exceed MAXLN. You will be told if this occurs. 

12-21 ADD-10-26-77 



TUG 
sos Manual 

There are exceptions to the above proceedure, all having to do with 
paragraphing. Any of the following conditions are treated as the end 
of a paragraph: TAB in first column (note that tabs in other places 
do not start paragraphs), BLANK LINE, PAGE MARK, BEGINNING or END of 
RANGE. 

When one of the above conditions is encountered (except of course 
beginning of range), the immediately preceding line is not expanded. 
It is, however, moved out to LMAR by the insertion of leading blanks, 
if necessary. 

If the new paragraph begins with a TAB, the tab is merely inserted 
into the text. If not, the first line of the paragraph is made to 
start at PMAR (paragraph margin) rather than LMAR. 

Justify Left--JL<range> 

Lines in the range are left justified by removal of leading blanks, 
and the insertion of LMAR-1 leading blanks to move them out to the 
left margin. Paragraphs have their first lines treated as in the JU 
command. No chopping, filling, renumbering, etc. is done. 

Justify Right--JR<range> 

Like JL, only enough blanks are inserted to move the line out to the 
right margin. The required blanks are inserted to the right of the 
rightmost tab in the line. 

Justify Center--JC<range> 

Like JR, only half as many blanks are inserted, so that the line ends 
up centered between LMAR and RMAR. 

For a summary of the parameters used in the Justify family of 
commands, their initial values, meanings, and how to change them, see 
the Set(_) and Give(=) commands. 

Find--F(<string>)<altmode>(<range>) (,Al ,N) (,E) (,<number>) 

The Find command is used for locating occurrences of given strings of 
text. The basic form of the Find command is: 

F<string><altmode><range> 
The first occurrence of the specified string within the specified 
range will be found and the line containing that string will be 
printed. If the range includes more than one page and the line found 
is not on the first page of the range, PAGE n will be printed where n 
is the number of the page on which the line occurs. For example, to 
find the first occurrence of the string "FOOBAR" on page 5, use the 

12-22 ADD-10-26-77 



TUG 
SOS Manual 

command: 
FFOOBAR$/5 

where $ is used to indicate an altmode. 
by the last F command, simply omit 
<altmode>). For example, after the above 
occurrence of the string "FOOBAR" on page 

F$/14 

To use the same string used 
the string (but not the 
search, to find the first 
14, use the command: 

Note that it is possible to determine what string will be used in 
such a case by using the =STRING command. If no previous F command 
was done, the error message *NO STRING GIVEN* will be printed if the 
string is omitted. Upper and lower case letters will be considered 
the same inside <string>. Thus the strings "FOO" and "?F?O?O" will 
find the same lines. The use of <return>, <line feed>, ~~, ~E, ~N, 
?:, and ?/ in search strings should be avoided until you learn how to 
use them. (See the section below on Special Characters). 

If the range is omitted (e.g. FFOOBAR$) then the range searched will 
be from the line after the present one (essentially .+l) to the end 
of the file. To search from the present position to some location, 
give only the second half of the range. Thus to search from .+l to 
the end of page 10, use: 

FFOOBAR$:/10 
Giving the command F<return> will cause the 
the present point. This differs from the 
searches to the end of the range specified 
command instead of continuing to the end of 

search to continue from 
command F$<return>, which 
in the previous search 
the file. 

If no occurrence of the string is found in the given range, SOS will 
simply print a * and wait for the next command. The current line 
will be set to the last line found. If no line is found, the value 
of . will be unchanged. 

Multiple Strings 

To search for more than one string at the same time, separate the 
strings by a <return>. Thus to find the first occurrence of either 
"FOO" or "BAZ" on page 5 use the command: 
FFOO 
BAZ$/5 

If too many strings are specified in this manner, the error message 
*TOO MANY STRINGS* will be given. The current limit on number of 
strings is 6. The error message *STRING TOO LONG* will be given if 
the total length of all strings being searched for is greater than 
the table space available (currently 200 characters). 

It is possible to 
automatically when a 
the range when giving 

FFOOBAR$/5,A 

Alter switch (,A) 

cause SOS to enter intra-line edit mode 
string is found. To do this, append ",A" after 
the F command as: 

12-23 ADD-10-26-77 



TUG 
SOS Manual 

or FBAZ$ ,A (range omitted) 

When a match is found while using this feature, SOS will enter 
intra-line edit mode (A command) and move the intra-line edit pointer 
to point to the first character of the string found (using the 
<space> command). If the F<return> command is used after editing of 
that line is finished, the ",A" will remain in effect. Thus 
F<return> is really a continue command even as far as special modes 
are concerned. This effect of the F<return> command also holds for 
the N and E modes explained below. 

Line Numbers only (,N) 

Occasionally it is sufficient to know just the line numbers on which 
a given string occurs. This is especially true on teletypes where 
printing takes a great deal of time. For this reason, SOS allows 
",N" to be added to an F command immediately after the range. This 
will cause only the line number to be printed when a line is found. 

Exact compare (,E) 

If it is undesirable to have upper and lower case letters treated as 
being identical, a ",E" may be included in the command string. It 
should occur immediately after the ",A" or ", N" if either is present, 
or after the range if both are absent. 

Number of occurrences 

It is possible to find more than just the first occurrence of a 
string. This may be done by ending the command string with 
",<number>" where <number> is the number of strings to be found 
(99999 will almost certainly find all of the strings). This has the 
effect of giving the F command and then a series of F<return> 
commands until either the count is exhausted or the end of the given 
range is reached. 

Special characters 

Certain special characters may be included in the string to be 
searched for. Instead of being matched by themselves, they indicate 
a class of characters which may occur at that point in the string. 
These characters are as follows (in the form for Tenex teletypists): 

?: Will be matched by any "separator". A separator is any 
character which is not a number, a letter, a ., a%, or a $. 
(i.e. a character which cannot be part of a symbol in MACRO 
or FAIL.) 

?/ Will be matched by any character. 

12-24 ADD-10-26-77 

-



TUG 
SOS Manual 

AE Will cause the character following it to be matched by any 
character which it would not normally be matched by. Thus 
the string F-EAB will be matched by FBB, FCB, FOB, F$B, etc., 
but not by FAB or FaB. -E?: will be matched by any letter, 
number, etc. AE?/ will be matched only by the begining or 
end of a line. Thus -E?/FOO will find only those occurrences 
of foo at the start of a line. 

Is used to quote the next character. Thus ---E is used to 
search for the character -E and ---- to search for Note 
that _E ___ E (or equivalently, ?%?7?%) will match any 
character but -E (?%). 

-N Is used to mean "any number of" whatever follows it. Thus the 
string A-NBC will be matched by AC, ABC, ABBC, etc. In case 
of ambiguity, the shortest such string will be found. 
Thus the string -NAB will find B rather than AB. Strings of 
the form _N_E ___ E are perfectly legal. The example will be 
matched by any number of characters which are not -E's. 

Certain strings which can be formed with the above characters are 
considered illegal and may give an *ILLEGAL SEARCH STRING* message. 
The strings are not checked before use, so the message will only be 
given when an attempt is made to check for a match with that 
particular part of the string. The illegal conditions are -E, -N, 
or -- when not followed by another character and the construct 
-E-N... Due to the fact that some of these special searches involve 
recursion and others require the use of table space inside the 
editor, it is possible to get the error message *SEARCH STRING TOO 
COMPLEX*. If this happens, try a simpler string. 

Substitute--S((<ostring><altmode><nstring>)<altmode> 
(<range>) (,Dl,N) (,E) (,<number>)) 

This command is used to substitute one string for all occurrences of 
another string. The basic form of the Substitute command is: 

S<ostring><altmode><nstring><altmode><range> 
<nstring> will be substituted for all occurrences of <ostring> in the 
given range. Note that while the F command finds the first 
occurrence, the S command substitutes for all occurrences. The 
Substitute command will print all lines on which substitutions have 
been made. The line will be printed after all substitutions on that 
line have been made. As with the F command, "PAGE n" will be printed 
if the first line printed is not on the first page of the given range 
or if a subsequent line is not on the same page as a previous line. 

For example, to change all occurrences of FOO to BAZ on page 17, use 
the command: 

SFOO$BAZ$/17 
To use the same strings as were used by the last S command, simply 
omit both strings and one of the <altmode>'s. Thus if it were now 

12-25 ADD-UJ-26-77 



TUG 
sos Manual 

desired to change all FOO's to BAZ's on page 33, one could use the 
command: 

S$/33 
Note that as with F, it is possible to determine which strings will 
be used by using the =STRING command. If the strings are omitted and 
no previous S command has been given, the error message 
*NO STRING GIVEN* will be printed. Again as with F, upper and lower 
case characters will be considered the same in the first of the two 
strings (but not in <nstring>). 

The effect of omitting the range or of specifying only the last half 
of the range is the same as for the F command. S<return> is a 
continue in the same manner as F<return> but is rarely needed since 
the S command affects all lines in the given range. The current line 
is set to the last line changed. If no substitutions are made, the 
value of " " is unchanged. 

Multiple Substitution 

As with the F command it is possible to do several substitutions at 
the same time. Several strings to be searched for, separated by 
<return>'s, may be given for <ostring> followed by an <altmode>, then 
several strings to replace them, again separated by <return>'s, are 
given for <nstring> followed by another <altmode>. The first string 
given for <nstring> will be substituted for the first given for 
<ostring>, the second for the second, etc. If more <ostring>'s than 
<nstring>'s are given, the last <nstring> will be used to substitute 
for the excess <ostring>'s. Thus to simultaneously substitute ALPHA 
for BETA and DELTA for GAMMA on page 5 through page 7 use the 
command: 
SB ETA 
GAMMA$ALPHA 
DELTA$/5:/7 

The errors *TOO MANY STRINGS* and *STRING TOO LONG* will occur under 
the same circumstances as for F. 

Decide switch (,D) 

A special mode of the S command is provided in which the user has a 
chance to look at each line after substitutions have been made in it 
and to decide whether he wants the new line or the old one. To use S 
in this mode, put ",D" after the range in the command string. For 
each line in which a substitution is made, the line will be printed 
after all substitutions in it have been made. sos will then wait for 
a single character to be typed on the user's console. If this 
character is <rubout>(or <BS>), the indicated substitutions will not 
be made and the old copy of the line retained. SOS will then proceed 
to look for the next line and repeat the process. If the character 
is E (or e), SOS will immediately return to command mode without 
having made the substitution. Any other character will cause the 

12-26 ADD-10-26-77 

-



TUG 
SOS Manual 

line as printed to become the new line and substitution to continue. 

Numbers only (,N) 

If the user is very sure of himself, he may suppress printing of 
those lines in which a substitution has been made. To do this put 
",N" after the range in the command string. 

Exact compare (,E) 

As with F, ",E" will cause upper and lower case letters to be treated 
separately in the first string. This should come after the ",D" or 
",N" if present and otherwise after the range. 

Special Characters 

All of the special characters permitted in the string of an F command 
(AN, ?/, ?:, AE, and AA) may be used in the first string of the s 
command. This may create a problem, however. Suppose it were 
desired to change all occurrences of FOO to BAZ but there were 
strings present containing FOO such as AFOO and FOOBAR. This can be 
circumvented by giving "?:FOO?:" as <ostring> but leaves the problem 
of replacing the separators found by themselves. All strings which 
match one of these special constructs are called partially specified 

- strings. If the construct ?*<number>?* occurs in <nstring>; it is 
replaced by the <number>th partially specified string found by 
<ostring>. Thus the above problem can be solved by the command: 

S?:F00?:$?*l?*BAZ?*2?*$<range> 

To insert a ?* or an , preceed it by an AA. If a?* is not 
followed by a number followed by a ?*, or if an AA is not followed by 
another character, the error *ILLEGAL REPLACEMENT STRING* will be 
printed. This same message will be given if a partially specified 
string which does not exist is specified as ?*8?* when there are only 
2 partially specified strings. 

BREAK-OUT--<control B> 

There eventually comes a time when you make a mistake in the range 
given for a substitution or justification, and you want to recover 
from it immediately with as little actually changed as possible. Or 
you have started a long Find or Print command, but you decide to 
abort and want the current line/page pointer to be close to where you 
started (so the file doesn't have to recopy itself). 

Rather than panic and pound AC madly, you may simply hit AB. AB is 
always ready and able to stop cleanly any command which (explicitly 
or implicitly) involves a range specificier. AB will tell you at what 
point SOS gracefully screeched to a halt, whereas AO lets a command 
run to completion (though hiding the output: a binary switch). 

12-27 ADD-10-26-77 



TUG 
sos Manual 

If you AB a substitution, all changes to that point have been made in 
the text buffer, but only to that point. If you reacted too late, 
you may need to go back to the source file (do a FILSTAT to see what 
file you're reading from). To help as much as possible, ~B does not 
turn off Teletype output ••. so that you can see the extent of the 
substitutions made, or whatever. You may do a Ao concurrently. 

If you are in the process of copying from a second file, the breakout 
is deferred until things are stable again. 

6. LINE NUMBERS REVISITED 

It is possible to address lines by content rather than by number. 
This is done by replacing a <line-number> field of any command by 

<altmode><string><altmode><carriage-return> 
The rest of the command string is continued on the next line. Thus, 
to list everything between a line containing "FOO" and a line 
containing "BAZ", suppressing line numbers, use the command 

L$FOO$ 
:$BAZ$ 
,S 

where $ denotes an altmode. Note 
included, two carriage returns would be 
one to terminate the search, and one to 

that if the ",S" had not been 
required after the ":$BAZ$": 
terminate the L command. 

If the string between altmodes is null, then the string last used in 
this context will be used again. Note that this is not the same as 
the string used in the F command. 

The search will be from"." to the end of the file, unless otherwise 
specified. It is possible to otherwise specify: the full 
construction looks much like an F command, with altmode replacing the 
F: 

<altmode>(<string>)<altmode>(<range>) (,DI ,N) (,E) (,<number>)<return> 

The <number> (call it N) specifies that the Nth occurrence of the 
string is to be used as the designated line. The E option, as in the 
F command, specifies that upper- and lower-case letters are not the 
same things. 

The D or N options will, upon finding a line, cause the line or its 
number respectively to be printed. If the next character typed is a 
rubout or backspace, another line will be looked for. Anything else 
will cause the line just found to be used as the line you were 
looking for. this process will be repeated at most N times. You 
cannot reject the last line (the Nth line), and so N should be other 
than 1. (99999 will suffice in most cases, and is the largest number 
SOS can understand on input.) 

·-

Also note that the range used in this construction can be another -.. 
search-type construction. This sort of thing can be nested to a 

12-28 ADD-10-26-77 



TUG 
SOS Manual 

depth of 3. Anyone who thinks he needs more depth is invited to 
consult a psychiatrist. 

12-29 ADD-10-26-77 



TUG 
SOS Manual 

APPENDIX A 

CONVERSION 

A few words about copying files and converting formats. 

1. To copy files from disk to disk, disk to dectape, or dectape to 
disk, use the system COPY command. 

2. To convert SOS files to TECO files, use 'E,S' or <SUBSYS>PIPPY. 
Either method removes line-numbers and null padding from the file, 
but leaves formfeeds in. E,S will delete the intermediate SOS copy 
of the file, iff the strip is successfully completed; otherwise, it 
remains the current file. 

3. To convert TECO files or other files without line numbers to sos 
files, simply read them with SOS. SOS will number them by 100 and 
insert a page mark if there are more then 999 lines on a page. Any 
form feed which is the first character on a line will be converted 
into a page mark. nsare" <return>'s are deleted and "bare" <line 
feed>'s are changed to <return> <line feed>. An Ascii 37 in the file 
is presumed to be a TENEX end-of-line signal, and is converted 
without comment into <return><linefeed>. 

4. For those users sending files to UCLA's 360-91, a program here is 
available which converts SOS files to respectively-numbered card- -.. 
image files. The program is <CCN-KAY>A2CWP.SAV "Ascii-to-Card with 
Pagemarks", and converts SOS numbering as follows: 

Columns 73-75 == the SOS page, and 
76-80 == the sos line. 

If the text of the source SOS-line is > 72 characters in length, the 
line is split at char 72 onto a second line, with card-columns 73-80 
having asterisks. 

There is another program, <CCN-KAY>UPDCOM "update-compare", which is 
a modified srccom. It takes two sos files and generates a new file 
with just the updates that were made, plus embedded 
insert-delete-replace-number commands .•. this file is then sent to 
UCLA rather than sending the complete source each time. A program at 
UCLA takes the commands and generates an updated source there, as 
shown in <HEARN>JCL. 

12-30 ADD-10-26-77 



TUG 
SOS Manual 

Fatal: 

Non-fatal: 

APPENDIX B 

SUMMARY OF ERROR MESSAGES 

DDE 
DIE 
DNA 
FNF 
ICN 
TNX 
ILUUO 
NEC 

ILC 
ILFMT 
ILR 
IRS 
ISS 
ITD 
LTL 
NLN 
NNN 
NSG 
NSP 
ORDER 
STC 
STL 
UNA 
TMS 
WAR 
BKO 
XRO 

DEVICE OUTPUT ERROR 
DEVICE INPUT ERROR 
DISK NOT AVAILABLE 
FILE NOT FOUND 
INTERNAL CONFUSION 
TENEX CONFUSION 
ILLEGAL UUO 
INSUFFICIENT CORE AVAILABLE 

ILLEGAL COMMAND 
ILLEGAL LINE FORMAT 
ILLEGAL REPLACEMENT 
ILLEGAL REPLACEMENT STRING 
ILLEGAL SEARCH STRING 
ILLEGAL TRANSFER DESTINATION 
LINE TOO LONG 
NO SUCH LINE(S} 
NO NEXT LINE 
NO STRING GIVEN 
NO SUCH PAGE 
OUT OF ORDER 
STRING TOO COMPLEX 
STRING TOO LONG 
DEVICE NOT AVAILABLE 
TOO MANY STRINGS 
WRAP AROUND 
BREAK OUT 
NOT DURING READ-ONLY 

12-31 ADD-10-26-77 



TUG 
SOS Manual 

APPENDIX C 

SUMMARY OF COMMANDS 

The following is a brief summary of SOS commands. Those arguments 
enclosed in () may be omitted. Where several arguments appear, 
seperated by I, it means that any one of these (but only one) may be 
used. [] are used for grouping. 

Alter A<range> 
<space> 

<rubout> 
c 
D 
I 

<return> 
Q 

<control U> 
s 
K 
R 
L 
p 

J 

Beg inning 
B 

Break-out 
<control B> 

Comment 

next character 
last character -- also AA 

Change 
Delete 
Insert 

end alter mode 
Quit 

start over 
Skip 
Kill 
Replace 
Line 
Print 
Justify 

-- also ~x 

-- also ~R 

Copy C<dest> (_<file> ( ,S)) ,<source> (,<incl>) ( ,<inc2>) 

Delete D<range> 

End E (<file name>) (,S) 

Find F( (<string>) <altmode> (<range>) (,Al ,N) ( ,E) (,<number>)) 

Go G (<file name>) 

Help H 
Insert I<line>(,<increment>) 

Join J<line> 

Justify Center 
JC<range> 

12-32 ADD-10-26-77 



TUG 
SOS Manual 

Justify Left 
JL<range> 

Justify Right 
JR<range> 

Justify 
JU<range> 

List L (<range>) ( ,·s) 

Mark M<line> 

Number N<increment>,<range>(,<starting number>) 

display extend 
Q<range> 

Print P (<range>) ( ,S) 

Replace R<range>(,<increment>) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Substitute I 
S((<ostrng><altmd><nstrng>)<altmd>(<rng>) (,Dl,N) (,E) (,<number>)) I 

Transfer 
T<dest>,<source>(,<incl>) (,<inc2>) 

save World 
W(<file name>) 

eXtend X<range> 

display alter 
Z<range> 

give information 
= =I I FILE 
= .IBIGICASEIINCIERRORISTRINGIPMARILMARIRMARIMAXLNISAVEIISAVE 

set 
UPPER I LOWER 

-DPYIM33IM37 · 
-Cl28IC64 
-NOVICEIEXPERT 
-SHOW I SUPPRESS 
-[PMARILMARIRMARIMAXLN]=<number> 
-INC=<number> 

[SAVEIISAVE]=<number> 

12-·33 ADD-10-26-77 

I 
I 
I 
I 



TUG 
sos Manual 

APPENDIX D 
STANDARD TEXT FORMAT 

The format of a standard text file is defined to be as follows: 

A line number is a string of 5 ascii digits, left justified in a 
single word, and having bit 35 a 1. A line consists of a line number 
followed by the text of the line in ascii characters, left justified 
in words with bit 35 a 0. The first character of the text is a tab 
and the last two characters are <return> and <line feed>. The 
characters null (0) and delete (177) may not appear in the text. The 
last word of the line is filled with nulls to make a complete word if 
necessary. 

A page mark is a word containing 5 ascii spaces (40), left justified 
in a word with bit 35 a 1, followed by a word containing the 
characters <return>, <return>, <form feed>, <null>, <null> and with 
bit 35 a 0. 

Lines are placed into records starting with the first word. A line 
is never broken across 10/50 block boundaries. No 0 words appear in 
a record except after the last line of that record. All unused words 
in a record are 0. 

12-34 ADD-10-26-77 

·-



TUG 
SPELL 

SPELL 

SPELL is a program that checks text files for correctness of word 
spelling. In addition to the spelling check, SPELL provides a 
facility for correcting words that it thinks are misspelled. The 
program was originally written by Ralph E. Gorin at Stanford 
University. It has been adapted to TENEX and TOPS-20 and 
considerably augmented at BBN. 

SPELL reads through the input text file, checking each word 
against its dictionary. All words that it finds in the 
dictionary or that it can find after stripping off common 
prefixes and suffixes are copied through to an output file. When 
it comes upon a word it can't recognize, it tries to guess a 
correction and then asks you how to treat this word. You can 
have SPELL accept the word as correct, add the word to its 
dictionary, or correct the word in several ways. In this way, 
the output file becomes a corrected version of the input file. 

~OTE: SPELL has no knowledge of syntax, so it will readily 
accept things like "JOHn red the book", even though "red" is 
incorrect usage. SPELL can only check each word against its 
dictionary to see if it corresponds to any correct spelling. 
Note also that SPELL takes no special note of "JOHn", since it 
does not consider case to be significant. You shouldn't come to 
believe that SPELL will catch all your typographical and spelling 
errors; it will detect many errors that a human reader could 
easily pass--over, but it is no substitute for proofreading! 

SPELL's internal dictionary contains over 40,000 words (including 
RUNOFF and MRUNOFF commands}. Because SPELL's built-in 
dictionary cannot possibly contain all the words and proper nouns 
in an individual user's vocabulary, SPELL contains provision for 
the user to maintain a private dictionary file (or files} to 
augment SPELL's built-in vocabulary. For all but casual users 
this practice is highly recommended. 

NORMAL USE OF SPELL 

SPELL's commands and switches are all single letters. A few 
commands take an optional dictionary number following the letter. 
All typeins to SPELL must be terminated by carriage return. The 
editing of typed input can be done in the usual way, using the 
conventions of either TENEX or TOPS-20. 

13-1 ADD-10-26-77 



TUG 
SPELL 

The editing characters are: 

Char-delete 
Word-delete 
Line-delete 
Retype line 
Quote character 

AA, Rubout, or AH 
Aw 
AQ, Au, or Ax 
AR 
Av 

(1) When SPELL is started, the first thing it does is to see if 
you have a default private dictionary file; if there is a file in 
your login-directory named DICT.SPELL, this is assumed to be a 
dictionary file and loaded as an "incremental" addition to 
SPELL's built-in dictionary. (When you subsequently exit from 
SPELL with the "E" command (see paragraph (5) below), SPELL will 
automatically update this file if necessary.) Proceed to 
paragraph (2) below. 

If no DICT.SPELL file was found, SPELL will ask if you want to 
load a private dictionary file by asking: 

Do you want to augment the dictionary? 

If you do not want to load a dictionary file (or have none to 
load), type "N" (or just <er>) and skip to paragraph (2) below. 
(If you forget to load a private dictionary at this point, you'll 
have other chances later on.) If you answer "Y", SPELL will 
type: 

Dictionary file name: 

After you type in the name of the dictionary file, SPELL will 
type: 

Type "I" to mark these as incremental insertions: 

The usual practice at this step is to type the "I", for that 
means that the new words will be marked as "incremental" 
additions, so that they would be included in an incremental copy 
of the dictionary at the end of the session (if you make one 
see (5) below); not typing "I" means that the new words become 
merged with SPELL's internal dictionary. 

After the dictionary file is loaded, SPELL will again ask if you 
want to augment the dictionary, thus permitting more than one 
dictionary file to be loaded, ~ventually you'll give a negative 
answer and thus go on. 

13-2 ADD-10-26-77 



TUG 
SPELL 

(2) SPELL will next ask if you want to set any optional mode 
switches: 

Mode switches (zero or more of P,U,M,N,A,T,Q, or ?) : 

The usual response is just a carriage return to specify no 
switches. The other options are: 

P Pickup mode. You will be asked to specify a page and line 
number at which to "pick up" the spelling checking. When you 
have a partially corrected file, this mode enables you to skip 
over the initial portion that has already been corrected. The 
input file is copied to the output file without checking 
until the page and line specified, at which point spelling 
checking begins. 

U Upper case mode. In this mode, each new word that is entirely 
upper case will not cause SPELL to ask you about it, but will 
be inserted in a special dictionary. You will be asked to 
specify a dictionary number for the upper case words (see HOW 
TO USE MULTIPLE DICTIONARIES below) • This mode can be useful 
if your file contains many special "words" that are written in 
upper case, such as logic symbols, opcodes, or program 
variable names, and you don't want SPELL to query you about 
each and every one. Note, however, that SPELL does NOT check 
to insure that subsequent occurrences of these words are also 
entirely upper case. 

M Misspellings. Put misspellings (and their corrections) in a 
special dictionary. You will be asked to specify the 
dictionary number. Normally, when you correct a misspelling 
found by SPELL, the misspelling-correction pair is put in 
SPELL's main dictionary so that subsequent occurrences can be 
automatically corrected, but these misspelling-corrections 
can't be saved for future use. This mode lets you specify a 
dictionary for these misspelling-corrections~ this dictionary 
can be the default incremental dictionary (#1) or a special 
one. This mode can be useful if you misspell more frequently 
than you mistype, and you'd like to accumulate instances of 
the words you misspell for use in checking other text files. 

N No suffix-stripping. 

A No prefix-stripping. 
algorithms are useful 
can use the N and 
without them. 

The suffix- and prefix-stripping 
and clever, but far from foolproof. You 

A switches if you prefer to use SPELL 

13-3 ADD-10-26-77 



TUG 
SPELL 

T Training mode. SPELL will treat the input file as a training 
set rather than a file to be corrected. See the discussion of 
TRAINING MODES below. 

Q Q-training mode. Similar to T: see the discussion of TRAINING 
MODES below. 

(3) You will then be asked to specify the names of the file to be 
checked, the corrected output file, and an exception file: 

Name of the file to check and correct: 
File name for corrected output: 
File for exceptions: 

If you specify the input file as INFILE.EXT, then typing <esc> to 
the "corrected output" prompt defaults the output file name to 
INFILE.EXT; similarly, typing <esc> to the "exceptions" prompt 
defaults the exception file name to INFILE.EXCEPTIONS. (See THE 
EXCEPTION FILE below for a description of that.) If you type 
<er> to either of those prompts, then the respective file will 
not be created at all. 

(4) After you have specified all the files, SPELL will respond 
with "Working ... " and start checking the input file for spelling 
errors. While it is doing so, there are three kinds of 
occurrences that will cause SPELL to type out on your terminal: 
(a) unknown words that SPELL needs to ask you about, (b) known 
misspellings, and (c) words that SPELL has matched by means of 
affix-stripping rules. Only the first of these requires you to 
type anything in reply. 

(4a) Each time SPELL encounters a word that it doesn't recognize, 
it will ask you about it by typing the page number, the line 
number, and the line in which the word occurs, followed by the 
word itself, and whether it has any guesses for correcting it. 
(Note that the page number typed by SPELL refers to the number of 
page-feeds in the input file; it generally won't correspond to 
the page number of the finished document.) If SPELL has one to 
three guesses, it will type them out also. For example: 

Page 1:34 
reads through the imput text file, checking each 
IMPUT I guess: (1) INPUT or (2) IMPUTE 

* 

13-4 ADD-10-26-77 



TUG 
SPELL 

The asterisk prompts you to tell 
excepted word. At this point, 
commands, some of which (S, C) are 
guesses. (Typing "?" will get 
commands.) 

SPELL what to do with the 
you have a choice of several 

dependent on the number of 
you a summary of the allowable 

A Accept this word, this one time. 

I Insert. Accept this word and 
that subsequent occurrences 
and accepted. Words that are 
incremental insertions, and 
auxiliary dictionary file. 

insert it in the dictionary so 
of this word will be recognized 

inserted this way are marked as 
may be copied out to form an 

C(n) Correct this word with SPELL's (n-th) guess. If SPELL has 
volunteered just one guess, then type "C" to use it as the 
correction. If SPELL has shown 2 or 3 guesses, or if you have 
typed out many guesses with the "S" command, then type "Cn" to 
use SPELL's n-th guess as the correction. 

S Show all of SPELL's guesses. If SPELL has more than 3 guesses 
for the unknown word, it won't type them out unless you 
request it with this command. After SPELL has done this, you 
may select one of the guesses with the "Cn" command described 
above. 

R Replace this word. SPELL will ask you to type the replacement 
word. If the replacement word is not already in the 
dictionary, SPELL will give you an opportunity to insert it. 

L 

x 

If the misspelling is due to an omitted space between words, 
use the "R" command to retype the words with the space. 

Load a private dictionary file to augment SPELL's built-in 
dictionary, then reconsider this word. You will be asked for 
the dictionary file name. 

Accept this word and finish. The word will be accepted. Then 
the remainder of the input file will be copied without 
checking to the output file. This is useful if you are only 
part way through a file and you wish to stop without losing 
the corrections already made. (The next time you use SPELL, 
you can use "Pickup" mode to resume checking this file at the 
same page and line number.) 

If the X is followed by a number n, it means something 
slightly different. It means to suspend spelling checking for 
the next n lines (including the current one). This can be 

13-5 ADD-10-26-77 



TUG 
SPELL 

useful for skipping a portion of text containing nonword 
character strings. 

W Save the incremental insertions. After you type "W", you will 
be asked for a file name. Then an 'incremental copy of the 
dictionary will be written into the file. After the copying 
is complete, you may decide what to do with the excepted word. 

D Display the line and offending word again. The line that is 
displayed will not have any corrections shown in it. 

(4b) SPELL knows about many common misspellings, and as you 
process the input file, it also remembers corrections you make to 
misspellings it finds. If SPELL encounters a word that it 
already knows is wrong, it automatically performs the correction, 
and it informs you of this by typing (for example): 

Page 1:179 
as seperate but equal branches of government. 
seperate ==> separate 

(4c) If SPELL cannot find a word in its dictionary, it applies 
various prefix- and suffix-stripping rules, to see if it can 
recognize the stem after these affixes have been removed. For 
each such word it finds, SPELL will: 

- type it on your terminal, as for example: 
UNSTEADINESS = UN+STEADY-Y+I+NESS 

- note it in the exception file, and 

- enter it into the dictionary (specifically dictionary #31) 

Since each affix-match is entered in the dictionary, if the same 
word is encountered again, it will be accepted with no further 
action. Thus such an affix-match type-out signifies only that 
the file contains at least one occurrence of it. Although the 
affix-stripping rules----:ire quite effective, they are far from 
foolproof (e.g., CHOSES would be accepted as CHOSE+S). Therefore 
SPELL types out these affix-matches so that you can monitor their 
validity. 

(5) When the input file is exhausted, all files are closed, SPELL 
types "Finished processing the input file." and enters an 
exit-command sequence: 

13-6 ADD-10-26-77 



TUG 
SPELL 

Type E,I,N,C,A, or ?: 

Again, you have several choices: 

E Exit from SPELL to the EXEC. If SPELL had automatically 
loaded a DICT.SPELL dictionary file at startup and words were 
incrementally added to that dictionary, an updated DICT.SPELL 
file is automatically written. 

I Incremental copy. Make an incremental copy of the dictionary. 
All words that you inserted while running SPELL (and loaded 
from private dictionary files) are copied to a file. SPELL 
asks for the file name. The words in this file will not 
normally be in alphabetical order, but rather sorted only on 
the first two letters and the length. (If you type IS (S for 
"sorted"), the file will be sorted into alphabetical order, 
but BEWARE! this consumes quite a lot of CPU time.) 

N Numbers. Type out statistics about how many words were 
processed, how many spellings and misspellings are in the 
dictionaries, and the time used by SPELL. 

C Correct. Go back and correct another file. 

A Augment the dictionary (load another dictionary file), set new 
mode switches, and correct another file. 

SPELL DICTIONARY FILES 

Dictionary files for use with SPELL (and as copied out by SPELL) 
are ordinary text files, which may be edited and listed. They 
contain two types of entries: correct spellings and 
misspelling-correction pairs. The format is one dictionary entry 
per line. Each entry must be composed of alphabetic characters 
(apostrophes are permitted inside a word) less than 40 letters 
long. The entries need not be in alphabetic order. Upper and 
lower case letters are not distinguished. 

Misspelling-correction pairs are put on a single line in the 
format "misspelling>correction" (e.g., ARGUEMENT>ARGUMENT). 

When you load a private dictionary file, any words in the file 
that are already in SPELL's main dictionary are not duplicated. 
Hence, if your words are marked as incremental additions, then in 
a subsequent incremental dictionary copy, these duplicate words 
will not be copied out. 

13-7 ADD-10-26-77 



TUG 
SPELL 

SPELL comes with a large built-in dictionary, but even a very 
large dictionary cannot encompass all the jargon words and proper 
nouns in an individual user's working vocabulary. SPELL lets you 
make incremental additions to the dictionary as you encounter new 
words, but it cannot remember them from one session to another. 
Therefore it is wise for you to maintain a private "incremental" 
dictionary file in which you save such words after each use and 
which you load into SPELL each time you use it. 

SPELL's "default private dictionary" feature makes this 
particularly easy to do. When you start up SPELL, if there's a 
file in your login-directory named DICT.SPELL, it will be 
automatically loaded (into dictionary #1). When you exit SPELL 
via the "E" command, if you have added words to the incremental 
dictionary, then SPELL automatically writes an updated DICT.SPELL 
file before stopping. If you don't have a private dictionary 
file to start with, simply create an empty file named DICT.SPELL, 
or the first time you use SPELL, create a dictionary file named 
DICT.SPELL with the "I" command before exiting. 

Of course, you can name your dictionary file (or files) anything 
else. In that case, you will have to load and update it 
yourself, using the commands described above in NORMAL USE OF 
SPELL. 

HOW TO USE MULTIPLE DICTIONARIES 

SPELL has a set of features whereby you can cause the creation of 
several disjoint incremental dictionaries. In this way, you may 
collect several dictionaries of special vocabulary classes. 

The section above called NORMAL USE OF SPELL talked only of 
SPELL's "main" dictionary and "incremental" additions to it. In 
fact, SPELL contains 32 dictionaries, numbered 0 to 31. 
Dictionary 0 is the main dictionary; words can be added to this 
one only by reading in a private dictionary file at SPELL-startup 
time. Words that are inserted "incrementally" are marked as 
being in dictionary 1, unless you specify otherwise. Dictionary 
31 is reserved for holding affix-matching words. You may specify 
a dictionary number at several places during the running of SPELL 
by appending a dictionary number to some commands; if no number 
is specified, the dictionary number will default to 1. 

The following places are where you can specify which dictionary 
to add words to: 

13-8 ADD-10-26-77 



TUG 
SPELL 

1. When loading a dictionary file at SPELL startup time, you 
are asked to "Type "I" to mark these as incremental 
insertions." Responding with "In" (where n is a decimal 
integer between 1 and 30) means to add the words to 
dictionary number n. 

2. While the 
you about 
word in 
file with 
type "In" 

input file is being checked, after SPELL has asked 
an unrecognized word, type "In" to insert that 
dictionary n. If, instead, you load a dictionary 
the "L" command, to have it go into dictionary n, 
to the prompt that says "Type "I" to mark ••• ". 

3. After replacing a word (with the R command), if SPELL asks 
you whether you want to enter the word in dictionary, then 
type "In" to insert the replacement into dictionary n. 

When requesting an incremental copy of a dictionary to a file, 
you may specify the particular dictionary to be copied (1-31). 
This is appropriate in two cases: 

1. After some word has been asked about, the command "Wn" will 
cause dictionary number n to be copied. 

2. During the exit sequence, the command "In" will cause 
dictionary number n to be copied. (If you want dictionary 
number n to be sorted alphabetically, type "Ins".) 

HINT: In the course of correcting a file, it is likely that you 
will be asked about words that you wish to have accepted during 
this file, but which you don't wish to have saved in your 
incremental dictionary(s}. In these cases, simply insert them in 
a "throwaway" incremental dictionary (such as dictionary 9), 
which you don't bother to copy to a file when you're finished. 

THE EXCEPTION FILE 

In addition to the corrected output file, SPELL may produce an 
"exception file," in which are noted those places in the input 
file where SPELL encountered a word not found in its dictionary. 
Each word that SPELL asked you about and each automatic 
misspelling correction is noted along with the line in which it 
occurs. Also noted is (the first occurrence of) each word SPELL 
recognized by dint of stripping off prefixes and suffixes. 

The exception file also has a special use in Q-training mode, as 
described below. 

13-9 ADD-10-26-77 



TUG 
SPELL 

TRAINING MODES 

SPELL has two "training" modes, in which it treats the input file 
as a training set rather than a file to be corrected. All words 
in the file that are unfamiliar to SPELL are entered in the 
dictionary as incremental insertions. Afterwards, you may do an 
incremental copy of the dictionary to a file, examine and edit it 
to remove misspellings and other inappropriate entries, and 
subsequently use it as an auxiliary dictionary file. This 
feature is provided for the purpose of creating specialized 
dictionaries of jargon or technical words from existing text 
files. 

The training modes are selected by typing "Q" or "T" in response 
to the "Mode switches" request when SPELL is started. In both 
cases, you are asked to specify a dictionary number in which the 
unfamiliar words are entered; if none is typed, 1 is assumed. 
There is no output file. 

T Training mode. Operates as explained above. 

Q Q-Training mode. Identical to T, but with this additional 
feature. If any of the unfamiliar words is "close to" a word 
that SPELL does know, it is also output in the exception file. 
In this way, SPELL calls to your attention the fact that these 
words may be misspellings. The exception file contains only 
such words. 

MISCELLANEOUS FEATURES OF SPELL 

A text file may contain portions (such as quoted dialect or 
program excerpts) on which it is undesirable that SPELL perform 
its checking and correcting. You can tell SPELL to turn off its 
spelling checking by including in the file a line containing only 
".<any-char>NOSPELL". Spelling checking is turned on again by a 
line containing ".<any-char>SPELL". (Case is not significant in 
NOSPELL/SPELL.) Most text formatters permit comment lines of the 
form ".*Comment" or ".:Comment", so these SPELL-control lines 
will be transparent to them. For example, in a MRUNOFF file: 

This part of the text will be checked by SPELL . 
. *nospell 
Any "misteaks" in this part won't be seen by SPELL because 
of the .*nospell comment line above . 
. *spell 

13-10 ADD-10-26-77 



TUG 
SPELL 

SPELL will read either SOS or TECO format files for the file to 
be corrected; the output file will be written in the same mode, 
with the same SOS line numbers, if present, that the original 
file had. Dictionary files may be either SOS or TECO format. 

When a word is corrected, the output file will be rewritten with 
either upper case, lower case, or mixed (first letter upper, the 
remainder in lower), depending on the cases of the first two 
letters in the original word. Note that this will be incorrect 
in a small number of cases (such as McCarthy); SPELL will type a 
warning in these cases. 

When SPELL updates the default dictionary file (DICT.SPELL), it 
sets the file retention count to 1. On TOPS-20, this has the 
effect of deleting all but the current version of that file. (On 
TENEX, this has no effect.) 

Before SPELL asks you about a word it doesn't recognize, it tries 
several spelling correction heuristics in an attempt to "guess" 
the correct word, on the assumption that the excepted word is a 
misspelling and not a novel word. For short words, . this will 
usually result in a large number of guesses, but for longer 
words, this will frequently result in only one or two guesses. 
The kinds of errors checked for cover a wide variety of sins of 
misspelling and typographical error: 
1. one wrong letter 
2. one missing letter 
3. one extra letter 
4. two transposed letters 
5. an omitted space between words (sometimes) 

I 
USE OF SPELL UNDER HERMES I 

I 
HERMES, BBN's electronic mail handling system, permits SPELL to I 
be used to process text fields. When SPELL is invoked from I 
HERMES, excepted words are handled as explained in paragraph (4) I 
above in NORMAL USE OF SPELL, but the preliminary and final I 
procedures (paragraphs (1-3, 5)) are virtually eliminated. I 

I 
1. The "default private dictionary" works as described above. I 

You are not specifically asked if you want to augment the I 
dictionary, but the "L" command at excepted-word time gives I 
you an opportunity to do this if desired. I 

I 
2. No mode switches may be set. I 

I 

13-11 ADD-10-26-77 



TUG 
SPELL 

3. When SPELL is finished, the default dictionary file is 
updated. If no default dictionary file exists, but words 
have been added to the incremental dictionary (#1), you are 
asked if you want to save it (create a dictionary file). 
There is no opportunity to save any other dictionary. 

13-12 ADD-10-26-77 



TENEX USER'S GUIDE 
SRCCOM 

January 1975 

SRCCOM 

A Source Compare Program 

The program SRCCOM on TENEX is an adaptation of the verify option 
of UTILITY on the XDS 940 with several improvements and 
additional features. The name is the same as DEC's source 
compare program, but for our purposes SRCCOM has been TENEXized 
and is now 50% faster. 

SRCCOM provides a facility for comparing two symbolic files and 
discovering the differences between them. Two forms of output 
are generated by SRCCOM: a marked listing and differences. The 
marked listing is a listing of the first (usually newer) file 
with 2 asterisks in the right margin after each line which is 
different from that of the second (usually older) file. An 
option exists to list only pages which have been changed. 
Changed pages include those which are renumbered due to inserting 
or deleting a page. The first page is also always listed. 
Marked listings with giant pages are not possible. 

# SRCCOM provides a facility for automatically maintaining a set of 
# listings. A file named "RECORDOFLISTINGS" contains a record of 
# the last listed versions of a set of files. SRCCOM uses this 
# record to determine which files have newer versions and generates 
# a listing of changed pages and differences for the new version 
# against the old. When the listing of all such changes is 
# completed, the record is updated to reflect the newly listed 
# files. The file "RECORDOFLISTINGS" can be initialized by using 
# the EXEC'S directory command and putting the output in a file 
# (the first two lines of heading information must be deleted with 
# TECO) • 
# 
#When SRCCOM starts, if the file "RECORDOFLISTINGS.:l" is present 
# in the connected directory, SRCCOM will ask the question 
# "SPECIAL?". A reply of "Y" will cause the file 
# "RECORDOFLISTINGS" to be ignored. A reply of "N" will cause the 
# record to be used. A reply of "F" will perform the same 
# functions as "N" except that any errors in the "RECORDOFLISTINGS" 
# file will be paused for giving the user a chance to correct the 
# error. (This will occur when SRCCOM looks for an explicit 
# version of a file and doesn't find it). The rest of the 
# initialization dialogue is self explanatory. 

-183-



TENEX USER'S GUIDE 
TAINT 

January 1975 

TAINT 

This writeup describes a very early version of a program called 
TAINT. TAINT's function is to read files produced by the TENEX 
MINI-DUMPER program, and to either produce a directory of the 
tape or to write the files on a DECsysteml0 disk system (or 
both) • 

The raison d'etre of TAINT is to allow installations running a 
DECsysteml0 monitor to read TENEX dump tapes from co-operating 
TENEX sites or in preparation for installing a TENEX system of 
their own. Since the testing of this program has been done under 
TENEX's 10/50 compatibility system, reports of problems under a 
real 10/50 system are not impossible and will be appreciated. 

TENEX directory names are alphanumeric strings. Therefore, a set 
of translations to DECsysteml0 project - programmer numbers is 
required, and TAINT sets this up before reading any files (see 
below). In addition, TENEX file names and extensions are 
character strings of up to 39 characters, and an 18-bit version 
number is a part of the file name (not an attribute). When these 
files are copied to the DECsysteml0 disk, the file name must be 
six or fewer characters, and the extension three or fewer. If 
this results in truncation of a name, a comment will be typed 
mentioning the (full) file name. The DECsysteml0 version number 
is not a part of the file name and it is (at present) lost. In 
particular, if more than one version of the file exists on the 
TENEX tape, then the one appearing first on the tape will be 
written and (unless the "SAVE EXISTING FILES" option is used 
(q.v.)), a version appearing later on the tape will over-write 
it. Since MINI-DUMPER tapes normally have the highest version 
first, this would be undesirable, since the lower version number 
(older) file would remain on the disk. 

-184-



TENEX USER'S GUIDE 
TAINT 

Program Operation: 

January 1975 

When TAINT is started, it carries on the following dialogue with 
the user. 

1. TAINT asks: "LIST TAPE'S DIRECTORY? (YORN}" and the user 
replies with Y or N. If Y, TAINT asks for a file name to write 
the directory on (defaults being DSK: TENEX.LST). Examples are 
"LPT:" or "TAPE.DIR". 

2. TAINT asks: "READ ANY FILES?" 
The user replies Y or N. If Y, TAINT asks for the TENEX 
DIRECTORY NAME to PROJECT, PROGRAMMER NUMBER correspondence. The 
simplest response is "carriage return" abbreviated in this memo 
as "CR". This response implies "Read all TENEX directories on 
the tape into my directory (the one I am logged in as)". The 
next simplest response is, for example, 
SMITH"CR" 
JONES"CR" 
"CR" 
which means to load all of the files from SMITH and JONES into 
"my" directory. 

Another possibility is: 
SMITH,10,7"CR" 
"CR" 
which loads SMITH' s files into [ 10, 7] (assuming, of 
you have write access to the [10,7] directory). 
is: 
SMITH"CR" 
JONES,10,7"CR" 
D-DUCK"CR" 
M-MOUSE,10,6"CR" 
GOOFY"CR" 
II CR II 

course, that 
The full case 

which loads SMITH into "my" directory, JONES and D-DUCK into 
[10,7] and M-MOUSE and GOOFY into [10,6]. 

In all of the above, note that the end of the input is determined 
by typing a blank line. 

3. TAINT next asks "SAVE EXISTING DUPLICATE FILES?" 
A Y answer implies that no existing files with identical file 
names (after any truncation) will be overwritten. Therefore, the 
first (usually newest) file of a given name and extension on the 
tape will not be written over by a subsequent one with a 
different version number. Unfortunately, an already existing 
file on the disk (from an earlier magtape, for example) will not 
be overwritten either. 

-185-



TENEX USER'S GUIDE 
TAINT 

January 1975 

An N answer implies that all files will be overwritten, possibly 
resulting in an older version being the last one written as 
described above. 

To get the latest version from tape, write only into empty (but 
existing) directories, and answer Y to this question. 

Files do not (yet) get their correct creation date from the tape. 
They just get the date that the tape is written onto the disk, 
i.e., the current time and date. 

4. TAINT asks "TAPE DRIVE NUMBER". The answer 
digit from 0 thru 7, for MTA0: thru MTA7:. 
digit until the tape is mounted and ready.) 

to this is a 
(Don't type this 

5. TAINT then processes the tape, mentioning on the user's TTY 
the tape identification, each user name for which files exist 
(and where they are copied to if they are copied), truncated file 
names (if any), and any errors encountered. All output files (at 
present) are a multiple of 1000 words octal in length (a TENEX 
page). 

-186-



TENEX USER'S GUIDE 
TAPCNV 

January 1975 

TAPCNV 

TAPCNV is a subsystem which reads a card image file previously 
processed by MTACPY. It then does the appropriate conversion to 
ASCII from BCD (026 keypunch code), or eight-bit EBCDIC, or 
six-bit EBCDIC (~29 keypunch code) or from BCL. (Burroughs' 
external code). 

When a file is copied from magtape to disc using MTACPY, an 
additional auxiliacy file is created with extension .RECSIZ which 
contains the size of each record. TAPCNV uses this auxiliary 
file to correctly "parse" the data image file into card images 
for code conversion to ASCII. 

On startup, TAPCNV asks: 

TAPE IMAGE FILE = 

and the correct response is a file 
to disc by MTACPY. Then the 
corresponding .RECSIZ file. If it 
asks for it: 

RECORD SIZE FILE = 

previously moved from magtape 
program attempts to open the 
fails to find this file, it 

If this file does not exist, the file should be re-acauired from 
magtape using MTACPY to create this auxiliary file. ·· 

TAPCNV then asks, 

OUTPUT FILE = 
and the correct response is any writeable, ASCII file. If just 
an altmode is typed for name recognition, the program creates a 
default file with the same device, directory, and name as the 
input file, but the extension is .ASCII. 

Next, the program asks, 

BCL or BCD or EBCDIC?: 

conversion begins immediately if the response is BCL or EBCDIC. 
If the response is BCD, the ?rogram asks: 

026 or 029 CODE?: 

and conversion begins once the user responds. 

Trailing blanks are suppressed during conversion, a 
carriage-return, llne feed is supplied for each card image, and 
each new record is assumed to begin a new card image. 

-187-



TENEX USER'S GUIDE 
TAPCNV 

@TAPCNV 
TAPE IMAGE FILE = FILEl 

January 1975 

OUTPUT FILE = <altmode>FILEl.ASCII [NEW FILE] 
BCL OR BCD OR EBCDIC?7BCD 
026 OR 029 CODE?: 026 
DONE. 
@ 

-188-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

TENEX TECO 

# This tutorial is designed for a single fast 
# purpose is to convey the details of TECO to 
# acquainted with the TENEX System and who has some 
# expect from a text editor. 

reading. Its 
a reader who is 
idea of what to 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The first section describes a subset of TECO commands which 
are sufficient to do any ordinary editing job. The second 
section describes commands which are essential for editing large 
files, and includes some of the most useful commands in TECO. 
The final section gives brief descriptions of the commands of 
TECO not already described, and introduces the reader to groups 
of specialized commands for which he may later have a need. 

For more information see the TENEX TECO Manual. 

# 1. 
# 

BASIC EDITING 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The text which TECO edits is a pure character string, without 
restrictions or exceptions. A sequence of characters of almost 
unlimited length can be accommodated, and any one of the 128 
ASCII characters can appear at any position in this sequence. 
Even printer-control operations such as carriage return or tab 
are represented by ASCII character codes, and they require 
neither a special form of data to store them nor special commands 
to manipulate them. 

The Character Set 

The complete ASCII Character set is described in Appendix B of 
the TECO Manual. The characters can be divided into three 
groups, as follows: 

Each of the graphic characters (95 of them) prints 
a single letter, digit, or punctuation mark and 
then advances the printing element one position. 
The Space character is included in this group. 

Each of the format control characters (7 of them) 
causes the output device to take a special action, 
such as starting a new line, spacing to a tab stop, 
or ringing the bell. 

Each of the command control characters (26 of them) 
can be used by TENEX software for a one-character, 
special-purpose command. 

-189-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# Names for Control Characters 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Since a control character does not type a particular graphic, 
such as "a" or "+", it must be given an artificial name. In the 
text of the TECO Manual, a name is used which indicates the mode 
of production of the character on a terminal. For example, the 
character produced by holding down the CTRL key and striking the 
"D" key is called Control-D. In the listings of interactive 
dialog between the user and TECO, a shorter name is used for a 
control character, and this name is set off from the rest of the 
dialog by an enclosing pair of parentheses. For example, "(-D)" 
is used for Control-D. 

The following table gives 
important control characters 
characters are used in TECO: 

the short names of the most 
and suggests the way in which the 

( % ) 

(HT) 

(ESC) 

(DEL) 

A Carriage Return was transmitted at this 
point in the dialog. It was used to end 
a line. 

A (Horizontal) Tab was transmitted. It 
was produced by control-I and caused the 
terminal to space to the next tab stop. 

A Control-C was 
interrupted TECO. 

tran~mitted. It 

A Control-D was transmitted. It 
terminated the cha~acter string argument 
of a TECO command. 

An Escape 
produced by 
or "PREFIX" 
to execute 
commands. 

was transmitted. It was 
a key with "ESC" or "ALTMODE" 
written on it and caused TECO 

a string of previously typed 

A Delete was transmitted. It was 
produced by a key with "DEL" or "RUBOUT" 
written on it and caused TECO to abort 
the command it was executing. 

The functional descriptions just given are introductory sketches. 
subsequent sections will describe the use of these characters in 
detail. 

-190-

-

-

-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# Intege~ 
# 
# 

* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The main activity of TECO is to manipulate character string data, 
but TECO can also operate on integers. The commands make use of 
integers for three special purposes: to count off the characters 
or lines in a string, to specify the number of times a command 
loop is to be executed, and to represent an ASCII character code. 

The operators of elementary arithmetic, "+", "-", "*", and 
"/", are available for making up expressions. The division 
operator forms the quotient and then drops the fractional part 
without rounding. It is rare that the TECO user needs an 
expression with more than one operator in it; if such a case 
arises, however, the user should use parentheses to indicate the 
order of evaluation. For example, write "3+(4*5)", not "3+4*5. 

RUNNING TECO 

The purpose of TECO is to enable a user to enter a program or a 
document into the TENEX System. The essential steps of this 
process are (1) start up TECO, (2) type in the text, and (3) file 
the result; indeed, if a user could avoid mistakes and changes, 
this much would suffice. 

A Complete Session with TECO 

The dialog which follows is a sketch of the 
TECO by the user: 

overall control of 

@TECO{%) 
(%}--

*xxx{ESC)$(%) 

*xxx{ESC)${%) 

*;H{ESC)${%) 

@ • • • 

In the dialog just 

The user {who is at the TENEX 
EXECutive Level) types "TECO" and a 
Carriage Return. 
TENEX loads and starts TECO. 
TECO types "*" (go ahead sign) ; 
the user types one or more TECO 
commands, xxx; 
then types~cape {go ahead, TECO); 
and 
TECO echoes with "$" and a Carriage 
Return and then executes the command 
string. 
The cycle is repeated until the user 
has completed his work and filed the 
results. 

Finally, the user gives the Halt 
Command {;H) to exit from TECO, and 
TECO returns the user to the 
EXECutive Level. 

given, xxx represents a command 

-191-

string. 



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# Several commands can be typed in as a single command string, and 
# no separation is required between the commands. When the user 
# has finished typing a string of one or more commands, he types 
# the Escape character. Only then does the execution of the 
# commands begin, proceeding-!roinTeft to right. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The examples in this document make use of both upper and 
lower case letters (although some terminals are limited to upper 
case). TECO pays attention to the case of a letter only when the 
letter is part of the text being edited. When a lower case 
letter is typed as part of a command name TECO treats it as if it 
were upper case. Thus the Halt Command illustrated above can be 
typed in as either "~H" or "~h". 

An Error 

If TECO encounters a command which it cannot execute, it responds 
as in the following dialog: 

*8C;ADD(ESCl$(%) A string of four commands has 
been typed. TECO executes the 
first command, BC, but rejects 
the next command ";A". 

?42(%) 
8C;A(%) 

* 

TECO types an error number 
and types the command string 
through the illegal command 
(thus pointing out the error). 
TECO then discards the 
subsequent commands, "DD". 
Finally, 
TECO calls for a new and better 
command string. 

The Error Messages Appendix of the TECO Manual lists the error 
numbers used by TECO to report errors. In that appendix, the 
interpretation of "42" is "An undefined command character has 
been given". Therefore, the reason ";A" was rejected in the 
dialog above is that there is no such command in TECO. 

The Illustrations 

This writeup uses 
illustrate TECO. 
which a user types 
computer system. 

both isolated examples and dialogs to 
An isolated-exampie-shows the command string 

but does not show the response from the 

A dialog is a longer and more complete way to illustrate 
TECO; it shows a sequence of interactions between the user and 
the computer system. In the dialogs the user type-in is 
underlined and each use of a control character is explicitly 
shown. These conventions make clear who has done what. 

-192-

-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# During an actual session with TECO, the underlines and the 
# control-character names are not typed out. For the dialog given 
# above (TECO's handling of an error), the actual listing would 
# therefore be as follows: 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
t 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
t 
# 

*8C:ADD$ 
?42 
8C:A 
* 

TYPING IN THE TEXT 

The main storage of TECO is the buffer, and it holds the 
character string which is being edited. The buffer is initially 
empty, but it can ex~and to a capacity of over a million 
characters as the user enters his text. Since a typed page 
typically contains 2000 characters, the buffer can accommodate 
about 500 pages of text. Thus it is almost always the case that 
the entire program or document being edited fits in the buffer 
and can be manipulated as a single character string. 

There is a pointer associated with the buffer. It specifies 
the position in the buffer at which the main editing activity is 
going on, and it is moved by commands which are discussed in a 
later section. Many TECO commands, including those described in 
this section, operate relative to this pointer. 

Typing in the Text 

The Insert-String Command is the command normally used to type 
text- into the buffer. The command is entered by typing an "I", 
followed by a character string, s, of any length, followed by- a 
Control-D or ESC. The command-inserts the character string, s, 
into the buffer just before the pointer. The inserted string may 
contain any letter, digit, punctuation mark (including space), or 
formatting character. The only characters excluded are certain 
control characters which rarely appear in text. 

Two examples 9f the 1nsert-String Command follow: 

-193-



# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
TENEX TECO 

Ia ( "o) 

!This is(%) 
a test.(%) 
( "D) 

January 1975 

Insert the letter 
the pointer. 

Inserts two lines 
just before the 
pointer. 

II a II just before 

# A full dialog will now be given to illustrate the Insert-String 
# Command. In this dialog the user enters the upper-case alphabet 
# into the buffer, five characters per line. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

*IABCDE(%) 
FGHIJ (%) 
KLM(ESC)$(%) 
(%) 

*INO (%) 
PQRST(%) 
UVWXY(%) 
z ( % ) 
(ESC)$(%) 
(%) 

The user starts typing 
the alphabet ••• 
Exhausted, and fearful of losing 
his work, he terminates the command. 
TECO enters 14 characters (including 
2 End-of-Line characters) into the 
buffer. 

After a pause, the user 
completes the typing of 
the alphabet. 
Note that input resumed 
just where it left off, in 
the midst of the line which 
unfinished in the first 
Insert-String Command. 

was left 

The purpose of the (AD) at the end of a character string argument 
is to end the argument. When the argument is already at the end 
of a command string, the (AD) is not necessary. This useful 
exception is applied to both Insert-String Commands in the dialog 
just given, where (ESC) is used to end both the command string 
and the character string. 

A Dangerous Erro~ 

Suppose the user, intent on the job of getting some text into the 
buffer, starts typing the text without preceding it with an "I". 
When the user types Escape, the text is not entered into the 
buffer; instead, TECO tries to interpret it as a command string. 
If the user is unlucky, TECO will be able to proceed through 
several "commands" before being stopped by an illegal command. 

When this error occurs, the user needs to determine whether 
the text already in the buffer has been affected by the execution 
of the false commands. He can check this in one of three ways: 

He can trace, command by command, the action of 
TECO in its runaway interpretation of the text. 
Usually this is easy; occasionally it is very 

-194-

-



t 
t 
t 
# 
# 
# 
. t 
t 

TENEX USER'S GUIDE 
TENEX TECO 

difficult. 

January 1975 

He can type out and read the entire contents of the 
buffer. 

He can start over: that is, he can go back to 
previous version of the file being edited • 

the 

# Usually, TECO stops before the buffer . has been modified: but 
# some damage to the user's text is always a possibility when a 
# random sequence of commands is executed. 
t 
# 
# 
# 
t 
# 
# 
# 
# 
t 
t 
t 
# 
t 
# 
# 
t 
# 
# 
# 
t 
# 

.# 
# 
t 
# 
t 
t 
t 
t 
t 
t 
t 
t 
t 
# 
# 

Recovering Lost Ty2e-in 

TECO has a backup register in which it saves the most recent 
command string which was over 15 characters long. A command 
string is saved just before execution begins, so the whole string 
is saved even if it contains an illegal command. This backup 
register is of great interest to the user who has just typed a 
long insertion without supplying the initial "I", as described in 
the previous paragraphs. 

The :Get-Commands Command (:G) makes a copy of the command 
string iil the backup register and inserts the copy into the 
buffer just before the pointer. The following dialog illustrates 
the use of this command: 

*Daffodils 

..• snow fell.(%) 
(ESC)$(%) 
?32 (%) 
D (%) 

*:G(ESC)$(%) 
( % ) 

The Carriage Return 

The user is typing a 
novel as a single 
Insert-String Command .•• 
§ut he leaves the "I" off! 
TECO tries to interpret the 
text as a command string and 
(fortunately) fails before 
executing a single command. 

The user recovers with a 
;Get-Commands Command, and the 
novel is copied from the backup 
register into the buffer. 

The type-in of a Carriage Return, indicated by "(%)" in the 
dialog, requires a special explanation. Strictly speaking, it is 
the function of the Carriage Return key only to move the printing 
element back to the left margin. A second key, Line Feed, is 
provided to advance the paper TENEX intervenes as follows: 

-195-



# 
# 
# 
# 
# 
# 
# 
# 
t 
t 

TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

A Carriage Return character (decimal code 13) 
coming in from the user's terminal is echoed as a 
Carriage Return followed by a Line Feed and is then 
entered into storage as an End-of-Line character 
(decimal code 31). 

An End-of-Line character going out 
terminal is converted into a 
followed by a Line Feed. 

to the 
Carriage 

, 
user s 
Return 

t This arrangement has substantial advantages. When the user wants 
# to end a line, he needs only a single keystroke (Carriage 
# Return). Further, the separation between lines in a stored 
# character string is represented by a single character used only 
# for that purpose (End-of-Line). Of course, the user must use a 
# special technique to enter a true Carriage Return character into 
# storage, but the need for this character is rare. 
# 
# 
# 
# 
t 
# 
# 
# 
# 
# 
# 
# 
# 
# 
t 
# 
# 
# 
# 
# 
# 
# 

* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Typing Tricky Text 

The list of allowed characters given in the description of the 
Insert-String Command excluded some ASCII characters. The fine 
points of this matter are discussed in the Character Set 
Appendix. For the present, it is sufficient to introduce a 
command which can be used to insert any ASCII character into the 
buffer. The Insert-Code Command (n-rr-inserts a single character 
into the buf1er just before the pointer. Y~nserts the 
character whose decimal code is given by the integer value, n, 
which precedes "I" in the command. This command offers full 
generality but is not, of course, as convenient as the 
Insert-String Command. 

In the following dialog, the user wants to type out a line 
of slashed zeroes by using (1) a line of "O" characters, (2) a 
true Carriage Return (without a Line Feed), and (3) a line of 
slashes. He must use the Insert-Code Command to get a Carriage 
Return (decimal code 13) into the buffer since a typed Carriage 
Return would be transformed by TENEX into an End-of-Line 
character. 

*IOOO(-D)$13II///(ESC)$(%) 
(%) -----

FILING THE TEXT 

TECO communicates with the TENEX file system on behalf of the 
user: that is, certain TECO commands are used to transmit text 
between a TENEX file and the editing buffer of TECO. Since the 
editing buffer has such a large capacity, the user can almost 
always read his entire file into the buffer rather than process 
it piece by piece. Under these conditions, input/output is 

-196-

·-

-

-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# simple and only three commands are required, as follows: 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The :Yank-File Command (:Y) is the input command. 
It Pf aces a copy of the designated file after 
whatever is already in the editing buffer and 
leaves the file unchanged. 

The :Unget-File Command (:U) is the output command. 
It replaces any previous contents of the designated 
file with a copy of the entire contents of the 
buffer and clears the buffer. 

The :Save-File Command (:S} saves the entire buffer 
on a- new version of the file. The buffer is not 
cleared. 

File Designators 

Each of these commands requires a file designator in order to 
continue. A full description of t~ay in which TENEX files are 
designated is outside the scope of an introduction to TECO. This 
discussion will assume the simple case that the desired file is 
on the main system storage device and is in the user's own 
directory. I~ that case, a file is uniquely designated by 

the name of the file followed by 

the extension followed by a 

the version number. 

II • II ' , 

a II II . , 

and 

The name and the extension are each a sequence of 
digits: the version number is an unsigned integer. 
11 HENRY.IV:2 11 is a file designator. 

letters and 
For example, 

The Designator Dialog 

A :Yank-File or :Unget-File Command obtains its argument in 
unusual way: it-asks for it. the dialog proceeds as follows: 

The user types the command 
followed by an Escape. 

(" :Y" or ":U" 

TECO types "INPUT 
appropriate. 

FILE:" or 

The user types all or part of 
followed by an Es.cape. 

-197-

"OUTPUT 

a file 

or ":S"} 

FILE:", as 

designator, 

an 



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# TECO types a brief message acknowledging the 
# correctness of the file designator and asking for 
# confirmation. 
# 
# The user types a Carriage Return to confirm. 
# 
# TECO performs the input or output operation and 
# then types "*" when it is ready for further 
# commands. 
# 
# When things do not go smoothly, one of the following cases 
# applies: 
# 
# If TECO finds that a file designator is illegal, 
# TECO types "?" and prompts the user to try again. 
# This occurs when a file requested for input does 
# not exist or when a file designator is ill-formed. 
# 
# If the user decides to abort the command before 
# typing the confirming Carriage Return, he must type 
# two Delete characters. TECO will then go to the 
# await-commands state without performing any 
# input/output. 
# 
# If the user decides to abort the command after 
# typing the confirming carriage return, it is too 
# late. He should let the operation run to 
# completion and then take whatever action is 
# appropriate. Otherwise, he must cope with a 
# partially completed input/output operation, and 
# this requires study of the section called 
# "Complicated Input/Output". 
# 
# 
# Designator Recognition 
# 
# When the user is inputting a file, he can type just enough of the 
# name and extension to uniquely specify the file in his directory 
# and then type the Escape character. TECO will then ascertain and 
# type out the remainder of the designator. Occasionally, the 
# designator assumed by TECO will not be what the user wanted, and 
# he can use two Delete characters to get out of the designator 
# dialog and start a new input/output command. On other occasions, 
# TECO will decide that the file designator thus far typed is 
# inadequate to uniquely specify a file and will ring the bell at 
# the user's terminal to ask for more characters of the designator. 
# 
# As a special case which is very useful, the user can reply 
# to the request for a file designator by typing Escape 
# immediately, without g1v1ng any part of the required file 
# designator. TECO will assume (and type out) the designator for -

-198-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# the file last used in a ;Yank Command in the current TECO 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
l 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

session. 

It is a good rule to let TENEX fill in the version number of 
a file. That is, even if the user does not make general use of 
designator recognition, he should not type the version number. 
When the user types Escape, TENEX will fill in the appropriate 
version number. For an output file, TENEX will supply "l" for a 
new file or a version number one greater than the highest version 
of an existing file. For an input file, TENEX will supply the 
highest version number of an existing file. 

If the rule just mentioned is followed, a new version number 
will be created every time a file is edited, and no previous 
version will be overwritten. This convention makes it easy to 
keep the previous version of a file until the integrity of a new 
version has been established. When an old version is no longer 
wanted, it can be deleted by the TENEX Executive-Command DELETE. 
Thus the preparation of text and the housekeeping of the file 
directory are separate activities. 

Preparing a Long File 

It is prudent to pause from time to time in preparing a 
file and save a copy of the file as it currently stands. 
limits the loss which can result from a system crash, the 
down of the communication line, or a serious user error. 
following dialog, the user saves two intermediate versions 
file before outputting the third and final version. 

@TECO(%) 
* • • • 

*;S(ESC)$(%) 
(%)~-

The user starts TECO, 
types in a lot, 
then pauses to save a copy. 

OUTPUT FILE: HENRY.IV; (ESC)l [New File]l!L 
(%) 

-199-

large 
This 

break 
In the 
of his 



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
TENEX TECO 

* 

*;S(ESC)$(%) 
(%)--

Januar-y 1975 

The user continues to type in his 
file. The next time he saves a 
copy, TECO types the designator. 

OUTPUT FILE: (ESC)HENRY.IV;2 [New Version](%) 
(%) ~-- ---

* 
*:U(ESC)$(%) 
(%) 

The user types the remainder of his 
file and outputs the complete copy. 

OUTPUT FILE: (ESC)HENRY.IV;3 [New Version](%) 
~-- ---( % ) 

# In a complicated project and especially in a project in which 
# files are shared among many users, it is useful to maintain a 
# record of the time and source of each new version of a file. The 
# :Date-and-Unget-File Command (;D) provides a way to keep this 
# record within the file itself. This command is equivalent to the 
# :Unget-File Command (:U) except that it adds a date line at the 
# oeginning of the buffer just before outputting the--5urter. The 
# date line consists of 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

a comment string (usually just a single semicolon), 
followed by 

the complete file designator, followed by 

the date and time at which the new version is being 
written out, followed by 

the name of the user who has produced the version. 

If this command is used to perform output of every new version of 
a file, a log of all modifications to the file will be 
accumulated at the beginning of a file. Since each date line 
begins with a semicolon, it is ignored by the many TENEX 
subsystems which treat such a line as a comment. Since a date 
line is just an ordinary line of text, it can be deleted when it 
becomes superfluous. 

POSITIONING THE POINTER 

The pointer is always located between two characters or, as a 
special case, at the beginning--oi"-ena of the buffer. The pointer 
is not a character itself, and does not take up any space in the 
buffer. TECO editing is built up around the moving of this 
pointer back and forth through the text, and many of the TECO 
commands operate relative to the current position of the pointer. 

-urn-



# 
t 
# 
# 
# 
# 
# 

•• 
# 
# 
# 
t 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER 1 S GUIDE 
TENEX TECO 

January 1975 

TECO maintains several registers which contain integer 
values with special significance. The register named "." 
(period) always contains the number of characters in the buffer 
before the current position of the pointer. The register named 
"Z" always contains the number of characters in the entire 
buffer. "B" contains 0, which is the beginning of the text 
buffer. ";B" is the character address at the top of the current 
page, while ";Z" is the location of the bottom of the current 
page. If ;B is preceded by a number, its value is the location 
of the top of that page. The user can refer to these registers 
by name wherever an integer value is required in a TECO command. 

The next two commands to be considered are the simplest in 
TECO. Each specifies the positioning of the pointer by an 
integer argument. As is the case with many TECO commands, this 
integer argument can be omitted and the TECO interpreter will 
fill in a well-defined default value. 

The Jump 

The Jump Command (nJ) places the pointer after the ~-th character 
of the buffer. 

28J 

0J 

J 

Places pointer after the 
characters of the buffer. 

first 28 

Places the pointer at the beginning of 
the buffer (after 0 characters). 

Means 0J. 

ZJ Places the pointer at the end of the 
buffer (after all z characters). 

z-lJ Places the pointer just before the last 
character of the buffer. 

.+3J Advances the pointer across 3 characters. 

;BJ Jump to the top of this page. 

;ZJ Jump to the bottom of this page. 

24;BJ Jump to the top of page 24. 

The Character Skip 

The Character-Skip Command (nC) advances the pointer n characters 
through the buffer. 

-201-



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

3C 

c 

-29C 

-c 

Advances the pointer across 3 characters. 

Means IC. 

Moves the pointer 29 characters backward 
(toward the beginning of the buff•r). 

Means -lC, 
character. 

moves pointer backward one 

# The Line-SkiJ2 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
t 
# 
# 

Certain commands in TECO are line-oriented. They consider each 
End-of-Line character in the buffer to be the last character of a 
"line" of characters, and consider any character after the last 
End-of-Line character in the buffer to be a line. They consider 
the line which contains the character just after the pointer to 
be the "current" line of the buffer. The line-oriented commands 
operate on the buffer in terms of these imaginary divisions. 

The first of the line-oriented commands is the Line-Skip 
Command (nL) • This command advances the pointer to the beginning 
of the n-th line after the current line. The argument to this 
command-does not have to be positive. When n is zero, the phrase 
"the n-th line after the current line" means-"the current line" 
and when n is -5 (for example), the phrase means "tnefi!th line 
before the-current line". ---

3L Advances pointer to the beginning of the 
third line after the current line. 

L Advances pointer to the beginning Of the 
next line (11 is assumed) • 

0L Moves pointer back to the beginning of 
the current line. 

-L Moves pointer back to the beginning of 
the previous line (-lL is assumed). 

-12L Moves pointer back 12 lines. 

:L Move to the end of the current line. 

-:L Move to the end of the previous line. 

2:L Move to the end of the next line. 

-202-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# Combinations 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Since an individual TECO command 
characters long, it is convenient to 
when they perform an operation which, 
view, is unitary. The first of 
particularly useful. 

can be just one or two 
run a few commands together 
from the user's point of 
the following examples is 

L-C 

J3L 

ZJ0L 

ZJ0LC 

Places the pointer just after the text of 
the current line (and just before the 
End-of-Line character) . 

Places the pointer at the beginning 
the fourth line of the buffer. 

Places the pointer at the beginning 
the last line of the buffer. 

of 

of 

Places the pointer after the first 
character of the last line of the buffer. 

The last example of a command string could give an error message. 
If the last character of the buffer is an End-of-Line character 
then the last line of the buffer is the empty string of 
characters between the End-of-Line and the end of the buffer. In 
this case, "0L" leaves the pointer at the end of the buffer. 
This situation arises often in actual practice. 

TYPING OUT TEXT AND INTEGERS 

The user examines the contents of the buffer by means of the 
Type-Out Commands. The simplest of these is the Type-String 
Command (m,nT). It types everything from just after- the m-th 
character of the buffer to just after the ~-th character. 

TECO has a convenient abbreviation, "H", for the argument 
pair, 0,Z which designates the contents of the whole buffer. 
This abbreviation can be used with the !YPe-String Command. 

HT Types the whole buffer. 

Z-10,ZT Types the last 10 characters in the 
buffer. 

0, .T Types the buff er up to the pointer. 

;B,;ZT Types the current page. 

-203-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# Line-Oriented Type-Out 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

A more convenient Type-Out Command is the Type-Lines Command 
(nT}, which types the characters between the pointer and the 
beginning of the ~-th line after the current line. The argument, 
~' can be zero or negative, as with the ~ine-Skip Command. 

3T 

T 

0T 

-12T 

Types characters from the pointer up to 
the beginning of the third line after the 
current line. 

Types the part of the current line which 
is after the pointer (lT is assumed}. 

Types the part of the current line 
is before the pointer. 

which 

Types the previous 12 lines and the part 
of the current line before the pointer. 

The Type-String and Type-Lines Commands have the same code name, 
"T",-but they are diitinguished by having a pair of arguments and 
one argument, respectively. 

A second line-oriented type-out command is the View Command 
(m,nV), which types m-1 lines before the current line, then types 
the current line, then types n-1 lines after the current line. 
When the two arguments, m and n would be equal, the command can 
be used with a single argument (nV). 

10,2V 

2V 

v 

Starts with the ninth line before the 
current line and ends with the first line 
after. 

Types the 
line, and 
assumed} • 

Types the 
assumed). 

preceding line, the current 
the following line ("2,2V" is 

current line ("l,lV" is 

Three Type-Out Commands have been described here although, in 
theory, one would be sufficient. Each has its particular 
application. The Type-String Command, with its fussy generality, 
is seldom useful-except for the special form, "HT", which types 
out the whole buffer. The Type-Lines Command, with its 
sensitivity to the position of the pointer, is used to check the 
pointer position just before the insertion or deletion of text. 
Finally, the View Command, with its convenient simplicity, is 
used to look at-the general context in which the pointer appears. 

-204-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# Examples of Type-Out 
# 
# 
* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

For this dialog, the buffer contains the alphabet as it was typed 
in earlier, in the examples of the !nsert-String Command. 

*HT{ESC)${%) 
ABCDE{%) 
FGHIJ{%) 
KLMNO {%) 
PQRST{%) 
UVWXY {%) 
z ( % ) 
( % ) 

*10,15T(ESC)$(%) 
J (%) 
KLM(%) 

*15J{ESC)$(%) 
(%) 
*2T(ESC)$(%) 
NO(%) 
PQRST(%) 
(%) 
*0T(ESC)$(%) 
KLM(%) 

*V(ESC)$(%) 
KLMNO (%) 
( % ) 
*2V(ESC)$(%) 
FGHIJ(%) 
KLMNO(%) 
PQRST(%) 
( % ) 

This command types out 
the whole buffer and, as 
promised, reveals the 
alphabet, stored 5 
letters per line. 

What does this do? 
(Everybody who expected 
"KLMNO" raise their hand.) 

Puts the pointer before 

Types the remainder of 
the current line and 
all of the next line. 

Types the current line 
up to the pointer. 

Types the entire 
current line. 

Types the current 
line and one neighboring 
line in each 
direction. 

"N". 

TECO follows the successful completion of any command by typing 
out an End-of-Line. It follows that a blank line will appear 
after a type-out if and only if the text being typed out ends 
with an End-of-Line. For example, the alphabet typed out above 
ends with an End-of-Line and is followed by a blank line, 
indicated by the solitary"(%)". 

Abbreviated Commands 

A line feed character simulates the command string "LT(ESC)" if 
it appears as the first character in a command. Thus, it 
advances the pointer to the beginning of the next line and then 
types that line. 

Backspace (AH) types the preceding line by simulating the command 

-205-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# "-LT(ESC)". As with linefeed, backspace operates in this fashion 
# only if it is the first character in the command. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

* # 
# 
# 
# 
# 

The Type-Integer Command (n=) types out the value of the integer 
expression, n. The command is useful in obtaining the value of 
"." (the numb~r of characters before the pointer) or "Z" (the 
number of characters in the buffer), but it is not limited to 
this purpose. 

The Access-Code (lA) Function of TECO has as its value 
ASCII code for the character which immediately follows 
pointer. This function can be used wherever an integer value 
allowed. In particular, it can be used as the argument to 
Type-Integer Command just described. 

the 
the 
is 

the 

Under certain circumstances, the Access-Code Function can be 
essential. The situation is analogous to the problem of 
inserting control characters into the buffer, which was discussed 
earlier when the Insert-Code Command was introduced. Just as 
there are certain characters which can be inserted only by means 
of their integer codes, so there are certain characters which can 
only be examined in this way. Some of the characters do not 
print out anything (not even a space) when the string of which 
they are included is typed out: for example, Control-A. Other 
characters are modified by TENEX as they are typed out: for 
example, a lower-case letter is capitalized when it is 
transmitted to a terminal which does not have lower case. 

The following 
alphabet, as before. 

*15J(ESC)$(%) (%} ___ _ 

*.=(ESC)$(%) 
151%T--
( % ) 
*Z=(ESC)$(%) 
32(%)--
( % ) 
*1A=(ESC)$(%) 
78 (%) -
( % ) 

DELETING CHARACTERS 

assumes the buffer 

Puts the pointer after the 
15-th character. 
Shows that the pointer is 
after the 15-th character. 

Shows that there are 32 
characters in the buffer. 

Shows that the character 
after the pointer is "N" 
(decimal code 78) and not 
(decimal code 109). 

"n" 

contains the 

The user can delete a substring from the buffer by any of three 
commands. The simplest of the three is the Kill-String Command 
(m,nK). It deletes everything from just after-the m-th character 

-206-

-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# of the buffer to just after the n-th character and then moves the 
I I I -# pointer to the pos1t1on ol the ~elete~ characters. 

# form "HK" deletes the contents of the whole buffer. 
# 
# 

* • • # 
# 
# 
# 
# 
# 

* # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

A given Kill-String Command deletes exactly what a 
Type-String Command with identical arguments types out. This 
iakes it easy to "simulate" a deletion (by typing out the string 
to be deleted) before performing the actual deletion . 

The Kill-Lines Command (nK) is the line-oriented Deletion 
Command of TECO. It deletes the characters between the pointer 
and the beginning of the n-th line after the current line. 
Again, in parallel with -the Type-Out Command, this command 
deletes exactly what the !vpe-Lines types out. 

K 

:K 

3K 

3:K 

.,:ZK 

-K 

0K 

-:K 

Kill the (remainder of) current line. 

Kill the (remainder of} current line, but 
not the end-of-line character. 

Kills the (remainder of) current line and 
the two following it. 

Same as 3K but the final 
left. 

Kills this entire page. 

Kills the part 
pointer. 

of the 

end-of-line is 

page after the 

Kill the preceding line and the initial 
portion (before "."} of this line. 

Kills the part of this line to 
of the pointer. 

the left 

Same as -K except an additional 
end-of-line character is also killed. 

Delete-Characters Command (nD) operates relative to the The 
pointer. 
There is 
command: 
characters 

8D 

It deletes the n characters just after the pointer. 
no Type-Out Command which is directly analogous to this 

but this command is normally used to delete just a few 
and is used more casually. 

Deletes the 8 characters just 
pointer. 

-207-

after the 



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

D 

-D 

Deletes the character 
pointer (lD is assumed). 

just 

Deletes the character just 
character (-lD is assumed) • 

after the 

before the 

# The End of the Alphabet 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

In the following dialog, the alphabet 
!nsert-String Command many pages ago) 
appearance. 

(as entered 
makes its 

*JCDDV(ESC)$(%) 
ADE(%) 
(%) 
*2,7T(ESC)$(%) E1%r __ _ 
FGH(%) 
*2,7K(ESC)$(%) 
(%) 
*C6DC4DC(ESC)$(%) 
(%) ----

*3T(ESC) $ (%) 
T1%r-
UVWXY (%) 
z ( % ) 
(%) 
*3KHT(ESC)$(%) 
ADIOS(%) 
(%) 

CONTROLLING TECO 

Starts at the beginning, skips 
a letter, deletes two, checks. 

Simulates deletion of 
characters 
3 through 7. 
Performs deletion. 

Does more deletions. 

Simulates deletion 
from pointer 
through next 
2 lines. 

Performs deletion. 
and checks result. 

by the 
farewell 

At the beginning of this section, we observed that the ordinary 
commands of TECO are executed only when an Escape is typed. In 
addition to these ordinary commands, however, TECO has certain 
control commands which are single characters and which are 
executed immea1ately. These commands are used to control TECO 
itself rather than to edit the text in the buffer. 

-2f/J8-

-

-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# Interrupt TECO 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The user sometimes needs to access the TENEX EXECutive. For 
example, he may want to use the DIRECTORY command to check 
existing file names before choosing a name for a new file he has 
prepared; he may LINK to another TENEX user without wrapping up 
his TECO session; or he may wish to eliminate an unwanted file 
by means of the DELETE command. To get back to the TENEX 
EXECutive he uses the TECO Control Command Control-C (AC) and 
ends with the EXECutive command CONTINUE, as in the following 
dialog: 

*IA(HT) B(%) 
("D)-LT(ESC)$~ 
A B(%) 
(%) 
*(AC) "'C(%) 
@STOPS 3(%) 
@CONTINUE(%) 
T(ESC)$(%) 
A B (%) 
( % ) 

The user inserts a line 
which includes a tab 
and types it out 
with standard tab stops. 
Interrupts TECO. 
Uses Exec to set stop. 
Returns to TECO. 
Types out the line 
with new tab stops. 

The Control-C Command does not always result in an immediate 
interrupt. If TECO is performing input/output, the interrupt 
will be delayed until the buffers have been properly emptied. To 
obtain an immediate interrupt, the user can type a second 
Control-C; when he does so, however, data in the buffers may fie 
lost. Usually this is acceptable only during a type-out at the 
user's terminal. 

Abort a Command 

A different kind of interrupt is produced by the Delete 
(DEL), also called RUBOUT. Two cases must be considered: 

If Delete is typed during execution of a command, 
that command is immediately aborted and TECO types 
"*" and enters its await commands state. 

If Delete is typed during type-in of a command 
(when TECO is not executing a command), TECO rings 
the bell on the terminal and waits to see what the 
user does next. 

If the user types a second Delete, TECO discards 
the command string thus far typed in, types"*", 
and enters the await commands state; however, 

-209-

Command 



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

If the user types anything but a 
assumes the first Delete was 
forgets it. 

a 
Delete, TECO 

mistake and 

The cautious handling of this case is appropriate 
because the user could type many lines of text as 
an unfinished Insert-String Command and then 
accidentally type a Delete. Rather than wiping out 
the type-in, TECO rings the bell to warn the user 
not to type Delete again. 

# In the following dialog, the user starts an input command, gives 
# the wrong file designator, and deliberately aborts the command 
# instead of confirming it. A second try causes the desired file 
# to be read in. The user instructs TECO to type the whole file, 
# reads the first few lines, decides it looks right, and aborts 
# further type-out. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
'# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

*;Y(ESC)$(%) 
( % ) 
INPUT FILE: HENRY.VI(ESC);l 

( % ) 
*;Y(ESC)$(%) 
(%)--
INPUT FILE: HENRY.IV(ESC) ;3 
21982 Chars(%) 
(%) 
*HT(ESC)$(%) 
so shaken are we,(%) 
so wan with care,(%) 
Find we (DEL) (%) 
( % ) 
(%) 
* 

Checking up on TECO 

[Confirm] (DEL) (BEL) (DEL) 

[Confirm]fil 

An interrupt of a special kind is produced by the Control-T 
Command. This command can be used at any time at all and will 
promptly report on the status of the System, giving the user the 
status of TECO (waiting for input or running), the TENEX load 
average, and the CPU and console time used. Since the command 
never disturbs the command being executed by TECO, it is a safe 
and convenient way to check up on TECO when TECO seems to be 
taking a long while to execute a command. 

The Control-T Command can be used to determine whether a 
delay in the response of TECO is due to a heavy load on the TENEX 
System, a minor breakdown in TENEX, or an infinite loop entered 
by the user (this facility will be explained later). But an 

-210-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# especially 
# procedure. 

interesting example is the following recovery 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

When there has been a failure in the TENEX System, the user 
may find himself in a somewhat uncertain position in TECO. 
Either (1) there has been a crash of TENEX TECO and the system 
has· been restored without the loss of its previous state or (2) 
the communication link between the user and TENEX has been broken 
and the user has used the EXECutive ATTACH command to 
re-establish the connection and resume at the point of 
interruption. The uncertainty results from certain random 
processes which may occur during the breakdown. The user should 
explore the situation as follows: 

("T)IO WAIT 
LOAD AV. = 

('•R) (%) 

AT 4262(%) 
0.07, USED 0:02:08.6 IN 0:48:06(%) 

First,the user determines the status 
of TECO. 
Apparently TECO is waiting for a 
command. 
Next, the user looks at the current 
command string: 

BTRFSK#!(DEL) (BEL) (DEL)(%) 

* ... 
The command string looks like line 
noise and the user erases it. 
The user proceeds, if necessary, to 
check the state of TECO in other 
ways appropriate to the situation. 

Erasing Typing Errors 

A command string is not executed as it is typed in. Instead, it 
is accumulated in a special command register and is executed only 
when an Escape is typed. The three commands given here are 
specialized commands designed to assist in correcting a command 
string as it awaits execution in the command register. 

Each erasing command is a single control character, and acts 
immediately when it is entered. The Control-A causes the last 
character in the command register to be erased. The Control-Q 
Command causes the last non-empty line in the command register to 
be erased. The Control-R {for "Retype") Command causes the last 
non-empty line in the command register to be typed out. 

In the following dialog, the user inserts three words and 
types out the buffer. Along the way, he illustrates the use of 
single and multiple erasures and of the retyping of a line to 
"clean it up" after it has been cluttered by erasures. 

-211-



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
TENEX TECO 

*HASTE(%) 
MAKES(%) ror-m 
("Q) (%) 

*!HASTE(%) 
MAKE(%) -
WA (A A)\A (''A) \W (''A)\ ( %) 
( R) {%) ~ ~ 
MAKES{%) 
WASTE.(%) 
{ESC)${%) 
{ % ) 
*HK{AA)\KT{ESC)${%) 
HASTE{%) 
MAKES{%) 
WASTE.(%) 
( % ) 

January 1975 

The user starts 
an insertion. 
He notices the "I" 
is missing, erases 
the command string 
and starts over. 
He erases "A", "W", 
and an End-of-Line 
and Retypes the line. 

The user almost clears 
the buffer, but 
changes "K" to "T". 

# Erasing typ!~~ ~~ using Backspace Key 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Some terminals are able to perform the backspace function. 
Hardcopy devices do this by moving the print head: CRT displays 
can move the cursor. To take advantage of this, Control-H or 
Backspace deletes characters just as Control-A does but indicates 
what has been deleted by using the mechanical backspace 
mechanism. In order to activate this function, the user must 
tell TECO what style terminal he is using. This is done by 
commands such as 3AH$. (Four characters: 3, A, H, and ESCape.) 
Instead of 3 the user should select one of the following: 

Code 

0 

1 

2 

3 

4 

5 

6 

Terminal 

No mechanical backspaces (Model 33) 

Mechanical backspace but no eraser. 
{TI, 2741) 

Scope that uses AH to backspace 
the cursor. 

Bendix scope, Backspace sequence 
is ESCape D. 

Terminal, VT06 scope. 
character is AY. 

Backspace 

Beehive. Backspace character 
is AD. 

Infoton, Backspace character is 

-212-

A z e -



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

f 2. 
t 

LARGE-SCALE EDITING 

# 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
# 
# 
t 
# 
# 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 
t 

The previous section described a collection of commands. Those 
commands can be used to select any position in the text being 
edited and then insert or delete any characters at that position. 
Additional commands are required when the file being edited is 
large and the modifications being performed are complicated. 

When a file is more than a few dozen lines long, it is not 
efficient to locate a position within the file by counting lines 
or characters; instead, commands are required which can locate a 
particular phrase or identifier or number within the buffer. 
When a passage of text which is more than a few words long must 
be moved, it is not efficient to delete the passage and then 
retype it elsewhere; instead, commands are required which can 
extract, move, and insert the passage without retyping. When a 
particular modification must be made over and over {as in the 
case of a consistently misspelled word), it is not efficient to 
type the necessary command string over and over; instead, some 
kind of loop command is required. 

The commands described in this section fill the requirements 
just mentioned. Although the commands described are introduced 
here by the problems of large-scale editing, they are useful for 
all editing jobs. The commands of the previous section are the 
framework of TECO; the commands in this section supply the 
power. 

SEARCHING THROUGH THE TEXT 

The Search Command is used to search the buffer for an occurrence 
of a particular substring. It is entered by typing "S" followed 
by a character-string argument. The character-string argument is 
a sequence of characters, the citation, terminated by typing 
Control-D. The Control-D can be omitted when a Search Command 
occurs at the end of a command string. 

Ordinary searches look after the pointer for a character 
sequence which matches the c1tat1on. If the repetition count 
(v.i.) is negative, a reverse search has been specified and the 
search will proceed backwards from the pointer. In either case a 
match is found, the pointer isliiOVea-to the position just after 
the matched character sequence; otherwise, the pointer is not 
moved from its original position and TECO types the error message 
"?SEARCH?35". 

The Search Command can be preceded by an integer value, n, 
and will-thereupon be repeated n times. The effect is to search 
for the n-th occurrence of the citation after the pointer. 

-213-



# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

Sa ( "'D) 

-Sa ( "'o) 

Sit("'D) 

s ( % ) 
Here 

-3S; ("'D) 

Finds the first occurrence of "a" after 
the pointer and moves the pointer to just 
after that occurrence. 

Finds the first occurrence of "a" 
the pointer. 

before 

Finds "it" in any context, either as an 
independent word or within another word. 

Finds an occurrence of the 
word "Here " at the beginning of a line. 

Finds the third occurrence of a semicolon 
after the pointer and moves the pointer 
to just after that occurrence. 

Finds the third occurrence of semicolon 
before the pointer. The pointer is left 
after the find. 

# A successful search of the buffer always moves the pointer. This 
# is taken for granted in the explanation of some of the examples. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
ff: 
# 
# 
# 
# 
# 
# 
# 
# 
# 

The Search Command can be deceptive. It is quite natural 
for a user to give a search command for a particular pattern, get 
an error message in response from TECO, and conclude that the 
specified substring is not present in the buffer. However, this 
conclusion is unwarranted if the user forgot to set the pointer 
to the beginning of the buffer before the search. 

The Replace Command 

A natural extension of the Search Command is the Replace Command, 
which not only searches the buffer but modifies It. The command 
is entered by typing "R" followed by two character string 
arguments, the citation and the replacement. Each character 
string argument is terminated by typing Control-D. The command 
does exactly what the Search Command does and one thing more: if 
the substring specifiea by the pattern is found, it is deleted 
and a copy of the replacement is inserted. Replace commands also 
may take a repetition count which can be negative to specify a 
reverse replace. 

Ra ("'D) b ("'D) Finds the first occurrence of 
an "a" after the pointer, moves 
the pointer to just after that 
occurrence, and replaces it 
with "b". 

-214-



# 
i 
# 
# 
# 
# 
i 
# 
# 
i 
i 
i 
i 
# 

TENEX USER'S GUIDE 
TENEX TECO 

R (%) 
Here (''D) (%) 
There ( "o) 

-3 R@# ! { ... D) { ... D) 

R {%) 
("D) ("D) 

Ra page (''o) a(%) 
page { "o) 

January 1975 

Replaces the next "Here " which 
begins a line with a "There ". 

Replaces the past three "@#!" 
strings with nothing1 that is, 
deletes them. 

Deletes the next End-of-Line. 

Starts a new line between 
the words "a" and "page". 

i The Replace Command is perhaps the most frequently used command 
i in TECO. When a person is making the changes indicated in a 
i marked-up listing of a file, he can often proceed from beginning 
i to end with one Replace Command after another. When there is 
# danger that a Replace Command may apply in the wrong place, the 
i user can simply include a little more context in the pattern. 
i Consider, for example, the following ways of making "big plans" 
i into "big plane". 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
# 
i 
# 
i 
i 
i 
i 
i 
i 

Rs ("D) e ("D) 

Rplans("D)plane("D) 

This works if the site of the 
change is just a few characters 
after the pointer and there is 
no intervening "s". 

This is more selective and will 
be right unless there is 
another "plans" along the way 
to the site of the change. 

Rbig plans("D)big plane("D) 
This is still more selective. 

Sbig plans("D)-Die("D) 
This saves a few keystrokes 
it is more complicated 
error prone. 

but 
and 

It is good practice to follow a Replace Command with a View 
Command. The type-out verifies that the citation and replacement 
were correct and that the modification was applied at the right 
place in the-fiuffer. Further, when the user is in the habit of 
typing out each change, he can risk small errors, such as a 
misplaced replacement, in order to work faster. 

-215-



TENEX USER'S GUIDE 
TENEX TECO 

January 1975 

# Somet~i.!l~-~!!~E.~ 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Three match control characters are provided 
pattern-or-a-~earch Command or ~eplace command. 

for use 
They are: 

Matches any character which appears at 
the corresponding position in the buffer. 

Matches a Separator; that is, any 
character except a letter, digit, ".", 
"$", or "%". (These are the characters 
which are commonly used in identifiers.) 

Matches any character except the 
character which immediately follows the 
('"N) in the citation. 

in the 

The match control characters can be used in a citation with other 
characters in any combination or sequence. However, a Control-N 
and the character which follows it act as a pair to match (or not 
match) a single character of the buffer. 

S (''S) it ("'S) ("'D) 

s(''s) ("'N) ("'S)a("'D) 

Finds any 
enclosed in 

two characters 
brackets. 

Finds an "it" which is 
part of a longer word, 

not a 

Finds a word whose second 
letter is "a". Note that 
11 ("'N) ("'S)" are used in 
combination to match anything 
~~~pt a Separator character. 

The Search Commands cannot be convincingly applied to the
example we have been using (the alphabet). This is
precisely because they are designed to look at the content
of the buffer. Accordingly, we assume conventional text'-'has
been typed into the buffer, errors found, and a decision to
correct them.

-216-

--

-

* #
i

t

t
t

t

TENEX USER'S GUIDE
TENEX TECO

*Sfield(AD)$V(ESC)$(%)
a great battlefield(%)
(%)
*Sfield(AD)$V(ESC)$(%)

field as a(%)
(%)
*I·,(AD)$V(ESC)$(%)
field, as a(%)
(%)

January 1975

The user finds a "field",
checks, and sees that
it is the wrong one.
The user finds the next
"field",
and makes sure it is
the right one.
He inserts a comma,
and checks his work.

*Rbefoer(AD)$before(AD)$V(ESC)$(%)
remaining before us,(%) The user corrects
(%) a typing error.

*JSbefoer(ESC)$(%)

?SEARCH?35(%)
JSbefoer$(%)

The user checks for
another
instance of this error,
but there is none.

The last Search Command in the dialog produced an error message~
nevertheless, it illustrates a useful and legitimate application
of the Search Command. The user wanted to know if there was an
instance of "befoer" in the buffer, and the error message
supplied the answer "no". A Search Command which fails does not
move the pointer.

MOVING TEXT

It is often necessary to transport a string of text from one
place in the editing buffer to another. This operation is
required when multiple copies of a given string must be made or
when a string must be moved which is too long to be conveniently
deleted and retyped. The Q-Registers and their associated
commands are used for this operation.

There are 37 Q-Registers, and each of them can hold a
character string of virtually unlimited length. Each Q-Register
has one of the 26 letters or the 10 digits or @ as its name, and
all the Q-Register Commands (except one) end with the name of a
Q-Register. The upper and lower case forms of a letter are
equivalent as a Q-Register name, just as they are when used in a
command name.

Setting a Q-Register

There are two commands for moving a substring of the buffer into
the Q-Register. The Extract-String Command (m,nXq) extracts from
the buffer everything !rom just after the m-th character to just
after the n-th character. The Extract=Lines Command extracts
everything between the pointer and tne beginning of the n-th line

-217-

TENEX USER'S GUIDE
TENEX TECO

January 1975

after the current line. Each command removes the selected string
from the buffer and places it in the Q-Register 3. The pointer
is left where the extracted string was, and the previous contents
of the Q-Register are lost.

HXF

0,23XA

sxx

-4X@

:Xl

Extracts the contents of the entire
buffer (leaving the buffer empty} and
puts it in Q-Register F.

Extracts the first 23 characters
places the sequence in Q-Register A.

and

Extracts a substring and
Q-Register X. The substring
the pointer to the beginning
line after the current line.

puts it in
extends from
of the 5-th

Extract the preceding four lines and
them into Q-Register @.

put

Extract the remainder of the current line
except the end-of-line.

The two Extract Commands move exactly that substring of the
buffer which the corresoonding Type-String or Type-Lines Command
types out. Thus the user can use one of these Type-Out Commands
to simulate an extraction.

The Get-QR Command (Gq) inserts a copy of the character string in
Q-Register q into the buffer just before the pointer. The
contents of the Q-Register is not changed. When an Extract
Command which refers to Q-Register q is immediately followed by
"Gq", the total effect is to copy a sijbstring of the buffer into
a Q-Register witho~~ deleting it from the buffer.

The ;Type-QR Command (Qq;T) types out the complete character
string contained in Q-Register q. It can be used to check on the
successful execution of an Extract Command. This is the one
Q-Register Command which does not have the Q-Register name, 3 1 at
the end of the command.

GA

5,62X3G3

Inserts a copy of the contents of
Q-Register A into the buffer just before
the pointer.

Extracts.characters 6 through 62, ?Uts
them in Q-Register 3, and co?ies
Q-Regi~ter 3 into the buffer. Leaves the
buffer unchanged.

-218-

--

t

TENEX USER'S GUIDE
TENEX TECO

January 1975

QZ:T Types-out the
Q-Register z.

character string in

t Merging Files

t

t

t

t

t
t
t
t
t
t

t

t

t

t

t

fl:

The commands just described can be
extensive manipulations of files
on. For example, to merge parts of
follows:

used for very general and
merging, interleaving, and so
File A into File B proceed as

On listings of Files A and B, mark the parts of
File A with the names of Q-Registers, and use these
Q-Register names to indicate where the parts are to
go in File B.

Read File A into the buffer, extract the parts into
the appropriate Q-Registers, and delete the
remainder of the file.

Read File B into the buffer and, for each
insertion, position the pointer in the buffer and
insert the contents of the appropriate Q-Register.

This is a good procedure for making large-scale
program or document.

An Application

patches to any

The following dialog places at the beginning of the buffer an
introductory sentence which cites the opening words of the text
which is already in the buffer:

*JSa9o(ESC)$(%)
(%)
*0,.XAGA(ESC)$(%)
(%)
*QA:T(ESC)$(%)
Fourscore and seven(%)
years ago(%)

*J(ESC)$(%)
(%)

*!The Address begins(%)
"(D}~ GA! w (%)
The enITretext is:(%)
(ESC)$(%)
(%)

Finds end of the opening.

Extracts and
the opening.
Types out the
of Q-Register

restores

contents
A

Moves pointer to the
top of the buffer.

Makes up the sentence.

-219-

TENEX USER'S GUIDE
TENEX 'rECO

January 1975

*HT(ESC)$(%) Types the result.
The Aaaress begins(%)
"Fourscore and seven(%)
years ago"(%)
The entire Text is:{%)
Fourscore an (DEL) (BEL) (%)
(%) ---

(%)
*

STORING INTEGERS

A Q-Register can also be used to hold an integer value. This
value is almost always used to save the position of the pointer
in the buffer, but it is not restricted to that purpose. If the
user wants to do some integer calculations, he can use
Q-Registers as his variables.

Only two commands are required and they are very simple.
The Update-QR Command (nUq) loads the integer value n into
Q-Register q, destroying the previous contents. The g=value
Command (Qq) is actually a function. Its value is the contents
of Q-Register q, and it can be used wherever an integer value is
accepted. -

23UA Puts the integer 23 into O-Register A.

.US Puts the current pointer position (the
number of characters before the pointer)
in Q-Register 5.

QSJ Puts the pointer at the position
specified by the integer in Q-Register 5.

QA+2UA Increases Q-Register A by 2.

QA= Types out the integer in Q-Register A.

The Q-Register Commands for character strings and for integers
are not mutually compatible. For example, if a Q-Register is
loaded with the character string "398" by an Extract-String
Command and an attempt is then made to get its value with the
Q-value Function, TECO will object and type an error message.
All of the Q-Registers initially contain the integer value 0 (as
if a 0Uq had been executed) .

An Application

In the preceding dialog based on the Gettysburg Address, the
first sentence of the Address was extracted. That was relatively
easy because the beginning of the sentence had a known position, _..

-220-

TENEX USER'S GUIDE
TENEX TECO

January 1975

0, in the buffer. In
extracted from the middle
located. Q-Register 0
beginning of the sentence

the dialog which follows, a sentence is
of the Address and both ends must be
is used to save the position of the
while the end is found.

t

t
t

t

:fl:

:fl:

I

*Sdid he~e.(ESC)$(%)
*V(ESC)$(%)
they aid here.(%)
*LT(ESC)$(%)
It is for(%)

*.U0(ESC)$(%)
*S.("D)$T(ESC)$(%)

LOOPS

It(%)
*Q0,.XC(ESC)$(%)
*QC1T(ESC)$(%)
It is for(%)
us the living,(%)
rather, to be(%)

Finds previous period,
types end of previous
sentence.
Gets to beginning
of desired sentence and
saves pointer.
Finds end of sentence
and checks.
Picks up sentence.
Types out sentence.

Although TECO has general facilities for both conditional
unconditional transfer of control, it is the simple
specialized Iteration Command which is most useful.

and
and

In order to repeat any command string n times, (1) place the
command string in angle brackets, "<" and-">", and (2) put n in
front of the bracketted string. If n is omitted, an
approximation to infinity (2~35) is assumed, and the loop will
continue until something in the command string stops it.

V>

5<Ll8<I.(~D)>>

Starts at the current position
of the pointer and replaces the
next 3 semicolons with commas.
Types each modified line.

Puts 18 periods at the
beginning of each of the next
five lines.

J<Ryclepped(~D)yclept{~D) f V>
Corrects all misspellings of
"yclept" in the buffer, however
many there are.

-221-

TENEX USER'S GUIDE
TENEX TECO

January 1975

J<S(-S)command(-S) (-D): V>
Types out every line in which
the word "command" appears.

S and R commands inside iteration brackets cause the iteration to
terminate if the search fails. Thus, if the buffer contains
exactly one occurrence of the string "abc" the command
J<Sabc(-D)V> will print the line containing the "abc" twice -­
once when the search succeeds and again when it fails. This is
because the V command is seen before the > which will cause the
iteration to stop.

fl:

A Q-Register can be used to count the number of times a loop
is executed. A special function, %g, is provided which increases
the integer in Q-Register q by one and then assumes the resulting
integer value. This function can be used as a free-standing
command if the user types Control-D after it to "absorb" its
integer value.

96UA26<%AI>

A Final Exampl~

Inserts a complete lower-case
alphabet into the buffer.

Counts the semicolons which
appear in the buffer and leaves
the result in Q-Register A.

The following loop searches the buffer for the occurrences of the
word "command". For each occurrence of the word, the loop types
the line in which the word appears, stops to let the user type in
a single character, and then capitalizes the words if the user
typed "Y" (for "yes").

J<Scommand (""D) :

This command string uses some commands which have not been
described yet and, in any case, needs some explanation. An
annotated listing follows:

-222-

t

t

t

* #

fl:

t

fl:

fl:
fl:

t

t
fl:
fl:

TENEX USER'S GUIDE
TENEX TECO

J
<
Scommand ("'o)
; v

"'T-"'""y

"E

-7C
Re (""D) C (""D) ,

>

January 1975

Puts pointer at beginning.
Starts loop.
Searches for "command".
Skips to end of loop if search
fails. Types out the line
containing "command".
"""T" is a function which assumes the
value of the code for the next
character the user types (TECO waits
for the user}. n""•yn is the code
for "Y".
If the preceding expressions is
Equal to zero, the following
commands are executed; otherwise,
they are skipped up to the
apostrophe.
Back up to just before "command".
Capitalize "c".
End conditional expression skip.
End loop.

This example is important. It represents TECO at its best,
namely in a short, interactive loop in which the user makes the
difficult judgements and TECO carries out the editing details.

3.
fl:

SPECIAL EDITING

t

fl:

fl:

t

t
t
t
t
t

t
t
t
t
t

t
fl:
t

All the TECO commands which have not been described in the
previous sections are mentioned in this section. Each division
of this section describes a group of commands designed for a
particular purpose. The descriptions are brief because the
commands are not of universal interest. The purpose of this
section is to inform the reader of the existence of specialized
commands of TECO. A complete description of each command appears
in the TENEX TECO Handbook and can be found by looking up the
command name in the command index.

Automatic Indentation

An effective technique for organizing information on a page is to
use the "outline" form; that is, to indent lines by varying
amounts to indicate the grouping and relative importance of the
information. This formatting technique is often applied to
improve the readability of programs in block-structured
languages, such as LISP, Algol, and PL/I.

The simplest means of indenting a line is to type in the
appropriate number of leading spaces. For a long program with
many different indentations, this process is tedious and error
prone~ TECO has a set of four special commands which can be used
to supply these leading blanks automatically. The commands are:

-223-

---------- ------------------ ------

TENEX USER'S GUIDE
TENEX TECO

January 1975

Records the
indentation.

number of spaces

Inserts spaces required for
which is currently in use.

the

in a new

indentation

Reverts to the indentation which was recorded
just before the current one and inserts the
required spaces.

Reverts to the indentation which was recorded
just after the current one and inserts the
appropriate spaces.

The first time a particular indentation is required, the user
types in the necessary spaces himself and uses the Control-W
command to record the indentation. Indentations are recorded in
a list which is a special part of TECO storage.

An integer may be represented as a sequence of binary digits (as
the reader may know) • TECO has operators which convert an
integer into a bit string, apply a logical operation to the
strings, and convert the result back to an integer. The
operators are:

m#n the i-th bit of the result is the logical
"or"-of the i-th bits of m and n

m&n the i-th bit of the result is the logical
"andll" of the i-th bits of rn and n. -

In some cases it is useful to convert a sequence of digits which
occurs in the buffer into an integer argument for a command.
Conversely, it may be useful to convert an integer argument into
a character-string representation of the integer. The necessary
commands are:

_!!; N This function interprets the digit string
which follows the pointer and assumes that
integer value. The argument n specifies the
base to be used in interpreting the digits
(for example, n=8 for octal digits).

-224-

-

TENEX USER'S GUIDE
TENEX TECO

January 1975

~\ This command expresses its argument, n, as a
(possibly signed) sequence of digits-of base
10 and inserts the sequence into the buffer
just before the pointer.

Flow of Control

fl:
fl:
fl:
fl:
fl:

fl:
fl:

fl:
fl:

fl:
fl:
fl:
fl:

fl:

fl:

TECO ha·s a rather complete set of commands for flow of control.
These commands are supplied because even a short command string
occasionally needs a conditional transfer or a custom-made loop
to make it go. The following commands provide conditional
execution of an arbitrary command string:

n 11 Ec
,

Executes the command string if !quals c n
otherwise, skips - -over c. -

n"Nc
,

Executes if ~ot-equals 0. c n -
n11 Le

,
Executes if Less-than 0 c n -

n"Gc
,

Executes if Greater-than 0 c n - -
n"Cc

,
Executes if is the character code c n
letter, digit t -II o II t II$ II I or "%".

The following
control:

commands provide an unconditional

! s ! This is a label.

This is a transfer to the label "!s! 11 •

of

0;

a

transfer of

Sometimes it is not appropriate to have a Search Command produce
an error message when the search fails. This is the case, for
example, when a search is part of a stored program. The
following alternative is provided:

_!!i (SP)

The 11 : 11 before a Search Command causes the
whole command to assume an integer value of
-1 or 0 according as the command succeeds or
fails. Thus the command can be used wherever
an integer argument is accepted. Note:
Search commands and Replace commands inside
iteration brackets (< ••• >) act as if they
have the : modifier on.

The ";(SP)" causes a skip out of the
enclosing loop for non-negative values of n
and otherwise is ignored. (The semicolon
must be followed by a Space character.) If a
":"-Search Command is used as the argument to

-225-

TENEX USER'S GUIDE
TENEX TECO

,January 1975

this command, the command will skip out of
the enclosing loop when the search fails.

St£E_ed Pr£~!.~

TECO has important commands which make it possible to create a
TECO program, store it, and later execute it. Specifically, the
command string is typed into the buffer like any other passage of
text, is placed in a Q-Register by an extract Command, and is
then executed by the ~aero Command, as follows:

This command causes TECO to execute as a
command string the contents of Q-Register g.

Since the character string in the Q-Register q may itself contain
a Macro Command, this command provides for subroutines which can
be called through one another as well as directly by the user.

A minor difficulty arises in preparing programs. An
ordinary Insert Command cannot be used to enter into the buffer
an Insert or Search Command because the Control-D which is a part
of -the stored command will prematurely terminate the overall
insertion. The following commands solve this problem:

@It st

@St st

This command inserts the character string s,
which may include (•D). Any character whi~h
does not appear in s can be used as the
character t which -delimits the character
string.

This command searches for the
string ~, which may include c·o).

character

@Rtslts2t Replace string sl by s2, both of which
---- contain the terminator t.

may

TECO has a few additional commands
stored programs. They are:

whose principal use

This is a function whose value is the integer
code for the next character typed in by the
user. (TECO waits until the character is
typed.)

;T~(-D) Types out s and is used to output a
from a running program.

-226-

message

is in

TENEX USER'S GUIDE
TENEX TECO

January 1975

?

Pushes down into a special pushdown stack the
current value of Q-Register 9.

Pops up the pushdown stack into Q-Register 9.

Catises TECO to "trace" its execution: that
is, to type out commands as they are
executed. The second "?" turns the trace
off, the third turns it on again, and so on.

The basic input/output commands of TECO, as described in Section
1, obtain a file designator not from the command string but from
a special dialog with the user. This operation is not
appropriate for use in a stored program, and the following
command sequences can be used instead:

:Rf(''D) :Y
- Reads in all of file f

whatever is in the buffer:

:Wf(''D) :U

and adds it to

- Writes out the entire buffer onto file f
clears the buffer.

and

These commands are further described in the discussion
input/output which follows this section.

of paged

The stored program commands and the rather complete set of
flow of control commands combine to make possible some relatively
complicated symbol manipulation. However, the proper use for the
programming facility is to bridge the gap between simple editing
and full scale symbol manipulation. TECO should not be used in
competition with complete programming systems like LISP or
SNOBOL. TECO does not have the debugging facilities, the data
structures, or the efficiency to support such an activity.

TECO Paging

The computer on which TECO was originally implemented did not
have virtual memory and its actual memory was relatively small.
It was therefore necessary to devise a means by which a file
could be edited piece by piece. Toward this end, the Form Feed
character (Control-L) was selected as an "End-of-Page" character
and each substring of a file which ended with a Form Feed was
called a TECO ~. (There is no relation between this "TECO
page", which is purely a software notion, and the "page" which is
the unit of the TENEX virtual memory.)

With the introduction of virtual storage and the consequent
very great increase in the capacity of the buffer, the need for
paging declined. For TENEX TECO, the possibility of the division

-227-

TENEX USER'S GUIDE
TENEX TECO

January 1975

of a file into TECO pages arises under the following conditions:

When a file exceeds the
one-million-character capacity
must be broken into parts.

of
(approximately)
the buffer, it

When a file is to be merged with another file or
rearranged in some way, it must be broken into
parts.

When a file exceeds 65,000 characters (a very rough
estimate) and will be subjected to extensive
editing (that is, many insertions and deletions),
efficiency considerations suggest that it should be
broken into parts.

However, a decision to break a file into parts does not
necessarily lead to paging the file. It will often be more
appropriate to maintain each part of the file as a file in
itself. Thus the cases in which paging commands are essential is
rare.

For LISTing or TYPEing it is useful to have ~Ls on
places to make page boundaries simply for human use.
handy in moving through file using n;BJ.

at logical
Also can be

The commanjs for handling paged files will now be described
briefly. They fall into several subgroups according to the steps
of the input/output process.

The first step is to open files for input and/or output,
follows:

;R!(~D) Selects the file whose designator is f and
it for input. -opens

;W!(~D) Selects the file whose designator is f and
opens it for output.

The following commands read a page from the file
for input.

which

y

A

Deletes the contents of the buffer and reads
the next page of the input file into the
buffer.

Adds the next page of the input file to the
end of the current contents of the buffer.

is

as

open

The following commands output a portion of the buffer which is
specified by its arguments. Two, one, or no arguments can be

-228-

TENEX USER'S GUIDE
TENEX TECO

January 1975

used, and their significance is described in the Handbook section
of the TECO Manual.

PW

w

Does output without modifying the buffer.

Does output and deletes from the
portion which is output.

buffer the

The following commands perform a combination of input and output.
The ;Y and ;U Commands which appear below were discussed in
Section l; but here they have a different interpretation because
they are used when an input or output file is open.

p

;U

Outputs the current contents of the buffer
and then reads in the next page of the input
file. In effect, the command "turns a page"
of the file being processed.

Reads in the remainder (however many pages)
of the input file and adds it to the end of
the buffer.

Repeatedly executes P (Page-Turn) Commands
until the remainder of the input file has
been copied into the output file and then
closes the output file.

The following command concludes the output process:

;C Closes the output file. (For certain
technical reasons, the output file is not
permanently saved until it is closed.)

Two commands are provided to search an entire paged file in a
single operation. Each command starts at the position of the
pointer (as usual) but does not stop at the end of the buffer;
instead, subsequent pages are read from the input file and
scanned until a match is found or the end of the file is reached.
The commands are:

_!!F~ ("'D)
Searches page after page. After a page has
been searched unsuccessfully, it is written
on the output file so that nothing is lost.
This command is used when a file is being
modified.

-229-

TENEX USER'S GUIDE
TENEX TECO

n; Fs (''D)

January 1975

- - Also searches page after page. However,
after a page is searched unsuccessfully, it
is discarded. This command is used when the
file is being examined but not modified.

In contrast to the Search commands just mentioned, the indices
described here are designed for use with a multiple-page file
which is entirely in the buffer; no automatic input/output is
involved.

;B

: z

E_; B

!!_;BJ

Supplies the number of characters in the
buffer before the current page. The current
page is the page which contains the character
just before the pointer.

Supplies the number of characters in the
buffer through the end of the current page.

Supplies the number of characters in the
buffer before the beginning of the n-th page
in the buffer.

Jumps to start of n-th page.

Certain control characters can be used literally in the character
string argument of an Insert or Search Command when they are
properly quoted. The commands for this purpose are:

In most cases, when this character is used
immediately before a command control
character it will cause that character to be
entered into the command register literally.

(~V) (~Q} When this character pair is used before one
of the three match control characters (as
used in a search command), the match control
character is interpreted literally.

Complete instructions for quoting characters on input,
recogn1z1ng them on output, and specifying them in a search are
given in the Character Set Appendix.

Abbreviations

There are a number of commands in TECO which can be described as
abbreviations for commonly used command strings. Since TENEX
TECO is very concise in any case, abbreviations do not play an
important role and most of them are of limited interest. They

-230-

·-·

-

TENEX USER'S GUIDE
TENEX TECO

are:

January 1975

EDIT f This is an Executive command which is an
alternative to the "TECO" command. It enters
TECO and then causes the file f to be read
into the buffer. For a subsequent editing of
the file in the same TENEX session, the user
can just type "EDIT".

EG This is the exit from TECO which is used when
TECO has been called automatically by some
other sub~ystem of TENEX.

(LF) This Command (the Line Feed character) moves
the pointer to the beginning of the next line
and types that line. The command must be the
fir st char act er in a command string. (The
command was imported from DDT). Note: (LF)
and (AH) are done immediately (i.e. (ALT) is
not needed).

(AH) This command moves the pointer to the
beginning of the previous line and types that
line. The command must be the first
character in a command string. (The command
was imported from DDT) •

c This is a function whose value is the integer
code of the character c.

;P This is a function whose value is the integer
code of the current character and which moves
the pointer one character to the right. It
thus combines a "IA" Function with a "lC"
Command.

B This is an index which is always 0. It is
useful because "B" is slightly easier to type
than "0".

(SP) This operator (the Space Character) is
equivalent to the "+" operator. It is easier
to type than "+".

(HT) S (AD)
- This command can be used to insert a string
which begins with a Tab (HT) character. In
effect, TECO supplies an "I" at the beginning
and makes this into an Insert-String Command.

This completes the list of useful TECO commands. The Command

-231-

TENEX USER'S GUIDE
TENEX TECO

January 1975

Index contains some other commands: they are either obsolete
names which have modern synonyms or are characters such as
I End-of-Line or "$" which have no effect when they appear as TECO
I commands. See TENEX TECO Manual for further information.

-232-

TENEX USER'S
TT YT RB

TTYTRB is a
Cambridge.

GUIDE

teletype trouble

January 1975

TTYTRB

report form for use within BBN

TTYTRB .asks you for two things: the location
and a description of the problem.

of your terminal

When it prompts for "LOCATION
of information, terminated
typing this information, see
manual.

OF TERMINAL:" type up to one line
by carriage return. For details on

"Subject" under SNDMSG in this

When it prompts for "DESCRIBE TROUBLE:" type as much as you . need
to, terminated by control-Z. For details on typing this
information, see "Message" under SNDMSG in this manual.

-233-

TENEX USER'S GUIDE
TTYTST

January 1975

TTYTST

A teletype-testing program developed at BBN.

The program cycles through a series of tests which are described
below. Any test may be prematurely aborted by hitting a single
~bo~!· This will cause the next test to begin.

TEST 1 OUTPUT TEST

A series of lines of output are generated. All of the characters
of the alphabet and all of the numerals are typed as well as all
of the special characters. If your teletype is consistently
misprinting on output, it will probably show up with this test.

TEST 2 CARRIAGE RETURN TEST

Line of somewhat random
characters are typed.
the left margin, your
adjustment.

TEST 3 ORDINARY TEST

length repeating the same string of
If these characters double up at or near
teletype probably needs a dashpot

Some lines of ordinary text are typed out. If your teletype is
only occasionally misprinting on output, observe the output of
Test 3 carefully, the problem may show up in it.

TEST 4 INPUT TEST

At this point you may type anything you like into a buffer in the
program. The program will repeatedly type out the contents of
this buffer after you type control D. If you make a number of
mistakes use a number of control A's to erase them. If you hit a
rubout during this last test, the program will give you a chance
to type in more input.

-234-

TENEX USER'S GUIDE
TYPBIN

January 1975

TYPBIN

TYPBIN is a subsystem which does an octal dump of a packed file.
A packed file is a file where every bit is considered to be an
information bit of a continuous bit string. A packed file of
8-bit bytes, for example, will contain exactly nine bytes per
each two words. In contrast, a standard format file would only
contain eight of these bytes per two words, left-justified in
PDP-10 ILDB/IDPB format.

When TYPBIN is started, it asks:

BINARY FILE INTERPRETER.
INPUT FILE=

The correct response is any readable file name.
asks:

BYTE LENGTH (DECIMAL BITS) =

The program

Any number from 1 to 36 is acceptable. The program then asks:

OUTPUT FILE =

Any writeable ASCII file is acceptable. The program then reads
each successive "BVTE SIZE" of bits from the input file, writing
out the octal value in ASCII to the output file. This output is
columnated into easily readable format for 72-column wide paper.

On completion, the program reports the total number of bytes
converted and exits. Example:

@TYPBIN
BINARY-FILE INTERPRETER.
INPUT FILE = ABC [CONFIRM]
BYTE LENGTH {DECIMAL BITS) = 18
OUTPUT FILE = ABC.DUMP [NEW FILE]
DONE.
TOTAL BYTES (DEC) = 18
EXIT.
~c

@

At this point, file ABC.DUMP contains:

777772 000137 200740 000313 402000 000362 402000 000363 561040 000314
104000 000076 205040 120003 254000 000140

In the past, TYPBIN has proved invaluable in deciphering the
unknown formats of data read from imported magtapes using
the MTACPY subsystem.

-235-

TENEX USER'S GUID8
TYPREL

January 1975

TYPREL

Ty?eout of .REL Files

TYPREL analyzes the contents of .REL files created by MACRO,
FAIL, and FORTRAN (F40).

TYPREL first asks for an output file where analysis results are
to be written. The question is "OUTPUT FILE =", and an
appropriate response is any file capable of receiving ASCII
output. (TTY:, LPT:, FOO, etc.).

Next, the program requests the name of the .REL file of interest:
"REL FILE=".

The results written on the output file are a tabulation of each
block in the REL file, giving block type, the number of data
words, (excluding relocation words), and the total number of
words in · that block. (See DECsysteml0 Assembly Language
Handbook, for explanation of block types.) For blocks declaring a
program name, that name is also typed out. For blocks defining
entry points, the names of the first 4 entry points are also
typed out.

If a block is encountered which is entirely zeroes, it is noted
as a block of type "ERR", and its length is counted but it is
considered to contain no data words.

On completion of the file the total (decimal words) length of the
file is typed out.

TYPREL provides a good doublecheck of FUDGE2 manipulations.

-236-

-

TENEX USER'S GUIDE
TYPREL

Example:

@TYPREL

OUTPUT FILE= TTY:

REL FILE= ANOM.REL;2

TYPE DATA TOTAL

4 0 2
6 1 3
1 22 24
1 22 24
1 14 16
1 17 21
1 22 24
1 7 11
2 22 24
2 22 24
2 20 22
7 1 3
5 2 4
0 0 126

January 1975

ENTRY
NAME ANO MAL
PROG
PROG
PROG
PROG
PROG
PROG
SYM
SYM
SYM
START '0
LAST '135
ERR

TOTAL FILE LENGTH (DECIMAL WORDS) = 256

DONE.
@

-237-

TENEX USER'S GUIDE
WATCH

January 1975

WATCH

WATCH is a program that makes continuous on-line measurements of
svstem activity.

WATCH requests an output file where it will put its measurements.

At a specifiable interval, it measures and outputs the following
information in the form of readable ASCII text:

1. The percentage of the last minute spent

a. In user computations
b. Idle (no requests for service)
c. In an I-0 wait for a page to be read from the disc

or drum.
a. Running the core manager (a,b,c, and d should

always sum to 100%)
e. In page faults (this time is charged to users)
f. In each of JOBS 0 to 15

2. The number of jobs in the balance set (runnable and
loaded into core) averaged over the last minute.

3. The number of the following events in the last minute

a. Drum pages read
b. Drum pages written
c. Disc pages read
a. Disc pages written
e. Terminal wake ups (break characters typed)
f. Terminal interrupts (n C)

WATCH is terminated by typing nC.

-238-

--

-

TENEX USER'S GUIDE
WATCH

EXAMPLE:

@WATCH
OUTPUT TO: TTY: [OK]
INTERVAL IN SECONDS:

second group values?
JOB BREAKDOWN? Y

USED
DMRD

JOB0
JB10

62.2
1688
30.2
11.1
1.3

IDLE
DMWR

JOBl
JBll

0.0
620

SEC,
0.7
1.3

IOWT CORE
DKRD DKWR

JOB2 JOB3

33.8 3.8
16 S0

21 JOBS.
0.0 0.0
0.2 0.0

January 197S

30 (any reasonable # in

y (either answer Y
(either answer Y

NCOR PURG NREM
TTIN TTOU TTBK

JOB4 JOBS JOB6

8; 0.3 16
391 1S23 3S3

8.6 2.2 0.0
0.7 0.0 12.3

TRAP
TT"C

JOB7

8.S
2

0.0
2.0

NRUN

JOBS

7.9

4.0
0.0

NBAL

JOB9

3.1

0.0
0.0

seconds)

or N)
or N)

BSWT DSKW DRMW

1.9 2.3 97.7

(on the next example, we just gave a yes on job breakdown)

OUTPUT TO: TTY: [OK]
. INTERVAL IN SECONDS: 30

SECOND GROUP VALUES? N
JOB BREAKDOWN? Y

USED IDLE IOWT CORE NCOR PURG NREM TRAP NRUN NBAL BSWT DSKW DRMW

JOB0 JOB! JOB2 JOB3 JOB4 JOBS JOB6 JOB? JOBS JOB9
JB10 JBll

60.0 0.0 33.0 3.8 109 0.3 23 10.610.9 4.S
30.3 SEC, 22 JOBS
12.0 3.0 S.4 0.0 0.2 2.6 0.0 0.0 0.0 3.0
0.8 0.0 23.4 0.2 0.0 2.S 0.0 0.3 1.7 4.3
0.8 0.7

"c

-239-

2.4 3.2 9S.7

TENEX USER'S GUIDE
WATCH

@

January 1975

(on the next example, we just gave a yes on second group values)

OUTPUT TO: TTY: [OK]
INTERVAL IN SECONDS: 3fl.I

SECOND GROUP VALUES? y
JOB BREAKDOWN? N

USED IDLE IOWT CORE NCOR PURG NREM TRAP NRUN NBAL BSWT DSKW DRMW
OMRO DMWR DKRO OKWR TTIN TTOU TTBK TT"'C

74.4 fl.I • fl.I 21.3 3.9 95 0.7 53 8.2 12.6 6.9 2.4 2.6 96.7
1844 661 23 57 531 1693 274 17
30.5 SEC, 22 JOBS.

-240-

TENEX USER'S GUIDE
HACKS

January 1975

The following game programs in the
directory are normally available to
in house BBN people only; contact
Tony Calleva with requests for
exceptions. (e.g. ARPANET demos).
See example below for using them.

@RUN <HACKS>CHESS

@RUN <HACKS>DOCTOR

@DUN <HACKS>JOTTO

@RUN <HACKS>LIFE

@RUN <HACKS>MAXIM

-241-

TENEX USER'S GUIDE
<HACKS>CHESS

January 1975

CHESS

CHESS is the chess-playing program developed by Richard
Greenblatt, Donald Eastlake, and Stephen Crocker at M.I.T. It
was described in "The Greenblatt Chess Program", (authors above),
P801 810 of 1967 Fall Joint Computer Conference. The program
is an honorary member of the United States Chess Federation and
the Massachusetts Chess Association, under the name Mac Hack Six.
In the April 1967 amateur tournament the program won the class D
trophy~ it wins about 80% of its games against non-tournament
players.

Ouring play, the program understands moves typed in using
standard chess notation, some examples of which are given below.

P-KN3
B*P
0-0
OR-Ql
R/K2-Q2
P-R8
Q*P/06
o-o-o

Pawn to king's knight 3
Bishop captures pawn
Castle kingside
Queen's rook to queen 1
Rook on king 2 to queen 2
Promote pawn (to queen assumed)
Queen captures pawn on queen 6
Castle oueenside

Other commands are available for control and :information:

BD
PW
PB
PN
PS
M
u
DRAW
PG
LIST
RESET

Type out board
Play white
Play black
Play neither
Play self (both sides)
Make next move
Undo last move
Request machine to acknowledge draw
Print game (history)
List commands
Overturn board (for bad sports)

-242-

-

-

TENEX USER'S GUIDE
<HACKS>CHESS

EXAMPLE:

@CHESS
PB

P-KB3
B P/K2-K4

BD
WR WN WB WK WQ WB WN WR
WP WP ** WP WP WP WP WP

** WP ** ** **
** ** ** **

** BP ** **
** ** ** **
BP BP BP ** BP BP BP BP
BR BN BB BK BQ BB BN BR

P-KN4
B Q/Ql-KRS CHECKMATE

PG

1 P/KB2-KB3 P/K2-K4
2 P/KN2-KN4 Q/Ql-KRS

January 1975

-243-

TENEX USER'S GUIDE
<HACKS>DOCTOR

Simulated Psychiatrist

January 1975

DOCTOR

DOCTOR is a LISP program written by Joseph Weizenbaum and
described in 'ELIZA - A Computer Program For the Study of Natural
Language Communication Between Man And Machine', Comm. ACM, Vol.
9, #1. Jan. 1966.

DOCTOR simulates a psychiatric interview with a Rogerian
psychotherapist. The 'subject' types in some statement in
natural language using normal punctuation and sentence structure.
Two editing characters are provided: Control A deletes the
previous character typed in (repeatable back to the previous
space or comma), and # deletes the entire line typed in.

Each input statement is terminated by a period or question mark.
The session is terminated by typing GOODBYE.

EXAMPLE:

@DOCTOR

BBN LISP-10 05-27-72

GOOD AFTERNOON.

TELL ME YOUR PROBLEMS. PLEASE TERMINATE INPUT WITH A PERIOD OR A
QUESTION MARK.

*I HAVE A BIG PROBLEM.

I AM NOT SURE I UNDERSTAND YOU FULLY.

*MY GRANDMOTHER HAS A GRAND GZORENPLATZ.

IS IT IMPORTANT TO YOU THAT YOUR GRANDMOTHER HAS A GRAND
GZORENPLATZ?

*IT WAS THIS MORNING?

PLEASE GO ON.

*HAVEN'T GOT THE TIME.

LETS DISCUSS FURTHER WHY YOUR GRANDMOTHER HAS A GRAND GZORENPLATZ.

*GOODBYE.

IT'S BEEN MY PLEASURE, THAT'S $9.72 PLE~SE.
NIL

-244-

TENEX USER'S GUIDE
<HACKS> LIFE

January 1975

LIFE

LIF£ is the Mathematical Game described in that section
of Scientific American, Vol. 223, #4, October 1970. It
was originated by the mathematician John Conway at Cambridge.

LIFE simulates a colony of organisms living on a 72x72
rectangular grid. Each point except for those on the edges,
has 8 neighboring points, 4 horizontally and vertically and
4 diagonally. The rules of LIFE are:

1. Birth
A new organism is created on an empty grid point if exactly
3 neighbors are adjacent to the grid point.

2. Death
An organism dies of overcrowding if it has 4 or more

neighbors.

An organism dies of isolation if it has fewer than 2
neighbors.

Deaths and births happen simultaneously.

The program requests an initial colony pattern from the user.
This is input by typing for instance,

* * *
* *
* * *

using asterisks also spaces and carriage returns. Control-A
will delete the previous character, Control-X deletes the
line, and Control-R retypes the line. The pattern is
terminated with an altmode.

Each successive generation will be typed out until one of
three things happens:

1. The colony dies
2. A stable pattern is established
3. Any teletype key is pressed

At that point, the program requests another initial pattern.

-245-

TENEX USER'S GUIDE --- NETWORK --­
FTP

FTP

Introduction

January 1975

FTP (File Transfer Protocol) provides facilities for file
transfer between HOSTs on the ARPA Computer Network (ARPANET).
The primary function of FTP is to transfer files efficiently and
reliably among HOSTs and to allow the convenient use of remote
file storage capabilities. The objectives of FTP are 1) to
promote sharing of files (computer programs and/or data), 2) to
encourage indirect or implicit (via programs) use of remote
computers, 3) to shield a user from variations in file storage
systems among HOSTs, and 4) to transfer data reliably and
efficiently.

.ft FTP Comm~nd Interl2!,~te!_

Instructions to the FTP program are given via the FTP Command
Interpreter. Characters typed on the user's terminal are read by
the FTP Command Interpreter and decoded as commands to perform
various actions by FTP.

Typing a "?" to the FTP Command Interpreter will yield a message
ft to use the "HELP" command to type a summary o·f the FTP commands.

The FTP Command Interpreter provides command completion whenever
a terminator is typed (full-duplex terminals only) and an exact
match is achieved with some command or a unique initial substring
is typed. Terminators are space, comma, alt-mode, and carriage
return. Terminators are often not distinguished and are thus
equivalent. Where necessary, comma is used to separate list
items, space terminates a command or option and signals the
desire to specify more options, carriage return ends a command
unless more information is necessary. Altmode is the same as
space except that it will cause command completion in those modes
where it is normally suppressed.

Esca:e.!,ng !!~£!5. to .§.~EC ~£de

At any time, typinq a Control-C (~C) will cause FTP to stop
whatever it is doing and return to the EXEC mode.

-246-

TENEX USER'S GUIDE --- NETWORK --­
FTP

January 1975

Data Transfer Functions

Data and files are transferred only via the data connection. The
transfer of data is governed by FTP data transfer commands
received on the FTP connections. The data transfer functions
include establishing the data connection to the specified HOST
(using the specified byte size) transmitting and rece1v1ng data
in the specified representation type and transfer mode, handling
EOR and EOF conditions, and error recovery (where applicable).

Making ~ Connection

There are two ways of making a connection. Typing "CONNECT
host-name" or "CONNECT octal-number" will cause a connection
attempt to be made. If successful, the connection will be said
to be complete. If unsuccessful, the connection will be said to
be incomplete with a reason given.

Dis~ecting

There are three disconnect commands. "DISCONNECT" disconnects
the user from the remote host without returning to the EXEC,
"BYE" is the same as "DISCONNECT", and "QUIT" returns the user to
EXEC without closing the connection. Thus, to close the
connection and return to the EXEC, the user should type the
"DISCONNECT" command followed by the "QUIT" command.

In the event that the network connections are severed by a
network failure, the user will receive a message that the network
has been severed and/or that the data transfer is incom?lete.

FTP Command Summary

Access Control Commands

CONNECT host-name or octal-number

Performs ICP to connect to the indicated host.
the first command issued.

LOGIN username optional-password optional-account

User identification that is
access to its file system.

user name

required by the

This must be

server for

The argument field is an ASCII string identifying
the user. Special characters may be quoted by Av.

-247-

TENEX USER'S GUIDE --- NETWORK --­
FTP

optional-password

January 1975

The argument field is an ASCII string identifying
the user's password and may be optional. This
field must be immediately preceded by the username
field. The typeout of this field will either be
"masked" or suppressed. Special characters may be
quoted by ~v. ·

optional-account
This argument field is optional and is a number or
ASCII string identifying the user's account.

CWD anothername

CWD is used to change the working directory to anothername.
Using it requires the "QUOTE" command at present. (Example:
*QUOTE CWD anothername)

ACCOUNT number or string

The argument field is a number or ASCII
the user's account.

string identifying

DISCONNECT

Disconnects user from remote host without returning to EXEC.

BYE

Same as DISCONNECT.

QUIT

Returns user to EXEC without closing connection.

Transfer Parameter Commands

BYTE size-of-data-connection

The argument is an ASCII-represented decimal
specifying the byte size for the data connection.
must be 36, 32 or 8 bit bytes.

TYPE data-type

integer
The size

The argument is a single ASCII character code specifying the
representation types.

The following codes are assigned for type:

A - ASCII

-248-

·-

TENEX USER'S GUIDE --- NETWORK --­
FTP

January 1975

L -

I -

The data is transferred in ASCII form. The
transfer byte size must be 8 bits. This type
would be used for transfer of text files.

Local Byte
The manner in which data is to be transformed
depends on the byte size for data transfer. This
type is identical to the Image type for byte size
which are integral multiples of or factors of the
computer word length.

Image
on output the data is transformed from contiguous
bits to bytes for transfer. On input, the data is
transformed from bytes into bits, storing them
contiguously independent of the byte size chosen
for data transfer.

The following codes are not yet implemented:

E - EBCDIC
The data is transferred using the EBCDIC character
code and 8-bit transfer byte size.

IMAGE

Declares IMAGE file type.

TENEX

Shorthand for IMAGE, BYTE 36.

ASCII

Shorthand for TYPE A, BYTE 8.

FORM format

The argument is a single ASCII character code specifying the
format.

The following codes are assigned for format:

U - Unformatted
The representation type as specified is unaffected
by any format transformations.

The following codes are not yet implemented:

P - Printfile
Data is transferred as either ASCII or EBCDIC type

-249-

TENEX USER'S GUIDE --- NETWORK --­
FTP

.January 1975

in accordance with ASA (Fortran) vertical format
control statements. The data is to be transferred
in 8-bit bytes.

STRUCTURE structure-of-data

lt

~

!f
ft

~

The argument is a single
file structure.

ASCII character code specifying

The following codes are assigned for structure-of-data:

F - File

The following codes are not yet implemented:

R - Record

MODE transmission-mode

The argument is a sinqle ASCII character code specifying the
data transfer rate modes.

The following codes are assigned for transfer modes:

s - Stream
The file is transmitted as a stream of bytes of
the specified byte size. The EOF is signalled by
closing the data connection. Any representation
type and byte size may be used in the stream mode
with file structure.

The following codes are not yet implemented:

B - Block
The file is transmitted as a series of data blocks
preceded by one or more header bytes. The header
bytes contain a count field, and descriptor code.
The count field indicates the total length of the
data block in bytes, thus marking the beginning of
the next data block (there are no filler bits).
The descriptor code defines last file block (EOF),
last record block (EOR), restart marker, or
suspect data. Record structures are allowed in
this mode, and any representation tyoe or byte
size may be used.

T - Text
The file is ASCII text transmitted as a sequence
of 8-bit bytes in the ASCII representation type,
and optional Printfile format. Record structures

-250-

* #

TENEX USER'S GUIDE --- NETWORK --­
FTP

January 1975

H -

are allowed in this mode. The EOR and EOF are
defined by the presence of special
"TELNET-control" codes (most significant bit set
to one) in the data stream. The EOR code is 192
(octal 300, hex C0). The EOF code is 193 (octal
301, hex Cl). The byte size for transfer is 8
bits.

Hasp
The file is transmitted as a sequence of 8-bit
bytes in the standard Hasp-compressed data format.
This mode achieves considerable compression of
data for print files. Record structures are
allowed in the Hasp mode.

FTP Service Commands

* #

GET REMOTE-FILE to LOCAL-FILE

The REMOTE-FILE is transferred from the host site to the
user's site and is given the LOCAL-FILE name. Note:
REMOTE-FILE and LOCAL-FILE use standard filename formats.

SEND LOCAL-FILE to REMOTE-FILE

The LOCAL-FILE is transferred from the user's site to the
host site and is given the REMOTE-FILE name. Note:
LOCAL-FILE and REMOTE-FILE use standard filename formats.

MULTIPLE GET/SEND

Only TENEX sites permit the use of "*" in the specification
of filenames for GET and SEND. The standard "*" formats
must be used.

APPEND LOCAL-FILE to REMOTE-FILE

The LOCAL-FILE is transferred from the user's site to the
host site and appended to the REMOTE-FILE at the host site.
Note: LOCAL-FILE and REMOTE-FILE use standard filename
formats.

RENAME REMOTE-FILE to be NEW-REMOTE-FILE

The filename for REMOTE-FILE is changed to NEW-REMOTE-FILE.
Note: REMOTE-FILE and NEW-REMOTE-FILE use standard filename
formats.

DELETE REMOTE-FILE

This command deletes the REMOTE-FILE. Before the file is

-251-

TENEX USER'S GUIDE --- NETWORK --­
FTP

January 1975

actually deleted, the user is asked "Do you really want to
delete? (Y or N)". Note: REMOTE-FILE uses standard
filename formats.

DIRECTORY of REMOTE-FILE-GROUP

1t­

#.

A list of the files in the REMOTE-FILE-GROUP will be typed
out. (e.g., <SMITH>*.MAC, if remote site is a TENEX site)

STATUS of remote-system

Status information about the remote-system will
out.

MAIL <FILE> to REMOTE-USER

Sends LOCAL-FILE to mailbox at remote site.

HELP

Types summary of FTP commands.

Miscellaneous Commands

VERBOSE

Types out all comments in long form.

BH.IEF

Types out all comments in short form.

QUOTE arbitrary-FTP-line

Sends arbitrary-FTP-line to remote-site
interpretation.

STATISTICS

Turns on typeout of timing statistics.

NOSTA'rISTICS

Turns off typeout of timing statistics.

FTP Control Characters

Control-G

Type BELL (AG) to
command level.

abort a file transfer

-252-

and

be typed

without

return to

·-~"'

TENEX USER'S GUIDE --- NETWORK --­
FTP

January 1975

t Control-0

* #

Type -o to clear typeout buffer.

Control-V

Use Av to quote characters in LOGIN.

Example of FTP Use

@FTP
*BBN
*LOG SMITH SECRET 12345

*DIR *.MAC
(to local file) TTY: [confirm]

*GET PROGRAM.MAC

(to local file> <esc>PROGRAM.MAC

*DISCON

*QUIT
@

-253-

:call in the subsystem
:connect to host BBN
;declare name, password,
:account
; the password will not be
- echoed.

;get a partial directory
: listing
:must end with carriage
; return
;escape causes same name
; to be used
;break the network
; connections

TENEX USER'S GUIDE --- NETWORK --­
FTP

INDEX

January 1975

Commands are given in capital letters.

ACCOUNT number or string 248
APPEND LOCAL-FILE to REMOTE-FILE 251
ASCII • • • • 249

BRIEF • • • • • • •
BYE • • • • • • • •
BYTE size-of-data-connection

252
248
248

Command interpreter . . • • . 246
CONNECT host-name or octal-number 247
Control-g • • . • • • 252
Control-a • . 253
Control-v . • • . • • • . 253
CWD . . • . . • • • • • . 2 4 8

Data transfer functions • 247
DELETE REMOTE-FILE • • • 251
DIRECTORY of REMOTE-FILE-GROUP 252
DISCONNECT • • • • • • • 248
Disconnecting • • • • . • 247

Example of FTP use

FORM • • . •
FTP control characters

253

249
252

GET REMOTE-FILE to LOCAL-FILE 251

HELP 252

IMAGE . 249

LOGIN 247

MAIL <FILE> to REMOTE-USER 252
Mak inq a connect ion • • • • • 24 7
MODE • • . • • • • • • • 250
MULTIPLE GET/SEND • • • • • • 251

NOSTATISTICS 252

QUIT • • . • • • • • • • 248
QUOTE arbitrary-FTP-line 252

-254-

-

* * #

RENAME REMOTE-FILE to be NEW-REMOTE-FILE 251

SEND LOCAL-FILE to REMOTE-FILE 251
STATISTICS • • • • • • • • • 252
STATUS of remote-system • • • 252
STRUCTURE • • • • • • • • 250

TENEX • • • •
TYPE • • •

VERBOSE • . .
249
248

252

[n]~H declare terminal type

-255-

212

TENEX USER'S GUIDE --- NETWORK --­
HOSTAT

HOSTAT

January 1975

HOSTAT obtains the network site status information maintained by
#the network survey site (MIT-DMS as of Dec. 1, 1974). It then
types this out in columnated form, grouped by status. If the
site name of a particular site is not known to the local TENEX,
the octal site address will be given instead.

The relevant status categories are:

Logging:

Refusing:

Not Responding:

No NCP:

Dead:

TIPs up:

TIPs Down:

Status Code Unknown:

Unable to Poll:

The survey site was able to complete the ICP to
this site's logger socket. (code 5)

This site responded to an RFC to the logging
socket, but did not complete the ICP. (code 4)

This site did not respond to an RFC to the
logging socket. (code 3)

This site's NCP did not respond at all. (code 2)

This site is disconnected from the network.
(code 1)

These sites are TIPs which responded to a probe
from the survey site. (code 4)

These sites are TIPs which are disconnected from
the network. (code 1)

The status code given by the survey site
is not known.

The survey site was unable to poll this site
successfully. (code 7)

For more information about the survey service and codes see RFC
530 (A report on Survey Project by Abhay Bushan) and the
subsequent note on this RFC (NIC Journal 20248).

If the survey site is down, HOSTAT will call NETSTAT to provide
the status information in the local TENEX's internal tables.
Note that this information is updated somewhat randomly (ie.
only when interactions occur or are attempted with the particular
site involved).

To use HOSTAT:

@HOSTAT
Getting survey from MIT-DMS ... OK.
Survey of 29-NOV-73 1:57PM-EST

-256-

TENEX USER'S GUIDE --- NETWORK --­
HOSTAT

January 1975

Logging:
SRI-ARC CASE-10 USC-44 UCLA-CCN LL-TX-2 USC-IS! MIT-AI
RAND-RCC AMES-67 UCSD-CC MIT-OMS CMU-10A UCLA-CCBS MIT-ML

SU-AI

Not responding:
LL-67 PARC-MAXC

Dead:
UCLA-NMC MIT-MULTICS CMU-10B CCA-TENEX SRI-AI BBN-TENEXB
UCSB-MOD75 SDC-LAB I4-TENEX UKICS-360 BBN-TENEX 243
UTAH-10 HARV-10

TIPS Up:
UTAH-TIP RADC-TIP USC-TIP SDAC-TIP CCA-TIP NCC-TIP
AMES-TIP NBS-TIP GWC-TIP ARPA-TIP FNWC-TIP NORSAR-TIP
MITRE-TIP ETAC-TIP DOCB-TIP BBN-TESTIP RML-TIP UKICS-TIP

-257-

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

NETED, ~N ARPA NETWORK COMMON EDITOR

NETED is a context editor which will present "the same" user
interface on many ARPA Network Hosts. The desiqn is a moderate
extension of an extremely scaled-down editor derived from the
"ed" family of editors on CTSS (which was one of the very first
general purpose time-sharing systems). No claims are advanced
for its elegance or modernity; it is meant to be "a" common
editor for the Network, not "the" common editor but the
underlying design has stood the test of time. It was designed
and initially implemented by volunteers from the Network User
Interest Group (USING) , who stand ready to supply both source and
object code to all Hosts. The major needs which it is intended
to satisfy are those of learnability and wide-spread
applicability. That is, it is a deliberately "un-fancy" editor,
so that new users can pick it up quickly; and it is meant to be
available on as many Network Hosts as possible, so that a single
investment in learning an editor will have a large payoff to
those who use more than one Host.

Although it is believed that the user interface is as similar as
possible from implementation to implementation, there are two
levels on which differences will be found. The more substantive
level is that of unavoidable system differences, such as the
#availability or unavailability of "type-ahead", the specification
of characters for editing within a line, limits on line length
and file size, availability of both alphabetic cases, and the
~ like. On this level, the imolementers' intent was to allow the
user to create a file which "makes sense" to the system on which
it is beinq created, rather than to attempt to constrain
ourselves to an unusable but identical "virtual" file format. So
there will be some unstated assumptions which differ from system
to system, which users will have to pick up as they go along -­
but we have tried hard to keep them to a minimum.

#The second level of differences is "cosmetic". That is, we have
not striven to make the form of all messages from the editor
identical: but we have striven to make their sense identical.
Because implementation strategies differ, and because the
implementers were volunteers, it did not seem appropriate to
attempt to "lock-step" in this are~. An attempt has been made to
keep "normal" responses close enough to allow for the possibility
of invoking the editor from a program, but "abnormal" responses
have not been given the same attention.

If, in actual practice, cosmetic variations prove to be a major
nuisance to users -- or if users wish to offer comments on other
aspects of NETED -- the USING NETED committee c~n be re~ched by
#Network mail through the Network Information Center's "Journal"
mechanism (address: yourident/neted), or through the Network -

-258-

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

Feedback mechanism. Also, the Network Technical Liaisons at
Hosts running NETED implementations should be able to put users
in touch with the committee.

(A final introductory point: on systems which do permit
"type-ahead" the policy is to ignore any pending requests when an
abnormal condition is encountered while processing the "current"
request. This strategy is employed in order to prevent the
possibility of erroneously processing a request which was in some
sense contingent upon the one which did not complete normally.
Taking advantage of type-ahead, then, requires getting the "feel"
of the particular implementation being used. The editor is,
however, quite usable even without type-ahead -- and, as noted
above, not all implementations even offer it. Note also that
"prompting" is available, so that the user can be certain the
previous request is complete before typing a new one.)

"Modes"
#As is typical of "context editors", the NETED command is used
both for creating new files and for altering already existing
files -- where "files" are named collections of character encoded
data in the storage hierarchy of a time-sharing system.
Consequently, NETED operates in two distinct "modes" called
"input mode" and "edit mode".

When NETED is used to create a file (that is, when it is invoked
from command level with-an argument which specifies the name of a
file which does not already exist in the user's "working
directory"), it is automatically in input mode. It will announce
this fact by outputting a message along the lines of "File
soandso not found. Input." Until you take explicit action to
leave input mode, everything you type will go into the specified
file. (Actually, it goes into a "working copy" of the file, and
into the real file only when you indicate a desire to have that
happen.) Lines consisting of only a new-line are permitted.
Blanks at the end of input lines are handled differently by
different operating systems, and there is no general policy in
NETED on this topic (that is, some systems strip trailing blanks
"automatically" in their input/output subsystems before a
NETED implementation sees them). To leave input mode, type a
line consisting of only a period and the aopropriate new-line
#character: ".<NL>", where <NL> is whatever-it iakes to cause a
Telnet New-Line to be generated from your terminal.

After leaving input mode, you are in edit mode. Here, you may
issue various "requests" which will allow you to alter the
contents of the (working) file, re-enter input mode if you wish,
and eventually cause the file to be stored. Note that edit mode
is entered automatically if the argument you supplied to NETED
specified an existing file.

-259-

--------------· ·-----· ------------------------ -

TENEX USER'S GUIDE --- NETWORK --­
NE'rED

January 1975

Regardless of how it was entered, being in edit mode is confirmed
by NETED's outputting a message of the form "Edit." Editing is
performed relative to a (conceptual) pointer which specifies the
current line, and many requests pertain to either moving the
pointer or changing the contents of the current line. (When edit
mode is entered from input mode, the pointer is at the last line
input: when entered from command ievel, the pointer is at the
"top" of the file.)

(Note that in the examples which follow although the command's
name and the requests are shown in lower case for typing
convenience, upper case also works: indeed, on many systems only
upper case is available.)

Invocation of the Command
Some time-sharing systems do not easily allow the passing of
arguments (or "parameters") to a program being invoked as a
command, while to others this is a natural approach. Because
NETED is specifically intended to be usable on all ARPA Network
Server Hosts, it has been given two methods of invocation in
light of these two styles of argument treatment:

1) neted
2) neted filename

Method 1) will work for all NETED implementations: method 2)
actually works for most implementations, but not all. Therefore,
it is advisable to invoke NETED on a system new to you via method
1) the first time you use it, and by whichever method you prefer
of the ones available subseauently. Note that in method 1), the
command will immediately ask you to enter a file name. As
indicated above, you will be in edit mode if the specified file
exists, and in input mode if not. A message will be output
indicating which mode has been entered.

Requests
NETED'S edit mode requests follow, in an order intended to be
helpful. Two important reminders: the reauests may only be
issued from edit mode, and each one "is a line" (i.e., terminates
in a newline I carriage return I linefeed as appropriate to the
User Telnet being employed). Syntax Note: if the request takes
an argument, there must be at least one space (blank) between the
reauest's name and the argument. In certain of the requests (in
which the argument is a string of characters to be located or
inserted) leading blanks "in" the argument may be desirable:
thus, in the "l", "i", and "r" requests if more than one blank
has been used to separate the request name from its argument, the
additional blanks are significant, while in the rest of the
requests which take arguments such leading blanks are permitted
but ignored (see also Examples, below).

-260-

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

1. n m
For unsigned m, the n(ext) request causes the pointer to be moved
"down" m lines. If m is negative, the pointer is moved "up" m
f lines. If m is not specified, the pointer is moved one line.
The line is output unless printing has been suppressed by the "v"
#request (14.). If the end of the file is reached, an "End of
file reached by n m" message is output by NETED, and the pointer
is left "after" the last line.

2. 1 string
The l(ocate) request causes the pointer to be moved to the next
line containing the character string string (which may contain
leading and/or internal blanks); the line is output, unless
printing is suppressed. If no match is found, a message of the
form "Top of file reached by 1 string" will be output (and the
pointer will have returned to the top of the file). The search
will not wrap around the end of the file; however, if the string
was above the starting position of the pointer, a repetition of
the locate request will find it, in view of the fact that the
pointer has been moved to the top of the file. To find any
occurrence of the string -- rather than the next occurrence -- it
is necessary to move the pointer to the top of the file before
doing the locate (see following request).

3. t
Move the pointer to the top of the file (actually to
"above" the current first line of the contents).

4. b

a position

Move the pointer to the bottom of the file and enter input mode.
"Input." will be printed when the request has completed.

5.
Leave the pointer where it is and enter input mode. (First new
line goes after current old line.) "Input." will be printed when
the request has completed. Note that you remain in input mode
until a line consisting of only ".<NL>" is given, as discussed
above.

6. i string
The i(nsert) request causes a line consisting of string (which
may contain leading and/or internal blanks) to be inserted after
the current line. The pointer is moved to the new line. Edit
mode is not left. If no string is given, a blank line will be
inserted into the working file.

7. r string
The r(eplace) request causes a line consisting of string (which
may contain leading and/or internal blanks) to replace the
current line.

-261-

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

8. p m
The p(rint) request causes the current line and the succeeding m

l lines to be output. If m is not specified, only the current
line will be output. End of file considerations are the same as
with "n". The pointer is moved to the final line printed.

9. c /sl/s2/ m g
The c(hange) request is quite powerful, although perhaps a bit
complex to new users. (Several examples of its use are given
below.) In the line being pointed at, the string of characters
sl is replaced by the string of characters s2. If sl is void, s2
will be inserted at the beginning of the line: if s2 is void, sl
will be deleted from the line. Any printing character not
appearing within either character string may be used in place of
the slash (/) as a delimiter. If a number, m, is present, the
request will affect m lines, starting with the one being pointed
at. All lines in which a change was made are output, unless
printing has been suppressed by the "v" request. The pointer is
left at the last line scanned. If the letter "g" is absent
(after the final delimiter) only the first occurrence of sl
within a line will be chanqed. If "g" (for "global") is present,
all occurrences of sl within a line will be changed. (If sl is
void, "g" has no effect.) Note well: blanks in both strings are
significant and must be counted exactly. End of file
considerations are the same as with "n".

10. a m
The d(elete) reauest causes m lines, including the current one,
to be deleted from the working copy of the file. If m is not
specified, only the current line is deleted. The pointer is
moved to the immediately previous undeleted line (that is, it is
moved "up"), except for ~h~ case where all the lines in the file
have been deleted, in which case the pointer will have been
backed up to the top of the file.

11. w filename
Write out the working copy into the storage hierarchy under the
name filename if this argument is present, or with the original
name if the argument is not given, and remain in NETED. See also
discussion of "quit" reauest (18.). A message of the form
"filename written." is output when the request has completed.
Pointer position is preserved.

12. save
Write out the working copy into the storage
from NETED.

hierarchy and exit

13. v
The v(erify) request reverses the setting of
variable which governs printing of lines reached or

262-

the internal
affected by --

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

several requests ("c", "l", and "n" -- but not "p"). It is
typically employed to suppress the large quantities of output
which result from multi-line changes, although experienced users
sometimes employ it merely to avoid waiting for responses when
they are confident they know what they're doing. Default is "on"
(i.e., such lines will be printed unless the "v" request is
given, and will again be printed if the "v" request is given
again) •

14. *
Reverse the setting of the internal variable which governs
printing of "*" as a "prompt" when ready for a new request or
line of input. Because the editor is expected to be used heavily
by new users, the default for this variable is "on" in order to
offer initial reassurance that the editor "is there". That is,
prompting will occur unless the "*" request is given, and will be
resumed if the request is given again.

15. m filename
The m(erge) request causes a copy of the contents of the already
existing file designated by filename to be inserted into the
working file, beginning immediately after the current pointer
position. The pointer will be moved to the final line of the
inserted material, and a message of the form "filename merged."
will be output, when the request has completed.

16. h
The h(elp) request actuates a per-implementation help mechanism,
which ranges from a simple statement that the present
implementation has no known deviations from the standard (as
expressed in this document), through a list of local extensions
and (possibly) idiosyncrasies, to a full-blown tutorial on the
use of NETED. Each implementation will include an announcement
I of its "erase" and "kill" characters (which, respectively, cause
one or more immediately previous characters or "print positions"
within a line to be erased, or cause the whole line up to that
point to be discarded); see also Note c), below.

17. ?
This request causes a list of the available requests to be
output.

18. quit
The quit request causes immediate exit from NETED; no writing out
of files occurs as a result of this request, although any
previous writing is unaffected by it. (If, for example, you wish
to alter a given file but preserve a copy of the original intact,
you would edit it, write the new version out under another name,
then "quit". To change the original, on the other hand, you
#would exit either by "save" or by the sequence "w", "quit".)
N.B., work can be lost by improper use of "auit". -

-263-

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

Notes
a) The reauirement that "save" and "quit" be fully spelled out
is based .on a concern that these two particularly powerful
functions not be invoked by the accidental mistyping of a single
letter.

b) At both the "top" and the "end" of the file, the editor is
dealing with a state rather than with a line. Messages of the
form "Top of file reached by:" and "End of file reached by:"
convey this idea when requests cause the editor to reach these
states. It is specifically declared to be an invalid operation
to attempt to r{eplace) or c(hange) when in such a state, and
implementations may vary in their responses to p{rint). (The
intended responses are "<Top of file.>" and "<End of file.>", but
by some implementation strategies the "reached by" type messages
or explicit error messages may be output instead.) In actual
practice, matters are less confusing than the above might seem to
indicate, for the only operation which one typically desires to
perform when at the top of the file is an insertion of some sort,
which works. (A change to the first line of the file's contents
is effected by "t","n", "c •.. ".)

c) There are no defined "erase" and "kill" characters in NETED,
for two reasons: the user has available to him the editing
characters of his User Telnet (and/or the generic ones of the
Telnet Protocol) before transmission and the Server's after
transmission, so there is no real need for such a facility: and
the proliferation of special purpose characters on a per-command
basis is generally accounted an undesirable design practice.
(Use the "h" request to determine a given implementation's "line
editing" characters.)

d) On some systems, the system itself will
character whenever a call is made to read
terminal; the "*" reauest cannot, of course, turn

emit
from
off

a prompt
the user's
prompting

at that level.

e) By convention, per-implementation requests' names will begin
with an "x". (Use the "h" request to determine whether a given
implementation offers any such requests.)

Examples
In the following, the prompting "*'s" have been omitted because
they lead to considerable clutter and make the examples much
harder to read and follow. Please note that in actual use, the
editor will output a "*" when it is ready for a line of input (in
both edit mode and input mode). Those who prefer not to be
prompted in this fashion can turn prompting off with the "*"
reauest. {Remember that if you are creating a new file you must
shift to edit mode first. It is felt by the designers that this
slight inconvenience is offset by the greater convenience

-264-

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

t inexperienced users are afforded by having prompting be
i default, but we are sorry that the binary choice forces
inconvenience anyone.)

"on" by
us to

i

1. Input and edit modes
Assuming that there is
the command

no file named "sample" in your directory,

neted sample

would cause the response
File not found.
Input.

Typing the following
This is line 1.
This is line 2.
This is line 3.

would cause the three lines of text
copy of the file, and generate the
change request ".")

to be placed in the working
response (because of the mode

Edit.

The following sequence would write a copy of the working copy
out, move the conceptual pointer to the top of the file, insert a
line there, then re-enter input mode at the bottom of the file:

w
sample written.
t
i This is line 0.

b

(Response after the "b" request is "Input.".)
lines at the bottom and return to edit mode:

This is line 4.
This is line 5.
•

(Response is "Edit.") At this point,
save

(response)

Now we add two

will
Note
top
have

write out the (six-line) file and return to command level.
that had it been desired to input more than one line at the
of the file (or elsewhere in the file) the "." request could
been used conveniently to enter input mode.

2. Pointer-moving reauests
Continuing with the file "sam?le", the following would leave
pointer at the final line:

-265-

the

TENEX USER'S GUIDE --- NETWORK --­
NETED

neted sample
Edit.
n 6

(response)

January 1975

Note that the argument to the "n" request is "6" rather than "5"
because the top of the file is a null line rather than the first
line of the contents, in order to facilitate insertion of new
material at the top of the file. (If you had done an immediate
"p" request after entering edit mode from command level, the
response would have been "<Top of file.>") An alternate way of
moving the pointer to the last line (instead of "n 6") is
1 5
This is line 5. (response)

This latter method, usually known as "locating by context," is
the more common. At this point,

n -2
would cause the response

This is line 3.

As noted above, "t" moves the pointer to the top of the file, and
"b" moves it to the bottom (and enters input mode).

3. Changing existing lines
Assume the pointer is still located at "This is line 3."

c /is/was/

would result in
Thwas is line 3.

Ah well. Blanks are significant.
was intended:

c /was/is/
This is line 3.
c I is/ was/
This was line 3.

To fix the mess and

(response)

(response)

do what

To change all instances of a character string on a given line:
c /i/x/ g
Thxs was lxne 3. (response)

(Note the
would be

space before the "g".) An easy way to fix that line

r This is line 3.

which simply replaces the current line.
work, of course.)

The following
reouest)

request (the

c /line/entry/ 2

pointer

-266-

("c /x/i/ g" would also

is not changed by the "r"

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

would result in the response
This is entry 3.
This is entry 4.

with the pointer now at "This is entry 4."

To append to the beginning of a line,
c //tag:/
tag:This is entry 4.

And to remove a string from a line,
c /tag://
This is entry 4.

{response)

{response)

Note that "/" need not be used as the delimiter.
xtag:xx" would also have worked in the last instance.

I.e.,

4. Miscellaneous requests
Still using "sample" consider the following:

t
n
This is line 0.
d 2
Top of file reached by "d 2"
i This is the beginning.
c /in/inn/

This is the beginning.
1 3
This is entry 3.
d 99
End of file reached by "d 99"

Input. {response)

Edit.
t
p 99
<Top

This is the end.

{ resoonse)

of file.>
This is the beginning.

This is line 2.
This is the end.

End of file reached by "p 99"

{response)

{response)

{response)

{response)

{response)

{response)
{response)

(response)
(response)

{response)

II C

Note that the first "d" request took care of the lines ending
with 11 0. 11 and "!." and the second took care of "3." through "5."
The response to the first illustrates what happens to the pointer
after a "d" request. The insertion of "This is the beginning."
shows the handling of leading blanks in edit mode: the insertion
of "This is the end." shows the handling of leading blanks in
input mode. The 11 • 11 after the "d 99" could also have been a "b"

-267-

TENEX USER'S GUIDE --- NETWORK --­
NETED

January 1975

or an "i" request. A "save" request at this point would leave
you with a file containing only the three text lines which were
printed in response to the "p 99".

No attempt has been made here to of fer examples of all possible
requests, in the belief that the foregoing examples convey the
"feel" of the editor and the descriptions of the other individual
requests should be sufficient for the user to learn from, once
the overall mechanism has been learned. Special note should be
taken of the "h" request, however, as in many implementations the
response to it will furnish important additional information.

-268-

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

NETSTAT

January 1975

To obtain information on the status of the network
as seen from TENEX:

@NETSTAT%

NETSTAT responds with:

*
and awaits a command.

(Note: Throughout this description of NETSTAT "%" indicates
where carriage return is typed.)

There are two types of information which can be
requested:

1) A list of the network sites which the local
host considers to be up.

2) A list of network connections with the local
host.

The following commands select the type of information to be
given:

*ALL All sites and all connections.

*CONNECTIONS All connections.

*HOSTS All hosts (i.e. not TIPS).

*SITES All sites.

*SPECIFIC CONNECTIONS Only connections of a
specified type.

A blank line terminates commands and starts the type out.

If no command has been given then ALL is assumed.
eg:

@NET STAT%
*%

Will list all sites and all connections.

-269-

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

SITES:

January 1975

The site names are typed in tabular form with (octal) site
addresses given for sites whose names are not known to TENEX.
eg:

@NE'fSTA'f%

*SITES %
*%

THE FOLLOWING ARE UP:

UCLA-NMC
UCLA-CCN
SRI-ARC
UCSB-MOD75
BBN-TENEX

BBN-TENEXB SU-AI MITRE-TIP USC-IS! DOCB-TIP
MIT-OMS ILL-ANTS RADC-TIP 027 SAAC-TIP
MIT-AI I4-TENEX NBS-TIP USC-TIP ARPA-TIP
LL-67 AMES-67 ETAC-TIP GWC-TIP 035
LL-TX-2 AMES-TIP

For SITES it is possible to specify that only sites of a specific
type (or types) are of interest.
The possible types are:

eq:

TENEX
ITS
DECHI
TIP
MTIP

*SITES TENEX %
*%

PDP-10 TENEX systems
Incomoatible Timesharing Systems
DEC PDP-10 systems
Terminal Interface Processors
Magnetic tape TIPs

THE FOLLOWING ARE UP:

BBN-TENEX BBN-TENEXB I4-TENEX USC-IS!

or:

*SITES TIP ITS %
*%

THE FOLLOWING ARE UP;

-270-

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

January 1975

MIT-OMS AMES-TIP RADC-TIP ETAC-TIP GWC-TIP SAAC-TIP ARPA-TIP
MIT-AI MITRE-TIP NBS-TIP USC-TIP DOCB-TIP

HOSTS:

The HOSTS command is the same as the SITES command except
that if no site types are specified then only sites which
are not TIPs or MTIPs are typed.

DECIMAL.HOST.NUMBERS:

Causes decimal site address numbers to be typed with the
site names for the SITES or HOSTS commands.

OCTAL.HOST.NUMBERS:

Causes octal site address numbers to be typed with the site
names for the SITES or HOSTS commands.

NO.HOST.NUMBERS:

Causes no site address numbers to be typed with the site
names for the SITES or HOSTS commands. This is the default
case.

-271-

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

CONNECTIONS:

January 1975

The connection information is given in the following tabular
form:

@NETSTA'r%

*CONNECTIONS
*%

ACTIVE CONNECTIONS:
I STATE LCL-SOCKE'I' HOST 4N-SOCKET LNK BITS-ALLOC M-ALL BS/VT

0
5
6

13
20
21
22

111
116
117
121
130
134
135
136

OPND 30324600305 BBN-TENEX 30324000142 5 944
LSNG 21
LSNG l
OPND 30324000146 BBN-TENEX 30325000301 7 952
OPND 30325000300 BBN-TENEX 30324000147 10 17728
OPND 30324000147 BBN-TENEX 30325000300 10 17696 .
LSNG 3

• •
OPND 30324000070 NBS-TIP 4200003 2 928
OPND 30324000151 NBS-TIP 1600002 11 640
OPND 30324000071 NBS-TIP 4200002 23 64
LSNG 15
OPND 33200101 !3BN-TENEX 33200200 2 0
RFNl 30324000153 SAAC-TIP 200002 .3 8
LSNG 17 /

OPND 33200200 BBN-TENEX 33200HH 2 0

where: I is the index of the connection in local
system tables.

STATE is the state of the connection.

LCL-SOCKET is the absolute local socket number.

HOST is the name of the foreign host for this
connection (or its address in octal if its
name is not known to TENEX) •

4N-SOCKET is the absolute foreign socket number.

LNK is the link of the connection.

-272-

6 B 8

6 Tl06
2 B 8
2 Tl06

6 Tl01
1 Tl02
1 Tl01

0 B36
0 B 8

0 B36

-·

-

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

January 1975

BITS-ALLOC is the present number of bits (decimal)
allocated for this connection.

M-ALL is the present number of messages
allocated for this connection.

BS/VT is either the byte size for this
connection or the virtual terminal number
of the connection (assumed byte size of
8) •

For LSNG connections only I, STATE, and LCL-SOCKET are given.

SOCKETS:

The SOCKETS command is the same as the CONNECTIONS command.

SPECIFIC CONNECTIONS:

It is possible to specify that only connections of specific types
are of interest. This is done by typing:

*SPECIFIC CONNECTIONS:

**
NETSTAT will now accept specification commands.

The possible specifications are:

SITES
HOSTS

JOBS

SIZES

or
to specify only connections
types of hosts. Names may
network names or nicknames
system. Host numbers are in
eg:
**HOSTS UCLA-CCN 201 TENEX %

to specify only connections
numbers are relative to
numbers are in decimal.
eg:

**~OBS 11,0%

with specific hosts or
be either the official

known to the local
octal.

whose local socket
specific jobs. Job

to specify only connections which have given byte
sizes. Byte sizes are in decimal.

-273-

TENEX USER'S GUIDE --- NETWORK --­
NE·rSTAT

January 1975

eg:

**SIZES 8,32%

STATES to specify only connections which are in given
states.

TTYS

USERS

eg:

**STATES LSNG CLSW %

to specify only connections which are with
specific virtual terminals. Terminal numbers are
in octal.
eg:

**TTYS 101,105%

If no arguments are given for TTYS then all
connections with virtual terminals are specified.
eg:

**TTYS %

to specify only connections whose local socket
numbers are relative to specific users.
eg:

**USERS JSMITH JDOE%

Specification commands to select connections
sockets are:

involving specific

LOCAL.SOCKETS
SOCKETS

or
to select connections with specific

numbers
local sock1~t

FOREIGN.SOCKETS to select connections with specific foreign socket
numbers.

The specification arguments for the SOCKETS commands can
of the following (all numbers are octal):

SKT
SKT1-SKT2
SKT+INCR
<SKT
>SKT

A single specific socket: S = SKT
Any socket in range: SKTl <= S <= SKT2
Any socket in range: SKT <= S <= SKT+INCR
Any socket in range: S <= SKT
Any socket in range: SKT <= s

be any

The arguments for all of the above selection commands may be

-274-

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

January 1975

separated by spaces, commas, or, for those arguments where
altmode recognition may be done, by the altmode used in
completing the previous argument. Altmode may be used to
recognize all arguments which are not numbers, as well as the
selection commands themselves. Only enough need be typed to
uniquely identify the command or argument.

eg. The following are all equivalent and legal (ALTMODE
is represented by "$"}:

**ST$ATES ~G,CLSW OPND%

**STATES L$SNG CLSW,0$PND %

**ST LS,CLS$W OP%

It is also possible to precede any of the above
commands with the word "NOT". This has the effect
all connections ~cept those of the given type(s}.

eg:

**NOT STATES LSNG OPND %

specification
of specifying

will specify all connections which are not in the LSNG or
OPND states.

If a particular specification command has already been given
without NOT, it is an error to later give the same command with
NOT.

eg:

**HOSTS TENEX %
**NOT HOSTS ??
**

When more than one specification command is given, only the
connections that satisfy all of the given specifications (ie.
the logical AND of the conditions specified) are listed.

To terminate specifications and start typeout (or return to
regular commands if no specifications were given) type carriage
return on a blank line.

ie:
**%

-275-

TENEX USER'S GUIDE --- NETWORK --­
NETST.1\T

REPEA'r:

January 1975

NETSTAT normally returns to EXEC when it completes its type out.
This command causes NETSTAT to return to accept a new set of
commands after each type out. Typing a blank line at that point
will cause NETSTAT to again give the status information specified
by the last set of commands.

Forces NETSTAT to return to EXEC.

BRIEF:

Causes no headings or messages to be typed when giving status
information.

VERBOSE:

Causes headings to be always typed.
The default case is to print the heading for the connection
information only the first time.

SPECIAL CHARACTERS:
"'A (ctrlA'f-may-be-use;J·-to delete the last character typed.

? will prompt a help message.

RUBOUT will abort a line.

Besides causing recognition, ALTMODE will also prompt a
description of the type of argument required when tyoed as the
first character when an argument is expected.

"o (ctrl 0) will stop the typeout. It acts independently on the
site and the connection information.

semi-colon can be used at the start of a line to indicate a
line to be ignored.

-276-

-

·-

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

January 1975

Examples:

@NETSTAT%

*SPECIFIC CONNECTIONS:
**SIZES 8%
**NOT TTYS %
**%' ·- -

-

ACTIVE CONNECTIONS:
I STATE LCL-SOCKET HOST 4N-SOCKET LNK BITS-ALLOC

15 OPND 30327000325 SRI-ARC 30324100024 27 184
16 OPND 30327000305 BBN-TENEX 30324000140 5 952
17 OPND 30327000324 SRI-ARC 30324100025 7 18168
23 OPND 30327000304 BBN-TENEX 30324000141 6 18168
25 OPND 30324000240 ET AC-TIP 400003 2 0
33 OPND 30324000241 ETAC-TIP 400002 4 0
45 OPND 30327000301 BBN-TENEX 30324000074 2 944
50 OPND 30325500003 CMU-10B 400 62 392
55 OPND 30327000300 BBN-TENEX 30324000075 3 18168
57 OPND 30325500002 CMU-10B 401 3 17728

131 CLZW 30327000311 I4-TENEX 30324000056 36 48
136 CLZW 30327000310 I4-TENEX 30324000057 3 18168

@NETSTAT% ----
*SPECIFIC CONNECTIONS:
**NOT HOSTS TIP %
**TTYS - % - -
**%' -

ACTIVE CONNECTIONS:
I STATE LCL-SOCKET HOST 4N-SOCKET LNK BITS-ALLOC

13 OPND 30324000166 SRI-ARC 30326500003 2 952
21 OPND 30324000167 SRI-ARC 30326500002 17 12976
27 OPND 30324000220 SRI-ARC 30326500005 3 952
35 OPND 30324000221 SRI-ARC 30326500004 11 15832
64 OPND 30324000075 BBN-TENEX 30327000300 3 18168
65 CLZW 30324000315 CASE-HJ 30324600002 20 15736
66 OPND 30324000235 SRI-ARC 30326500010 53 14128

111 OPND 30324000230 SRI-ARC 30326500007 4 904
117 OPND 30324000231 SRI-ARC 30326500006 3 13752
140 OPND 30324000074 BBN-TENEX 30327000301 2 944

-277-

M-ALL BS/VT

19 B 8
6 B 8
2 B 8
2 B 8
0 B 8
0 B 8
6 B 8

19 B 8
2 B 8
2 B 8

262142 B 8
2 B 8

M-ALL BS/VT

6 Tl02
15 Tl02

6 Tl03
17 Tl03

2 Tll4
6 Tl05

11 Tl01
6 Tl06

20 Tl06
6 Tll4

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

January 1975

141 OPND 30324000314 CASE-10
142 OPND 30324000234 SRI-ARC

@NETSTA.T%
*SPECIFIC CONNECTIONS %
*°'*STA'rES OPND %
**SIZES 3Z%
**%

30324600003
3032650flHHl

There are no connections of the specified type.

@NE'rSTAT%

*H TEN,TIP% * ~··-·--·----

**JOBS 8
**

THE FOLLOWING ARE UP:

2
5

SRI-ARC BBN-TENEXB MITRE-TIP 8TAC-TIP GWC-TIP SAAC-TIP
UTAH-10 I4-TENEX R~DC-TIP USC-ISI DOCB-TIP ARPA-TIP
BBN-TENEX AMES-TIP NBS-TIP USC-TIP

ACTIVE CONNECTIONS:

944
944

6 Tl05
6 Tl01

I STATE LCL-SOCKET HOST 4N-SOCKET LNK BITS-ALLOC M-ALL BS/VT

20 OPND 30325000300 BBN-TENEX
45 OPND 30325000301 3BN-TENEX

@NET.STA.T%

*S%

**USERS !!~L~THOMAS %
**%

ACTIVE CONNECTIONS:
I STA.TE LCL-SOCKET

23 LSNG 23100365

HOST

30324000375
30324000374

4
3

17728
944

2 B 8
6 B 8

4N-SOCKET LNK BITS-ALLOC M-ALL BS/VT

-278-

TENEX USER'S GUIDE --- NETWORK --­
NETSTAT

January 1975

32 LSNG
46 LSNG

137 LSNG

@NET STAT%

5600001
5600003

23100371

*SPECIFIC CONNECTIONS:
**NOT STATES LSNG %
**NOT HOSTS BBN%
**l -

ACTIVE CONNECTIONS:
I STATE LCL-SOCKET HOST

34 RFNl 30324000161 NBS-TIP
50 OPND 30325500003 USC-IS!
57 OPND 30325500002 USC-IS!

111 OPND 30324000070 NBS-TIP
117 OPND 30324000071 NBS-TIP

4N-SOCKET LNK BITS-ALLOC

1600002 11 304
30324000020 31 96
30324000021 3 17728

4200003 2 720
4200002 23 48

-279-

M-ALL BS/VT

6 Tl02
20 B 8

2 B 8
6 Tl01
0 Tl01

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

RS EXEC

January 1975

RSEXEC is an experimental multi-computer Executive Program. It
contains several self-documenting features. The following is a
typescript of an RSEXEC session:

@RS EXEC

RSEXEC 2.7.1 BBN-TENEX
Type HELP<cr> for help.
HELP

TUE 25-JUN-74 09:03-EDT

"?" gives a list of commands.

Use the "DESCRIBE" command to obtain
commands. A good way to start is:

DESCRIBE RSEXEC<cr>

descriptions of

Only enough of a command to uniquely identify it need be
"ESC" invokes command recognition and completion.
characters are:

AA (Control A) - Character delete.
AR (Control R) - Retypes current line or item.

RUBOUT (or DEL) - Aborts current command (if typed while
giving command or arguments).

Ac and T are hanjled by RSEXEC.

other

typed.
Editing

still

AP may be used as 3 panic escape in case your terminal becomes
hung while linked. It breaks the link, clears input and output
buffers, and returns to the higher level EXEC. The CONTINUE
command will then resume the RSEXEC session as if a AC had
occurred.

?
-Commands

ACQUIRE
APPEND
BIND
BREAK
CONTINUE
COPY
DELETE
DESCRIBE
DEVSTAT
DIRECTORY
ENTER
ESCAPE

are:

EXEC
EXPUNGE
FULL DUPLEX
GET

-280-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

HALFDUPLEX
HELP
HOSTAT
INITIATE
LEAVE
LINK
LIST
LOCATE
LOGOUT
NEED
NETNEWS
NETSTAT
PROEDIT
PROLIST
PURGE
QFD
QUIT
RECEIVE
REFUSE
RELEASE
RENAME
RESET
RUN
SERVERS
SITES
SNDMSG
START
TELCONN
TENXSTAT
TERMINA'rE
TI ME CONSTANT
TRSTAT
TYPE
UNDELETE
USE
WHERE
WHO

DESCRIBE (command, term or ALL) RSEXEC

RS EXEC

January 1975

The Resource Sharing Executive is an evolutionary multi-computer
executive program. It provides an environment in which the range
of many features found on a single-Host time sharing system are
extended beyond the boundaries of a single Host to encompass many
Hosts on the ARPANET.

At present RSEXEC includes facilities
interaction (see descriptions for
SNDMSG) , for managing "multi-Host"

-281-

for inter-Host user-user
WHO, WHERE, SITES, LINK,

file directories (see

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 197!5

descriptions of ENTER and
"jobs" on several Hosts (see

BIND) and for controlling multiple
descriptions for TRANSACTION and
RSEXEC serves as a command language # INITIATE). In addition, the

interpreter for TIP users.

The DESCRIBE command can be used to obtain descriptions of all
(accessible) RSEXEC commands and, in addition, the following
terms:

BOUND-DEVICE, COMPONENT-DIRECTORY, COMPOSITE-DIRECTORY,
FILE-NAMES, INTERRUPT-CHARACTERS, MULTI-IMAGE-FILES,
PRIMARY-DIRECTORY, PROFILE, TRANSACTION, BUGCHK

(TIP users accessing RSEXEC via the TIP "@n" command can use only
a subset of the RSEXEC commands~ they can obtain descriptions of
only those commands (and related terms) they have access to.)

The user interested in the design philosophy of RSEXEC and its
implementation is referred to the paper "A Resource Sharing
Executive for the ~RPANET", Proceedings of 1973 National Computer
Conference and Exoosition, also NIC #14689).

_DESCRIBE (command, term or ALL) ALL

ACQUIRE (Component Directory) Component! ••• Componentn <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command. Used
to add the files in the component directories specified to the
composite directory. A directory need not be ACQUIREd in order
to reference files in it or at the corresponding site. However,
file name recognition and completion will work only for files
that are local or in ACQUIREd directories. See also descriptions
for COMPOSITE-DIRECTORY and COMPONENT-DIRECTORY.

APPEND (file) FILE! (to file) FILE2 <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command.
Changes FILEl by aopending FILE2 to it.

BIND (device) DEVICE-NAME (to site) SITE-NAME <er>
or

BIND (device) DEVICE-NAME (to site) TIP-NAME <er>
(Port #) number <er>

Use of this command is limited to users who have gained access to
t~e file system features of RSEXEC via the ENTER command.

Associates the device named with the Host named such that
subsequent references to the device name refer to the device at
the Host specified. For example, the sequence:

BIND LPT MITRE-TIP

-282-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

(Port #) 1
LIST TEST.DATA

January 1975

would produce a listing of file FOO.DATA at device port 1 on the
MITRE-TIP. For binding to a TIP Port to work properly the TIP
#port in question must be set to "wild".

it

BOUND-DEVICE
The user can use the BIND command to specify that subsequent use
of a particular device name is to refer to that device at a
specific site. Such a device is said to be "bound" to that site.
For example, the sequence of commands:

BIND LPT USC-IS! <er>
-COPY REPORT.DRAFT LPT: <er>
-LIST PROGRAM.SOURCE <er>

first binds the line printer to ISI and then causes two
to be produced by the IS! line printer.

listings

BREAK<cr> Breaks terminal links (see LINK).

BUGCHK
RSEXEC contains a considerable number of internal consistency and
redundancy checks. If RSEXEC detects a malfunction it prints the
message:

BUGCHK at NNNNN

and continues. Such messages are useful for debugging purposes
and recurring BUGCHK messages, together with the circumstances
under which they occur, should be reported to Bob Thomas
(BTHOMAS@BBN) or Paul Johnson (JOHNSON@BBN) •

COMPONENT-DIRECTORY One of
included in the user's
component directories is:

[Site]<Directory>

the file
composite

directories
directory.

that may be
The syntax for

e.g., [NIC]<JONES>. There is an entry in the user's profile for
each component directory. The user may control which component
directories are, at any given time, included in his composite
directory via the ACQUIRE and RELEASE commands and the
subcommands of the ENTER command.

COMPOSITE-DIRECTORY
The collection of file directories specified in a user's profile
define his composite directory. The "contents" of the composite
directory are the union of the "contents"· of the component
directories specified in the profile. Pathnames without site and

-283-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

directory qualification are interpreted with respect to the
user's composite directory. The ENTER command uses information
in the profile to gather sufficient information to construct (a
local copy) the user's composite directory. See also
descriptions for PROFILE and FILE-NAMES.

CONTINUE <er>
Resumes execution interrupted by previous "c.

COPY (file) FILEl (to new file) FILE2 <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command. Makes
a copy of FILEl which is named FILE2.

DELETE (file) FILE <er>
or

DELETE (file) FILEl •.• FILEn <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command.
Deletes the file(s) specified. Files which have been deleted but
not expunged may be "undeleted" by the UNDELETE command. Deleted
files are automatically expunged at LOGOUT.

DESCRIBE (command, term or ALL) command<cr>
or
DESCRIBE (command, term or ALL) ALL<cr>

Describes any (or all) cammand(s). In ad1ition, DESCRIBE
can be used to describe certain "terms" such as RSEXEC.

DEVSTAT <er>
Lists the (binding) status of all devices.

DIRECTORY <er>
or

DIRECTORY , <er>
subcommand <er>

<er>
or

DIRECTORY FILEl .•• FILEn <er>
Use of this command is limited t0 users who have gained access to
the file system features of RSEXEC via the ENTER command. Prints
information (as modified by subcommands, if any) about the
file(s) specified or, if none are specified, all files in the
user's composite directory. The subcommands are:

VERBOSE <er>
~MULTI-IMAGE FILES <er>
~SITES sitel ..• siten <er>

-284-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

DELETED-FILES <er>

January 1975

See also descriptions of COMPOSITE-DIRECTORY and
MULTI-IMAGE-FILES

#.

ENTER (name) NAME (affiliation) AFFL (RSEXEC password) PWRD <er>
or

ENTER (name) NAME (affiliation) AFFL (RSEXEC password) PWRD , <er>
subcommand <er>

<er>
Grants access to distributed file system features of RSEXEC after
constructing a composite directory for the user from his profile.
If the user does not have a permanent profile (e.g., hasn't
previously used the ENTER command or has chosen not to have
RSEXEC maintain a permanent profile for him) RSEXEC will acquire
the information necessary to construct a profile for him. NAME
is the name the user has chosen to be known by to RSEXEC: AFFL
is his affiliation (e.g., AMES, NIC, ARPA at present an
arbitrary string): PWRD is his RSEXEC password chosen when his
permanent profile was created. W A R N I N G : RSEXEC
distinguishes between upper and lower case letters in the RSEXEC
password. The user may use the ENTER subcommands to control
which components of his profile are acquired for his composite
directory. The subcommands are:

ALL all components are acquired
NONE no components are acquired
ACQUIRE COMPONENT! ••• COMPONENTn

com?onents 1 through n are acquired

See also the descriptions for
COMPOSITE-DIRECTORY.

PROFILE, COMPONENT-DIRECTORY and

ESCAPE (Character is) CNTL-CHAR <er>
Sets the "return from transaction escape character" to the
control character specified. The escape character is initially
AZ. See also the descriptions for INTERRUPT-CHARACTERS and USE.

EXEC<cr>
Runs the standard TENEX EXEC: to return to RSEXEC use the EXEC
QUIT command. If he has previously ENTERed the user has the
option of reacquiring the local component(s) of his composite
directory when he returns to RSEXEC from an inferior EXEC. This
is useful if he has added or deleted files while using the EXEC.

EXPUNGE (deleted files) <er>
Irretrievably removes deleted files
directory. ·

-285-

from the
,

user s composite

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

FILE-NAMES
The RSEXEC extends the syntax for TENEX file names to
Host component. The syntax for file pathnames is:

include a

fl:

• #

[HOST]DEVICE:<DIRECTORY>NAME.EXTENSION:VERSION

Where HOST is either the strinq "LOCAL" or the name of an ARPANET
TENEX. Partial pathnames may be used within RSEXEC. For
example, whenever the site, device and directory fields are
omitted, the user's composite directory is used as a default. At
present the TENEX "*" convention may be used only with local
files. The user must have a profile entry for a site before he
can access files at that site. A Component Directory for a site
need not be ACQUIREd in order to reference files at the site or
in the Component Directory. However, file name recognition and
completion will work only for files that are local or in an
ACQUIREd directory. See description for PROFILE.

FILE-TRANSFER-EXAMPLES
The NEED command is a convenient way to move files from one or
more Hosts to a specified destination Host: (assume in the
following that the local Host is BBNA) : To move a group of files
to the local primary directory:

_NEED (files) Fl F2 ••• FN <er>
e.g. ,

NEED (files) [IS!] <SUBSYS>NE'rSTAT.SAV
-[ISI]<SUBSYS>NETSTAT.SAV

[BBNB]<TENEX-132>SCHED.MAC

[BBNB]<TENEX-132>SCHED.MAC

To move a group of files to a specified directory at the local Host:
NEED (f i 1 es) Fl F 2 • • • FN < c r >

-(in Comoonent Directorv) CD <er> - .
e.g.,

NEED (files) [ISI]<SUBSYS>NETSTAT.SAV [BBNB]<TENEX-132>SCHED.MAC ,
NE= (in Component Directory) [BBNA] <TENEX-132>

[ISI]<SUBSYS.NETSTAT.SAV
[BBNB]<TENEX-132>SCHED.MAC

To move a group of files to another Host:
NEED (files) Fl F2 ••• FN , <er>

=(in Component Directory) CD <er>
e.g.,

NEED (files) [!SI] <SU9SYS>NETSTAT.SAV
-(in Component Directory) [ARC]<JONES>
-[ISI]<SUBSYS>NETSTAT.SAV

[BBNB]<TENEX-132>SCHED.MAC

[BBNB]<TENEX-132>SCHED.MAC I

Note that component directories need not be "ACQUIREd" to move to
or from them. However, file name recognition and completion will
only work for files that are local or in ACQUIREd directories.

-286-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

i FULLDUPLEX<cr>
i Causes your terminal to be treated as fullduplex.

* #

* #

GET (Saved File) FILE <er>
*****fix description*****
*****Not Implemented*****

HALFDUPLEX<cr>
Causes your terminal to be treated as halfduplex.

HELP<cr>
Prints a short help message.

HOSTAT<cr>
Lists the status of network server hosts
host survey program at MIT-DMCG.

as maintained by the

INITIATE (transaction at) HOST-NAME (called) NAME <er>
Attempts to create a job for the user at the site specified.
job is known as NAME. The user will be notified when
transaction is ready for use. See also the descriptions for
USE, TERMINATE, TRSTAT and PURGE commands.

The
the
the

INTERRUPT-CHARACTERS
The following characters are handled as terminal interrupts
by RSEXEC:

"'c (CNTL-C) : interrupts the current activity, returning control
to RSEXEC. The CONTINUE command may be used to
resume the interrupted activity. when a transaction
is being USEd, RSEXEC transmits the "'c to the
remote transaction.

"'T (CNTL-T): prints CPU and console time used in RSEXEC
session. When a transaction is being USEd,

"'z (CNTL-Z):

"'p (CNTL-P):

RSEXEC transmits the "'T to the remote transaction.

enabled only when a transaction is being USEd.
Returns control from transaction to RSEXEC.
The ESCAPE command may be used to change the
transaction escape character from "'z to
another control character.

RSEXEC "panic" escape. Intended for use when your
terminal becomes "hung". It breaks all terminal
links, clears terminal input and output buffers,
and returns control to the top level EXEC. The
EXEC CONTINUE command may be used to resume the
RSEXEC session. When resumed in this way the
RSEXEC acts as if the user had typed "'c.

-287-

TENEX USER'S GUIDE --- NE'rWORK --­
RSEXEC

January 1975

LEAVE (distributed file system) <er>
USQ of this command is limited to users
the file system features of RSEXEC via
the distributed file system features of
Inverse of ENTER.

who have gained access to
the ENTER command. Makes
the RSEXEC inaccessible.

LINK (to tty #) number (at site) hostname<cr>
or

LINK (to tty #)<er>
"Links" your terminal to the terminal specified at the host
specified such that the output for either terminal appears on
both. If no hostname is given the local host is assumed and a
local link will be made. The RSEXEC comment character "~" should
be used when LINKed to prevent RSEXEC from interpreting dialogue
as commands.

Links are broken by the BREAK command or by quitting RSEXEC.

LIST (file) FILE <er>
or

LIST (file) FILE! ••• FILEn <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command. Causes
a listing(s) of the specified file(s) to be output to the line
orinter. The command:
- COPY (file) FILE (to new file) LPT: <er>
will produce a listing without the formatting action of the
LIST command.

LOCATE (file) FILE (at Component Directory) COMPONENT-DIR <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command.
Creates an image of FILE and places it in the Component Directory
specified. See also the description for MULTI-IMAGE-FILE.

LOGOUT< er>
Logs out from RSEXEC and TENEX.

MULTI-IMAGE-FILES
The RSEXEC treats files with the same pathname relative to a
user's composite directory (i.e., identical name, extension and
version components) as "images" of the same file. Such a file is
said to be a multi-image file. Although the profile file (see
description of USER PROFILE) is transparent to the RSEXEC user,
it is implemented as a multi-image file.

NEED (file) FILE! •.• FILEn <er>

or
NEED (file) FILE! ••• FILEn , <er>

{in Component Directory) CD <er>

-288-

, __ _

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command.
Creates an image(s) of the file(s) specified in the Component
Directory specified. If no Component Directory is specified, the
image(s) is placed in the local primary directory. See also the
description of MULTI-IMAGE-FILE.

* # NETNEWS<cr>
Prints the latest network news.

NETSTAT<cr>
Runs the standard TENEX NETSTAT subsystem which gives network
status information.

PRIMARY-DIRECTORY
For each site for which there are Component Directories there is
a Component Directory designated the Primary Component Directory
for that site. The Primary Directory for a site must be a
"login" (rather than "files only") directory. It is used as the
basis for access control checks at the site. The Primary
Directory for a site is set by the user either implicitly (as the
first "login" directory for the site added to his profile) or
#explicitly (via the PRIMARY command of the profile editor). See
also descriptions for PROFILE, PROEDIT and COMPONENT- DIRECTORY.

PROEDIT <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command. Used
to edit the user profile. PROEDIT subcommands are:

ADD to add an entry to the profile
REMOVE to remove an entry from the profile
LIST to print the profile
CHANGE to modify an existing profile entry
PRIMARY to change the primary directory for a site
UPDATE to make the edits permanent (see below also)
QUIT to return to the RSEXEC

The syntax for a profile entry is:

[Site]<Directory>

If successful, the ADD (REMOVE) command results in modification
#of the user's profile with the addition (removal) of the
specified entry. In addition, if he has so chosen, his composite
directory is modified by the addition (removal) of the
appropriate files. If the user attempts to ADD an entry for a
site for which the RSEXEC server program is down, the entry will
be marked to indicate that it has not been verified (i.e.

- # name/password not checked) and that its files have not been added
to the user's composite directory.

-289-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

If during the course of the user's RSEXEC session the remote
server comes up, the entry will automatically be verified and its
files added to the users composite directory (if the user has
indicated that he wants them). The user has the option of making
his edits permanent via the UPDATE command or when he leaves the
distributed file system environment via the LEAVE, QUIT or LOGOUT
command. The profile editor prompt character is"*". See also
the descriptions for PROFILE, COMPONENT-DIRECTORY, and
COMPOSITE-DIRECTORY and PRIMARY-DIRECTORY.

PROFILE
A collection of user specific information and parameters
maintained for the user by the RSEXEC. At present, the
information maintained includes an entry for each of the user's
file directories: each entry consisting of Host name, directory
name, password and account number or string. The profile editor
(PROEDIT) can be used to add or delete entries from the profile.
If a user chooses to have the RSEXEC maintain a permanent record
of his profile a file named:

)-RSPRF-[.NAME@AFFILIATION~l

will be maintained in each directory named in the profile. This
file is itself transparent to the RSEXEC user. Images of the
profile file are suitably protected: only the user himself may
read or write it (its protection attribute is P770000) ~ the
passwords stored in it are encrypted {using the user's RSEXEC
password as a key). The QUIT, LEAVE and LOGOUT commands ask the
user if he wishes to have a ~ermanent profile.

PROLIST <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command.

Prints the contents of the user's orofile.

PURGE (transaction) NAME <er>
break Causes forced termination of a previously INI~?IATEd job or
TELCONN connection by breaking network connection with remote
site. Intended for use only when TERMINATE fails. See also
descri?tions for INITIATE, TELCONN, USE, TERMINATE, and TRSTAT.

QFD (file) FILE <er>
or

QFD (file) FILE! ••• FILEn <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command.

Prints a "quick" description of the file(s) specified.

QUIT< er>

-290-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

Ends RSEXEC session.

RECEIVE (links)<cr>
Sets terminal to accept links (default state).
Undoes a previous REFUSE command.

REFUSE (links)<cr>
Sets terminal to refuse links.
Undone by a subsequent RECEIVE command.

RELEASE (Component Directory) Component! ••• Componentn <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command. Used
to remove from the composite directory the files in the specified
component directories.
See also the descriptions
COMPONENT-DIRECTORY.

for COMPOSITE-DIRECTORY and

RENAME (file) FILE! (to be) FILE2 <er>
Use of this command is limited to users
the file system features of RSEXEC
Changes the name of FILE! to be FILE2.

who have gained access to
via the ENTER command.

RESET <er>
Similar to the RESET command of the TENEX EXEC.

RS EXEC
The Resource Sharing Executive is an evolutionary multi-computer
executive program. It provides an environment in which the range
of many features found on a single-Host time sharing system are
extended beyond the boundaries of a single Host to encompass many
Hosts on the ARPANET.

At present RSEXEC includes facilities for inter-Host user-user
interaction (see descriptions for WHO, WHERE, SITES, LINK,
SNDMSG), for managing "multi-Host" file directories (see
descriptions of ENTER and BIND) and for controlling multiple
"jobs" on several Hosts (see descriptions for TRANSACTION and
INITIATE). In addition, the RSEXEC serves as a command language
interpreter for TIP users.

The DESCRIBE command can be used to obtain descriptions of all
(accessible) RSEXEC commands and, in addition, the following
terms:

BOUND-DEVICE, COMPONENT-DIRECTORY, COMPOSITE-DIRECTORY,
FILE-NAMES, INTERRUPT-CHARACTERS, MULTI-IMAGE-FILES,
PRIMARY-DIRECTORY, PROFILE, TRANSACTION, BUGCHK

(TIP users accessing RSEXEC via the TIP "@n" command can use only
a subset of the RSEXEC commands~ they can obtain descriptions of

-291-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

only those commands (and related terms) they have access to,)

The user interested in the design philosophy of RSEXEC and its
implementation is referred to the paper "A Resource Sharing
Executive for the ARPANET", Proceedings of 1973 National Computer
Conference and Exposition, also NIC #14689).

RUN (Saved File) FILE <er>
*****fix description*****
*****Not Implemented*****

SERVERS<cr>
Prints a list of the sites which (at times) run
These sites must both be up and running
accessible from RSEXEC.

RSEXEC servers.
the server to be

SITES (of user) username<cr>
Lists the sites (with RSEXEC
specified user is known.

servers running) at which the

SNDMSG<cr>
Runs a subsystem for sending messages to other network users.
Messages can be delivered only if the destination site runs an
FTP server with the MAIL command implemented. Undelivered
messages will be deleted after a week.

START <er>
*****fix description*****
*****Not Implemented*****

TELCONN (to site) HOST-NAME (with a connection called) NAME<cr>
or

TELCONN (to site) HOST-NAME (with a connection called) NAME,<cr>
_option <er>

-<er>
A~tempts to establish a TELNET connection to the specified HOST.
If successful, the user's terminal is connected to this network
communication path. To return to RSEXEC type AZ (CNTL Z). Use
of the connection may be resumed with the USE command. Default
socket is the logger (#1). An alternate socket, as well as
desired echo mode and terminal characteristics may be specified
in the second form of the command. Type ? in response to the
option prompt to list available options. See also the
descriptions of the USE and INITIATE commands.

TENXSTAT<cr>
Prints status information for TENEX sites with RS EXEC servers
running.

-292-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

TERMINATE (transaction) NAME <er>
Terminates a previously INITIATEd job by sending it several ~e's
and then logging it out. Also can be used to terminate a TELCONN
connection. After termination, a TELCONN connection can no
longer be USEd.

* #

TIMECONSTANT (for net connections is) value<cr>
Sets the time constant used for interactions with non-local
RSEXEC server programs~ If the remote server does not respond
within the specified time the interaction is aborted. Possible
values are: RAPID (8 sec.), MODERATE (15 sec.), LETHARGIC (40
sec.), and INFINITE (2 min.). The time constant is initially
MODERATE (15 sec.).

TRANSACTION
A user can instruct the RSEXEC to create a job for him at another
site. Such jobs are called transactions. See descriptions of
the INITIATE, TELCONN, USE, TERMINATE and PURGE commands.

TRSTAT <er>
Prints status of previously INITIATEd
connections. Possible status' are:

PENDING
USEABLE
USEABLE TELNET

INITIATEd but login
can be used via USE
TELCONN connection,
command

jobs and

incomplete
command

TELCONN

can be used via USE

TERMINATION PENDING
TERMINATED

TERMINATEd but logout incomplete
TERMINATEd but not yet removed from
RSEXEC's transaction table

TYPE (file) FILE <er>
or

TYPE (file) FILE! ..• FILEn <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command. Prints
the file(s) specified on the user's terminal. Identical to LIST
command except for the use of the terminal. The command:

COPY (file) FILE (to new file) TTY: <er>
will copy a file to the user's terminal without the formatting
action of the TYPE command.

UNDELETE (file) FILE <er>
or

UNDELETE (file) FILE! ••• FILEn <er>
Use of this command is limited to users who have gained access to
the file system features of RSEXEC via the ENTER command.
Revives the DELETEd file(s) specified by restoring the file(s) to
normal status~ e.g., they are once again accessible to RSEXEC
commands. The inverse of DELETE.

-293-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

January 1975

USE (transaction) NAME <er>
or
USE (transaction) NAME, <er>
_option <er>

<er>

Connects the user's terminal to a previously INITIATEd job or to
a previously established TELCONN connection. To return to RSEXEC
type -z (CNTL-Z): to transmit -z to the job type the two
character sequence <-><Z>. In general typing the two character
sequence <-><x> will transmit x if x is a non-alphabetic
character and CNTL-x if s is an alphabetic.

Thus to transmit -p (the RSEXEC "panic" escape) type <-><P>. If
the user has ENTERed and uses -z to return to RSEXEC from a
transaction, he has the option of updating his composite
directory to reflect any additions or deletions resulting from
his USE of the transaction. The ESCAPE command may be used to
change the transaction escape character from -z.

If the second form of the command is used options concerning the
network connection (echo modes, terminal characteristics, etc.)
may be specified. To list the allowable options type "?" when
prompted with " " While USING any TELNET connection (created
by either INI'rIA'rE-or TELCONN) certain TELNET control functions
may be invoked by typing the TELNET dynamic option escape
character followed by a character indicating the desired
function. The dynamic option escape character is initially -D
(CNTL D) but may be changed using the DYNAMIC option.

The recognized commands are:

<-D><L> means to do Local echoing
<-D><R> means to do Remote echoing
<-D><T> means to Transmit accumulated chars immediately
<-D> means send TELNET Break ch~racter
<-D><S> means send the TELNET Synch sequence
Any other character will be transmitted as data.

To send a <-D> character through the network, type <-><D>.

WHERE (is user) username<cr>
Lists all active jobs belonging to
sites (with RSEXEC servers running).

the

WHO<cr> or WHO (at site) hostname<cr>

specified user at ali

Lists users with active jobs at specified
site(s) with RSEXEC servers running.

(or all) network

-294-

TENEX USER'S GUIDE --- NETWORK --­
RSEXEC

_QUIT

@

-295-

January 1975

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 197S

Telnet User Guide

User Telnet (hereafter called Telnet) provides facilities for
communicating with host computers via the ARPA network utilizing
the TELNET protocol. The purpose of the Telnet program is
threefold. It converts various terminals connected to TENEX into
a standard type of terminal called a network virtual terminal
(NVT) by interposing programs in the character streams between
the terminal keyboard and printer and the terminal port on the
host computer. Secondly, it provides information about the
network to assist a user in establishing connections. Thirdly,
it multiplexes the terminal among several remote jobs.

Telnet Command Interpreter

Instructions to the Telnet program are given via the
Command Interpreter. When in command mode (see
characters typed on the user's terminal are read by the
command interpreter and decoded as commands to perform
actions by Telnet.

Telnet
below) ,
Telnet

various

The Telnet command interpreter has two unique features. The
command interpreter will refuse to hear anything it does not
understand. With full-duolex terminals, this means that no echo
will appear for characters which are not valid successors of the
previous input. In any case, the character is ignored and a bell
is typed out. The input stream that has already been typed is
not forgotten however. Therefore, it is only necessary to type
the correct character and not the complete command. This feature
may be turned off with the "no fancy.command.interpret" command.

The other unique feature of the Telnet command interpreter is the
use of auestion mark to discover what the command interpreter
expects next. Typing a "?" at anv time in command mode will
elicit a list of words the command interpreter is expecting.
Thus, typing a "?" when nothing has been typed will yield a list
of all- - possible top-level comm:mds. Typing "co?" will yield a
list of all commands starting with "co". Typing ''connection.to
?" will yield a list of possible arguments to the "connection.to"
command.

The command interpreter provides command completion whenever a
terminator is typed (full-duplex terminals only) and an exact
match is achieved with some command or a unique initial substring
is typed. Command completion may be suppressed with the
"concise" command. Terminators are space, comma, alt-mode, and
carriage return. Terminators are often not distinguished and are
thus eauivalent. Where necessary, comma is used to separate list
items,· space terminates a command or option and signals the
desire to soecify more options, carriage return ends a command
unless more information is necessary. ~ltrnode is the same as

-296-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

space except that it will cause command completion in those modes
where it is normally suppressed.

Command/Remote Mode

As mentioned above, characters typed on the terminal keyboard may
be used in two ways: either as commands to Telnet, or as input
to the remote host. The choice is made on the basis of whether
Telnet is in remote mode or command mode. In command mode,
characters typed on the terminal keyboard are read by the Telnet
command interpreter and decoded as commands to perform various
actions. TELNET is initially in command mode and will revert to
command mode whenever the Telnet escape character (see below) is
typed.

The opposite of command mode is remote mode. In remote mode,
characters typed on the keyboard (with certain exceptions) are
not ~xamined by Telnet at all, but are merely passed on to the
remote host computer. Remote mode is normally entered after any
command is executed when the current connection exists. The
"local.mode" command may be used to defeat this. The effect of
the "local.mode" command is cancelled by the "remote.mode"
command or by the "connection.to" or "retrieve.connection"
commands.

Escaping Back to Command Mode

At any time, typing the Telnet escape character (initially
control-Z (SUB)) will cause Telnet to stop whatever it is doing
and return to command mode. Occasionally, a slight delay may be
experienced due to the need to clean up whatever was happening at
the time. Telnet announces the switch to command mode by the
appearance of a sharp sign "i" at the left margin. Telnet also
indicates the transition out of command mode by the appearance of
another sharp sign followed by a new line.

i WARNING: If you have control-Z anywhere in your programming, you
should change your escape character for Telnet to other than
I control-Z to avoid mishaps.

Making a Connection

There are two ways to make a connection. Typing "connection.to
<host> [<qualifiers>]" or simply typing "<host> [<qualifiers>]"
will cause a connection attempt to be made. If successful, the
connection will be said to be complete and the terminal will be

placed in remote mode. If unsuccessful, the connection will be
said to be "incomplete because ---" with a reason given; also if

-297-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

the remote host is down, a line is typed telling why and for how
* long. By terminating the host name with a space, one or more

qualifiers may be specified. Ordinarily socket 1 is assumed.
Thus without a qualifier, the connection will be made to the
"logger" on the remote system. By using an octal number as a
qualifier, the connection will be made to the socket so
specified. A set of names is available for specifying the socket
desired. This set consists of names for all the standard
sockets.

The "wait" qualifier may be used to camp-on the connection. This
qualifier causes Telnet to repeat the attempt to connect in the
event of a failure until it finally succeeds. An initial failure
causes a message t~ that effect to be printed. When the attempt
finally succeeds, bells are typed out to wake the user up. The
attempt to connect may be aborted by typing the Telnet escape
character.

The "load.settings.from •.. " qualifier {possibly qualified with
"no") may be used to cause {inhibit) the mode flags to be
initialized from the mode file. When inhibited, the current
modes are used.

The "name.for.connection" qualifier may be
for this connection other than the one
name for the connection may also be
"name.for.current.connection" command.

Disconnecting

used to specify a name
assigned by Telnet. A
given later by the

The "disconnect" command is used to close the current connection.
This will not necessarily log you out from the remote host so you
should perform the logout procedure for that host before
disconnecting. The disconnect command takes an optional argument
specifying the name of a particular connection to be
disconnected. See multiple connections and connection names
below.

In the event that the network connections are severed by a
network failure, the message "IO error for connection <name>" is
printed, the connection is disconnected, and Telnet reverts to
command mode. This may happen even if the error occurs on a
connection which is not current. If the remote host initiates a
disconnect, a message to that effect is printed and the same
action is taken.

If the remote host on the current connection stops responding
when input is being sent, a line is typed, "~ost not responding
on connection xxx." {In this case the connection is not lost.)

-298-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

When the remote host resumes operating, the user is informed:
"Service restored on connection xxx."

Echo Control

Telnet allows several options concerned with echoing. Echos may
be generated by the terminal, by Telnet, or by the remote host.
Telnet determines if the terminal is generating echoes when
started by exam1n1ng the mode word for the terminal. The
"terminal.type.is" command may be used to change this.

If the terminal is echoing, then Telnet will do everything
possible to cause the remote host to not generate echoes, and
Telnet will not generate echoes itself. If the terminal is not
generating echoes, then Telnet determines whether it should echo
or not by information in the mode file (if any) or by the "echo
remote"/"echo local" commands, or by information sent from the
remote host.

Telnet keeps the remote host informed about how echoing is being
done and if the remote host is suitably equipped, it will follow
along. If not, then the user will have to give commands to the
remote host to achieve the proper echoing. Telnet also will
respond to commands from the remote host concerning who should be
echoing. If Telnet believes the terminal is doing its own
echoing, it will respond to any request from the remote host to
not echo by an "I'll echo" command.

Line Buffering and End of Line Conventions

Telnet provides an optional line buffer for use with
line-oriented operating systems. In this mode, characters typed
in remote mode are stored in a local buffer up through an end of
line. Prior to the end of line, the currently buffered line may
be edited using control-A (SOH) or control-H (BS) to delete
characters, control-X (CAN) to delete everything, and control-R
(DC2) to retype the current contents. Telnet always converts the
TENEX EOL into the NVT EOL. TENEX in turn converts a carriage
return into the TENEX EOL. Thus typing a carriage return will
cause the buffered line to be transmitted. Linefeed may also be
used to terminate a line. In this case, the transmitted line
will end with only linefeed, not the NVT EOL.

Telnet provides an optional linefeed echo for carriage return.
If the remote host provides a linefeed also, then the echo
generated by Telnet should be suppressed with the "echo no
linefeed.for.carriage.return" command. In remote echo mode,
Telnet generates no echos whatsoever. In this mode, all echos
must be provided by the remote host.

-299-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

Status Commands

January 1975.

Several status commands are available for discovering facts about
the network. None of these commands will affect thE! state of the
cur rent connection. The status commands include! where. am. I,
status.of, netstatus, and socket.map. These commands are
summarized below.

Special Characters

Several commands are available to send characters which do not
appear on the terminal. "Code" takes an octal (decimal if
precerlerl by "D", hexadecimal if preceded by "H") argument and
sends the character with that code. The word "code" may be
omitted and just the argument typed. "Control" takes a character
argument and sends the corresponding control character (the low
order five bits of the character) is sent. The "!break!" command
sends the NVT break character which is mapped by some systems
into the equivalent of the attention, quit or break key which
appears on some terminals.

To facilitate operation with systems requ1r1ng frequent use of
special characters or lower/upper case graphics which a
particular terminal may lack (e.g. 33 Teletypes have no lower
case), case shift characters may be defined for upper/lower
character/lock shifts and characters may defined which will
translate into attention or break (NVT 201), and the synch
seauence. The "case.shift.prefix.for", "attention.character=",
and "synch.character=" commands are available to independently
set each of these characters. In addition, a character may be
defined ("quote.prefix" command) to be a single character quote.
The character following this character is always sent regardless
of any special action it may otherwise have.

If possible, case shift characters will be used to indicate the
case of both input and output. Thus the case shift characters
may not be echoed when typed but rather before the output.

All special characters are listed by the "current.modes.are"
comma~d. This includes the escape character and the clear output
buffer character.

-300-

·-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

Leaving Telnet

January 1975

To leave Telnet, it is first necessary to return to command mode
by typing the escape character. This is because while in remote
mode all characters except the escape character are passed on to
the remote host or modify characters passed to the remote host.
Once in command mode, you may return to the EXEC by typing
control-C (ETX) or by using the "quit" command. Continuing from
the EXEC will resum~ with no loss. The "logout" command will
disconnect from any remote job and logout your local job. The
"exec" command will start up an inferior EXEC under Telnet. From
this inferior EXEC, it is possible to perform assemblies or any
other task involving the running of subsystems. The "run"
command allows an arbitrary program to be run in an inferior fork
of Telnet. The "run" may be interrupted by the Telnet escape
character.

Multiple Connections

Telnet provides a facility for multiplexing a user's terminal
among several remote jobs thus allowing several simultaneous
activities. This is done by giving a name for each connection as
it is created. The user may specify the name, or Telnet will
default the name to a number. The "retrieve.connection ••• "
command causes the named connection to be made current and remote
mode to be entered. Non-current connections remain active, but
any output received is buffered until that connection again
becomes active. Terminal input goes only to the currently active
connection.

The name of the current connection may be changed after it is
established by means of the "name.for.current.connection"
command. The name so specified may be up to 6 characters in
length and must be unique.

Typescriot

Telnet provides a means of saving on a file a copy of the
typescript for a session. This is useful for producing hard CO?Y
of the session when using a scope terminal or for producing

documentation of procedures or demonstrations. Telnet always
keeps a typescript on the temporary file "TELNET.TYPESCRIPT;T" in
the connected directory. The "typescript.to.file" command may be
used to specify a different file. The typescript consists of a
nearly exact copy of what appears on the terminal with the
exception of that which occurs during the execution of the "exec"
or "run" or "ddt" commands. "Nearly" refers to slight
differences in the spelling of file names in certain Telnet

commands. For privacy, the typescript file is given a protection

-301-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

Januarv 1975

I that allows no access to anyone but "self".

Diverting Output

The output stream may be diverted to some other file with the
"divert.output.to.file" command. While diverting output, Telnet
sends all output to the indicated file and sends a line to the
terminal only when the terminal's output buffer is empty. Thus
the terminal monitors the transmission of the stream to the file.
The diverted output consists only of characters from the remote
host. Telnet commands and responses do not appear in the
diverted information. This mode is useful as a primitive file

transfer mechanism or to allow printing of large~ amounts of
terminal output to be done with t~e lineprinter. It is cancelled
#by "no divert.output ... ".

I

I Input from a File

I The input stream to a remote job may be taken from a file instead
of the local terminal by means of the command
"take.inout.strea~.from.file". Telnet blocks terminal inout to
the con;ection current when the file is specified, and tr~nsmits
characters from the named file (echoinq as usual according to
current modes). However, input to other connections and in
#command mode is from the user's terminal. When the given file
reaches EOF the file is closed and released, and input reverts to
the terminal. The user may also manually cancel file input by
I escaoinq to command mode and giving "no take.input ••• ". This
mode is useful for routine seauences performed in the remote iob.
I Note that a connection must be established and current when input
I to it is diverted to a file.

-302-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

Telnet Command Summary

Connection.to <host> or host name

Performs ICP to connect to the indicated host.
Options are available for specifying initial

connection socket name or number, and initializing
modes from the mode file via the following
subcommands. Note that if <host name> is used as
a command, only the name of a server host may be
given (e.g., BBN-TENEX). The~~argument for
"Connection.to" may be any host name or an octal
host number.

<octal number>

An ICP is performed to connect
indicated service socket.
socket 1 is assumed.

Logger

Sets socket to 1.

Wait

to the
Normally

The connection attempt is repeated until
successful.

Name.for.connection.is <name>

Sets the name for this connection as
specified.

[no] load.settings

Determines whether to use current mode
settings or to load new ones from the
mode file.

Disconnect <er>

Disconnects the current connection. This will not
necessarily log you out from the remote host.

-303-

TENEX USER~S GUIDE --- NETWORK --­
TELNET User Guide

Perform the
disconnecting.

Disconnect <name>

necessary

January 1975

operations before

Disconnects the connection with the specified
name.

Net.exec

Connects to BBN socket 15600031 where-in the
RSEXEC (Resource-Sharing Executive) is found.

Status.of <host>

Performs ICP with the indicated host and prints
its status.

Echo.mode.is

Sets echo mode according
subcommand.

[no] remote

to the following

Turns off echoes generated by Telnet and
signals the remote computer to generate
echoes. Some hosts are not yet equipped
to handle this signal and may require
additional action to cause the remote
computer to generate echoes. If Telnet
believes it is connected to a local
half-duplex terminal, it will complain
about remote echoes but do it anyway.

[no] local

Turns on Telnet generated echoes and
signal the remote computer to not
generate echoes. Note that Telnet never
generates echoes for terminals it
believes have local echo of their own.

[no] linefeed.for.carriage.return

-304-

-·

-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

TENEX translates carriage return to EOL,
Telnet sends the EOL as the TELNET EOL
(i.e. carriage return-linefeed). For
some systems, the TELNET EOL is
translated into carriage return. For
these systems, the appropriate echo is
carriage return. Other systems
translate. the TELNET EOL into carriage
return-linefeed. For these systems the
appropriate echo is carriage
return-linefeed. This subcommand causes
the latter echo to be generated.

[no] control.character.echo.for <list of
characters>

Turns on local echoes for the indicated
control characters. Normally only
control-G,J, and M (bell, linefeed, and
carriage return) are enabled.

Terminal.type.is

Allows the user to change Telnet's opinion of his
terminal according to the following subcommands.
Each command may be preceded by the word "no" to
negate its meaning.

Half-duplex

Terminal generates its own echoes.

Full-duplex

Terminal does not generate its own
echoes.

[no] lower.case

The terminal has lower case characters.

Local.mode

If connected, this command prevents Telnet from
returning to remote mode after each command.

-305-

TENEX USER~S GUIDE --- NETWORK --­
TELNET User Guide

Remote.mode

January 1975

If connected, this command causes Telnet to return
to remote mode after each command. If not
connected, it does nothing.

No

May appear before some commands to reverse their
action.

Current.modes.are

Prints the state of connection terminal mode
flags, and all special characters.

[no] character.mode

Causes each character typed to be transmitted as
it is typed.

[no] line.buffer

Causes Telnet to accumulate a line of text before
transmitting. A line ends on linefeed or EOL or
altmode (esc). The line may be edited with
control-~, ~, and r.

[no] raise

Causes lower case letters to be transmitted as
their upper case equivalents.

[no] lower

Causes upper case letters to be transmitted as
their lower case equivalents.

[no] transparent.mode

Causes all characters to pass through Telnet and
TENEX untouched. This is needed for special
terminals such as the IMLAC using special
character stream protocols.

-306-

·~·

·-

--

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

[no] case.shift.prefix.for

Allows the specification of the
characters according the
subcommands.

Lock.lower.case

four case
following

Same as the "Lower" command. Subsequent
upper case input will be converted to
lower case.

Char.lower.case

Converts the following letter to lower
case.

Lock.upper.case

Same as "Raise"
lower case inout
upper case.

Char.upper.case

command. Subsequent
will be converted to

Converts the following character to
upper case.

[no] unshift.prefix

shift
four

Causes all following characters to be unshifted.
I.e. undoes both an upper case lock and a lower
case lock.

[no] quote.prefix

Causes the following character to be transmitted
without regard to any special significance it may
have.

[no] synch.character

The specified character will be converted to the
TELNET synch sequence. The TELNET synch sequence

-3e7-

TENEX USER·'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975·

is used to cause the remote host examine its in1put
stream to the current point for any special
characters (interrupts, attentions etc.). All
non-special may be thrown away.

[no] attention.character

The specified character will be converted to the
TELNET break or attention character. This
character is equivalent to the attention, quit, or
break key on certain terminals and may be
necessary for using some systems. The !Break!
command generates the same character.

Concise

Turns off automatic command completion.
typeout at the expense of readability.

Verbose

The opposite of concise.

[no] fancy.command.interpret

Saves

commands are checked character by character. If a
character does not fit, it is ignored and not
echoed (full duplex terminals only).

[no] divert.output.stream.to.file

Causes all subsequent output from the remote
computer to be written on the specified file. Use
"No divert ••• " to stop this.

[no] take.input.stream.from.file

Causes subsequ~nt input to the remote host on the
current connection to be read from the specified
file; input to other connections and in command
mode is -still from the user's terminal. File is
automatically closed and released at EOF; user
may force this by "No take.input ••• ", after
escaping to command mode.

-388-

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

[no] typescript.to.file

A record of the session is kept on a file
including both input and output. This is useful
for providing hard copy with scope terminals.

Escape.character=

The specified character becomes the Telnet
character. This character must be a
interrupt character. "?" will type what
are.

escape
TENEX
these

WARNING: If you have anywhere in your programming
a control-Z you should change your escape
character in TELNET to other than control-Z to
avoid mishaps.

Clear.output.character=

The specified character becomes the clear output
buffer character. Typing this character generates
an interrupt which causes the terminal output
buffer and any accumulated output to be cleared.

Help

Prints the file <SYSTEM>TELNET.HELP on the user's
terminal.

Netstatus

Runs <SUBSYS>NETSTAT.SAV.

Socket.map

Prints a list of all current connection on the
system. Optional arguments may be used to select
a particular host and a particular connection
state.

Run

Runs the specified file.
command.

Like the EXEC's run

-309-

TENEX USER~S GUIDE --- NETWORK --­
TELNET User Guide

January 197S

Quit

Returns from Telnet to the superior fork (usually
the EXEC). May be continued with no loss.

Logout

Logs out the local job (not the remote one).
Requires confirmation with a carriage return.

Reset

Re-initializes Telnet producing an essentially
virgin copy.

Ddt

Enters ddt. If ddt is not loaded,
result in an unexpected interrupt.
done if this happens.

this will
No harm. is

Exec

Starts up an inferior EXEC under Telnet. This
EXEC may be used like an ordinary EXEC to run
subsystems etc without disturbing any existing
connections. The Telnet escape character will
return to Telnet however.

Code

Transmits the
The argument
preceded by
hexadecimal.
for octal.

character specified by the argument.
is a taken as an octal number unless
"d" for decimal or "h" for
The argument may be preceded by "o"

The "code" command argument may be used as a
command by itself and will cause the indicated
code to be transmitted.

!break!

Transmits the TELNET break character.

-318-

--..... --

--·

.. -....

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

!synch!

Transmits the TELNET synch sequence. Occasionally
the "!synch!" command will work where the synch
character will not since the command bypasses the
buffering which may interfere with the use of the
synch character.

Write.modes.for.host

Causes the current mode flags to be saved on the
<SYSTEM>TELNET.MODES file under the specified
host. Requires write access to the file and is
thus not available to ordinary users.

Retrieve.connection.under.name

Retrieves the connection previously saved under
the specified name.

Wait.for.any.active.connection

Used with multiple connections to wait
switch attention to the next connection
any output waiting. Useful when
independent tasks are being run and you
know when one completes and switch to that

Where.am.I

for and
that has
several
wish to
task.

Prints a summary of the local job, system, user,
terminal and the remote host and socket.

[no] Signal.waiting.output

Causes all non-current connections to print a
message when output becomes available.

Host.names

* # Lists all current host names with corresponding
i octal host numbers •

List.connections

-311-

TENEX USER~S GUIDE --- NETWORK --­
TELNET User Guide

January 1975

Lists the name, local socket, foreign host, and
foreign socket of all connections.

Flush.host

Marks all connections to the specified
dead and sends a reset to that host.
wheel or operator special capability.

host as
Requires

An initial semi-colon causes the remainder of the
line to be ignored. Useful for comments or typing
to links.

-312-

. --...

TENEX USER'S GUIDE --- NETWORK --­
TELNET User Guide

Index

Commands are given in all caps.

ATTENTION.CHARACTER . 308

BREAK • . . . 310

Camp-on option . • . . • 298, 303
CASE.SHIFT.PREFIX.FOR . . 300, 307
CHAR.LOWER.CASE . • . . . 307
CHAR.UPPER.CASE . • . • • 307
CHARACTER.MODE . • . . . 306
CLEAR.OUTPUT.CHARACTER= . 309
CODE • • . . • 310
COMMAND completion . . . 296
Command interpreter . • . 296
Command mode . . • • 297
CONCISE • . . • . • • • • 296, 308
Connection names • . . . 298
CONNECTION.TO • . • • • • 297, 303
CONTROL.CHARACTER.ECHO.FOR 305
CURRENT.MODES.ARE • . • • 300, 306

DDT • • • . • • . • . . • 310

January 1975

DISCONNECT ••••••• 298, 303-304
Disconnecting • • • • • • 298
Disconnection, spontaneous 298
DIVERT.OUTPUT.STREAM.TO.FILE 308
Diverting output •••• 302

ECHO.MODE.IS •••• 304
Echoes • • • • • • • • • 299
Editing buffered lines • 299
End of line conventions • 299
Escape character • • • • 297
Escape character, initial 297
ESCAPE.CHARACTER= •••• 309
Escaping to command mode 297
EXEC • • . • • • • • • • 310

FANCY.COMMAND.INTERPRET • 296, 308
Finishing a session • • • 301
FLUSH.HOST • • . • • 312
FULL-DUPLEX • • • • • • • 305

HALF-DUPLEX •
HELP • • • •
HOST.NAMES

• • 305
• 309
• 311

-313-

TENEX USER'S GUIDE --- NETWORK
TELNET User Guide

Input from a File •
IO errors • • •

• 302
• 298

Line at a time . . • • • 299
LINE. BUFFER • • • • • 306
LINEFEED.FOR.CARRIAGE.RETURN 304
LIST.CONNECTIONS •••• 311
LOAD.SETTINGS • • •• 303
LOCAL • • • • • • • • 304
LOCAL.MODE • • • •• 305
LOCK.LOWER.CASE • 307
LOCK.UPPER.CASE •.••. 307
LOGGER • • • . • 303
LOGOUT • • • • • • • • • 310
LOWER • . • • • • • • 306
LOWER.CASE ••••••• 305

Making a connection • 297
Multiple connections •• 301

NAME.FOR.CONNECTION.IS . 303
NAME.FOR.CURRENT.CONNECTION 301
Names, connection • • • • 298
NET.EXEC •....••• 304
NETSTATUS • . . • • . . • 309
Network virtual terminal 296
NO • • • • • . • • • • • 303-309
NVT • • • • • • • • • • • 29 6

Question mark, use of •• 296
QUIT •••••••••• 301, 310
QUOTE.PREFIX 300, 307

RAISE • • • • • • • • • • 306
REMOTE • . • . • . • 304
Remote mode . • • 297
REMOTE.MODE .•••. 306
RESET • • • • • • 310
RETRIEVE.CONNECTION.UNDER.NAME 311
RUN • • • • • • • • • 309

SIGNAL.WAITING.OUTPUT •. 311
SOCKET.MAP • • • • • 309
Special characters . • . 300
Special sockets .•• 298, 303
Status commands • • • • • 300
STATUS.OF ••••••.• 304
SYNCH • • • • • • • • • • 311
SYNCH.CHARACTER •••.• 307

TAKE.INPUT.STREAM.FROM.FILE 308
TERMINAL.TYPE.IS ••.• 305
Terminators, command 296
Terminators, line buffer 299
Time-outs • • • • • • • • 298

-314-

January 1975

--

TENEX USER's GUIDE --- NETWORK
TELNET User Guide

TRANSPARENT.MODE
Typescript •••
TYPESCRIPT.TO.FILE

306
• • 301

• • • 309

UNSHIFT.PREFIX ••••• 307

VERBOSE • • . • • • • 31.?J 8

WAIT • • • • • • • • • • 303

January 1975

WAIT.FOR.ANY.ACTIVE.CONNECTION 311
WHERE.AM.I ••••••• 311
WRITE.MODES.FOR.HOST •• 311

-315-

TENEX USER'S GUIDE --- NETWORK --­
TIPCOPY

TIPCOPY

January 1975

TIPCOPY DOCUMENTATION NOV. 1, 1974

Tipcopy will copy an ASCII text file to a TIP port.

The program is set up so that the
controlling terminal. The port
to be 2. You may change these
later).

receiving TIP is the TIP of the
number on that TIP is defaulted
settings. (To be explained

To use the program type:

@TIPCOPY <er> OR @TIPCOPY <i:ipace>

The program will ask for a file name. To send the file to the
TIP and port as explained above, just type a carriage-return to
confirm your file selection. To be allowed to select option such
as a specific TIP or port, confirm with a comma (,).

At this point TIPCOPY will allow you to type commands. Typing a
question mark (?) will print a list of the commands currently
available. A list is shown below. You may select any option you
wish, or may undo a defaulted option by typing NO followed by the
command. It is not possible to undo the destination TIP or a
device command. To change these just reuse the command. Type an
escape when you have completed your options selection.

L FOR LIST OF OPTIONS ALREADY SELECTED
T FOR TIP NAME IF OTHER THAN THE CONTROLLING TERMINALS
F FOR FORMFEEDS OVER PERFORATION
H FOR HEADINGS
P FOR PAUSES BETWEEN PAGES
SI FOR SIMULATE FORMFEEDS OVER PERFORATIONS
SP FOR SPECIFIC PAGES
D FOR OCTAL DEVICE, IF OTHER THAN PORT 2
C FOR COLUMN l FORTRAN INTERPRETATION
M FOR MULTIPLE COPIES OF A FILE
X FOR SELECTABLE LINE SPACING (DEFAULT=!)
Y FOR PRINTING CONTROL CHARACTERS
Z FOR SELECTABLE NUMBER OF FORMFEEDS AT END (DEFAULT=3)
? FOR HELP, PRINTS THIS INFORMATION

TIP

TYPE ESCAPE WHEN COMPLETED OPTIONS SELECTION
USE THE "NO" COMMAND TO UNDO A SELECTION, OR TO
REMOVE THE TITLE PAGE WITH THE COMMAND "NOT".
THE DEFAULT SETTINGS INCLUDE FORMFEEDS OVER
PERFORATIONS, HEADINGS AND NOT PRINTING CONTROL
CONTROLLING TERMINALS ON THE BBN-TESTIP WILL
AUTOMATICALLY SEND FILES TO THE NCC-TIP.

CHARACTERS.

-316-

·--

TENEX USER'S GUIDE --- NETWORK --­
TIPCOPY

January 1975

From time to time a new version of TIPCOPY will be written with
the modifications users requested. This program will be called
NTIPCOPY. I urge you to try this program and report to MALMAN
any problems you may have had.

<IMP>PLOT.SAV

This is a Tipcopy like program except:

2 commands

T TIP command if other than TESTIP

D DEVICE command if other than port 22[8]

5 bit bytes (CALCOMP STYLES) to a tip port

-317-

TUG
XED

XED - Experimental Editor

? outputs this message.

H HELP

The command letter which follows the H
H<CR> generates an editor manual.
the interrupt characters.

will be explained.
H<space> describes

The Legal Command Letters are:

·A,-H,DEL Delete char ·w Delete word ·x Delete line ·R Re-type line
·o Abort command ·v,··,·\ are all escape characters
A(ppend) B(ackup) C(hange) D(elete)
E(xit) F(ind) G(roup) H(elp)
I(nsert) J(am) K(ill) L(ist)
M(odeset) N(otemodes) O(utput) P(rint)
Q(uit) R(ead) S(earch) T(ype)
V(iew) W(rite) X(change)
$ Go to End = Current Line - Move Back + Move Forward
, Context • Print Prior I Print Current LF Print Next

Format Comment
% Call SNDMSG Run program @ Call EXEC " Mode dialogue

H HELP - Help accepts a command character following the H
command. A description of the command represented by that
character is then printed on the terminal. H(elp) followed by
a carriage return additionally requests a file name. A brief
reference manual is created in the file.

; COMMENT - All text input from the terminal following the
";" is ignored until the occurrence of a ·z or a ·a.

POSITIONING AND SEARCHING COMMANDS

Most commands in the editor operate on the current line of text
within the text buffer. Lines in the text buffer are numbered
consecutively starting at 1. The commands in this section
describe ways to examine the contents of the text buffer and
to change to current line.

$ DOLLARS ~ $ makes the last line in the text buffer the NEW
current line. It also prints the number of lines in the text
buffer.

NUMBERS - Numbers which are input as commands cause
line to become the line with the number input.

14-1

the current
If a digit is

ADD-10-26-77

TUG
XED

incorrectly input, it may be canceled with a AA, AH, or DEL.
The entire number may be cancelled with AQ.

The commands ,(context),+, , K(ill), T(ype), and
M(odeset) all expect to receive numbers followin9. These
numbers may be similarly edited with AA, AH, and DEL. ftQ cancels
the entire command.

COLON - K(ill) and T(ype) expect to receive a count of the
number of lines on which they should operate. However, if
the number is preceded by a :, they operate on the current
line through the line number input instead of n lines starting
at the current line.

Example: 12T:l5. is the same as 12T4.

DOT is a convenient character to terminate numbers,
and is a null operator to the editor. Space and carriage
return would also work as well.

= EQUALS - = prints the line number of the current line.

UP ARROW moves the current line to
preceding the current line in the text buffer and
NEW current line. This is the same as-/.

the
prints

line
the

LF LINEFEED LF advances the current line 1 line forward in
the text buffer and prints the NEW current line. This is the
same as+/.

+ PLUS - Plus accepts a number following it, and advances the
current line that number of lines forward. If no number
follows, the current line is advanced 1 line forward.. If this
command is input by accident, typing AQ will cancel it.

MINUS - Minus accepts a number following it, and moves the
current line that number of lines backwards. If no number
follows, the current line is moved 1 line backwards. If this
command is input by accident, typing -Q will cancel it.

F FIND - Find accepts a string from the terminal. It then
locates the first occurrence of the string in the text starting
with the current line throughout the entire text buffer. The NEW
current line is the line found, or the current line if no
match was found. If the search string was last found at the
current line, the search will start at the NEXT line (so
repeated F(ind)s will locate successive occurrences of the search
string in the text). If just a <CR> is typed to the prompt for a
string, Find uses the string from the last F(ind) or S(earch).
If the search string is ~ sin91~ null character
(Specified by COntrol-V control-@ (-V-@) Or COntrol-A @

14-2 ADD-10-26-77

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TUG
XED

[AA@]), then XED will search for a null line (no text, only
<CR><LF>). If this command is input by accident, typing AO will
cancel it. While this command is executing, typing AO interrupts
it and returns to XED command mode. This command normally
looks for the string any place in the line, independent of
upper and lower case differences.

AE If AE is specified, the match will be exact only.
AB If AB is specified, the match will be only at beginning of lines.
As If As is specified, XED will enter Change on the line(s) containing

the string, positioning the Change cursor at the found string.

During the input of
control characters are
available from H(elp):

text for this command the following
active. Detailed explanations are

AA, AH(backspace), Ax, Aw, AR, AO, Av,
A\, DEL and $(escape).

S SEARCH - Search accepts a string from the terminal.
It then locates ALL occurrences of the string in the text,
starting with the current line. The NEW current line is the last
occurrence found, or the starting line, if no occurrences were
found. If just a <CR> is typed to the prompt for a string,
Search uses the string from the last F(ind) or S(earch) command.
If the search string is a single null character
(specified by control-V control-@ [AVA@] or control-A @
[AA@]), then XED will search for a null line (no text, only
<CR><LF>). If this command is input by accident, typing AO will
cancel it. While this command is executing, typing AO interrupts
it and returns to XED command mode. This command normally
looks for the string any place in the line, independent of
upper and lower case differences.

AE If AE is specified, the match will be exact only.
AB If AB is specified, the match will be only at beginning of lines.
AS If AS is specified, XED will enter Change on the line(s) containing

the string, positioning the Change cursor at the found string.

During the input of text
control characters are
available from H(elp): AA,
AA' A\, DEL and $(escape).

LINE EDITING COMMANDS

for this command the following
active. Detailed explanations are
-H(backspace), Ax, Aw, AR, AQ, Av,

I INSERT The insert command accepts text lines from the
terminal. These text lines are inserted BEFORE the
current line in the text buffer. This command is normally
terminated by a AZ. It AO is typed, any text typed on the
current line is ignored and XED returns to command mode. If this
command is input by accident, typing AO will cancel it. During
the input of text for this command the following control

14-3 ADD-HJ-26-77

TUG
XED

characters are active. Detailed explanations are available from
H(elp): -A, -H(backspace), -x, -w, -R, -Q, -v, -- , -\, DEL and
$(escape).

A APPEND The append command accepts text lines from the
terminal. These text lines are appended AFTER the current line
in the text buffer. This command is normally terminated by a -z.
It -Q is typed, any text typed on the current line is ignored and
XED returns to command mode. If this command is input by
accident, typing -Q will cancel it. During the input of text
for this command the following control characters are
active. Detailed explanations are available from H(elp): -A,
-H(backspace), -x, -w, -R, -Q, -v, --, -\, DEL and $(escape).

-I (tab) TAB APPEND - acts like APPEND, with a tab as the
first character of the first line appended.

D DELETE - The delete command deletes the current line. Once
input there is no way to recover the line. For this
reason K(ill) is considered a safer command.

K KILL - Kill accepts a number following it, and deletes that
number of lines starting at the current line. The NEW current
line is the line AFTER the deleted lines. If no number follows,
only the current line is deleted. If the number following is
preceded by a :, instead of killing n lines, it will
kill all lines from the current line up to, and including,
line n.

Example: 12k:l5. kills lines 12,13,14,15.

All the lines which are
Each subsequent kill
contents. Commands P(rint
on the text dump. If this
-Q will cancel it.

deleted are
destroys
text dump)
command is

saved in the text dump.
the previous text dump
and J(am text dump) operate
input by accident, typing

P PRINT TEXT DUMP - Each K(ill) operation saves the deleted
lines in the text dump. P(rint text dump) prints the
current contents of the text dump. See also J(am text dump}.
While this command is executing, typing -Q interrupts it and
returns to XED command mode.

SWITCH DUMP - Exchanges the current contents of the text
buffer with that of the text dump (see K(ill), J(am),
P(rintdump} commands). This command is useful for performing
operations with sections of large files. By K(ill)ing a section
of text into the dump, then switching the dump with the buffer,
operations may then be performed on the small section.
Repeating the command causes repetitive switching (i.e., two
commands in a row have no effect) •

14-4 ADD-10-26-77

TUG
XED

J JAM Each K(ill) operation saves the deleted lines in
the text dump. J will jam the current contents of the
text dump after the current line. The NEW current line will be
the last line appended from the text dump. See also P(rint text
dump} .

I SLASH - I prints the current line.

UP ARROW moves the current line to the line
preceding the current line in the text buffer and prints the
NEW current line. This is the same as-/.

T TYPE - Type accepts a number following it, and prints that
number of lines starting at the current line. The NEW current
line is the last line printed. If no number follows one line is
printed. If the number following is preceded by a :, instead of
typing n lines, it will type all lines from the current
line up to, and including, line n.

Example: 12t:l5. types lines 12,13,14,15.

If a T command follows a T command, then the current line is
advanced before the second T command, so the same line is not
printed twice. If this command is input by accident, typing AQ

-- will cancel it. While this command is executing, typing AQ
interrupts it and returns to XED command mode.

v VIEW - starting at the current line, V(iew) prints the next
page of text (approx. 20 lines). The NEW current line
is the last line printed. While this command is executing,
typing AQ interrupts it and returns to XED command mode.

, CONTEXT - ,(context) accepts a number n following, after
which it types the n lines BEFORE the current line, the current
line, and n lines AFTER the current line. The effect is to type
(2n+l) lines, with the current line in the middle. If n
is not given, 5 is assumed. ,(context) does NOT change the
current line. If this command is input by accident, typing AQ
will cancel it.

L LIST - List will print the entire text buffer from begining
to end on the terminal. If is the same as saying TTY: to
W(rite). There is a way to have a document line stating the
current file name, time, and person who edited the file in the
front of the file each time it is written. See) and (for
further details. While this command is executing, typing AQ
interrupts it and returns to XED command mode.

14-5 ADD-10-26-77

TUG
XED

INTRA-LINE EDITING COMMANDS

C CHANGE The change command is used for editing a single
line of text. There are three basic operations in the change
command. First characters may be copied from the old copy
into the new line (SPACE,E,S). Characters may be deleted
from the old copy (D,K,R). Finally characters may be added to
the new line from the terminal (I,R). C(hange) operates on the
CURRENT line. To get a full explanation of the C(hange)
subcommands input a ? while within the change command. If this
command is input by accident, typing ~Q will cancel it. During
the input of text for this command the following control
characters are active. Detailed explanations are available from
H(elp): "A, "H(backspace), "x, "W, "R, "Q, "v, "","\,DEL and
$ (escape) •

Change Subcommands:
? Prints this message.

Space n characters forward copying from old to new. n SPACE
B

n D
E

Break line - Insert current contents of new line before the
current line. Change subcommands may continue with the rest of
the old line, however Q and "Q can not affect the inserted text.
Delete n characters forward from the old copy.

I
Move to end of line copying from old to new.
Insert mode - all input inserted until next CR,LF, or "Z.
Delete forward until nth occurrence of 'x'. n K x

n L x Force alphabetics to be Lower case up to the nth occurrence of

p

Q
n R

IX I •

Print the rest of old line and current new line.
Abort all changes since last B subcommand.
Delete next n characters forward and enter insert mode.
Space forward to before the nth occurrence of 'x'. n s x

n U x Force alphabetics to be Upper case up to the nth occurrence of

n V x

CR
LF
"D
ESCAPE

IX I •

invert case of all alphabetic characters up to the
occurrence of 1 x 1 •

Copy rest of old line to new, update current line to new
Update current line to new, as is
Start C(hange) over, forgetting edits so far
Copy rest of old line to new, update current line to new,
re-enter C(hange) on the updated current line.

If the 'x' in
interpreted
ESCAPE, it is
time. 11

K, s or v command is a CR, then
as meaning "to the end of the line"~
interpreted as "use the same character

it is
if it is
as last

G GROUP - Group combines the current line with the following
line to produce a single new text line. The current line
is set to the new combined line. If this command is executed
accidentally, using the "B" subcommand of the C(hange) command
can separate the two lines.

14-6 ADD-10-26-77

nth

and

·---·

·-

TUG
XED

X XCHANGE Xchange takes 2 strings, called OLD and NEW.
It then replaces occurrences of OLD with NEW, according
to the user's directions. Upon finding a line with an
occurrence of OLD, it replaces all the instances of OLD with
NEW, types the line on the terminal, and asks the user for
confirmation. Typing a "?" to the confirmation request
displays the possible options. If the user types just a <CR> to
the prompt for NEW, then the occurrences of OLD will be
deleted. If <CR> is typed for both OLD and NEW, Xchange
uses the same strings it used the last time. If the PRINT
XCHANGEs mode is set, all XCHANGEd lines will be printed even
if NOCONFIRM (*) is specified. If the search string is a
single null character (specified by control-V control-@
[AVA@] or control-A @ [AA@]), then XED will search for a null
line (no text, only <CR><LF>). If this command is input by
accident, typing AQ will cancel it. While this command is
executing, typing AQ interrupts it and returns to XED command
mode. This command normally looks for the string any place in
the line, independent of upper and lower case differences.

AE If AE is specified, the match will be exact only.
AB If AB is specified, the match will be only at beginning of lines.
AF If AF is specified, XED will do case-sensitive XCHANGEs.

During the input of text for this command the following control
characters are active. Detailed explanations are available from H(elp):
AA, AH(backspace), Ax, Aw, AR, AQ, Av, AA, A\, DEL and $(escape).

X(change) Confirmation Codes
Y,<space>,CR,LF

Accept printed changes and continue through the text buffer.
N,AH(Backspace) ,AA,DEL

Reject printed changes and continue through the text buffer.
Accept printed changes and stop here.

E Reject printed changes and stop here.
* Accept printed changes and continue through the text buffer,

accepting all changes without requesting confirmation.
If any other character is input, the confirmation request is repeated.

FILE INPUT/OUTPUT COMMANDS

R READ Read accepts a file name from the terminal and
reads the contents of the file into the text buffer by
appending the contents AFTER the current line. The old text
buffer contents are not changed. Input and output operations to
files will be encrypted if the ENCRYPT mode is set. If this
command is input by accident, AQ or DEL will cancel it. While
this command is executing, typing AQ interrupts it and returns
to XED command mode.

14-7 ADD-HJ-26-77

TUG
XED

E EXIT - Exit accepts a file name from the terminal and
writes the contents of the text buffer into this file. When
the write is complete the editor exits back to the Executive (@).
If the termination is not desired, use the W(rite) command.
There is a way to have a document line stating the current file
name, time, and person who edited the file in the front of the
file each time it is written. See) and { for further details.
Input and output operations to files will be encrypted if the
ENCRYPT mode is set. If this command is input by accident, ftQ or
DEL will cancel it. After this command has returned to the
Executive(@), inputting CONT<CR> will continue the editor with
no changes to the current line, text buffer etc.

B BACKUP - When a file name is entered to R(ead), W(rite), or
E(xit), the editor remembers the name. When executed, B{ackup)
writes the text buffer into specific versions of that file
name. Normally, B{ackup) writes the buffer into version 2 of
the file. If version 2 previously existed, it is renamed to
version 1 before the write {the previous contents of
version 1 being lost). Thus, repeated uses of the B(ackup)
command write over the same files, minimizing the proliferation
of new versions of the file. If the SPECIAL BACKUP mode is
set, B(ackup) uses the two version numbers numerically
following the highest version of the file last read or written
instead of versions 2 and 1. This has the advantage that the
files created by the B{ackup) are the highest versions of the
file and will be referenced when the version number is defaulted
{which is almost always the case). To recover the backup copy of
the file after a system crash' simply read as normal. Read
always checks for version 2 backup copies with later write times
than the requested versions. There is a way to have a document
line stating the current file name, time, and person who edited
the file in the front of the file each time it is written. see)
and { for further details. Input and output operations to files
will be encrypted if the ENCRYPT mode is set. While this
command is executing, typing ftQ interrupts it and returns to
XED command mode.

W WRITE Write accepts a file name from the terminal and
writes the contents of the text buffer into this file. If the
user plans to Q{uit) immediately following the W{rite), the
E{xit) command might be more convenient. There is a way to
have a document line stating the current file name, time, and
person who edited the file in the front of the file each time it
is written. See) and (for further details. Input and output
operations to files will be encrypted if the ENCRYPT mode is
set. If this command is input by accident, ftQ or DEL will cancel
it. While this command is executing, typing AQ interrupts it
and returns to XED command mode.

{) PARENTHESES - Each time a file is written by B{ackup),
W(rite), E(xit), or L(ist) it is possible to have an extra line

14-8 ADD-10-26-77

-

TUG
XED

added to the top of the file stating the current file name, time,
and person who edited it. In addition to this
information, there is also facility for a prefix string and a
suffix string to be put before and after this information.
These latter strings are provided to make these lines into
comments for the programs that might process the files. This
line will automatically be generated ONLY IF a prefix string has
been specified.

PREFIX - The pref ix command accepts a string from the
terminal which will be used as the prefix to the
automatically generated documentation line when the file is
written. The documentation line is NOT added to the text
buffer, but is obviously included when the file is next read into
the editor. The prefix is required to trigger the
automatic document line generation. Inputting (<CR> clears the
prefix string and turns off the automatic document line
generation. If this command is input by accident, typing ~Q will
cancel it. During the input of text for this command the
following control characters are active. Detailed explanations
are available from H (elp) : ~A, "H (backspace) , "X, "W, "R, "Q,
~v, "", "\, DEL and $(escape).

(} PARENTHESES - Each time a file is written by B(ackup},
W(rite}, E(xit}, or L(ist} it is possible to have an extra line
added to the top of the file stating the current file name, time,
and person who edited it. In addition to this
information, there is also facility for a prefix string and a
suffix string to be put before and after this information.
These latter strings are provided to make these lines into
comments for the programs that might process the files. This
line will automatically be generated ONLY IF a prefix string has
been specified.

SUFFIX - The suffix command accepts a string from the
terminal which will be used as the suffix to the
automatically generated documentation line when the file is
written. The documentation line is NOT added to the text
buffer, but is obviously included when the file is next read into
the editor. The PREFIX is required to trigger the
automatic document line generation. If this command is input by
accident, typing "Q will cancel it. During the input of text
for this command the following control characters are
active. Detailed explanations are available from H(elp): "A,
"H(backspace}, ~X, "W, "R, "Q, "V, "", "\, DEL and $(escape}.

O OUTPUT this command writes a formatted output file
suitable for printing on a hardcopy device such as a line
printer (it is NOT intended for normal file writing!}. It can
provide titles, page numbers, and a summary of editing
changes. It is affected by several modes which determine what
kind of headings will appear in the output, how page

14-9 ADD-10-26-77

TUG
XED

numbering is to be done, and the size of the output page.
These modes are found in the Format/Output mode group of the mode
dialogue. When invoked, O(utput) first prompts for a heading
(unless the mode affecting the heading specified not to
prompt). It then asks for the name of the output file. If a
<CR> or <ESCAPE> is specified for the file name, then LPT: is
assumed. If this command is input by accident, typing -Q will
cancel it. While this command is executing, typing -Q interrupts
it and returns to XED command mode.

Q QUIT - Quit will exit the editor WITHOUT writing a new copy
of the file. After this command has returned to the
Executive(@), inputting CONT<CR> will continue the editor with
no changes to the current line, text buffer etc.

MODES

" MODE DIALOGUE - Puts the user in an interactive dialogue,
allowing the user to set and examine the XED mode settings.
It divides the settings into groups of modes, and allows the user
to select or skip each group. Within a group, the user
then may examine and optionally set any of the modes within the
group. At any time during the dialogue, the user can skip the
rest of the group selections and individual mode selections, and
can also cancel any changes made. It also allows the user to
define mode files to contain specified mode settings, and recall
them later.

PROGRAM INVOKING COMMANDS

% Call SNDMSG - allows the text buffer to be sent to
SNDMSG without going through EXEC or using SNDMSG's -s option.
XED prompts for subject of message, after which user is prompted
for To:, cc:, etc., just as in SNDMSG. The message will
have the text buffer inserted as the body. It is important not
to type ahead while the message body is being inserted, as
the input will be merged randomly with the text buffer into
the message body. When the message has been sent, XED will
return to command mode, with the text buffer untouched. If this
command is input by accident, typing -Q will cancel it. During
the input of text for this command the following: control
characters are active. Detailed explanations are available from
H(elp): AA, AH(backspace), Ax, Aw, AR, AQ, Av, AA, A\, DEL and
$(escape).

Run program - allows the user to call any TENEX subsystem
or other runnable program (including the TENEX EXEC) without
disturbing the state of the text buffer, current pointer, etc.
XED prompts for the name of a program to run (directory
defaults to <SUBSYS>, extension to .SAV) and then runs the

14-10 ADD-HJ-26-7 7

TUG
XED

requested program. When the program is finished running
(such as by QUIT to the EXEC), control returns to XED, leaving it
in the same state as when the program was called. If this
command is input by accident, ~Q or DEL will cancel it.

@ Call EXEC
disturbing the state
When a "QUIT" command
XED.

starts up the TENEX EXEC without
of the text buffer, current pointer, etc.

is given to the EXEC, control returns to

Start Fork starts last program
program-running command (!,%,@).
run, or the last fork was killed
prompted for the name of a new

If no program
by the > command,
program as in the

< Continue Fork
program-running command
run, or the last fork
prompted for the name

continues last program
(! , % , @) • If no program
was killed by the > command,
of a new program as in the

run by a
has been

the user is
command.

run by a
has been

the user is
command.

> Kill fork - kills the last program run, and its fork.
If no program has been run, or it has already been killed, this
command has no effect •

. --.... FORMATTING

FORMAT The format command allows the user to do
limited text formatting and justification on portions of (or all
of) the text buffer. If the command is followed by a <CR> or
<SPACE>, then the whole buffer is formatted. It can also be
followed by a line range specification, analogous to the T(ype}
or K(ill) commands. Thus,

40 means format the next 40 lines in the buffer, starting
at the current line

:125 means format the lines starting at the current
line -and extending to line 125

[Note that the formatter is
subject to change as its
refined.]

an experimental facility and
features are used, critiqued and

Several modes are relevant to the format command (set and
examined by the 11 command) • The command is enabled by the ENABLE
FORMAT mode (in the Command Enable/Disable group). If
justification (adding of additional spacing to even the
right margin) is desired, then the Justification mode (in the
Miscellaneous group) must be turned on. The margin used by
the formatter is also settable by the " command (in the
Miscellaneous group}. Its default value is 70.

14-11
ADD-10-26-77

---------------------- ·---- ------

TUG
XED

In order to protect the user from performing a format
operation which produces a result the user does not expect,
the lines which are being formatted are first copied to the text
dump. If the user has formatted the whole file, he can
retrieve it with the ' (Switch dump) command; otherwise, he can
use the J(am dump) command.

For normal operations, the formatter requires no explicit
commands. Paragraphs are separated by blank lines. Each
paragraph may contain "flags" which direct the formatter to
perform indentation on the entire paragraph. The blank lines
are retained after formatting, so that subsequent formats of
the same text will have the same paragraph boundaries.

The formatter recognizes two special text lines as
command directives. The first is a line with only a single,
isolated tab. It directs the formatter to turn off formatting
until the occurrence of another isolated tab line.
This is useful to allow certain pre-formatted information
(such as tables) to be skipped over by the formatter. [Note
that unintended results can occur if the isolated tab lines are
not properly paired!]. The second command is a line with an
isolated space. This acts as a paragraph break and
directs the formatter to indent the following paragraph the same
as the previous one. To help the user recognize the occurrence
of these special command lines, XED highlights them (on terminals
so equipped) or prints special identifying lines (e.g., <<
isolated tab >>).

XED PARAGRAPH FORMATTING

Note: [This description has been formatted by the XED format
command. Thus it both describes the process and
demonstrates the available features.]

I. Normal Paragraph.Processing

The first
paragraph.
line (2
terminated

line of· a formatted block is treated as a new
A new paragraph is also created after a blank

consecutive carriage-returns). The paragraph is
either:

the end of the block of lines being formatted

a blank line

a line with a single isolated tab

In the latter case, formatting is also turned off until the next
line containing an isolated tab is encountered.

14-12
ADD-10-26-77

--
TUG
XED

A. There are two items in the XED mode file which affect the
formatting process. They are the justification flag and the
line width.

1. The justification flag specifies whether the text
should be justified to the right margin. If the flag
is on, lines will be filled with as many words as can
fit, then spaces will be added to even the right
margin. This example is justified.

2. The line width determines how wide the formatted lines
will be. (In the case of no justification, this is
the maximum length.) This example has the line width
set to 7~.

B. The normal paragraph processing puts the proper number of
words on each line. If justification is requested, each
line is also justified. The basic features of this
formatting process (besides line-filling and justification)
are:

1. Paragraph indentation is not changed.
word is flush to the left margin,
paragraph will also start flush; if the
indented five spaces, the formatted
also have the first word indented
However, all other spacing characters
carriage return, line feed) within the
simply used to separate words.

If the first
the formatted

first word is
paragraph will

five spaces.
(space, tab,

paragraph are

All indentation (whether just the first line of a
paragraph or for an entire paragraph) is done with
spaces. Tabs are converted into the proper number of
spaces.

2. Hyphenated words are recognized and possibly broken.
This has the side effect of possibly adding spaces
(after the hyphen) in the middle of hyphenated words
in later versions.

3. All periods, colons, question marks, and exclamation
points appearing at the end of words are followed by
two spaces (minimum) , instead of the one normally used
between words.

II. Flagged Paragraph Processing

In addition to normal paragraph processing, the facility also
provides for paragraphs which are entirely indented. These
are called "flagged" paragraphs.

14-13 ADD-H.l-26-77

TUG
XED

A. The general form of a flagged (indented) paragraph

*

B.

1. A flagged paragraph starts with at least one spacing
character (tab or space).

2. This is followed by a flag. The flags are described
in section III below.

3. Finally, the flag must be followed by at least one
spacing character.

To reiterate, in order for a flag to be recognized, it must
be the first word in a paragraph with spacing both before
and after. This is done to prevent normal paragraphs from
being mistaken for flagged paragraphs. Following are the
differences between the processing of flagged paragraphs and
normal paragraphs.

Flag Formatting:

The flag will be indented in the formatted result the same
amount it was indented in the original text. This is
similiar to the initial paragraph indenting provided for
normal paragraphs. The flag will be followed by two spaces
which will not be available for expansion during
justification.

C. Succeeding Lines in Flagged Paragraphs:

All lines of the
first line of the
margins.

flagged paragraph will line up with the
paragraph and will be indented from both

INDENTED PARAGRAPHS WITHOUT FLAGS

When you want more than one paragraph to line up under a
flag, insert a line with a single isolated space between the
two paragraphs. The next paragraph will line up
automatically with the previous one. This section makes
extensive use of this facility.

III. Description of Flags

Flags are used to indent entire paragraphs. There are four kinds:

SINGLES: A single is one of the following: * (star), + (plus),
- (hyphen), % (percent) , and o (lower-case letter 0).

SECTIONS: A section flag can be a single letter, a letter and a
number (0-9 only}, any number 0-99, or a number (0-9)
and a letter. It cannot be two letters since a
paragraph could start with Mr. Smith or Dr. Jones.

14-14 ADD-10-26-77

--

TUG
XED

Examples: A,l,Al,22,la.
than 2 characters.

A section cannot be more

ROMANS: Any roman numeral between 1 (I} and 399 (CCCXCIX}.
The roman numerals can be upper- or lower-case.

NAMES: Any string containing
(periods) or - (dashes).

only alpha-numerics,

Four classes of flags are recognized by the following puncutation:

A. Any SINGLE by itself (spacing before and
considered to be a flag.

after) is

B. Any SINGLE, SECTION, or ROMAN followed by a • (period) or a
) (close parenthesis) is considered to be a flag.

C. Any SINGLE or SECTION enclosed in balanced brackets is
considered to be a flag. Recognized brackets are: <>, {},
[] , and () •

D. Any NAME followed by a
flag.

(colon) is also considered to be a

EXAMPLE FLAGS

Note: [This section is not formatted. The following
line contains a single isolated tab which turns
off the formatting process.]

Example flags with appropriate punctuation:
SINGLE SECTION ROMAN NAME

Selected from:

Flag group A: *
SINGLE ALONE +

0
%

Flag group B: (*) [A]
BRACKETED <o> (D3)

{+} <7>

Flag group C: o) 23. IV)
SECTION DESIGNATOR * 2a) xxxi.

+) Q. CX)

Flag group D: Flagword:
KEYWORD Case-176:

STATUS.LAST:

14-15 ADD-10-26-77

TUG
XED

CONTROL CHARACTERS

Control characters are input by depressing the CONTROL key (which
is a shift key and by itself does not transmit any code to
the computer) followed by the appropriate character.
Control characters are represented as an A preceding the
character. E. G.: AA represents Control A.

INTERRUPT CONTROL CHARACTERS

These characters may be input at any time. AC and AT· are
available anywhere in TENEX, while the others are only supported
by XED.

AC This stops the editor and goes immediately to the
Executive(@). The editor may be continued by inputting CONT<CR>.

AT This will print the current load average of the system.

AN This will print the current line number.
useful for tracking the progress of R(ead), W(rite),
E (xi t), F (ind), and S (earch).

This is
B(ackup),

TEXT INPUT CONTROL CHARACTERS

These characters are available whenever the user is inputting
a text string from the terminal.

AA -A, -H(backspace), DEL(rubout), will all delete the last
character input. DEL(rubout) additionally aborts commands
which accept file names. In this file name situation DEL
is active during R(ead), W(rite), E(xit), H<CR> [Manual
Request], and when B(ackup) requests a file name because not file
name has yet been specified.

This control character is active during A(ppend), I(nsert),
C(hange), F(ind), S(earch), X(change), ((set prefix),
(set suffix), and % (SNDMSG).

AW -w deletes the last word input. Words
tabs and spaces. AW also deletes and
might have followed the last word input.

This control character is active during
C(hange), F(ind), S(earch), X(change),
(set suffix), and % (SNDMSG).

Ax X deletes the current line being input
This control character is active during

C(hange), F(ind), S(earch), X(change),
(set suffix), and% (SNDMSG).

14-16

are delimited by
spaces or tabs which

A(ppend), I (nsert),
((set prefix),

from the terminal.
A(ppend), I(nsert),
((set prefix),)

ADD-HJ-26-77

' -· -·

TUG
XED

AR AR re-types the current line being input.

This control character is active during
C{hange), F{ind), S{earch), X{change),
(set suffix), and % {SNDMSG).

A{ppend), I(nsert),
{ {set prefix),

-Q This will stop an executing command. It can stop B(ackup),
F{ind), L{ist), O{utput), P(rint text dump), R(ead), S(earch),
T{ype), V{iew), W{rite) and X(change).

-Q is also active whenever a command or text
If typed while entering the number parameter
K{ill) or T{ype), it will abort the command.
Inserting or Appending, the current text
discarded and XED will go back to command mode.

is being input.
to a command like
If typed while

line will be

-v AV "quotes" the next character input. It is used to
input characters which would normally cause control or
editing functions {e.g., -z, -x, -Q, -B). For example, to put
"ABC-Z" in a text line, one would enter ABc-v-z. -v would be
entered into text by -v-v.

This control character is active during A{ppend), I(nsert),
C{hange), F{ind), S(earch), X{change), { {set prefix),)
{set suffix), and % {SNDMSG).

-- "control shifts" the next character input.
inputs -c, while AAc inputs) •

{e.g.

This control character is active during
C(hange), F{ind), S(earch), X(change),
(set suffix), and % (SNDMSG).

A(ppend), I(nsert),
((set pref ix),

-\ -\
inputs

"case shifts" then next
c, -\c inputs C, while -\

character input.
inputs -C) •

(e.g., -\c

This control character is active during A(ppend), I(nsert),
C{hange), F{ind), S{earch), X{change), { {set prefix),
{set suffix), and % {SNDMSG).

SEARCH MODIFICATION CONTROL CHARACTERS

These characters cause special actions to be performed
during the execution of the certain commands. To enter
them as text for these commands, they must be "quoted" by -v or

-B -a specifies that Find, Search, and Xchange must match only
at the Beginning of a text line. (The default is to match
anywhere in the text line). The -B may be typed either before
the command it affects {F,S or X), or during the typing of the

14-17
ADD-10-26-77

TUG
XED

string affected. If this command is entered more than once, it
reverses the effect of the previous one (or the prevailing
default setting), i.e., it acts as a toggle.

AE AE specifies that Find, Search, and Xchange must Exactly
match the text string, including case. (The default is to
match exclusive of case). The AE may be typed either before the
command it affects (F,S or X), or during the typing of the string
affected. If this command is entered more than once, it reverses
the effect of the previous one (or the prevailing default
setting), i.e., it acts as a toggle.

~F This command affects the X(change) command. When
specified, it causes XED to do case-sensitive XCHANGEing.
In this mode, XED categorizes the found string into one of
four classes (UPPER CASE, lower case, Capitalized, or
aRbitrAry). When it substitutes the replacement string, it
maps it into the same class as the found string (if the found
string is arbitrary, XED makes no change). The -F may be typed
either before the X(change) command, or during the typing of
the OLD string. If this command is entered more than once, it
reverses the effect of the previous one (or the prevailing
default setting), i.e., it acts as a toggle.

~s This command affects the searching commands (F,:S). When
specified, it causes XED to enter Change for the line within
which the string was found, positioning the Change cursor at the
found string. The AS may be typed either before the command it
affects (F,S), or during the typing of the string affected. A
mode in the Miscellaneous mode group allows the user to specify
that the C(hange) cursor be positioned at the end of the
found string. Normally, it is positioned at the beginning. If
this command is entered more than once, it reverses the effect
of the previous one (or the prevailing default setting), i.e., it
acts as a toggle.

$ ESCAPE TO CHANGE - During the insertion of text lines, the
escape character passes the line currently being input to
C(hange). When C(hange) is terminated in the standard way,
the line input process continues. If escape is typed when
the text is empty, the text line will first be initialized to the
LAST string entered in the current context, e.g., if the
string is being entered for a FIND command, the string used in
the last FIND/SEARCH command will be used; if the string is
being entered into the text buffer by an APPEND, the last
string entered during the last APPEND/INSERT command is used.
This control character is active during A(ppend), I(nsert),
C(hange), F(ind), S(earch), X(change), (.. (set prefix),)
(set suffix), and % (SNDMSG).

14-18
ADD-10-26-77

··-

·-...

-

TUG
ZTYPE

ZTYPE

ZTYPE is a program for listing text files (RUNOFF output files,
for example) on a 300 baud terminal such as Diablo, Anderson
Jacobson, Bedford, etc.

Example of its use:

@ZTYPE<space> (File) af ilename (Starting at page) a page At this
point ZTYPE will output a formfeed and ring the bell. It then
waits for the user to type a character (signifying the paper is
ready in the terminal) • The user typed character will not be
echoed on the paper. If you wish to start at page 1 of the file,
you can end the file name with a carriage return. Typing
carriage return to the page number request will also assume page
1.

Whenever ZTYPE rings the bell at the end of a page, you may type
one of the following "special" characters:

"X" - This stops ZTYPE and returns you to the EXEC

"P" - Position to a page number. Type "P" followed
by the desired page number

"B" - Starts over at the beginning of the file.

Any other character simply tells ZTYPE the paper is ready and to
type out the next page.

None of the typed in characters will be echoed on the terminal.

Insert feature: It is possible to type in text on-line
ZTYPE is running. Whenever a control-F is found in the
file, ZTYPE will stop and echo any characters you type in.
a control-F is typed, ZTYPE will continue listing the file.

while
text
When

15-1 ADD-10-26-77

