Dynamic protection structures

by B. W. LAMPSON

Berkeley Computer Corporation
Berkeley, California

INTRODUCTION

A very general problem which pervades the entire field
of operating system design is the construction of pro-
tection mechanisms. These come in many different
forms, ranging from hardware which prevents the exe-
cution of input/output instructions by user programs,
to password schemes for identifying customers when
they log onto a time-sharing system. This paper deals
with one aspect of the subject, which might be called
the meta-theory of protection systems: how can the
information which specifies protection and authorizes
access, itself be protected and manipulated. Thus, for
example, a memory protection system decides whether a
program P is allowed to store into-location T. We are
concerned with how P obtains this permission and how
he passes it on to other programs.

In order to lend immediacy to the discussion, it
will be helpful to have some examples. To provide
some background for the examples, we imagine a
computation C running on a general multi-access
system M. The computation responds to inputs from
a terminal or a card reader. Some of these look like
commands: to compile file A, load B and print the
output double-spaced. Others may be program state-
ments or data. As C goes about its business, it executes
a large number of different programs and requires at
various times a large number of different kinds of
access to the resources of the system and to the various
objects which exist in it. It is necessary to have some
way of knowing at each instant what privileges the
computation has, and of establishing and changing
these privileges in a flexible way. We will establish a
fairly general conceptual framework for this situation,

and consider the details of implementation in a specific
gystem.

Part of this framework is common to most modern
operating systems; we will summarize it briefly. A
program running on the system M exists in an environ-
ment created by M, just as does a program running in
supervisor state on a machine unequipped with soft-
ware. In the latter case the environment is simply the
available memory and the available complement of
machine instructions and input/output commands;
since these appear in just the form provided by the
hardware designers, we call this environment the bare
machine. By contrast, the environment created by M
for a program is called a virtual or user machine.® It
normally has less memory, differently organized, and
an instruction set in which the input/output at least
has been greatly changed. Besides the machine reg-
isters and memory, a user machine provides a set of
objects which can be manipulated by the program. The
instructions for manipulating objects are probably
implemented in software, but this is of no concern to
the user machine program, which is generally not able
to tell how a given feature is implemented.

The basic object which executes programs is called
a task or process;® it corresponds to one copy of the
user machine. What we are primarily concerned with
in this paper is the management of the objects which
a process has access to: how are they identified, passed
around, created, destroyed, used and shared.

Beyond this point, three ideas are fundamental to
the framework being developed:

1. Objects are named by capabilities,® which are
names that are protected by the system in the

27

28 Fall Joint Computer Conference, 1969

sense that programs can move them around but
not change them or create them in an arbitrary
way. As a consequence, possession of a capa-
bility can be taken as prima facie proof of the
right to access the object it names.

2. A new kind of object called a domain is used to
group capabilities. At any time a process is
executing in some domain and hence can exercise
the capabilities which belong to the domain.
When control passes from one domain to an-
other (in a suitably restricted fashion) the capa-
bilities of the process will change.

3. Capabilities are usually obtained by presenting
domains which possess them with suitable
authorization, in the form:of a special kind of
capability called an access key. Since a domain
can possess capabilities, including access keys,
it can carry its own identification.

A key property of this framework is that it does not
distinguish any particular part of the computation. In
other words, a program running in one domain can
execute, expand the computation, access files and in
general exercise its capabilities without regard to who
created it or how far down in any hierarchy it is. Thus,
for example, a user program running under a debugging
system is quite free to create arnother incarnation of
the debugging system underneath him, which may in
turn create another user program which is not aware
in any way of its position in the!scheme of things. In
particular, it is possible to reset ‘things to a standard
state in one domain without disrupting higher ones.

The reason for placing so much weight on this prop-
erty is two-fold. First of all, it provides a guarantee
that programs can be glued togéther to make larger
programs without elaborate pre‘farrangements about
the nature of the common environment. Large systems
with active user communities quickly build up sizable
collections of valuable routines. The large ones in the
collections, such as compilers, often prove useful as
sub-routines of other programs.:Thus, to implement
language X it may be convenient to translate it into
language Y, for which a compiler already exists. The X
implementor is probably unawar¢ that Y’s implemen-
tation involves a further call on an assembler. If the
basic system organization does not allow an arbitrarily
complex structure to be built up' from any point, this
kind of operation will not be feasible.

The second reason for concern about extendibility
is that it allows deficiencies in the design of the system
to be made up without changes in the basic system
itself, simply by interposing another layer between the
basic system and the user. This is especially important

when we realize that different people may have different
ideas about the nature of a deficiency.

We now have outlined the main ideas of the paper.
The remainder of the discussion is devoted to filling
them out with examples and explanations. The entire
scheme has been developed as part of the operating
system for the Berkeley Computer Corporation Model
I. Since many details and specific mechanisms are
dependent on the characteristics of the surrounding
system and underlying hardware, we digress briefly
at this point to describe them.

Environment

The BCC Model I is an integrated hardware and soft-
ware system designed to support alarge number (up to
500) of time-sharing users. This system consists of
two central processors, several small processors, a large
central (core and integrated circuit) memory,and rotat-
ing magnetic memory. The latter contains more than
500 106 bytes, including approximately 12X 10¢ bytes
of drum having a transfer rate of more than 5X 108
bytes per second.

The hardware allows each process more than 512k
bytes of virtual memory. The central processors can
accommodate operands of various sizes including 48-
and 96-bit floating point numbers. The addressing
structure allows characters, part-word fields and array
elements to be referenced directly. The subroutine-
calling instruction passes parameters and allocates
stack space automatically. System calls are handled
exactly like ordinary function calls; when arrays or
labels are passed to the system they are checked auto-
matically by the hardware so that they can be used
by the system without further ado.

The memory management system organizes memory
into pages. A page is identified by a 48-bit unique name
which is guaranteed different for each page ever created
in the system. Tables are maintained in the central
memory which allow the page to be found in the various
levels of the memory system. These tables are auto-
matically accessed by the address mapping hardware
the first time the page is referenced after the processor
starts to run a new process. Thereafter its real core
address is kept in fast registers. It is therefore unneces-
sary for any program other than a small part of the
basic system to be concerned about the location of a
page in the memory system; when it is referenced, it
will be brought into the central memory if it is not
already there. Extensive facilities are provided, how-
ever, to allow a process to control the level in the memo-
ry hierarchy of the pages it is interested in. The work
of managing the memory is done by a processor with

Dynamic Protection Structures 29

read-only program memory and data access to the
central memory; this processor has a 100 ns cycle
time, so that it can handle the large amount of com-
puting required to keep up with demands placed on
the memory system. Another small processor handles
‘the remote terminals, which are multiplexed in groups

of 20 to 100 at remote concentrators and brought .

into the system over high-speed lines.

Pages are grouped into files, which are treated as
randomly addressable sequences of pages. The only
mechanism provided to access the data in a file is to
put a page of the file into the virtual memory of a
process. Files and processes are named and have pro-
tection information associated with them.

Domains in action

Before plunging into a detailed analysis of capa-
bilities and domains, we will look at some of the practi-
cal situations which these facilities are designed to
serve. They all have the same general character: several
programs with different privileges exist. Each program
corresponds to one domain. Some of the domains con-

“trol others, in the sense that the capabilities of a con-
trolled domain are a subset of those of its controlling
domain. As a first example, consider the command
process CP of an operating system. This program
accepts a command, perhaps from a remote terminal,
and attempts to recognize it as a call on a program X
which CP knows about. If it succeeds, CP calls on X for
execution, passing it any parameters which were in-
cluded in the command. To do this, CP must set up
a suitable environment for X to function in. In par-
ticular, enough memory must be provided for X to
run, X must be loaded properly, and suitable input/
output must be available. When X is finished, it will
return and CP can process a new command. :

The key point is that we want CP to be protected
from X, to ensure that the user’s commands continue
to be processed even if X has bugs. In particular, we
want to be sure that '

1. X does not destroy CP’s memory or files, so
that CP can continue to run when X returns.

2. CP can stop X if it goes wild. Usually we want
the ability to set a time limit and also to inter-
vene from the terminal.

In other words, we want CP and X to run in separate
domains, as illustrated in Figure 1 (since this is an
informal discussion, we do not trouble to distinguish
carefully between the program X and the domain in
which it runs). Here we have shown the call from CP

CP: c¢ommand processor X: command

Command input Capabilities

®

Command output required by

Directory of commands X

Domain X

Return to CP

Domains calls

Figure 1—A command processor and its command

to X in two forms: in the picture on the right, and as
a return capability in X. The reason for the capability
is that X cannot return with a simple branch oper-
ation, since it would then be able to start CP running
at any point, which would destroy the protection.

Suppose now that we want to allow X to get addition-
al commands executed. X might, for example, be a
Fortran compiler whose output must be passed
through an assembler. A simple way to do this is to
put the assembler input on a file called, say, FOR-
TRANTEMP, and issue the command.

ASSEMBLE FORTRANTEMP, BINARY

This command is just a string, which can easily be
constructed by the compiler X. To get it executed,
however, X must be able to call CP. This situation
is illustrated in Figure 2; note the call capability in X,
which is quite different from the return capability.
We are ignoring for the moment the question of how
CP knows that X is authorized to call the assembler.

If the idea of the preceding paragraph is pursued, it
suggests the value of being able to switch the source
of command input and the destination of command
output in a flexible way. By these terms we mean the

CP: command processor X: Command Y: Command
1
Command input !
;!
Command output Capabilities Capabilities

required by required by

Directory of commands
X X

Domain X

Domain Y call cp

Return to X Return to Cp

O-®-0-6

|
“Return to CP
| S—

Figure 2—A recursive command processor

30 Fall Joint Computer Conference, 1969

traffic between a program and the entity by which it
is directed. In a time-sharing system this is normally
a terminal at which the user is sitting; in a non-inter-
active system it will be a file of control cards. It is
often desirable, however, to switch between the two,
so that routine processing can be done automatically
when the user’s attention is elsewhere, yet he can
regain control when things go awry. Again, it is not
uncommon to wish to capture a complete record of a
conversation between user and machine for later
analysis and replay. More radical, it may be of interest
to replace the user at his terminal with a program
which can manipulate the strings of characters which
constitute commands and responses. In this way major
changes in the external appearance of a system can
be obtained with little effort.

All of these things can be accomplished by giving
interactions with the command I/O device the form of
calls to a different domain which acts as a switch. A
generalization to include the possibility of different
command devices for different domains is easy. Thus,
a user may initiate a program in a domain X which,
while continuing to communicate with him, starts a

CcPl: command MC: macro CcP2: command
processor 1 command processor 2
call CIo call cI1o call CI0
Domain MC Domain X

pomain cp2 .

Directory

of commands Return to MC

Return to CPl

Domain CIO

Return to CIO

X: user program C10: control I/0

call ci1o call cpl
Return to CP2 call Cp2
call MC

Return to X

Figure 3a—S8witchable control I/0-—the domains

Top-level command processor initiates a

v command

which wants to drive another command
processor with some pre-stored or computed
input. It therefore creates another CP

and calls it, telling CIO to use MC for

its 1/0
The lower CP is given a command to call
' the user program X.
° This program needs input
@ which it gets by calling CIO, the domain
n which is switching the control 1/0. (IO calls

the current input source, which is MC

Figure 3b—Switchable contro! I/0 —the calls

subsidiary domain and feeds it commands. The sub-
sidiary, unaware of the way in which it is being driven,
may iterate the process by creating Z. The key fact
which makes it all work is the isolation of one domain
from others. Thus, Y may decide to close all its files
without disturbing X, since Y has no way of even
knowing about X’s files, much less accessing them. Z,
on the other hand, can be an open book to Y. Various
aspects of the situation are illustrated in Figure 3.

This section concludes by analyzing a problem of
great practical importance: how to construct a debug-
ging system. This example is a good source of insights
into the facilities required of a protection system be-
cause of the great variety of things which can be ex-
pected to go wrong during debugging. There are two
domains, one for the debugger D and one for the pro-
gram X being debugged. We of course want D to be
protected from X. Equally important, we want X to
be completely open to D, so that every object accessible
to X is also accessible to D, and furthermore that D
can find all the objects accessible to X as well as access
them. Otherwise D will not be able to find out what X
has done or to undo any damage. Furthermore, we
want D to be able to imitate any actions which X
can take, so that D can create suitable initial conditions
for debugging parts of X. Thus, D needs operations
which, given a ecapability for X, allow D to

find all the capabilitiesin X

copy capabilities between D and X

destroy capabilitiesin X

enter X at any point with any machine state

Dynamic Protection Structures 31

With these powers, D can also handle domains which
X has created, since it can get hold of X'’s capabilities
for them. Breakpoints can be inserted in X in the
form of callson D.

Domains and capabilities
The nature of capabilities

As we have already said, a capability is a protected
name of an object. When any object is created, a
capability is created to name it; without the capability
the object might as well not exist, since there is no
way to talk about it. The capability may be thought
of as an ordinary data item enclosed in a box which
prevents tampering with the contents. Thus, for ex-
ample, it may be convenient to make a capability for
a file consist of simply the disc address of its index.
This is entirely satisfactory, since programs which
handle the capability cannot modify it. If they could,
disaster would ensue, since any program could put
any desired disc address into a file capability, and
there would be no protection at all. If the machine
hardware allows a word to be tagged so that it cannot
be modified except by the supervisor, then we have
precisely what we want for a capability. The situation
is illustrated in Figure 4. It should be possible to load
and store such a word (including the tag bits) in order
to give programs the necessary freedom to manipulate
the names of the objects they are working with.

If this kind of hardware is not available a different
and potentially confusing implementation is required.
The potential can be kept from realization by referring
back to the “pure’” implementation of the last para-
graph, What is required is to hide the capabilities
away in the supervisor and provide programs with
unprotected names which can be used to refer to them.
When a program running in domain D presents one
of these names, it is necessary to check that it actually
names a capability which belongs to D. This can easily

Capability: TAG TYPE VALUE
TAG = read-only, except to supervisor
TYPE = FILE

VALUE = disk address of index

Figure 4-—Structure of a capability

NAME TYPE VALUE DOMAINS NAME TYPE TAG

—
1 A 1101010 1 A
Domain 1
2 B ollitoto 2 E
3 (] 0,0;1;0
4 D 0101011
1 B
5 E 1l1tol1l
2 E Domair. 2
6 F 0;1;1,0
3 F
(a) capabilities grouped, with 1 [o]
1 Domain 3
bits for ownership 2 F
1 D
Domain 4
2

(b) capabilities separate

for each domain

Figure 5—Capabilities and unprotected names

be done, if there are n such capabilities, by using
numbers between 1 and n for the names.? An attractive
alternative, if domains can be grouped into larger units
which share many capabilities, is to number the
domains from 1 to ¢ and the entire collection of capa-
bilities from 1 to » and to attach a string of ¢ bits to
each capability. Bit d is on exactly when the capability
belongs to domain d. Figure 5 illustrates.

A somewhat more expensive implementation is to
search a table associated with the domain whenever
an unprotected name is used. This scheme shares with
the bit-string idea the advantage that it is easy for
different domains to use the same names for the same
object.

There are capabilities for all the different kinds of
objects in the system. On the Model I these are

files

pages of memory
processes
domains
interrupt calls
terminals

access keys

Domains and memory

The nature of a domain is considerably more de-
pendent on the underlying system than is the case
for capabilities, mainly because of the treatment of
memory. From a purist’s viewpoint, every access to a

32 Fall Joint Computer Conference, 1969

memory word is an exercise of a capability for that
word. A more moderate position, and one which is
quite feasible on suitable hardware, is to view each
access as the exercise of a capability for a segment
which contains the word.? The mapping hardware
which implements segmentation is thus viewed as part
of the capability system, and a satisfying unity of
outlook is gained. Since a segment is identified by
number, the preceding section applies. We shall not
consider the formidable difficulties which arise if differ-
ent domains use different names for the same segment.

If segments are accessed through capabilities like
everything else, then a domain consists of nothing more
than a collection of capabilities. On machines not
equipped with the proper hardware a domain has an
address space as well. In the Model I this is a list of
the pages which occupy each of the 64 slots for pages
in the 128k memoryv which is accessible to a user pro-
gram.

It is also necessary to deal with the fact that the
hardware does not allow one domain to access the
address space of another one directly. This fact is of
great importance when we consider how data is passed
back and forth between domains, since it implies that
arrays cannot be passed simply by specifying their
addresses. It is therefore extremely convenient to in-
clude as part of a call the ability to pass scalar data
items, and essential to include the ability to pass capa-
bilities. From this foundation arbitrarily complex com-
munication can be built, since capabilities for pages,
files and domains can be passed. Thus, if an array needs
to be passed as a parameter, it is sufficient to pass
capabilities for the pages or file containing the array,
together with its base address and length. The called
domain can then put the pages into its address space
and access the array. This is of course much less con-
venient than passing an entire segment as a parameter,
but it is quite workable.

An alternative approach is to organize the hardware
so that the address space of one domain is a subset to
that of another. This eliminates all problems when the
smaller one calls the larger, although it does not help
at all when we want to share only part of the address
space. A subset organization fits well with a linear or
“ring”’-like system? in which the domains are numbered,
and the capabilities of domain i are a subset of those
of domain i-1. As we shall see, there are good reasons
for wanting a more flexible scheme, but for a great
many applications a linear ordering is quite satisfactory.
To allow these to be handled more efficiently, the
Model I hardware breaks the address space of a process
into three rings:

monitor
utility
user

in decreasing order of strength. The hardware enforces
a restriction that addressing cannot go into a higher
ring. It also provides protected entry points into the
utility and monitor rings and automatically checks
addresses passed into these rings as parameters to
ensure that they are legal in the ring from which they
came.

This simple hardware-implemented structure permits
threc domains to transfer control around among each
other and to address each other’s memory in a very
convenient and efficient way. The price paid is a ri-
gidity in structure, and a drastic incompatibility with
the main, software-implemented domain mechanism.
The incompatibility is resolved by requiring & change
in ring to be reported to the software, except when the
only processing to be performed before returning the
original ring can be done with the capabilities of the
original ring. Short calls thus remain cheap, while the
overhead added to longer ones is not excessive.

Domains and processes

The relationship between domains and processes is
another area greatly influenced by the surrounding
system. The logical nature of the two kinds of object
allows a great deal of freedom: in fact, a dormain has
much the same appearance to a process that a segment
of memory does. The storage for capabilities provided
by a domain can accommodate many processes, and a
single process can switch from one domain to another
(subject to restrictions which are considered in the
next section).

In the Model I, however, storage is allocated in 2k
pages, and one of these, called the context block, is
used to hold the system-maintained private data for
cach process. The cost of having a process is thus high,
and there is considerable incentive to minimize the
number of processes; usually one is enough per compu-
tation, if advantage is taken of the interrupt facilities
déscribed later. When the usage of space in the context
block is analyzed, it turns out that there are only two
items which would have to be duplicated to allow
several processes to run with the same address space.
These are a 14-word machine state and a stack used
for local storage when the supervisor is executing in
the process. This stack has a minimum of about 60
words and can grow to several hundred words at certain
points during supervisor execution. It is therefore the

Dynamic Protection Structures 33

main barrier to the existence of cheap processes. The
problem can be greatly alleviated by allocating stack
space dynamically at each function call and releasing
it at each return, but this would require some major
changes in system organization.

Although processes are expensive, domains are quite
cheap, since the bit-string method is used to assign
capabilities to domains. Each process in the Model I
can have about a dozen domains associated with it.
The process can run in any of its associated domains
but in no others. This implies that two processes never
run in the same domain.

In a system in which processes are cheap, it is possible
to take an entirely different approach which encourages
the creation of processes for every purpose. In such a
system, parallel processing is of course greatly facili-
tated. In addition, free creation of processes can be
used to give a somewhat different form to many of
the facilities described in this paper.?

It is perhaps worthwhile to point out that a machine
whose addressing is not organized around a stack or
base registers cannot reasonably run several processes
out of the same domain unless they are executing total-
ly disjoint code, because of the problem of address
conflicts.

Transfers of control

Calls

The only reason for creating a domain is to establish
an environment in which a process may execute with
different protection than that provided by any existing
domain. If this objective is to be fulfilled, transfers of
control between domains must be handled with great
care, since they generally imply the acquisition of
new capabilities. If it is possible for a process running
in domain X to suddenly jump into domain Y and
continue execution at any arbitrary point, X can cer-
tainly induce Y to damage the objects accessible
through Y’s capabilities. '

To provide an adequate mechanism for transfers
between domains, we introduce the idea of a protected
entry point or gate, and make the rule that transfer
into a domain is normally allowed only at a gate. A
gate is a new kind of capability which can be created
by anyone with a capability for the domain. It specifies
a location to which control is to go when the gate is
used. Gates can be passed around freely like other
capabilities, and each one may be viewed as conferring
a certain amount of power, namely the power to ac-
complish whatever the routine entered by the gate is

designed to do. With gates it is possible to selectively
distribute the powers of a domain in a flexible way.

A transfer through a gate usually takes the form of
a subroutine call; some provision must therefore be:
made for a return. It is not satisfactory to create
another gate which the called process may return
through, since he might save it away and use it to
return at some later and unexpected time. Instead,
the domain and location to return to are saved on a
call stack in the supervisor, from which the return
operation can retrieve them. It is possible to call a
domain recursively with this mechanism, a feature
which is generally desirable and also quite important
for the trap and interrupt system about to be described.

In order to allow the stack to be reset in case of an
error, or for any of the other reasons which prompt
programmers to reset stacks, a jump-return (n) oper-
ation is provided which returns to the domain n levels
back. Protection is maintained by requiring the domain
doing the jump-return to have capabilities for all the
domains being jumped over.

Traps

A trap is caused by the occurrence of some unusugl
event in the execution of the program which requires
special handling, such as a floating point overflow, a
memory protection violation or an end of file. When a
trap ocecurs, it forces control to go to a specified place,
where presumably a routine has been put to deal with
the event. Whether any particular event causes a trap
or simply sets a flag which can be tested by the program
is a decision which should be under the programmer’s
control. Traps may be initiated by hardware (e.g..
floating overflow) or may be artifacts of the software;
as with most distinctions between hardware and soft-
ware implementation, this one is of little importance,
and we expect all traps to be transmitted to the program
in the same form, regardless of their origin.

These are all obvious points which are generally
accepted, and have even become embedded in the
definition of PL/I. What concerns us here is the re-
lationship between traps and domains, which is not
quite so obvious. The basic problem is that the re-
sponse to a trap must be made to depend on the environ-
ment in which is occurs. The occurrence of, say, a
floating overflow is simply a fact, and has nothing to
do with who is running. The action to be taken, on the
other hand, is entirely a function of the situation.
Consider the example in Figure 6. If a floating overflow
oceurs with the call stack in state (b), it is clear that

34 Fall Joint Computer Conference, 1969

Name Domain Traps

A [Eommand processor ICATCHALL]

Statistical TFL’I‘OV, |
package SINGMTX <::)

=

w

Matrix
Inversion

The call stack
during matrix
inversion

a) Domains and b)
enabled traps

SINGMTX CATCHALL

FLTOV

OO0

OOE
00,0

c) the matrix d) the matrix e) the matrix
inverter pro- inverter re- inverter returns
cesses a turns with with trap-
floating over- trap-return return
flow { SINGMTX) (BAD DATA)

Figure 6—Traps and trapreturns

C should have the first chance to handle the trap. If
it is not interested, the domain B which called it should
have the second chance. In state (¢), on the other hand,
domain B should have the first chance, and then A.
The reasons for this is that we do not wish to give up
control to a weaker domain when a trap oceurs.

The idea is then the following: Each domain is
considered to have a father. When a trap occurs, it is
first directed to the domain S which is running. If S
does not have the trap enabled, the father of S is
tried in the same way. If no one can be found to handle
the trap, there are two possibilities:

ignore it;
generate a catchall trap which any domain that
lacks a father is forced to handle.

If a domain T is found with the trap enabled, it is
called with the name of the trap as argument. It can
then return and allow execution to proceed if it is
able to clear things up. Alternatively, it can do a
jump-return to someone farther back on the call stack
if it finds the situation to be hopeless. An important
property of this scheme is that the trap routine can do
arbitrarily complex processing without disturbing the
situation at the time of the trap.

Conceptually, we wish to think of traps as identified
by symbolic names. Each domain must then include a
list of names of the traps it has enabled. Corresponding

to each hardware-generated trap is a standard name .
Software-generated traps can use any names, including
the ones for hardware traps. This makes it easy for a
subroutine to simulate the occurrence of a hardware
condition which it may not be convenient to produce.

A simple extension of the return operation to a
trap-return allows a routine to signal an error without
leaving any traces of itself; the trap-return does a
return and immediately causes the specified trap,
without allowing any execution beyond the return
point. The domain which handles the trap then sees
it as having occurred in the calling routine, which is
exactly what is wanted. Thus in Figure 6 we have a
matrix inversion routine which processes its own
floating overflows, but reflects two other conditions
to its caller with trap-return. Another useful con-
vention is to disable the trap when it occurs. This
makes it much less likely that the program will get
into a loop, especially for such traps as illegal in-
struetion and memory protection violation.

Interrupts

There remains one more way to cause a transfer
between domains: the occurrence of an interrupt. This
is not intended to be the normal mechanism for com-
munication between cooperating processes; the basic
block and wake-up mechanisms® are expected to per-
form that function. There are times, however, when it
is desirable to force a process to do something, even
if it is not paying attention. Two obvious reasons for
this are:

a quit signal from the terminal, which indicates
that the user wants to regain control over a process
which has gone into a loop, or perhaps simply
become unnecessarily wordy ;

the elapse of a certain amount of time, which
has much the same meaning,.

The action requiréd in these two cases is different.
When a timer interrupt is requested (and there may be
two kinds, for real time and CPU time) the desired
action is usually to call a specific domain, often the
one which is setting the timer. If another domain
wants a timer, it will use one which is logically different.
The user’s quit signal, on the other hand, is context
dependent like a trap; the desired action is a function
of the routine which is running when the signal arrives.
Thus an iterative root-finder may interpret a quit as
an indication that the solution is accurate enough,
but the debugging system under which it may be run-

Dynamic Protection Structures 35

ning will curtail its printing when it sees a quit and
await a new command. This analysis suggests a simple
implementation: convert the quit into a trap from the
currently executing domain. Each interrupt, then, will
give rise to a call or a trap, depending on its type as
declared by the programmer.

Even when we see how to convert them into oper-
ations within the process, interrupts still present one
serious problem which does not arise in the handling
of traps. This is the fact that a program occasionally
needs to be allowed to compute for a while without
losing control. Usually this happens when modifi-
cations are being made to a data base; if a quit signal
should appear or a timer run out halfway through this
operation, the data is left in a peculiar state. The
obvious solution is to allow a process to become non-
interruptible for a limited period of time. The function
of the limit is to prevent the process from getting into
a state from which it cannot be retrieved; exceeding
it is a programming error and always causes the process
to become interruptible again and an error trap to
occur, regardless of whether an interrupt is actually
pending. The limit is properly measured in real time,
since its primary purpose is to put a bound on the
frustration of the user at his console.

Non-interruptibility is a process-wide condition. It
must be possible, however, for a newly-called domain
to extend the limit exactly once, so that it can function
properly even though its caller is about to exceed his
limit. The limit is thus part of a call stack entry. When
a return ocecurs, the old limit comes back into force,
and an immediate trap may occur if it has been ex-
ceeded.

Table I summarizes the operations connected with
transfers of control between domains.

TABLE I—Operations for transfers

Operation Arguments

Call Gate, Parameters
Return Parameters

Jump Gate, Parameters
Jump-return Depth, Parameters
Trap Trap number

Trap-return Trap number

Proprietary programs

The remainder of this paper deals with the pro-
tection problems introduced when objects are allowed

to have external, mnemonic names. The examples in
this section are intended to introduce this subject, and
are also of interest in their own right. Suppose then
that a user U has a program executing in domain P
and wishes to perform a circuit analysis. P has gener-
ated the input data for the analysis, and intends to
use the results for further calculation. Within the
system M on which P is running, some user V has
written a suitable analysis program A which he has
offered for sale, and U has decided to use V’s program.
It happens that U and V are competitors.

Both users in this situation have selfish interests
to protect. First, and most obvious, V does not want
his program stolen. He therefore insists that while it
is executing U must not be allowed to read it. Equally
important, however, is the fact that U does not want
V’s program to be able to read the calling program P
and its data; although U may not be trying to market
P, it, and especially its data, contain valuable infor-
mation about U’s current development work which
must be kept from competitors. The relationship
between U and V, and between their programs P and A,
is therefore one of mutual suspicion. Each is willing
to entrust the other with just enough information
to allow the circuit analysis to be completed, and no
more. The system must support this requirement if it
is to be a suitable vehicle for selling programs.

Furthermore, cate must be taken beyond the pro-
grams. While P is running it needs the ability to ac-
cess U’s files by name, to read input data and record
results. This privilege must certainly not be extended
to A, since it can learn even more about U’s secrets
by examining his files than by looking at his program,
not to mention the possibility of modifying them. On
the other hand, A may need access to V’s files to obtain
data for the analysis and to collect statistics and ac-
counting information; this access must not be available
to P. The protection mechanisms must therefore pro-
vide for isolating P and A at the level of file naming as
well as on the lower levels which have been the subject
of this paper so far.

What is required then is a system facility something
like this. V establishes A as a proprietary progrom,
specifying the file on which it resides. Another user’s
program P may then ask the system to attach this
file. To do this, the system creates a new domain A,
installs the program in it, provides it with some storage,
and returns to P a gate into A. When P wants to call
A, he uses the gate and passes whatever parameters
he thinks are needed for A to function. When A is
finished, he returns. The protection mechanisms we

36 Fall Joint Computer Conference, 1969

have been discussing prevent undesired interference
between P and A. Safeguards for the files are discussed
below.

The example above is one of a great variety of similar
situations. The system itself creates many of them. A
LOGOUT command, for example, requires special ac-
cess to accounting files and to capabilities for destroying
a process, but it would be nice to call it with the
standard command processor. Similarly, driving a
special peripheral like a printer requires special capa-
bilities. If a company maintains ‘a large data base, it
may wish to give different classes of users access to
different parts of it by allowing them to call different
accessing programs. These and many other applications
fall within the general outline established by our pro-
prietary program example. We now proceed to consider
how to handle the file naming problems it presents.

External names

Table II lists the goals of a naming system for objects,
and indicates some of the distinctions between the
use of capabilities in names which have been discussed
in previous sections, and the use of external names,
which are strings of characters such as ‘FILE1’ or
‘CIRCUIT’. In summary, it says that capabilities are
very convenient for use by a program, since they are
cheap and self-validating. On the other hand, they are
very bad for people, since they cannot be typed in or
remembered. Names for people should also have the
property that the same name can refer to many differ-
ent objects, the distinctions to be made by context.
Thus, Smith’s file ‘ALPHA’ is not the same as Jones’
‘ALPHA’.

TABLE II— Goals of a naming system for objects

Achieved by Achieved by

Goal Capabilities external names
Names are mnemonic X
Names can be relative X

to other names
Names can be used exter- X

nally
Possession of name X

authorizes access
Names are cheap X

to use
Names can be ma- X X

nipulated by programs

Techniques for achieving all these goals are well
known. They depend on the introduction of a new kind
of object called a directory, which consists of pairs:
<external name, capability>, and an operation of
opening an object by supplying the name to obtain
the capability. Since the external name is interpreted
relative to a directory, there is a suitable bhasis for
establishing the context of a name. A tree-structured
naming system is implicit in the scheme, because
directories are themselves objects accessed by capa-
bilities. It is now easy to see how a program in & domain
D accesses the objects belonging to owner U. When D
is created, it is supplied with a capability for U’s
directory, which it simply exercises.

There is more controversy over the proper methods
of accessing objects belonging to other users. A popular
approach is to use passwords: a public read-only
directory is filled with capabilities for all other directo-
ries which allow the objects in them to be accessed
provided a correct password (usually different for each
object) is supplied as part of the opening operation.
This method is not satisfactory. First, it is inconvenient,
since it requires the person accessing the file to re-
member the password. Second, it is insecure. If he
writes the password down, or includes it in a program,
the possibility increases that it will become known. It
is bad enough to have to use a password to obtain
entry to the system, but at least only one password is
involved, it is used only once per session, and it can
be changed, if need be after each session, without too
much fuss. None of these things is true of passwords
attached to files: there are many of them, many people
need to know them, and one must be used each time
a file is opened. This scheme has no advantage except
economy of implementation.

A method based entirely on capabilities suffers only
one of these drawbacks: it is inconvenient, but secure.
It is also, however, quite complex. The idea is that if
a file (or anything else) is to be shared, a capability
for it should be passed from its owner to those who
wish to share it. The problem is that a capability,
being a protected object, must be passed through pro-
tected channels; it cannot be sent in a letter, even a
registered letter. The solution is illustrated in Figure
7. Every user has (at least) two directories, a private
one which he works with, and a transfer directory. The
public directory PUB, for which every user has a read
capability, contains write capabilities for all the trans-
fer directories. The object is to move the capability
for X from PDA to PDB. Proceed as follows:

Dynamic Protection Structures 37

Name Access value ; B Name Access Value

TDA:

PUB:
A w TDA

User A's transfer directory

PDA: R PUB

RW TDA
Public directory, con- w
taining a write-only 08J
capability for the W TDB |*

transfer directory
of each user.

User A's private directory

TDB: T 5 R
* = temporary capa-
bility for W oBI [*
copying User B's transfer directory

** = final copied

capability PDB: N — p;B
- = path for copying RW .
w OBJ *x

User B's private directory

Figure 7—Sharing capabilities without access keys

A moves a capability for TDB into PDA
Using it, A moves his capability for X to TDB
B moves the capability for X from TDB to PDB

Since only B can access TDB, security is preserved. A
malicious user can confuse things by writing random
capabilities into the TDs, but it is easy for B to check
that he has gotten the right thing. Furthermore, if X
is a directory, future communication can be carried
out quite conveniently, since A and B can then com-
municate through X without any worries about out-
side interference.

A much better method is based on the simple idea
of attaching to a directory entry a list of the users
who are allowed to access it; with each user we can
also specify options, so that Rosenkrantz may be
granted write access to the file while Guildenstern can
only read it. This scheme, which was first used in
CTSS,! has two drawbacks. The first is that if the list
of users who are authorized to access a file is long, it
takes a lot of space to store it ; this problem is especially
annoying if there are several files to be accessed by the
same group of users. The second drawback is that there
is no provision for giving different kinds of access to
different domains of a computation. Both difficulties
can be overcome in a rather straightforward manner.

Before we pursue this point, it is important to notice
why the difficulty encountered above in the capability-
passing scheme does not arise here. We can think of
the computation of a logged-in user as possessing a
special kind of capability which identifies it as be-
longing to him. If SMITH is the user, we will refer to
this capability as SMITH?*, meaning that the string

[sMrTar | . RW

Capabilities for ,
SMITH's computa- /

tion before opening /.
the file. S
/
’
’, ‘
A R
LPHA| R 4 JONES' directory
SMTTH*

Capabilities for
SMITH's computa-
tion after opening
the file.

Figure 8——Use of access keys

‘SMITH’ has been enclosed in a tamper-proof box.
When JONES wishes to give SMITH access to his
file ALPHA, he puts the name SMITH on the access
list; JONES can do this since he has a capability for
ALPHA. When a computation presents the capability
SMITH*, the system observes that the string (or user
number) which is the c(ontents of the capability matches
the string on the access list and grants the access.
At no time is it necessary for JONES to have SMITH*
in his poésession. He needs only the name SMITH
whieh, since it is not a protected object, can be com-
municated to him by shouting across the room. Figure
8 illustrates.

To generalize the method we need two ideas. One
is that of an access key. This is an object (i.e., it can
be referenced only by using a capability) which con-
sists simply of a bit string of modest length, long
enough that the number of different access keys is
larger than the number of microseconds the system
will be in existence. Any user may ask the system for a
new access key; the system will create one never seen
before and return a capability for it. The object SMI TH*

38 Fall Joint Computer Conference, 1969

mentioned in the last paragraph is an example of an
access key; one is kept for each user in the system.
Since an access key is an object, capabilities for it
appear in the directories and are protected exactly as
is done for any other object (since the access key is a
small object, it may be convenient for the imple-
mentation not to give it any existence independently
of the capabilities for it, i.e., to make the value of the
capability the object itself, rather than a pointer to
it as in the case of files). To give a group of users access
to some files, all we have to do.is distribute a new
access key GROUP* to the users and put GROUP
on the access list for each file. The distribution is
accomplished by creating GROUP* and putting all
the users on its access list; once ‘they have copied it
into their directories they can be removed from the
access list, so that no space need be wasted. In practice,
as we have pointed out, numbers of perhaps 64 bits
would be used instead of strings like ‘GROUP’.

The second idea is not new at all. It consists of the
observation that since an access key is just an object,
different domains can have different access keys and
hence different kinds of access to the file system. Thus,
for example, a user’s computation may be started with
two domains, one for his program with his name as
access key, and the other for system accounting with
an access key which allows it to write into the billing
files. With a single suitable access key, a domain ean
easily get hold of an arbitrarily large collection of
other objects which are protected by other keys, since

the first key can be used to obtain other keys from the
directory system.

SUMMARY

We have described a very general scheme for dis-
tributing access to objects among the various parts of
a computation in an extremely specific and flexible
way. The scheme allows two domains to work together
with any degree of intimacy, from complete trust to
bitter mutual suspicion. It also allows a domain to
exercise firm control over everything created by it or
its subsidiaries. '

REFERENCES

1 P A CRISMAN editor
The compatible time-sharing system: A programmer’s guide
MIT Press 2nd ed Cambridge Mass 1965

2 J P DENNIS
Segmentation and the design of multi-programmed computer
systems
J ACM Vol 12 Oct 1965 589

3 J B DENNIS E C Van HORN
Programming semantics jor multiprogrammed computation
CACM Vol 8 No 3 March 1966 143

4 R M GRAHAM
Protection in an information processing wtility
CACM Vol 11 No 5 May 1968 368

5 B W LAMPSON
A scheduling philosophy for mulli-processing systems
CACM Vol 11 No 5 May 1968 347

6 B W LAMPSON et al
A user machine in a time-sharing system
Proc IEEE Vol 54 No 12 Dec 1966

	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038

