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of users with remote access to centralized, general-purpose computing and file
storage facilities. The system was intended to be used both in batch mode
and interactively. Considerable emphasis was given to providing rapid
response for la;‘ge mumbers of relatively small processes. Among same of the
foreseen primary uses of the system were such applications as reservations
systems, banking systems and various data éntry.and ‘infomation retrieval sys-
tems. In order to provide this class of service economically the hardware
configuration chosen for the system consists of a number of processors con-
nected to a central ;nennry. The processors are not of uniform design, being
dedicated rather to ‘specific purposes for reasons of efficiency, integrity,
and system security. )

The BCC $00 0pe;-ating system is distributed over several of these

processors which are otherwise independent and which commnicate with one
arother by means of the central memory. These processors are assigned the
tasks of process scheduling, memory management, character input/output for
terminal and network access devices, system supervision and monitoring,

and running of user programs. The task of running user programs is performed
by two general purpose processors called CPUs. Since most of the operating
system tasks are performed by other processors, the CPUs are free to service
user programs. A portion of the operating system, called the monitor, runs

on the CPU to provide users with protected access to operating system services.
The monitor is common to all users of the system. It may not be looked at or
modified by user programs; it may be accessed only by a set of monitor calls.

Each monitor call checks the user's authorization to make the call, validates
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the parameters passed, and then proceeds to invoke the desired service.
Another portion of the operating system that runs on the CPU, called the
utility, contains a mmber of useful and frequently used functions which

each user program would otherwise have to include. It thus provides an
interface betw_een the monitor and the user program an:i extends the basic
services of thé monitor. The system was designed so that individual user
Programs can be supplied with alternative utilities that extenrd or individual-
ize their interface to the operating system. ° .

Irf this paper we are concerned with describing the CPU. Many features
of the CPU architecture®were influenced by the ideas and structures found in
the Burrough's B-5000% series of computers and in the MILTICS?»3 system. The
CPU was designed to implement in firmaret? and/or hardware most of the high
level constructs of an interactive systems programming language (SPL) and to
provide each user with a virtual mchine.5'6’7 '

SPL provides systems'and applications designers with a high level develop-
ment and implementation tool that is capable of .providing users with an effect-
ive enviromment. The CPU design efficiently supports this environment by
implementing the following features:

* A function call and return mechanism;

+ Field Descriptors that permit full-word and part-word items in tables

to be accessed efficiently;

* String Descriptors and string handling operations to speed up compiling

and non-numeric processing;

+ Array Descriptors that support complex ax:iay structures and permit

multi-dimensional arrays to be accessed withoyt any program multiplica-

tions;




* An addressing structure that provides for easy code relocation and

supports the basic data structures of SPL;

* A simple instruction set that provides for easy mapping from SPL

operations to machine instructions;

* A wide \_rariety of floating point features;

* A virtual machine for both user and sy;stan functions.

SPL encourages programs to be organized into a collection of small
routines called functions. It is expected that systems designers will
structure their programs in a modular fashion-and that arguments and results
will be explicitly commmicated by means of the function call- and return
mechanism. 1In this way side effects are minimized and program debugéing is
enhanced. Each function has a local storage area (called the local environ-
ment) that is separated from the code and is usually allocated on a stack.
Functions are normally recursive, but it is possible to allocate storage for
a function in a fixed location to provide a FORTRAN 1ike capability.

An important feature in SPL that is directly implemented on the CPU
is the use of descriptors to access various data structurds. This feature
of the CPU was greatly influenced by the Burroughs B5000! series of computers.
Basically descriptors in the BCC 500 provide the programmer with the ability
to easily access various data structures. Information in the descriptor
allows the CPU to check and ensure that the access is correctly specified.
Three types of descriptors are implemented on the CPU to allow efficient
access to fields, strings, and arrays. These descriptors along with the
address features and the instructions that supp-drt their use are discussed in

Sections 3, 4 and S, respectively.
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The address features of the CPU, beyond the modes that are used with
the various descriptors, are designed to support the basic data structures found
in SPL and to provide for easy code relocation. The CPU provides a simple
instruction set to facilitate easy translation from SPL operations to
machine cperations. It also provides an environment for programs called a

5,6,8

virtual or user machine. A single copy of this user machine on which

programs are executed is called a user proces.s.s’6'8 Each user process contains
a virtual address space of 256K words; ‘ ) )

There are a small mmber of register that are an integral part of the
various CPU functions. It is useful to list and describe them here since we
will be referring to them throughout the remainder of the paper. The informa-
tion in most of these registers must be saved when a process is blocked and
the CPU is assigned to a new process. Figure 1.1 contains a list of these
registers. .

The central registers AR, BR, CR, DR are used by various aritimetic and
iogic operations and for loading and storing single and double precision data.
The E-register (ER) is used in floating point operations to contain the
exponent. The local (L) and global (G) enviromment registers are base registers
that point to storage for the presently active function and to a comron
storage area, x:espectively. At the start of each instruction cycle, the
indexing register (IR) and the source register (R) are set to the contents of
the index register (XR) and the program counter (P), respectively. Both

registers may take on other values as instruction execution proceeds.




* Central Registers

A - register (AR)
_ B - register " (BR)
C - register (CR)
D - register (OR)
E - register . © o (R)-

* Registers Used in Addressing

Indéx register OR)
local environment register 18]

Global enviromment register @)

Proéram Counter ®
Sougce register . (R)*
Indexing register (IR)*

* Other Special Registers

Status Register (SR)
Computer Time Clock ) (CTC)
Interval Timer (1T

Fig. 1.1 Machine Registers

*not part of state

)

2. Punction Call and Return Mechanism

Since SPL programs will be very modular and will consist of a large
mumber of small functions, the function call and return mechenism is quite
important. This mechanism is implemented in hardware hy an instruction
called BLL (Branch and Load the Local-environment register) that addresses a
two word branch descriptor (or function descriptor). The branch descriptor
contains all the information necessary to giescr.ibe t:.he environment involved
and to facilitate all the checking needed to a.ccomplish function call and
return actions in a wide variety of possible situations.

SPL provides a very flexible function call mechanism. A function may
have any mumber of arguments and any mumber of results. The arguments may
be arbitrary expressions and the results may be stored into arbitrary
variables. The first result value is the value of the function. Thus a
function call of the form:

T'INV « INVERSE (MATM(TRANS(T),T):,T'DET);

causes the matrix inverse of T transpose times T to be stored in T'INV, which

is the value of the inverse function, and the determinant to be stored in T'DET.

- A function may have no arguments and/or return mo results. The number and

type of arguments and results are checked by the hardware at run time. The
SPL function call and return mechanism also allows for a 'failure' return
from a function. The failure return can return results of its own and may
return control to the caller's failure return label. Thus a function call of
the form C

T'INV « INVERSE(MATM(T (TRANS),T) :,T'DET//T'SINGULAR:T'LOWER'TRI} ;




2) Acquire the new local enviromment and obtain storage if the function
causes the partial results of the inverse function to be stored in allocates space for its local enviromment on the stack;
T'LOWER'TRI if the matrix formed by multiplying the transpose of T by T . 3) Copy arguments;
singular and control to be returned to the statement labeled T'SINGULAR. 4) Compute a return descriptor and save it in the first two words of the
Besides these c-:rd‘mary function calls, SPL provides for operating system new loc-al environment;
calls and intrinsic function calls. . 5) Transfer Control;
The BLL instruction address a twp word branch descriptor which contains 6) Obtain the old local enviromment from the return descriptor;
the following information: . 7) Copy results;
+ Address of the called routine's entry point; . 8) Return Control;
« Whether the branch descriptor is a function descriptor or a return We now describe these attions in detail.
descriptor; ) When the BLL instruction is executed, the first step is to compute the
* Whether the storage for the function (called its local enviromment) address of the entry point for the called routine. Next, the new local
mist be allocated from a stack; enviromment is acquired. If the called function has a fixed local envircrment
+» Whether argzménts or results are to be copied; then the enviromment field of the branch descriptor is taken as the new value
« Whether the function is a FORTRAN-type function; of the local environment register L, which we call NIWL. Space for a fixed
* A field called the environment field, used to determine the new local function's local enviromment is allocated at all times and its contents is
environment register value in a manner to be described. preserved between function calls. Normally, space for a function's local
All the features of the SPL call mechanism and most of the subroutine environment is allocated from the stack. Two words in the gleobal enviromment
call features of FORTRAN are implemented in hardware by the BLL instruction describe the stack. The stack pointer (SP) addresses the first unused word
which, in conjunction with the branch descriptor, provides for all of the and the stack limit (SL) addresses the last word allocated for the stack. In
following actigns: this case the environment field in the function descriptor indicates the size
1) Obtain the effective address of the entry point in the called routine; ' ' rather than the address of the new local environment. NEWL is set to the value
IR of the stack pointer and the stack pointer .is iricremented by the environment
field. (See Fig. 2.1). )




unused stack

unused stack
space

for new
environment

OLDL

OLDP

start of stack

BEFORE

for previous
environments

start of stack

AFTER

Fig. 2.1 Allecating a Local Enviromment on the
Stack During a Call

Arguments are copied next if there are any. The calling function
supplies a list of parameter addresses called actual argument words (AAW)
and the called routine contains a corresponding list of formal argument
words (FAW). An actual argument word contains the following information:

Structure-of the argument:

variable
computed scalar

array element

array
Type: : '
integer (1 word)
long (2 words)
real (2 words)
double (4 words)
complex (4 words)

) . longlong (4 words)
string (4 words)
label (4 words)
pointer (1 word)
unknown

End Flag

Address of argument
The formal argument word contains similar information for the type, end
flag and the address of the formal argument, élthough the structure

specified is only scalar or array. The FAW indicates whether the address

- of the argument is copied or the value is copied. Arguments are copicd one

T




at a time. An error occurs if the AAW type is not the same as the FAW type !
unless one and only one of them is of type unknown. The structure of the

actual argument is checked with the structure of the formal argument accord-

ing to the following table:

Variable

Camputed scalar
AAN's
Array element

Array

Copying continues until an end flag occurs.

FAW's
Scalar Array
[0} 6 Exrror
T oK Error if not a
FORTRAN type fn
0K Error
Error if not a OK

FORTRAN type fn

If both end flags (AAW and FAW)

do not appear at the same argument level then the wrong number of arugments

have been supplied and an error occurs. The BLL does not provide for type

conversion. L

A return descriptor is computed and stored at NEWL and control is passed

to the called routine. The return descriptor contains the old program counter

and old L in the enviromment field.

On a return, if the function had its local environment on the stack, the

stack is umwound by setting the stack pointer to L and NEWL to the contents

of the environment field in the return descriptor.

If the return is from a

function with a fixed enviromment then OLDL was saved in the environment

field of the return descriptor and is used to reset L. Failure returns are

accomplished by addressing a return descriptor that may cause a return to a

non-local label and may cause several stacked envirorments to be removed from

the stack. Results are copied in the same manner and with the same checks

that are provided for the call. Control is returned to the calling routine

or to the latest incarnation of the routine containing the failure return

label if a fail return occurs.

.




3. Full-Word and Part-Word Field Accessing

SPL derives a considerable amount of its flexibility and versatility
from the use of fields (the notation was adopted from Bell Labs' L6 language)
that provide for the selection of words or partial words from a block of

packed data. For example, assume we wanted to create the following data
structure:

ju]

Age | Department | Sex hggjt:\ﬁl No. Dependents

Chain pointer to next node > -

where the node contains an employee's ID (social security mumber), age,
department, sex, marital status, mmber of dependents and a pointer to the
next employee on the list. We can define this structure in SPL by the
following declarations:
‘ DECLARE FIELD‘Ii)[ﬁ);
DECLARE FIELD AGE(1:8,3),
) . DEPT(1:4,12),
SEX(1:13,13),
MAR'STAT(1:14,14),
MRM'DEP(1:15,23);
DECLARE FIELD CHAIN(2);
where the fields in words zero and two of the mde.are referred to as full

word fields and the various fields in worci one are called part-word fields.

If we obtain a pointer P to a node of this type, in SPL we can increment the age

field by coding

P.AGE + P.AGE+1;
a field can be used anywhere in place of a

ion b
Component selection by ot

i b
simple datum. We can extract the department number 51.mp1y 4

DEPT'ND + P.DEPT;

and can insert a new department number by coding

PPDEPT « NEW'DEPT 'NO;

“justifies the’ t field in the
vhere the extraction operation right justifies the departmen

i t mumber in the
result and the insertion operation puts the new departmen’

A field may be a signed quantity and if.so i‘ts sign is

proi;er bit locations.

extendedA on extraction. ' -

i -di ment and
The ficld facilities of SPL are supported by the pointer displacemen

base-index modes of addressing and a hardware implemented fiel
osed of a single field indiréct address word

d descriptor.

A field descriptor is comp
which contains the following information:
« Size of the £ield in bits
+ Address of first bit of the.field
+ Sign extension flag
+ Signed displacement field

1f we assume we have the following structure:

FIRST —»

%m% DEWW .

CHAIN &~ GIAIN o=

jas]
Y,
1

i ode
where the nodes are as we have previously dcfmgd them, then the SPL ¢
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to find a node that contains a particular department given that FIRST is a
pointer to the starting node is as follows:
GOTO FOUND IF PTR.DEPT=DEPT'NO FOR PTR«FIRST,PTR.CHAIN WHILE PTR#-1;

The machine code generated is as follows:

.

NPVUUIDPUSIIS R

2

Two instructions in this sequence directly reference fields in the nodes.
The "LDA PTR.2" instruction extracts the full-word field "CHAIN' from the
presently accessed node and loads it into the A-register. The "LDA DEPT [PTR]"

jnstruction extracts the part-word field 'DEPT' from the presently accessed

LDA FIRST Load A register with first pointer node and loads it right justified in the A-register. The first instruction
BRU R'[2] Branch source relative plus 2 is acconplished using the pointer-displacement mode of addressing (sec Fig.
LDA PIR.2 (Pointer Displacement) 3.1)
STA PIR
ICp -1 ‘ Campare A register wi'th -1
BEQ R'[5] Branch if equal to source relative plus 5 One of the first 128 words
LDA DEPT{PTR] ° (Base Index) of the local enviromment
PIR
ICP DEPT'ND -
BEQ FOUND
.
ERU R'[-10B) } DEPT t
This code simpl.y,loa.ds the A-register with the pointer to the first node Displ Pointer CHAIN
on entry or loads the A register with the pointer from the chain field of a fPDILDAn *,2 gp
node on subsequent traverses of the loop. The contents of the A-register are
stored in a variable called PIR and is compared with -1 to see if the end of
the list has been reached. 1If the A-register is equal to -1 then the machine
branches out of the loop by transferring control five instructions beyond the
A Register

present instruction. If the A-register is not equal to -1 the department
field of the node presently pointed to by PIR is loaded into the A-register
and is compared with the department mmber we $eek. If it is equal to this
department number then the routine branches to the instructio‘n labeled FOUND,

otherwise the routine loops and continues searching the-list.

Fig. 3.1 PD Addressing for LDA PIR.2
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‘the second instruction is accamplished using the base-index mode of addressing
in conjunction with the field descriptor for "DEPT" (;ee Fig. 3.2),

one of the first 32 words
of the local environment

PIR

Index{ Base

ax| toa | [Prr $fozer 9] - .

. I PIR
Indexing Register

. DEPT
ield Descriptor for DEPT CHAIN

F
Bits 4-12 | +1 e }

I

A-Register

ﬂl DEPT

Fig. 3.2 BX Addressing in Conjunction with the Field Descriptor for DEPT

Insertion of new department mmber into a node would be accomplished by storing
the contents of the A-register (“'STA DEPT[PIR]').

4, String Processing Features

In SPL a string is described by a four word string descriptor of the
following form;

Begin Pointer (BP) - pqints to character before first character in string

Read Pointer (RP) - points to last character read

Write Po::mter (WP) - points to last character written

End Pointer (EP) - points to last character position in the string
Each pointer is a string indirect address word and contains the following
information:

String type IAW :

Character size: 6, 8, 12 or 24 bit characters .

Character position in word

Word address
A typical example of a “new' string and a string after some "reads” and
"arites" is given in Fig. 4.1 which shows where the various pointers in the

- string descriptor point.

A, "New" String

First( Last C
ition [Pesition
- t
RP . P
g

B. After a few Reads and Writes

First Last C “ Jlast C Last C
Char Read ) pritten . Josition
RP WP EP

Fig. 4.1 String Descriptors and Where They Point




SPL Operations CPU Instructions

Create string descriptor Load Stx:ing Constant (Lsc)
Read and Write characters Increment String Descriptor (ISD)
Decrement String Descriptor (DSD)
. Add to String Pointer (ASP)
Computer length of string Computer Length of String (CLS)

Copy or Move string Move String (MVS')

Compare Strings Compare String (crs)

*

The increment and decrement descriptor (ISD and DSD) instructions and
the add string point (ASP) instruction work with pairs of string indirect words
in the string descrfptor. Thus during a read operation the read pointer can
be checked in conjunction with the write pointer to make sure that any attempt
to read beyond the write pointer is trapped. Thi§ provides all the checking
necessary. The ISD and DSD instructions facilitate character reading and
writing while the ASP,instruction facilitates accessing the Nth character
in a string. The LSC instruction generates string descyriptors. The actual
characters in the string are read and written by loading indirectly through
the read pointer string IAW and stored indirectly through the write pointer
string IAW.

The string descriptors and the various string operations provided the

basis for efficient, flexible and versatile string processing.

{

5, Array Referencing
Arrays in SPL may be of any dimensionality from 1 to 7. Marginal

indexing" is used to access arrays that are stored in row major order. For
example if we declare a real array A as follows:

DECLARE REAL, ARRAY A[3,4,5]

Then the value of A is an array descriptoi' for an array with three entries.
Each entry of this array is an array descriptor for an array with four entries.
Each entry of this array is a row descriptor for a row with five entries,
each of which is a real mmber. Figure 5.1 illustrates this array which has
120 words of contiguous storage allocated for the real mumbers.

The CPU supports the SPL array structure and array referencing by directly

jmplementing and providing low level operations on array descriptors. An

' array descriptor is two words long and is composed of an array indirect address

word and a pointer to the first word of the array to be referenced, An array
indirect address word contains the foilowing information:

+ Lower bound zero or one

« A trap bit to facilitate subscript checking

« Multiplier to allow for array elements up to 64 words

+ Upper bound




:\ll,lj

. al1,2]
A af1]
1 -] 2 w5 /
/ —~ |5
4 N\ 5
5 .
al1,3]
. af1,4]
. af2]
| 5 R
5 .
5 A[3,1]
5 (—-b
' Al3,2]
A[3] A[BIB]
! 5 v
5 /
5
5
- Al3,4]
A box: ol ] :
represents a descriptor for an
array of size n.
A simple box: C——/—] A[3,4,5

represents a real mumber.

Fig. 5.1 Marginally Indexed Array Structure

This information allows the following functions to be accomplished for array
referencing:
* Allows a zero or one lower bound *
* Perform bounds check on the subscript
. Multiply. the subscript by the size of the array element, allowing for
element sizes up to 64 °
* Check to see that the mmber of subécrip.ts su-pplied is the number
expected ’
* Provide an 18-bit base address for the array

Array referencing is accomplished by the array descriptor being referenced by
either the base-index or base-index-displacement mode of addressing. This is
similar to the method used for accessing part-word fields only in this case
we can reference elements that are full words or larger. If we consider the

following 3 by 3 integer array:

AL ALZ) A[1,3]
A= |A[2,1] A[2,2] A[2,3)
Al3,1] A[3,2] A[3,3]

Fig. 5.2 Array A
We would set up this structure in SPL by the following declarations:
DECLARE INTEGER ARRAYONE A[3,3];

This array is stored contiguously in row major order and is addressed by

marginal indexing as follows:




A —»| LB=1,TRAP ,MUL =2,UB=_3>_‘r_EI_3‘=1,I\fULT=1,UBif_{\[l,l_]_
Row Descriptors € Row 1 -« AII,Z_}_

LB=1 MULT=1,UB=3 Af1,3]
Array Descriptor . Row 2 h - _15[2 ,1_]__
| LB=1,MJLT=1,UB=3| | AI2,2)

- Row 3 "N Al2,3]
: }_{\[3,11_

Row Descriptors | J\[S,ZL

A[3,3)

Fig. 5.3 Marginal Indexing

Where A points to an array descriptor, which in turn points to an array of
row descriptors, each of which points to the first element of a row of array
A. Assume that row-index K and column index L are located within tﬁe

first 32 words of the local environment. Also, assume that K=3 and L=3,
then the code generated for B«A[K,L] is as follows:

.

LAX A[K] (BX addressing)

LIRS

leaves the address of the descriptor for the Kth row in the X-register

LB=1,TRAP ,MULT=2,UB=3

Row Descriptors @ _I:_lfl ,}\MLT=1,UB_=_§
Row 1

LAX A[K] | LB=1,MULT=1,UB=3]
Address Row 2

X-reg 4—-—?—-——0 | LB=1,MJLT=1,UB=3)
(IR-LB) * MULT + IR Row 3

(3-1)% 2 =4

Fig. 5.4 Diagram of LAX A[K] Execution_

follqwed by;

.

LDA ($X") [L] (BXD addressing)

STA B .

LB=1,MJLT=1,UB=3 Al1,1]
— - FALL, 2]]
Rw3  ® [A[1,3]]
All,l
02,2
- 3 2,3-4

X-reg o S IER
A3, 2]]

A3, 3]

~~
¥,
3

—t

~

A-reg

(IR-LB) * MULT ~ IR

(3-1) *1 =3 [

Location B

Fig. 5.5 Extracting A[3,3] and Storing it in B

The LAX (Load Array Index) instruction treats the trap bit in the array
descriptor as if it were complemented in order to facilitate checking the
number of subscripts as the array referencing proceeds from one level of
indices to another. Bounds checking occurs at each and every indirection
through a descriptor.
Thus, the CPU facilitates efficient and effec;ive array referencing by

the use of array descriptors combined with the base-index and base-index-
displaccment modes of addressing and a special instruction that loads an

array index.




6. Addressing

The addressing modes implemented on the EIPU are designed to support the
SPL addressing requirements. In the case of descriptor we have seen two
addressing modes pointer-displacement and base-index--that are designed to
work in conjunction with descriptors to access field and array structures.
In the discussion to follow, the various addressing modes will be considered
and described in conjunction with the requirements of SPL and the virtual
address space. Some of the more impoz"tant.fact.ors t.o be considered are as
follows:

» Programs will normally be organized into a collection of relatively
small, self contained routines called functions. Each functic;n has
some private or local storage area of its own called its local environ-
ment. Normally a function references objects that are either in the
local envirorment or are passed as pérameters. Functions can access
objects that are contained in a global enviromment that can be shared ~
by several functi;ns;

« Code nust be easily relocatable;

» The dat.a manipulation operations of SPL must be directly supported;

» To save register loading and allocation it is desirable to be able to
use core locations as index and pointer values;

« It is necessary to be able to conveniently address a 256K (18-bit)
address space, even though an instruction has only up to a 14-bit
address field. .

In order to be able to address storage in t}.xe various environments

relative to the instruction or base address and to allow for easy code

. relocation, three relative addressing modes called G-relative, L-relative and

Source-relative are provided. The effective address in the G-relative

mode is given by a 14-bit address field in the instruction plus the contents

of the global enviromment register. This permits the direct addressing of

any location in the 16K global storage area (see Fig. 6.1).

WORD £ A

1
lElobal Environment -t

fo-refopcone| 14-bit address field *-J—*é—’ I

16 X

377778 |

Fig. 6.1 G-Rel Addressing
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The effective address in the L-relative mode is given by an 11-bit address
field in the instruction plus the contents of the local enviromnment register.
This allows any location in the 2K local storage area to be addressed directly

(see Fig. 6.2). .

[ Local Environment -“}

|4

WORD [

J.-Jorcoor | re1 |11-bit address fie1d +>(‘-é—>//////////////////////4’

3777B Y

Fig. 6.2 L-Rel Addressing

Wt i A A T ER
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The effective address in the Source-relative mode is given by the source
register and the 12-bit signed address field in-the instruction. This

permits locations up to 2K on either side of an instruction to be addressed

(see Fig. 6.3).

.7 r -2048
=
_l!_ -1
Source |OPCODE [Re1{12-bit signed address field
N I

| / +2047

Fig. 6.3 Source-Rel Addressing




As we have seen with the field gddressin'g example, it is very desirable
to be able to access various objects in structures such as lists, trees, and
tables and other types of data structures that are very common in systems
code and in compiling. In general, access to objects or locations in thesg
structures involves obtaining a pointer to a single node or the start of the
table along with a displacement to the actual object or location desired.’
This facility is provided by the pointer-displacement addressing mode (see

Fig. 6.4).

B 2 3 8 9 14 1516 23
)21} OPCODE *  DpISPL L POINTER
1 [ ] L] ] i
16 23
Pointer = IR )

16 17 23
= Contents (G + X) # X

16 17 23
= Contents (L + X) 1 X

Fig. 6.4 Pointer-Displacement Structure

In this mode the address field is divided into an 8-bit pointer address and
a 6-bit signed displacement field. The high orc'ier bit of the pointer address
field specifies the enviromment (1=local, O=global) and the remaining 7-bits
address a pointer in one of the first 128 words of the selected environment.
If the pointer. address field is zero the mdexmg register is used as the
pointer. The effective address is simply the sum of the pointer and the
displacement (see Fig. 6.5). .

First 128 Words of the
Global or Local Enviromment

Table

Pointer s

‘-—-—_———"‘—"“———_-~

I

Displ Pointer
polorcone [ | 6 o |
{

Fig. 6.5 Pointer-Displacement Addressing




Each of these addressing modes has an indirect counterpart which causes
jndirection through the word they address. In this case the word they address
is called an indirect address word (IAW) which causes a new stage of address-
ing by providing its own addressing informatien. An IAW can provide an 18-bit
address and can access any location in the virtual memory. An IAW specif ies
address modes in a mamnner similar to instruction, with three exceptions:

1) 1f the address mode is G-relative, indirect or indexed, an 18-bit
absolute address is supplied and the contents of the G-register is
not added;

2) If the addressing mode is L-relative, source-relative, L-relative
indirect or source-relative indirect the offsets are 3-bits longer
and indexing is possible;

3) If the addressing mode is pointer-displacement or pointer-displace-
ment indirect, the mode is taken to be read-only G-relative and
read only X-relative, respectively. These behave exactly like
G-relative or indexed modes except that any attempt to store will
cause an error and will be trapped.

This type of JAW is called normal indirection. We have already seen the
three other types of indirect address words (field; string and array) in the
descriptor sections.

To enable direct access to the entire address space an indexed address-
ing mode is provided. The effective address is"formed by adding the contents
of the X-register to the 14-bit address field in the instmcti‘on to generate

an 18-bit address. Also, an instruction can contain an immediate operand

4 field. -

As we have seen, it is necessary to be able to address the various data
descriptors (field, string and array) and to provide t}_xem with run-time index-
ing information. Two similar addressing modes called base-index (see Fig. 6.6)
and base-index-;iisplacement (see Fig. 6.7) are provided to éccomplish this

task.
g 2 3 8 9 1¢ 15 16 - 23
| = | S [ Base ]
Index=IR p = @ | Base=IR W 9J
=Contents (G+X) |2 | X | =Contents (60 [#] X |
=Contents (L+X) ﬁ] X |  =Contents (LX) rﬂ . X J

® Base is calculated first
@ Index is put into indexing register (IR)
® IA (Base) .

Fig. 6.6 Base-Index Structure
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23 8 9 18 15 16 23
| | piseL ¥ INDEX I

Index = § "T

= Contents (G+X) ﬁ‘ X J

= Contents LX)

‘ ® Base + IR
@ IR « Index + Displacement

® JA (Base)

.

Fig. 6.7 Base-Index-Displacement Structure

The base-index mode provides an address field that is divided into an
8-bit base field and a 6-bit index. The high order bit of each field

specifies the enviromment (1=local, 0=global). The remaining 7-bits in the

base field address a location in the first 128 words of the selected environ-

ment that in turn points to a descriptor. The remaining 5-bits in the index
field address a location in the first 32 words of the selected environment
that is used to initialize the indexing register. If the index field is
zero, then the X-register is used to initialize_‘the’ indexing register. With
all these actions taken, indirection through the descriptor is caused (see

Fig. 6.8). The base-index-displacement is similar except that the base is

First 32 Words of the

Global or Local Envirornment

Index

Indexing Register

BX g Index\

—

Field or Array IAW

@——-— Object

Fig. 6.8 Base-Index Addressing Example




A sumary of all the addressing modes appears in Appendix 1.
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7. Instructions -

The BCC 500 instruction set was designed to provide for easy translation
of SPL operations into machine instructions. Of course SPL supports a wide
variety of data types so the machine instructions gene'rated depend on both
the operation to be performed and the type of data being accessed. Nonetheless
it is reasomable to illustrate at least a partial mapping of SPL operations

to machine instructions as follows: - : - -

SPL operation class Machine instruction class

" Assignment . Data Transfer
Arithmetic Arithmetic
Logical Logical
Predicate Test, Branch and Shift
Data Manipulation (Handled by descriptors and addressing modes)
Control Test and Branch

The detailed lists of SPL operations and CPU machine instructions are con-
tained in Appendix II and III, respectively.

An instruction is formatted as follows:

0 2 3 8 10 23

TAG OPCODE Address Field

- X =0 -3 §'-}

The TAG field defines the addressing mode of the instruction. The OPCODE
field specifies the machine instruction. There are 61 opcodes that are defined.
One opcode, called an operate (OPR) instruction provides for various register

operations, special purpose operations, privileged operations and system calls.
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8. Floating Point Features

The CPU provides for single precision (48-bit) and double precision
(96-bit) floating point numbers, hardware (firmware) i._rnplemented operations,
program controllable traps, a soft underflow option and five program select-
able rounding n;odes. A single precision number is composed of an 11-bit
390) and a 36-bit fraction
(11 decimal digits). Double precision mmbers have an 84-bit fraction
(25 decimal digits). A special undefined floating point mmber is provided
for ;11 real variablegs that have not been defined. This is provided to
assist the programmer in debugging. The following instructions are provided
by the hardware (firmware):

FLD ~ Floating Load

STF

FAD - Floating Add

Floating Store

FSB - Floating Subtract

FMP - Floating Multiply

FDV - Floating Divide

FLC - Floating Compare

FLX - Convert floating point to fixed and load X

FNA - Floating Negate

FIX - Convert floating point to fixed and load A

FLOAT - Convert to floating point N

All floating operations have single (SP) and 'dox;ble (op) preciéion variants,
bit TDFLAG in the status register selects the mode to be used. The users




program can select to handle overflow, underflow and division by zero traps.
The program can specify soft underflow vhich allows mumbers to draft toward
zero rather than causing an underflow trap. Finally, there is a 3-bit
field in the status register that allows the program to select one of the
following rounding modes.

Nearest mumber

Floor (toward 0)

Ceiling (away from 0)

Away from =

Toward =

N

i

9. Physical Charactcristics and Environment

The CPU is a 24-bit, word oriented, twos complement processor whose only
task is to opcrate on user processes. It is implemented on a slightly
modified version of the BCC microprocessor, a processor having a basic cycle
time of 100 nanoseconds., The basic microprocessor design provides for inter-
processor conmmication,g'n access to the central memory, an arithmetic and
logic unit and a control unit. There are 64 hardware testable branch con-

‘ditions that allow for testing the state of various busses, registers and
f1ip-flops and 64 special functions that are used by the microprocessor to
speed up the execution of certain functions. The processor contains, in
additic;n to a number of registers, a control store of 2K words of 90-bit

read only memory and a 64 word scratchpad (200 nanosecond) memory. Modifica-
tions to the basic microprocessor for the CPU include an instruction fetch
unit, which gets the next sequential instruction while the current instruction
is being decoded and executed, a hardware multiplier, a s'et of 128 physical
MAP registers, an interval timer and a compute time clock.

The CPU at any particular moment is either running a user process,
switching from one user process to gnother user process or is idle until the
scheduling processor assigns the CPU to a new user process. We can illustrate
the general actions of the CPU with respect to the user process as follows:

IDLE: wuntil the scheduling processor assigns a new process
THEN: clear the physical map registers
LOAD'STATE: vector from the context block of process
RUN'PROCESS: until it blocks or until a 'pirate ship appears on the horizon"t? ¥

SAVE'STATE: vector in the context block and go to IDLE

fPirate ships rarcly appear in the system, so for all practical purposes you
need not worry about them causing your process to stop running. Pirate ship
appearances were first reported in the character input/output processor by

Paul Heckel.




)

The state vector is composed of the following 12 elements:
Program Counter
4 Central Registers: A, B, Cand D
Floating point exponent
Index register
Local envirorment (base) register
Global envirorment (base) register
Status register '
Compute time clock
Interval timer )
The central mepory is but a portion of a hierarchical memory systeng’n
and functions withi'n an operating system that is distributed over several
other microprocessors. The memory system is designed to be composed of up to
512K words of core storage, 16 million words of drum storage and 1 billion
words of disk storage. This multi-level or hierarchical memory system is
organized into 2048. fZK) word blocks called pages or more correctly page slots.
The CPU may access information in pages only when they are in core storage.
It is the ﬁxanory managers job to put pages into core storage to be used by

the CPU and to remove them from core storage when the CPU is finished. Another

processor called the scheduling processor is responsible for assigning a CPU to a

user process. The memory management processor and the scheduling processor work

togehter to put a process into core and wake it up6 by assigning it a CPU.
Two other tasks that the distributed operating systém handles for a process
is all character input/output to a terminal and file transfers to physical

storage devices such as tapes, printers, etc. Basically then, the opcrating

Wy

2

systan which is distributed over several asynchronous processors, provides

for the services common to all users, while the CPUs service only the indivi-

dual needs of each user process.




10. Virtual Machine Enviromment

Each systems or applications programmer using SPL has access to an
enviroment provided by the system called a user machine or a virtual machine

envirorment. 5,6,7

The virtual machine is composed of a set of operations and
a virtual mef\ory structure. The set of opera'tions includes all the user opera-
tions provided by the physical CPU and all the services provided by the monitor
or utility portion of the operating s'ystem. The monitor is common to all
virtual machines and provides programs with access to the services of the
distributed operating system. There may be any mumber of ut.ilities provided
by various user groups that extend and individualize the virtual machine
enviromuent. The virt:xal memory structure for a user is defined by a

directory that connects a user to all objects in the system he can access.

An object is one of the following whatnots: t

« File

- Process '

+ Resource allocation ¢
« Access keys

» Free object
Free objects are simply present to allow the system to open-ended. Files
and processes are the basic objects that' the user performs actions on and
with, respectively. Resource allocations provide the user with the ability
to control various factors such as response tim‘e, rumber of terminal linmes,
etc., while the access keys allow for protecpiox; of various objects.
Basically then the virtual memory structure for a user consists of all the

pages in the set of objects he can access (see Fig. 10.1).

t'"Whatnots' were first discovered in the system by Jack Frecman and are self
referential in that a whatnot is a type of '“whatnot".

e emy e A e v ol AT ——

VIRTUAL MEMORY STRUCTURE FOR A USER

All pages accessible to the user: This includes files and processes.

Pages in a single process

Pages in a drum working set

Pages in core working set

Fig. 10.1 Virtual Memory Structure for a User

A process is one copy of the virtual machine. All the pages a process can
refercnce are contained in the process memory table in the context block of

the process. A process calls on the services provided by the monitor either
directly or indirectly through an individualized utility to get more pages frox'n
a file to the process memoTy or to Create new pages. Each and every page that
is created is given a 48-bit location-independént or unique r‘xame. That is no
two pages will ever have the same name and that unique name is used to

reference the page wherever it may be located in the multi-level physical




memory system. Each active process has direct access to a memory of

256K words called its virtual address space which is organized into 128 (2K i . In order to increase the efficiency of a process a user can specify
word) pages and is logically divided into a user, utility and a monitor area. 1 that frequently accessed pages in the virtual address space be assigned to core
These three areas are protected fram one another (see Fig. 10.2) and may be when the process is active. These pages are the so called "core working set”
conceptualized .as a ring structure. The user ring is considered to be the of the process. Pages that are accessed less frequently may be assigned to
A the "drum working set" of the process. )
IRTUAL ADDRESS SPACE . . The system does not practice demand paging.’
A g : - - . ...
USER
AREA
* UTILITY RING
3777778 -
MONITOR
256K 4pppppB RING
UTILITY
AREA
S7777%B- -
69PPPPB
MONITOR
AREA
v 7777778

Fig. 10.2 Virtual Address Space and Protection Rings

lowest ring and the monitor ring the highest. . Services provided by either
the monitor or the utility may only be accessed through protected entry system

calls. Any other references from a lower ring to a high ring are illegal

tBut it is not bad at it even though it doesn't practice.
and cause a memory access trap.
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11. Mapping Facilities

reference does not address a page that does not exist and that the page is

Every refer a process makes t dd in the virtual add
i erence a p makes to an address 1n the vi address in core. Once this mapping and checking process has been accomplished for

space rust be ma into a sical address in core storage. A reference R
v pped phy . ¢ a particular virtual page it is possible to simply map from virtual page

into the virtual address space consists of an 18-bit addr hich is com-
P * : ess v B mmber to physical page number.

ed of i 1 b -bi rd | , :
posed of a virtual page mmber (the top 7-bits) and a word mmber (the low This latter facility is provided by a hardware map that contains 128 reg-

order 11-bits). The CPU must map this 7-bit virtual e into ical
) ¢ p thi Lt var pag a physica .isters. The hardware map is cleared each time the CPU is assigned to a new

e mmber in a real of up to 256 .~ First th .
page mmber 1n & real core up pages irst the CPU uses the process process. When a virtual page is referenced the mapping function loads the

‘hich defi irtual add and 1
map ( efines the vi Tess space) the process memory table physical page mmber into the hardware map register which corresponds to the

(which contains the "unique names'" of every page known to the process) to virtual page mmber.

translate the virtual page number into a location-independent name. Now, The various m isns for perforning the mapping will now be described

since the CPU is only able to directly address information in core it must 3
7 7 in detail. First, we will describe the data structures and hardware registers

determine i is i . To do thi CPU ref. a syst
etermine if the page is in core © do this the reterences a systen used and then the mapping process performed by the CPU for each reference to

table tha i 1list of all i . If the desired e is i
€ t contalns a is £ all pages in core © dest page 15 In the virtual address space. It is convenient to consider the mapping process

core this table, called the core hash table, supplies an 8-bit physical page. performed by the CPU as being composed of a mapping function, a hardware map

nusber which 1053'665“"—}13 page in core. This 8-bit page mmber together with and a hardware map loader. The mapping function together with the tables that

the 11-bit word number provides the CPU with the 19-bit physical address it support it provide all the mechanism necessary to perform the mapping. The

. .
needs to reference the desired word in a core storage that can contain up to hardware map facilitates rapid access to pages once they have been mapped and

512K words. If the desired page is not in core, the process is blocked and the hardware map loader's function is to load these registers.

the CPU is assigned to a new process. The memory manager will insure that the Two tables in the context block of-the active process provide the CPU

next time the original process becomes active the desired page will be in core. with all the information it needs to translate the yirtual page mumber into

Every memory reference a process makes then requires a mapping from: ! a location-independent name. These two tables are called the process map and

virtual page number + location-independent name the process memory table, The process map defines the virtual address space

location-independent name - physical page number for the process and is composed of 128 12-bit entries (see Fig, 11.1). Each

This mapping process facilitates the checking needed to ensure that a virtual
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RO - Read Only Bit
PMIT - Process Memory Table Index

Fig, 11.1 Map Entry

entry of the process contains a read-only (RO) bit and an index to an entry
in the process memory table or is empty (i.e., its value is zero) indicating
that a particular virtual page is not being used. If the read-only bit is
set the corresponding page may not be modified. The process memory table
contains a list of.all the pages that the process can reference. Currently
this table contains 128 entries, but is expandable to 255 entries. Each
entry is 4 words long (see Fig. 11.2) and contains the following information

S UNIQUE NAME S

Disk Address
RIZ s
0 REF F
PREF - Page has been referenced flag

RO - Read only flag

SF - Page is scheduled for the process

Fig. 11,2 Process Memory Table Entry

UNIQUE NAME; The location-independent name for the page
DISK ADDRESS; The address at which the disk copy of the page is
stored '
READ-ONLY FLAG; This flag is set by the basic file system when a process
. places file pages in the process memory table
REFERENCED FLAG; The CPU's hardware map loader sets this flag whenever
it loads the associated page into its map, thus providing
an indication as to how i;requ:-ently the page is referenced
§CHEDULED FLAG: The memory management system sets this bit if a process
is authorized to access this particular page. That is,
the page is in the core working set of the process.
Information about the current contents of core storage is maintained in
a core resident table called a core hash table. The table is composed of a
set of 256 index elements and a list of entries. '
The index elements, called CHT1, are an array of 256 pointers to lists
of CHT entries. Each :mdex element is either an end marker or contains a
pointer to an entry a with the property that HASH(UN(c)) is the address of
the index element. If there are several pages in the core hash table with
the same value of HASH(UN), the index points to one entry, which points to the
next entry using a collision pointer field, and so on until all are chained
onto the list. The last entry in the list has an end flag in its collision
pointer field. The hashing function HASH is to take the exclusive or of the
6'8-bit bytes of the unique name (UN) of the page and then the exclusive or
of this result with 264B. ‘
The core hash table entries are contained in an array which has one entry

per page of real core. This array of entries is called CHT2., The format of
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an entry is given in Fig, 11,3.

P UNIQUE NAME -

Disk Address

b Core Page ;
U >< x\im\bcf SCHED

Free Core List Pointer

Collision Pointer

DB - Dirty Bit
U - Unavailable Bit

SCHED - Mumber of occurrences of this page in
working sets pee Toaded

* Fig. 11.3 Core HASH Table Entry

Each entry is six word$ long and contains the following information:
+ The unique name of the page;
+ The disk address of the page;
« A dirty bit which is set if the page in core is potentially different
from the copy on the drum. That is, a store into the page has occurred.
+ An unavailable bit that prevents CPU access to the page when it is set.

This bit is set when it is determined that a write onto the disk may
take place.

Core page rumber. This is also an.index info CHTZ.

The scheduled count which gives the mmber of occurren.ces of this
page in loaded working sets.

R W MR a2 T = S

The hardware map is cgmposed of 128 11-bit register, onc register for
each of the 128 pages in the yirtual address space. Each register contains
an aopty flag which is sct if the register has not been lqaded, a dirty
bit which is set if the page is modificd, a read-only bit and an 8-bit rcal
page number of a page in a core storage of up to 256 pz;ges.

We now desc'ribe jn detail the actions the CPU takes for cach and every
virtual memory reference. These actions and the checking they support are
outlined in Fig. 11.4 and it will be useful to refer to this figure vhile
reading this description.

¥hen a process becomes active by being assigned a CPU, 'Fhe empty flag
is set in cach of the 128 hardware registers of that CPU. Each and every
address generated by a program in the process mist be mapped to convert it

from a virtual address to a real address in core storage. This is done by

extracting the virtual page number (top 7-bits) from the 18-bit virtual address

and using it to index one of the 128 hardware map registers.

If the empty flag of the selected hardware map register is off then
the remainder of the register is re.tumed. The physical page number (8-bits}
is prefixed to the word mumber (last 11-bits) of the virtual address to make a
19-bit real address. If the read-only flag is on and the access is a store,
the store is not allowed and 'Read-only trap" is caused. If the read-only
flag is off, the dirty bit is off and the access is a store, the dirty bits
in the core hash table entry for the page and in the hardware map are set on.
The read-only flag is saved. .

If the empty flag is on, the CPU must exec(xte its mapping function and

will load the hardware map when finished. In this case the virtual page

mmber is used to index an entry in the process map. If this entry is zero,
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Fig. 11.4 Mapping Process

the page does not exist and a "page-not-in-map trap'' is caused.

If the entry is not zero, the index into the process mcmory table is

extracted. The process memory table entry specified is accessed. If the

scheduled flag is off, the referenced page is not in the core working set
and a "page-nm.:-in-core trap" is generated. The read-only flag is saved so
it may be merged with the read-only flag from the map and loaded into the

associated hardware map register. The referenced flag is set on. The

unique name is extracted from the process memory table entry. The core
hash table is searched using the HASH(UN) function. If the page is not in
the core hash table (this condition should not happen, but is checked for

anyway) then the memory manager made an error and a "page-not-in-core trap"

is caused and the process is blocked. Otherwise an 8-bit page number is

supplied by the core hash table entry and appended to the top of the 11-bit

word number to provide an address in core. The 8-bit page mumber is also

loaded into the appropriate physical map register.
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Appendix

Addressing Modes

SPL Operations

Machine Instructions
Sunmary of Abbreviations
Data Transfer

Integer Arithmetic

T;st

" Logical

Shift

Branch

Miscellaneous

OPR

Floating Point

SPL Definition of BLL
Traps




