%(f}

'3_,/’ 5
{

title

g)@@ INTERRUPT AND WAKE-UP SYSTEM

prefix/class-number.revision

IWS/W-11.1
checked / authors approval ddie [revision date
2 U flonfe. 11/6/69

cldssjficaiion
Working Document

checked ;?’;%&n/ " Rainer Schulz
DT g I 1) .

distribution pcges
Company Privatg 13

approvg\d;% ;"'gzm = W
277

ABSTRACT and CONTENTS

system functions.

This document describes the interrupt and wake-up system. It
also covers non-interruptability of sub-processes and gives

a description of the calls concerning the above mentioned

(\ p/c-n.r : page
@ (_, IWs/w-11.1 1

Interrupts and Wake-Up

Introduction

The M1 system provides three mechanisms for inter-process
communication: - '

1) shared memory pages, which must reside in files

2) CHIO lines

3) the interrupt/wakeup system (IWS) described in this

document

The intention behind the system design is that files will
be used for passing data between processes and that
interrupts will serve to start the execution of a process
or to forcibly divert its‘attention. No mechanism is
provided for passing data with an interrupt or wakeup. It
is not intended that CHIO lines should normally be used for

inter-process communication.

The IWS also allows interrupts to beAgenerated as a result of

the elapse of real time or compute time.

TN

page

-~ p/e=n.r
b@@ . IWS/W-11.1 2

Interrupt Cells

Each process has a number of interrupt cells.

These are

allocated and controlled exactly like PMT bytes. Each one

thus contains a control lock. It also contains other

information which is éhown in FIG. 1.

Each cell corresponds to a bit in the process interrupt word

(PIW). (See below.) The action field (as shown in FIG. 1)

tells what to do if the interrupt becomes effective. The

following choices are offered:
do nothing
call subprocess n

generate trap n

The source tells where the interrupt comes from. The

following choices are offered:

from setting the bit in PIW which corresponds to the cell

from arrival of real time (rt), measured in 1 ms units

from elapse of ct ms of billable time

There are 23 interrupt cells.,

The first nine bits in PIW (nine interrupt cells) have been

reserved for special interrupts which are described in the

next section. The other cells can be set by the user to

timer interrupts or merely to the occurrence of the

corresponding interrupt bit in PIW.

/,\ p/c=n.r page
L @C rws/w-11l.1 3
INTERRUPT CHANNEL TABLE (ICT)

0(112]3]4({5|6]7|8|9|10/11{12{13{14{15{16(17{18j19]20(2 1j22{23{
L : _ = — - B NN A
SOURCE | ACTION SPEC L CL
’ K
DATA 1
DATA 2
et i be index into ICT
SOURCE @P@% None
@g#1 Occurrence of Interrupt i
g1o Real Time Interrupt
@$11 Compute Time Interrupt
149 :
141 Unused
114
111
ACTION @@# No action - ignore interrupt
g#l call specified sSP
@1y Generate specified trap
#11
19¢
141 Unused
119
111
SPEC - SPT index if ACTION = ¢gg@l
TRAP number if ACTION = @1g
DATA Clock value if COND = glg or ¢1l1
BLK BLOCKING ON THIS BIT IS ALLOWED
CL CONTROL LOCK

FIG. 1

.

" Note that each interrupt cell is associated with a particu-

p/c~n.r page
CC IwWs/w-11.1 4

The interrupt becomes effective when the condition specified
by the source appears, unless the process is non-interruptable;
for the handling of this situation, see below. When it
becomes effective, the specified action is taken, and the
interrupt is then forgotten. If it was caused by a PIW bit,

the bit is cleared unless the action was 'do nothing.'

lar PIW bit; it may be used to respond to the setting of
that bit, or for a real or a compute timer. There is no

restriction on the number of interrupt cells used for timers.

} p/e-n.r naga
| @C IWS/W-11.1 5

The Process Interrupt Word

Another object which is associated with a process in order to
implement the IWS is a single word called the PIW. The set-

ting of some of the bits in the word (called settable bits)

may cause an interrupt as described above. They can be set in
the following ways: |

If a process is open, any settable bit can be set.

The bits not marked with a * in the description of the PIW
below can be set by the conditions listed in the
description. They are also settable by other
processes and can be used as wake-up conditions. .
The ES bit can only be set by anothef process if
the‘sub—process making the call to set the bit
controls the 'ES bit in its own process.

The bits marked with a * are not settable. They

cause special actions to be taken as described below. They

cannot be used for wake-up conditions.

AlC ¥ R|R
CI{E|QIM|H General Settable AlS|R
PIW: o|s|T|C|I Bits el IyT
gl1 |2(3 |4|5|6|7|8|9|1d ' 23

P

p/e=n.r pacge
B CC IWS/W-11.1 6

*RT real time elapsed. The hardware maintains one real
t}mer per process, which is then multiplexed by the
process. This bit is used by the system to signal
the occurrence of the specified time; it is inter-
preted by the monitor's machinery for doing the multi-
plexing and is ;rrelevant to any user program

Bits 9-22 INTERRUPTS GENERATED BY OTHER PROCESSES AND TIMERS

*AMC interrupt generated by the AMC.

CHI interrupt generated by the CHIO.

QT quit character received; generated by the CHIO.

ES escape character received; generated by the CHIO.
*CO carrier off received; generated by CHIO. Cannot be

set by a process, but is otherwise treated like any
settable bit.

Bits 0-2 These bits are reserved for future fixed interrupts.

The bit positions of the above mentioned interrupts are
subject to change without notice. A call to the system is
provided to convert a character constant (e.g., "AMCY to the
proper bit position in the interrupt word. The abbreviations
shown'above reflect the proper character constants for the

interrupts.

fv(«\’

DEC

p/c~n.r page
IWs/W-11.1 7

Wakeups

some bits in PIW can be used for wakeups as well as for inter-

rupts (see above). If a bit in PIW is to be used for wakeup

only, the action in the interrupt cell should be "do nothing."

In particular, the monitor call which blocks a process accepts

an integer argument which is used as a mask for the PIW. When

the process is woken up by the system, the monitor's block

routine proceeds as follows:

1)

2)

3)

4)

Merge the PIW in the PRT with an extended PIW kept in
the context block and clear the PIW. This is done so
that the system can know that the process has received
the information passed to it in the resident PIW. All
the operations which use the PIW actually work on the
EPIW, which will therefore not be mentioned again.

Do the necessary interrupt processing. At this time
real-time and compute-time igterrupts get merged into
PIW. The non-interruptability trap also gets set (see
non-interruptability below).

If the process is interruptable and if (TEM < PIWA

WAKE-UP MASK) # ¢, then cause highest priority inter-
rupt in TEM. If the action of the interrupt is "do
nothing, " look at next bit in TEM. If no bits in

TEM cause any action, go to next step. If some bit

(I) causes some action (trap, or interrupt) then

PIW <« PIWA I AWAKE-UP MASK
If the non-interruptable trap is set, cause trap and

reset NI bit for sub-process.

‘ A p/e-n.r page
D C : IWS/W-11.1 8
5)

“If PIWA WAKE-UP MASK # @ then

PIW + PIW AWAKE-UP MASK,

and return to user.

The effect of all this is that PIW bits can be used as wakeup-
waiting flégs, in addiﬁion to being used for interrupts. Once
set, a PIW bit will not be cleared until it causes a wakeup

or interrupt or is cleared explicitly. Wakeups take precedence
over interrupts (if both interrupts and wake-ups can occur)

because of the processing described above. If a process 1is

| blocked waiting for a bit, however, and another bit comes on

and causes an interrupt, the interrupt will occur.

A sub-process cannot block on a bit in PIW if the corresponding

ICT entry BLK bit is not set.

N/ p/e=n.r page
p @C IWS/W-11.1 9

Non-interruptability.

It is necessary to have some mechanism Sy which a process can
prevent itself from being interrupted, so that processing
which must take place without interruption can occur. To this
end a process may declare itself non-interruptable, giving two
parameters: the amount‘of compute time and the number of disk
accesses before it becomes interruptable again. These numbers
are converted into a real-time figure. The minimum of this
figure and a fixed limit (say 2 minutes) is added to the cur-
rent real time to obtain the end E of the non-interruptable

period.

During this period interrupts which occur do not become effec-
tive, but are remembered. The mechanism for this is simple:
the PIW bits for interrupts are not reset. When the proéess
becomes interruptable again, the interrupts will occur in the
order that they apéear in PIW, where the most significant bit

has the highest priority.

The limit E is actually associated with a call stack entry.
When a call is made, E is copied to the new entry. The called
subprécess can extend it once. When a return occurs, it re-
verts to its former value., If the limit is reached, a NILE
trap occurs and the process becomes interruptable; this hap-
pens whether or not an interrupt is pending. The NILE trap

of course indicates an error. The normal way to become inter-

ruptable is to make a system call with that effect; if S makes

this call and S was called by T and T was non—inter;uptable

(C

p/e=n.r page

b@@ IwWs/w-11.1 10

with limit Ep, then Es becomes Ep and the process remains non-
interruptable. The purpose of all this machinery is to allow
sub-processes to set NI without worrying about whether their

caller's have set it, while still preventing the process from
becoming permanently lgst. The limits are made large because
they are expected to be needed only during debugging; a user

whose program does not expiicitly set NI should never experi-
ence such delays, since the (debugged) programs he calls will

presumably reset it expeditiously.

For obvious reasons the subprocess called as a result of an in-

terrupt is made NI with the maximum limit.

e

p/c=n.r page
C ' IWs/W-11.1 11

Operations on ICT

The numbers in front of the function descriptions correspond

to actual MCALL numbers.

165)

166)

167)

168)

169)

Convert interrupt character constant to interrupt number,
CVINT(CH) .

This function eﬁéects the character constant CH to be
one of the defined bits in»PIW. The function returns
the PIW bit position of the interrupt.

The call fails:

a) 1if CH is not defined in the sYstem.

Read interrupt cell, RDICT(N, ARRAY WA)

This call is always legal. It reads interrupt cell N
and returns its value which consists of 3 words.

The call fails unless:

a) -1<NK12

Read PIW, RDPIW()

This call is always legal

Make interruptable, RESNI()
Makes process interruptable, unless there are some entries
in the call stack whose NI has not expired yet.

This call is always legal.

Make non-interruptable, MKNI(CT,DA)
Makes the process non-interruptable for a real time
derived from compute time CT and number of disk

accesses DA, or for 2 minutes, whichever 1is less.

=]

5

.
S

N\

ffk p/e=-n.r paze

- C \Q, IWs/w-11, 1 12

170)

XXX)

171)

172)

The call fails if:

a) NI is alrecady set

Block (M), BLOCK(M)
Blocks the process until MAPIW#J; then sets PIW < MAPIW.
The call fails if:
a) Any interrupt cells corresponding to bits in M
do not have the BLK bit set or do not contain an

antry.

Set PIW bits (P,M), SETPIW(P,M)

If procass S controls process P, it can set any bits in
PIW of process P. P is an index in OFT. This means
that the process has to be opened before this call is
made.

If process S = prdcess P, then the bits in M get merged
into PIW if the calliné sub-process controls all

corresponding interrupt cells.

Clear PIW bits (M), CLPIW(M)
This céll does PIW < MAPIW
The call fails if:
a) any of the bits in M correspond to interrupt
cells which are not controlled by th= calling

sub-process.

Set int>rrupt cell N, SETICT(N, SAB, SP, LONG DA)

The sourc=, action and BLK bit are tak=n out of SAB.
They have to be in th=z positions specifi=d for the ICT
table. The SPEC in ICT is set to SP, and the data words

(if th=:» ICT cell is a timer) are set to DA.

(.

p/e=n.r page
’,/\
I QC WS /W-11.1 13

©173)

174)

The call fails:
a). unless -1<NK12
b) if KEY(S) A ICT[N]SCL=g
c) unless SOURCE<4
d) if sourceé is timer and N<9
e) unless ACTION4

f) tunless NAME(SPEC)A KEY(S)#F if ACTION=1l

Set CL in interrupt cell N, SCLICT(N,CL)
Sets the control lock in interrupt cell N.
The call fails unless:

a) -1lv«i2

b) KEY(S) A ICT[N]SCLAZ

Acquire interrupt cellh(N). ACQICT(N)
Acquires cell N, or some available cell if N=-1.
The CL of the cell is set to NAME(S) and ACTION is set
to zero (f).
It returns the ICT entry number on normal return.
The call fails unless:
a) -—-2<N<12
b) ICT[N]s$CL=g
c) no more free entries
If N = -1, then the search for available interrupt

cells starts with the low order bits.

