5

MODED, T CPU REFRERENMCE MANMUAT,

PRIV SRy S

RICPUS -4

o
3 . |
R 2

A
Chled L

\ g Butl~

Canls

Y

Larss on

f o -

L
Charles

3
.
[ &V L'»\{.‘, ©- oF ot S

£y 7 tovel :'-:'(Ti.'\—ai. .
ehasificaln
Manual
o ibution )p.:*v;
Comnapy Prive e 1ol

—r—— g o

P U U

ALsin AT and CONTELT

Model T CPU is dezceribed al a level o

211l prograraing.

1

antail eoffaric v

b

"’ﬂ

Ses?

C

p/e=nr

MICPU/M-4.3

rape 1

TABLE OF CCNTENTS

INTRODUCTION .t vt eveacneecrancosnsasnss

GENERAL CHARACTERISTICS AND STATE.....

ADDRESS SPACE AND MAP. .. vitinieananene

ADDRESSING FROM INSTRUCTIONS.....ceo.n

INDIRECT ADDRESSING..ocvenseaasss

USE OF ADDREESSES BY INSTRUCTIONS.

FUNCTION CALIS...v...
PROCRAMMED OPERATCRS.
SYSTEM CALLS..v.venen
TRAPS . evenerensranens

CPU INTERRUPTABILITY.

ORDINARY

.

.

P N

e ena o e v

ces s eseeees

treseraacen

cereeca s

INSTRUCTIONS s i vannnnann

seses

s es s

s e

se s

es e

R

RS

veea e

BLOATING POINT ...t ncusanscnconneones

APPEONDIXu . ieieoreneonononnasnnsnesnens

Page
ceineesadl
ceervensdd

tereeseasd

S L«
[P ¥4
AP ) &
RN k|
N X
seaee...48
RN 14
eieeeaal5l
TSNP 1
R ¥ ]

ceeaess 87




i TR

AT G A TR e ST S el

AREEEWIAANTL Yul Ygw S

{2

P/e-ns page

MICPU/M-4 3 2

bee

' tionalte for some of the machine's characteristies.
" 1) "The Ml will be implemented on a somewhat modified version
of a BCC niicroprocessor.,

"taon and addressing sequencing can be used freely. No atien-

Introduction

This is the reference manual for the Model I (Ml) central pro-
cessor, It is intended to be a complete and seclf-contained
description of the characteristics of the processor from the
peoint of view of a machine language programmcr (although it
is hoped that few programrers will ever have occasion to des-
cend to machine language). Omissions and inconsistencies

should be drawn to the attention of the authors.

Three considerations have dominated the design of the Ml. They

are stated here in the hope that they will make clearer tho ra-

This implies that peculiar instruc-

“taron . hus been . paid to the requirements which might be imposed

tby alternative implémentation,
2) " The M1 will be programmed almost entirely in SPL or FORTRAN
It is thcrefore essential that the common cohstructs of these
languages have efficient hardware counterparts. -Most holable’
émong them are array referencing, function calls and recturns,
éart-word field accessing and string processing. ' -Furthermore,
it is pointless to'include features which cannot be used by the
conpilers we are likely'to write,

3) ' 'Thé-Ml'nmust have a mofle in which it'is essentially compat-
ible with the §DS 940.

\

'
i
'
1

f“ i P-ns suz::ewj
i}bc ‘ MICPU/M-4 3 3

t

General Characteristics and State

The M1 is a 24-bit word-oriented twos corplement machine, It
has 64 instructions and a variety of addressing modes, PRits arg
numbered @ to 23 with bit & on the left (most significant) end
of the word, Both single (48-bit) and double (96-bit) precisic

floating point arithmetic is implemented in hardware.

The gtate of the machine, by which we mean the infornation whic
must be prescrved, together with the contents of memory, to per-
mit execution of a program to be continued without disturbance,
consists of 12 words of information arranged as follows, to-

gethar with a context block.

Word Bits Name Contents
g-5 unused
g 6-23 P ’ Program counter
g-23 A A register
2 g-23 B B rejister
3 ‘ g-23 o] C register
4 #-23 D D register, € and D are used as an
extension of AB for double-precision
floating point arithmetic
5 g-11 E Floating point exponent
6 #-23 X Index register
7 g-23 L Local énvironment register '
8 g-23 G Global environment register t
a 0-23 SR Status register ,
Q 23 INSTD Instruction terminated bit
9 22 ov Overflow bit
g 21 TOV Temporary overf{low bit




5

g?f“\

o

9 12-13 cc condition code

g 9-11  PrM +  Permanent rounding mode .

9 6-8 TRMOD Temporary rounding mode

g 5 FDP Full double precision flag
e g-23  cre Ccotpute time clock
11 E-éB IT Ihterval timer

The context block contains in certain fixed locations the map

for the currently running process.

Address Soace and Mavp

The Ml considers itself at any particular time to be running a
word block of memory, in a way which we now proceed to describe,
Each process has a 256K address gwace; i.e. the Ml processor
uses 18-bit addresses to specify memory locations, The
address space has two significant characteristics:

1) it is divided into three rings as follows:

addresses

g-3777778 user ring (lowest)

4030002~5777778 utility ring
4000008-4027778 and

600000B-7777778B monitor ring (highest)

" they nced only do thei

of the next indirect word is the address of the first in-

rr

[¥]

direct word. Every reference also has a target, which is th

address being refereunced. The foliowing matrix defines thosc

combinations of source and targots which are legal.

Target
User gtility Monitor
User Yes No No
Source Utility Yes Yes No
Monitor  Yes Yes Yes

4
To summarize:

a) References from one ring to a higher one are
forbidden.

b) 1f indirection leads to a lower ring, it is for-
bidden to return to the same or a hicher ring during the
same instruction, This fact makes it easy, for exarple,
for menitor routines to enforce the user's protection
rules when storing into a table provided by the user:
stores indirect threugh an addresc
in the user ring, and the ring protection hardware will do

the checking automatically.

P ~d - i i, - 5 4 " s " - i "
{
%m>g¢= " E pfetir page % ) A ] P~nr poge
£ VC Mrcpu/m-43. | 4 ‘ bCC MICPU/M-4.3 | 5
9 29  CARRY  Carry bit ] % ‘
g 19 POFLAG Permanent double-precision flag i The rings are protected Ifrom each other according to certain
9 18 TDFLAG Temporary double-precision fiag rules. Every memory reference is said to have a source. The
9 17 XMONT Monitor exit trap flag source for any references gencrated by an instruction up to
9 18. XUTILT Utility exit trap flag : and including a fetch of an indirect werd is, for exawple, the
g 15 SUF Soft underfiow flag ' program counter: the source for any reference generated
! o 14 a40m 940 mode after a fetch of an indirect word up to and including a fetch




e e &, . . " PO i . . i EW) . " s e T . i s At

d p/e-nr poge ; -
j gk}("" ; MICPU/M-4.3 6 L\ A pre-ne Fee
i R “\4 MICPU/M-4.3 7

T

A forbidden reference causes trap MACC, The target is passed Locations ?00B-2778 in the context block contain the map.

&>

as a parameter to this trap. ' These 128 half-words specify the contents of the corresponding

: : . 3 E ’ rocess; the high order
The reason for putting 400000B-402777B in the monitor ring 128 pages of the address space of the proc g

i i i £ xvesponding to even indices Bach half-word is
is that the opecrating system is expected to leave the context ! half-words coxresponding .

i i3 .
block in the map at 4BS5 and 6B5 so that hoth monitor and interpreted as follows:

a utility can use it for storage. The monitor will then have Bit Tame Contents
words @ - 2777B of the context block available to it and g MAPRO Siiiﬁzﬁéyggiéit Eﬁizmgizoiiazirziz
protected from the utility, and the utility will have ) ;iig;gfr‘iy bit interpreted by the
§ 3000B-3777B, Since the last word of the context block is 1-3 e unused
; at 4037778 in the utility ring, the utility can extend its 4-11 PMTI 2 PMD index
§ section of the context block with additional contiguous The private memory table (PMT) provides enough information
i { sterage. about each page accessible to the process to permit the hard-
E éz% . 2) The address space is organized into 2048 (2K} word ware and the memory managemont to access the page, The PMT
§ pages, and the precise collection of pages which make up starts at locatlon 300B in the context block. Each entry is
H 4 words long; the address in the context block of PMT entry i

the address space is specified by the map. Pages are named
is thergfore 4(i-1) + 300B.

in a manner indecpendent of their location in core, and the

mapping hardware uses this location - indepandent name, ’ ) A DT entry has the form

together with a table called the core hash table (cur), to

i
%
g A i ; tents
! determine the physical core location of a page. The page Hord Bits Hene gon .
: . . :
3 . - rst its of unique name for
: nurber (the top 7 bits) of every menory reference thus g g-23 Nl z;e Pa;g bits 4
i requires two levels of translation: 1 g-23 UN2 'Sgcond 24 bits of unigue name for
; . . th age
{ from page number to location - indepcndent name ¢ pag
Z
i - . 2--23 DA Disk addrecs of the page
3 fron lecation - independent name to physical page address 2 Pag
1 3 g PMTRO  Read-only bit
: i:% The various mechanisms for performing this translation will 3 1 PREF Page has been referenced
now be described. ) . @ 3 12 SF Pag~e is scheduled for the process

b (i.e., in core working set and
the process is active)

- The other bits are not used by hordware

é
i
§
|




oo

e s T s miiait ¢ B

pre-nr roge
Mmicru/m-4.,3 - 8

bhee ]

Note that there is no provision for execute-only pages,

since this deovice by itself is not sufficient to protect

propreitary programs. The sub-praocess structure of the
A}

monitor is supposed to be used for this purpose.

The central processor contains a phveical map (M) which

has 128 registers of 1} bits each, One of the registers

has the form

Bits Name Contents
g EF Empty flag
DB Dirty bit, set if the page has
becn stored intc since it was
read from the drum
2 PMRO Read-only bit
3-1¢ PA Physical address of page in

a real corc ¢f up to 512K,

When a new process starts to run on the processor, the

enpty flag is set in each PM entry. BEvery §ddrcss gencr-
ated by the program must be mapped to convert it from virtual
to real so that an access can be made to the real core.,

Tris is done by taking the top 7 bits of the 18-bit address
and using them to select one of the 128 PM entries.

If the empty flag is qff, the remainder of the entry is
returned. The PA field is prefixed to the last 1l bits of
the virtual addrcés to make a real address. If the acccss
ig a store and PMRO=1, the store is aborted and the PRO
trap is caused, If the access is a slore, PMRO=§ and

LE ff, the dirty bit in the €I ealry for the page is sot

and DB is sot to 1,

a

oo v

P e —

. E EE U TRy T U S PR U= S
- B 3
h . i pE=nr dpege
' }C{, ; MICDU/N-4.3 )

Werd Bits Nare Contents

g g-23 UNL First 24 bits of unigue name

1 @F-23 UN2 Second 24 bits of unique name

2 . 2~23 DA Disk address of page
. Ky 3 DIRTY Dirty bit
i 3 X U Unavailable bit
jE 3 2-4 PST Page status
i 3 5-12 CPA Core page address, This is also
: implied by the index of the en-
! try in CHET
1 3 16-23 SCHELD Number of occurrences of page '
. in loaded working sets
‘ 4 6-23  PCLP Froe core list pointer

5 g-5 PL Page lock !

5 6-23 CLP Collision PTR

B

If the empty flag is on, the PM entry must be loaded.

L its index be i, First, entry i of the map {(i.e.
half-word 200B+ji in the cortext dblock) is fetched. If FMTI
is g, trap PNTM occurs., If it is not #, MAPRO [i] is
saved, Then the PXT entry specified by PMTI {i] is fetched.
Lall it entry p. 1If SFi{n] = #, trap B¥IC occurs. FHMTRO is
saved; if PREF [n}] = #, it is set to 1:; the UN found in PMT

[nr] is then looked vp in the core hash table.

The core hash table contains a six-word entry for each
page of real core, It starts at location 409B in rezl
core and is organized as a chained hash table. Bach entry

has the form




© et s et o A MAL vt <o e < 3 e msidir e MRl T b 5 ’;ﬁ“ e
| R
§%K‘€1 pemnr page
L}gf\, MICPUM-4.3 10

'
| [ . [N
} i

A page ie found by hoshing the UN as dezeribed in Mﬂ!/w-li
L he oo b fonnd, Cppand ot e Cﬂpifa It the i
and Pen id Ael bo MAIRHYPMTRO [n] rf'(u‘oﬁ paty /P br

Lhe pargr s not In cHt, trﬁp PNIC 6ccura,

A1l the traps (PRO, BHIK, PNIC) which can be generated by the
mopping operation are given the virtual address being mapped

as a parameter.

To make sure that a particular page is not being used by the
CPU, an exterral processor may request a gcan of the physical
mep. When such a request is received, the .PA field of all
pon-empty registers in the physical map is matched against
the contents of ecll 24558 + CPU nunber *4, 1If any of them
matches the MAB trap occurs. The message cell is act to 4B7

upon completion of the scan, regardless of the outcome.

Addressing from Instructions

The machine has a rather complex addressing structure, The
address calculation is performed in the same way for every

instruction, and it may yield either an gperand GP or an
effective address O or both., To specify this calculation

it is necessary to define the format of an instruction and

of an indirect address word (IAW). For an instruction

Bit Name 940 Mode ‘Normal Mode
4] s Syspop bit Part of TAG
1 X Index bit Part of TAG
2 P Pop bit Part of TAG
3-8 QPC  Cwocode . Opcode
9 I Indirect bit Pop bit
19-23 W Address field Address field

An 1AW format depends on the mode. 1f 940 mode it is
exactly like an instruction, except that §; P, and OPC
have no siunificance and are ignored. Otherwise it looks

i
like this:

{

T e ¢ b et

T Te—

P g

I(‘\C AR LA 9 1:
;‘:>‘:{ . MICPU M -4.2 n

i i . 1
g-1 IAT Tag field which delines the meaning of

. the rest of the word.

¥

- nonpy Phe meaning dependn on AT

v
'

Since the addressing is rather complex, it seems worthwhile
to cxpla%q in som: deteil what the various f{eatures are for,
before deseribing them precisoely.  Thore ave a pumber of
points which influenced the design:

1) It is neccessary to be able to conveniently address
a 256K {18-bhit) address space, even though an instruction
has only a 14-bit address field,

2) Programs arc normally written in relatively small
units, cach of which references some private storage of its
owii and some global storage.

3) Array references.are very common, Since there is
only one index register for holding subscripts, it would be
very nice to have a convenient way of using core locations
for inde&ing, Since the languages which are expected tc ze-
count for a majority of the load on the machine require
subscripts to be chacked for size before being used, it would
be nice to have a cheap and convenient way of doing this,
Furthermore. we have to deal with arrays having elements
which mey occupy 1 (integer), 2 ({(real) or 4 {double) words,
Te have to multiply the index by the element size is a great
annoyance,

4) References to fields which occupy whole words or parts




-A"/‘_\
€

4

Y
(-4

S vt A am e e L

bee

pe=n.r puge

MICPU/M-4,3 12

of words relative to a pointér are also common, especlally
in system code,

5} It is essential to have an efficient mechanism for
handling strings of 8-bit characters, If other byte sizes
can also ba accommadated, so much the better,

6) We want to leave most of the 93¢ adlressing capa-
bility in, smo that it wlll be easy to convert 93J programa

to run in normal mode,

All of thesc goals are achleved in a fairly economical way
hy tho addressing system of the Model X, In particular,
arrays, strings, and part-word fields are handled by in-
direct addressing, which allows an absolute 18-bit address
tc be supplied. The addressing modes available in an in-
struction allow for immediate operands, addressing relative
to the instructior word for referencing the program, and
addressing relative to two base registers which are in-
tended to reference the lccal storage of the subroutine
{called the local environment, L) and the global storage

of the whole program (called the global environment, G).
They also permit indexing to be specified from the X register
or from the first few cells of the local or glcbal en;iro-

nment,

It should be obvious by now that the aadressing system is
designed to be used by programs which are organized in a
very definite way, i.e., into a collection of subroutines
or functions {of less than 4K words each), each with local

storage (of less than 2X words for scalars), and all with

-

po-nr POt

MICEU/M-4,3 § 13

bee

access to a2 single gfoba! storage and communications area
{of less than 16K words}., The first 128 words of the local
and global environments are .specials this is because thexe
are 8-bit fields in certain addresses in which the top bit
epecifies L or G and the reomaining 7 bits address one of the

first 128 words, The first 32 words are even more special,

because there are 6-bit fields which address these words.

With this introductfion, we proceed to describe the addressing
in detail, tcgether with comrents on the intended use of

each feature. A reader unfamiliar with this material will
find it helpful to read the text following the description

of each mode first.

The 3-bit TAG field of an instruction detsrmines one of 8

addressing modes.

These are TAG KAME ADDRESSING MODE

' g D Direct
1 I Indirect
2 X Indexed
3 BX Base-index
4 PD Pointer-~displacement
5 IpD Indirect-pointer-

displacement

6 EXD Base-index~displacenent
7 REL Relative. This one has €

sub~cases

IM, IMX Imrediate, ordinary and
indexed
LR, ILR L-relative, direct and

indirect




oy

P/e-nr : page
S
MICPU/M-4.3 14

SR, 1SR Source-relative, direct

and indirect
Most of the modes depend on the existence of an indexing
register IR, ard a source register R. The IR register is
not to be confused with the index register X. In fact, it

is pot pari of the stale at alls i.e. its value does not

‘have to be preserved from one instruction to the next. The
IR is used to hold the 18-bit value which will be used when
an indexing operation s called for by the addressing ‘system,
Tt is initialized from X at the beginning of each instruction.
Thersafter, it may be loaded from d word specified by a

BX or BXD mode or an array indirect word {see below).

The scurce register is initiaiizcd to the address of the wor&

from where the instruction has been fetched (normally P).
-

Some addressing modes (the ones which do not have indirect

in the name or I in the abbreviation) compute Q directl

from the information in the central registers, the instruc-
tion and possibly one memory word used for indexing. Others
{the indirect mcdes) compute directly the location of an

indirect address word, and the contents of this word then

deterwines how the addressing computation is to precceed, If
irdirect addressing is specified, only the values of thc

IAW address and IR affect the subsequeat address computation.
We will thercfore confine ourselves to specifying thece values
which describe instruction addressing, and leave the details

of indirect addressing for later treatment,

P TR S SN -

®

pa-nr

M1CPU/M~4 .3 15

hee

i

CONTENTS {N) will be uszed to denote the contents of
the memory location with address N. Ring checking is pexr-

formed with R gs a source and N as target.

Direct (D) : Q « W + G; OP « CONTENTS(Q); NWote: W is
the address field {(bits }0 - 23} af the instiruction,
In direct mode, the effective address is given by the 14-bit
address field relative to G. This permits direct addrecsing
of the first 16K of the global environment., The notation is

ILDA G' [W]

Indirect (I} : IA(W + G):

In indirect mode, any of the first 16X words of the gl%bal

environment can be used as an IAW. The statement IA (x)

implied that 'the indirect addressing sequence is initiated:
FUNCTION IA(XV;

IAW < CONTENTS (XY; R « X:

: 3
* PROCEED TO PROCESS IAW
'By “the time it is Finished, it will set the value of Q or OF.

1 I
The notation is DA $ G'[W]

Indexed (X) :'Q « W'+ IR: OP < CONTENTS(Q)
Since IR is initiélized to X,lthe efEeétive address is ﬁhe
{18-bit} sum of the index register‘and‘the address field.
There zre two wavs to look at this addressing mode:

1 - X contains a pointer and W is a displacement relative
to this pointer

.




] (3\ ; p/e~-n.r page . B/e~n.r poos
Dvc MICPU/M-4.3 16 CC MICPU/M-4.3 {17
2 - W is an address (in the first 16K) and X is a dis- (@ this case)s
placement, This interpretation is unsatisfactory for
projrams which exceed 16X in size, and is not expccted
to be much used. In this mode the address field is divided into an 8-bit

peinter address (PA) and a €-bit signed displaccment.

The way to code the 93¢'s
Similar arrangements are used in scveral other modes:; they

pEW i gy

BRU +,2
will be explained here in detail. The top bit of the B-bit
4 1 80 that it will work anywhere in the address space is with
1 pointer address specifies the environment (l=local, -
5 indircction (see below) through a normal IAW with source-
; global) and the remaining 7 bits address one of the first 128
relative indexed addressing,

) . words in the lozal or global environments., If PA is &, the
" The notation is WA X W)
1 contents of IR, rather than of word @ in G, is specified,
H These are three of the four addressing modes available
, It is this decoding which is specified by the argument of
. on the 937, The fourth, indexing and indirection, is not
3 CONTENTS. The calculation of V specified the conversion of
H available in normal mode on the Ml, since it was judged
e . a 6-bit number which is to be interpreted as twos-complement
LN ey less useful than any of the 5 new modes; it can be obtained
N into a 24-bit twos-complement number.
H ) wityh 1PD mode (sce below) if the offset relative to X lies
‘5 between -40B and 37B. ‘ Finally, the effective address is the sum of the pointer
% Pointer-displacerent (PD): T <« W [16, 23]: specified by PA and the displacement. The typical use of
3 U <« IR IF T=0 ELSE CONTENTS ( this mode is in addressing the hth word of a table entry
G + T IF T<200B ELSE .
i L + T - 200B): . given a peointer to thc start of the entry. If the pointer
% . T « W [l0, 151: P is in the first 128 words of either environment, then the
; V « (T 1IF T{40B ELSE T -~ 100BY word is loaded into A, say, by
i .
: Q« U+ V; LDA pin]

OP < CONTENTS(Q): which is the notation for PD addressing with pointer ad-

drecs P and displacement n,

&1

First there is some new notation here. W [10, 15] means bits

i

é 10 to 15 of W (the address field of the instruction) con- Another way to use this mode is to reference non-local
H

cidered as a 24-bit number (with 18 zeros on the left, in P variables in a block-structure language, Assuming that
D (]

i

£

¢

% ’ o

oy




R R L2 S s = i - % G i B
: "™, s " Lol : s;wf S o £ o "
f . h@-nr page
/‘9‘1 : : p
i DI MICPU/M-4.3 18 i ‘e Lpe-nr paze
o 7 i ,/\e : l MICPU/i-4.3 1
%@ each block reguires no more than 64 words for its storage, ;

we procced as follows. When @ new black is eh&eréd, set ThHis is tHe array accessing mode and is written

up in ifs local environment a pointer to word 32 of tﬁe 4 A B [1)
{stnra?e a¥ea for the latest incarnation of each lexico- f ! where B is the Base and T the index. The 8-bBitfand 6-bit
;éraphjcai&? enélesihg'glgcg.' Tﬁen;'if X occupies word 4‘ . ] ! index are Botl trested as local or global environment
B in baock F, whobe storage is pointedito sy local aniron- addresses, exactly like the pointer address in PD mode.
4 '

ment a“ld 12, we reference X w*th

The index is put into IR and the Base specifies an indirect

- b L [12] [44q} werd,, If an array is Being accessed, B will address an

i
1
1 N ’ ' i
i
i

1he dluplacemont Of 443 is -28 from the p01ntex, whici | ;

IAW which Has tie 18-bit base address of the arrav and

! .
ezddresses word 32 of the storage for F. So the word of F's

H Iy > 3
} specifies indaxing. The contents of IR, which was loacded
!

storage actually addressed is 32-28=4, =zs requzrcd If a from I, will thus be added to tHe base address of the

array to determine *he final 18:bit address, vhich is just

S ks

block has more than 64 words of scalars, it can be assigned

what we require for array referencing. This is not,. however.

several pointer words in the local environment,
L

the whole story: the rest will PBe told when we cone to cen-

when F b B
—
9

Inélrect~001n*er—d1¢placemhnt (IPD) «

; ! . sider the indirect addressing type used for arrays.
U and V are computed as f£or PD mode '

: A (U4 V) X . Base-index-dismlacenent (BXD)

£l N T [ B

X ) . ’ i g ) T « w[16,23];

: This is just indirect addressing in PD mode. All of the : A1 U'« g IF T=F ELSE CONT“ zs (!

: ’ ‘ ' G + T IY T20UB ELS

R direct addressing modes have indirect counterparts, for | . Lo+ T - 200D

: ) i | T « Wi, 157

' obvious reasons. . V « {T IF T<4@B ELSE T - 100
; . ' T « IR;

; Notation is LDA $P [n] , , IR < U + V;

3 IA (T):

H Base-index (BX) : T<W [16,23]; ’

H V<IR IF T=f ELSE This mode is similar to BX. It assumes that the base is in

: G + T IF 7{200B ELSE

% L + T - 200B; : the IR. The field thus freed is used to provide a displace-

: T<wW [10, 151: ment (anything from =32 to +31) of the index. Thus to load

IR<IR I¥ T-f ELSE CONTENTS ( B (I + 5] wo would write

- G + T IF T{40B ELSE

Y L+ T~ 408); ) EAX B

y

§ IA (V) ; t ¥ DA ($x') [1 + s51;

SRR

T T gy




P

ég

hee

ple-nr poge

Micpu/M~4.31 20

here I is the index, 5 the displacement.

of arrays below for more details.

pelative (ROL}:

first three bits of W.

are are 6 sub-c:zses, depending on the

See the discussion

Thus:
Name wfio, 121 Peseription
L-relative (LR) a U« w [13, 23]
Q « L + U
0P <« CONTENTS (Q):
Tndivert I-relative (ILR) 1 Compute U as above,
- then:
A (L + U)s
Scurce-relative (SR) 2, 3 T« W [12, 23]:
v <« (T IF T{4000B
. ELSE T - 10000B}):
Q « R & V;
OP <« CONTENTS (Q) s
Irdirect source-relstive .
ReELY 4, 5 Compute V as above,
then:
IA (R + V)
Immediate, indexed (IMX) 6 Compute U as IM, then:
OP « U 4+ IR;
Immediate (IM) 7 T « W [13, 23}]:

U <« (T 1Fr 1420008
EILSE T - 4000B);
oP « U;

Note that Q is not
defined by the IM oOr
IMX addressing nodes.

e e

Flc-n.r page }

MICPU/N-4.3 21

b
A

The immediate mode permits signed constants in the range

~2000B to 1777B to be provided as operands without an addi-
tional memory reference, For instructions which store or
which expect an operand longer than 24 hits this mode is
a mistake. The action taken if it is used errcneously is

a TI trap. The notation is oA 1

The L-relative mode permits locationsg in the range g to
317778 relative to the local environment to be addressed.
It comes in two flavors to permit direct or indirect ad-
dressing. The address computation is similar to that for

source-relative addressing, except that the sign bit of

the displacement is taken to be g.

This mode allows 2048 words of local environment teo be
addressed directly. This should be more than enough for
all:thi scalar storage of a routine., It will not, of coursc,
be enough for the arrays, but they are all expected to be
addressed by indirection, so there is no problem.

Notatien is LDA L' [D] or

DA SL' [D] for indirect

Finally, the source-relative {or R-relative) mode permits
locations up to 40008 on either side of the instruction or
indirect word to be addressed, This allows routines to be

placed anywhere in mcomory without modificatien and to address

themselves without difficulty, as long as they arc not more

L.




oy

e

pe-ni
) ] Micbuy/m-4:
b@@ Micbu/m-4:3 |22

poge

than 2048ywords long. The intended programming style is

. ’ oL, ' 2 : o
mall functions connected to each othetr only by function
v

4]

{ ey o S . ) 1 , L
calls, returns dnd error returns; all of which are taken
care of by the PLL instruction described below. This
iiritation shovld therefore not prove to be a problem.

Nolation is LDA R' [D] or

: . _ L
LDA $R' [D] for indirect
It was recogrized that addressing relative to the start of
the routine; rather than relative to the source R,

woild be better in sowe instances; fThis mode was not
provided because it would have required adother word in

the state to record the start of the program, together

with machincery for keeping it updated.

Indirect Addressing:

To prevent infinite loops of the indirect mechanism, a trap
ILIM will occur if indirection through moré than 16 levels is
attemnted,
There are four types of indirect addressing: normal, field,
string, and array. The type is selected by the first two
bits of the word, The intended usc of each type is sug-
gested by its name and will now be explained in detail.
Normal: the IAYW has the form
NAME

B1TS CONTENTS

0-1 TYPE g

Pfc=n.r pags
Micru/m-4:3 23

2-4 TAG interpreted exactly like an instruc-
tion TAGC '

5 TRAP causes trabp IATRP is sct

6 RELX causcs indexing for the relative
modes

7-23 IWR long address for the relative moles

6-23 w iong word aédress

PO e

10-23 w word address

1f TRAP is sef; the IATRP trap is caused, and R is passed

as its argument; Otherwise, TAC anid W are interpreted

as in an instriction word; with tlirec oxceptions:

1} if TaG =D, I, or X, IW is used in place of W, and
¢ is not added. 1n other words, an 18-bit absolute
address is supplied.

2} if TAG = PEL, IR is added to the addresses computed

by L and R-relative modes if RELX is set., I.e,,

, indexing is pocsible with these modes. Also, the
3-bit subtag is found in bits 7-9; thus allowing the
CR, ILR, SR, and ISR offisets to be 3 bits longer.

3} if TAG = PD or IFD, the mode is read-only direct
(ROD) or read-only X -relative (ROX) respectively.
These behave exactly like D and X modes except that
an attempt to store will cause the ROIA trap with
R as parameter,

.

Normal type permits any word in the address space to be




e P A . i E i i
3 o [ XL N |
- e iniid MICPY/M-4,3 24 CC MICPU/M-4,3 z5
‘ ' |
addressed directly, It is generally usecd for pointers and %
i
for the addresses of arrays. KNote that although the capa- ' The idea here is that IR contains a pointer to a table
bilities are alimaost identical to those provi in- entr and that the field descriptor (the 1AW) specifies
provided by an in ¥s
: / o s . :
struction address, the format is quite different. It is ' a group of bits at some definite location in the entry.
not possible to use an instruction as an indirect word, Typically, the pointer might be in PIR withsn 12 wonds
. 1t also pormits indexing of a L-relative or scurce-relative of L and the field descriptor in F within 128 words of
) e
address, so that arrays in the program or the local en- ' G. Suppose the contents of ¥ s
vironment can be addresczed conveniently.
) PIELD 3: 6, 12
. Field: the IAW has the form ‘ : or in octal DATA 234500038
o then we might write
- TYPE 1
ILDA F [PIR}
3-7 S1ZE size of Fleld in bits
-
‘ 8-12 FB address of first bit of the field using base-index addressing. Slnce PIR appears in the
2 SE causes sign extension of the field if R gé? index field, its ccatents is put inte IR. =hen ¥ s
set

taken as an AW, Since it is of type field, it accesses

13-23 DisP 2's complement signed displ
rplement si acenen .

: ° ene the word at IR + 3, which is CONIENTS {pTR:3}+ 1.e., the

FIELD: Q % IR + DISPL; . fourth word of the object pointed to by PTR. Bits 6 - 12
U « CONTENTS{Q): .
OP < U [FB, FB + STZE - 1}; of this objcct will be loaded into A, If the word addresscd

OP <« OP - 21(24-FB) IF SE = 1 AND OP {FD,FD]=1; o
IFE, PRI =1 was 012345678, then A will contain 478, The field can be

The field which is SIZE bits in length and which staris usced as an operand in ony instructien which accesses a
at bit FB in word DISP + IR is referenced. Both FB and single-word operand, regardless or whether it is a load or
¥B « SIZE - 1 must be {23. If they are not a TI trap will store., Note that ficlds cannot cross word bouncdaries.

occur, If SE is set, the leftmost bit of the field I[pit " the IAW has the form
’ , ‘ String: o IAW has the for

Fp at DISP + IR) will be extended into bits @ ihrough

) , o ) g-1 TYPE 2

. 22-5IZE Of the resulting operand, DISP is taken as a : 2.3 CSIZE h ter size: @ = 6 bits, 1=8, 2=12

- Z character size: = s 1=By £Fiay

: 3=24
s ®

4-5 CPOs character position in word

2's corplement number,‘iﬁ the range -1024 to 1053.




M

s N AN o e s R <okt S e K8 Bt a0 . ..
P < B ek
g plemnr page
£ C ple-p.r pags
{ MICPU/M-4:3 26 : Sl o o2
b > CC wrceu/m-i.3 |27
N : h ' i
6~-23 WA word address %

The character at the indicated position in the word addressed

by WA is referencad.

The fcllowing table defihes what bits

are referenced by the 16 possible combination of ©SIZE and

cPOS .,
CSIZF/CROos ] 1 2 3
g #-5 6-11  12-17 18-23
g-7 8-15  16-23 X
2 g-11 12-23 X X
3 g~23 b.¢ ¢ X

Combinations marked X in the table will cause a TI trap.

Thee bits referenced are treated exactly like the bits

sclected by a field IAW,

This type of indirection allows one byte in a string to
be referenced. The instruction ISD increments the des-—
criptor to point to the next byte, which may then be
referenced. It has the additional feature of setting
the condition code depending on whether the descriptor
is equal to the next word or not. The string type and
this instruction are intended to be used with four-word
string descriptors. The first word points just before
the first byte allocated for the string, The sccond
word (read pointer, RP) points to the first character
of the string, the third word (writc pointer,. WP) to

the last character. The fourth word points to the last

byte allocated for the String: %o read the first char-
dcter, increment RP with ISP, theh indirect through it.
The case of no charactexrs lefé can be detected by the
abrormal cC setting. To write a character; increment
%P with ISD and then store indirect through it. Over-
flow of available storage can be detected by the CC

setting.

Array: an array descriptor is two words long. 1Its
form is:
g -1 TYPE 3
g:2 LB lower bound for IR ( or 1)
g3 ATRAP  array trap bit
g:4 LEB large element bit
g:5-6 MULT IF LEB = & multiplier for IR
g:5-10 MULT IF LEB =1
ﬁ:7—23 UB IF 1LEB = ¢ upper bound for IR
$:11-23 UB IF LEB = 1 .

If IR(LB or IRMUB, trap ABE occurs, with R as paramcter,

If ATRAP=1 in IAW and the instruction is not LAX, or

ATRAP=g and the instruction is LAX, trap JATRP occurs with

R as paramcter,
otherwise,

NORMALIA (T):

This is the most complicated of the IR types.

tended to accemplish the following functions connected

IR « (IR - LB) * (MULT + 1) T « R + 1;

It is in-

e

B R

R R B A SR o ra v s e bt

R S e nAR e

o

1



T R AR R » ¢ R T TP NN

L, B s R ey

[N pege
MICPU/M-4 .3 28

hee

with array accessing:

1} aliow g or 1 as lower bound

) Porform a bounds check oh the subscript

jj Mult.ply the suﬁscfipt by the size of the array
element, aliowing for sizes up to 63:

4}  Check'that the number of subscripts supplied is
tho foober expocted (roe helow)

5} Provide an 18-bit absolute base address for the

array.

Arrave are intended to be stored with marginal indexing.

Thus, the 2 x 3 Fortran integer array A would appear as

follows:
A =

3Nt 2 ! 37I11] 3 A (i, 1)
T 4 ARG )
31af1] 3 A _(1,3)
> A (2,1)
A (2,2)
A_(2,3)

(Tha three 2-word descriptors are array indirect words)
The LAX instruction works just like DAX, except that it
merges an 1 tag into XR[2,4] (leaving a normal IAW which

specifies indirecction) and treats the TRAP bit in an array

descriptor as though it were complemented,

Then to do B « AlK, L] we would write

LAX AK] {BX addressing)

which leaves the address of the descriptor for the Kth

2 B e

I

: Bo-nr poge 1

hee

tow in X foliowed by
ipa {sx'3{L] (BXD addressing)

STA B
The seco;é éubsc%ipﬁ can have a consta.t displacement with-
cut complicating things:

B « A(K, 1~4} becoues

fax ATKY
toa tsxl}'[L—llj
5TA B

tf the First subzcript has a displacement, there is a compli-
cation, since there is not enoucgh room for three operands in

one instruction.

B « A[K:l, L] beccmés

EAX A
X (sx) K11
LD; (sx (L]
STA B

A singly subscripted array can be accessed without any
extra instructions at all provided the subscript is a
variable which can be accessed with an I field. If M

is a l0-element integer array, it is allocated thus:




fe et e € a s

e s e y

»E: »;;:—WH p’i‘“" ‘ Pvuf .
}&JC MICPU/M-4.3 30 b P Yi Ffe-nt , oy
, ) &,C MICPU/M-4.3 1
M= {DD‘[H 10 *J/ i!: g;; % use of Addresses by Instructions
e “}£~q5-“~ff—:~— A1l instructions compute an effective address Q and/or an
&S
yjifi%ﬁuk-A . TTH nporand OP as deseribod above, The wne of these guant Lt fen
»,E_éz. once they have been camputed, and in particular the errar
. é %ig) conditions which may arise, depend on the address ﬁggg of the
’ - instruction. There are four address types:

and K +~ﬁiJi becomes ,
1) Fetch type (F)

LoA M[J]

i oo PP . . 3 .
These instructions will accept ady kind of address. They

5TA N i
make use only of the 24-bit OP value.

U

1f the array is integer (1 word items) and bounds checking 2) Effective-address type (B)

i

‘the effective address Q,

is not ‘required, 'the descriptors can be changed 'to normal . sc only ©

=

‘These instructions make

indirect words which specify indexing, and no change is | ‘ignoring ‘0P, Immediate addressing causes 3 TI trap if used

(R

required in the instructions of the program. % ‘1"'with these instrvctions. Q is ring-checked with R as a source
'

before use: if the check fails a trap MACC will occur.

The purposc of the peculiar behavior of IAX in the case of i .
: ‘3) 'store type (S)

‘traps is'to check’ that the propsr number of subscripts is
Thcse‘in§tructions make use  of the effective address @ and

| providéd to an‘array. fThe trap bit 'should be set in' the

' "the operand OP. If the address calcualation terminated with

array descriptors except at the last level (the des-
indirection through a £icld or string descriptor, the FB and

'l eriptors which point directly to the data) and clear
‘81zE (for a field) or CPOS and GSIZE (for a string) 'define

there,
.| 'a group ef bits, say pits'i to 3. An 'S type instruction puts

"pbits 23-3j41 to 23 of the word’ o be stored into bits i to j

- of the word addressed by Q, leaving the rest of this word

untouched. Immediate addressing causes a TI trap and
indirection through a read-only direct or read-only indexed
word causes a RO trap.

® 4) Double-store type (D)

These instructions make use only of the effective address Q.

Lo o o e




; - s o . ) ‘ - ,
' ‘ i i it
)

i WaYa) - i e o o . e v
Cbee
A IS I P O y S
s - | LTI e s ey el EAES N AN P
e w4 i , ! ; . ol : SO R0 0.0 SR S A
3 B Yo arvder the o g FE . . . l i '

g 7 ~ ! e ‘l..u flames condlitiong an S-Lype dnstract fong [ . }@ Fupetl fon Cilla .

o b N IO : . i S R e

; o S e ! | T .

3 . t

: ' A rather elaboraje mechanism for calling funciions and refuine

Nest e the v v
‘t;‘x it they are ‘f;ot qff(»(*tn(! by ‘fi'(!,ld or s.Lrjng indivect ton
ing from them is provided in the hurdware of the machine,

s

4 Legal coubi ions ;
] gal combinations of instry
j : ( o ctions and addresacs are surmar icod; The pose is to include all the cqpsbilities uired by
3 in the following table: i ¢ purpasa is to include a e cgpabilities reguired by
% ' the FORTRAN and SPL languages directly in the hardware, so
: N P E s D : as to make software interpretation unnccessary. This is
) Immediate ; . . . :
i ok TI TI T considered extremely important, since programs are expected
; Indircctio ‘ . . .
J . on through ROD or ROX .ok ok RO RO | to be written in small mecdules, and functions calls and
|
Anything ele |
ything else * ok ok ok ok ; returns are conscquently expected te be very frequent.

Instructions - . . : s :
ctions of types § or D winl give a PRO trap if Q (or The basic features of the call insiructicn BLL are as follows:

Q41 for dnstr i i { i
uctions which xeference double {i=l} or ; 1) The old P-counter and local environment are saved and
new ones picked up,

*

guadruple (i=1,2,3) words) addresses a read-only page

i L

) | O

N : a 2) The new local environment may Occupy a fixed arez, or
$ .

H it may be allocated space at the end of a stack defined by

; two locations in the glcbal environwent. There is a choek

3 N for stack overflow,

4 ° . )

f 3) The caller provides a list of parameter addresses,

The called function specifies for each parameter whethcr he

wants the address, the value cor both copied into his local

environment. If he requests ccpying of the value, he spec-

ifies whether it is 1, 2 or 4 words.
4} He also specifies whether or not a parameter is an

array. The calling program tells whether it is passing a

scalar variable, a scalar value (stores are not legal),

an array or an array element (subscripted array)}. These

@ distinctions permit all the checking for proper matches of




m AR a
: . ;
Sy O[S P/‘“"' . poge < - =
’gf}w # MICPU/M- 43 |34 Y peone rege
{}\’\,‘ y mcpb/m-d,. 4 35
fzg arrays w1+h scalars reqylred by FORTRAN to be done automatic- éi?
ally. Tbe case of an actual parafbter which is an array t . oo - . c L
1 2 CPA Arguments are copied if this bit
elcmﬂnt corresaond;ng to a fornal parameter whlch is an array is .set.
1 ' PR SRR
requires sofiward handling and is trappcd so Lhat this nay b 3 CPR IF The CPA bit in thc returﬂ descr;ntor
CcLL=1 is turned on if this bit is set.
be accomplished. . . . :
! N : L : ' C 1 3 UWSTK IF Unwind stack on return.
5) The calling program may pass labels which are relative CLL=g
o .
’ | . ' . : ', . ‘1 st . . . : ! ' ‘ P
te the start of itself. The call automatically supplies the 1 5 FIN 1 FORTRAN type function
current value of this local environment to convert ihem into i 5-23 B This number determines thg new;L;
) Lo . . precisely how it does so depends
return descripters, and records in each local envitronment the on STK and REL.
start of the program sc that the relative address can be . . ,
; ; . Wwher the BLL is executed, the first step is to compute the
converted to absolute when they are used. .
. effective address of Xowrw (which is iW if SREL is @, other-
6) Provision is made for an argumetit to be passed in the . .
wise the sign-extended SRW + the address of the NFWPW). This
central registers. . .
2 18-bit number is saved in a temporary register called NIWP;
e A nurber of these points are somewhat subtle and cannot be
after underqoing further processing it will become the rew
properly understood tnless explaihed ih complete detail,
P-counter. 'The following steps remain to be performed:
which we now proceed to do.
: 1) ©Obtain new local environment.
: The BLL instruction addresses a branch descriptor, which is 2) ‘copy arquments
. a8 two-word object with the following form: 3) Compute return descriptor {for CALL) and save it
Wozd = Bit Nare Meaning in first two words of new local environment,
g -23 NEWPW This word looks like a weak IAW.
| 1 . 1.
Its effective address is cowputed, 4) Transfer control
. . rd it i 1sp the order
g 4 SREL c.f. REL 4SR in Normal 1Aw ) We itreat them in the order written, which is als
3 ; hoe v Y cribing what haprens
Z 5 TRAP Causes TRP if sct in which they are performed. In describing a pr N
i i i i ake usc of anhe £ rary registers o»
g 9-23  SRW Signed displacement if SREL is set we shall make usc of a nunber of temporary regis
Z 6~-23 LW Long word addresses variables (such as NEWP, which was introduced above).
1 g cLyL Call bit. The old P and L are saved
%) if the bit is sot. o
1 1 STK The local environment is allocated
from the stack if this bit is set.
‘ e -




TR T g

B

oy

«,

oo

—

b
e

= e it e soin BN

C

o R NEEIL R - 2 2o

pA~ne
MICPU/M-4 3

poge
Ju

1} If sv¥f, the B field of the descriptor is taken
as the new value of L, which we call NEWL, In this case, the
function being called is said to have a fixed local environ-
ment. Such a function cannot be recursive, and space must
bo allocated for its local environment at all times, On
the other hand, the contents of such a fixed environment is
norxrally preserved between function calls. A FOXTRAN
function has a fixed epvironment, for example. Since,a call
{CLI~1) saves the current L in the E field of the return
Qescripter, tﬁe return (CLL=ff) bandles I exactly as the call

of a fixed function does,

If STK=1, space for the environment is allocated on a stack.
Two words are required to describe the stack, which grows
" toward increasing memory addresses:
SP, the address of the first unused word, Kept in
: G'(2],the third word of the global environment,
SL,‘tEé adlress of the last word zllocated for the

stack, kept in’ G'[éjl

i

If the environment is stacked, different actions are required

.for cazlls and returns,

Cn a call (CLL=l), we compute SPiE. If itkis>SL, the
 STROV trap occurs, ' Otherwise, NEWL«SP and SP<SP4E, =

In other words, E locations arc taken from the top of the

(2,

bce

p/e-nr
MICPU/M~4 .3

prige
2!

gtack. The situation belore and after is chown in figure 1,

Cn a return (CLL=f) what ordinarily happens if STK is set is
SP<«L; NEWIL<E;
in other words, the old L at the time of the call (which was
saved in the E field of the return descriptor, as we will
sce) becomes the new L, and SP is reset to the value it had
before the call, which is the current L. The before and
after pictures of figure 1, looked at in the opposite order,
should help to clarify this, With these rules, calls can
be made freely from fixed envircnment functions to stackel
environment oncs and vice-versa. The industrious reader

may check the four cases.

Unfortunately, if the return is to a function which is not
the onec which called the current one, SP is not reset cor-
rectly. This is expected to happen only as the result

of a branch to a label which has been passcd as a paramelcr
(i.,e. an error return). When such a paramater is passcd
(sce below) from function Fl with L=Ll to F2 with L=L2,

and the descriptor for the call has STK set, the parameter
appears in F2 as a BLL descriptor with STK set, UWSTK set
and L2 in E (sce figure 2). The return (BLI) sees CLL=g,

STK=1, UWSTK=1 and does

This trick allows both SP and L to be set correctly while
 carrying only one numbar in the descriptor.

i

SP « E; NEWL = the E field of the descriptor addressed by ¥

-




ke

o e mmadeas & S feat B e

O

rtaindon s eais i it i i ek 3 Sakei it P £ g .urﬁu R e o o,
, ,v\. n.r ege M .
W/Ws“.‘d %\H\v (4 r»J A Feg \\& Py
i % 3 M-4 : Ty [ T o
{2eiother icpu/M~4.3 38 . wfe. B MICPU/tmd .3
24 T
> o p 7
w b = 3]
w o [~ oo o
+ g ¢ D g
@ - =1 o> E L2
+4 20 S g o
it 280 . WO .
4@ (V=4 , @ oM +1
] e - < u ¢
i, T4 B *E g
t 5% & udd 2 @' @ w
SL
Hon-lccal label
passed by F1:
| sp
AiA g | TR USSTX 17 Local
2ic 1 B P.in environment
§ o= : for Fn
w L(n-1)
, : . . i . B(n-1) n
|
e ' 3
0 3
4+ . #
a i |
- !
w o , Iccal
o ; environment
] i
u » i m@ for F2
h
. -~ o wm .m ! . ansmn momnwwml FTK L1
(3] or from ca Pl L2
o ®
3 g B m of F2 Local
M M. m w m m am environment
9o o5 LY ) for Fl
LR s g n ' Il
pa 3 N> oa > m
W1 g o [ 2.0 g :
5] sw v e = wH o w !
Start of
stack
15
& ; BEFORE AFTER
fu |
]
: |
]
2
i
!
, , ! Figure 2: Return to non-local label in Fl passed
. 1 \ LS
Figure 1l: Allocdting a local ‘environment on the H , as a paramecer
stack during a call i » @
!




It worKs regardless of whether F1 and Fn have fixed or stacked

environments, but requires F2 to have a stacked environment.
when a label is passed to a routing which has a fixed
environment, therefore, E is set to L1 and STK, REL turned
off. If additional space is allocated an the stack afterx
the call, it will not be freed when a branch is made to this
label. It is believed that this deficiency is not very

serious.

2} 1f CPA=1l, arguments are copied whenever a BLL is

executed. If a function has mu%tiple results, it can turn E
CPR on in its descriptor. This will cause CPA to be i
turned on in the return descriptor, and the multiple results
will be returned by the arguments - copying process when

the return is executed. If CPA={, the BLLERR (2) trap

cccurs. A summary of all BLLERR traps and their parameters

is given in the appcndix. The BLLN instruction should be
used if no arguments are being passed; in this case the
trap will occur if CPA=1l.

The address of {actual arguments to be copied are specified

in the calling program in a list of actual argument words

(AAWs) following the BLL instruction. These have a one-to-

one corrcspondence with a list of formal arguments words

(FAds) which starts at NEWP.

b 2o b - s&n” i 1.
:;
o H ‘ s
; WA Vopre—emr Trage
E:EQ;‘C. { | mzcev/m-a.3 i 29 F )

ple-n.r poge |
MICPU/M-4 23 41

An argument word is

sing is interpreted
i+
. tion, but the 7-bit
1
¢ follows..

w
.
>

initialized:

formatted like an instruction.
exactly like the addressing for an Instruce

orcode field is treated differently, as

The addreg+

Name Contents
STR (acttal argument only) struc-
ture
1 = varizble
3'= computed ‘scalar
2 '= array element
g = array
CADDR' (formal' arcument only)'covy
value
1 = ccpy address of
actual argunent
% = copy valuae of
actual argument
FSTR {formal argurent only)
1 = scalar
g = array
TYPE type # = jump {actual argu-
ment only) !
1 = integer (1 word) |
2 = long (2 words)
3 = real {2 words)
4 = double (4 words)
5 = cowplex (4 words)
6 = longlong (4 words)
7 = string (4 words}
8 = label (2 words)
9 = pointer {1 word)
14 = unknown
ENDF end flag
¢ = not last argument word
1 = last argument word

Argument copying procesds as follows:

next formal argument word (NFW) initialized to NEWP

next actual argument word (NAW) initialized to P+l

two pointers are




i s s e i it et 1+ eme P P i i i et )
é "
{ ; - : :
heel “weroias [T | Py
i oo MICPU/M-4.4 42 | e, MICPU/M-4.4 43
‘ RiOAY
é::; Then FAW <« CONTENTS (NFW)}, and Fm is treated as an instructiox @ FINAT bit is set, which will inhibit the skipping of one word
word for the purpose of computing its effective address, which ‘ in step (4).

is put into FQ, Only D or LR addressing is permitted; any- k
i The idea here is that if A{I) appears as an actual argument
i

s
=]

I TIPrR

thing else will cause the BLLERR tragp with class 4.
1 ‘ o ' i FORTRAN and the corresponding formal B is dimensioned, an

: If ENDF (FAW) = @ NFW <« NFW + 1 and copying continues. Other- .
array descriptor for B must be computed, or if A appears as an

wise, copying stops. 1If the instruction is BLL, the BLLERR(2)} i : . -
' ' actual argument and the formal is a scalar, the first element

occcurs, If it is BLIN go to step (3}.

' of the array mus: be found. A software routine is suppnosed

s e e

o S B o

We treat NAW as we treated NFW: AAW « CONTENTS (NAW), R<NAW to do this Tt needs access to the descriptor for A; the
and its effective address is computed. The address type is extra incrementing of NAW is to leave room for the address of i
’

F if TYPE = 1 (integer) otherwise E. BLLERR (5) will occur the descriptor.

s

\

if the address type is not satisfied. .
to ' ' ' Now copying takes place. If CADDR(FAW) =1, Q is stored at FQ
1f type (AAW) = & the AAW is a jump and its address specifies

©u ey«

as an absolute IAW, or except in the following two cases:

| |
i?* ‘ the next actual argument. Repeat from AAW « CONTENTS (NAW<Q), @ % . . . PFE 5+

5 . : ! If the AA?J supplied an immediate operand or if it is .

| ot 1 ‘4 ‘storcd into FO as an IM type Normal IAW, j
: If the AAW svecified G-relative addressing with an address ! § If o Iis the result of ROP or POX addressing or STR ! ;
‘ of # it is taken to refer to the central registers. If CVAL ; (AAW) = 3, ‘Q is stored as a read-onlv absolute (ROD) IAW. ;
# ¢ then BLIERR(S5) or if TYPE) 6 or STR = £ then BLLERR(4) Otherwise (CEDDR(FAW) = {) the valuc must be copied. The f
1 will occur. . details of this depend on the type:
; Next the types are checkecd. If TYPE(FAW) § TYPE(AAV), the | If TYPE = 1 and STR(AA‘\C) # ,g' OP or the A register (in ﬂ

| BLLERR (3) trap occurs, unless one and only one of them is f the ;special case) is copied to FQ. i]
H ; unknown. FSTR and STR are chcck»ed accor.ding to the following i' For TYPE < 6 and STR(AAW) # £, t'heAhu!.nber of words é;
* table: . ' specificd above is copied from Q to‘ FQ, or from the central ‘
; FSTR STR o] 1 2 3 registers (A, B, C and D) to FQ if appropriate. g
j; C1> E"I‘I?li'}:‘ BLéiRRB) FT!;}}:T BLIOJiRR(?’) If TYPE = 3 or TYPE = 4, the floating peint ‘number ad- ﬁ
,; @ FTNAT means that if PIN = &, BLIERR(3) occurs. otherwise the @ dressed is examined., If it is undefined (sec Fleating Paint)

the trap UFN will occur. In case the central registers are

used, storing is performed as in the floating point store J

.
-
3
H

o g ey - y




O

f pf=ns po
MIChPU/M-4 4 £

(5TF) instruction. (Refer to Floating Foint.) Note that
THFLAG has to be set in accordance of the TYPE as the number
of words stored by STF depends on it.

For TYPE = 7 and STR(AAW) # @, the four-word string
descriptor is copied. If the BLL being executed is a system
call {23 described later), four ring checks are done, with P
as source and each of the four word addresses as target.
Furthermore, the word address muat be non-decreasing from one
word to the next, and:the COPS and CSIZE fields of the first
word are copie@/aénto the others. Fina.\lly, 2 is forced into
the top two bits of each word to.ensure that it is a string
dcscriptor.

For TYPE = 8 and STR(AAW) # £ a label is copied as
follows: ‘

The first word is made absolute, i.e. Q added to the

sign-cxtended SRW becomes the new LW if SREL is set, then SREL

is cleared.
In the second word if bits 6-22 are @, the word is re~
placed by L if STK = 4.

NEWL + the STK and UWSTK bits, if STK =1

The basic idea is to supply the proper context, so that the
current local environment will be restored if the label is
branched to. Refer to the discussion of how to unwind the
stack éq see why NEWL is used when STK = 1.

If the label is passed by a system call, the absolute
address in the first word is ring—checkéd. Before copying

the second word CLL, STK and RUL arc cleared and bits 6-23 ar

A

. Ple=r.r 'P
MICPU/M-4 .4

45

unLe
4
3

checked. 1If they are not &, BLLERR(S) occurs.

For STR(AAW) = f the type is ignored. An array descriptor

is also copied like a two-word scalar, except that the sccond
word W2 is replaced by an X or ROX IAW with address equal

to the effective address which results from treating W2 as

an IAW. This permits an array descriptor which uses relative
addressing to be passed as a parameter, since the relative
address is automatically converted to absolute. If BLL is a
system call, in addition two ring checks are done with P as
source and both the first and last words of the array as tar-
gets. This weans that if an array descriptcr is passed to a
higher ring, the higher ring can use it without €ear cf ac-
cessing storage which the calling program cculd not have

accecsed.

¥When the address or value has been copied, ENDF(AAW) is com-
pared with ENDF (KAW),., If they differ, BLLERR{2) occurs. 1I{
both are ff, copying continues with .

NAW « NAW + 1; KFW « KFW + 1:
otherwise it stops. In thc latter case KEWP « NDW + 1

3) If the CILL bit is on, a return descriptor is cocmputed
and stored at NEWL. It ccnsists of 2 words: NAW + Y
Kote that this is the return address
L.+ 1B7 *CPR + 2B7 *STK
iie., the old local environment, with STK on if it is on

in' the descriptor, and CPA on if CPR is on in the call’

descriptor. .




A 3 i . . I - ‘&, E— o,
¥ p =
£> Taya P/canr page
Vo5 4ot a2 MICPU/M-4.4 46
]
gig ! 4) Set L to NEWL, P to NEWP, and continue execution. If

the FTN bit is set, skip one word unless the FINAT flag it on.
The instruction skipped presumably will contain a subroutine
call to take care of the special cases in FORTRAN mentioned

earlier,

\ In order to state precisely and concisely how this instruction
works and to describe the details of ring-checking, an SPL
prograrv is presented in the Appendix which duplicates its
functioning, This program usecs some special functions.
(Those not mentioned here refer to fields of functions defined
elcewhere in this document).

1} The construction $Xe implies a ringcheck with R as

source and X as target. As the access is a store, the trap

L&

PRQ may also occur.
2) RINGCHECK(X) performs a ring check with R as source .

anc ¥ as target. If the check fails, trap MACC will occur.

-

3) RINGIX) produces a number depending on the ring
which contains X, say

Y} if X is in the user ring
2 if X is in the utility ring
3 if X is in the monitor ring

‘ 4) ‘MEN?ER(), MEXIT() andleTERgugf() design;te,thc
places where the actions éescr}bed under "CPU Interrupt-
ability" are taken. . . : ' .

5) EA(X) initiates the effective address calculation
similar to IA(X), but the format of CONTENTSIX) is like an

€§$ inrstruction (or an AAW) rather than an IAW.

Ci I

pe-nrs roge

i) CC MICPU/M-4.3 47

Programmed Overators

1f the P bit of an instruction is 1, it is interpreted as a

rather peculiar kind of subroutine call rather than an

ordinary machine instruction. Execution proceeds as follows:

the OPC field of the instruction is put into IR

a BLL $G'[@] is cxecuted

Presumably word ¢ of G will contain the address of a trans-
for vector. If desired, it may contain an array descriptor
which limits the number of programmed operators and supplies

a multiplier of 2.

There is one additional feature: BLL will initialize NAW

to P, rather than to P : 1, so it will use the instruction
word as the first AAW. STR, TYPE and ENDF will be taken from
the corresponding bit positions of the first FAW,

)




<t e St it o . ) o . N

“ 7N p/c-n.r poge p/e-n.r nege }
)VC MICPU/M-4 .4 48 b;ﬁ C MICPU/M-4.4 49
\~ {
Svsten Calls . (@
under "CPU interruptability.”
Two versions of the OPR instruction provide protected entry
points into' the system. The MCALL instruction works as : Traps
N PhaP wey
follows: | A machine trap is a Forced transfer of control which may occur
] ° o IR .
8 bits orovided by the OPR are put into IR ’ as a result of a variety of untoward events which By a®ise-
a BLlL, $8A is executed, with BA = 604000B . during the execution of a program. 1t does not involve a
;;
when the BLL is completed, switch to a new process.

[ G <« NEWG, where NEWG = 60000CB. i ' ;
A trap may be fixed or rina-dependent. All fixed traps savc

The intention is that 6040008 should contain an array _ R .
the state in the 1f words starting at 6¢27528 (i.e., at the
descriptor with

: end of the monitor portion of the context block). They then

= L f defi £ : set o 6 aa R ga B, where n is the
. ! t ¢ to 6¢72J3B an o X < n; BRU &f4gL2B, wn

uB total nurmber of defined system calls N . . ‘

g = 2 ‘ trap number. They all have a one word paramcoter which is put

f : r JLT = . k ‘

o w s n arr f (l,\ into the A register after the state 1s stored. The value of

e hich points to an array of BLL descriptors for the various ‘ @

3 X AN - i ~ raps
the parametler depends on the trap. Like MCALL-s, fixcd traps

protocted entry peints. Note that if the system call involves . : .
. | | also clear PDFLAG, TDFLAG, 194F and sct the LOCKED bit.
a ring crossing, where the called system is in a hicher ring

-~

than the caller, ¢ is saved in NEJG[14]. G is restored from

A table df all fixed traps is given in the appendix. FBach
"L 5 3 3 al
6'{34] by ary PTL (PLTN, POP etc.) which crosees the ring one is described more fully in its proper place in the manual.

boundary into a lower ring.

e s e . W S b

The ring-dcpendent traps differ in that they send contrel to

They store

For dalls’ into the utiiity the UCALL version of OFR works the a location determined by the ring that P is in.

p and the parameter at G' [4] and G'{5] respactively and thern

|| same way, except that BA'= 4030168 and NEWG = 403000B. Note

that this is the beginning of the utility ring. Variants of i cloar the 940M bit in the status register and do IR <« 17

i

these OPRs exist which exccute a BLLN instead of a BLL. BRU $G'[6].

1 | (MCALY, UCAILN) | |
. : | in 940 modc, if the S bit (bit g) of an instruction and the

i . o v ! |

£ | The POFLAG, TDFIAG bits in the status rcq:‘stcr' are cleared @ p bit (bit 2) are set, the instruction is called a SYSPOP.

by both MCALLs and UCALLS. ‘

MCALLs alco set the LOCKID bit of the CPU as dcscrlibed

, A - B | .




T s
5 emEy

a

.

-
¥
ad

{

N pA-nr pose
,««L.C MICPUAM-4.4 | 50

-

mhe first 10 words of the state are stored starting at L{3],
then A is set to the effective address of the instruction,

clear %940 and do X « OPC, BRU 1'{Z}.

p/e-nr poge |
MICPU/M-4.3 51

hee

CPU Interruptability

The CPU described in this manual is expected to run as pari of
a system which includes, among other things,

1} Seversl physical CPUs, which ace identical except for
a number calleé the CPU number attached to each CPU. %he
CPUs are numbered frem Z te n-l where n is the number of
CPUs.,

2) A separate processcr called the pscheduler which is
responsible for allccating CPUs to processes. The yzchcdulér
21so has facilities for causing the CPU to operate in a
single-step mode, in which it stores the state, waits and
then reloads it after each instruction execution, and for
telling the CPU to stop execution at once f{crash).

3) A protect mechanism which allows the various proces-—
sors in the system to ke interlocked or synchronirzed. There
are four protect lines, any of which may be seized by any

i
processor. A line may be seized by oaly cne processor at a

time: anyone else attempting to seize the line is held uy

until the current owner lets it go,

This section dcscribes the behavior of the CPU with respact
te

1) A STROBE signal, which the pscheduler sends when the
CPU is to swiich processes

2) The single-step and crash §ignals

3) Protect 4, which is usecd to interlock the CPUs,
kecping wore than one from being in a locked state.

4) The timcr trap, which occurs when the interval timer




D)

v P/e=nr poge
}iw. a MICPU/¥~4 .3 52

in the state becomes negative
5} The XMON and XUTIL traps
6) In}tialization
The relevant information is:
al Some information in the state
1} The ring in which the P-counter is contained
2} The ZMON trap bit in SR
3) The XUTIL trap bit in SR

4} the sign bit of the interval timer, which we call TO

b} Some flip-flops in the microprocessor which are not part
of the CPU state
1) STROBE, which may be set by another microprocessor,

normally the pscheduler

N
~

STEP, which may be set by some external device to
make. the CPU operats in single-step mode,

t M s . .

{3) LOCKED, which is not accessible to external devices

i4) ALARM, which is set when a system crash is impending
¢} The state of protect 4, which will be called CPUPRO

d) A location in absolute ccre called CPUWAIT which is uscd

to keep the CPU idle after the system has crashed or

between STEPs,

Fle=nr pezo
E§§:Z€: MI1CPUAL-4.3 B3

A. 1Idle State

when it is initialized (by setting the 0 register in the
microprocessor to g) the CPU goes into idle state.

ICLE: Clear map scan reguest:

GOTQ IDLE IF NOT STFOBW:

;}ear STROBFE .

PWAIT: T « contents of absolute cell (6 + QPU nurber)

(T is the process' PRT index)

Goto PWAIT if T = £;

Clear absglute cell (6 + CPFU number};

Clear LOCK:D; Clear the m2p:

Find the page with the name in (T} and (T+1)

Take it as a context block and load the state
from location 27643-2777B in it (called the
SAVE area) .

If the page is not found in CHT, send 2 STROBREZ2 to the
pscheduler with a message 4B7 in absclute cell 24348 + CXU
number *4 then do like ABORT.

atart executing instructions at the location given

by the P-counter;

The CPU returns to the idle state whenever it dumps the state

of a process.

B. 1Interruption of program execution

At the start of every instruction, the truth of any of the
following conditions will stop executicn and cause the
indicated action to be taken. The conditions are treated

in the order in which they are listed.

o s

e G YR o o

R e o el

P e < e

R

| g e,

e e et

wn e v e e

e

B i s e M




e

PR S

i

')

-

C e e e

[

s e i

S S s et e W%

ke DL b s

3
i

o an

et

o -

0

O

-

E‘)CC . Micpu/M-4.4 54

pfe-irr roge

2} NOT LOCKSD AND STROBE: dump the state into the SAVE area,
send a RETURY message to the pscheduler and go into idie
state.

3 STEP OR ALARM: dump the state into the SAVE area; clear
STEP, Clear the wait location {238 + cpU rimber) and wait
dntil it becomes 1234221¢8; then reload the state fron

the SAVE area and proceed,

At every step of indiyection, every start of an instruction
which is the target of EXU, every paramcter of a BLL and in
all other places where the CPU might be held up for more

than a few microscconds, (MVB, MVS, CPS), conditions 1 and 2

are tested and their indicated actions taken.

C. Setting the bits
XMON and XUTIL are part of SR and may be set or cleared with

SRS, LOADS or XSA.

LOCKED is se} by MCALL or fixed trap. It can alsc be sect by
SLOK. It is cleared by any BLL or LOADS which leaves the
L]

monitor ring (BLL, here, includes all variants: UCALL,

MCALL, POP), and can also be cleared by RLOK.
.

TO can be changed by loading a state from the SAVE area or

by the OPFR to sct the interval timer.

D. The X travs

At every BLL or LOADS a check is made for transition into a

R o o e e v St e e e 4 v, .t e e — B

bee

pe~nr
MICPU/H-4.3

pege }
55

lower ring.

set,

1

1 there is a transition from monitor to utility

E. The CPUPRO signal

LOCKED is sect and cleared at each point
the programmer can set it himself with

this is probably unwise.

or user rings, the XMON trap is caused if the XMONT bit is

Theh if there is 2 transition from ukility to user ring,

the XUTIL trap is caused if the XUTILT bit is set.

this protect is seized avtomatically at each point where

where LOCKED is cleared.

the PRO operate, but




') -
L 3 Wy .
T - W ” B - N
' 2 TR - 8 il i . - )
!, . \
! : ! }
. p/e~nr pcos | | ) ) :
A 4 MICPU/M~4.3 56 i 1 : Aleenr . pege
s i 3 ‘)CC ; ©oMICcPU/M-4.3  §)57
‘@ N 2o | ‘
Ordinary Instructions «Qgg\ '
This scction contains a complete descripéiog of the behavior ¢ Thc RESULT is indicated in the description of each instruction

N ‘ ’ | r . - . . s + \ _ e
of the machlire when interpreting an instruction word, with | Unless some other change in P is indicated; all instructions

N .

he follewing cxceptions: end with"

instructions with P = 1 are described under "Programmed P'e PT+ 1}

" ) ) { . . . .
Operators The INSTD bit'inthe status registér is set' to g 'at the end
: the BLL instruction is described under "Function Calls"
- of every instruction, except £6r LOADS..

: the floating point instructions are treated in a'

The address type of the instruction - is indicated 'for every

i

separate section. |

;

effective address computation for all instructions is instruction, e.q.,.

described under “Addressing” LDA L (F)

In -the description scme special'notation - is used: STORE(X,Y

i
: . . ; cex . . . i
s Each. instruction is specified in terms of its operands, its i

" effect on the state of memory of the running process, and Gééx ; stores X in the memory lécation addrcssed by Y. The stering
any unusual traps it méy cause. Traps which are caused by . ; . includes some special’leogic for (8) type instructions if a

. the addressing system are the same for all instructions and ; ‘ % field or character is specified as operand (refer to Use of
are not considered. Traps causcd by thc mad are the same } ; Addresses by Instructicns); ABS(T) is the absolute value

]
except for the read-only trap. Its occurrence depends on of T. ABS{4B7) = 4B7.

whether the instruction attempts to modify memory; this

should be obvious from the instruction description and will i
. not be further mentioned. The address type is S or D for

instructions which modify memory.

Part of the state is a 2-bit condition-code. This code is .
set by thc RESULT of most instructions as follows: :

g if RESULT { @ ’

1 if RESUIT = ¢ @

2 if RESULT ( &

o et e




b AR~ Bt e

ke ke 50 e

o

3
4

L5 PP

o>

ple=nr page
MICPU/M-4.3 58

hee

Suamary of Abhreviationa
AR register

A

3R B register
C register (used only for double-precision floating-
D

register point and quadruple loads and stores)

XR X register

.,

P Program counter
L Local environment register
G Global environment register ‘

¢Cc  condition ccde, equivalent to RESULT:

cc=4g rREsULT { @
cc =1 RESULT = &
cC = 2 RESULT > ¢

SR Status register
OV = SR{22}] Overflow bit

TOV = SR[21] Termporary overflow bit

CARRY = SR[20] Carry bit
PDFILAG = SR[19] Perianent double-precision flag, Used
to set TDFLAG after ST¥, STD or FCP
' TDFLAG = SR{18] Temporary double-precision flag. Makes

all floating-point instructions double-

precision,

RSN

o TN 2 SR SRk,

@/

&>

pt=n.r page ]

C MICPU/M-4,3 5¢
# o

he
LAY
A,

Data Transfer Instructions (12)
LDA (F) Load A register
AR « OP:

RESULT <« ARy

DB (F) Load B register
BR « QP;

RESULT <« BRy

IDX (F) Load X register
XR <« 0P

c¢ is unchagned

DD (E) Load double
AR <« CCNTENTS(Q): BR <« CONTENTS (Q+1):

CR « CONTENTS{Q!2) & BR < CONTENTS (Q+3) IF TDFILAC=1

RESULT < AR:

EAX (E) Effective address to X
XR <« Q;

€C is unchanged

TAX (E) Load array index
XR <« Q OR 4B6 (sets TAG %o 2 for indirection)
CC is unchanged

Treats bit ATRAP in an array descriptor oppesite to
all cther instructions

INX (¥} Load negative to X

two-s complement negation

XR <« -0P;

CC is unchanged




o

p/e=n.t
MICPU/M-4.3

page
60

STA (S) Store A register
STORE (AR, Q):

CC is unchanged

sTB (5) Store B register
STORE (BR, Q) 1

c¢ is unchanged

s5TX (S) Store X register
STCRE {XR, Q) :

€C is unchanged

STD (D) Store double

STORE (AR, Q) ; STORE (BR,Q+1}:

STORE {CR, Q~2) & STORE (DR, 0-+3) & TDFLAG <« PDFLAG

IF TDFLAG = 1;

cc is‘unchanged

XMA (S) Exchange memory and A
TEMP <« AR; AR <« OPF;

RESULT <« AR:

STORE (TEMP, Q) 3

e

Ne~nt rage

MICPU/M~4.3 61

-

B. Integer Arithmetic Instructions (10)

ADD (F) Add memory to A

AR « AR + 0OF; (two‘g complement)

CARRY « carry from bit # of alder, i.e., set if the
sum of AR and OP taken as unsigned 24-bit integers,
is D 224, and clearcd otherwise:

oV < 1 if the add causes overflew, i.e., if AR and
0P have the same sign but the sun has a differert
sign, else @;

oV <« OV or TOV:

RESULT « AR;

sup (F) Subtract memory from A
Proceed exactly like ADD except that (~0OP) replaces
OP. This is a two's complement negate, i.e., (NOT

op + 1)

AD& (F) Add memory and CARRY to A
oV <« g:
AR <« AR + OP + CARRY;

Then procecd cxactly like ADD

suc (F) Subiract memory from A + CARRY
oV « g .
AR <« AR + CARRY + (NOT OP)

Then procced exactly like ADD

MIN (S) Memory increment

RESULT « AR <« OP + 1;

STORE (RESULT, Q) ¢




RN R 7 U AR PN ¢ T

EE P e U T

=

T A T e g P

g

Efe-ar page
MICPU/M-4.3 62

MDC (S} Memory decrement
RESULT < AR <« OP -1;

STORE (RESULT, Q)

anpM (S) Add to memory
RESULT <« AR + 0P + AR;

STORE (RESULT, Q)

ADX ,(F) Add.to X
XR ¢« XR t OP

,CC is unchanged

MUL (F) Multiply memory and A
TOV « @;
TOV « OV « 1 IF OP = AR = 4f@0ggaps:
as two's complement numbers,

vielding a 47-bit two's com-
‘plement result

PROD « AR * OP;

AR[g,23] < PROD[F,23]:
BR{Z,22] < PROD{24,46]:
BR{23] <« £&:

RESULT <« (AR OR (BR RSH 1))

The product, consisting of a sign bit and 46 ‘magnitude bits,
is left-justified in the AB registers. If integers-are
Being multipiled, and ASHD -1 is required to obtain the

integer product in B.

T T

J

P R s

S

-

e et e i o . oA sy Sl rens 8 oos Lixeip o P G

/j

bCC MICPU/M-4,3 | 62

) R/e=-nr

DIV (F) Divide memory into AB
TEMP « OP:TOV < {3 .
DIVIDEND < ABI0,46]:

&z 47 bit two's-corplement
integer treating both cpe-
rends as fractions in the
range -1{f{1, and obtain-
ing a quotient with 23
fraction bits

QUOTIENT <« DIVIDEND/TEMP;

TOV « OV « 1 and proceed to next
instruction unless -1{ QUOTIENT <1

AR <« QUOTIENT;

yielding a 47-bit preduct
as for multiply
this is the remainder

TEMP <« QUOTIEZNT * TEMP:
BR < (DIVIDEND - TEMP):

RESULT <« AR:

The quoteint of the 47-bit dividend and the 24-bit divisor,
both taken as signed two's complement Efractions, is put intc
A and the remainder into B, Overflcw occurs il the dividend
is largér than the divisor, since the guotient cannot be

represented as a fraction; in this case, the central registers

are unaltered.

To divide an integer in A by one in memory, do ASHD -22 first.




TR TR TR GRERE VAN S0 A

PR

- . ; B . N - . N e et
i
. , ;
- . H {
f/‘ ~ Pose ; % ; . ', fe=nr noge
) MaTPU/ M- L3 64 I o @ ; | MICPU/M-4 .3 65
:; ! N St N o

C. Test Instruetions (5)!
ICP (F) Integer compare

RESULT « AR - OP;

cp? (F) Compare with zero

RESULT < OP;

oMZ (F) Compare A and memory with zero

RESULT « AR AND OP;

The follo&ing twa instructiéﬁskoperaﬁe”on stridg deséripfors,
which age pairs of indirect ;ddqess words of type string,.
The intended interpretation is that the first points to the
first character of the string, the second to the last char-

doter,

ISD (E) Increment string descriptor
TEMP « CONTENTS (Q): -
CSIZE <« TEMP[2,3]; CPOS « TEMP[4,5]):
RESULT <« TEMP - CONTENTS(Q + 1)

Proceed to next instruction if RESULT = &

| IF CPOS + CSIZE {3 DO;
CPOS « CPOS+1;
\ ELSE DO:
CPOS « 0; TEMP « TEMP + 1-
ENDIF;
TEKP[2,3] <« CSIZE; TEMP(4,5] <« CPOS;

STORE (TEMP, Q) 5

v

1F the string is empty (the two IAWs are egual)} the in-
struction sets CC to 1 and exits. Otherwise it sets ce
to ¢§ or 2, and increments the first IAW by one character

position in the string.

pSD (E) Decrement string descriptor
TEMP < CONTENTS (Q41):
CSIZE <« TEMP[2,3]; CPOS « TEMP{4,5];
RESULT < TEMP - COMTENTS (0}
Procced to next instruction 'if RESULT = 8:
IF CPOS > § DO; -
CPOS <« CPOS -1;
ELSE DO; °
CPOS < 3-CSIZE; TEMP % TEMP -1;'°
ENDIF; :
TEMP({2,3] '« C31ZE: TEMP[4,5] '« CPCS: -

1 STORE (TEMP,Q-1);

The idea is the same as for ISD, but thé second IAW is dd-

cremented by one character position.

D. Logical instructions (3)
ETR (F) And A and memory
AR « AR AND OP;

" 'RESULT « AR;

I0R (F} Or A and memory
AR <« AR OR OP;

RESULT < AR; ’ i




O

o e s

iy N oo
f“"{:\ pi=-nr page
Lor Rt MICPU/M-4.3 66

EOR (F) Exclusive or A and memory
AR + AR EOR 0Py

RESULT « AR:

Shift Instructions (6)
All shift instruciions interpret the absolute value of

0P MOD 64 as the number of shifts to be done. The sign

of OP specifies the direction: positive for left shifts,

negative for right:
SHIPIC < ALS (OP MOD 64):
right shift as specified IF OP { ¢ ELSE
left shift as specified;
PESULT <« AR

1

ASHD (F; Ar;éhmegic shgft double (A and B registerxs)
A and B taken as a single 48-bit register are
shifted. ©On a right shift, the original sign bit is
copied into‘vacated bit positions. On a left shift,
OV « 1 if any of the bits shifted oﬁt‘differ from the
final sign of A. TOV is set to 1 when OV is sct,

othexwise it is set to £.

ASHA (F) Arithmetic shift A

Identical to ASHD except that only AR is shifted

LSHD (F) Logical shift double
A and B taken as a single 48-bit register are

shifted. Vacated bit positions are filled with zeros.

f p/e~ns pP=g”
CC MTICPU/1-4.2 |67

1sHA (F) Logical shift A

1dentical to LSHD except that only AR is shifted

cYD (F} Cycle double
A and B taken as a single 48-bit register are
cycled., 1I.e., they are\shifted, but bits which are
shifted out pne end £ill the vacated positions at the

other end

cya {F) Cycle &

Identical to CYD except that only AR is cycled

Branch instructions (10}
BRU (E) Branch unconditionally
P < Q:

c¢ is unchanged

Six instructions test the condition code
BLT (E) Branch on less than
PegqI1FCC =g: (RESULT £ £)

¢¢ is unchanged

BLE (E) Branch on less tkan or equal
pegircc=¢g ORCC=1; (resvLT £ 9}

cc is unchanged

BEQ (E) Branch on equal
P« QIFCC=1: (RESULT = &y

¢C is unchanged




8

e T Qe

X

G.

P/e=mr poge

(™ Mirotar 'y o401 11
CC | ’
BNE (E) Branch on not equal : !

P« Q IF CC # 1; (RESULT # &)

ce is unchangjed . o

BGE (E) Branch on greater than or egqual
1
P« QIFCC=1o0rCC=2; (RESULT » )

CC is unchanged

26T {E) Branch on greater than
P+« Q IF CC = 2; (RSSULT ) )

¢C is unchanged

Two branch instructions affect the X register
. BRX (E) Branch on index

XR « XR + 1;

PeQIFXrR M

CC is unchanged

BSX (E) Branch and set X
XR « P + 1
P «Q:

CC is unchanged

BLL {E) Branch and load L

is described elsewhere

Miscellaneous instructions (5)

HIT (F) Halt

Always causes the TI trap

SRRV T R A It

)
{
! B-nr poro
7
; 3
|

EXU (E) Bxéecute
Initializes IR « ¥R & R <« Q, then interprets

CONTENTS{Q) as an instruction and executes it,

EAC (E) Effective address cormputation
This instruction computes the effective address of

CONTENTS (Q) interpreted as an instruction word. Similar

to EXU, IR and R are initialized to XR and Q Tespectivaly,

The results of the computation are given in registers.
as follows:
XR[f,5] « RESULT « 1 & AR « Op
if the address is Immediate
XR[#,5] « RESULT « 2 & XR[6,23] « Q
if the address is ROD or ROX read only
XR[F,5] « RESULT <« ’3 & XR[6,23] « 0 & AR « MASK &
BR <« SHIFT
if the address refers to a field or
or character, ° .
MASX has bits (z’:;#s:‘zs)',‘ 23 on, 'the rest’
off. SHIFT equals to 24-(FR + STZE)
XR[F,5] « RESULT < g & xr[é,23] « g
in alivotﬁér cases.
Note tﬁat'd\— whenever given - is ring checked
aqainst‘R in tge final phase of the address caléulétibnb

{refer to Addressing from Instructionsf ‘

g o e e

5 v e o sen

[

Ay s - - o e

.

N

[T

I T e vl

PR




b adaf B et

bee

plc=n.r page
MM 1,0 0

SRS (FP) set or reset status bits
The operand is used to set or reset the status
register in the state in the following way:
8R « 3R OR OP IF (OP AND 1) == 1 ELSE

SR AND NOT OP:

758 (F) Test status bits
RESUIT « SR AND OP:
I.e., 1 bits in the operand select bits of SR,
The condition code is set depending on whether all the

selected bits are g or not.

OPR (F} Operate (1)
If the operand is negative, the instruction is a system
call, Bits 14-15 in the absolute value of the operand
select one of four alternatives:
g UCALL
1 UCAIN’
2 MCALL
3 MCAIN
Bits 16-23 in the absolute value is the address for the

system call, {as described in a separate section)

If the opecrand is positive, it is decoded to determine

what is tu be done?

ot et i v ot s S o 4 o -

Rcene pepe

Micry/m-4 .3 /1

CXA

CNA

CNX

Z0A

ZAB

208

XGA

cLA

XLA

CSA

CTA

CCA

NOP

Copy A ta B
Exchange A and B
Copy B to A

Copy B to X
Exchange B and X
Copy X to B

Copy A to X
Exchange X and A
Copy X to A
Negate A

Negate X

Clear A

Clear AB

Clear B

Copy G to A
Exchange G and A
Copy L to A
Exchange L and A

Copy SR to A

Exchange SR and A

Copy interval
Timer to A

Copy Conrpute
time ciock to A

No cperation

BR « ARy

T « AR; AR <« RESULT « BR; BR <« T;
AR « RESULT <« BRj;

XR « BR:;

T « BR;y BR « XR; XR « T;

BR <« XR:

XR < AR}

T « AR} AR « RESULT « XRi XR « T;
RESULT <« AR +« XR:

AR <« RESULT < -AR:

XR + -XR:

AR <« RESULT « g;

AR <« BR <« ER « &;

BR « &;

AR « RESULT <« G:

T « AR; AR « RESULT « G; G « T;
AR <« RESULT <« L;

T « AR; AR « RESULT « L; L « 7T
AR + RESULT <« SR;

T « AR; AR <« RESULT <« SR; SR « T;

A <« RESULT <« IT:

A <« RESULT <« CIC:




p/e-nr rogs pi-nr sase }

H Ve . . > ;
: 53’{#@ MICDUZM 4, B E}@{: MY A, 71

@

starting at the byte specified by XR. RESULT is set to

i MVR Move block

i .

3 The klock of AR words starting at XR is moved to the AR words indicate whether the first string is smaller, equal to,

g starting at BR., The words are moved one at a time, ard the or greater than the second. The registers are updated every
i

j

registers are updated after each word is moved to reflect time a byte it compared. This instruction is interruptzble

the nurber of werds remaining to be moved. This instruction

: cLS Compute length of string

y 3 is interruptable., The move is done in such a way that no .
: ’ AR and BR are taken as string IAWs., The numbar of hytas in
H word is overwritten until it has been moved. .

E ) the string starting at the byte specified by AR and ending
- e Move constant ' at the byte specified by BR, -1 is put into AR. The

y %K is stored into the AR words startlng at BR, Thie ingtruc- CSIZE fleld of BR is used to determine the byte size.

tion is interruptable, RESULT « AR;

MVS Move string ASP Add to string pointer

ig;:, The string of AR bytes starting at the b‘yte specified by :@ AR is taken as a string TAW. Into XR is put a string IAW
i R
BR taken as a string IAW is moved to the AR bytes starting which points tc the XRth byte beyond the one pointed to by
i at the byte specified by XR taken as a string IAW. The . AR,

bytes are moved one at a time, and the registers are updated
LT Locate leading transition

[y

after each byte is moved %o reflect the number of bytes .
The bit number (counting from ¢ on the left) of the left-

5 remaining to be moved. If the source and target sirings
most bit in AL which differs from the sign bit of A is put

overlap, the move is done in such a way that no character
into XR, If no bits differ, ¢ is put intec XR.

o B R b

is overwritten until it has been moved. If the strings do

RESULT <« XR;
not overlap, after execution BR and XR will always point to

!

‘ the first characters after the source and target sirings cos Ccunt cne bits

] respectively. This instruction is interruptable. The number of one bits in the A and B registers is put into
i

N : T XR.
g CPS Compare string

! ) ‘ -, ‘ Co : RESULT < XR;

B 3 The string of AR bytes starting at the byte specified by .

M [ @

' BR taken as a string IAW is compared with the AR byles . 1oADS load state

s . ' ' Loads the first 10 words of the state thot inciuding the

St e,




o fm

h g

) \

= s St s 1 bR,

PP

A

‘

p/e-nr
g
% W

poge
MICPU/M-4.3 74

O,

f

compute time clock or the interval timer) from the 10 words

addressed by X. A ring trap will occur if the new P is in a

hicher ring than the current P. This instruction coes not

clear the INSTD bit. An XMON or XUTIL trap may occur if the
new P is in a lower ring than the current P and the XMONT

or XUTILT bits are set in the current SR as described under
"CpU Interruptability.”

ST035 Store state

* i
addéiressed by X, but does not store P and ¥; the corresponding
locations are lefl unchanged.

nsC lo2d string constant

The word addressed by X is fetched and used to form a 4-word
string constant in A, B, C and D as follows:

TEMP <« CONTENTS(XR);

CSIZE <« TEMP{2,3]; CPOS +« TEMP[4,5];

AR <« BR < 437 + CSIZE * 4B 4 = [

(3 - CSIZE) *.1B6 + XR;

CR < DR .« 4B7 + CSIZE * 4B6 +

CPOS * 136 + XR + TEMP[6,23};

. Tﬁc following OPRs ‘are §ri§iléged. If P:< Gdﬂéﬁg, the TI
tiap will ocenr.

. . M . . .,
' f
-

SLOX  Set CPU lock
: RLCK ~ Resel CPU lock
tOAW

Absolute 1load,A -

Rl
Stores the Tirst 10 words of the state into the 10 words

R

e e

——

p/e-nr ‘psge }

MICPU/M-4.3

HEC

h the cntent of the re ocatio whoee uge
Loads A wit c S cC loc n abSOlJt

address (i.e., unmapped address) is contained in X.

AST absolute store A
o4 is
i bt i whose absolute address
gstores A into the core location

contained in X.

ARX Absolute address ro X

iQacs with the absoO ute a dress COLYES ONCAir +o the wvirtdu 1l
B v

Lo 2 ¥ was
ddress in X. Bit ¢ is set if the physical map entxy
addres . ;

. - £ » = LS TSRy
Y 2 was on 1N the Q}l} < (:al map oenkry
empt Bit 3 s set 1 PMRO

bit 2 is set if pit 3 is set or the dirty bit was clear.

PRQ

il i the selected
Attempts to set proi if AR{2¢ri] is on. If all th ; :

i

i

i

i

i

i

!

H

i

3,

Protect %
1

i cc o« 1.
PROs are set successfully CC < ¢g; if none are, \

These are the only possibilities.

i

{

|

+ N (‘

uNpRO Unprotect i

.Clears PROL if AR[2¢11] is set

ATTN Attention

ends a trope SignaL to microrrt ocessor L if AR 16+1 l is set.
(¢} 6
] S $33 T2 2 X [' :

.UsCL pscheéulgr(call

he state
This OPR .initiates a switch-processes sequence. The !

of the.ma ¥ Is) s somynd + +h AVE re 6}: 1GAD The
$ S Pt [ SAV AT e ( 2 J) - A0t {
Lmacain 1 ounp a (] a 1
L v 11T s SNAIN { e righ wnac H least
nterva imer sn fted to the rig s0 na £
Int 1 7T by "' wt * + he east

ke ' ’ 4 P
.81amn ficant bit COLIIt- -“ldl:‘" econds is st

field (8,8:7) of the process’ PRT entry.

R

O

s e g




i
3 ? y/emn,r page ] . ple~re roge
: i} QC MICIU/M 4,3 10 :‘QC Mt/ ALY i
l% The pscheduler is called with bits #:5 in A as an opcode, (@ X

Floating Point

the CPU is put into the IDLE state, .
‘ A. Number Represcntation

\

CHAD Sets all EF empty flags in the map to 1 A 48-bit single precision fleating point datum represents

a rational numbcr in the following way:

CMAPS  Clears the maps of both CTPUs in the systent 1) Positive humbers
4
- CAT Copy A to interval timer IT « A: Bl - 1 12 - 47
X: [ﬂi M N
CAC Copy A to compute time clock CTC « A:
M is the biased exponent E:
RUN Read Unique Name . E « M ~ 20008
A unique name is read from the unique name generator and positive number X = N * 4 (E-35)
t into AR, ’ 1
put inte where 235 ¢ x ¢ 2%% -1 ana -2 ¢ 8 ¢ 2YP 1
BR « low order bits of unique name; ( E. g. + 1.¢ is represented as
AR « high order bits of unique name; @ g1 11 12 47
E gl1.09 7|
1¢
o . . Largest number is 22 * (1 - 2_36):
4 . : g1 11 12 47

: [—z 11 111.11 1J

smallest positive number is {except for unnormalized
27

g ey

numbers, see below) 2

g1 11 12 47
[ #los o)1 .0 g

i
:
s
H
H

g

' 2) Negative numbers s

The sign bit (bit &) indicates that the number is

TR R T T A«

®

O

e i RGN

£




.
[y vy

m—
P v

TN AL e e oy Gt

Ih A ARl van it

o Ry AL Ry

Y i

. e=n.r page
E}@C MICPU/M -4, Zfl_,
negative, N is given in two's complement form:
negative number X = (§ - 236) ¢ 2(B-35) 3 ¢n( 235
g1 11 12 47
-1 |19 g]1.09 7
Lowest negative number is —221¢ *(1 - 2736)
2 g1 11 12 47
1 1ia.09 1
. i
Maximum negative number is -2-2°% !
g1 11 12 47
[1lee  gligg 7
3) Zero:
g1 11 12 a7
lolos  alo.sp 9
4} Un-normalized numbers .
The only un-normalized numbers allowed are these:
g1 11 12 47
x: |gle g 5 |1 ¢ w2
and their negatives, i.e., IXl £ 221 yote that
+ Z‘Zlg are both normalized and un-normalized
5} Infinity
g1 11 12 47
- 3 [1{11 liﬂ.ﬂ 4
The symbol - » is treated as the single point at

ip:ga B

Lz

pe-nr
Micp/mo AL

infinity in the one-point (projective) closure of

the reails. ©Opecrations on - « are summarized in

the Appendix.

6) Undefined floating point numbars

Data of the form
g1 11 12 47
e: 4] M N

with @ <Magdng2® o,

and their negatives are not floating point numbers.
If such a numbor appears as an operand for any

floating point operation, the trap UFN will occur,

Algebraic Closure Properties of Normalized Numbers
Numbers of the form A.l, A.2 and A.3 are nornalized
numbers. (n.n's)

1) * If X is an n.n., so is -X.

2) If X is an n.n not zero nori;’zlg so is 1.¢/X.
The smallest positive n.n. whose reciprocal is an n.n,

-21g

is 2 (1 + 2735y,

Double Precision
The 96-bit double precision data have an additional 48

fraction bits, For example a DP positive number:

g1 11 12 47
Ig’ u ] N
48 a5




TP

e o

3
E
4

o A

[EEJENEN O, PR,

P R e N

e s T U e A 5 N By oSSt s 2T T e v

é:}

T,

[T SN

b, s o A b e

P

heg

p/e~n.r page
MICIU/M-4.2 B8O

i

represents X = (N + N' * 2-48) * 2(E-35), g {n' (248 -1

Floating Point Instructions (8)'and OPRs

All floating operaticns have single (SP) and double (DP)
precision variants, bit TDFLAG in SR selecting the one
to be used, Bit PDFLAG is used to set TDFLAG after a

compare {FCP) or store (STF).

Floating opcrations set €C to indicate if the result is

less or greater than or equal to #. (STF and FIX

leave CC unchanged)

FID (E) Floating load
An EP or DP floating point number starting at Q is
copied into the floating point accumulator, (The A, B,

¢, D and E central registers)

sTF (D) Floating store .
SPF: The floating point accumulator is rounded
at bit 35 of the fraction and copied to {(Q) and (Q:1).

DP: Four words are copied from FA to the

locations starting at Q,
no rounding if the FDP bit in SR is set. Otherwise it
rounds at bit 71 of the fraction and zeroes the last

12 bite., The FDP bit thus determines whether DP nunblrs
are stored with 72 or 84 bits of fraction, Overflow

may occur because of the rounding. In all cases

TDFLAG <« PDFLAG after the store,

A double floating store causes

®

hee

plc~nt poge
Miciu/m 40 1Y

(i.e., r[84], since when we say 'bit 83 of the {fracticn’'

we don't count the sign bit} in accordance with the

rounding mode in force, is assigned to the flcating peint

accumulator, See the discussion of rounding beclow for

details. Both overflow and underflcw may occur.

FSB (E) Floating subtract
7dentical to addition except that the negative of the

second oporand is taken first. This carnnot cause any

abnermal conditions.

FMP (F) Floating multiply

§p: The accumulator is rounded to single
precision, then the two 36-bit fractions are rmultiplied
goes with

to yeild a 72-bit result. The exponent which

the result is the sum of the exponents of the onerands

plus one, to correct for the placement of the binary
]

point in the product. The 72-bit fraction is shifted

left if requircd for normalization, Ro rounding is
required since the accumulator can hold this entire

product, Overflow or underflow may occur.

DP: The two 84-bit fractions and the two siqgns

are multiplied to yield an 86-bit result (=ign plus 85

magnitude bits) and an 87th bit which is the union of

the 82 least significant bits of the full 168-bit product,

The resulting 87-bit number and the exponcnt obtaincd
by the proccdure described for single precision are

normalized and rounded like the result of an add,




=Sy

T T SR et Rnea - A kSt e

»,

e N M i . A bt STAIE ot

it 2 s i it i s - - e AT

hee |

pl-ar poge
MICPU/M-4,3 81

—

%5
o

g

%,

FAD (E) Floating add

SP: The operand is extended with 48 zeros on
the right, A DP is then done,
b4 Let the operands be a * Zb, e+ 24, the

two exponents are compared. Supvose d » d. Then ¢ is

shifted right by b - d. A 87 bit register is provided
to hold ¢, which is loaded ({sign + 84-bit frackion)
into the 85 most significant bits. The two least
significant bits are cleared. The 86 most significané
barts participate in the right sHif: in the usual way.
The least sigrificant bit is ‘sticky’': if a 1 is ever

shifted into it, it remains 1 from then on.

After ¢ has been shifted, it is added to a in an 85-bit

adder; yielding a result r of 87 bits., Biks 85:86 of

¢ dc not participate in addition.

clg] A rigl),

r[86] is treated as a sticky

Now, if an overflow has occurred {(a[d] =
r is shifted right by 1.
bit in this shift just as it was in the shift of ¢. b

is incremented by 1 if this shift occurs and r[g] < NOT

r(g};

The result is normalized by left shifting until either:
1) the sign bit differs from the next bit or

2) the fraction is 1127 ... ¢
The exponent b is decrcmented by 1 for each left shift.

Lastly the result, rounded at bit 83 of the fraction

e e

62;

bee

Fle-ne
MICPU/M~4.,3 84

zage

XR is assigned & 24-bit integer which is the floor of
the floating operand. If the floor is » 223 -1 in
maqmitude, the trap FLXO occurs. The result does not

depend on 3P or DP mode.

FNA (OPR) Floating negative
The number in the floating point accumulator is replaced

by its negative.

PIX {OPR}
Similar to FLX, but the operand is taken from the
flodting point accumulator and the result is put into

RESULT and AR.

FLONT [OPR)
A PLOAT operation prodvces a (hormalized) floating point
number in the floating point accumulator which when $IXed
will restore the integer operand in AR, (unless it is

487) . Nothing can go wrong with FLOAT.

Rounding

There is a three~bit field (TRMOD) in SR which specifies
how rounding is to be done (the field PRMOD is used to
sct TRMOD after every FAD, PSB, FMP, FDV, STF or FCP).
The descriptions of instructions above state explicitly
cach point where rounding is done, The phrase ‘round at
bit n of the fraction' meanc that bit n of the fraction

(numbering the magnitude bits from @ and not counting the

sign) is the least significant bit retained.




/t-p,r . ) pege
MICPU/M~4.3 83

DV (E} Floating divide

§P: The 36-bit divisor fraction is dividcd'into
38 bits'of the accumulator fraction to procuce a 37-bit
guotient, Mo this is appended a 33th bit which is sot
if the division is not exact or if the other 46 bits of
the accumulator fraction are non-zero. The resulting
1g-bit number is put into the fraction of the accumulator
and filled out with 46 zeros on the right. The exponent
of the result is computcd by subtracting the divisor
exponent from the dividend exponent.

DP: fThe 84-bit divisor fraction is divided into
the 84-bit accumulator fraction to produce a 85-bit

quotient. The exponent is computed as for SP and the

result is rounded in the usual way.

Overflow or underflew may occur. Division by £ produces

its own trap., (DIZ}

If the divisor is an un-pormalized number it is
normalized prior to division. It may or may not cause

overflow as explained below.

FCP (E) Fleoating compare
Identical to floating subtract, but the result is not
assigned to the floating accumulator, CC will be set
as ysual to indicate the sign of the result.

TDFLAG <« PDTLAG.

FLX (E) Fix and load X

) T 3
o ) e s .
/e=pnr Ppoge
%}QC ! YICPU/H-4.3 83:3
B The rounding modes are:
TRMCD Kame Rouniding

g N nearest number

2 F £lonr (toward €)

3 ¢ ceiling laway from g}

4 P away from - o

5 M tovard -~ =

Rounding involves three bits. The first is the least
significant bit to be retained and is called Q. The
one followirg Q is called R. The third is the union of
all the bits following R (sometimes only 1, none for

double divide) and is called T.

The rounding rules are. as follows (call the sign S):
W: +1 (add 1 to least significant retained bit}
if R=1lunless Q=g and T =&

+1 if S 1 aad Ror T =1

:?u

it

"

c: +1 if s =g and Ror T 1
P: 41 ifRor T =1

M: no acticn

overflow and Undexflow
overflow or underflow occurs if at the end of a2 floating
point instruction, the exponent is outside the permitted

range.

overflow always causes a trap (FLO) . It leaves a corvect

result except for the exponent, which must be read as a




s
- o e e O

SO e e e e e T Gl s 1 camen B S ame e . i
R R L R el 2 = e = . R’ - o

pe~n.r page
» . o P
NC { MICPU/M-4.3 |86 Loam p/e-ns pege
o et 2P - i MICPU/H-4.3 |87
3 ~
12-bit two's complement number with sign bit the ”@
complement of the high-order bit preserved, DEFINITION OF INSTRUCTION CODES
Underflow action depends on the SUF bit in SR, If it code mnamnonic a.type code mnemonic a.type
is set, no trap occurs and a suitable unnormalized g HLT F 40 ASHD p*
1 LDA F* 41 ASHA o
- numher or zero results, Otherwise, trap FLU occurs and 2 LDB E* 42 LSHD F*
3 LDX F 43 LEBA b3
the result is correct (and normalized) with the same 4 D E* 44 YD F*
5 EAX E 45 CYA r¥
rule for the exponent as was stated for overflow, 6 INX E 46 TSR j
7 pagty g% 47 ax E
1g ETR F* 54 BRU E
11 I0R F* 51 BLT B
12 EOR p* 52 BEQ B
13 STD D 583 BLE E
14 ST D 54 jreyy B
15 STA S 55 BNE E
16 STRB s 56 BGE B
17 STX S 57 BLL e
(/\
@ 2¢ ADD ) d [ BLIN 2
21 SUB 3 61 BRX E
22 ADC F* €2 BSX E
23 sucC F* 63 SRS F
. ' 24 ADM s* 4 EAC B*
25 ADX F 65
. . , 26 P MIN s* 66
27 MpC s* 67
3¢ MUL F* 79 FLX E
{ 31 DIV P 71 FLD E*
: 32 1ce F* 72 FC E*
. { 33 cvz F* 73 FAD E*
: A 34 @z F¥ 74 FSB E*
! K 35 ISD E* 75 FMP E*
‘ ? 36 DSD E* 76 FDV E*
i 5 37 EXU E? 77 OPR F?
T
b
, .:
' g * indicates that CC is set by the instruction
I ;
‘&ﬁ) ! :‘ @
. f
.




DI PRERRS

iy -
ey -~ .
3 ~ 7 pe-nr poge = - T
-,,vC ICPU/M-4.3 88 CC MICPU/M-4.3 |97
o~
o |
s16y (W[i,3j)) means W[i,j] interprcted as a twos—com-
DEFINITION OF OPR ADDRESSES ! plement number of (j-i+1) bits.
1]
{ CONT (W) ox
Orr uddress mnemonic OPR address mAiemonie 1 CONTENTS (W) means  the contents of the memory locatien
: whose address is the value of W.
g cad 4 . ~ . .
1 XAB * 41 f.oMDs * A ring check is perforwed with R
3 CcBA * 42 STORS as a source and W as target.
K 3 CBX 43 15C ; . . )
4 XXB 44 FIX * xx{w), where XX is the abbreviation for an addressing
5 CXH 45 FLOAT * , mode, means the value of Q if that mode is applied to W.
5 CaX 46 FrA * i
7 WA * 47 : 1A {X) mears to initiate indirect address word cal-
. culation on IAW <« CONTENTS(X)& R « X. The calculation
1g oA * 52 : depends on IAT <« IAWI[f,X]
11 CNA * 51
1 CNX 52 All instructions start with IR « XR & R « P;
3 ZO0A * s3
14 ZAB 54 :
15 z0oB 55 SLOK i Summary of Indirect Addressing
16 CGA * 56 RLOK
17 XGA * 57 ALD * . Name JAT  Notation Address Computation
i
29 CIA * 69 AST E (@ Normal @ Like instruction, TAG = IAW [2,4], then like
21 XIA * 61 AX i with 1AW for OP instruction, except for
22 csA * 62 PRO N ! TAG = D, I,X use IAY [6,23]
23 XSA * 63 N for w and dcn't add G. Trap
24 CTA * 64 UNDPR IATRP (R) if wW{[5S}=1. Add
25 CCA * 63 . ATIN IR to @ {for LR or SR mcde)
26 NoP 66 uscrL or to IR cr SR {for ILRW, ISR}
27 " MVB 67 cMAD i if 12% [61=), and use IAW
[7,23) for W.
3 MVC ; ! For TAC~PD, IPD, calculate
3? MVS ;{ CC;E‘;‘PS i address as D,X (G is not
32 CcPs * 72 cac | added) . This is the read
33 CLS * 73 RUN * only (ROD,ROX) addressing
34 ASP 74 mode.,
35 LLT * 75 X
| 36 COR * 76 Field 1 FIELD D:FB, Q < IR + (DISPL <« SIGH({IAW
| 37 77 FB'SIZE [13,23]): U«COXT(Q);
OP « U[FB <« Iaw [8,12],FB +
{812E « 1AW {3,71)1:
IF (SE « IAW{[2,2])=0 ELSE
SIGN (UIFB, F3:81251);
{ tring 2 STRING WA:CPOS, CSIZE <« IRW [2,3] gives byte

* indicates that CC is set by the OPR

CS1Z2E

size: 6,8,12 or 24, Then
JAW selects byte COPS <« IAW
{4,5] frowm word WA <« IAW
[6,23].




hee

P/c=n.t Poye
MICPU/M-4.3 89

[

Summary of Instruction Addressing

Abbr. Name

bl

I

X
PD

D

BX

BXD

M

IMX

LR

ILR

SR

ISR

Direct
Indirect
Indexed

Pointer dis-
placement

Indirect-pointer
displacement

Base~index

Base~index-
displacement

Immediate

Irmediate
indexed

L-relative
Indirect
L-relative
Source-relative

Indirect source
relative

Notation

orc

(o) d

opC

QpPC

opC

opC

opc

apC

orC

opC

orC

opC

orC

G’ (W]
$G " [W]
X' W]

PRT[D]

$PTR[D]

BIX}

{sx") [x4D]

$L' (D]

R'[D]

$R' [D]

Address Computation

Q + W+G; OP < CONT(Q)
IA(WIG):
Q < W+IR; OP « CONT(Q);

Q + SHORTPTR(PTR + W
{16,221, IR)+~(D « SICN
fWwilg,1s5])): op «
CONT{Q) ;

IA(PD(W)):

T <« SHORTADR(B <« ¥W[16,
23]1):

IR < SHORTPTR({X « W
[1¢,15),1IR) ;

IA{T)

T <« IR;

IR < SHORTPTR(®W[16,23},
#)+sIGN(W([10,151);

IA(T):

or « SIGN(W{13,221):

OP « IR + SIGN(W[13,
231):

Q « L+(D « w{13,23]);
OP <« CONT(Q):

IA(LR(W) )}
0 « R+(D <« SIGN(wW[12,
23])); OP « CONT(Q);

IA(PR(W)):

Notes: W([i,3j] weans bits i to j of the 24-bit quantity W. Bit
7 is the leftmost bit.
SHORTADR(W{i,3]) means IR IF W[i,jl=@ EISE
Gi[i+l, 3] IF wWlil=g ELSE
Lwliil, 3]
SHORTPTR(W([1,j]¥) means ¥ IF W[i,jl=¢ ELSE
CONTENTS (G W [i+11,3] FI W[il=g
ELSE LiW[i+1,3])

bee

pe-nr rFage

MICPU/M-4.3 21

Array

3

ARRAY LB:UR*MULT:
JAW

Two words. Trap APE(R) IF
IRCLB « W1[8,8] CR IR > Us«
(WLl{7,23] IF (LEB « W1[4,4]
=) BLSE W1[11,23]):
IATRP(R) IF (W1[3,3]=1) #
(INSTRUCTICN = LAX);

IR ¢« {IR-LB)*(MULT « (W1[5,
6] IF LER=J ELSE W1[5,10)
+1) s




G e T

T it sy I L T

R —

e AL

e ARD et e P2 e o S e o eral b B e e

Tene &

<
5
p
3
:
H
H

3
H
H

~

PP PP S OVE PV S S e R

e g

pfc-n.r poge
CC MICPU/M-4 4 92
i
FIXED TRAPS
Number Name Caused By Parameter
1 MACC Memory access error -~ at- Q+
tempted access to monitor (RING(R)-1}*
from below M or utility 186
from kelow U
2 PRO attempted write of RO page Q
3 PHIM attempted reference to page Q
not in map
4 PNIC attempted reference to page [a]
not in core
5 TO timer overflow - not in —
monitor mode
6 PI privileged instruction ——
7 TX trapped instruction -——
XMON on exit from monitor via —-—
any 3BLL or LOADS 1f XMONT
is set in the state
E XUTIL on exit from utility via
. any BLL or LOADS if XUTILT
is set in the state
11 ILIM indirect limit exceeded address of
IAW
12 MAB map abort —

bec

plernr

page

MICPU/M-4,3 92

Humber

1

~3

v 3

Name

ABE

FLO
FLU

RO

IATRP

UFN

FLXO

D12
STKOV

BLL ERR

RING-DEPENDENT TRAPS

Caused By

Parameter

array bound exceeded

floating overflow

floating underflow

read only trap
indirect address trap bit

undefined floating number

overflow on FIX or FLX
instruction

floating divide by zero
stack gverflow

function call error
described in scparate table

address of
IAY

address of
RCD or ROX IAW

addresg of
2w

BAV-
CLASS * 1B6




E ple-n.t poge ple-nr pege
. ), @C MICPU/M-4 4 94 BC C NICPU/M-4.4 a5
A @ .| RING DEPENDENT TRAP IO: BLL ERR @ '
Class ) Parameter SUMMARY OF IMPONIARY CORE AvbwiLirs
1 address type error in A 1B6 fjéih ; ”
2 wrong number of arguments 2ZB6 + NAW :'[g} ::Zr:nff; I:wu5er e
3 argument type mismatch 3BG + NAW e 11 2nd word of POP entry IAW
s 4 inadmissikle argument 4B6 + NAW ¢ 21 Sp - Stack Pointer
5 address type error 586 + NAW G'[3; st - Sta;k Limit
¢ gzgiiipigieéog;athiggr 686 + mAw G'{4} Ring dependent trap ~ P is stored here
G'(s] Ring dependent trap - parameter is stored here
G'[6] Ring dependent trap service coniry IAW
c' {7} (may be used as 2nd word of IAW)
{5;3 G'{31] Last word which can be used as an index in BX
- @ G'[127] Tast word which can be used as a pointer in PD

or IPD or as a base in BX

G'[377778B] Last word which can be accessed by D, I addéressing

L'[g] i 1st word of the return descriptor - P
L {1} 2nd word of the return descripter - L, STK, CPA
L'{2] SYSPOP transfer address
L'{31} Similar to G'{3é§ -
L'[127] similar to 6'[127]
L'{2¢47] Last word which can be addressed by L, LI
. addressing
AguEaIn Start of monito; ring




b w T kst s

éﬁf‘\

P N

i
K
H
§
i
5
1

N ——

(/ﬁ)l \ (/~\ (’\)

E !f?h ) p/e=n.r page
:}%wf{io MICPU/M-4.4" 96 PN — —
)@C MICPU/M-4.4 <7

ag249eB
4¢3514p
4¢37163
&40

&gl
6027520
6@2764R
6gAtign
e 1A 2R

7777778

Start of utility ring, G for utility

G may be stored here

UCALL entry IAW

Monitor ring starts again, @ for monitor,
context block

G may be stored here

State is stored here if a fixed trap occurs
Start of the SAVE area
MCALL entry IAW

Fixed trap entry

Maximum virtual acddress

poe

BLL

*

»

* SPL PROGRAM TO DEFINE BLL

BLL? N+Q3 SPEC~83 MCAL+~g3 NEWG~G3 GOTO BLL13
BLLN:

Nel3 SPEC+C: MCAL<(3$ NEWG~G; GOTO BLLLS

* OPR WITH NEGATIVE OPERAND:
OPR:  OP« -0P}

N~0OP $ BIT153 3°EC-03

MCAL-0OP $ BITi4+13

(NEYG~- 4030008 & R-4836148) 1F MCAL=1 ELSE
(NEWG 630CCAB & R-GZ430BDI3

IR~0P $ BITI6THRUR3s 1ACR): GOTO ELL1Z

t POPY~CONTENTS(PI$ IR-POPYW $ FOPC3 N+O
SPEC+13 MCTAL-(: RLCUWG-G3
IACGYE TIC) 1i IHMEDIATE=1s GOTO BLL1YS

11 NEWPWeCOMTENTS(G)S

BLLERRC(I) IF KEWPW $ BITS)

NEWPC(NEPY S FLW IF NEWPW $ BIT4=0
ELSE Q¢NEWAW § FSNW)3

BRD-CONTENTS(Q+1)Y FINATF«03

CLL*BRD S BIT3: STK<GRD S BITIL}

CPA+DRD & BITZ2J

CPR*BRD $ DIT3 IF CLL=1 ELSE UNSTK+-BRD & BIT3:

REL+~BRD $ BIT4; FTM=BRD $ BITS3

NEYL*E=BRD & FE3

IF RING(NEWP)<RING(P) DO}
NEWG=GL14ls RCT-12

ENDIF3

)
OBTAIN NEW LOCAL ENVIRONMENT

1F ST=1 D03
1F CLL=0 D33
IF UWSTK=D03 SPeL3
ELSE DJf SP~E3 NEWL~E.FE:
ENDIFS
ELSE DO
SPeNEMGL2I4ES STKOV() IF SP>=NEYG{213
NEWL+-NEWGL2)5
ENDIFS
ELSE DOs
NEWL+L IF NEWL=Q3
ENDIF3

RINGCHECKINE WP}

COPY ARGUENTS
BLLERK(Z2) IF N=CPA3
NAW-Ps 13

IF CPAFC DO;
FOR NFWeNEWP BY 1 DO




™™

S’

»

*

]

L

Le:

Lt

N A3 Pe=tur pega
e
Lol MICPU/M-4 .4 98

ReNEWPS FP«CONTENTS(NFW)S
FTIYPE+FP $ TYPE}
iF serc=t by
SPEL*03 AP+POPYWE NAWSNAY-13
ATYPE-FTYPES ASTR-FP $ FSTRS AENDF~FP § ENDF3
ELSL DOl
R+P3 AP«CONTENTS(NAW)}
ATYPE-AP § TYPE3 ASTR-AP $ STRS
AENDFeAP $ ENDF3
ENDIF
- 1F A4TYPE=0 DO3
JUMP IN ACTUAL ARGUIENT LIST
R+P3 IR*XR3 EA(NAW)S
BLLERR(S) IF IMMEDIATES
NAY=Q3
GOTC LO3
ELSE DO3
BLLERR(2) 1F AENDF#FP § ENDF3
IF ATYPE#FTYPE DO3
TYPES DISAGRCE. ERROR UNLESS ONE 1S JOXKERs JOKER 1S CHECKED
FOR RELOW UNLESS CADDR=1 OR FSTR:ARRAYs IN WHICH CASE IT IS
NOT CHECKED.
1§ ATYPEf14 DO3
BLLERR(3) IF FTYPE#}4s
FTYPE~ATYPES
- ENDIFS
ENDIF;
NANP=NAMS
IF ASTR=0 OR ASTR=2 DO3
NAW=tiaM+1 1F ASTR=23 .
IF FP S FSTR=@ AND ASTR=2 OR FP $ FSTR=l
AND ASTR=0 DI
BLLERR(3) IF FIN=QF FINATF~1}
TEMP=RAN+ 1B 63
GOTO Lt
. ENDIF3
ELSE DOs i ) . .
BLLERR(3) IF FP $ FSTR=03
o - ,ENDIF3
CHECK FOR ACTUAL ARG IN ACCUMULATOR
IF (AP AND 7Q8377%78) 73 DO '
R+P3 IR=XR; EA(NA%P)3 ARGADR~QS
IF_FP & CADDR=1 DO3
1F IMMEDIATE=] DO3
CONSTRUCT IMICZDIATE, 1AM |
TEMP~0P AND 237773.0R 1634B4s
ELSE DO3 .
RINGCHECK CARGADR) 3 TEMP~ARGADRS
MAKE THE 1AW READ~ONLY IF MECESSARY
TEMP~TEMP+1B7 IF READONLY=1 OR ASTR=3}
ENDIF3
FIX UP SO THE COPY VALUE CODE %WILL COPY THE ADDRESS 1IN TEMP
" FTYPEels FP § FSTR+~13
ELSE DO;

v

Plt=tr pooe

! MICPU/M-4.4 99

L3¢

L4
»

1 2

ENDF QRS
NEYPNFU+1;

ENDIF3

® ' COMPUTE RETURN DESCRIPTOR

1F IMMEDIATE=) DO2
BLLERR(S) IF FIYPE#! OR FP § FSTR=CS
ENDIFS .
TEEPCCOF 1F FIYPEs) ELSE CONTRENISCARGADK)I M
ENDIF?
OLDR+R3
CPYADR=((FP AND 377718)+NE%L IF FP<@ ELSE
(FP AND 377T1BI+NENG)?
GOTO ARRAY IF FP § FSTR=63
COUMT«~(1 IF FTYPE=1 £R FTYPE=9 ELSE
2 IF FTYPE=2 CR FTYPE=3 ELSE
4 IF FTIYPE=4 QR F1YPE=S OR FTYPE =6
ELSE GITO STRING IF FTYPE=T
ELSE GOTO LABEL IF FTYPE=8
ELSE BLLERRCA) 3
UFH*TRAPC) IFC(FTYPE=3 OR FTYPE=4)
AND UNDEFINED(TEMP)!
R-NCWP? SCPYADR~TEMPS COUNT-CCUNT=~1Z
IF COUNT# DO;
R-OLDR3 Q-~G+17
CPYADR-CPYADR*1}
TEMP+~CONTENTS(Q)2 GOTO L23
ENDIFS '
EL.SE DOz
BLLERR(S5) IF FP $ CADDR=1 OR FP S FSTR=0;
CPYADR~C(FP AND 3777B)+NEWL IF F£P<Q ELSE
(FP AND 37771BI4NENG?]
IF TYPE=3 0OR TYPE=4 DO
STF{CPYADR):
ELSE DJ3
COUNT+(C1 IF FTYPE=! OR FTYPE=9 ELSE
2 IF FTYPE=2 ELSE
4 IF FIYPE=S OR FTYPE=6 ELSE
BLLERRCAY )
ReNE"WP3
STORE(CPYADRs A)3
IF COUNTe#1 DO3
STORE(CPYADR+1, B)S
IF COoUNT#2 DO
STOREC(GPYADR+2, C)3
STORE(CPYADR+3, D)3
ENDIF3
ENDIF;
ENDIF;
£NDIF}
NAW=NAY+L S
ENDIF3
INTERRUPT*CHECKC) 2
COTC L4 IF FP $ ENDF=TS




K Y AP A s+

s < s

o i

o

) okt i BF Bt bl s

RO

ek R B Dt o

e o v BTN o

A -

« wsacalld s s v,

At

L A Sk 0 i St R ] 8 AR i S b b

i p~nr poge § -, ple=nr neye }
}Wﬁ%ém 3 5§€} 1CPU/N-4 .4 101
s MICPU/M-4.4 100 D1 ) MICPU/N~4. 1
1F CLL=1 DO ELSE DOs
ReNEWPS BLLERRCG)Y IF MCAL>0O}
NEWLLO)+~NAYS ENDIF3
NEWLL1)eL+28725TK+1BT+CPR} , ReNEWP}
NEWGL1ABI+8 IF MCAL>D AND RING(NEWP)I>RING(P)} STORE(COPYADR+1,8BRDY2 GOTO L2}
ENDIF3 .
IF 5Tx=1 DO} ARRAY! R-NEWP3 SCPYADR-TENPJ
1F cLLst1 DO . BLLERR(G) IF TEMP & IAT#3:
ReMEUPS NENGL21~SP3 IF MCAL>0 DO3
ELSE DO IR-(TE*® § U31 IF TEMP § LEB=@ ELSE TEMP $ UB2)3
R=P; GL21+5P; IACARGADR+1%3 RINGCHECK(C)S
ENDIF} ENDIF3
ENDIF3 IR~C3 R+*ARGADR3 IACARCADR+1)3
1F MCAL=2 DOj BLLERR(6) IF IMWEDIATE=13
MENTER:® PROTECTC(4)3 RINGCHECK(G)Y IF MCAL>03
SET'LOCK()} ReNE%P S
ENDIF3 . $(CPYADR+1)«(0+( 286 IF READONLY=0 ELSE 12B6))3
SR & TOFLAG~SR $ PDFLAG~Q IF MCALSO; GOTO L33

LeNE"L? G«NEWG) OLDP~P3 PeNEWP}
IF RET1=1 DOj
IF DOLDP>»=68BS DOs
MEXIT: UNPROTECTC(4)S
. RESET'LOCK() 3
XMON*TRAP() IF SR 8 XMONT3

ELSE DO @ A

XUTIL'TRAPC) IF SR $ XUTILT}

ENDIF2
ENDIF;
p=P+¢1 IF FIN=1 AND FINATF=€3
* -

* EXIT FROM BLL .
GOTO NEXT'INSTRUCTIONS
*
STRING: COUNT~43 GOTO L2 IF MCAL=@S
FORM~TEMP AND 1426 OR 4373 OLDT+3s
FOR 1+8 BY 1 DO3
ReP3: RINGCHECK(TEMP):
BLLERR(&) IF OLDT $ WA>TEMP $ WA OR
OLDT § WA=TEMP $ %A AND
OLDT & CPOS>TEMP $ CPOS#
R+NEWPS S(CPYADR+1)«~TEMP AND NOT 7486 OR FORM}
GOTO L3 IF 1=37 R<OLDR; OLDT~TEMP}
TEMP~CONTENTSCARGADR+I+1)3
ENDFORS
t
LABEL: Q=(TEMP % FLW IF TEMP $ BIT4=¢
.ELSE ARGADR4TEMP $ FSRW)3
RINGCHECK(Q) IF MCAL>D?
ReNEWPS
STORE(CPYACR, © AND NOT 75B¢ OR TEMP AND 75B6)3 @ -
R-OLENRS BRD~CONTENTS(ARGADR+1)3
1F B2 & FE=Q AND BRD 5 FSTK=¢ DOs
PRUCBRD AND NOT 4B7 1F MTAL>D3 . .
BRD«BRD OR (L. 1F STK=0 ELSE NEVL+2B744B6)3 !

b T S —-




