ABSTRACT and CONTENTS

[title prefix/class-number.revision
C C MODEL I FILE SYSTEM MIFS/W-10

[checked authors [epproval date]revision ~date

4 o~ LT olwy o

checked classification

U Jane, ANy . Rainer Schulz Working Paper

approved. ' , e o distribution . pages
17 4 ¢ cemrv o {oemZ="|Company Privat g
7 -

This document describes in general the functions that are

i available in the basic system to manipulate files and other

objects kept in MIB’s.

A detailed description of the format
‘of the basic system calls (including parameters, returned

values and error conditions) is described in another document.

bcc

&

p/e=nr page
MIFS/W-10 1

1)
2)
3)
4)
5)
6)

7)

contents of the MIB follows:

MIB Contents (Figure 1)

Lock on MIB
System version for MIB
User Profile

Owner Access Lock List

Every user in the Model-I system has one multi-
index block (2K page) which mainly serves as a com-

bination file directory and index block for the user.

In order to fully understand the operation and

protection of the file system a description of the

» Header

Public, Friend Access to MIB_J

A list of users who may access the MIB's files

independently of the public or access key mechan-

ism (Friend Table).

Object Pable, specifying which files, access keys,

processes and other objects are kept track of in

t':his MIB.

] p/e-n.r page
CC MIFS/W-10 2

P/e-n.r page .

DCC ' MIFS/W-10 ¥

The object table can point to the following types of
objects:

1) small file

2) large file

3} access key

4) process

5) data (arbitrary data of any size from # to 250

words maximum)
The SIB blocks for these objects are shown in Fig. 3

Every object has access fields for
the public
the owner of the MIB (see below)
friends
and may also have an access control list, each entry of
which consists of an access field and the value of an ac-
cess key. An access field has 4 bits, which allow
R reading
W writing
X execution
O ownership
of the objects. For objects other than files, some of

the bits may have slightly peculiar meanings.

When an attempt is made by sub-process S to access
an object, the access to be allowed is determined by the
first of the following access fields which is not null

(TAK(S) is the temporary access key of the sub-process) .

if TAK(S) #¢ and TAK(S) appears in entry i on the hd

access list of the object, then the access field
of entry i

if TAK(S) = the owner of the MIB, then the owner ac-
cess field of the object

if TAK(S) is on the friend list for the MIB, then the
friend access field of the object A the access field
of the friend list entry.

if TAK(S) = the user number for the process and the
account number for the process is on the friend
list for the MIB, then the friend access field of
the object A the access field of the friend list
entry for the account.

the public access field of the object

The "owner access" lock list gives the ability to
create objects and to set the access to objects in the
MIB to anyone who presents a key which matches one of the
locks. This 1list is of fixed size and contains 3 entries.
These entries are just like locks on objects in SIB's. In
principle, being on the list gives complete control, since by

setting the access of an object one can gain control of it.

Links (pseudonyms) are implemented with objects of

type data.

DCC T

Operations on MIB

The following operations are possible on MIB's or
their contents. All calls on the basic system involving
MIB's take a user number as argument. This user number
serves to identify the MIB. All names given to objects
in MIB's must be unique. Trying to create an object
whose name already appears in the MIB for another object
is an error.

1) Read entry E: returns the contents of the entry,

E is a number which indexes into the object
table, or a name of an object. Requires some
access to object.

2) Set name of entry n to m: n is the name of the
object. The name gets set to the new name
m. Requires owner access to object.

3) Set public, friend, owner access of entry n to
value v: n is the name of the object. The
access to the object gets set to v. Re-
quires owner access to object or MIB. The
entry addressed may be the MIB.

4) Set lock and access for lock on entry n: n is
the name of the object. The lock is a 40-
bit value. Requires owner access to object
or MIB.

5) Delete entry n: n is the name of the object. Re-
quires owner access to object. If object is a
process or a file, it cannot be deleted if there

are still data pointers in the object.

DCC

ple=n.r page
MIFS/W-10 5

6)

7)

8)

9)

10)

11)

12)

13)

Create new entry with name m as type t: requires
owner access to MIB. Creates a new entry in
MIB and sets up entry like "set name of entry
n to m" operation, except that n is not given.
The index of the object in the MIB is the
value of this function. The type of the entry
must be given in the call.

Make new friend f with access v: requires owner
access to MIB. Takes user or account number
and access bits and makes an entry in friend
table. 1If the entry already exists, access
bits get changed to new value.

Delete friend f: requires owner access to MIB.
Removes specified user or account from friend

table.

Read friend table: read access to MIB required.

Read profile. The contents of the profile is not
yet defined.

Set profile: requires special capability - includes
initialization of MIB.

Set value of object n to v: requires owner access
to object. Works only for objects of type
Y3ata.” WFI has to be set if UNoO(S) is '
different from user number of process.

Ccopy access key n to TAK of sub-process: requires

read access to access key.

"

P/c=n.r page
DCC MIFS/W~10 6

14) copy object n of MIB m to a new object in MIB k:
requires read access to object n and owner
access to MIB k. Does not work for files or
processes. In case of access keys, if the R
bit is set, and W is not, the access key gets
frozén in MIB k (cannot be copied any more).
If the W bit is set, the key does not get fro-
zen. If the frozen bit is on in MIB m (bit
@ of the access key value), then the access
key cannot be copied.

15) set no drum charge flag for file: requires owner
access to file and special status.

16) Read available space in MIB n. Returns as value
the number of words not used in SIB area of
MIB. Requires some access to MIB.

17) set lock and access for lock in owner access
lock list: this operation requires owner ac-
cess to MIB. If lock already exists, access
is set to new value. TIf the new value is zero,
lock gets removed.

18) set reentrant flag for file: requires owner ac-
cess to file.

A caller is considered to be the actual owner of an

MIB only if his UNO equals the access key which is the

first entry on the owner access lock list.

~ed

bce N

P/c~n.r page

Owner access to an object, like read and write ac-
cess, is determined through the friend list, public or

owner access, or through the access key mechanism,

The first entry on the owner access lock list of
every MIB is initialized with an access key whose value
is the user number of the person owning the MIB. This

key cannot be removed from the list.

Access keys have unique values (i.e., every time
an access key gets created, a unique value is supplied

by the system).

There are no operations for copying access keys

attached to sub-processes into MIB's.

Manipulation of Files

In order to access data in a file, the file has to
be "opened.” All open files have an entry in the OFT
table (Fig. 4) which is kept in the context block. OFT
has 16 entries. The following operations on OFT entries
are possible (sub-process (S) is assumed to make the call):
1) open file f: works only if OF bit is set in the
status word. PR in the status word has to be
set if the file has X access in its access
field. f consists of:
a) user number of file’s owner
b) name of file. Falils if the access field

of the file is null.

s

S]

p/e=n.r page pi=n.r page
bCC MIFS/W-10 8 bcc MIFS/W-10 9
The status bit WFI is ANDed with the W 7) Delete page n Qf file m: if AL(M)A KEY(S) # #, and
bit in the access field of the file if the if W = 1, then page n gets deleted.
user number of the MIB that contained the 8) Give next page after page m of file n: returns the
file is different from the user number of next data page of file n if AL(N)a KEY(S) # #.
the process. The result of the AND is put Returns (-1) if’'no more pages.
in the W bit of OFT. The AL and CL fields 9) Put RN of page n of file m into PMT entry k with RO
are set to NAME(S). The OFT entry is access in PMT set to the value of W in OFT: if
created and its index in the OFT is returned. AL(M) A KEY(S) # @, CL(PMT(k))}A KEY(S) £ &,

and PMT (k) is empty, the real name of the file
2) sSet access lock (AL) for entry n to m: if CL(N) A
page is put into PMT. The FP bit is set.
KEY(S) # @ then AL(N) can get set to any bits.

Else if AL(N)AKEY(S) # g, then AL (N) - MAKEY(S) It should be noted here that a file can get closed
VAL (NY KEY(S) by setting the CL of the OFT entry to zero. This can

happen by calling on the file system to change the CL
3) Set control lock (CL) for entry n to m: legal if
of the OFT entry, or by deleting a sub-process. When a
CL(N)A KEY(S) # #. File gets closed if CcL = ¢
sub-process gets deleted its name gets removed from all
after this operation. .
locks and keys. If this operation results in the CL of
4) Set word length for entry n: if AL(N) A KEY(S) # &, a file getting set to zero, the OFT entry is removed.
and W = 1, then the low order 11 bits of word
length in the file length word of the SIB are

set.
5) Read entry n: returns contents of entry n.

6) Create new page n of file m: if AL{M) NKEY(S) # 8
and if W = 1, then a new page gets created in
position n. The call fails if the page already

exists,

