N
(N

,.,(f\\

o

|

”3

z

DCC
4 3 §
g 5

titie

‘.

MCALLs on the Model I
Sub-Process System

prefix/class-numbaer.revisicr

MISPS/\ -7

~

hark

S0

‘J) uwﬁ?v\

— L
YT/

:|,

avthors !

vn:ked

L,fvvzh % ,77)an 10D

/

ﬁﬁa/ ;@&MW

opprove

.

//4,0

approval dote

7///(7

ravision date

classification
Manual

distribution

Company Privateg 59

The attached document describes all the currently implemented
MCALLs on the Sub-Process module of the Model I Basic System.
It is intended to serve as a system programmer's manual
this part of the system.

which deal with the Sub-Process System are rendered obsolete

ABSTRACT ond CONTENTS

by the present document.

The portions of document PMTSPT/W-2

for

-

bCC

p/c~n.r

MISPS/M-7

page

Table of Contents

Introduction

The Sub-Process Table

The Sub-Process Call Stack

The MCALLS

A Creating and Destroying Sub-Processes

1
2

CREATE 'SP (MCALL 949) -

DESTROY 'SP (MCALL 91)

B Passing Control Between Sub-Processes

1

N

W

wn

8

SP'CALL (MCALL 111)
SP'JUMP (MCALL 112)
SP'TRAP (MCALL 113)
TRAP 'RETURN (MCALL 114)
SP'BRANCH (MCALL 115)
SP'RETURN (MCALL 116)
JUMP 'RETURN (MCALL 117)

MARK'CALL (MCALL 118)

C Inspecting and Modifying Sub-Processes

1
© 2

READ 'SPT (MCALL 95)

READ 'SPCS (MCALL 96)
READ'SPT'FIELD (MCALL 97)
SET'SPT'FIELD (MCALL 98)
READ 'MAP (MCALL 99)
SET'MAP (MCALL 1¢¢)

READ 'MAP 'BYTE (MCALL 141)
SET 'MAP 'BYTE (MCALL 1g2)

READ 'ACCESS 'KEY (MCALL 1¢3)

Page

13
16
17
19
2¢
21
23
25
27
28
3¢
31
32
33
34
35
36
38
42
43
45

46
47

(C

DCL

p/c-n.r
MISPS/M~7

page

10 COPY'ACCESS'KEY (MCALL 1g@4)
11 COPY'TAK (MCALL 1g5)
\Y Figures’
i Format of an Entry in SPT
2 Format of SB and SCB Fields in SPT
3 Format of TM and TCM Fields in SPT

4A Normal Format of an SPCS Entry

VI Appendices
A SPS MCALLs in Numeric Order

B Error Codes Returned by SPS MCALLsS

4B Alternative Format of an SPCS Entry

C Error Message Numbers Returned by SPS MCALLs

Page
48

49

59
51
52
53

54

55
57

58

M

5 S p/e-n.r : page
: C{_, : MISPS/M-7 3

I

Intro.duction

The Moilel I Basic System provides facilities with which a
user may” include an arbitrarily constituted collection of
programs as "sub-processes’” of his process, specify relations
which are to subsist among the sub-processes, and transfer .
control from one sﬁb—process to another. The Basic System
module which implements these facilities is called the Model
I Sub-Process System. Detailed descriptions of the MCALLs
through which the user accesses the Sub-Process System are

given below, following some explanatory material.

o~

N
M

b p/¢=n.r poge
: C@ MISPS/M-7 ' 4

II

The Sub-»rocess Table

The sub-processes of a process are defin-»d by entries in a
large table, called the Sub-Process Tabl: (SPT), which oc-
cupies a considerable portion of the procress' Context Block.
SPT can contain as many as eight entries. One or two of
these will normally hold definitions of system sub-processes,

leaving room for six or seven user-selected programs.

Figure 1 shows the format of an entry in the Sub-Process

Table. Of the forty-two words, twenty-four are used to de-
fine the sub-process' address space, which may be as large as
128K words. The fields of the entry are gi?en the following

significance.

NAME :

This 9-bit field plays two roles. As an identifying mark
for the sub-process, it is written into the lock fields of
objects, such as ICT, OFT, and PMT entries, which belong to
the sub-process. It also functions as a "control lock" on
the SPT entry itself, protecting it from modification by
other sub-processes which are not properly authorized. NAME
always has exactly one bit set--in fact, its value is 20,

where n is the index of the SPT entry.

CALL MASK:

This is another 9-bit field, whose function is to limit "ac-
cess" to the sub-process, that is, to prevent it from being
called by unauthorized sub-processes. The contents of CM

bears no relation to the SPT index or to NAME. It may be

any collection of bits.

o

o~
{ \

i . p/c=n.r page
CC MISPS/M~7 5

_its FATHER is given a chance to handle it. If it declines,

then its FATHER is called, and so on, until the "root" of

KEY:

KEY is yet another 9-bit field. 1Its function is to unlock
locks, such as the NAME and CALL MASK of SPT entries and the
access and control locks of ICT, OFT, and PMT entries. A
KEY fits a lock if the bit-wise AND of it with the lock is
non-zero. If a sub-process' KEY fits the lock on some ob-
ject, the sub-process is authorized to perform certain re-
stricted operations on the object. 1In particular, if the
KEY of a sub-process fits the NAME of an SPT entry, the sub-
process is authorized to modify the entry. If its KEY fits
the entry's CALL MASK it is authorized to call the sub-pro-

cess defined by the entry.

FATHER:

When one sub-process creates another sub-process, the SPT
index of the creating sub-process is put into the FATHER
field of the new sub-process' SPT entry. The restrictions
(described below) on subsequent ﬁ§difications of the FATHER
field guarantee that these fields define a tree in the Sub-
Process Table. This "FATHER tree" establishes relations of
responsibility among the sub-processes. If, for example, a

sub-process causes a trap which it is not able to deal With,

the FATHER tree is reached. The root will normally be a sys-
tem sub-process capable of handling any abnormal situations

which may arise. The FATHER field of a root is always zero.

. p/c=n.r page
@C MISPS/M-7 6

" UTILITY SUB-~PROCESS:

Sub-processes may run in the User Ring of the Model I ad-
dress space or in the Utility Ring. Since these rings are
disjoint and since the CPU provides hardware for communi-
cating between the ﬁwo rings, it is feasible and efficient
to allow one sub-process to reside in the Utility Ring whilé
another occupies the User Ring. It is intended that most
programs be run as user-ring sub-processes and'that the Util-
ity Ring normally contain a standard system program (the
Model I Utility System) with which the user-ring sub-processe

can communicate through the hardware UCALL instruction. -

The USp field of an SPT entry for a user-ring sub-process

contains the SPT index of the sub-process which is to reside
in the Utility Ring when the sub-process is active. For cond
venience, the USp field of a utility ring sub-process' SpT

entry always contains the index of the entry itself.

RING:
This field indicates whether the SPT entry describes a user-
ring sub-process or a utility«fing sub-process. A value of

¥ means user-ring, 1 means utility-ring.

ENTRY POINT:

In order to be run as a sub-process a program must contain a
specification of its entry points. This is expected to take
the form of an array of pointers to function descriptors for
the functions that are designed to be called by other sub-

processes. The absolute address of the descriptor for this

array 1is kept in the REp field of the suh-process! Sp7 entrw,

C

A p/e=n.r page
s CC MISPS/M-7 7

The first two pointers in the array are assumed to point to
a trip-handling function and an interrupt-handling function,

resvectively.

ENTRY G-REGISTER:
This field contains an 18-bit number which will be loaded
into the CPU's G-register whenever control is transferred to

the sub-process by any of the MCALL's described below.

STATUS BITS:
The bits in this field specify the privileges and certain
operating characteristics of the sub-process. Details are

given in Figure 2.

TRAP MASK:
The bits in T™M arm/disarm the various traps which may be
generated in the sub-process structure. Figure 3 gives de-

tails of this field.

STATUS CONTROL BITS:
This field has the same internal format as the STATUS BITS
field (see Figure 2). A sub-process with bits set in SCB

is authorized to set and reset the corresponding bits in SB.

TRAP CONTROL MASK:
TCM has the same relation to TM as SCB has to SB. A sub-
process can set/reset bits in TM only if it has the corres-

ponding bits set in TCM.

P/c-n.r . page
6@ MISPS/M~7 8

TEMPORARY ACCESS KEY:

USER NUMBER:

PERMANENT ACCESS KEY 1:

PERMANENT ACCESS KEY 2:

These four 48-bit fields are used to hold access keys for
accessing objects through the Basic File System. Normally
UNO will contain the User Number of the user to which the
sub-process belongs and TAK will hold whatever key is being
currently used by the sub-process. PAKl and PAK2 are pro-

vided for saving arbitrary access keys.

USPUN:

This 48-bit field is intended to contain the File System's
Unique Name for the file on which the sub-process' Utility
Sub-Process resides. If the sub-process is a utility-ring
sub-process, this field is the utility program's own Unique

Name.

READ-ONLY BITS:

These 64 bits specify the read-only status of the 64 pages
in the sub-process address space. They are copied, along

with the corresponding PMT indices from the MAP, into the

process' map when the sub-process is made active.

_PMT INDICES (MAP):

This string of 64 8-bit bytes specifies the sub-process'
address space in terms of pointers to page names in the Pro-
cess Memory Table. Only the first 32 bytes of the MAP (and
the first 32 READ-ONLY BITS) have significance for utility-

ring sub-processes.

: p/c=n.r ‘ page
@C MISPS/M-7 9

III

The Sub-Process Call Stack

The Sub-Process System includes MCALLs by which one sub-
process may call a function in another sub-process. 1In or-
der to allow the called function to return control (bv an-
other MCALL) to the sub-process which éalled it, the system
must save some information about the state of the caller.
This information consists primarily of the SPT index of the
caller and the values to which the P, L, and G registers

should be set on return.

Figure 4A shows the format of an entry in the table, called
the sSub-Process Call Stack (SPCS), in which this sub-pro-
cess return descriptor is saved. A sub-process acquires an

entry on SPCS (at "stack level -1") when it becomes active,

.that is, when it is called. At this time, the sub-process'

SPT index 1is put in the entry and certain other fields are
initialized. When the called sub-process itself calls an-
other sub-process, its P, L, and G registers are saved in

the entry (which becomes stack level).

The fields of an SPCS entry hold the following information.

NIS:

This flag is set when the sub-process (in its incarnation
at the stack level described by this entry) makes itself
non-interruptable. Non-interruptability is described in

document IWS/W-11 on the "Interrupt and Wake-up System."

} p P/¢=n.r puage
' ’:CC MISPS/M-7 - | 10

NiC:

This flag is set when the SPCS entry is¢ acquired if the im-
mediately preceding entry has either NIS or NIC set. It
means that the sub-process being activa .ed 1s non-interrupt-
able as a result of being called from & non-interruptable

sub-process.

SPNO:-
The SPT index of the sub-process being called is recorded

here at the time of the call.

CAKF:
If this flag is set in an SPCS entry, the called sub-procesg
is allowed to copy the TEMPORARY ACCESS KEY of its caller
into its own SPT entry. The calling sub~process specifies

at call time the value to be given to CAKF.

CC:

The Basic System code which actually passes control to the
sub-process being called may generate any of a number of
traps without completing the transfer. 1In some cases it
may be desirable to call another sub-process to handle the
trap and then to try to pass control again'when the trap-
handling function returns. The Basic System could save its
own P, L, and G registers in the SPCS entry and just resume
execution at the point they define. This would probably
lead to disaster, however, since there is no way to insure
that the sub-process called to handle the trap will, for

example, preserve the central registers. This problem is

solved by saving in the stack entry enough information to

i . p/c-n.r : poge
CC MISPS/M-7 11

allow the entire function which transfers control to the
sub-process to be re-executed. This information is saved
in the fields EPNO, PAR1l, and PAR2 shown in figure 4B..

The CC £flag is reset when this information is saved and set
when the system detects that the call has been successfully

completed. (CC stands for "Call Completed.")

PC, LR, GR:
The P-counter and L and G registers of the sub-process are

saved here when it calls another sub-process.

NIET:

This 47-bit field holds the real time at which non-inter-
ruptability is to éxpire. It is loaded from the corres-

ponding field of the immediately preceding stack entr? at
call time. If the sub-process is interruptable, NIET is

zZero.

EPNO (Figure 4B):
When cC=g, this field holds an index into the called sub-
process' sub-process entrv point vector. It has no signi-

ficance when CC=1.

PARl (Figure 4B):
When CC=g and EPNO=¢ this holds the trap number of the trap
which the sub-process is being called on to handle. When

cC=¢ and EPNO=1 this field holds the interrupt number of

the interrupt which caused the sub-process to be called.

It has no meaning in any other cases.

3\
'

SN

1 p/c=n.r page
. CC ‘ MISPS/M-7 12
PAR?2 (Figure 4B):
This field only has meaning in the case :C=f, EPNO=g. It

then holds the parameter being passed tc the cailled sub-

process' trap-handling function.

ﬁ‘\\

(

Noe

pP¢~n.r poge

MISPS/M-7 13

IV MCALLs on the Sub-Process System

The following pages describe each of the MCALLs on SPS by

giving

(1) the SPL declaration for the function.

(2) the values returned when the functicn succeeds,

(3) the conditions under which the function will fail and
the error codes and error message numbers returned in

each case,

(4) a description of what the function does.

The function descriptions make reference to the following

parameters.

Name

NSPTE

LSPTE

NSPCSE

LSPCSE

USER'EP

USER'EG

MAXEPNO

Value

42

16

1423

and

'Significance

‘the first two of which are reserved

The number of elements in the Sub-
Process Table (SPT) and therefore
the maximum number of sub-processes
which may co-exist in a process.

The number of words occupied by
each SPT element.

The number of entries in the Sub-
Process Call Stack array and there-
fore the maximum depth to which
sub~process calls may be stacked.

The number of words in an SPCS en-
try.

The standard location of the sub-
process entry point array descrip-
tor for a user-ring sub-process.

The standard setting of the G reg-
ister to be used when entering a
user-ring sub-process.

The maximum acceptable index into
a sub-process' entry point array.
This allows for 1024 entry points,

for trap and interrupt functions.

\

pc=n.r page
CC MISPS/M-7 14

NORMAL'SB - The value to which the STATUS BITS

word of an SPT entry is initialized.

The value is DPNIC - DCWSO + DDWSO
+ DPNOD. (See Figure 2.)

NORMAL 'TM 7§ The value to which the TRAP MASK

word of an SPT entry 1s initializeq.

A sub-process is exnaected to arm

those traps it wishes to handle.
INORMAL 'SCB The value to which the STATUS CON-
TROL BITS word of an SPT entry is
initialized. The wvalue is DPNIC +
DCWSO + DDWSO + DPNOD. (See Fig-
ure 2.)

NORMAL'TCM - The value to which the TRAP CON-
TROL MASK of an SPT entry is ini-
tialized. The value is MACC + PRO
+ PNIM + PNIC + PI + TI + BLL +
ILIM + PNOD + DWSO + CWSO + NEP +
DMRD + NILE + SPCSO + PMTO. (See
Figure 3.)

The descriptions also make reference to the variables CSP

and SPCSL. The first of these is the SPT index of the cur-

rently active sub-process, which is imagined to have made
the call to the function being discussed. The second is

the SpCS inrdex of the stack entry-for the currently active

sub-process.

Many or the functions take an SPT index as one of their ar-
guments. 1In every such casre, -1 is an acceptable value for

this argumen=z. With the single exception of CREATE'SP, -1

‘supplied as an SPT index is taken to mean CSP, the index of

the entry fcr the current sub-process.

Every one of these MCALLs has at least one failure return.
The failure returns uniformly return two integer quantities.
The first is a character constant consisting of three 8-bit

characters which are intended to be suggestive of the nature

A.
s
.

—
f-\\
3

i p/c=n.r page
: ﬁ@ MISPS/M~7 15

of the e¢.ror condition causing the failure. Tltese error
codes anc the phrases they are intended to suguoest are listed
in Append.” B. The second argument is an index into an ar-
ray of cys - m error messages which provide a2 more comnlete
description of the'error. Appendix C lists the error mes-

sage numbers which.appear in the SPS MCALLs witn tentative

specifications of the strings to which they will correspond.

A few terms r<ed definition:

An SPT entry is free if its NAME field is (.

A sub-process is called a utility sub-process if it is de-

signed to run in the Utility Ring.

A sub-process 1is called a user sub-process if it is

designed to run in the User Ring.

The ancestors of a sub-process are all the sub-processes

which appear helow it in its FATHER tree.

The root of a FATHER tree is the (unique) sub-process in the

tree which hns.no FATHER.

One sub-process controls another if its KEY includes the

other's NAME.

One sub-process has access to another if the bit-wise AND

of its KEY with the other's CALL MASK is non-zero.

(C

p/c-n.r ' page
: CC MISPS/M~7 16

Creating and Destroying Sub-Processes

A sub-process creates another one by making :n entry in the
Sub-Process Janle. The first step in makine an SPT entry

is to call the function CREATE'SP. This function "acquires"
a free SPT entry and initializes it to certain standard
ralues. 1If these standard values are what are desired, it
only remains for the creating sub-process to specify the new
sul -process' address space (with SET'MAP). If necessary, the
staidard sub-process definition may be modified, by the

use ~f SET'SPT'FIELD. It will be noticed that there is no
way t. create a utility sub-process with the MCALLs described

in thiv document. This limitation will be removed shortly.

A sub-piocess which controls another may delete it (remove
its definition from SPT) by the use of the function

DESTROY 'S ™

(C

| p/e-n.r ' page
g
q CC . MISPS/M-7 17

CREATE'SP - Acquire and Initialize an SPT Entry

Declarution:
FUNCTION CREATE'SP(SPTX), FRETURN, MONITOR <« 9¢;
Success Return: .
RETURN SPTX;
Failure Returns:
(1) FRETURN('SPI', 138) unless
(a) 1 < SPTX < NSPTE, or
(b) sSPTX = -1.
(2) FRETURN('SPF', 1@3) if
(a) SPTX = -1 and there are no free SPT entries, or
(b) SPTX # -1 and SPT[SPTX] is not free.
Action:
If SPTX = -1, SPT is searched for a free entry and
the index of the first one found is assigned to SPTX.
SPT[SPTX] is cleared, and then initialized as follows.
(1) NAME < 24SPTX
(2) CM «+ NAME(CSP)
(3) KEY -- NAME
(4) FATHER « CSP
(5) Usp <« USP(CSP)
(6) RING «- ¢
(7) EP <« USER'EP
(8) EG « USER'EG
' (9) SB < NORMAL'SB AND (SCB(CSP) AND SB(CSP))

(1) TM <« NORMAL'TM AND (TCM(CSP) AND TM(CSP))

e

p/c=n.r page

b@@ MISPS/M-7 18

CREATE 'SP (continued)

(11) SCB <« NORMAL'SCB AND SCB(CSP)
(12) TCM « NORMAL 'TCM AND TCM{CSP)
(13) UNO <« UNO(CSP)
(14) USPUN <« USPUN(CSP)

SPT[SPTX] is incorporated into the sub-process control
structure by merging its NAME into the KEYs of all its
ancestors.

SPTX is returned as the value of this MCALL.

o

—

. p/e~n.r : page
C'@ MISPS/M-7 19

DESTROY 'SP - Delete the Contents of an SPT Entry

Declaration:

FUNCTION DESTROY'SP({SPTX), FRETURN, MONITOR -- 91;
Success Return:

RETURN, or

SP'RETURN in the case SPTX = CSP.
Failure Returns:

(1) FRETURN('CSE', 162) if SPTX = CSP and the Sub-process
Call Stack is empty.

(2) FRETURN('SPI', 138) unless 1 < SPTX < NSPTE.

(3) FRETURN('SPC', 16¢) unless SPT[SPTXf is controlled
by Csp.

(4) FRETURN('SPS', 161) if SPT[SPTX] appears on the
Sub-Process Call Stack at any level except the very
top.

Action:

If SPTX = -1, it is taken to refer to CSP.

NAME (SPTX) is removed from all CM, KEY, and USP
fields of SPT entries and from all Access Locks and
Control Locks in ICT, OFT, and PMT. Any entries in ICT,
OFT, and PMT whose Control Locks become zero as a result
of the removal of NAME(SPTX) are DELETEd.

Any SPT entry which has SPTX as its FATHER is given
FATHER (SPTX) instead. .

SPT[SPTX] is cleared and the MCALL returns, either
in the normal manner, or through SP'RETURN, in the special

case where SPTX = CSP.

\ p/c~n.r page
: CC MISPS/M-7 20

Passing Control Between Sub-Processes

This section describes the MCALLs by which one sub-process
may pass control to another. The general procedure is for
the current sub-process to call the Basic System and for the
Basic System to then call a specially prepared function
(designated as an SP'ENTRY) in the other sub-process. The
MCALLs SP'CALL, SP'JUMP, and SP'BRANCH allow the calling
sub-process to specify the sub-process to be called and the
point at which it is to be entered. The sub-process called
as a result of SP'TRAP or TRAP'RETURN is determined by the
calling sub-process' FATHER tree and the TRAP MASKs therein
and is not under control of the caller. There is one
additional mechanism, the inter-process interrupt system,
which causes control to be passed to a new sub-process. This

mechanism is described in document IWS/W-11.

With the exception of SP'TRAP and its variant, TRAP'RETURN,
the functions about to be described do not allow for the
passing of arguments from one sub-process to another. A
later version of the Sub-Process System will have this

deficiency removed.

AN

C

bCC

P/c~n.r poge
MISPS/M-7 . 21

SP'CALL - Call a Sub-Process

Declaration:

FUNCTION SP'CALL(SPTX, ENTRYNO, FLAG), FRETURN,

MONITOR <« 111;

Success Return:

This MCALL does not return to its caller if it

succeeds. Control will be returned to the caller when

the

called sub-process returns (with SP'RETURN) .

FPailure Returns:

(1)
(2)
(3)

(4)

(5)

Action:

FRETURN('SPI', 138) unless 1 < SPTX < NSPTE.
FRETURN('EPN', 173) unless 2 g_EN?RYNO < MAXEPNO.
FRETURN('SPA', 14¢) unless CSP either controls
SPT[SPTX] or has access to it.

FRETURN('RCS', 141) unless there is sufficient room
on the Sub-Process Call Stack to record the call

of SPTX and a subsequent §eries of calls on all

the sub-processes which are ancestors of it. This
is to insure that any software trap generated by
SPTX can be handled in an orderly manner.

FRETURN('ARG', 172) unless FLAG is & or 1.

This MCALL transfers control to the sub-process

defined by SPT[SPTX] by calling the ENTRYNO'M function

in that sub-process' SP'ENTRY transfer vector. If

SPTX = -1, the sub-process called is the currently active

one,

CSP. No arguments are passed, but the central s

registers are preserved across the call. The final

(C

' p/c=n.r . page
: CC MISPS/M-7 22

SP'CALL (continued)

argument, I'LAG, determines whether the called sub-process
will be allowed to execute the special function COPY'TAXK.
If FLAG =1 execution will be allowed; if it is §,
execution will be illegal.

The P, L, and G registers of the calling sub-process
are saved so that execution can be continued when the
called sub-process returns (with SP'RETURN or an
equivalent) .

If the calling sub-process is non-interruptable with
a non-interruptability expiration time, NIET, the called
sub-process is made non-interruptable with the same

value for NIET.

Noe

p/c=n.r) . pugi
MISPS/M-7 23

SP'JUMP - Jump to a Sub-Process

Declaration:

FUNCTION SP'JUMP(SPTX, ENTRYNO, FLAG), FRETURN,

MONITOR <« 112;

Success Return:

This function does not return to its caller if it

succeeds.

Failure Returns:

(1)
(2)
(3)

(4)

(5)

Action:

FRETURN(‘'SPI', 138) unless 1 ¢ SPTX < NSPTE.
FRETURN('EPN', 173) unlesé 2 < ENTRYNO < MAXEPNO.
FRETURN('SPA', 14g) unless CSP eit?er controls
SPT{SPTX] or has access to it.

FRETURN('RCS', 1l41) unless there are as many unused
Sub-~Process Call Stack entries as there are
ancestors of S?TX.

FRETURN('ARG', 172) unless FLAG is # or 1.

Like SP'CALL, SP'JUMP transfers control .to -sub-proeess

SPTX by calling the ENTRYNOtN function in its array of

SP'ENTRY functions. As usual, SPTX = -1 is taken to

mean the current sub-process, CSP. The central registers

are

passed unchanged from the calling sub-process to the

one being called, but no other arguments are transmitted.

sp'guMp differs from SP'CALL in that no provision

is made for the called sub-process to return to its

caller. 1In fact, the calling sub-process completely

S PN

P BV NP D TS

sttt et A we -

b b gy et e s

St P A L e M

‘C

. p/c-n.r ' page
2 4
C‘ﬁ MISPS/M-7 24

SP'JUMP (continued)

disappears from the Sub-Process call Stack. It will
look to the called sub-process as if it were called by
the caller of CSP instead of CSP itself.

The called sub-process will be allowed to execute.
COPY'TAK iff the calling sub-process was authorized to
do so and the value of FLAG is 1.

If the caller of the calling sub-process is non-
interruptable with non-interruptability expiration time
NIET, the called sub-process is made non-interruptable

until the same time.

e

é p/e~n.r I Poge
: C@ ' . e MISPS/M-7 25
SP'TRAP - Generate a Soft-ware Trap

Declaration:
FUNCTION SP'TRAP(TRAPNO, PARAMETER, FLAG), FRETURN,
MONITOR <« 1133
Success Return:

This function doesn't return to its caller if it
succeeds. Control will return to the caller when the
sub-process which handles the trap executes an SP'RETURN.

Failure Returns:
(1) FRETURN('TNO', 139) unless @ < TRAPNO < 23.
(2) FRETURN('ARG', 172) unless FLAG is g.or 1.
Action:

Starting with sub-process CSP and following its
FATHER chain in SPT, we search for an SPT entry with
bit TRAPNO set in its TRAP MASK (TM) . Let SPTX be
the SPT index of the first sucﬁ entry, or the root of
CSP's FATHER tree if there are none.

Control is transferred to sub-process SPTX by calliné.
its SP'TRAP'ENTRY function, which is the @gtB entry in its

~array of SP'ENTRY-functions. TRAPNO and PARAMETER are
passed by the call and the central registers are trans-
mitted unchanged.

The P, L, and G registers of the calling sub-process
are saved, so that execution can be resumed when the
trap-handling function returns (with SP'RETURN). -

If FLAG = 1, the sub-process which fields the trap

AN
(M

DCC

p/e=n.r pagse
MISPS/M-7 26

SP'TRAP (continued)

will be authorized to execute COPY'TAK. If FLAG = (, it
will not.

The algorithm for finding the sub-process to which
the trap is to be sent is in reality slightly more
complicated than what was described above. 1In searching
down the FATHER tree, we ignore SPT entries whose distance
from the root of the tree is greater than the number
of free Sub-Process Call Stack entries. 1In particular,
this means that if there is only one free SPCS entry,
we always call the root of the tree.

If the sub-process which generates the trap is non-
interruptable with non-interruptability expiration time
NIET, the sub-process which fields the trap is made non-
interruptable until the same time.

When the Monitor wants to reflect a ring-independent
hardware trap to a sub-process, .it uses SP'TRAP.
Primarily for this reason, bit TRAPNO in the TRAP MASK
of the called sub-process is reset before the call is

made.

FE e Y TS RE Y R rOeEme R R SRS R SR W i A

N

b@ﬁ p/‘-;;SPS/M—7 |

puge
27

TRAPVRETURN - Pop up the Sub-Process Call stack and Generate

a Software Trap

Declaration:

FUNCTION TRAP'RETURN(TRAPNO, PARAMETER, FLAG), FRETURN,

MONITOR <« 114;

Success Return:

This MCALL doesn't return to its caller if it succeeds.‘

Failure Returns:
(1) FRETURN('TNO', 139) unless @ < TRAPNO < 23.

(2) FRETURN('ARG', 172) unless FLAG is @ or 1.

(3) FRETURN('CSE', 152) if the Sub-Process Call Stack

*is empty.

Action:

This MCALL is provided to allow a sub-process to
convert a call on itself into a software trap. The
system deletes all record of the call and proceeds as if
the sub-process which made the call had instead executed
an SP'TRAP. See the description of SP'TRAP for the
details of the action taken. There is one small anomaly.
The sub-process which'gets called to handle the trap is

given authority to use COPY'TAK iff the current sub-

process has that privilege and FLAG is 1.

e e 4

PR e s e .

b o mbe o or WViiaA s ma

e AW s aa ned aeer e

ARt o Bt St st b STl 0 R b LS

(_

,,\
{
H

bCC p/‘-,:arl SPS/M-7

page
28

SP'BRANCH - Branch into a Sub-Process

Declaration:

FUNCTION SP'BRANCH(SPTX, PC, LREG, GREG, FLAG), FRETURN,

MONITOR < 115;

Success Return:

This function doesn't return to its caller if it
succeeds, but the sub-process into which it branches
may return to the calling sub-process by executing an
SP 'RETURN.

Failure Returns:
(1) FRETURN('SPI', 138) unless 1 { SpPTX < NSPTE.

(2) FRETURN('SPC', 142) unless CSP controls SPT[SPTX]

Ky

(3) FRETURN('RCS', 141) unless there is enough room on

SPCS to record calls to SPTX and all its ancestors.

(4) FRETURN('RNG', 173) unless PC, LREG, and GREG are-addr

in the ring specified by the RING field of SpT[SPTX].

(5) FRETURN('ARG', 172) unless FLAGS is g or 1.
Action:
Control passes to sub-process SPTX at location PC.
The L and G registers are set from LREG andvGREG. The

* central registers are passed unchanged.. As usual,

SPTX = -1 is taken to refer to the current sub-process,

CSP.
With the one difference that the new sub-process

is simply entered at a specified location instead of

being called through one of its SP'ENTRY functions, this

MCALL is identical with SP'CALL.

esse

p/c—n.r A page
C C MISPS/M-7 29

SP'BRANCH (continued)

Whether the "called" sub-process will be allowed to
execute COPY 'TAK is determined by the value of the final
argument, FLAG. - A value of 1 allows execution, a value
of g forbids it. |

The calling sub-process' P, L, and G registers aré
saved so that the called sub-process may return control
to it by executing an SP'RETURN.

The non-interruptability status of the calling sub-
process is carried over to the new sub-process. That is,
if the calling sub-process is non-interruptable until
a certain time, NIET, the new sﬁb—procéss is made non-

interruptable until the same time.

&

p/c=n.r : page

3
bCC MISPS/M~7 30

SP'RETURN -~ Return to Calling Sub-Process

Declaration:

FUNCTION SP'RETURN(), FRETURN, MONITOR + 116;
Success Return:

This MCALL doesn't return to its caller if it succeeds.

Failure Returns:

(1) FRETURN('CSE', 152) if the Sub-Process Call Stack

is empty. |

Action:

A sub-process which has been cailed as the result of
SP'CALL, SP'JUMP, SP'TRAP, TRAP'RETURN, or SP'BRANCH
can return to the sub-process which cailed it by
executing SP'RETURN. Control is returned to the 6ld
sub-process with P, L, and G restored to the values

which were saved when the current sub-process was called.

The central registers are preserved over the return.

| p/c=n.r page
C@ MISPS/M-7 31

JUMP 'RETURN - Return to a Specified Level in the Sub-Process

Call stack

Declaration:
FUNCTION JUMP'RETURN(STKL), FRETURN, MONITOR <« 117;
Success Return:
None, unless STKL = -1. This rather strange case is
discussed below.
Failure Returns:
(1) FRETURN('CSL', 153) unless -1 ¢ STKL £ SPCSL -1.
(2) FRETURN('SPC', 154) unless the calling sub-process,
CsPp, controls all the sub-processes which are
entered in the Sub-Process Call Stack at levels -1
through STKIL.
Action:
This function pops the Sub-Process Call Stack up to
level STKL and returns control to the sub-process
whose SP'RETURN descriptor (P, L, and G) was stackedx
at that level. The central registers are preserved by
this function. If STKL = -1, the function just‘returns
to its caller. Note that the function can fail even
.in this case if the calling sub-process doesn't control

its own SPT entry.

e &

5

o~

|8 ple=n.r
S CC ‘ MISpS/M~7

poge
32

-

Stack

Declaration:
FUNCTION MARK'CALL(PC, LREG, GREG), FRETURN,

MONITOR <« 118;

Success Return:

RETURN;

Failure Returns:

(1) FRETURN('RCS', 141l) unless there is at least one
more free Sub—Process.Call Stack entry than there
are ancestors of CSp.

(2) FRETURN('RNG', 155) unless PC, LREG,uand GREG>are
all addresses in a ring accessible from the ring
from which the MCALL was made.

Action:

ring functions which have been entered by a UCALL to

had been entered with SP'CALL.

MARK'CALL - Record a Function Call on the Sub-Process Call

This function is provided primarily to allow utility-

record the call on the Sub-Process Call Stack as if-:they

Doy aee

T T T T Y D R T T L DT Y T T ST PAP . 3755 - TR e T NIV R M T o7 4T e

s o o s S BRI

] pP/c~-n.r
ﬁ@ : MISPS/M-7 34

Page

READ'SPT - Read an SPT Entry

Declaration:

FUNCTION READ'SPT(SPTX, Array SPTE, Scalar NW), FRETURN,

Success Return:
RETURN;

Failure Returns:

(1) FRETURN('SPI', 138) unless 1 < SPTX < NSPTE.

Action:

If SPTX = -1, CSP is used in its place.
The first M words of SPT[SPTX] are copied into the

caller's array, SPTE, where M is the minimum of LSPTE

and NW.

MONITOR <« 95;

(@

o~

; p/e-n.r
; @@ MISPS/M-7

page
35

READ 'SPCS - Read an SPCS Entry

Declaration:
FUNCTION READ'SPCS(STKL, Array SPCSE), FRETURN,

MONITOR <« 96;
Success Return:
RETURN;

Failure Returns:

(1) FRETURN('CSL', 153) unless -1 < STKL £ SPCSL -1.

Action:

STKL is interpreted as a stack level number, not as

an SPCS index. Stack level -1 refers to the SpcCS entry

for the current sub-process, stack level @ to the entry

for the sub-process which called it, stack level 1

to that for its caller, and so on. The LSPCSE words of

the SPCS entry selected by STKL are copied into the

caller's array, SPCSE. The cC field of the entry returned

determines which of figures 4A and 4B should be used

to interpret it. ¢C = g refers to figure 4B, CC =

figure 4A.

1 to

p/c-n.r page
' C@ MISPS/M-7 36

READ 'SPT'FIELD -~ Read Selected Field of an SPT Entry

Declaration:

FUNCTiON READ ‘SPT 'FIELD (SPTX, FLDNO) , FRETURN, MONITOR « 97;
Success Return;

RETURN FLD; wheré FLD is the contents 6f the field speci-

fied by SPTX and FLDNO. |

Failure Returns:

(1) FRETURN('SPI', 138) uhless 1 < SPTX < NSPTE.

(2) FRETURN('ARG', 165) if FILDNO is not an acceptable field

specification (see below).

Action:

SPTX is used to select an SPT entry. If SPTX = -1, th¢
entry selected is the one which describes the currently
active sub-process, CSP.

FLDNO selects one of 12 fields within SPT[SPTX], in acH

cordance with the following table.

FLDNO Field Selected
g or 'NAM' NAME
1l or 'CM' CALL MASK (CM)
2 or 'KEY' KEY
3 or 'FTH' FATHER
4 or 'usp' UTILITY SUB-PROCESS (USP)
5 or 'RNG' RING
6 or 'Ep' ENTRY POINT (EP)
7 or 'EG' ENTRY G-REGISTER (EG)
8 or 'SB' STATUS BITS (SB)

9 or 'TM' - TRAP MASK (TM)

bCC

P/c~=n.r
MIS PS/M-7

page
37

READ'SPT'FIELD (continued)

14 or 'SCB'

11 oxr 'TCM'

STATUS CONTROL BITS (SCB)

TRAP CONTROL MASK (TCM)

READ'SPT'FIELD returns the contents of the selected

fiela as its value.

. . p/c~n.r page
' @@ MISPS/M-7 38

SET'SPT'FIELD - Set the Value of a Specified Field of an SPT

Entry

Declaration:
FUNCTION SET'SPT'FIELD(SPTX,FLDNO,DATA), FRETURN,
MONITOR < 98;
Success Return:
RETURN;
Failure Returns:

(1) FRETURN('SPI', 138) unless 1 £ SPTX £ NSPTE.

(2) FRETURN('SPC', 143) unless SPT[SPTX] is controlled by
the current sub-process, CSP.

(3) FRETURN('ARG', 167) if FLDNO is not an acceptable
field specification. See the description of
READ'SPT'FIELD for a list of acceptable values of
FLDNO and the SPT fields they select.

(4) In addition to the three general errors just described,
there are others having to do with the validity of
DATA as a new value for the field selected by FLDNO.
We Iist these for each of the 12 fields which FLDNO
méy select.

(a) NAME -
(1) FRETURN('MNM', 168) unless DATA 1is identical
with the current NAME field of SPT[SPTX].
(b) CALL MASK (CM) -
Any value of DATA is acceptable.
(c) KEY -

(1) FRETURN('SPC', 148) if DATA contains any bits

which are in neither the KEY of SPTX nor the

bCC

P/c=n.r page
MISPS/M-7 39

SET'SPT'FIELD (continued)

KEY of CSP (i.e., if CSP is trying to give
SPTX control of SPT entries which it does not

itself control).

(d) FATHER -

(e)

(£)

(9)

(1) FRETURN('SPI', 138) unless 1 < DATA < NSPTE.

(2) FRETURN('SPC', 149) unless SPT[DATA] is con-
trolled by CSP.

(3) FRETURN('FHL', 15¢) if
(a) DATA = SPTX, or
(b) SPTX is an ancestor of DATA.

(4) FRETURN('RCS', 151) if SPTX appears on the
Sub-Process Call Stack at a level, CSL, such
that the number of ancestors of DATA is greater]
than NSPCSE -~ (CSL + 3).

UfILITY SUB-PROCESS (Usp) -

(1) FRETURN('MUS', 17¢) unless DATA is identical
with the current USé field of SPT[SPTX].

RING -

(1) FRETURN('MRG', 171) unless DATA is identical
with the current RING field of SPT[SPTX].

ENTRY POINT (EP) -

(1) FRETURN('RNG', 157) unless DATA is an address
in the ring specified by the RING field of

SPT[SPTX] .

A e Pew RO Bk P s M mms o

7 p/e-n.r . page
g C‘C ' MISPS/M-7 40

SET'SPT'FIELD (continued)

(h) ENTRY G-REGISTER (EG) -

(1) FRETURN('RNG', 157) unless DATA is an address
in éhe ring specified by the RING field of
SPT[SPTX] . '

(i) STATUS BITS (SB) -

(1) FRETURN('MSB', 144) if the exclusive or of
DATA with the sSB field of SPT[SPTX] is not a
subset of the SCB field of SPT[CSP]. This
means that CSP cannot set or reset a status
bit which it doesn't control.

(j) TRAP MASK (TM) -

(1) FRETURN('MTM', 147) if the exclusive or of
DATA with the T™ field of SPT[SPTX] is not a
subset of the TCM field of SPT[CSP]. This
means that CSP cannot set or reset a trap bit
which it doesn't control.

(k) STATUS CONTROL BITS (SCB) -

(1) FRETURN('MSC’', 145) if the exclusive or of
DATA with the scB field ofvSPT[SPTX] is not a
subset of the scB field of spT[csP]. This
prevents CSP from modifying status control
bits it doesn't control.

(1) TRAP CONTROL MASK (TCM) -
(1) FRETURN('MTC', 146) if the exclusive or of

DATA with the T7°M field of SPT[SPTX] 1is not a

AN

)

‘; r : . P/e~n.r page
",C @ MISPS/M-7 41

SET'SPT'FIELD (continued)

subset of the TCM field of SPTICSP]. The ef-
fect of this is to prohibit CSP modifying
traé control bits it doesn't control.
Action:
SPTX is used to select an entry in SPT. As with most
of the McALLs which take an SPT index as an argument,

SPTX = -1 is taken to refer to the SPT entry which defines

the currently active sub-process, CSP. The second argu-
ment, FLDNO, specifies a field within SPT[SPTX] in exactly
the same way as is detailed in the description of

READ 'SPT'FIELD. The third argument, DATA, is copied into

the selected field of SPT[SPTX], if the relevant validity

checks succeed.

~~

T

b@c _ ' p/c-:;[SPS/M—7

page
42

READ 'MAP - Read the Map of an SPT Entry

Declaration:

Success Return:
RETURN;
Failure Returns:

(1) FRETURN('SPI', 138) unless 1 < SPTX < NSPTE.

Action:

first bit a READ ONLY BIT.

If SPTX = -1, this MCALL reads the MAP of CSP.

' FUNCTION READ 'MAP(SPTX, String MAP), FRETURN, MONITOR < 99;

Let ML = 32 if SPTX is a utility sub-process or 64 if
it is a user sub-process, and let M be the minimum of ML
and LENGTH(MAP). This function writes the first M bytes
of MAP from the first M PMT indices in SPT{sSPTX] and its,ﬂ
first M READ ONLY BITS. Twelve bit gquantities are written

into each byte. The last 8 bits are a PMT index and the

iad

,/ﬁ\

p/e~n.r page
: ﬁﬁ : MISPS/M-7 43
SET'MAP -~ Set the Map of an SPT Entry

Declaration:

FUNCTIO& SET 'MAP(SPTX, String MAP), FRETURN, MONITOR <« 1¢dg;

Success Return:

RETURN;

Failure Returns:

(1) FRETURN('SPI', 138) unless 1 < SPTX < NSPTE.

(2) FRETURN('SPC', 137) unless SPT[SPTX] is controlled by
CSP.

(3) FRETURN('SPM', 1g¢) unless
(a) BYTESIZE(MAP) is 12 or 24, and
(b) ¥ < LENGTH(MAP) < LM, where LM = 32 if SPTX is a

utility sub-process or 64 if it is a user sub-
process.

(4) FRETURN('SPM', 1d1) unless the PMT index field, PMTX,
of every byte in MAP satisfies at least one of the
following conditions.

(a) PMTX = #.

(b) PMTX is identical wifh the PMT index currently in

the corresponding byte of MAP(SPTX).
(c) 1 < PMTX < NPMTE and CSP has access to PMT[PMTX].
Action:

If SPTX = -1, the map referred to is that of CsSp.

The bytes of MAP are used to set the . T
first LENGTH(MAP) PMT indices of SPT[SPTX] and the corres-
ponding READ ONLY BITS. The remaining PMT indices and

READ ONLY BITS are cleared. Each byte of MAP is expected

/™

(M

r/-’\

h pPc=n.r page
@C MISPS/M-7 44

SET 'MAP (continued)

to contain a PMT index, PMTX, and a read only bit, RO.

If BYTESIZE(MAP) is 12, RO is taken from bit g of the
bytes and PMTX is taken from bits 4-11. 1If BYTESIZE(MA?)
is 54, RO is taken from bit 12 and pPMTX from bits 16-23.

If SPTX is the current sub-process in either the User
or Utility ring, the Process Map is updated to correspond

to the new MAP(SPTX) and the Physical Map is cleared.

: p/c~n.r : page
@ C ' MISPS/M-7 45

READ 'MAP 'BYTE - Read a Byte in the Map of an SPT Entry

Declaration:

Success Return:

FUNCTION READ'MAP'BYTE(SPTX, BYTENO), FRETURN, MONITOR - 1¢1;

RETURN BYTE; where BYTE contains in bits 16-23 the BYTENO]

PMT index from the MAP of SPT[SPTX], and in

bit 12 the corresponding READ ONLY BIT.
Failure Returns:
(1) FRETURN('SPI', 138) unless 1 { SPTX < NSPTE.
(2) FRETURN('MBN', 163) unless
g . BYTENO < LM, where LM = 31 if SPTX is a utility
sub-process or 63 if it is a user sub-process.
Action:
SPTX is used to select an entry in SPT (-1 selécts
CSP's entry) and BYTENO to choose a PMT index from the
entry's map. The value of the MCALL is a word with this
PMT index 1in bits 16-23 and the corresponding READ ONLY

BIT in bit 12.

’ p/e-n.r page
1 C@ MISPS/M~7 46

SET 'MAP 'BYTE -~ Set a Byte in the Map of an SPT Entry

Declaration:
FUNCTION SET'MAP'BYTE(SPTX, BYTENO, BYTE), FRETURN,
MONITOR < 1@2;
Success Return:
RETURN;
Failure Returns:

(1) FRETURN('SPI', 138) unless 1 < SPTX < NSPTE.

(2) FRETURN('SPC', 137) unless SPT[SPTX] is controlled by
CSP.

(3) FRETURN('MBN', 163) unless
g < BYTENO < LM, where LM = 31 if SPTX is a utility
sub-process or 63 if it is a user sub-process.

(4) FRETURN('SPM', 1¢1) unless the PMT index, PMTX, in
BYTE satisfies at least one of the following condi-
tions
(a) PMTX = ¢.

(b) PMTX is identical with the PMT index currently in

the byte of MAP(SPTX) selected by BYTENO.

(c¢) 1 < PMTX < NPMTE and CSP has access to PMT{PMTX].

Action:

If spTX = -1, it is taken to refer to CSP.

The byte of MAP(SPTX) selected by BYTENO is set from
bits 16-~23 of BYTE and the corresponding READ ONLY BIT is
set from bit 12.

If SPTX is the current sub-process in either the User

or Utility ring, the process Map is updated to correspond

to the new MAP(SPTX) and the Physical Map is cleared.

—~

P

p/c=n.r poge
MISPS/M-7 47

READ 'ACCESS 'KEY - Read an Access Key from an SPT Entry

Declaration:

LONG FUNCTION READ'ACCESS'KEY(SPTX, KEYNO), FRETURN,

Success Return:

MONITOR <« 143;

RETURN AKY; where AKY is the value of the access key se-

lected by SPTX and KEYNO.

Failure Returns:

(1) FRETURN('SPI', 138) unless 1 £ SPTX < NSPTE;

(2) FRETURN('ARG', 166) if KEYNO is not an acceptable Ac-

cess Key specification (see below)..

Action:

SPTX is used as an index to select an entry in SPT.

SPTX = -1 selects the entry corresponding to the current

sub-process. KEYNO selects one of the four access keys

in SPT[SPTX] according to the following.

KEYNO

g or
1l or
2 or

3 or

'TAK'
'UNO
'PK1'

'PK2’

Access Key Selected
TEMPORARY ACCESS KEY (TAK)
USER NUMBER (UNO)

PERMANENT ACCESS KEY 1 (PAK1)

PERMANENT ACCESS KEY 2 (PAK2)

The (48-bit) access key is returned as the value of

the MCALL.

d _ pP/e=n.r . paga
@C MISPS/M-7 48

COPY'ACCESS'KEY - Copy an Access Key from one SPT Entry to

Another

Declaration:
FUNCTION COPY'ACCESS'KEY(SPTX1l, SPTX2, KEYl, KEY2),
FRETURN, MONITOR <« 1¢4;
Success Return:
RETURN;
Failure Returns:
(1) FRETURN('SPI', 138) unless SPTX1l and SPTX2 are in the
interval [l, NSPTE]. |
(2) FRETURN('SPC', 143) unless the calling sub-process,
CSP, controls both SPT{sSPTX1l] and SPT[SPTX2].
(3) FRETURN('ARG', 166) unless KEYl and KEY2 are accept- .
able access key selectors. See the description of
READ ‘ACCESS'KEY for an explanation of how these argu-
ments are interpreted.
Action:
This MCALL sets the access key selected by SPTX2 and
KEY2 from the one selected by SPTX1l and KEYl. SPTX1l and
 SPTX2 are used as SPT indices, with the usual convention
that when -1 is offered as an SPT index; it refers to the
SPT entry for the current sub-process. KEY1l and KEY2 se-
lect one of the four access keys in SPT[SPTX1l] and
SPT[SPT¥2] in exactly the same way that KEYNO selects an

access key in the function READ'ACCESS'KEY.

. P/c-n.r paoge
@ﬁ . MISPS/M-7 49

COPY'TAK - Copy TEMPORARY ACCESS KEY

Declaration:
FUNCTION COPY'TAK(), FRETURN, MONITOR <« 1¢5;
Success Recurn:
RETURN;
Failure Returns:
(1) FRETURN('CNA', 174) unless the CAKF flag is set in the
SPCS entry at stack level -1.
Action:
This MCALL copies the TEMPORARY ACCESS KEY of the sub-
proéess which called the current sub-process into the

TEMPORARY ACCESS KEY field of the current sub-process.

page
50

20

21

p/c=n.r
MISPS/M-7
Format of an Entry in SPT
] 2B T 2__rals 23
: NAME o< CALL MASK (CM)
0~__2P3 112 Pl & 1520 23
;>>\\\ KEY FATHER | USP
B 1P 6 23
RING ENTRY POINT (EP)
=5 23
| ENTRY G-KEGISTER (EG)
? ' 23
STATUS BITS (SE)
7] 23
TRAP MASK ¢TM)
Y 23
STATUS CONTROL BITS (SCB)
7] 23
TRAP CONTROL MASK (TCM)
7 23
TEMPORARY ACCESS KEY
7 C(TAK) 23]
? 23
USER NUMBER
7 (UNO) 23
7} 23
PERMANENT ACCESS KEY 1 |
0 (PAK1) 23
? 23
PERMANENT ACCESS KEY 2
] (PAK2) 23
5) 23
UNIQUE NAME OF
0 UTILITY SUB-PROCESS 21
(USPUN)
7 23
0 READ ONLY BITS 23
7] 1516 23
PMT INDEX ©@
? &) 1506 23
PMT INDEX 1 PMT_INDEX 2 PMT_INDEX 3
l : '
i
| y
7} 7B 1516 23
PMT INDEX 61 PMT INDEX 62 PMT INDEX 63

Figure 1

.

y

DCC

P/c~n.r page
MISPS/M~-7 51

Format of SB and SCB Fields in SPT

O R RBHUD s P pojiyg2 23
S D D B D D
Pt S 4 PLPl WC DI P{M S
R Y O] N| N| Fi W W N| §| D
pPld |Mi1itlilsstole
clM o obp
PRP - Sub-process is a proprietary program
SYsS ~ Sub-process has system privileges
94¢M -~ Sub-process runs in 94¢g Mode
DPNIC - The system is to automatically put referenced
pages into the Core Working Set
DPNIM - The system is to create new pages when the
sub-process refers to paées not in its map
WFI -~ The sub-process is allowed to open files for
output in certain cases where this is not
normally allowed
DCWSO - The system is to automatically correct Core
wOrking Set Overflow
DDWSO - The system is to automatically correct Drum
Working Set Overflow
DPNOD - The system is to automatically put referenced
pages into the Drum Working Set
MSP - The sub-process has Master Sub-Process
privileges
SD - The sub-process has System Diagnostic

privileges

Figure 2

bCC

p/c=n.r
MISPS/M-~7

page
52

Format of T™M and TCM Fields in SPT

2 HB B 78 P Lojt Il 2] 3 4p sit

M Pl P Ij Py D} C By Nf S| P

AP NN Pl TI Bl LI N| W W Nt M I| Pf M

CtR I} Il I I L} I)O] S| S|EfRLIC|T

Cl O ™ C LI ™M D| Ol Ol P| D| E] S| O

O

MACC -~ Memory Access Trap
PRd - Page Read Only Trap
PNIM - Page Not in Map Trap
PNIC - Page Not in Core Trap
PI - Privileged Instruction Trap
TI - Trapped Instruction Trap
BLL - BLL error
ILIM - Indirection Limit Exceeded
PNOD - Page Not on Drum Trap
DWSO -~ Drum Working Set Overflow
CWSO - Core Working Set Overflow
NEP - Non-Existent Page
DMRD - Drum Read Error
NILE - Non-interruptability Limit Exceeded
SPCSO - Sub-Process Call Stack Overflow
PMTO - Process Memory Table overflow

Figure 3

y p/e~-n.r poge
@C MISPS/M-7 53
Normal Format of an SPCS Entry
2 0 R 56 23
N| N
1 If I} SPNO SAVED P-COUNTER (PC)
S| C
N O g5 23
C
1140 SAVED L-REGISTER (LR)
K| C
Fi
0 513} 23
2 SAVED G-REGISTER (GR)
1 23
3 NON-INTERRUPTABILITY
i} EXPIRATION TIME 23
4 (NIET)
NIS - Non-interruptability set
NIC - Non-interruptability copied from calling
sub-~process
SPNO - Index of SPT entry which defines this
sub-process
CAKF - Copy caller's Temporary Access Key
cC - Call completed
NIET - Real time at which non-interruptability

status will expire

Figure 4A

()

{ P/e=n.r poge
i £
§ CC MISPS/M-7 54
Alternative Format of an SPCS Entry
2R g6 1314 23
N| N
Il II SPNO EPNO
5/ C
[/ T = 23
C
al C FIRST PARAMETER (PAR1l)
Kl C -
F
[4] 23
SECOND PARAMETER (PAR2)
i 23
NON-INTERRUPTABILITY
2 EXPIRATION TIME 23
(NIET)
NIS - Non-interruptability set
NIC - Non-interruptability copied from calling
sub~-process
SPNO - Index of SPT entry which defines this
sub-process
EPNO - Entry Point Number
CAKF - Copy Caller's Teﬁporary Access Key
cc - Call Completed
PAR1l - Interrupt or trap number
PAR2 -~ Trap parameter
NIET ~ Real time at which non-interruptability

status will expire

Figure 4B

ee

} -

>

CC

p/c-n.r
MISPS/M-7

page
55

Appendix A:

Number
9¢g
91
92
93
94
95
96
97
98
99

199
141
192
193
194
1¢5
196
197
198
199
11¢
111
112

0113

SPS MCALLs in Numeric Order

Name
CREATE 'SP

DESTROY 'SP

READ 'SPT

READ 'SPCS

READ 'SPT'FIELD
SET'SPT'FIELD
READ 'MAP
SET'MAP

READ 'MAP 'BYTE
SET 'MAP 'BYTE
READ 'ACCESS 'KEY
COPY'ACCESS 'KEY

COPY'TAK

SP'CALL
Sp‘JuUMP

SP 'TRAP

34
35
36
38
42
43
45
46
47
48

49

21

23

25

DEC

P/e~n.r
MISPS/M-7

page
56

Appendix A:
Number

114

115

116

117

118

(continued)
Name

- TRAP 'RETURN

- SP 'BRANCH
- SP 'RETURN

- JUMP 'RETURN

- MARK'CALL

Page
27

3g
31

32

"

Noe

p/c~n.r page
MISPS/M-7 57

Appendix B:

Error Codes Returned by SPS MCALLs

'ARG'
'"CNA'
'CSE’
‘csL’
'"EPN’
'PHL,
'MBN'
'MNM !
'MRG '
'MSB'
'MSC’
'MTC'
'MTM'
‘MUS '
'RCS'
'RNG '
'SPA'!
'SpC’
'Spr’
'SPI’
'spM!’
'sSps'

'TNO'

Argument value unacceptable

call not allowed

Call stack (SPCS) empty

call stack (SpPcS) level out of bounds
Entry point number illegal
Fatherhood loop in SPT

Map byte number out of bounds
Modify sub-process NAME
Modify sub-process RING
Modify STATUS BITS

Modify STATUS CONTROL BITS
Modify TCM

Modify TM

Modify sub-process USP

Room on SPCS

Ring error

Sub-process access needed
Sub-process control needed
SPT (or SPT entry) full

SPT index out of bounds
Sub-process map

Sub-process on call stack

Trap number out of bounds

N

‘ p/c~n.r page
™ 7)
: CC) MISPS/M-7 58

Appendix C:

1049
191
193
137
138
139
14¢
141

142

143
144
145
146
147
148
149
1sg
151
152

153

154
155
157

160

Error Message Numbers Returned by SPS MCALLs

byte size or length of string descriptor to SET'MAP
value of byte offered to SET'MAP unacceptable
attempt to acquire occupied SPT entry

attempt to set map of uncontrolled sp

SPT index out of bounds

trap number out of bounds

attempt to call inaccessible sp

not enough room on SPCS for SP'CAL# or MARK'CALL

attempted SP'BRANCH on uncontrolled sp

attempt to set uncontrolled SPT entry

attempt to modify uncontrolled STATUS BITS

attempt to modify uncontrolled SCB bits

attempt to modify uncontrolled TCM bits

attempt to modify uncontrolled TM bits

attempt to set uncontrolled bits in sp KEY

attempt to set FATHER to uncontrolled sp

attempt to create FATHERhodd loop in SPT

lack of room on SPCS forbids setting FATHER

attempted SP'RETURN from empty stack

call stack level for JUMP'RETURN or READ'SPCS out of
bounds

attempt to JUMP'RETURN over un-controlled sub-process
offered P,L,G for MARK'CALL violate ring restrictions
offered EP or EG violates ring restriction

attempt to delete un-controlled SPT entry

1»(\4\
i

. p/c=n.r page
C@ MISPS/M~7 59

/\\

Appendix C (continued)

=

(o))

-
|

attempt to delete SPT entry which appears on SPCS
162 - attempt to commit suicide when SPCS empty
163 - map byte number out of bounds
165 -~ unacceptable pérameter code offered to READ'SPT'FIELﬁ
| 166 - unacceptable access key code (READ/COPY'ACCESS'KEY)
} 167 - unacceptable parameter code offered to SET'SPT'FIELD
168 - attempt to modify the NAME of a sub-process

170 -~ attempt to modify the USP of a sub-process

171 - attempt to modify the RING of a sub-process
- 172 - offered value for CAKF is neither @& nor 1
C 173 - illegal entry point number (SP'CALL or SP'JUMP)

174 - un-authorized call on COPY'TAK

