THE BCC TCRMINAL SYSTEH

. Paul C Heckel

Butler W Lampson

Prescented 4
The Seventh Hawaii International

Conference on System Sciences
8 Januvary 1974

.

/(KLD" R ;\;K‘\C?“’\

(N

-

THE BCC TURHIMNAL SYSTEM%

Paul C. Hockelzx
Butler ¥, Lampson*%x

Abstract

This paper describes a system for communication between a
timeshared computer and its full-duplex terminals. The system consists
of a conmunications computer that is part of the timeshared systen,
remote satellite computers, and connecting telephone lines. It flexibly
and efficiently services a large nunber of terminals of various types. A
descriplion 1is given both of the overall system design and of the

~algorithns used for nultiplexing character output, error detection and

correction, and local echoing as each is of independent interest.

1. Introduction .and Overview

. Sceveral computer communication systems have been developed
recently. The best known system, and the one which has received the
most attention in the literature is the ARPA Computer Nelwork which
provides a 50-kilobit network interconnecting more than 490
computers.2.,4.5.7 However, terminal-computer networks are of idinterest
because of the cost and availability of lower speed (2400 Lo 9600 baud)
telephone lines which can support then. Tymnets, one of the more
interesting of the terminal-computer systems, was developed about the

- same Lime, and tackles essentially the same problem, as the system

described here.

This paper atltempts two things: first it provides an overall
description of what the BCC terminal system does, and how it does it.
Second, it describes certain algorithms in enouah detail that the reader °
should be able to implement them. Specifically: section 2, The User
Interface, describes a solution to the problem of local echo resumption;,
section 4.1, The Crror free Comnunication Llink, describes the error
detection and correction algorithm; and section 4.2, Hultiplexing,
describes the output multiplexing algogithm.

The reader who is interested in the overall description might wish
to skim sections 2, 4.1, and 4.2; whilt the reader who is interested in
one of these algorithns might wish to skim the rest of the paper.

O e e e e o e o e T e S W R e W e me e As Ge e B W e e WS eu oW N Ge Gs e e e AR G G s B e e S R N ee W W e e e e

* This work was done while the authors were employces of Berkoloy
Computer Corporation. . :

XX 1050 Crestview Drive Hountain View, California 64040

®a% Xerox Palo Alto Rescarch Center, Palo Alto, California 94304

&

&

The ternminal systen is somewhat more general than is described
nere. (For example, telephone Tines other than 4800 baud can be used.)
flowever, i we were to o descrabe its propertics precisely, without
ppqdngical simplifications, we would only obscure Lhe basic ideas.

The BCC terminal system was designed Lo connect (presumably remote)
Jow and mediun speed devices, such as teletypes and line printers, to
the BCC-500 Computer System. The basic desian objectives were to make
the system efficient in the use of bandwidth and resistant to telephone
line errors, while kecping it flexible and nanageable so that new
gevices could be easily interfaced.

Brielfly, the BCC-500 Systein consists of five microprocessors
connccted to a 24 bit central menory. Two nicroprocessors arc the
systen-CPUs; a third controls nenory nanagencent (svapping between core
and . sccondary storage); and a fourth, scheduling. The fifth
microprocessor, which is called the CHIO (CHaracter Input-Output), 1is
used by the terminal systen. Each of these microprocessors is tairly
powerful, with 1000 to 2000 words of 90 bit nicroinstructions, and a
cycle time of 100 nanoseconds.

The terminal systen hardware consists of the CHIO microprocessor
which is connected via 4800 baud lines, to local microprocessnrs called
DCCs (Data Comnunication Conputers). The DCC microprocessor is identical
to the CHIO except that it has a 16 (rather than 24) bit memory and a
slower cycle time. Thus microprograms can run on either processor
without change.

The basic service provided by the terminal system is a channel from
@ user's program running on the CPU to a terminal connected to a DCC.
The system is organiced as a collection of parallel processces which
communicate by scnding messages to cach other. In some cases the
processes run in the same processor and Lhe parallelism is provided by a
scheduler or coroutine linkage; but it is convenient to ignore such
details in describiing the legical structure. Here is a list of the
processes involved in providing a channel from the CPU to a terminal:

User's CPU proaram (per channel) .
ciPU monitor program (per channel)
CHIO buffering (per channel)
Multiplexing (brinas many channels down to one)
Lrror free conmunication link (one per CHIO-BCC 1link)
CHIO nodem (one per CHIO-DCC link)

Telephone line {one per CHIO-DBCC 1link)

DCC noden (one per CHIO-DCC link)

Error [ree communication link (one per CHIO-DCC link)
Denultiplexing (separales one channel into many)

BCC bhuffering (per channel))

Terminal service (per channel)

DCC interface hardware and lowsspeed modem

Wire or local telephone line

Terminal

PN

gt

PO,

the

ihe channel in the other direction conlains the same modules 1n the,
T Foeverse order .

P I I T N A . LR R N N A I RN IR) L S A R I

: the CHIO : : the DCC : .
...... . : ———— — e R | -— :
b oop o=l M k : : | ‘ ' [D I-... e
! P or -—-«—"'“3”‘ L ! M . ' € "k""";’M::" t
[o |s---- | -1r t £}] E| f M=o, ==H=={ e
| c ol o=l X fem-s He====i{] [~----q A P B
¢ : -~ R F : :] F . P Xi-... 1 +|m
s : | - m——— RS R | - I
| s | cl: =:]c| I = 1|n
meeet = ERE . 1 : 1] a
: .-T.D] L} : :) L l Hil-... 1 |1
tfemexe] E poe)| L |-%émn] 2 ament
: Y I E SN B LR ZE] B CEEERRY B 2 U
: o=l P | N ;]] X }J-.. :
; o= X l __..l : ; ““j ’ R ! ce ;

ooooooooooooooooo LRI R 2 L N I R RN B A I A A A N N B I

.

Fiqure 1: This shows how a single CPU process comnunicates with a
terninal. The dashes (--) indicate the flow of characters 1in the
system; the ecqual signs (==), telephone 1lines; the asterisks (%)
buffers; and the "H"s, Modens. . .

The design problen was broken into three basic parts:

am

1) The CPU-CHIO interface, and CHIO buffer allocation;

2) The CHIO-DCC communication network: getting characters from
the CHIO to the correct logical device in the correct DCC, and
vice versa;

3) The DCC-terminal interface, -and a simple DCC operating
system, o

The following philosophical decisions guided us in the design:

1) [L[ach processor - “the DCC, CHIO and obvicusly the system
CPUs - would have its own enulated processor. VWhen a function
was not well understood, or efficiency was not important,
algorithms were written in soflware rather than frozen in
firmware (microcode), and put toward the CPU end rather then the
DCC end of the network.

2) Ve attempted to separate the functions of the system into

nodules, and linit the knowledge of how each function was
impliemented to its module(s).

2. The User Interface

e In this seclion we focus our attention on a single user at a

pGC Terminal Systen Page 3 -

e e P S R oy 0

s, o 3 e - R
R O SR TR - R A

Tt ; age 4

terninal altached to a 0CC which sends characters teo, and receives
characters froen, a user process running on the CPO. The terminal system
jis o full duplex system: Lhe inpul and oulput channels for a device are
independent except thal input characters may be echoed dinto the
corresponding output channel, In an ideal full-duplex system, all
echoning of characters would be done by the user program in the CPU for
three reasoens:

1) This allows the progran to not echo; echo a different
character, or inscrt extra characters to make the typescriptl
more readable, '

2) It provides same valuable error checking by making il almo’ t
certain that, if the character the user wanted was the one
echoed in response to a keystrobe, then the program saw Lhe same
characler, rather than a garblcd version of it.

3) It ensures that the user's typing is properly combined with
the CPU's responses =~ the printing on the typescripl records
the logical order of the interaction as seen by the user's CPU
process, rather Lhan the chronolagical order as seen by the user
vho is likely to type ahcad. . :

Unfortunately, this ideal is impractical. If a user process were
activaled to echo cach character, the system overhead would be large,
and the user's response would be poor. Even if the cchoing were done
centrally in the CHIO, the users response would be poor, although the

system overhead would be acceptable. However, with a 1ittle care, the

system can be designed to give the effect of the CPU "echoing” each
character while avoiding these problems. .

The basic method is to define a rule for dealing with typed
characters, called a break strategy. Therc are two effects of the break
strateqy: ’ -)

Characters are automatically ecchoed locally (by the DCC) wup to
the break characler. If more characters are typed, Lhey are not
echoed locally, but are cchoed centrally (in the CHIO) 'until
local echoing can be resuned.) ' ’

The CPU process for the device is not activnicd unt}] the breat.
character is input {or the input buffer is almost full),

User prograns in the CPU can specify and change the current break
strateqgy (a copy of which is kept in both the CHIO and the DCC). The
four break strategies are:

(A} break on no characters; .

(8) break on all control characters including carriage return;
{C) break on all non-alphanumerics;

(D) break on all characters.

In addition to the break strategy: there are two flags which the
user program can control:

EST (Echo Strategy) is set if characters should be echoed (1t 1s

turned off for reading passwords, for examplc);

s ssper

k.

o i T s Mt i AR A« o

The BCC Terminal bSysten Pago 5

EBC (Lcho Break Character) is set if break characters should be
cchoord. :

For example, a subsysten whose corrands end wilh a carriage return
would call for break straleay "B"; thus all echoing wonld he done
locally {(wn the 0CC) until a carriage return or control (editing)
charactetr was lyped, If the uner wails for the conputer's response, his
pext dinput will be drmediately echoed by the DCC because lucal echoing
will have been resumed. I, however, he continues Lo type ahead, taking
his editinag for - agranted or typing a list of coonands, these characlers
will not be echoecd untl read by the ceonouter, Thus Lhe onlput produced
during a console anteractian will record the interaction as seen by the
ClrU; no record of typing ahead will exist.

Certain aspects of Lhis scheme are straiachtforwvard to .implement.
Since the bredak stratengies are kept in bolh the BCC and the Cil10, the
CHIO determines which characters were echeed in the BCC by executing Lhe
same logic that the DCC did. The break strateay is set by sending a
message Lo the DCC which specifies the new strategy. The DCC responds
by chanaing its strateay and innedialely returning a messaqge which tells
the CHIO to change its strategy. Bolh parties know that any input
characlters which precede the set-stratlegy return message use the old
strateygy, and any which follow it use the new one. The setting of the
stratenics is synchronized in that it occurs at the same point in the
input stream in cach machine. '

Within a given strateay, however, switching between central and
local echoing is not so sinple. There asre threa points at which echoing
can occur:

In the CPU when the character 1is recedved from the CHIO and'

delivered to the user program (actually, the echoing is done by
the CHIO when it delivers the character to the CPU);

In the CHIO when the character is received from the DCC (if the
CPU has relinquished its interest in echoing, but the DCC has
notl yet taken it up); : :

In the DCC when the character is typed.

The possible transitions in the locus of responsibility for echoing
are:

ncC-to-CrU
CPU-L0o-CHIO (and CHIO-to-CPU)
CHIO-to-DCC

We must ensure that no cchos are lost, duplicated, or improperly delayed
in any of tLhese transitions., (The logic for these transitions is
doescribed in detail in Appendix AL)

. . .

The DCC-to-CPU transition is easy: the only active agent is the
user typing, so that there is no possibility of conflicting decisions
being made simpultancously. The CPU-Lo-CHIO and CHIO-Lo-CPU Ltransitions
are ovasy because they occur entirely within the Cill0, and thus can be
alonmic actions.

However the CHIO-10-DCC transition is tricky, because the CHIC can
be telling the DCC to resune cchoing at the sane time that the DCC is

The BuC Terninal dysten ' Page ©

conding of f sone newly typed, unechoed, characters Lo the CHIO. VWhen
this happens, the DL cannot ohoy the CHIO's cormmand - it has already
sent to the CHIO an unknown aunber of characlers which must be echoed
before any new characters can be echoed, The period of time, ending
with the DCC's agetting a pessane froa the CHIO, and starting at the Lime
in the DCC of the infornation on whaich Lthe CHIO's message was based, is
called an attenpl-to-resuncé-local-cchoing hiatus.,

Remote eccho resumption requires: first, detecting the inputting of
characters during the hiatus; and second, doing sonething about it.
petection regquires telling the BCC the last inpol characler echocd from
the CHIO, so that the 0CC can tell whether any nmore characlers have
arrived since then. Ve do this by scquence numbering the input
characters (nad 16 - because we convinced ourselves that no rmore than 15
characters could be in the "pipe® during the hiatus). We nake sure that
both nmachines use the same numhers., VWhenever the CHIO wants the DCC to
resume echoing, it sends a Request ELcho Resunmption (RER) command
together with the character scauence nunhber (CSEQ) of the last character
it received (and cchord). Vhen the DCC gets the ROR, it deternines
whelher the last character received from the terminal had the same CSEQ.
If so, il resumes local echoina by sctlting the local echo node and
sending the CHIO a Resume ECho (REC) nessage. If not, nothing need be
done because the characters which nust have been dnput during this
hiatus will eventually cause the CHIO again to atterpt ccho resumption.
However, Lhe DCC sends the CHIO a CSYNC nessage with its current CSCQ,
which the CHIO uses to resct its copy of CSEQ in case the CSEQs have
gotten oul of sync by accident.

i The efficiency of this scheme depends upon the praobability’ that
characters are input during an attenpt-to-resunc-local-echoing hiatus.
1t is a good scheie if the probability is small, but poor if it is large
because (a) sending extra RCRs is wastefuel, and {b)} Lthe user's response
is be slugaish until local echoing is resumed. (These problems do not
cccur if the DCC does not send a packet of input Lo the CHIO until a
break character is typed - at which point local echoing would stop
anyway.) The probability that the attenpt to resume local echoing will
fail is: W / 1, where Il is the expected duration of the attempt-to-
resume-local-cchoing hiatus, and I is the expected interval between
inputl packets to the CHIO during the hiatus. For this system H was
about 200 milliscconds, and I was about 4 scconds so the RERs would fail
only about 5 percent of the time. -

Alternatively, the DCC could remembier unechoed characters for a
while after sending them to the CHIO and then echo all the characters

following the ane specified by the CSIQ when it received the RER--

command. This would aet rid of the achknowledgenent to the CHIO and the
nced Lo retry at the cost of some buffering for each terminal in the DCC
- enough Lo cover the maxinum round-trip ~delay in a mnessaqge sent
between peor-teorminal processes. Our desire to minimize the armount of
buffering for low-speed terminals, and the favorableness of the H/I
ratio, led us Lo reject this method of resuning lacal echaing. 1ne
problen of local echo resunption has been discussed clsewhere.9.10
v

The foreqoing analysis assumes that, in console interactions,
neither side interrupts the other, but ecach waits for the other to
finish. If the user "types ahead", the terminal system buffers the
typing until the computer 1is recady to listen. While this view is valid
in most cases, cach will on occasion wish to intervupt the other.,

the BCC Terminal Systen Pago 7

The user can interrupt the computer by typing a quit character
vhich aencrates a wpecial dinterrupl to the user's (running) CPYH
process. Presumably the process will take sone appropriate attion, such
as abortaing the current compulation or outpul., As Tar as the terminal
system is conceraed, Lhere is pouthing special about the quit sequencoe,
except that the CHIO nmust be able to accept a command {rom the CPU to
clecar the oultpul butfers for a particular terminal.

A CPU process may also want to Intercuplt its user. Tt could, of
course, sinply blast out a messaage, but this would probably result in an
valy nmixture of the user's input wilh the characters of the messaqe.,
tiore inportant, Lthe CI'U process would he unable to Ltell which of the
mnpul characters came hefore, in ignorance of, and wvhich after, in
response Lo, its blast. To solve this problen we introduce a contraol
characler called TAG. IT the CPU aotputs Lhis control charaocter, the DCC,
tuirns off local echoing and sends the TAG back to the CPU process. This
achieves two things. First, since local echoing was turned off, the
typescript will be readable. Second, the CPU process can synchronize
with its user's concept of input becausce it honows Lhat characters after
the TAG, were typed after the TAG was processed by the 0CC. In
practice, the CPU process should wait .a few seconds and then send a
sccond TAG Lo ensure that the user had encugh time to react.

3. The CHIO

The CHIO, like the other cenlral-microprocessors, comnunicates with
the CPU via the systen's memory. Each processor can also send the other
an attentinn signal. The CPU sonds messanes Lo the CHIO by writing then
in aarccd-upon mermory locations and then sending the attention signal.
If the CPY expects immediate response from the CHIO, it waits for the
response Lo appear in another agreed-upon location. Otherwise the CPU
agoecs aboubt ils business. At same Jater time (e.y. when a break
character has arrived, or the output buffer is nearly enmply) the CHIO
can scnd the syslem scheduler a signal requesting the wakeup of the
proper CPU process.

In addition to the microcode for its normal functions, the CHIO has
a nicrocoded emulator for an instruction sect similar to the SDS 940
(chosen because support software was available). This enulated 940 runs
test proarams, and adjusts CHIO buffer allocation paramecters to prevent
exhausting buffer space.

The interface which the CHIO presents to the CPU is a collection of
buffered simplex data channels. There is one inpul channel and one
oulputl channel for -each terminal, related only in that input characlers
nay be ecchoed into the correspondinag output channel. In addition to ils
buf fering, cach channel has sone state which can be read and set by the
CPU: breah strategy, speed and character structure, and the process to
"wake up" when the channel needs service.

*

There are three basic CPU-to-CHIO comnands that a user's CPUY
process mnay use. They are Read String, Peck String, and Vrite String.
Read String(lL,N) reads, and removes, characters from the CHIO's buflfers
for line L. It stops at the first UbLreak character or the Hth
character - whichover is first - so the recading program won't get more
input than it is preparced to deal with, Peck String(l,H) is identical
to Read String except that the characters are not removed f(rom the

ot e W S gt g o i G, s s

4 e e ey b A Yt Bowrare 127

The BCC Terminal Systen Page O

buffer. Write String(l,S) writes stiing S into the CHIO's buffer for
line L.

Internally, the CHIO has a character buffer for cach input and
oulpul channel. Fach CHIO buffer is a list of 21-characler (8 word)
bincks. 11 tono many of these blocks are used for an oulput line, the
Vrite String will do the write, butl will return with an indication that
the CPU should send no more characters. When this happens, the CPU
program viall nornaltly block the process which s generating the output,
When the CHIO finds that its huffer is nearly empty, it will send the
CPU process a "vakeup”,

This schene, and many other features of the CPU-to-CHIO interface,
require thal the CPU preqgram he frien-dly. User proccans are not
allowed to send commands darectly to the CHIO, but rnust Tilter them
through the systen's monitor, which dones the necessary error checking -
in Lhis case by blocking processes which uncooperatively refuse to stop
outputting to a "full" line.

4. The Communication Link

The comnunication network consists af one CHIO connected to several
DCCs via 4500 baud telephone lines. Characters go lrom the CHIO directly
to the destination DCC; there is no store-and-forward capability.

The next few scctions focus attention on the communication link
between the per-channel processes. This link invelves the CHIO, one DCC
and the connecting telepheng line., It is coavenient ta divide this link
into two parts: .
1) The Error Free Communication Link (EFCL) consists of (a)
identical modules in the CHIO and DCC, and (b) the cannectiing
telephone line. Its function is to provide (presunably) error -
free transmission of a single stream of characters between the
two machines.)

2) Multiplexing, which converts this single channel (the EFCL)
into separate channels, one for each terminal, plus a few extra
for talking to alobal processes in the DCC - such as the process
which reports inconing calls.

The terminal system was designed to know as little as possible,
about actual devices. It delivers characters unaltered from the input
devices to the CPU which is responsible for converting them to the
internal character sct. (Ve considered pulting the mopping to an
internal chatracter set in Lhe DCC. Hawever, we folt it would be best Lo
keep the translation in one place - Lthe CPU - until we had expeoerience
with the terminal systenm.) Characters in the range 6 to 37 octal are
used internally as control characlerseby the Llerninal system, and may
not be senl to terminals in the obvious way. Some of these control
characters, like the previously mentioned RER, have internal mecaning Lo
the terminal system and will be rejected by Lhe CHIO if the CPU tries to
send then. Others, lite TAG, which can leually be sent by a user
program, will result in some aclion by the system. Data characters in
this range must be sent as two characters: the conlrol character SHIFTL,
followed. by 40 plus the desired chargcter. Thus character code 13
would be sent as SHIFTY followed by 53. This scheme allows the system

e ety s

Radkanssendil - din i o dndoliR Ll i o

s vwm s pemee cocivisie S R ey iang I ammons

The BCC Terminal Systen Pago 9

to interface wilh any 8 bit device, use 8 bibt data paths throuqghout, and
still encode its control messages convenirnlly,

Hhen the terninal systen transmits a number fron ope conmputer to
the other, as with the character count following RUR, it must cncode the
nunhaer into the range 40 Lo 377 octal (usudally by adding 40 to the
number). . .

.

4.1 The Error Freoe Cormunication Link

. The terminal systen is built out of a nunmber-of processes which
interact hy sendinag messanes Lo cach other. VWhen the source and the
destinalion of o message are in the sane nachine, it 15 convenient and
reasonable to assume that the messaqe can be transmitted without error.
If the nessage nust pass from one nachine to avother, 1L s still
convenienl to assune that there will be no errors, but it is no longer
reasoneblec unless precautions are taken, since the raw communication
path provided by modens and telephone lines is liable to crrors. An
important component of the terminal systen, therefore, is the collection
of prourans and conventions which construct a virtual, error-free
corumunication link {LFCL) from the real, error-prose one.

fFrom the viewpoint of its users (the multiplexing and
denultiplexing processes) the EFCL is a full-duplex channel which
processes a character stream wirich is scomented into 13-byte nessages.
It does not interpret these messages in any way (but Lhree characters in
the ranage 0-37 nust not appear in them: “ign®, "nuil" and "syn"). The
two halves of the channel are not enlirely indepondent; each halfl needs
the other to return reqguests for retransmission when errors are
detectloed. o '

To minimize the banduidth used for error conitrol, only negative
acknnwloduenenls, called retransmission regqunst (RTRs), are
transmitted. A receiver sends a RIR whenever it receives anything other
than a legal message. Hessages are scquence-nunhered within the EFCL.
Message N always follows nessaqge H-1, unless the FFCL is recovering from

an error. Thus the receiver always knows which messane it expects next, -

and scnds a RIR if it gets anything else. The sender saves ecach message
on a lookback quecue until il is sure that it will not have to rcetransmit
it. This appreoach uses bandwidth more efficiently than a simple
positive-acknowledgenent schenme, but at the cost of more complex logic.

The timing infermation which makes the negative acknowledgement
scheme word, is provided in the following way. Each (full-duplex) EFCL
contains a 32 "envelapes” in which messaqges can be sent. The envelopes
are nunmhered 0 Lo 31, and they pass back and forth hetween the two ends
of the line. If a sender puts a messaqge, into envelope H, it must keep a
copy of the messane for poassible retransnission until it gets envelope H
back. Once this happens, il knows that the message was successfully
recoived, and its copy can be discardeds Envelopes are sent in order,
eavelope Nrl Tollowing envelopn H (mod 20), except when a retransmission
OCCuUIrs. The ™posilive achknowledgenent” of a message block is the
successful reception from the other conpuler of a nessage with Lhe same
block number (a message in Lhe same envelope). Since envelopes arc not
explicily identificd, no bandwidth 1s used for the positive
acknowledgenent.

gm0y o st e e e

Hdag 1u

R At P e A B i s g

o apien amaparrene o

T .

.
e
L 1

It is possible for all 32 envelopes ta be at one end (and tn fact
the Tink is initialiced dn this state). When this happens, Lhe other
end will be keeping copies of 32 messanes., fach end has 32 moessage
buffers, called cenvelepe buffers, eachi of which is pernanently
associated vilth a particular envelope, Vien envelope N is present, then
envelope buffer N {5 (ree; when envelope s absent, Lhen envelope
buffer H coentains a copy of the message which was sept in that envelope.
Free covelope buffees (available envelopes) are kept on a free queue;
full oncs waiting for transmission, on the outpul gueue:; and full ones
that have been senl but whose reception has not been acknowledyged (whose
envelope has not yet come back), on the lookback queue.

Input messages are stored in o different set of buffers, called in-

buffers. These have no permancnt nunmbers.,

The following diagrams show an idealized picture of the EFCL's
structure:

SEND

user -~ OUT - outpul quecue - TR -~ hardware

RECEIVE:

hardwarc - READ - read queue - RCV - input queue - IN - user

Here the capitalized words are the nanes of the modules which comprise
the EFCL, and the dashes are coroutine linkages. Iwo modules separated
by a queuc can exccute in parallel. We will proceed by describing each
nodule; quite detailed prograns for the entire systen can be found in
Appendix B. -

OUT takes the envelope buffer from the front of the free queue {the
next available envelope) and putls into it a 13-byle block which it gets
from 1ls user, and a 2-byte checksum which it calculates. It then puts
this envelope buffer on the end of the output queue (from which it will
be read by 1R).)

TR takes an envelope buffer from the frent of the output quecue and
docs two thinas with it. First, it outpuls the buffer's contents to the
hardwarce. (11 the ocutput queue is emply, TR sends "ign" bytes which are
ianored by the receiver.) Second, TR puts the buffer on the end of the
Tookback oueue if it is an envelope buffer (it could be an RTR or RTA).
This envelope buffer will be moved from the lookback queue to the end of
the free queue when its "envelope" comes Dback, If a retransmission
request (RIR) is rceceived bhefore this happens however, the envelope
buffer will be put back on the oulput queue.

IN takes an in-bwuffer from the inpul queue, delivers ils 13 data
bytes to the user, and returns the in—b%ffcr to the input free queue,

There are four block types that RCV can find on the read ‘queoue: a
data block (thatl has no errors), an RTR (retransnission request), an RTA
{(rotransnission acknowledgnent), and an error block (anything else - bhut
nmost Yikely a block with a bad checksum). RCV can be in onc of throe
states corresponding to its "expecting" one of the first three block

SR

L

£

St gy v

(Y

Ty ST ' Page 11

types. RCV takes Lhe in-buffer from the front of the read queuc. There
are four possablities:

1) Ir RCV exprcts and gets a data hlock: 1t (1) puts the buffer on
Lhe end of the anpul queue, and (2) noves the envelope buffer on the
front of the lookback nueue to the end of the outpul free queue -
acknowledging the reception of that envelope buffer's envelupe, It will
sLil1l expect data blocks., :

2) Ir RCY gets an error bluck or any block other than what 17t
expected: ITU deletes any RIRs or BiAs on the outpul quauce, and moves any
ciivelope buffers to the and of the lenkback queue. Tt gencrates an RIR
forr the envelope whose buffer is on the front of the lookbdack qucuce
{(call it 1), and puls this on Lthe of the output quewe. Finally, RCV
puts a synchrontesation Dlock (sce PDEAD) on the vulput queue which will
force the RUAD at the other conmputer to synchranize Lo the correct
character position, It then expects an RIR. (If RCV was expecting a
data block, and it gets an RIR, it first processes the RIR as an error
block, and then as an cupected RIRL)

3) Ir KCV expects and gets an RTR: Assune the RTIR is for cnvelope
H. A retransmission acknowledae (RTA) is apprnded Lo the output qucue
specifying that block (envelope) H ois the following block. The buffers
on Lhe lookback guaue, from block H to the end of the queue, are copled
to the end of the output queue. RCV Lthen expecls an RTA for envelope L.

4) If RCV expects and grts an RTA for block L (for which 1t asked):
RCV expectls data blocks again.
*+
READ takes characters frem the input hardeare, recodqnizes messaqges,
puts then into in-buflfers, which it appends Lo the read queue., Its life
is complicated by the need to parse nessages from the strean of garbage
which may Dbe arriving over the telephune Yine. | The hardware heips by
recognizinag a string of more than 16 zecro bits as part of a
resynchronization sequence. The first 16 zeros are passcd on as bytes
(the "null” byte is the one with 8 zeros). If there are nore zeros,
they are absorbed by the hardware until a one bit appears. This bit is
used to deifine byte boundaries in such a way that if a "syn” character
is the first thing scnt after a string of "null's, then it will be
correctly received. :

READ looks for a syntactically correct, praperly checksumed, block
(15 non-null bytes after "ign's are filtered out). If it sces anything
else, it puls an error block on the input queue, and Lhrows cverything
away until the sychronization sequence "null” "syn" appears, and then
starts looking for o correct block again.

Finally, we clear up a loose end. The just described scheme works
as long as no RTR's or RIA's are "lost". This case 1is handled as
follows: whenever an error is detected, a tiner is set (or resct if it-
is already sel) to trigaer in 3060 mi1Tiseconds. it is already sel).
This tiner is turned off when an R1A 1s receivod, If the timer “goes
of " firstL, however, the EFCL puts an error block en the read queue,
forcing a new attenpt to resume normal communication,

1t 5hnu1d'hc noted that the EFCL is basnd on the assunption that

T errors occur infrequently. I there are no errois on the line, Lhe ounly

-

inefficiency is represented by the check cheracters, When an error is
detected, however, the [HCL stops transnitting data Blocks fer about 200

.
» e s

[

= e

TA e b e (v e tah e

@ e - ——-——

Rt N T MBI AT € Y e g

T OTC TOTmINA T oysten Page 12

milliscconds. Since available tetephone lines and mnodems quarantee no
pore than 1 ervor per 100 Ditya, we can evpect one error every 0 seconds
on a AL00 baud Yine, with an efficiccy of 99 percent. 1In faclt, thiags
are really belter than this because errors Lend to cone in bursts. If
we ol aone error, we can exvprct olhers in tha next few hundred
milliceconds. dhere are two el fects of Lhis:

1) The mean time botween error bursts, the periods for which the
EFCL operates normally, is langer than 20 scconds.

2) Afler an error is detectad, the LFCL luoks for RTRs and RTAs.
These messanes are chechsuned with a areater redundancy than the data
blocks. Thus the EFCL is least likely to miss delecting an error when
the probability of its occurence is highest.

4.2 HMultiplexing

The choice of methods for converting the single EFCL channel idnto
onc channel for each terminal is deminated by the demands placed on two
scarce resources: bandindih on the £Cls, and Dbuffer space in Lhe two
compulers, Input nultiplexing is Tairly ecasy to handie hecause the
volume of input is low, and the CHIO has o large anount of buffer space.
Output is hard because Lthe volune 1§ greater, bandwidth mnust be shared
cequitebly, delays in starting output to any. terminal nust be short, and
the buffering done in the DCC should not be too greal. Available
telephone lines and medens provide the same anount of EFCL bandwidth in
both directions; thus the efficienl utilization of bandwidlh is more
impo: Lant in the oulput direction than in Lhe input direction.,

A basic principle underlying the system is that characters are sent
only if the receiving computer can accept them.. There is no provision
for transmissian of control messages bholween the processes wivich handle
single terminals (except for the special case of lucal echo resunption).

This principle causes no trouble for inpul multiplexing betause the
CHIO "always"™ has cnough buffer space to store the demnyltiplexed input
character streams. The input data rate is usually low, and the user
doesn't type ahcad very far. Furthernore, the maxinum interval between
break characters is short (150 characters), and since the [DCC loses
control of ecchoing abt a breakh character, the CHIO can discard input
beyond the break character, replacing it with an overflow indicator.
When the CPU sees this indicalor, it can respond appropriately so that
the user will never be in doubst about which input was kept and which was
thrown away. (this will only happen if the user progran is responding
very slowly and the user is typing ahead regardless.) Of course
mechanical input devices (such as paper tape readers) have quite
different propertics, so a program which wants Lo input from such a
device can ask the systen for extra CHIO buffer space.

For outpul nultiplexing we nust boe mare carefual, becausa the usor
program can praduce characters very fasts and we don't want Lo have much
buffering in the DCC. Furthermore, wo cannot send outpul in large
blocks hecause Lhis causcs cxcessive delay in sending to terminals whose
output happens to get caught behind a few of Lthese bliocks. 5 a
consvquence, we must requlale the averaeye rate at which the CHIO sends
characters Lo a terminal so that 1L s only stiahily less than (ideally’
equal to) the rate at which the terminal can take them. To minimize

-

S
¥

e s < o et

e s gy s app s

or apemerine ey«

B
1
H
3
{
3
i
H
i

T TN gt iy, AT I § A A e A ET ¥t b iy Sevatpet a5 s

The BCC Ternminal Systen) Page 13

buffering in the DCC and avoid excessive startup delays, the initerval
over vhach Tlow averaging is dene should be as shorl as possibile.
Fanally, v should Lake advantege of the fach Lhal oculpul messages tond
Lo be gquite long,

Inpul multiplexing is sieple and straightforvard., The input stream
carviecs o sviuence of nesasages, oach of which is of consists of a burst
marker, « device number, a sequeace of dinput characters, and s
terminalted by Uhe nevt burst mnarker., Input for a device is not senl te
the CHIO untyl either (a) the dnput buffer s alnost full, or (b) a
break characler has been typed. Thus several-character bursts can be
sent even for low speed devices.,

4.2.1 The Meta-Multiplexing Algorithm

S The output nultiplexing algorithn is based on the sinple fact that
the set of currenlly outpulling telelypes channes slowly. Suppose, Lo
begin with, it does not change at all. Then we can transmit only data in
the output strearm i all the rultiplexing infornation is contained in
the multiplexing and denultipleiing algorithns.,

We can split the nultiplexer and denultiplexer into two nodiles
cach, a Mceta-Multiplexer and a Bandwidlh Allocater in the transnitting
conputer, and o Meta-Uenultiplexer and an identical Bondwidlh Allocator
in the receiving ceiputer. The neta-algorithins nerely reauire that the
Bandwidth Allocator determine vwhich channel goes with ecach character
posityon in the EFCL streamn. The only constraint on the code for the
Bandwidth Allecator is that it only reference state which can exist in
both conputers - a constraint implied by having identical copies in cach
computer., :

The "corrcctness" of the Multiplexer does not depend on the
"correcctness® of the Bandwidth, Allocator. For exanple, suppose the
Multiplexer's Bandwidih Allocator sclected channel 3 to send the next
character to, vhen it should have selecled channel 4, The
Denmultiplexer's Bandwidth Allocatnr will send the character to channal 3
(rather than 4}, The effeccet of such an error wuuld be to cither
*cheat” a channel (4 in this case) out of ils intended share, or to sond
characters to a channel faster than its terminal could dispose of then
(3 in this case), or both. butl characters would aiways go to the
cortrect channel.

The setl of actltive output channels is nolt invariant, but the Meta-
Multiplexer can Dbe casily extended to Lhe more dgcneral case of a
(slowly) varying scet of active channels at the cost nf adding three
conlrol characters Llo cach stiream of data characters for a channel. MYe
require that the state table (in rach compuler) contain an "aclive" bit
for cach poltentially active oulpul channel. The sel of active output
channels is the sel of channels with the “active” bit set.

I€ the Heta-Hultiplexer wantls t’o add a new active channel it does
two things sinultencously: it sets the "active" bit for the channel, and
it sends the Demultiplexer an Insert Hew Channel (1HC) character
followed by the number of the channel bewna aclivated. he Heta-
Demultiplexer, wheo it gets the THC, sets fts "aclive" bit for the newly
inserted channel, but otherwise ignores the two characters.

.

R

R Py,

b

i
;
;
1
}

ey saat

s

T]

The BCC Terminal Systenm Page 14

Swmrlarly, whea tho Heta-ltultiplever finds that there are no morae
characters for an active channel, 3t deactivates tLhe channel by
resctting the "active® bit, and seading a Delete Old Channel (DOC)
character., the Meta-Denultapiexer, when it qgels the 00C, res 15 the
“active" bit for the sclected chdnnel, but otherwise ignores Lhe
chiaracter, In Lthis case 1L s unnecessary Lo send the channel nuwmber,
since the 0OC is sent in place of a data character and the receiver
thaeroefore knows which channel is involved. ’

The bandwidth efficiency of a multiplexing alqgorithm is the
percentage of the characlters in the noltiplex strean Lthat are data
charactlers, The efficicency of this algorithe is N/(H43) vwhere N is the
averauc mumber of characters per output stream, (3 is the nunher of
control characters added Lo the strean.) U iy likely to be largest, and
thus Lhe algorithm wost efficient, when the output CiFCL is at or near
saturation, If the average oulpul strean to a channel s 22
characters, the officiency of the multiplexer is 88 percent.

4.2.2 the Bandwidih Allocator

The Bandwidth Allocator is described more as an example of an
algorithn that can be uscd with the ffete-hultiplexer, then Tor its
intrensic meril. This algorithn has three constraints:

1) Tt nust have the preperties deranded by the meta-multiplexing
algorithn. "~ These propertlies are implied by the requirement, that
identical copies of the algorithnt run in both machines.

2) 1t "wmust not send characters to a device faster than the
device can process thoem. . .

3) It must be able to multiplex devices of any speed. It is.

this requirenent that presents most of the problen.

Time is arbitrarily divided into 100 millisccond intervals. This
turns out Lo be 52 characters (52 data + 3 check characters tires 10
intervals = 600 characters per second or 4800 baud). for cach channel we
keep the number of characters it can receive in the 100 millisecond
interval, called 1R.FR (IR is the inteqer part of the rate, FR the
fractional part). IR.TR is 1 for a channel driving a 10 cps device; 3
for a 30 cps charnel, and 1.48 for an IBH 2741 channel., Ve also kcep
the number of characters to be sent in ihe current dinterval called
CI.CF, which is set to zero initially. The hasic idea is to send IR and
IR+1 characters in an interval, alternatelly, in such a way that the
average nunber of characters per interval will be IR.I'R. The following
algorithn will give CI the values IR and IR+] appropriately.

At the beainning of cach interval, the following computatlion is

perforned for cach chaonnel:
L 4

CI.CF « 0.CF + IR.TR

and the Bandwidth Alleocatlor will try to send CI characters to the
channel in that interval.

The Bandwidth Allocator has two passes. In the f{irst pass it
selects all (active) channels and sends ecach of them the fewer of 3 or

e G I o ; P ey
S Bl B AT

e e v+ < o

bt € % o wn ke AAAMA st ot b mibrm Sovey s shd e tha b o

wvts e T Shee S ST O e e v ¢ M ooat e s ombs Snn b ba

m

The BUC lerminal Systen Page 15

Cl characters. T4 will fini<h this pass even 10 (L has Lo stretceh the
interval beyvond 42 characters (1710 second) . 10 fever than 52 characters
wore nultaplesed o the farst pass, chenoels that can accept wore than 3
characters are sent Cl-3 characters until the interval is complete (92
characlers are rmultapiexed), This allows high speed devices such as
printers to tale up the =lop an Lwes of plenly, while slowing output Lo
all devices when soturatiuh occurs. ‘

At the end of each interval, a CHS (Check Synchronization) Control
charaecter is inscrted. This checks and resets the synchronization of the
Multiplexer amd Denultiptlevcr (in Lheary, loss of synchronization would
only occur if thoe tICH failed to detect an error), and provides a “do
nothing™ contral character if there is no outpul Lo do. ‘

.

5. The Data Comnunications Conputer

The Data Cormunications Computer (DCC) was designed with threc
criteria in mind.,

It should efficiently handle input and oulput to a large number
of low-speed (up to 300 baud) devices;

it should provide flexibility, especially in interfacing with a
varialy of devices; .

it should be controllable from the CPU so that operator
interventioun is not required except in the casc of hardware
malfunction.

In the normal case, the DCC is expected to inlerface with up to 200
devices, mostly low-spond termipals. It includes an dnterpreter for a
16-bit dnstruction set called the Remote Processing Unit (PU); those
parts of the BCCL's Job which do nol have Lo run at microcode speceds are
executed by the R2PU.

The DCC raintains a Device Table, indexed by the device number,
which contains the partially asscubled and disassenbled characters for
the nicrocuded bit scanner, descriplors for the input and output
character buffers, and ficlds with control infermation such as the break
straloegy. *

Low speed devices are bit scanned by the microcode and the
assonbied character dis cechoed (if local eche mode is sel) and then
stored in the mmpul buffer for the device. However, if the input buffer
is full, due to cither a communication line malfunction or an unusually
heavy lvad on the Jnput Hultiplexer, the characler is neither stored
nor echoed, thirs the user does not get false feodback if his character
was lost by the 0CC. The Inpul Multiplexer removes charactlers {rom the
inpul buffer and nultiplexes them for transmissicn to the CHIO whon
requestnd to do so by the LECL . :

OQulput is similar to input: The Denmultiplexer puts characters in
the device's output buffer, from which they are later removed by the
output bit scanner. Remenber, it i5 quaranteed that the Hultiplexer
will not deliver characters faster than the output bit scanner can |
dispose of then,

e Ay g s e bt o e o < & 5

o e oy

[————

.-..m r bt ¢ 7 L a ¢ e e A
1

R,

R

Ca e e e meee— :....("
i

The HCC lerninal Sysien Page 16

Line printers, card readers, displuys, and other devices whose
apeed is ton high te boe hit scanned ore handled differently on Lhe
wegevice stde of the DCC. An WY task dnouls cheraclers frow Lthese
devices amd stores then in the iapubl buffer for the Holtiplexer Lo pick
up. Sinilarly, for ecach. output dovice, an RPY task qgels output
characters from the devices's output huffer (where Lthey were pult by the
pemuitiplexer) and oulpouts then to its device. These tasks are activatad
by the dinput and output dnterrupts fron Lhe hardware interface for
pedivn-speed devices, and by the output denultiplexer when it delivers a
character,

(The RPU has 7 dindex registers, one of which is the prodgeam
counter; 15 menory reference instructions; and 24 register Lo register
instructions. There are four addressing. nodes: inaediate, direct,
indirectl, and scratchpad; the Yast gives the RPU access Lo the working
reqgisters of the underlying nicroprecessar. There are lwo indircet word
types: an indeszable cere poiater vhich is needed becouse Lhe adidress of
the instruction is a 7 bil siaoeed field, and an indexable field
descriptor which spocifies a word displacenent and an arbitrary
cantiguons bit field within the ward., The aenory reference instructions
include load, store, call, branch, and add to nenory, The reqgister to
register instructions include the standard arithnetic, loegical, shift
and cycle operatiens as well as input-output instructions. Tlhe RPU
emulatnr has an instruction execution tine of about 4 microseconds and
uses 130 words of nicrocode,)

The DCC maintains a table which contains Lhe state of cach RPU
task. If there are no nornal (nicrocoded) §CC functions to be done, the
DCC runs the highest priority RPU Ltask until either it Dblocks or a
nornal DCC function nust be done (signaled by a hardware interrupl to
the microprocessor). Tasks have [ixed priority: lower priority tasks
will not run while higher priority tasks arc active.

RPU tasks are expected to perforn several functions: interfacing
with devices that are not bit scauned, answering Lthe phone and
recoanizing the device type, and 0CC dpitiaYization and bhuffer
allocation. Somn of these functions arce done in conjuction with a
controlling CPU pracess, using one of the channels for comnunicalion.

This brinas us to the third function of the DCC: initialization
from the CPU. 1lhis is a problen of sone difficulty because of the havoc
that a misbehaving DCC process can wreak: it can clobber core and even
turn off the 4800 baud line that connects it with the CHIO. A «design
thal roqguires the DCC to prevent RPU tasks from doing anythina illegal
is dinfeasible withount restricting the RPU's ability to do anything the
microcode can do. Thus it is impossible to guarantee thal the DCC can
always be reloaded by the CPU. However, it is the nornal mislakes of
ordinary cude, rather than the sophistry of the expericnced knave, that
wo are trying protect against. MWe can therefore do quite well at the
expense of putting a glitch in the EFCL.

. T L. D
There are 4 parts in the initiatization procedure,

First, ta handle the (rare) worst case vhere the comnunication line
has been turned of €, or the BCC is in an unrccoverably bad state, there
is a pushbutton on the DCC which, if pushed, will dnitialize the iCC so
that it can be loaded over the £FCL. IL simply causes a branch to the
micrecode initialiration localion.

ragoe /7

v

et e e e w e

St db e e

sty A B it A R e %1

= e v s s ite TA R maaws 4w

Second, whenever the UFCL ds oboul to reod an inpul chavacter fron
the haridheare, b checks for Lhe conteol character BHET. B L gebls 3 of
these i a rov (two din a row conld be checkaun charactersn), it does Lhn
cane dinttialicatien as the copsole pushbutlon. The effernt of Uhis
initiahisation is Lo alloe the LICL and the Deouslbiplesner La operato,
alheat in o rudimentary vay: not all of the toables are initialized -
Just the bave minnun,

Nove the CFU can load vhatever ports of the DEC it wanls by sending
a ltoad Renobe Concentrator (IRC) control character, folloued by loading
inforaation, Part of the Ioading afornation is a flag that indicales
vwhether RPPY Lasks shoubd rcun, Thus R0 tasks can be turned off until
core has been loaded; thea they can be turned on with a last LRC, and a
Just loaded inytializaten Lask can run,

Finally, this initialization task can load microprocessor
reqgisters, tura on any dinput and output devices, and do other
initialirzation,

6. Some Facts] .

The DCC contains about 500 words of microcode, the CHIO about 930.
The microcnde for the [FCL and the Bandwidth Aliocator is identical in
both machines, The DCC bhas less microcode than the CHIO because great
effort was oxpended an pininizing the BCC micracode so as Lo reduce the
cost of replicating the nichine. This was less inpartant with the CHJIOQ,
whare efficicncy and casn of understanding took precedence. The terninal
systen was first simulated, and then a werking system was brought up and
tested., IL was Tound Lo be working well, bul extensive testing and use
did not occurr due to the untortunate demise of BCC.

S A

i e v o o1t

e ¥ S

B 0% v vavanes B u 0f M B A T2 RENEATAS AR]] Page 18

BibYtoegraphy

[11S Carr S Craocker V Corf
HOST-HOST Comnmunication Protacol in the ARPA Nelwork
Proc ANIPL SJCC 1970

{2]) S Crocker J Heafner R Hetcalfe J Postel
function-Oriented Protucols for Lhe ARPA Conmputer Hetwork
Proc AP LIPS SdauC 1972

[37T B Frank T T frisch V! Chou

Tuopoloeagical Considerations in Lhe Design of the APA Computer
Hetwork

Prac AFIPS SJCC 1970

[{4] F Frank R Kahn L Kleinrock

Cenputer Conmunication Helwork Design- Expericnce with Thaor/ and .
Practice

Proc AFIPS SJCC 1972

[5) F E Heart R E Kahn S M Ornstein M Crowlher D ¥Walden
The Interface-Hessaan Processor for.the ARPA Conmputer ﬂntuor&
Proc AFIPS SJCC 1970

[6] L Xlenrock .
Analytic and Sirulation Methods in Conmputer Hetlwork Design .
Proc AVIPS SJCC 1970

[71 S Ornstein F llecart W Crowther H Rising § Russell A Hichel
The Terminal IHD for the ARPA Computler Helwerk
Proc AFLIPS SJCC 1972

[87 R Thomas D Hendersan B
1eROSS- A ttwlti-Conputer Programming System
Proc AFIPS SJCC 1972

[9] L Tymes
TYNHET - A Terminal Oriented Cos nun1catlon tetwork
Proc AFIPS S3CC 1971

[10] 9 Davidson
An Echoinng Strategy for Sattellite Links
Hetlwork Infornation Center 10599, RFC 357, July 1972

[11] R. Mntcailfe

Packct Coununication

MIT Project HAC Technical Report 114,
Decenber 1973, rovised PhD Thesis,
Harvard University, May 1973

(127 P Heckel
The Comnunications System - Phase II
BCC Working locument number €8/5-24, 1 llay 1970

B R T

PR o R g s e Fre—— 3 o AT ST (T D4

.
A N g MR Ee e e s B beenea v A VAR a e s B
(: i

[V,

The UCC terminal Systen Page 19

Appendix A

This section describes the state infornation al the transitions
thal, occcur an the CHIO ond the DCC as responsibilily for echoing is
Lransfoerred,

Each machine has an echo source ES and a character sequence number
CSEQ. The LS may be:

Cht - a characler is ochoed when it is passed to the CPU.

CHIO - a character is echoed whon 1L 15 received hy the CH10,
DCC - a character is echoecd when it arrives in the UDCC from the
terminal.,

The BCC does not distinguish CPU and CHIO as echo sources.

The CHIO state transitionz'are:

.

1) CStQ dis incremented whenever a character arrives frem the

DCC;]

2) CSEQ is set to N whenever a TAG(H) nessage arrives from tha
DCC;

3) ES = CPU whenever a break character arrives {fron the 0CC;)
4) L3 CHIO whenever the CPU does a Raad String and the input

buffer is enply; .

5) tS := DCC whenever an REC message arrives Tronm the BCC,

‘6) A RER(CSEQ) messaae is sent Lo the DCC whenever transition
(4) occurs and the onlput buffer is enply, or the output bLuffer
becames emply and S := CHIO.

The DCC state transitions arc:

1) CSEQ is incremented whenever a character arrives from the
terminal; :

2) S := CPU whenever a break character arrives fron the
ternminalg

3) S := DCC whenever a RER(N) message arrives from the CHIO and
H-CSEQ. YWhen this happens, an RUC wessage is sent to the CHIO;
4) 1F a RIR nessage arrives and transition (3) does not apply, a
TAG(CSL.Q) message is sent to Lhe CHIO;

cn e By e

O iy TS U

e e - e e

AT e o e

' The BCC lerminal Systen Pagoe 20

i

it

Appendix B

This section conlains a program for the FFCL Algorithn,

DECUARE RECOPD envelope buffer
(nunber o THHGER, velue @ STRING(IS)); -
DECLARE RECOID do-buffor (value @ SIRING(16));
QUI(datar STRING(TIO)) :
DLCEARL b o« POINHER TO envelope buffer; .
b c-first buffer on the output free queue; renove b from the
quene; witite , data amd a chechsun (2 bytes) into value(b);
add b to Lhe end of the culput quoue;
TR: tales no arqunents;
DUCLARE b : POINTLR TO envelope buffer;
loop:
I the outpul quete {s cnpty THEW send a "syn" to the
hardware CLSE BEGTH
b = first buffer on the oulput queue; remove b from the
queue; sond nunber(b) and then value(b) Lo the hardware,
one characler at a Line; ’
add b to the end of the lookback quecue

ER A S Y S P TS Sa MRS SN el AR % ek e 0l ah s e e - e ﬁ‘ FR VR

EnD,; .

CO10 loop; . . .
{ : .
: IN: RETURHS (data : STRING(13));

DICLARE. b ¢ POINIIR 10 in-buffer;
b :~ first buffer on the inpul queue {(wail until there is
one);
data := the 13 daia bytes from value(b);
B : put b on Lhe inpul free queue;
<:,‘ RCV: takes no parancters;
DECLARE b ¢ POINTIR TO in-buffer;
loop: IF read queue is emnpty THCH GOTO bad input;
b := first buffler on read queue; remove b from Lhe queue;
IF value(b)[1] = nunber{first buffer.on the lookback dueue)
and checkaum is good THEH BUGIN
put b on the end of the input queun; .
take the first buffer off Lhe lookback queue and put 1t
it on Lhe end of the cutput free queue;
END
ELSE IF value(b) is a RIR and checksum is good THCH BEGIH
I = the paramecler of the RIR;
remave buffers 1 Lhrough the end from the lookback queuc
and put them on the front of the osulput quecue in that
order (so that buffer H is the first). Then put a sync
messaae on the {ront of the ocutpul qucue;

END
ELSEC BEGTH *
bad input: ,
IfF Lime > timeout THEDN PEGINH
pul a RIR(Nin) and then a sync message on the front of
the outlpul queue;
Ltimeoul := time + timecoutinterval
tHD
END;
G010 loop;
READ: takes no araunenls;
C) DUCLARL b @ POINICR TO din-buffer, i, c: INTEGER;

v s i g -

A S TR T T

The BCC Terminal Systlen Page 21

1nap;
b= (irst buffer on input free queue; remove b from queuc;

road Dlock:

?-
Pl
4
£

i o= 0 .
read charg ;
c := hyrdware input character; .
IF ¢ = "syn" THLH GOTO read char; v
CLSE IE ¢ = "“pnull" THEH BEGIH L
read sync: . :
¢ := hardvare input character;
IF ¢ = "nubl™ TN GOIO read sync;) L
CLSETE ¢ -~ "syn" THIH GOTO read block
CLSE BUGIN
vait for null:
¢ = hardware input character;
IF ¢ = "pull” THTH GOTO read sync
ELSE GOTO wait for null
END .
EHD
CLLSE BEGIN
vatue(B)[1] 3= ¢; 1 1= 1 +°1; .o
IF i = 16 THEH put b on read cueue ELSE GOTO read char;)) i
END; .
GOTO loop; {
*
#
13

7N

