-7//;‘/'7 Sl liel ot It e v £ e

THE MODEL 500 CENTRAL PROCESSOR

The Mode
. Page Two
Introduction
The central processor (CPU) of the Model 500 is the system com-
ponent which is respoasible for executing user programs. Certain In addit

1 500 Central ProcESsor

can execute as efficiently as those in Fortran.

ion to these najor advantages, the Model 500 CPU has

parts of the operating system also run on the CPU, but the most other important features which contribute to its efficiency:

time-consuming functions of the operating system are relegated

to special-purpose processors.

The CPU has been designed with two major ideas in mind:

1) It should match the structure of a powerful high-
level language closely, so that code compiled for
this language will be nearly as efficient as hand-
written machine code. To the extent that this
goal is achieved, any incentive to resort to machine
language programming is removed, and such well-
documented advantages of high-level languages as
good documentation and rabid coding are extended

to all programming.

2) It should permit the efficient execution of programs
written in user-oriented languages such as Basic,
Cal and APL. These languages have the desirable
property that the programmer does not have to know
anything about the implementation; everything that
happens is reported to him at the source language
level. On most machines this property is paid for

by costly software interpretation and error-checking

short instructions and powerful addressing modes
reduce the size of programs

all routines are automatically re-entrant, so
that a single copy can be shared by many simul-
taneous users

subroutines can operate recursively at negligible
extra cost

an orderly instruction set makes fast compilation
possible

all code is relocatable to facilitate incremental
compiling

arrays are accessed through descriptors which auto-
matically check that subscripts fall within the
correct bounds

matrix elements can be referenced without multi-
plications and without expensive optimization
part-word fields in tables can be accessed almost
as cheaply as full-word quantities

numerous built-in operations speed the handling

of strings in various byte sizes

The next few pages will outline the structure of the CPU to

during execution. With properly designed hardware

show how these wonders are accomplished.

those costs disappear, and programs written in Basic

The Model 500 Central Processor
Page Three -

LN

Registers and Instructions

The Model 500 uses 24-bit words which can hold a single 24-bit
twos complement integer, four 6-bit bytes, thcee 8-bit bytes or
two 12-bit bytes. Two words hold a floating point number with an
11-bit exponent (10i30°) and a 36-bit coefficient (more than 10

decimal digits).

The unique memory organization of the Model 500 permits a large
nunber of memory locations to be accessed as efficiently as the
central registers of other machines. As a consequence, the re-
gister structure of the CPU has been greatly simplified. There
are:
a program counter P;
an accunulator A for general integer and floating-point
calculations{
an index register X for address calculations and simple
integer arithmetic (add, subtract, multiply by small
constant) s
two base registers, a local base L and a global base G,
whose use is explained in the treatment of addressing
a status register S containing indicator bits, a condition
code and various mode bits:
a compute-time clock which counts time spent by this
user process on the CPU with 10 us accuracy;

an interval timer used by the operating system.

All registers except A are 24 bits long. The A register is

-
The Model 500 Central Processor

Page l'our

96 bits long, to accommodate double-precision floating point

and four-word data objects.

A Full set of arithmetic and logical operations on 24-bit integers
is provided: 1load, store, exchange, add, subtract, multiply,
divide, and, or, and exclusive or. A carry indicator and special
instructions which sense it permit efficient multiple-precision
integer arithmetic. A complete set of shift operations allow a
choice of

. single or double-word operations

. arithmetic or logical shifts, or cycles

. shift direction controlled by the sign of the operand

All arithmetic operations set the condition code depending on
whether the result is less than, equal to or greater than zero.
Six conditional branch instructions permit any combination of
these conditions to be tested. Compare instructions allow tests

to be made without destroying any registers.

To-memory operations allow incrementing or decrementing any loca-
tion, or adding the accumulator to memory. These operations

also set the condition code, and provide efficient facilities for
closing simple loops. A special instruction to increment X and

branch can be used for the tightest loops.

Floating point add, subtract, multiply, divide, compare and ncgate
are provided, as well as instructions to fix and float numbers.

All floating point arithmetic is normalized and correctly rounded.

The Model 500 Central Procéésor . The Model 500 Central Procéssor
Page Five , Page Six

L]
The floating accumulator maintains 10 extra bits of precision to Addressing
minimize round-off error in polynomial evaluation and other : The CPU has an address space of 218 24.pit words, divided into
common computations. All floating point operations check for : three rings as follows:
illegal operands and trap to a user-provided routine; this v 0-377777, user ring [* user programs
feature makes it easy to detect references to variables which 400000;577777S utility ring'alg less privileged system routines
have never been initialized. Overflow and underflow also trap : 600000-777777, monitor ringffé highly privileged system routines
to user-provided routines, leaving results which are correct : The hardware protection allows programs executing in a given ring
except for the sign of the exponent. Divide by zero has its own % to reference only that and lower rings. This arrangement allows
trap, as does an attempt to fix.a number too big to be repre-~ i system routines convenient access to the memory of user programs
sented as an integer., A special instruction fixes a number and i but ensures that the system is protected.

loads the resulting integer into X; this is important for lan-
The addressing system divides naturally into two parts: address-

guages like Basic which use floating-point subscripts. . .
ing from instructions and indirect addressing. The main goals

The very powerful function g;é instruction is described in a of the instruction addressing are
separate section. There is also a, simple branch which leaves - 5~ 1) To allow 218 words to be addressed from a 24-bit word
the return link in X for special purpose subroutine linkages. o~ ﬁ‘;lf which also must hold a 7-bit operation code, leaving
L:Ti‘\}i 17 bits for the address, mode bits and index register selectioni

The addressing structure provides for character pointers which _. X o .
3 2) To provide good facilities for accessing arrays and

can address any 6, 8 or 12-bit byte. Instructions are provided !
- referencing structured data;

to increment such pointers by n bytes, to find the number of B .
. 3) To permit subroutines to have local storage in a con-

bytes in a string (i.e., between two character pointers), and to X
venient way;

advance to the next or previous byte of a string, with a test
4) To make all programs automatically relocatable;

for exhaustion of the <tring.
5) To allow immediate addressing for small constants, so

A non-addressable instruction copies a block of words to a new that space and memory references can be saved,

place in memory, ensuring that the block will not be overwritten .
There are four CPU registers which can be used to hold full-size

during the operation. A variant copies a constant into a block .
addresses. Each of these has a specific purpose, and general

of words. Other instructions count the numnber of one bits in

the accumulator and the number of leading zeros or ones.

The Model 500 Central Procéésor

Page Seven

indexing is done from memory locations in a manner described
below.

. the global base register G addresses storage which
is common to a large group of routines which are
com?iled or at least loaded together. It rarely or
.never changes during the execution of a program.

. the local base register I addresses storage which !
belongs to a single function or subroutine. To !
facilitate its use for this purpose, it is given i
special treatment by the function call and return
operations, so that no extra instructions need to be ‘
executed to keep it pointing to the local storage
of the current function.

. the X register is used for indexing calculations
too complex to be handled by the special memory in-
dexing modes.

. the P counter points to the instruction currently

being executed.

Instruction addressing allows locations near each of these re-

gisters to be addressed conveniently. In particular, there is

1) direct and indirect addressing from G to G+214-l (+16%k)

2) direct and indirect addressing from L to L+211-l (+2k)

3) direct addressing from X—27+1 to X+214—1 (-128, +1le6k)

11 11

4) direct and indirect addressing from P-2 "+l to P+2 -1 (i2k)

In addition, there is

5) Immediate addressing for operands in the range —2ll to 211-1

(<1x)

The Model 500 Central Processor
Page Eight
1

-~

H -1 (x51K)

or X-2 to X+211

In addition, there are four addressing modes which take two oper-
ands from the instruction word, one of 8 bits and the other of
6. Two of these allow 64 words pointed to by a memory location
to be addressed.
6) direct and indirect addressing from Q-32 to Q+31, where

Q is the contents of some location from G to G+127 or

L to L+127.
These modes are used for access to structured data. For example,
if T is a pointer to a table entry and happens to be stored
within 128 words of L or G, then any word of the table entry can
be accessed with this mode, provided the entry has 32 or fewer

words.

The remaining two modes are for array or part-word access. They
allow an array descriptor or field descriptor (see the discussion
of indirection) and an index to be specified, provided both are
stored in memory close enough to L or G. The index quantity is
used to select an array element, or to provide a base address

for the part-word reference.

With these modes the following constructs from well-known languages

can be compiled into short, fast code:

Fortran: A(I) = B(J) 2 instructions
A(I,J+2) = B(J,I-5) 4 instructions
PL/I: (P-»MAN) .AGE = A(I) 2 instructions

The Mo@el 500 Central Procgssor
Page Nlne
Indirect addressing provides a number of additional facilities.
Some of these remove the size limitations enforced on instruction
addressing, and others allow access to bytes and part-word
fields and to arrays. The first kind of indirect word allows:
1) direct or indirect addressing of any word in memory,
with an optional trap on stores
2) direct and indirect addressing from L to L+214-1 (+16%k)
3) direct addressing of any amount relative to X, with
an optional trap on stores
4) direct and indirect addressing from R—214+l to R+214—1
(f 16k), where R is the address of the indirect word
In addition to the option to trap stores for absolute and indexed
addresses, it is possible to trap all references for any of the

modes. This is very convenient for monitoring references to,

or changes in, any variable or array.

;A second kind of indirect word points to any 6, 8 or 12 bit byte
in memory. Such a byte may be used as the operand of any machine
instruction which normally works on a full word. Convenient in-
structions exist for incrementing and decrementing these character

pointers,

A third kind of indirect word, called a field, ~pecifies any
group of 1 to 24 bits in any word within ¥ 512 of the current
indexing quantity (which may be a pointer stored in memory; see
above). The specified bits, with optional sign extension, may

also be used as the operand of any machine instruction which

The Model 500 Central Procéssor

Page Ten

normally works on a full word. Typically a field is created for
each component of a structure or record which occupies less

than a full machine word.

Finally, there is an array indirect word which checks the index-
ing guantity for being at least @ or 1 and less than an upper
bound which may be anything from @ to 128k. It then multiplies
the index by anything from 1 to 63 and adds it to an 18-bit

base address for the array. There are options to trap on any
reference or on stores only. This type of indirection provides
automatic subscript bounds checking, and permits access to arrays
of complex numbers or of structured data without any additional
complications. Multi-dimensional arrays are normally handled by
marginal indexing: a 5 x 5 matrix has a vector of 5 descriptors
for the 5 row vectors, and two indexing operations are reguired.
This is slightly more expensive than the code which would be
generated by a good compiler on a conventional machine for a
matrix element in a loop. Of course there is nothing to prevent
a good compiler from making the improvement: a cheaper and faster
compiler will do much better than it would on the conventional

machine,

A final comment on addressing is perhaps worthwhile. ‘he recader
may have concluded that very few programmers could hope to learn
all the addressing machinery well enough to use it effectively,

and he is of course right. Most of the modes were put there not

for programmers, but for compilers. Almost every common construct

The Model 500 Central Procéssor
Page Eleven

in a higher-level algebraic or system programming language

(Fortran, PL/I, Jovial) has a straightforward and efficient

representation in the addressing hardware of the CPU.

Function Calls

The Model 500 Central Procéssor
Page Twelve

The most elaborate feature of the Model 500 CPU is its provisions
for function calls. There is a single instruction which per-
forms essentially all the operadtions required by a function or
subroutine call in any reasonable higher-level language, includ-
ing rather complete error-checking. The reason for expending so
much effort on this aspect of the machine is that properly written
programs consist of many small routines which are constantly-
calling each other. It is therefore very important to handle each
call efficiently and completely, without imposing any require-
ment for long CALL-SAVE-RETURN sequences which waste both time and

space,

One characteristic of the CPU which greatly simplifies the problem
is the absence of central registers. Since the memory and pro-
cessor architecture encourage the use of memory locations for
bases and indexing quantities, there is no reason to precserve A
or X across a function call. The global base is normally un-
changed, and only the local base L requires special handling. It
must be set up at each call to point to the local storage for the
new routine, and the old value must be saved so that it can be
restored upon return. A function descriptor thns consists of two
quantities, one specifying the new value of P (the location of
the function) and the other the new value of L. The return link

is stored in exactly the same form, with the old values of P and L.

A very important feature is the ability to allocate storage for

The Mcdel 500 Central Procéésor

Pagye Thirteen

the function being entered on a stack. When this is done the
function descriptor tells how many words are heeded, and the
hardware automatically fetches and updates a pointer to the
current top of stack. There is a bounds check for stack over-
flow, which causes a trap if it fails. A user-provided trap
routine can provide more stack space if necessary. The return
descriptor is set up in such a way that the stack pointer will
be restored on return. An additional complication arises when

a transfer exits from several functions at once (a 'non-local .
goto' in PL/I); in this case it is necessary to reestablish L
and the stack pointer, 1In the important case of an exit label,
passed as a parameter, everything is taken care of automatically
by the hardware. Since the details are rather involved, they

are omitted here.

_The second major job done by the function call instruction is
argument or parameter passing. As part of this process the
actual and formal arguments are checked for agreement in

number and type. This checking can be suppressed if desired.

EBach formal argument specifies whether the address (as in Fortran)
or the value (as in most system programming) should be passed,
Whnen an array or label is passed by value, any relative address
in it is converted to absolute so that it will still work in the
new environment. For a label there is in addition an option to
attach the current value of L, so that the stack will be unwound

properly when it is used to return control.

The Model 500 Central Procégsor

Pag? Fourteen

Since return is handled exactly like call except that no return
descriptor is storcd, any number of values can be returned with-
out difficulty. Since the return descriptor is stored in the first
two words pointed to by the new L, all programs are automatically
re-entrant and programs which have stacked local storage are

automatically recursive.

A bit in the operation code, when set, causes the remaining 6 bits
to be interpreted as a call of one of 64 programmer-designated
functions. The address field is then free to pass the first
argument, so that one word is saved for each call of the 64 most

common functions in a program.

The Model 500 Central Procéssor
Pagae Fiftecen

Svystem Calls, Traps and Interrupts

A sharp distinction is drawn in the Model 500 among three
essentially different kinds of control transfer which are usually
lumped together:

1) System calls, or requests to the operating system for
some kind of service, These are treated exactly 1like
ordinary subroutine calls, except that since a higher
ring is being entered the call must address a desig-
nated entry point. A low-level program is thus
prevented from calling a high-level one except in a
legal way. Any addresses passed on a system call are
checked for legality in the context of the caller.
This means, for example, that if the monitor is passed
an array it can store into that array without fear of
damaging itself. Note also that the two system
levels or rings allow a small bulk of highly sensitive
code to be protected from a larger volume of less

critical code.

2) Traps occur synchronously with program execution as a
result of some untoward occurrence triggered by the
program. They are further divided into two sub-
categories:
2a) User traps, which send control directly to a

user-provided routine with slighly less over-
head than a function call. These result from

unusual events which may be anticipated, and

)

The Model 500 Central Procéésor
Page Sixteen
perhaps frequent, so that a user may wish to
take efficient corrective action and continue.
Examples of user traps are
. array subscript out of bounds
floating overflow or underflow, divide
by zero, fix overflow, undefined floating-
point
indirect addressing reference or store
trap
. stack overflow
. function call error such as type mismatch
The trap always leaves things set up SO that
execution can continue, and no information 1is
destroyed. A user trap always leaves control

in the ring in which it occurs.

2b) System traps, which the user is not equipped to
handle. These always give control to the
monitor. Typical system traps are
. reference to page not in core, or non-
existent
attempt to store into read-only page
attempt to execute privileged or undefined
instruction
. more than 16 levels of indirection
The action taken is defined by the operating

system, and may involve returning control to

The Model 500 Central Procéssor
Page Seventeen

3)

a user trap routine if that is appropriate.
It is expected, however, that system action
will normally be required and that the user

will rarely wish to get control.

Interrupts, or requests for processor service which
come from outside the program being executed. All
cases in which it is necessary to switch the CPU

from one program to a completely independent one
require the entire proceséor state to be saved and
restored and are handled in a single uniform fashion.
No distinction is therefore made between changing
user programs and servicing a tape unit. The
processor-switching operation is ordered by an in-
dependent processor which keeps track of the priorities
of the various competitors for the CPU; it takes about
20 ps, in addition to the time required to reload the

map for the new process.,

The Model 500 Central Procéssor
Page Eighteen

Memory Mapping

The 128k of addressable memory available to a Model 500 user
program is organized into 64 pages, each containing 2048 words.
An additional 64 pages are avaiiable to the monitor and utility
levels of the system. Each program can have its own set of

64 addressable pages, or of course fewer for programs which do
not need this much memory. A program's pages can be private to
that program or shared with other programs in any combination
desired. Of course each program establishes the contents of its

memory independently of any other program. The total amount of

addressable memory for n user programs is n*128k words.

The CPU contains hardware registers which establish the physical
location in core of each page of memory belonging to the running
program. No time is added to program execution by the mapping

process which these registers perform.

When a program starts to run, the hardware mapping registers are
cleared. As each new page is referenced, the CPU automatically
loads the appropriate mapping rcgister. This process takes

5 to 10 ps, a cost which is incurred only once for each page
touched by the program. When the CPU switches to another pro-

gram, all the registers are cleared and must ke reloaded.

