i ¢ a3 et +

s e - - -
3 il erein el Trenvls
MODILL I CPU REFERENCE MANTJAT, Tt Jer A on
MICPU /M4 .4
TR woTioval dnia g Jar d5i

Bu_]ﬂr 1a Suielafelst

-

Cndrle% Slmbnylx

3

'.-"‘é»r-\{x'g (‘!»/»n R
%

L

ABSTRATT end CONTINT

i The Model I CPU is described at a level of detail sufficient

for all programming.

PSS e e e % e o g L s 21

! (St 1N 4 fNaqge
h@@ i MICPU/M-4.2 | :?L
TABLE OF CONTENTS
Page
INTRODUCTION + v e v v e vn s s e et a2
GENERAL CHARACTERISTICS AND STATE......... .
ADDRESS SPACE AND MAP. .+ svnsnnsnnennsrnennss d
ADDRESS ING FkoM INSTRUCTIONS «+vuvennenn...10
| INDIRECT ADDRESSING . v v vvevnnnsn. e eeee.al22
USE OF ADDRESSES BY INSTRUCTIONS..............31
- FUNCTION CALLs...........;...,;...............33
PROGRAMMEDVOPERATORS.;;.......................47
SYSTEM CALLS « - e v e nee s eesmnennn, R48
TRAPS . v vetirnnnnn. U e .49
CPU INTERRUPTABILITY.......... . ..51
* ORDINARY INSTRUCTIONS..l...;...... e ...56
PLOATING POINT rveeneeennsnn. e e
APPENDIX......... P e87

_. b p/e=n.r puage
CC , MICPU/M~4.2 2

Introduétion

This 1is the referenée manual for ﬁhe Model I (Ml) central pré«
cessor. It is intended to be a complete and self-contained
deScfiption of the’characteriétics of.the processor from the
.;poiﬁt of view of a machine language programmer (although it
lis hoped that fewAprogrammers will ever have occasion to desf
éeﬁd to machine language) ., Omissions and inconsistencieé

should be drawnvto'the atteﬁtidn of the authors.

'_Thrée éonsiderations have domihaﬁed the desién of the M1l. They |

v'ageisﬁated here in the hope that they will make clearer the ra-

"tionale for some of the machine's characteristics, ‘
1)_>The M1 will be.implemented on a somewhat modified Qersion

- of a BCC micréprocessof This implies that peculiar instruc-

 tion and addre551ng sequenc1ng can be used freely. No atten—v

Atlon has been pald to the requlrements which mlght be lmposed
by alternative 1mplementatlon.

© 2) The M1 will be programmed almost entirely in SPL of'_FORTRAN.'

‘ i£ isrtheréfore essédtial thét the common constidcts‘of thesé
iénguages have efficient hafdware counterparts. Most notable :

. among them are array referenc1ng, function calls and returns,-
part—word field acceSSLng and strlng processing. Furthermore,
it is pointless to include features which cannot be used by the
compllers we are llkely to write.

~3) The Ml must have a mode in which it is essentialiy compat-

ible with the SDS 940.

n/c...- r -
/= . ’J‘!

CDU/L~-1'~ 4 3

N he | 4
cs and State

=1

General Charactexist

The ML is a 24-bit word-oriented twos complement machine., It
has 64 instructions and a variety of addressing modes. Bits ardg

nuﬁo*"@d g to 23 w1th bit ¢ on the left (most significant) end

e

'of the word, Both 51ngle (48-pit) and douole (90—bi) precisiorn

floating point arithmetic is implemented in hardware.

The state of the machine, by which we mean the 1nForm““1on vhict

must be prescrved, together with the contents of memory; to per-
| mit execution of a program to be continued without disturbance

fco s5ist s of 12 words of information arranged as follows, to-

;igether with a context block.

woxd Bits ~ Neme ' Contents
o] | 2~5 R unused
@ 6~23 P Progrém coﬁntmr
1 ',vﬁ~23 A " A register
2 | #F-23 B - B register
"3 - F-23 C C registerxr
4 . F-23 D B D register. C and D are used as an
extension of AB for double-precision

floating point arithmetic

5 g-11 E ‘ Floating point exponent

6 #-23 X Index register

7 #-23 ‘. L | Local environment register
8 g-23 G Glabal environment régister
.9 0-23 SR Status register |

9 23 INSTD. IﬁS'"LCtJO ~terminated bit
S 22 ov Overilow bit

9 21 TOV Temporary overflow bit

p/e=n.r page
MICPU/M-4.2 4

@m
(i§
(@)

9 29 CARRY Carry bit
9 19 PDFLAG Permaﬁent dbuble—precision flag
9 18 TDFLAG bTemporary aouble—precision flag
9 17 XMONT Monitor exit trap flag_
9 16 . xurILT | ﬁtility exit trap flag
9 115 SUF ‘ Soft'undefflow flag
9 14 940M 940 mode |
9 12-13 . cc Condition code
9 9—114 PRMOD -Pérmanent rounding mode
9 v>6—8‘ ‘TRMOﬁ' Temporary rounding mode
9 | 5 . : FDP Full doublevprecisionbflag
10 g-23 | cTC ' Compute time clock |
| 11 ﬁf23 T Interval timer

 The context block contains in certain fixed locations the map

for the currently running process.

Address Space and Map

The M1 considers itself at any partigular time to belrunning a
 Qfocéss which is defined by‘a COﬁtext_block, which is a 2048

q&o:d block'of‘memory; in a way which we now proceed to describé.
:Eaéh process has a 256K address space; i.e. the Ml‘p;ocessor |

. . _ |
uses 18-bit addresses to specify memory locations. The

aédress space has two significant charaéteristics:
1) it is divided into thres rings as foildws:
addresses #-3777778 b ' user ring (lowest)
| 403000B-5777778B ~ utility ring

400000B-402777B and. :
6000008B-777777B monitor ring (highest)

: | p/e-n.r page
@C MICPU/M-4.2 5

The rings are protected from each other according to gertain
rules, Every memory reference is said to have a soﬁfce. The
sourée for ahy'references generated by an instruction up to
_and inclﬁding a fetch of an indirect word is,.fdr.exampie, the
prdgram‘coﬁnter; the source for an?_reference generated
after a fetch of an indirect word up to and including a. fetch
b.of #he next ihdirecf»word is the address of the first in-
‘ diréct wofd. Every reference also has a target, which is the
addréss being'referenced. The following matrixrdefines those

- combinations of source and targets which are legal,

Target
User Utility Monitor
User Yes No -No
Source Utility Yes Yes No
o Monitor Yes Yes Yes o

':Toxsummarize:r
| - a) Réferences from one ring to a higher one are
'”forbidden._ |
| -5) ’If indirection leads to é lower ring, it_is for-
bidden to return to the séme or a hiéhef_ring during the
‘ same instruction. This fact makes it easy, for examplé,
for monitor routines to enforce the ﬁser's prOtection |
. rules when storing into a table provided by the use;;
: they neea only do their stores indirect through an addreés
in.the user ring, and the ring protection hardware will do

 the checking automatically,

p/e=-n.r paga

- @C@ | MICPU/M-4 .2 6

A forbidden reference causes trap MACC. The target is passed

as a parameter to this trap.

‘The reason for putting 400000B-402777B in the monitor ring
' ie that the'operating system is expected to leave the context
1bieck in the'map at 4B5vand 6B5 so that beth monitor and
1;u£ilityrcan use it for storege The monitor will then have
ti-:words g ~ 27778 of the context block avallable to it and
vnjprotected‘from the utlllty, and the utility will have
1e{30QOB—3§77B.e Sihee the last word of the contekt bloek is
ﬁ.Aaﬁ 403777B in the utility ring,.the utility ean exteed its
section of the coﬁtext block with additional contiguous

>estbrege.

2) The address space is organized into 2048 (2K) word
a>es, and ﬁhe precieeveollectionof‘pages which make up e
i ;the address sgace isvspecified by‘the map. fages are.named ‘
‘in a maﬁner independent of their location in core, and the‘_
‘mapplng hardware uses thls location - independent name,

together w1th a table called the core hash table (CHT), to
' determlne the physical core 1ocatlon of a page. The page
fnumber (the top 7 bits) of every memory reference thus
requires two levels of translation:

from page number to location - independent name

from location - independent name to physical page address

The various mechanisms for performing this translation will

now be described.

' - pre-nr page
| C@ | MICPU/M~4.2 7

‘Locétions 200B-277B in the context block contain the map.

" These 128 half-words specify the contents of the_corresponding
128 éages of the address space of the process; the high order
,half—words corresponding to even indices., Each half-word is

interpreted as follows:

Bit 'Name Contents
. g MAPRO Read—only bit. This bit is merged
: with the RO bit in PMT to make the
read-only bit interpreted by the
hardware '
1-3 ——— unused
4-11 PMTI a PMT index
- The private memory table (PMT) provides enough information
:abouf each page accessible to the process to permit the hard-
ware and the memory management to access the page. The PMT

starts at location 300B in the context block. Each entry is

4 words long; the address in the context block of PMT entry_i

‘égrtherefore 4 (i-1) + 300B.
A‘PMT enﬁry has the form
:Word vBits Name l Contents
..’ﬁ g-23 UNl. First 24 bits of unique name for
the page
1 g-23 UN2 - Second 24 pits of unique name fdr
the page
2 2-23 DA Disk address of the ?age
3 g PMTRO Read-only bit |
3 PREF Page has been referenced
3 12 SF Page 1s scheduled for the process

(i.e., in core working set and
the process is active)

 The other bits are not used by hardware

p/c-n.r page
CC | MICPU/M-4.2 8

Note that there is no provision for execute-only pages,
since this device by itself is not sufficient to protect
' propreitary programs. The sub-process structure of the

; monitor is supposed toc be used for this purpose.

Thé'central Processor contains a physical map (PM) which
has 128 reglsters of 11 bits each. One of the registers

f has the form

Bits Name ; Contents
] - EF Empty flag
1 DB . Dirty bit, set if the page has

been stored into since it was
read from the drum .

2 - PMRO ‘Read—only bit

3410 | PA Physical address of page in

a real core of up to 512K.

 When_a new process starts to run on the processor, the.
_empty flag is set in each PM entry. .Every address gener-
‘afed by thesprogram'mustvbe'mapped to convert it from virtual
‘to-rsal so that aﬁ access‘canlbe msde ﬁo the real core,

Thls is done by taklng the top 7 blts of the 18- blt address
 and using them to select one of the 128 PM entrles.
>If the empty flag is oﬁf, the remainder of the entry is
'retﬁrned. The PA field is prefixed ts the last 11 bits of
the virtual address to make a real address. If the access

is é store and PMRb=1, the store is>aborted and ﬁhe PRO

trap is caused. If the access isva store, PMRO=Z ana
DBsﬁ,.the dirty bit in ﬁhe CHT entry for the page is ses

and DB is set to 1.,

lbec

p/e=n.r page
MICPU/M-4.3 9

iﬁas the form
wWord

g

woOow oW oW oN M

Let its index be 1.,

If the empty flag is on, the PM entry must be loaded.

First, entry i of the map (i.e.

Bits Name
g-23 UN1
g-23 UN2
2-23 DA
g DIRTY
1 U
2-4 PST
5-12 CPA
16-23 SCHED
6-23 FCLP
F-5 PL
6-23

half-word 200B+i in the context block) is fetched. If PMTI
is @, trap PNIM occurs. ‘If it is not @, MAPRO [i] is

_sa&ed. Then the PMT entry specified by PMTI [i] is fetched.
 Call it entr& n, If SFn] =bﬁ,.trapbPNIC occurs., PMTRO is
‘saved; if PREF [n] = @, it is set to 1; the UN found ;ﬁ PMT

‘ {h] is then looked up in the cofe hash table.

- The core hash table contains a six-word entry for éach
| page of real core. It starts at location 400B in real

- core and is organized as a chained hash table. Each entry

Contents

First'24 bits of unigue name
Second 24 bits of uﬁique'name'f’
Disk addréss df pagé

Dirty bit

Unavailable bit

Page status

Core'page address. This is élso
impl%ed by the index of the en-
try in CHT

Number of occurrences of page
in loaded working sets

Free core list pointer
APage lock

Collision.PTR'

na-r.;.w T EPASIT > . -

A page is found by haching the UN as described in MMI/W-1.

¥f the page is found, CPA and DIRTY are
and B0 1e set to MAPRO PMTRO [n}. If

is se
the page is not in CHT, trap PNIC occurs.

"All the traps (PRO, PNTM, PNIC) which can be generated by the
mapping operation are given the virtual address being mapped

- as a parameter.

To make sure that a particular page is not being used by the
_:ACPU; an external processor ﬁay request a scan of the physical
'”1map. When such a request is received, the PA field of a1l
non-empty registers in the physical mep is matched against
Atheicontents of cell 2455B + CPU number *4. If any of them
matches the MAB trap cccurs. The méssage cell is set to 4B7

upon completion of the scan, regardless of the outcone.

Addressing from Instructions

The machine has a rather complex addressing structure. The

address calculation is performed in the same way for every

-instruction, and it may yield either an operand OP or an

effective address Q or both. To specify this calculation

it is necessary to define the format of an instruction and

of an indirect address word {(IAW). For an instruction

0 Mode Normal Mode

'éég Name 94
g S Syspop bit part of TAG
1 X' Index bit Part of TAG B
2 P Pop bit | pPart of TAG
3-8 OPC Opcode >A Opcode
9 I Indirect bit Pop bit
10-23 W Address field Address field

huve no cignificance and are ignored. O

like this=:

p/c=n.r page

: b@@ . MICPU/M-4.2 11

g-1 IAT Tag field which defines the meaning of
the rest of the word.

2-23 BODY The meaning depends on IAT

‘Since the addressing is rather complex, it seeﬁs worthwhile
tovexplain in somé detail what the various features are for,
before describing them precisely. There are a number of
~points whiéh influenced the design:

“l) It is necessary to be able to conveniently address
' 5'256K (18-bit) address space, even though an instruction
' has only a 14-bit address field.
| 2) Programs are normally written in relatively small
_unité; each of which references some private storage of ité
;own and some global storage.

3) Array references are véry comﬁon. Since there is
-only,one index register for holding subscripts, it woﬁld be
'very nice to have a convenieht way of using core locations N
,fér‘indexing. Since the languages which'are expected to ac-
»cbunt for a majority of the load on the machine require
-subééripts to be checked for sizevbéfore,being used, it would
- be ﬁice to have archeap and convenient way of doing this.
:Furthermore,Awe have to deal with arrays having elements
which may occupy l.(integer), 2 {(real) or 4 (double) words,
.To have to multiply the index by the element size is a great-
;anﬁoyance, |

4) References to fields which occupy whole words or parts

p/e-nr poge

gL ' MICPU/M-4.2 12

of words relative to a pointer are also common, especially
in system code.

5) It is essential to have en efficient mechanism for
‘handling strinés of S-bit characters. If other byte sizes
_ cen also be accommodated, so much the better.r

| 6) We want to leave most of the 93ﬁ addressing capa-
:bility in, so that it w1ll be easy to convert 93¢ programsv

" to run in normal mode,

All of theee'goals are achieved in a fairly economical way N
| by_the addressing system of the Model I. 1In parﬁicular,
_‘arraYs, etrings,.and part-word fields arevhandled by in-
_direct addressing,Awhich‘allows an absolute 18-bit address

_ to'be supplied. The addressingsmodes available iﬁ’an in-
.;strucﬁion allow for immediete operands, addressing relative
toithe‘instruction word for referencing the program, and
:addressing relative to two base registers thch are in-
.teeded to refefence the local storage of the subroutine
-,kcelled the local environment, L)Aand the glebal etorage

of the whole program (called the global environment, G).
They also permlt indexing to be spec1f1ed from the X register
or from the first few cells of the local or global enviro- |

' nment .

eIt~should be obvious by now that the addressing system is
designed to be used by programs which are organized in a
' very definite way, i.e. into a collection of subroutines
”dr functions (of less than 4K words each), eacﬁ with iocal

storage (of less than 2K words for scalars), and all with

p/emn.r page

| b@@ | v, MICPU/M~4 . 3v 13

accéss to a single global storage and communications area
(of Iess than 16K words). The fi;st 128 words ofbthe local
and global.environments’are speci;l: this is because there
are 8-bit fields in certain addresses in which the top bit
specifies L or G and the remaining 7 bits address one of the

- first 128 words. The first 32 words are even more special,

- because there are 6-bit fields which address these words.

 Wi£h.this intfoduction, we proceed to describe the addressing
} in detaii, together with comments.bn the intended use of
1.each‘feature. A-feader unfamiliar with this material will
find it helpful to read the text following the description

of each mode first.

- The 3—bit TAG field of an instruction determines one of 8
*addressing modes.

These are

EA_G_ NAME ADDRESSING MODE
‘G D | Direct
l'b I ~ Indirect
2 ‘ X 'Indexéd
:3 BX Base-inde#
4 PD | Pointer—displaﬁememt
-5 IPD Indirect-pointer-
displacement
BXD , Base—iﬁdexédisplacement
7 REL Relative. This one has 6
: ‘ sub-cases
M, IMX immediate, ordinary and
indexed
LR, ILR L~relative, direct and

indirect

1 - P/e-n.r page
CC MICPU/M~4.2 14

SR, ISR Source-relative, direct
and indirect

flost of the modes depend on the existence of an indexing

register IR, and a source register R. The IR register is

.hot”to be confused with tﬁe index register X, 1In fact, it

is ndt part of the state at all;‘i.e, its value &oes not
'thavé‘ﬁo be preserved from one instruction to_thé next. The

IR is used to hold the 18-bit value which will be used when
‘ an‘indexing operation is called for by the addressing system.
»it is initialiééd from X at the‘beginning of each instruction.
, Théreafter,'it may be loaded from a word specified by a

' BX or BXD mode or an array indirect word (see below).

The source register is initialized to the address of the word

from where the instructiQn has been fetched (normally P).

;Séme addréssing ﬁodes (the ones which do not have indirect
f&nithe name or‘I in the abbréviation) compute Q directly
;froﬁ the information‘in the central registers, the instruc-
itibn and possibly one memory word used for indéxing. Others

;ﬁ(the indirect modes) compute directly the location of an

. ihdirect address wofd, and the contents of this word then

; determines how the addressing computation is to proceed. .If

- indirect addressing is specifiéd,»only the values of the

 iAW address and Iﬁ affect the subsequent address computation,
Wenwill therefore confine ourselvesvto speciinhg these values
“thch ngcribe‘instruction addressing, and leave the details

- of indirect addressing for later treatment.

p/e=n.r Rage

f;éf:éz: MICPU/M-4.2 | 15

~ CONTENTS (1) will be used to denote the contents of
the memory location with address N. Ring checking is per-

| formed with R as a source and N as target,

!

" Direct (D) : Q « W + G; OP <« CONTENTS(Q)} Note:‘W is
the address field (bits 10 —'23) of the instruction.
In airect mode, the effective address is given by the 14-bit
'adafess field relative to G. This permité direct addressiﬁg
_ of tﬁe first 16K of the global ehvironment. "The notation 1is

' IDA ¢' W]

| ;ﬁdirect (I) : IA(W + G);
In indirect mode, any of the first 16K wbrds of the global
environment can be used as an IAW. The statement IA (X)
‘implied that the indirect addressing seguence is initiated:
| FUNCTION IA(X); | o
IAW <« CONTENTS(X): R <« X;

* PROCEED TO PROCESS IAW

By;the time it is finished, it will set the value of Q or OP.

The notation is ILDA $ G'[W]
Indexed (X) : Q « W + IR; OP <« CONTENTS (Q)

Since IR is initialized to X, the effective address is the
(18~bit) sum of the index register and the address field.
There are two ways to look at this addressing mode:

1 - X contains a pointer and W is a displacement relative
to this pointer

ple=-n.r page
éfléi: : MICPU/M~-4 .2 16

2 - W ié an address (in the first 16K) and X is a dis-
Placement. This interpretation is unsatisfactory for
programs which exceed 16K in size, and is not expected

- to be much used.
VThé way to code the 93@'s
' | BRU * 2
~so that it Will work anywhere in the address space is’with
-indirection (seebbelow) through a normal IAW with source-
irelative indexed'addressing. |
‘The‘notation is » IDA X' [W]
B fhese are thfee of the four addressing modes available
~on the 93¢. The fourth, indexing and indirection, is not
available in normal mode on the M1, since’it was judged
 less useful than any of the 5 new modes; it can bé obtained-
with IPD mode (see below) if the offset réiative to X lies
" between —4dB and 37B.

Pointer-displacement (PD): T « W [16, 2371;

U « IR IF T=0 ELSE CONTENTS (
' G + T IF T<200B ELSE
L + T - 200B);
. - T « W [l0, 15];
V « (T IF T{40B ELSE T - 100B}
Q « U+ V;

OP < CONTENTS (Q) ;

 First there is some new notation here. W [10, 15] means bits
10 to\iS of W (the address field of the instruction) con-

- sidered as a 24-bit number (with 18 zeros on the left, in

: " p/c~n.r page
C@ MICPU/M-4.2 |17

this case);

InAthis mode the address field ié divided into an 8-bit

- pointer address (PA) and a 6-bit signed displacement.

Similar arrangements are used in éeveral}other modes; they
will be e%plained hére in detaii. The top bit of the 8-bit
pointer address specifies the environment (1=local, @g-
Vglobal) and the remaining 7 bits address one of the first 128
“words in fhe local or global environments. If PA is g, fhe
f‘cOntents of IR, rather than of word g in G; is épgcified.

:It is this decoding which is specified by the érgument of .
'CONTENTS. " The calculation of V specified the c0nvef$ion of

é 6~-bit numbef which is to be.interpreted as twos-complement

into a 24—bit‘twos—complement number.

- Finally, thé effective address is the sum of the pointer 7
'specified by PA and the displacemenf. The typical use of
this mode is in addressing ihe nth word of a'tablerentry
,hgiven a pointer to the stért of the entfy. If tﬁe pointer
P is in the first 128 words of either environment, then'the
word is loaded into A, say, by o

LDA p[n]
which is the notatioﬁ for PD addressing with pointer éd—

dress P and displacement n.

Another way to use this mode is to reference non-local

variables in a block-structure language. Assuming that

' - p/e~n.r page
- .
. ii:ii: MICPU/M-4.3 18

each block requires no more than 64 words for its storége,
we proceed as follows. When a new block is‘entered, set
up in its local environment a pointer to word 32 of the
: sﬁorage area for the latest incarhation of each lexico-
éraphicaliy enclosing block. Then, if X oécupies wora 4
in block F, wﬂosg storage is pointed to by lééai environ-
ment word 12, we reference X with

| IDA L'[12] [44B]
| The displacement of 44B is -28 from the pointer, which
addresses word 32 of the storage for F. So the word of F's
, storage actually addressed is_32—28=4, as required., If a
block has more than 64 words of séalars, it can be a;signed

several pointer words in the local environment.

. ' Indirect-pointer-displacement (IPD):

TR,

. R
U and V are computed as for PD mode
IA (U + V):

This is just indirect addressing in PD mode, All of the
direct addressing modes have indirect counterparts, for
obvious reasons,’

Notation is LDA $P [n] -

Base-index (BX) : T<W [16,23];

V<IR IF T=d ELSE

G + T IF T<200B ELSE
L + T - 200B;

T™<W [10, 15];:

IR<IR IF T=f ELSE CONTENTS (
G + T IF T<{40B ELSE
L + T - 40B);

Ia(v);

N : Ple=n.c page
: éf:éi: MICPU/M-4.3 19

This is the array accessing mode and is written

IpA B [I1]
where B is the base and I the index.. The 8-bit and 6-bit
i#dex are both treated as local or global envi:onment
addreéses; exactly like the pointer address in PD mode.
The index is pﬁt into IR and the base specifies an indirect
'-.wbrd, If an array is being accessed, B will ad&res§ an
IAW.which has the 18-bit base addreés of the array and
'speéifies indexing. . The contents of IR, which was loaded
from I, will thus be added to the base éﬁdress éf ﬁhe
array to determiné the final 18-bit address, which is just
what we require for array referencing. This is not, however,
»the whole story:; the rest will be told when we come to con-

sider the indirect addressing type used for arrays.

| Base-index-displacement (BXD) :

T < W[l6,23];

U <« ¢ IF T=g ELSE CONTENTS (
G + T IF T<2¢@B ELSE

- L+ T - 209¢B);

T < W[1ld,15]; »

V « (T IF T<4¢B ELSE T - 100B

T < IR:

IR <« U + V;

1A (T);

" This mode is similar to BX. It assumes that tﬁe base is in
-the IR. The field thus freed is used to provide a displace-
' menf (anything from -32 to +31) of the index. Thus to load
B [1 + 5]‘we would write
| EAX B.

IDA (sx') [T + 5];

bec

p/e-n.r page
MICPU/M-4.2 | 20

first three bits of Ww.

here I is the index, 5 the displacement.

of arrays below for more details,

Relative (REL): There are 6 sub-cases, depending on the

See the discussion

0P <« U;

Thus:
Name W[l0, 12] Description
" L-relative (LR) '] U <« W [13, 23]:
Q «L + U;
- OP < CONTENTS (Q) ;
Indirect L-relative (ILR) 1 Compute U as above,
then:
IA (L + U);
- Source-relative (SR) 2, 3 T «wW [12, 23];
. : V<« (T IF T<4000B
ELSE T - 10000B);
Q « R + V;
OP < CONTENTS (Q)r
Indirect source—relative
(ISR) 4, 5 Compute V as above,
then:
' Ia (R + V)
Immediate, indexed (IMX) 6 Compute U as IM, then:|
OP < U + IR;
Immediate (IM) T «w [13, 23]:;

U <« (T IF T<2000B
ELSE T - 4000B);

Note that Q is not
defined by the IM or
IMX addressing modes,

. , p/c-n.r page
| CC . MICPU/M-4.2 21

The immediate mode permits signed constants in the range

~2000B to 1777B to be provided as operands without an addi-

tional memory reference. For instructions which store or

which expect an operand longér than 24 bits this mode is .

a mistake. The action taken if it is used erroneously is

"a TI trap. The notation is IDA I

.-‘The L-relative mode permits locatioﬁs in the range g to
3777B relative to the local environment to be addressed,
'It gomés-in two fiéQors to permit direct oxr ihdirect ad-
.dressing; The aadress computation is similar.tovthat for
"squrce—rélative addreséing, except that the sign bit of

' the displacement is taken to be d.

This mode allows 2048 words of local environment to be

addressed direétly. This should be more than enough fdr

‘| all the scalar storage of a routine., It will not, of course,
: bé enough for the arrays, but they are all expected to be

addressed by indirection, so there is no problen.

Notation is ~ Ipa L'[D] or

LDA SL' [D]. for indirect

'Finally, the source-relative (or R-relative) mode permits

'locations up to 4000B on either side of the instruction or

indirect word to be addressed, This allows routines to be
placed anywhere in memory without modification and to address

themselves without difficulty, as long as they are not more

P/C'-n.l’ page

bf@ MICPU/M-4.2 |22
/ -

than 2048words long. Tﬂe intended programming style is

small functions connected to each other only by function

calls, returns and error returns, all of which are taken
~ care of by the BLL instruction described below. This

limitation should tﬁerefore not prove td be.a probiem.

) Notation is LDA R' [D] ox

LDA $R' [D] for indirect

lIt was recognized that addressing relative ﬁo‘the start of
t:thé,roﬁtine, rather than relaﬁive to the source R,

‘would be better.in some instances. This mode was not
 provided because it would have reqﬁired another word in
the state to record the start of the program, together

with machinery for keeping it updated.

Indirect Addressing:

" 7o prevent infinite loops of the indirect mechanism, a trap

‘ iLIM will occur if indirection through more than 16 levels is

:faﬁtempted. | |

,There are four types of indirec£ addressing:.normal,;fieid,
string, and array. »The type is selected by the first two
bits of the word. The intended uée of each type is sug-

- gested by its name and will now be gxplained in detail,

Normal: the IAW has the form

BITS NAME CONTENTS

0-1 TYPE &

p/e~-n.r page
@C MICPU/M-4.2 23
2-4 TAG interpreted exactly like an instruc-

tion TAG
TRAP causes trap IATRP is set

RELX causes indexing for the relative

modes
7-23 LWR long address for the relative modes
6-23 - LW long word address

10-23 wo ~word address

~ If TRAP is set, the IATRP trap is caused, and R is passed

as its argument. Otherwise, TAG and W are interpreted

'~ as in an instruction word, with three exceptions:

1)

2)

if TAG = D, I, or X, LW is used in place of W, and

G is not added. 1In other words, an 18-bit absolute

address is supplied.

if TAG = REL, IR is added to the addresses computed

e
.

by L and R-relative modes if RELX is set. i.e.;
indexing is possible with these modesi Also, the 7
B—ﬁit subtag isvfound in bits 7-9, thué allowing the
CR, iLR, SR, and ISR offsets to be 3 bits longer.

if TAG = PD or IPD, the mode is read-only direct

(ROD) or read-only X -relative (ROX) respectively.
These behave exactly like D and X modes except that
an attempt to store will cause the ROIA trap with

R as parameter.

Normal type permits any word in the address space to be

p/ewnr page

b@ | MICPU/M-4 .2 24

addressed directly. It is geherally used for pointers and
for the addresses of arrays. Note that although the cépa—
bilities are almost identical to those provided by an in-
struction addréss; the format is quite different. It is
not possible to use an instruction as an indiréct word .,

It also permits indexing of a L-relative or source-relative
. addﬁess} so that arrays in the program or the local en- —

vironment can be addressed conveniently.

Fiéld: the IAW has the form

0-1 TYPE 1
3-7 SIZE size of field in bits |
8-12 FB address of first bit of the field
2 SE | causes sign extension of the field if\‘
set
13-23 DISP 2's comélemént signed displaéement'ﬁﬁn
FIEID: Q < IR + DISPL;

U < CONTENTS (Q) ;

OP < U [FB, FB + SIZE = 1];

OP « OP - 21(24-FB) IF SE = 1 AND OP [FB,FB]=1;
The field which is SIZE bits in length and which starts
‘at bit FB in word DISP + IR is referenced. Both FB and

FB + STZE - 1 must be {23. If they are not a TI trap will
occur, If SE is set, the leftmost bit of the field'(bit

FB at DISP + IR) will be extended into bits g through

22-SIZE of the resulting operand. DISP is taken as a

2's complement number, in the range -1024 to 1023.

ple-nr page
MICPU/M-4.2 25

e
L N

Ty

The idea here is that IR contains a pointer to a table
entry, and that the field descriptor (the IAW) specifies
a group of bits at some definite location in the entry.
Typically, the poiﬁter might be in PTR within 32 woxrds
of L. and the field descriptor in F within 128 words of

G. Suppose the contents of F is

FIELD 3: 6, 12
‘or in octal DATA 23460003B
then we might write

LDA F [PTR]

using base-index addressing. Since PTR appearé in the
index field, its contents is put into IR. Then F is
taken as an IAW. Since it is of type field, it accesses
| the word at IR + 3,>which is CONTENTS (PTR+3); i.e., the
.:fourth‘word of the object pointed to by PTR. Bits 6 - 12
‘of this object will be ldaded into A. If the word addressed
was 012345673, then A will contain 47B. The field can be

. used as an operand in any instruction which accesses a
single-word operand, regardless or(whether it is a load or

store, Note that fields cannot cross word boundaries.

String: the IAW has the form

g-1 TYPE 2
2-3 - CSIZE character size: @ = 6 bits, l=8;’2=12,
’ 3=24

4-5 CPOS character position in woxd

) ple-nr . poge

“
aYard ’
E:%viu MICPU/M-—4.2 26

6-23 WA word address

The character at the indicated position in the word addressed
by WA is referenced. The following table defines what bits
- are referenced by the 16 possible combination of CSIZE and

CPOS.,

CSIZE/CPOS g 12 3
g g-5 6-11 12-17 18-23
1 g-7 8-15 16-23 X
2 . g-11 1223 x X
3 g-23 x X X

Combinations marked X in the table will cause a TI trap.

The bits referenced are treated exactly like the bits

selected by a field IAW. C ' oo

Thie type of indirection ailows one byte in a string to
3,be referencea. The instruction ISD increments the deS—

criptor to point to the next byte, which may then be
) refe:enced; It has the additional feature of setting
ﬁhe condition code depending on whether the descriptof
is eQual to the ne#t word or not. The string typs aﬁd
this,instruetion are intended to be used with four-word
st?ing descriptors. The firs£ word points just before
the first byte ellocated for the striﬁg. The secend
word (read pointer, RP) points to the first character
of the string, the third word (write pointer, WP) to

the last character. The fourth word points to the last

; : I pre-nr . page
_ C@ MICPU/M-4.2 27

byte allocated for the string. To read the first char-
acter, increment RP with ISD, then indirect through it.
The case of no characters left can be detected by the
abnormal CC setting. To write a character, increment
WP with ISD énd‘then store indirect through it. Over-
- flow of available storage can be detected by the CC

setting.

Array: an array descriptor is two words long. Its
form is:

g:9-1 TYPE 3

g:2 LB lower bound for IR (g or 1)
g:3 ATRAP array trap bit
g:4 'LEB large element Dbit

#:5-6 MULT IF LEB =4 multiplier for IR

#:5-10 MULT IF LEB = 1

#:7-23 UB IF LEB = { upper bound for IR
1

@:11-23 UB IF LEB

i

1f IR{LB or IR>UB, trap ABE occﬁrs, with R as parameter.
If ATRAP=1 in IAW and the instruction is not LAX, or
ATRAP=g and the instruction is LAX, trap IATRP occurs with
R as parameter, | | |

otherwise, IR + (IR - LB) * (MULT + 1); T < R + 1;

NORMALIA (T) :7

This is the most complicated of the IAW types. It is in-

tended to accomplish the following Ffunctions connected

pP/e-n.r
MICPU/M-4 .3

puge
28

bcc

2
3)

4)

5)

1)

follows:

with array accessing:

Allow d or 1 as lower bognd

Perform a bounds check on the subscript
Multiply the subscript by the size of the array
element, allowing for sizes up to 63.

Check that the number of subscripté supplied is
the numbef expected (see below)

Provide an 18-bit ébsolute base address for the

array.

Arrays are intended to be stored with marginal indexing.

Thus, the 2 x 3 Fortran integer array A would appear as

(1,1)

=N

3/1)17 3

N

(1,2)

ILAX

3[1[1] 3 (1,3)

(2,1)

(2,2)

v
B

(2,3)

"(Tﬁe threé 2-word descriptors are array indirect words)
The LAX instruction works just like EAX,_except that it
merges an I tag into XR[2,4] (leaving a normal IAW which

'specifies indirection) and treats the TRAP bit in én array

descriptor as though it were'complemented.

Then to do B < A[K, L] we would write

A[K] ’ (BX addressing)

‘which leaves the address of the descriptor for the Kth

p/e=n.r page.

CC MICPU/M-4.2 | 29

row in X followed by

LDA (S$X*)[L] (BXD addressing)

STA B
‘The secogd subscript can have a constant displacement with-
out complicating things: '

B « A[K,1~4] becomes

IAX A[K]

IDA (sx')[L-4]

STA B

If the first subscript has a displacement, there is a compli-
A cafion, since there is not enough room for three operands in

one instruction.

B <« A[K+1l, L] becomes
EAX A

LAX ($x')[K+1]

DA (sx')[L]

STA B

A singly subscripted array can be accessed without any
extra instructions at all provided the subscript is a
variable which can be accessed with an I field. If M

is a l0-element integer array, it is allocated thus:

p/e=n.r

MICPU/M-4.2

L~
EJ o L_a

(1)

M= 3111 10 Py

M

(2)

(3)

M

(4)

M

(5)

M

(6)

M

(7)

(8)

M

(9)

(10)

and N < M[J] becomes
LDhA M[J]

STA N

there,

_is not required, the descriptors can be changed to normal
indirect words which specify indexing, and no change is

required in the instructions of the program.

traps is to check that the proper number of subscripts is
_provided to an array. The trap bit should be set in the
array descriptors except at the last level (the des-

eriptors which point directly to the data) and clear

If the array is integer (1 word items) and bounds checking

‘The purpose of the peculiar behavidr of IAX in the case of

. . p/e~n.r puge
CC MICPU/M-4.2 31

Use of Addresses by Instructions

- All instructions compute an effective address Q and/or an
' operand OP as described above. The use of these quantities

-once they have been computed, and in particular the error

conditions which may arise, depend dn the address type of the
~instruction. Tﬁere are four éddress types:

1) Fetch type (F)

These instructions will éccept any kind of address. They
1 make use only of the 24-bit OP value.

2)A Effective—address type (E)

j'These instructions make use only of the effectivé address Q,
ignoring OP. Immediate addressing causes a TI trap if ﬁsed
'vwith these instructions. Q is ring—checkéd with R as a source
before usé} if the check fails a trap MACC will occﬁrf
3) Store type (S) | | »
:These‘instructions make use of the effective address Q and &
the operand OP. If the gddress calculation terminated with
| ‘indirection through a field or string descriptor, the FB and
JQIZE (for a field) or CPOS and CSIZE (for a string) define
- a group of bits, say bits i to j. An S type instruction puts
1Abits 23—j+i to 23 df the word to be stored into bits i to j
| 6f the word addressed by’Q, leaving the rest of this word
untouched. Immediate addressing causes a TI trap and
'indirectibn,through a read-only direct or read?only indexed

word causes a RO trap.

4) Double-store type (D)

- These instructions make use only of the effective address Q.

E:;g?‘ p/c-n.r poge
. MICPU/M-4 .2 32
3 ﬂuféi: /

- They trap under the same conditions as S-type instructions.

Note that they are not affected by field or string indirection.

Legal combinations of instructions and addresses are summarized

in the following table:

F E S D
'Immediate | ok TI TI TI
Indirection thfough ROD or ROX ok ok RO RO
Anything else o ok ok ok ok

" Instructions of types S or D will give a PRO trap if Q (or
Q+i for instructions which reference double (i=1) or

quadruple (i=1,2,3) words) addresses a read-only page.

. ff\ p/e=n.¢ nage
Cx‘, MICPU/M-4.2 33

Function Calls

A rather elaborate mechanism for calling functions and return-
ing from them is provided in the hardware of the machine.

rThe purpose is to include all the capabilities required by
'thé FORTRAN and SPL languages directly in the hardware, so

as to make software interpretation unnecessary. This is
conside;ed extremely important, since programs are expected
ﬁo-be written in small modules, and functions calls and

- returns are consequently expected to be Very frequent.

-Thé basic features of the call instruction BLL are as follows:

1) The old P-counter and local environment are saved and
_new>ones picked up.

. 2) The new local environment may occupy a fixed area, or

it may be allocated space at the end of a stack defined by
two 1oéétions in the global environment; There is a check
for stack overflow. -

3) The caller provides a list of parameter addresses.
"The called function specifies for each parameter whether he
- wants the address, the value or both copied into his local
ehvirohment. If he requests copying of the value, he spec-
ifies whether it is 1, 2 or 4 words.

4) He also specifies whether or not a parameter is an
array. The calling program tells whether-it is passing a
- scalar variable, a scalar value (stores are not legal),
an array or an array element (subscripted array). These

distinctions permit all the checking for proper matches of

i
arrayvs with scolars recuirved by FORTRAYT to be 4

be accomplished.

5) The calling program may pass labels whic

to the start of itself. The call automatically

ot

=

current value of this local ‘environmen

-

return descriptors, and records in each local e
étart of the program so th;t the relative addre
converted to absolute when they are used.

6) Pfovision isvmade for an argumént to be
central reg istefs.
A numper of these points are somewhat subtle an
proéerly understood unless explained in complete

which we now proceed to do.

The BLL instruction addresses a branch descript

a two-word object with the following form:

— [
ON2 alu oty

an array

nvironirent

ss can be

passed in the

or, which

L~

to convert them into

the

4
¥

is

Word Bit Name ' Meaning

1§ G-23 NEWPW This word looks like a weak IAW.
Its effective address 1is computed.

d 4 SREL c.f. REL 45R in Normal IAW

o 5 TRAP Causes TRP if set

o] 9-23 SRW $igned displacement if SREI is sci

7] 6~23 ko Long word addresses

1 @ CIL cal 1 bit. The old P and 1, are save
if e bit is sel.

1 1 SIK The local enviy
from tho stack

5 s mo i, Y y;.la;-r_i e it A b e 8 N ¢ et w0 pTran. e

MICPLI/M-4 .4 | 35

st e A S 3 e e e SV e 7 00 BTRES eain n 4 P k s Br t n tri L PEEURN.

-2 CPA Arguments are copieg if this hit

is set.

1 3 CPR IF The CPA bit in the return dos scriptor
CLL=1 is turned on if this bit is sat.

1 3 UWSTK IF Unwind stack on return.
CLL=f '

1 5 FTN 1 FORTRAN type function

1 : 6-23 B This number doterm#nes the new I;

precisely how it does so aeon,:s
on STK and REL.
‘When the BLL is executed, the first step is to compute the
- effective address of NEWPW (which is IW if SREL is ¢, other-
wisa the sign-extended SRW + the address of the NEWPJ). This

18~bit number is saved in a temporary register called NID;

bl

after undergoing further processing it will become ths new

P-counter. The following steps remain to be pﬂrLormed:
. . ' e
3 1) Obtain new local environment,

2) édpy argunents.
3) Compute return désctipfor (for CALL) and save it
in first two Qorﬁs of new local‘environment!
4) Transfer control,.
We treat them in the order written, which is also thL leXalets ;
in whicﬁ they are performed. Iﬁ des cr1b11 what happens
we shali make use of a number of temporary registers or

bles (such as NIWP, which was introduced above).

i

e R+ e A 4 A A i3 o 2 o AR e e o a4 5 A N AL ST M - At . 4 e

i ff p/e~n.r page
L Y D
LG MICPU/M-4 .2 36

1) If‘STK:Q, the E field of the descriptor is taken
as the new value of L, which we call NEWL. In this case, the
function being called is said to have a figed local environ-
ment. Such a function cannot be recursive, and spacé must

be allocated for its local environment at all times. On

the other hand, the contents of such a fixed environment is
normally preserved between function calls. A FORITRAN

~function has a fixed environment, for example. Since a call

(CLL=1) saves the current L in the E field of the return
descriptor, the return (CLL=Z) handles E exactly as the call

of a fixed function does.

Iif STK=1; space for the environment is allocated on a stack.

Two words are required to describe the stack, which grows

toward increasing memory addresses:

SP, the address of the first unused word; kept in
G'[2], the third word of the global environment,
SL, the address of the last word allocated for the

stack, kept in G'[3].

If the environment is stacked, different actions are required

‘fof calls and returns,

On a call (CLL=1), we compute SP+E, If it is)SI, the

- STKOV trap occurs. Otherwise, NEWL<SP and SP<SP+E.

In other words, E locations are taken from the tbp of the

p/e-n.r page

CC - MICPU/M-4 .2 37

stack. The situation before and after is shown in figure 1.

Cn a return'(CLLzﬂ) what ordinarily happens if STK is set is
| SP<L; NEWL<E;

in other wordé, the old L at the time of thé call (which was

saved in the E field of the return descriptor, as we will

'seé) becomes the new L, and SP is reset to tﬁe value it had

before the call, which is the current L.. The before and

"Vafter pictures of figure 1, looked at in the opposite order,

| should help to clarify this. With these rules, calls can

: be made freely from fixed énvironment functions to stacked

environment ones and vice-versa. The industrious reader

mayvcheck the four cases, |
Unfortunately, if the return is to a function which is not

~the one which called the current one,‘SP is not reset'cor—'ﬁ%

.rectly. This is expected to happen only as the result

“of a branch to a label which has been passed as a parameter.
(i.e. an errbr return)fA When such a parameter is passed’
(see.below)~frbm function F1 witﬁ L=Ll to F2 with L=L2,

and the descriptor for the call has STK set, the parameter
aépears in F2 as a BLL déscriptor with STK set, UWSTK set
and L2 in E (see figure 2). The return (BLL) sees CLLzﬁ,

STK=1, UWSTK=1 and does

SP < E; NEWL = th

®

E field of the descriptor addressed'by E
This trick allows both SP and L to be set correctly while

carrying only one numb2r in the descriptor,

pags
38

MICPU/M-4.2

ple=n.r

)

3oe3s JO 3ae]ls

SIUBWUOITAUD
snotasxd x03F
pesn aowrds

TMAN

JUSWUOITAUD
Mmou I03
SUOT3eDOT H

- ds

aords
}or3ls pesnun

s

HHLAY

ddIo

"1dT0

3oe3ls FO 3ae3S

SIUSWUOITAUD
snotAaaxd x03F
pasn aords

ST

JUSWMUOITAUD

JUSIIND

aoj3dTaosap ds
uanjax

aowrds

¥}oeils pasnun

1S

J304Hd

Allocating a local environment on the
stack during a call

»
.

Figure 1

bee

p/c~n.r
MICPU/M~4.2

paga
39

hon-local label

passed by Fl:

STK, UNSTK L2
P in F1

return descrip-

tor from call
of F2

Figure 2:

L{n-1)

P(n-1)

STK L1

Pl

BEFCRE

Return to non-local label in F1l passed

SL

sSP
ILocal

environment

for Fn

ILn

Local

environment

for F2

L2

-Local
environment

for Fl
Ll

Start of
stack

as a parameter

AFTER

SL

SP

Ll

P B e R ST,

£ o e b e PR, : s —

Tt words regardless of whether F1 and Fn have fixed or stacked
environments, but reguires F2 to have a stacked enviroruent.
vhen a labzl is pessed to a routing which has a fized
environment, therefore, E is set to L1 and STK, REIL turned
éff. If additional space is allocated on the stack after

the call, it will not be freed when a branch is made to this
label. It is believed that this deficiency is not very
 sérious.

2) If CPA=l, arcguments are copied whenever a BLL is
executed. If a function has multiple resulté, it can turn
CPR on in its descriptor. This will cause CPA to be
tu;hed on in the return descriptor, and the multiple results
will be returned by the arguments - copying process when

the return is executed. I£f CPa={, the BLLERR (2) trap

Cu

occurs., A,éummary of all BLLERR traps and their parameteré
is given in the appendix. The BLLN instruction should be
used if no arguments are being passcd; in this case the
trap will occur if CPA=1.

The address of (actualj arguments tb be copied are specified:-

in the calling program in a list of actual argument words

-

(AAWs) following the BLL instruction. These have a one-to-

one correspondence with a list of formal arguments words

(FAWe) which starts at NP,

e NI F e

SR S MICPU/M—4.4 | 4l

o A P L S T TS et e 3 St e LSS W AP A A 430 et st e Botti i i e . S 1 et et s e 2 Y 3

sing is interpreted exactly like the addressing for an instruc-
tiow, but the 7-bit opcode field is trealed differcently, ac

its Name ~ Contents

w o
!
4]

4 STR (actual argument only} struc-
ture
1 = variable
3 = computed scalar
2 = array element
g = array

3 CADDR (formal argument only) copy
value ..
} 1 = copy address of
' actual argument
¢ = copy value of
actval argument

4 FSTR (formal argument only)
‘ 1 = scalar

= jump (actual argu-
ot
ment only) :

i
(6]
2
o]
o
3
0]

X,

‘ 1 = integer (1 woxrd)
2 = long (2 woxds)
3 = real | (2 words)
4 = double (4 words)
5 = complex (4 words)
6 = longlong (4 words)
7= string (4 words)
8 = label (2 worcs)-
9 = pointer (1 word)
14 = unknown

9 ENDFE end flag
g = not last argument word
1 = last argument woird

as follows: two pointers are

naxt soinnl argumant

S

s s g st S et 1y T e s o P
e i A At s e N i s i

ARSI RS S S

F/}C“c P ’x‘i
_} MICPU/ -4 .4 4

Then PAW < CONTENTS (NFV), and FZIT is treoted as an instoact:

word for the purvosc of computing its effective address, whic
£ 4 b 2

.

is put into FQ. Only D or IR addrecsing is permitted; any-

P

wn

thing else vill cause the BLLERR trap with class 4.

1f ENDF (FAW) # NFW <« NFW + 1 aand copying continues. Other
wise, copying stops. If the instruction is BLL, the BLLERR(2

occurs. If it is BLIN go to step (3).

We treat NAW as we treated NFW: AAW <« CONTENTS (NAW), R<NAW

and its effective address is computed. The address type is
, 18 adaress Lype 1

*d

i

F if TYPE 1 (integer) otherwise E. BLLERR (5} will occur

if the address type is not satisfied.

n
ol
Oy
joN)
bad
o
0
{

If type (BAW) = £ the AAW is a Jjump and it specifies
the next actual argument. Repeat from AAW <+ CONTLNTS (NAW<Q),
etc.

If the AAW specified G-relative addressing with an address

of ¢ it is taken to refer to the central registers. If CVAL

@ then BLLERR(5) or if TYPE) 6 or STR = @ then BLLERR({4)

will occur.

Next the types are checked. If TYPE(FAW) = TYPE(AAW), the

BLIERR(3) trap occurs, unless one and only onc of them is

unknown. FSTR and STR are checked according to the following

table:
PSTR STR 0 1 2 3
0 OK BLTERR (3) PUWAT BLLERR (3] -
1 FNAT O Or oK

FrysD means that if PN o= €, BLLERR({3) orcurs, otherwisze the

[,

as an absolute IAW, or except in the following two ca

At o ————— ————————

P e e S8 s A Y e ot e s T e e k7

vhich will inhibit o

The idea here is that if A(l) appears as an actual argumcent in

FORTRAN and the corresponding formal B is dimensioned, an

-

array Gescriptor for B must be computed, or if A appears as an

ac;udl argument and the formal is a scalar the first element

- of the array must be found. A softxnre routine 1s supposed

to do this. It needs access to the descriptor for A; the

“extra incrementing of NAW is to leave room for the address of

~the descriptoxr.

Now copying takes place. If CADDR(FAW) = 1, Q is stored at FQ

o
n
[0}
[0]

.

If the AAW supplied an immediate opzsrand or if it is
stored 1nto FQ as an IM tjp lormal IAW,
If Q is the result of ROP or ROX addressing or STR

(AAW) = 3, Q is stored as a read-only a bsolu;e (ROJ) IAW.

i

Otherwise (CADDR{FAW) &) the value must be copied. The

 oeta1ls of this depend on the type:

If TYPE = 1 and STR({AAW) # ¢, OP or the A register (in

the special case) is copied to FQ.

For TYPE < 6 and STR{AAW) # ¢, the number of words
specified above is copied from Q to FQ, or from the central
registevs (A, B, C and D) to FQ if appropriate.

If TYPE = 3 or TYPE = 4, the floating point nwiber ad-

e B 3 L o £ 5 R O N pls TP S S " N -
vsed, storing is poerformed as in the floating point store

e . i o

“The basic idea is to supply the proper context, so that the

~ /a -
[/] 5

(Refer to Floabing Peint.) Noito that

TDYLAG has to be sei in accordance of the TYPE as the number
of words stored by STF depéends on it.

For TYPE := 7 and STR(AARW) # ¢, the four-word string
descriptor is copied. If the BLL being executed is a system

call (as described later), four ring checks are done, with P
as source and each of the four word addresses as target.
Furthermore, the word address must be non-decreasing from one

word to the next, and the COPS and CSIZE fields of the first

O

word are copies into the others. Finally, 2 is forced into
the top two hits of each word to ensure that it is a string

descriptor.

For TYPE = 8 and STR(RAW) # @ a label is copied as

The first word is made

o)

bsolute, i.e. Q added Lo thg
sign-extended SRW becomes the new LW if SREL is set, then SREL
is cleared.

In the second word if bits 6-23 are ¥, the word is re-

placed by L if STK = £.

NEWL + the STK and UWSTK bits, if STK = 1

current local environment will be restored if the label is

branched to. Refer to the discussion of how to unwind the

If the label is passaed by a system call, the absolute

addrcoss in the first word is ring-checked. Before copying

tha second word CLY, STK and RBL are clenred and bits 6-23 aid

S, e

{2/ 107 ip.; -

MICPU pi-4 .0

hed., If they are not £

BLLERR(6) ccocurs.

)
2

For STR(ALW) = & the type 1s ignoraed. An array descriptor
is =2lso copied like a two-woxrd scalar,

word W2 is replaced by an X or ROX IAW with address equal

to the effective address which results from treating %2 as
S|

3

an IAW. This permits an 2rray descriptor which uscs relative

&3]

+r

addressing to be passed as a parameter, since the relative
address is automatically converted to absolute. If BLL is a
system call, in addition two ring checks are done with P as
source and both the first and last words of the array as tar-
gets. This means that if an array descriptor 1is passed to a
hicgher ring, the hicher ring can use it without fear of ac-
cessing storage which the calling program could not have

accessed.

When the address or value has been copied, ENDI(AAW) is com-
pared with ENDF (NAW). If they differ, BLLERR(2) occurs. If
both are §, copying continues with

NAW <« NAW + 1; NF'W <« NFW + 1;
.otherwise it stops. In the latter case NEWP < NDW -+ 1

3) 1If the CLL bit is on, a return descriptor is computed
and storgd at NEWL. It consists of 2 words: NAW + 1

Note that this is the return address

L + 1B7 *CPR + 2B7 #5TK

i.e., the old local envivomment, with STK on il it is on
in the descriptor, and CPA on if CPR is on in the call

descriptor.

o s

.
3 Pfeene S

MICPU/HM-L4 A 45

Nt Ervbadam s

T
f‘.,
t
{

4) Set I to NEWL, P to NEWP, and continue execution. If
the FTN bit is set, skip one word unless the FINAT flag is on.
The instruction skipped presumably will contain a subxoutine

call to take care of the special cases in FORTRAN mentioned

earlier. -

In order to state precisely and concisely how this instructionA
‘works and to describe the details of ring-checking, an SPL
program is presented in the Appendix which duplicates its
:functioning. This program uses some special functions.
‘;‘(Thdse not @éntio;ed here refer to fields of functions defined|
eiseWﬁere in this document) .

1) The construction $¥<« implies a ringcheck with R as
source and X as target. As the access is a store, the trap
PRO may also occur. ‘

2) RINGCHECK(X) performs a ring check with R as source

+.

ek

and X as target. 1If the check fails, trap MACC will occuf.
3) RING(X) produces a number depending on the ring
which contains X, say

in the user ring

1 if X 1is
2 if X is in the utility ring
3 if X is in the monitor ring

T 4) MENTER(), MEXIT() and INTERRUPT () designate the
.:piaces where the actions described under "CPU Interrupt-
ability" are taken.
5) EA(X) jnitiates the effective éddress calculation
sinilar to IA(X), but the format of CONTENTS(X) is like an

instruction (or an AAW) rather than aun IAV.

pPle=~n.r page

-

; E@CC MICPU/M-4.2 47

word as the first AAW. STR, TYPE and ENDF will be taken from

Programmed Operators

If the P bit of an instruction is 1, it is interpreted as a
rather peculiar kind of subroutine call rather than an

ordinary machine instruction. Execution proceeds as follows:

the OPC field of the instruction is put into IR

a BLL $G’[ﬁ] is executed

" Presumably word ¢ of G will contain the address of a trans-
| fer vector. If desired, it may contain an array descriptor
- which limits the number of programmed operators and supplies

Ca multiplier of 2.

There is one additional feature: BLL will initialize NAW

to P, rather than to P + 1, so it will use the instruction

a‘{"k“. .

. the corresponding bit positions of the first FAW.

e - _
Bl ey Rty e
; v z MICPU /154 .4

A T .] - B S e

Systein Calls

Two versions of the OPR instruction provide prolected ent
points into the system. fThe MCALL instruction works as
follows:

8 bits provided by the OPR are put into IR

a BLL $BA is executed,rwith BA - 6040008

when the BLL is completed,

G < NEWG, where NEWG = 600000B.
The intention is that 604000B should contain an array
deécripﬁor with

1B = §f

total number of defined system calls

Il

UB
MULT = 2
which points to an array of BLL descriptors for the vario
protected entry points. Note that if the system call inw
a ring crossing, where the called system is in a higher r

[Sl ey

than the caller, G is saved in NEWG[14]. G is restored f:

G'[14] by any BLL (BLLN, POP etc.) which crosses the ring

boundary into a lower ring.

For calls into the utility the UCALL version of OPR works
sam2 way, except that BA = 4030168 and NEWG = 403000B. Nc
that this is the beginning of the utility ring. Variants

thesec OPRs exist which exscute a BILN tnstead of a DLL.

(MCALN, UCAIN)

The PDFLAG, TDFLAG bits in the status register are clearc
by both MCALTs and UCALLs.

MCALLs also sot the LOCKED bit of the CPU as Gosneribad

e e A A Sl D o8 A it L ol R o

»/..‘_r s

ir

MICPU/ii-4.4 4G

A me\u¢nn trap is a forced transfer of control which may occux

as a result of a vqllety of untowa

ard events which may arise
during the exccultion of a program. It does not involve a
switch to a new process.

A trap may be fixed or ring-dependent. All fixed traps save

the state in the 1§ words starting at 6g2752B (i.e., at the
énd of‘the monitor portion of thé context hlock). They then
set G to 680FFYB and do X < n; BRU 6403 2B, where n is the
'trap‘n‘mber. They all have a one word parameter ﬁhich is puti

into the A register after the state is stored. The value of

5
0}
o]
Q,
[
o
D)
(e
®
(B
o)
O
o
n
Q
o
ﬁ
:JJ
)
cr
Y
3
,.)
L/
o]
b
<
A
]
Lo
5
~
7.
=
-
1
H
451
A
h
)—l
}A
1§
p
[
L‘)
[a)
-’

A table of all fixed traps 1is given in the appendix, Each

one is described more fully in ils proper place in the manual.

}-l.

The ring-dependent traps differ in that they send control to

he

. a location determined by the ring that P is in. 7They store

o]

P and the parameter at G'[4] and G'[5] respectively and then
clesr the 2401 bit in the status register and do IR < n;

BRU $¢'[6].

e o e e 2 . e et s et o]

. et e e o e a4 e g+ it e =

S

B

P TN

MICPI /4.4 50

B S U

H

[—

The firsh 10 words of the stat

o
[y
@}
[\J}
l_‘:
o
mn

. s 2

then A is set to the effective address of the instruction,

v

clear }S840 and do X <« OPC, BRU 1'[2].

B e s s s e e e

5 “y A ple-nr page
T AN
.:Eizy%t, MICPU/M-4.2 |51

CPU Interruptability
The céU described in this manual is expected to run as part of
a system whicﬁ includes, among other things,

1) Severai physical CPUs, which are idéntical except for

.a number called the CPU number attached to each CPU. The

CPUs are numbered from g to n-1 where n is the number of
. CPUs.

2) A separate processor called the pscheduler which is

responsible for allocating CPUs to processes, The pscheduler
" also has facilities for causing the CPU to operate in a
single-step mode, in which it stores the state, waits and-
“then reloads it after each instruction execution, and for
teliing the CPU to stop execution at oncé (crash) .

3) A protect mechanism which allows the various proces-
sors in the system to be interlocked or synchronized. Thexe
are four protect lines, any of which may be seized by any
processor. A line may be seized by only one processor at a
‘time; anyone else attempting to seize the line is held up

until the current owner lets it go.

fThié section describes the behavior of the CPU with respect

1) A STROBE signal, which the pscheduler sends when the
VCPU is to switch processes

2) The single-step and crésh signals

3) Protect 4, which is used to interlock the CPUs,
keeping more than one from being in a locked state.

4} The timer trap, which occurs whan the interval timer

3]

g.fm;n p/e=ir F
gDQmﬁ%a MICPU/M-4.2 |5

"3
]

[\

in the state becomes negative
5) The XMON and XUTIL traps

6) Initialization

The relevant information is:
a) Some information-in the staték
| 1) The riﬁg in which the P-counter is contained
2) The XMON trap bit in SR |
3) The XUTIL trap bit in SR

4) The sign bit of the interval timer, which we ‘call TO

b) Some flip-flops in the microprocessor Which are not part
of the CPU staté
1) STROBE; which may be set by another microprocessor,
normaily the pscheduler
2) STEP, which may be set by some external device to
.. make the CPU operate in single-step mode.
3) LOCKED, which is not accessible tovexternal devices

4) ALARM, which is set when a system crash is impending
c) The state of protect 4, which will be called CPUPRO

d) A location in absolute core called CPUWAIT which is used
to keep the CPU idle after the system has crashed or

between STEPs.

e et e e e e
fk\fﬁ, - P/e=s papn
oo b MICPUM-4.4 53

O

_number *4 then do like ABORT.

of a process.

‘At the start of every instruction, the truth of any o

A. Idle State

When it is initialized (by setting the 0 register in the

»

microprocessor to g) the CPU goes into idle state.

IDLE: Clear map scan reguest;
GOTO IDLE IF NOT STROBE:
Clear STROBE.
PWAIT: T < contents of absolute cell (6 + CPU number)
(T is the process’' PRT index)
Goto PWAIT if T = {;
Clear absolute cell (6 + CPU number);
Clear LOCKED; Clear the map;
lFind the page with the name in‘(T) and (T+1)
Také‘it és a context biock and load the state
from location 2764B-2777B in it (called the
SAVE area) .
If>the page is not foﬁnd in CHT, send‘a STROBEZ to-the

pscheduler with a message 4B7 in absolute cell 2454B + CPU

Start executing instructions at the location given

by the P-counter;

The CPU returns to the idle state whenever it dumps the state

B. Interrurtion of program execution

h

the
following conditions will stop execution and cause the
indicated action to be taken. The conditions ars troate d

in the order in which thoey are listed.

o S e —

A e Soam v TN R : . oty -
oy . ‘
3 . N /oy ALce
) . N k

} MICPU/ /4.4 54

R 290 W g g S e 89t 52 e D L e s S S S et o i
H

2) NOTVLOCKRD AﬂD STROBE: dump the stale into the SAVE arca,
send a RETURKN message to the pschoduler and go into idle
statea.

'3) STEP OR ALARM{ dump the state into the SAVE area, clear
STEP.' Clear the wait location (23B + CPU number) and wait

until it becomes 1234321¢B, then reload the state from

the SAVE area and proceed.

At»every'step of indirection, every start of an instruction
which is the target éf EXU, every parameter of a BLL and in
~all other places where the CPU might be held up for more .‘

than a few microseconds, (MVB, MVS, CPRS), conditions‘l andJZ

~are tested and their indicated actions taken

C. Setting the bits
XMON and XUTIL are part of SR and may be set or cleared with=

SRS, LOADS or XSA.

- LOCKED is set by MCALL or fixed trap. It can also be sot by

- 8LOK. It is cleared by any BLL or LOADS which leaves the

monitor ring (BLL, here, includes all variants: UCALL,

MCALL, POP), and can also be cleared by RLOKX.

TO can be changed by loading a state from the SAVE

E area or
by the OPR to set the interval timer.
D. The X traps
&t every BLIL or LOADS a check is made for transition into a

' N) p/e-nr puge
*f?i:;@;, MICPU/M~4 .2 55
lower ring. If there is a transition from monitor to utility
or user rings, the XMON trap is caused if the XMONT bit is

set, Then if there is a transition from utility to user rxing,

the XUTIL trap is caused if the XUTILT bit is set.

E. The CPUPRO signal

This protect is seized automatically at each point where
LOCKED is set and cleared at each point where LOCKED is cleared.
i

The programmer can set it himself with the PRO operate, but

this is probably unwise.

4 p/c=n.r poge
-
gjg{ :{ MICPU/M-4.2 56

Ordinary Instructions

This section contains a complete description of the behavior
- of the machine when interpreting an instruction word, with
the following e#ceptions:
| instructions with P = 1 are described under "Programmed
Operato:é“
the BLL instruction is described under "Function Calls"
A the,floating point instructions are treated in a
| separate section.
effective address computation for all instructions is

described under "Addressing"

‘Bach instruction is specified in terms of its operands, its
 effect on the state of memory of the running process, and
any unusuél traps it méy céuse. Traps which are caused by
the addressing system are the same for all instructions and’
are not considered. Traps caused by the map are the same
except for the read-only trap. Its occurrence depends on
whether the instruction attempts to'modify memory; this
 should be obvious from the instruction description and will
not be further mentioned. The address type is S or D for

instructions which modify memory.

- Part of the state is a 2-bit condition-code. This code is

set by the RESULT of most instructions as follows:
@ if rREsuLT < &
1 if RESULT = @

2 if rREsuLT < &

p/~n.r page

> ! | MICPU/M-4 .2 57

The RESULT is indicated in the description of each instruction!
Unless some other change in P 1is indicated, all instructions
end with

P« P + 1;

The INSTD bit in the status register is set to g at the end

of every instruction, except for LOADS.

The address type of the instruction is indicated for every

#

instruction, e.g.,

LDA (F)

 In the description some special notation is used: STORE(X,Y)
" stores X in the memory‘lécatioﬁ addressed by Y. The storing
includes some special logic for (S) type instructions if a
field or character is specified as operand (refer to Use of
:Addresses by Instructions); ABS(T) is the abéolute value f

of T, ABS(4B7) = 4B7.

p/c-n.r page

\'\:'\ -11;9 {/ﬁ ‘ . v M i
Eﬁf%a | | MICPU/N-3.2 | 58

Summary of Abbreviations

AR A register

BR B register

CR C register (used only for double-precision floating-
DR D register point and quadruple loads and stores)

XR X register

P Program counter
L Local environment register
G Global environment registerx

CcC Condition code, equivalent to RESULT:
cc=4g RESULT < &
cc =1 RESULT = &
cC = 2 RESULT > &

SR Status register

OV = SR[22] Overflow bit

TOV = SR[21] Temporary overflow bit

CARRY = SR[20] Carry bit

PDFLAG = SR[19] Permanent double-precision flag. Used
to set TDFIAG after STF, STD or FCP
TDFLAG =

SR[18] Temporary double-precision flag. Makes
all floating-point instructions double-

precision.

p/c~n.r page -

bCC _ ‘ MICPU/M~4 .2 59

A Data Transfer Instructions (12)
IDA (F) Load A register
AR <« OP;

RESULT <« AR;

ILDB (F) Load B register
BR < OP;

RESULT <« BR;

IDX (F) Load X register
XR <« 0OP;

" €C 1s unchagned

IDD (E) Load double
AR <« CONTENTS (Q) ; BR <« CONTENTS (Q+1) ;
CR <« CONTENTS (Q+2) & BR < CONTENTS (Q+3) IF TDFILIAG=1}

RESULT e—AR:

EAX (E) Effective address to X
XR < Q;

CC is unchanged

LAX (E) Lbad array index
XR « Q OR 4B6 (sets TAG to 2 for indirection)
.Cclié unchanged
Treats bit ATRAP in an array descriptor opposite to
all other instructions

LNX (F) Load negative to X
XR <« -0QP; two-s complement negation

CC is unchanged

o

-

2 'gk-mr
&y ‘ MICPU/M-4.2

STA (S) Store A register
STORE (AR, Q)

- CC is unchanged

STB (S) Store B register
STORE (BR, Q) ;

CC is unchanged

STX (S) Store X register
STORE (XR, Q) 7

CC is unchanged

STD (D) Sto:e double
.STORE’(AR, Q) ; STORE (BR,Q+1) ; |
STORE (CR, Q+2) & STORE (DR, Q+3) & TDFIAG <« PDFIAG
IF TDFLAG = 1;

CC is unchanged

XMA (S) Exchange memory and A
TEMP <« AR; AR < OP; STORE (TEMP,Q):

RESULT <« AR:

E , p/e=n.r
éi;éi: MICPU/M-4.3

pcge
61

© B. Integer Arithmetic Instructions (10)
"ADD (F) Add memory to A

AR « AR + OP; (two's complement)

is > 224, and cleared otherwise;

sign, else f#;
OV <« QV oxr TOV:

RESULT < AR;

SUB (F) Subtraét memory from A

. OP + 1)

ADC (F) Add memory and CARRY to A
oV <« g;
AR <« AR + OP + CARRY;

‘Then proceed exactly like ADD

SUC (F) Subtract memory from A + CARRY
oV « ¢
AR <« AR + CARRY + (NOT OP)

Then proceed exactly like ADD

MIN (S) Memory increment
RESULT < AR < OP + 1;

STORE (RESULT, Q) ;

CARRY < carry from bit @ of adder, i.e., set if the

sum of AR and OP taken as unsigned 24-bit integers,

TOV « 1 if the add causes overflow, i.e., if AR and

OP have the same sign but the sum has a different

Proceed exactly like ADD except that (-OP) replaces

OP. This is'a two's complement negate, i.e., (NOT

R

p/e~n.r
MICPU/M-4.3

paga
62

MDC (S) Memory decrement
RESULT < AR <« OP -1; .

STORE (RESULT, Q)

ADM (S) Add to memory
RESULT < AR < OP + AR;

STORE (RESULT, Q)

ADX (F) Add to X
XR <« XR + OP

CC is unchanged

MﬁL (F) Muitiply memory and A
TOV S H ' |
TOV « OV « 1. IF QP = AR = 4773039 07B;
PﬁQD < AR * OP; as two's complement numbers,

yielding a 47-bit two's com-
pPlement result

AR{,@, 23] <« PROD IQ:ZB] 7
BRrR{d,22] «-PROD{24,46];'
BR[23] <« @&;

RESULT < (AR OR (BR RSH 1));

is left-justified in the AB registers. If integers are
being multiplied, and ASHD -1 is required to obtain the

integer product in B.

' The produét, cbnsisting of a sign bit and 46 magnitude bits,

p/c~n.r poge
MICPU/M-4 .2 63

bcc

DIV (F) Divide memory into AB

TEMP < OP;TOV <« #:
DIVIDEND <« AB[0,46];

QUOTIENT < DIVIDEND/TEMP; a 47 bit two's-complement
integer treating both ope-=
rands as fractions in the
range -1{£f{1, and obtain-
ing a quotient with 23
fraction bits

TOV < OV <« 1 and proceed to next

instruction unless -1{ QUOTIENT <1
AR < QUOTIENT;
TEMP < QUOTIENT * TEMP; yielding a 47-bit product

, as for multiply
BR <« (DIVIDEND - TEMP) ; this is the remainder

"RESULT <« AR:

‘The guoteint of the 47-bit dividend and the 24-bit divisor,

both taken as signed two's complement fractions, is put'fhto

A and the remainder into B. Overflow occurs if the dividend

is larger than the divisor, since the quotient cannot be

represented as a. fraction; in this case, the central registers

are unaltered.

To divide an integer in A by one in memory, do ASHD -23 first.

p/c=n.r pag:
CC MICPU/M~-4 .2 64

C. Test Instructions (5)
ICP (F) Integer compare

RESULT <« AR - OP;

CPZ (F) Compare with zero

RESULT <« OP;

CMZ (F) Compare A and memory with zero

RESULT < AR AND OP;

The following two instructions operate on string descriptors,
which are pairs of indirect address words of type string.
The intended interpretation is that the first points to thé
first charaéter of the string, the second to the last char-

acter.

ISD (E) Increment string descriptor

TEMP < CONTENTS (Q) :
CSIZE < TEMP[2,3]; CPOS < TEMP[4,5]);
RESULT <« TEMP - CONTENTS(Q + 1);
Proceed to next instruction if RESULT = {;
IF CPOS + CSIZE <3 Do;

CPOS < CPOS+1;
ELSE DO;

CPOS < 0; TEMP < TEMP : 1;
ENDIF;
TEMP[2,3] <« CSIZE; TEMP[4,5] < CPOS;

STORE (TEMP, Q) ;

p/e=n.r page
MICPU/M~4.2 65

If the string is empty (the two IAWs are equal) the in-
~ struction sets CC to 1 and exits. Otherwise it sets CC
to g or 2, and increments the first IAW by one character

position in the string.

.DSD (E) Decrement string descfiptor
TEMP «'CONTENTS(Q+1); |
CSIZE < TEMP[2,3]; CPOS < TEMP[4,5];
" RESULT < TEMP - CONTENTS (Q):
Proceed to next instruction if RESULT = g
IF CPOS » @ DO;
CPOS <« CPOS -1;
ELSE DO;
CPOS < 3-CSIZE; TEMP <« TEMP -1;
ENDIF; ' , e
TEMP[2,3] <« CSIZE; TﬁMP[4,5] <« CPOS;

STORE (TEMP, Q+1) ;

The idea is the same as for ISD, but the second IAW is de-

cremented by one character position,

" D. Logical instructions (3)
ETR (F) And A and memory
AR < AR AND OP;

RESULT <« AR;

IOR (F) Or A and memory
AR < AR OR OP;

" RESULT =< AR;

P/t~n.r page

,@@ MICPU/M~4.2 66

EOR (F) Exclusive or A and memory
AR « AR EOR OP;

RESULT < AR;

Shift Instructions (6)

All shift instructions interpret the absolute value of
QP MOD 64 as the numbér of shifts to be done. The sign
of OP specifies the direction: positive for left shifts,
negative for right. \
SHIFTC‘« ABS (OP MOD 64); '
~ right shift as specified IF OP { # ELSE
left shift as specified;

RESULT < AR:;

ASHD (F) Arithmetic shift double (A and B registers)
“A and B taken as a single 48-bit register are
shifted. Oﬁ a right shift, the original.sign bit is
copied into vacated bit positions. On a left shift,
OV « 1 if any bf the bits shifted out differ from the
finaly$ign of A. TOV is set to 1 when OV.is‘set, |

otherwise it is set to g.
ASHA (F) Arithmetic shift A
Identical to ASHD except that only AR is shifted
LSHD (F) Logical shift double

A and B taken as a single 48-bit register are

shifted. Vacated bit positions are filled with zeros,

p/c~n.r poge

MICPU/M-4 .2 67

LSHA (F) Logical shift A

Identical to LSHD except that only AR is shifted

CYD (F) Cycle double

A and B taken as a single 48-bit register are

cycled. I.e., they are shifted, but bits which are

shifted out one end f£ill the vacated positions at the

other end

CYA (F) Cycle A

Identical to CYD except that only AR is cycled

Branch instructions (10)
BRU (E) Branch unconditionally
P < Q;

CC is unchanged . "y

Six instructions test the condition code
BLT (E) Branch on less than
P« Q IF cC = @; (RESULT £ #)

CC is unchanged

"BLE (E) Branch on less than or equal
P« QIFCC=fCRECC=1; (RESULT < &)

CC is unchanged

BEQ (E) Branch on eqgual
P« QIFCC=1; (RESULT = &)

CC is unchanged

p/e-n.r

MICPU/M-4.1

poge
68

G.

BNE (E) Bfanch on not equal
P« Q IF CC #1; (RESULT # ¢)

CC is unchanged

BGE (E) Branch on greater than or equal
P« QIFCC=1o0r CC=2; (RESULT > &)

- CC is unchanged

~ BGT (E) Branch on greater than

P+« QIF CC=2; (RESULT > &)

ccC is unchanged

- Two branch instructions affect the X register

BRX~(E) Branch on index
XR <« XR + 1;:
P« QIr XR < @:

CC is unchanged

BSX (E) Branch and set X
- XR <« P + 1;
P <« QO

S cC is unchanged

BLL (E) Branch and load L

is described elsewhere

Miscellaneous instructions (5)

HLT (F) Halt

Always causes the TI trap

P s

p/c~n.r page
, @C : MICPU/M-4 .2 69

EXU (E) Execute
Initializes IR <« XR & R « Q, then interprets

CONTENTS (Q) as an instruction and executes it.

EAC (E) Effective address computation
This instructioﬁ.computes the effective address of
CONTENTS (Q) interpreted as an instruction word. Similar
to EXU, IR and R are initialized to XR and Q respectively.
The results of the computation are given in registers
as follows:
XR[F,5] « RESULT < 1 & AR < OP
7 if the address is Immediate
XR{F,5] « RESULT <« 2 & XR[6,23] <« Q
if the address is ROD or ROX read only
XR[#,5] < RESULT <« 3 & XR[6,23] + Q & AR <« MASK &-
BR <« SHIE‘T |
if £he address refers to a field or
- or character.
MASK has bits (24-51IZE), 23 on, the rest
off., SHIFT equals to 24-(FB + SIZE)
XR[F,5] « RESULT « @ & XR[6,23] < Q
in all other cases.
Note that Q - whenever given ~ is ring checked
against R in the final phase of -the address calculation.

(refer to Addressing from Instructions)

p/e~n.r puge
MICPU/M-4.2 70

SRS (F) set or reset status bits
The operand is used.ténset o£ reset the status
register in the state in the following way:
SR < SR OR OP IF (OP AND 1) = 1 ELSE

SR AND NOT OP;

TSB (F) Test status bits
- RESULT < SR AND OP; -
I.e., 1 bits in the operand select bits of SR.
Thé condition code is set depending on whether all the

selected bits are @ or not.

OPR (F) Operate (1)
If the operand is negative, the instruction is a system
call. Bits 14-15 in the absolute value of the operand
select one of four aiternatives: ‘ T
g UCALL
1 UCAIN
2 MCALL
3 MCALN
Bits 16-23 in the absolute value is the address for the

system call. (as described in a separate section)

If the operand is positive, it is decoded to determine

what is to be dQne=

CBA

- CBX
XXB
cxB
CAX

XXA

CNA
CNX

7204

XGA

XI1A
- CSA

. XSA

[cxa

Copy B to B
Exchange A and B
Copy B to A

Copy B to X
Exchange B and X
Copy X to B

Copy A to X
Exchange X and A
Copy'x to n
Negate A

Negate X

Cleaxr A

Clear AB

Cleax B

Copy G to A
Exchange G and A
Copy L to A
Exchange L and A

Copy SR to A

Exchange SR and A

Copy interval
Timer to 2

Copy Compute
time clock to A

No operaiion

BR <« AR;

T <« AR; AR <« RUSULT < BR; BR < T;
AR <« RESULT <« BR;

XR < BR; |

T <« BR; BR < XR; XR < T;

BR <« XR:

XRA+-AR:

T <« AR; AR < RESULT < XR; XR =< T;

RESULT <« AR <« XR;:
AR <« RESULT < -AR;
XR <« -XR;

AR <« RESULT < §;
AR <« BR <« ER < ﬁ:‘
BR <« @;

AR < RESULT <« G;

3

T < AR; AR <~RESULT ~ G; G <= T;
AR <« RESULT < L;

T <« AR; AR < RESULT % L; L « T
AR <« RESULT < SR:

T < AR; AR < RESULT < SR; SR <« T;

A < RESULT <« IT;

A <« RESULT <« CTC;

_ /e=n.1 page
% a i
_ C(, ! MICPU/M-4.2 72.

MVB Move block
The block of AR words starting at XR:is moved to the AR woxds
‘starting at BR. The words are moved one at a time,’and the
registers are ﬁpdéted after each word is moved to reflect
‘the number of words remaining to be moved. This instruction
is interruptable. The move is done in such a way that no

word is overwritten until it has been moved.

MVC Move constant .
XR is stored into the AR words starting at BR. This instruc-

tion is interruptable.

MVS Move string
The string of AR bytes starting at the byte specified by
BR taken as a sﬁring IAW is moved to the AR bytes starting
at the byte specified by XR taken as a string IAW. The .
bytes are moved one at a time, and the registers are updated |
‘after each byte is moved to‘reflect the number of bytes
remaining to be moved. If the source and target strings
overlap, the move is done iﬁ such a way that no character
‘is overwritten.until it has been moved. If the strings do
‘not oveflap, after execution BR and XR will always point to

the first characters after the source and target strings

respectively. This instruction is interruptable.

CPS Compare string
The string of AR bytes starting at the byte specified by

BR taken as a string'IAW is compared with the AR bytes

\ N a2 : p/e=n.r poge
1E:}§::§:: MICPU/M-4.3 73

starting at the byte specified by XR. RESULT is set to
indicate whether the first string is smaller, equal to,
or greater than the second. The registers are updated every

time a byte is compared. This instruction is interruptable

CLS Compute length of string
AR and BR are faken as string IAWs. The number of bytes in
the string starting at the byte specified by AR and ending
" at the byte specified by BR, -1 is put into AR. The
CSIZE field of BR is used to determine the byte size.

RESULT <« AR;

ASP Add toAstring pointer
AR is taken as a string IAW. Into XR is put a string IAW
~which points to the XRth byte beyond the one pointed to by

AR.

nr lLogate leading transition
The bit number (counting from gbon the left) of thé left-~
- most bit in AB which differs from the sign bit of A is put
into XR. If no bits differ, ¢ is put into XR.

- RESULT <« XR;

CcOB Count one bits
The number of one bits in the A and B registers is put into
XR, |

RESULT <« XR;

LOADS Load state

Loads the first 10 words of the state {not including the

P/c~n.r : pagé

MICPU/M~-4.3 74

compute time clock or éhe interval timer) from the 10 words
addressed by‘X. A ring trap will occur if the_new P is in a
higher ring than the current P. This instruction does not
clear the INSTD bit. An XMON or XUTIL trap may occur if the
new P is in a lower ring than the current P and the XMONT

or XUTILT bits are set in‘the current SR as described under‘

"CPU Interruptability."

STORS Store state
Stores the first 10 words of the state into the 10 words
‘addressed by X, but does not store P ahd X:; the corresponding

locations are left unchanged.

Lsc load string constant
The word addressed by X is fetched and used to form a 4-word
- string constant ih'A, B, Cuand‘b as follows:
. TEMP < CONTENTS (XR); |
CSIZE <~ TEMP[2,3]; CPOS < TEMP[4,5];
AR %-BR < 4B7'+ CSIZE * 436 +
| (3 - CSIZE) * 1B6 + XR;
CR <« DR 6-485 + CSIZE * 4B6 +

CPOS * 1B6 + XR + TEMP[6,23];

The foilowing OPRs are privileéed. If P < 60¢d0¥, the TI
trap will occuf. |

'SLOK Set CPU lock

RLOK Reset CPU lock

ATLD Absclute load A

LY ' p/-n.r page
) {JC MICPU/M-4.3 75

Loads A with the contents of the core location whose absolute

address (i.e,, unmapped address) is contained in X.

AST abéolute store A
Stores A into the core location whose absolute address is

contained in X.

ARX Absblute address to X

| Loads X with the absolute address corresponding to the virtual}
address in X. Bit ¢ is set if the physical map entry was

empty. Bit 3 is set if PMRO was on in the physical map entry,

bit 2 is set if bit 3 is set or the dirty bit was clear.

PRO- Protect
Attempts to set PROi if AR[2¢+i] is on. If all the selected
"PROs are set successfﬁlly CC < @; if none are, CC <« 1.

These are the only possibilities.

UNPRO Unprotect

Clears PROi if AR[2¢+i] is set

ATTN ttention

Sends a Strobe signal to microprocessor i if AR[16+i] is set.

USCL -uschéduler call
This OPR initiates a switch-processes sequence. The state
-6f the machine is dumped at thevSAVE area (6g2764B). The
"Interval Timer, shifted 7 to the right so that the least
significant bit counts milliséconds, is stored into the MCT

field (8,#:7) of the process’ PRT entry.

bee ' " mcruma.s

puge
76

the CPU is put into the IDLE state.
CMAP Sets all EF empty flags in the map to 1

CMAPS Clears the maps of both CPUs in the system

CAT Copy A to interval timer IT < A;
CAC Copy A to compute time clock CTC <« A;
RUN Read Unique Name

A unique name is read from the unique name generator and
put into AB,
.BR <« low order bits of unique name;

AR < high order bits of unique name;

The pscheduler is called with bits @:5 in A as an opcode,

o~ ple-n.r » | ‘ pCys
Y é : MICPU/M-4.2 77
i

Floating Point

A. Number Representation
A 48-bit single precision floating point datum represents
a rational number in the following way:
1) Positi&e numbers
| R 11 12 47
X; gl M N

M is the biased exponent E:
E <« M - 200¢B;
positive number X = N * 2(E‘35)

where 237 (N (< 23% _1 ana -Zlg.Q EZ 218

E. g. + 1.4 is represented as

g1 11 12 47
gilg g|1.99 g
14 :
Largest number is 227« (1 - 2—36):
g1 11 12 47
g1l 1i1.11 1

Smallest positive number is (except for unnormalized

)10
numbers, see below) 2 :

g1 11 12 47

g |g9 g|1.09 g

2) Negative numbers

The sign bit (bit @) indicates that the number is

p/e=n.z page
MICPU/M-4.2 78

3)

4)

5)

negative. N is given in two's complement form:

negative number X = (N - 236) = 2(E-35) 3 ¢ nx ¢ 235
g1 11 12 47

-1.g: | 1{1g g11.90 g

Lowest negative number is —221ﬂ *(1 - 2736)

g1 11 12 47
111 1(2.99 1
. Maximum negative number is —2‘21¢
g1 11 12 a7,
198 gi1.99 | g
Zero:
g1 11 12 a7
Zigs 2\9.00 g

Un-normalized numbers

The only un-normalized numbers allowed are these:
g1 11 12 47

X: & |88 g\ N 1,1 N (235

and their negatives, i.e., IXI (2"21g. Note that
: 1
4+ 27217

are both normalized and un-normalized

Infinity .
g1 11 12 47
- = 11111 1i{g.9 g

The symbol - « is treated as the single point at

p/e=n.r

| b@@ | | _ MICPU/M~4.2

page
79

infinity in the one-point (projective) closure of

the reals. Operations on - o« are summarized in

the Appendix,

€) Undefined floating point numbers

Data of the form . _
g1 11 12 . 47

6:] M ‘ N

with # {Mag N2 -1,

and their negatives are not floating point numbers.

- If such a number appears as an operand for any

floating point operation; the trap UFN will occur.

Algebraic Closure Properties of Normalized Numbers

Numbers of the form A.1, A.2 and A.3 are normalized

 numbers. (n.n's)

1) If X is an n.n.,bso is -X.

21

2) If X is an n.n not zero nor +2° % so is 1.4/X.

eSS

The smallest positive n.n. whose reciprocal is an n.n.

1
is 272 g

(1 + 2735y,

‘Double Precision

The 96-bit double precision data have an additional 48

fraction bits. For example a DP positive number:

g1 11 12 47
g M . N
48 | 95

| P Ple=n.r puage
'.'éz:§Z: _ MICPU/M~4 .2 80

represents X = (N + N' * 2-48) % 2(E-35), g {n' {248 -1

Floating Point Instructions (8) and OPRs

All floating operations have single (SP) and double (DP)
precision variants, bit TDFLAG in SR selecting the one

to be used. Bit PDFLAG is used to set TDFLAG after a

compare (FCP) or store (STF).

Floating operations set CC to indicate if the result is

~ less or greater than or equal to g. (STF and FIX

leave CC unchanged)

~

FID (E) Floating load
aAn SP or DP floating‘point number starting at Q is
copied into the floating point accumulator. (The A, B,

C, D and E central registers)

STF (D) Floating store
SP: The floating point accﬁmulator is rounded
at bit 35 of the fraction,and copied to (Q) and (Q+1).

DP: Four words are copied from FA to the

" locations starting at Q. A double floating store causes

no roﬁndiﬁg if the FDP bit in SR is sét. Otherwise it
rounds at bit 71 of the fractionrand zetoes the last

12 bits. The FDP bit thus determines whether DP numbers
are stored with 72 or 84 bits of fraction. Overfiow
may occur because of the rounding. In all cases

TDFILAG <« PDFLAG after the store.

p/e=n.r poge
MICPU/M-4.2 81

FAD (E) Floating add

SP: The operand is extended with 48 zeros on
the right. A DP is then done.

DPQ. Let the operands be a * Zb, c * 29, The
two exponents are compared. Suppose b » d. Then c is
shifted right by b - d. A 87 bit register is provided
to hold ¢, which is loaded (sign + 84-bit fraction)
into the 85 most significant bits. The two leastk
significant bits are cleared. The 86 most significant
bits participate in the right shift in the usual way.
The least significant bit is 'sticky': if a 1 is ever

shifted into it, it remains 1 from then on.

After c has been shifted, it is added to a in an 85-bit
adder, yielding a result r of 87 bits. Bits 85:86 of

¢ do not participate in addition,

Now, if an overflow has occurred (a[ﬁ] = cl[d] # xi[g]l),
r is shifted right by 1. r[86] is treated as a sticky
bit in this shift just as it was in the shift of c¢. b

is incremented by 1 if this shift occurs and r[g] <« NOT
r[d]:

The result is normalized by left shifting until either:
1) the sign bit differs from the next bit or

2) the fraction is 1189 ... @
The exponent b is decremented by 1 for each left shift.

Lastly the result, rounded at bit 83 of the fraction

p/~n.r age

Cf‘ MICPU/M—4 .2 82
ey

(i.e., r[é4], since when we say 'bit 83 of the fraction'
we don't count the sign»bit) in accordance with the
rounding mode in force, is assigned to the floating point
accumglatof. See the discussion of rounding below for

details. Both overflow and underflow may occur.

FSB (E) Floating subtract
‘Identical to addition except that the negative of the
second operand is taken first. This cannot cause any

abnormal conditions.

FMP (E) Floating multiply

SP: The accumulator is rounded to single
precisioh, then the two 36-bit fractions are multiplied
to yeild a 72-bit result. The exponent which goes with
the result is the sum of the exponents of the operands -:-
plus one, to correct for the placement of the binary
point in the product. The 72-bit fraction is shifted
left if required for normalization. No rounding is
required since the accumulator can hold this entire
producﬂ; Overflow or uﬁderflow may occur.

| DP:A The two 84-bit fractions and the two signs

are multipliéd to yield an‘86—bit result (sign plus 85
magnitude bits) and an 87th bit which is the union of
the 82 least significant bits of the full 168-bit product.
The resulting 87-bit number and the exponent obtained
by the procedure described for single precision are

normalized and rounded like the result of an add.

4 . : | » p/c=-n.r ﬁcge
] CQ MICPU/M-4.2 83

FDV (E) Floating divide

SP: The 36-bit divisor fraction is divided into
38 bits of the accumulator fraction to produce a 37-bit
quotient. 'To this is appended a 38th bit which is set
if the division is not exact or if the other 46 bits of
the accumulator fraction are non-zero. The resulting
38-bit number is put intc the fraction of the accumuiator
»and filled out with 46 zeros on the right. The exponent
of the result is computea by subtracting the divisor
véxponent from the dividend exponent.

DP: The 84-bit divisof fraction is divided into
ﬁhe 84-bit accumulator fraction to produce a 85-bit
quotient; The exponent is computed as for SP and the

result is rounded. in the usual way.

Overflow or underflowkmay occur., Division by @ produces

its own trap. (DIZ)

If the divisor is an un-normalized number it is
normalized prior to division. It may or may not cause

overflow as explained below.

B FCP (E) Floating compare-
Identical to floatiné subtract, but the result is not
assigned to the floating accumulator. CC will be set
as usual to indicate the sign of the resﬁlt°

TDFLAG < PDFLAG.

FIX (8B) Fix and load X

ple~nr pega
MICPU/M-24 .2 84

XR is assigned a 24-bit integer which is the floor of
the floating operand. If the floor is » 223 -1 in
magnitude; the trap FLXO occurs. The result does not

depend on SP or DP mode.

FNA (OPR) Floating negative

The number in the floating point accumulator is replaced

“by its‘negative.

FIX (OPR)

Similar to FLX, but the operand is taken from the

floating point accumulator and the result is put into

RESULT and AR.

FLOAT (OPR)
A FLOAT operation‘produces a (norm;lized) floating poigE%
number in the floating péint accunulator which when FIXed
will restore the integer operand in AR. (unless it is

4B7) . Nothing can go wrong with FLOAT.

Rounding

There is a three—bit field (TRMOD) in SR which specifies
how rounding is to beldone (the fieid PRMOD is used to
set TRMOD after every FAD, FSB, FMP, FDV, STF or FCP).
The descriptions of instructions above state explicitly .
each point wﬁere rounding is done. The phrase 'round at
bit n of the fraction' means that bit n of the fraction
{(numbering the magnitude bits from g and not counting the |

sign) is the least significant bit retained.

K p/e=n.r page
' @@ . MICPU/M~-4 .2 85

The rounding modes are:

TRMOD gggg_ : Rounding.
g N | nearest number
2 F rvfloor (toward ¢)
3 c ceiling (away from g)
4 P away from - e
5 M toward - o

ﬁounding involves fhree bits. The first is the least
significant bit to be retained and is called Q. The
one following Q is called R. The third is the union of
all the bits following R (sometimes»only 1, none for

double divide) and is called T.

The rounding rules are as follows (call the sign S):
N: +1 (add 1 to least significant retained»bit) s
if R=1unless Q=g and T = g
F: 41 if S =1 and Ror T =1
C: +lif S =g and Ror T = 1
P:' +1 if Ror T =1

M: no action

Overflow and Underflow

Overflow or underflow occurs if at the end of a floating
point instruction, the exponent is outside the permitted

range.

Overflow always causes a trap (FLO), It leaves a correct

result except for the exponent, which must be read as a

DCC

Ple=n.r
MICPU/M-4.2

?age
86

12-bit two's complement number with sign bit the

complement of the high-order bit preserved.

Underflow action depends on the SUF bit in SR. If it

is set, no trap occurs and a suitable unnormalized

number Or zero results.

the result is correct (and normalized) with the same

rule for the exponent as was stated for overflow.

Otherwise, trap FLU occurs and

v R o

i ,',;/:w;z,f ool
MICPU/M-4 4 87
I
DEFPINITICN OF INSTRUCLILON CUDES
code N emon i a.type code MAemonic a.type
[5] HLT F 49 ASHD F*
1 LDA F* .41 ASHA P¥
2 LDB F¥ 5 42 LSHD F*
3 IDX F 43 LSHA F*
4 LDD E* 44 CYD F*

-5 EAX E 45 CYA r#

6 LNX E p 46 TSB F*
7 XMA S* 47 IAX E
1y ETR F* 5¢ BRU E

11 IOR F* ' 51 BLT E

12 ECR F* 52 BEQ E

13 STD D 53 BLE E
14 STF D 54 BGT E
15 STA S 55 BNE b
16 STB S 56 BGE E
17 . 8sTX s 57 BLL E
2¢ ADD F* 69 BLILIN B
21 SUB F* 61 BRX E
22 ADC F* 62 BSX E
23 SUC P ' 63 SRS F
24 ADM S* 64 EAC E* =
25 ADX F 65
26 ~ MIN S* 66
27 MDC S* 67
3g MUL F* 79 FLX E
31 DIV P 71 FLD E*

- 32 ICP F* 72 FCP E*
33 CPZ - BE 73 FAD E*
34 CcMZ F* 74 FSB E* -
35 ISD E* 75 FMP E¥
36 DsD E* 76 FDv B*
37 EXU E? 77 OPR E?

* indicates that CC is set by the instruction

D
D

‘p/e=n.r

MICPU/M-4.3

poge
88

OPR address

NoOUmbhwNnHES

11
12
i3
.14
15
16
17

29
21

23
24
25
26
27

34
31
32
33
34
35
36
37

DEFINITION OF OPR ADDRESSES

mnemonic

CAB
XAB
CBA
CBX
XXB
CXB

XXA

CXAa
CNA
aNx
Z0A
ZAB
Z0B
CGA
XGA

ClLA

~CS5A
Xsa
CTA
CCA
NOP
MVB

MvC
MVS
CPS
CLS
ASP
LT
coB

* 2%

L B B

OPR address

4g

41

42
43
44
45
46
47

5g
51
52
53
54
55
56
57

6g
61
62
63
64
65
66

67

79

71
72
73
74
75
76
77

* indicates that CC is set by the OPR

mnemonic

LOADS
STORS
LsC
FIX
FLOAT
FNA

SLOK
RLOK

ALD

AST
AAX
PRO

UNPRO
ATTN
USCL
CMAP

CMAPS
CAT ‘
cac
RUN

%

Piec=n.r k page
MICPU/M-4.3 89

Summary of Instruction Addressing

Abbr. Name
D Direct
Indirect
X Indexed
PD Pointer dis-
‘placement
IPD Indirect-pointer
‘displacement
BX Base-index
BXD Base-index-
displacement
- IM Immediate
. IMX Immediate
indexed
‘LR L-relative
IIR Indirect
L-relative
SR Source-relative
ISR Indirect source

relative

Notation

OPC
OpC
orpC

OpC

opC

OopC

opC

opC

oPC
opc
opC
OPC

OPC

.

G'[W]
$G ' [W]
X' [W]

PRT[D]

$PTR[D]

B[X]

($x") [X+D]

X'+I

.
$L' [D]
R'[D]

$R'[D]

Notes: W[l,]] means bits i to j of the 24-bit quantluy w.
is the leftmost bit.

Address Computation

Q <« W+G; OP < CONT(Q)
IA(W+G) ;
Q <« W+IR; OP < CONT(Q):

Q < SHORTPTR{PTR < W
[16,23]1,IR)+(D <« SIGN
(wlilg,151)); oP <«
conT(Q) ;

IA(PD(W)):

T < SHORTADR(B < W[16,
23]);

IR <« SHORTPTR(X < W
[lﬁ,lS],IR); :

IA(T);

T <« IR;
IR < SHORTPTR(W[16,23],

g)+sIGN(W[10, 15])
IA(T);

OP <« SIGN(W[13,231);

OP <« IR + SIGN(W[13,
231);

Q < L+(D « W[13,231);

OP <« CONT(Q);

IA(LR(W));

0 « R+(D < SIGN(W[12,

231));

IA(PR(W));

OP <« CONT{Q);

Bit

SHORTADR(W[l,j]) means IR IF W[i,j]l=¢ ELSE
GTW[l*l,J] IF Wlil=@ ELSE

SHORTPTR(W[1i,31Y) means Y IF W[i,jl=¢ ELSE
CONTENTS (G+W[i+1,3] FI W[ij=g
ELSE L+W{i+1,3])

bee

P/e~-n.r page
MICPU/M~-4.2 S0

SIGN (W[i,j]) means

CONT (W) or

CONTENTS (W) means

W[i,j)] interpreted as a twos-com-
plement number of (j-i+l) bits.

the contents of the memory location
whose address is the value of W.

A ring check is performed with R
as a source and W as target.

CXX (W), where XX is the abbreviation for an addressing
mode, means the value of Q if that mode is applied to W.

IA (X) means to initiate indirect address word cal-
culation on IAW <« CONTENTS (X)& R < X. The calculation
depends on IAT < IAW[d,X]

All instructions start with IR « XR & R « P;

Name

IAT

Summary of Indirect Addressing

Notation

Address Computation

Normal

" Field

String

g

Like instruction,
with IAW for OP

FIELD D:FB,
2 :+SIZE

STRING WA: CPOS,
CSIZE

TAG = TAW [2,4], then like
instruction, except for

TAG = D, I,X use IAW [6,23]
for W and don't add G. Trap
IATRP (R) if W[5]=1. Add ..
IR to Q (for LR or SR mode)
or to LR or SR (for ILR, ISR)
if .IAW [6]=1, and use IAW
[7,23] for W.

For TAG=PD, IPD, calculate
address as D,X (G is not
added) . This is the read
only (ROD,ROX) addressing

mode ,

Q « IR + (DISPL <« SICN(IAW
[13,23]): U<CONT (Q);

OP <« U[FB <« IAW [8,12],FB +
(SIZE <« IAW [3,71)1:

IF(SE <« IAW[2,2])=0 ELSE
SIGN(U[FB, FB+SIZE]) ;

CSIZE <« IAW [2,3] gives byte
size: 6,8,12 or 24. Then
IAW selects byte COPS < IAW
[4,5] from word WA < IAW
[6,23]. :

Array 3

ARRAY LB:UB*MULT;

IAW

IRCLB <« W1[8,8] OR IR > UB«
(W1[7,23} IF (LEB <« W1[4,4]

: P p/e~n.r poge
- éi:{i: MICPU/M-4.2 91
Two words. Trap ABE(R) IF

=¢) ELSE W1[11,23]1);

IATRP(R) IF (w1{3 31=1) #
(INSTRUCTION = LAX),
IR <« (IR-LB)*(MULT <
6] IF LEB=F ELSE W1([5,1g]

+1);

(W1[5,

Y

h

11

12

MACC

PNIC

TO

Pr
TL

XMON

XUTIL

CILIM

MAB

133%

Menwory access exrror - at
terpted access to monitc
from below M ox utility
from below U

NI

e

attempted write of RO p

oy

attenmpted reference to page
not in map

attempted reference to page
not in core

Rl

timer overflcw ~ not in
e

monitor mod

privileged instruction
trapped instruction

on exit from monitor via
any BLL or LOADS if XMmMox®
is selt in the state

on exit from utility via
any BLL or LOADS if XUTILT

is set in the state

indirect limit excecded

map abort

4 ‘{‘E‘

Y

-~
]
Se

o
(RING(R)-1)*
1BG6

addres

" IAW

5 Q0

L
L

e e

—

Nawme

ba) .
Causad By

ABE

FLO
FLU

RO
IATRP

UFN

FIXO

DIZ

STKOV

BLL ERR

array hound exceeds

floating overflow

floating underflow

read only trap

-

jon

indirect address trap bit

undefined floating

overflow on FIX ox
instruction

numoser

FLX

floating divide Dbv zero

stack overfliay

function call error
described in separate table

et it inSunidy

address of
ROD or ROX IAW

address of
IAW

Nasi4
CLASS * 1B6

- ——

N

L

e T RN

IO0: BLI

Ern
SANGR

address type exrory in A

wrong nunber of arguments

argument .type mismatch
inadmissible argument
address type error

array, label or string
descriptor format error

P
MICPU/M-2 A

r/e~nr ig:,,; o “
MICPU/M~4 .4 i

i ek S L A P T e 1 i e 4 S w2 b

!

SUMMARY OF IMPORTANT CORN ADDRIESSES

& ~ start at the user ring
G*'l7] POP entry IAW .
| G'I1] 2nd word of POP entfy IAW
- 6'[2] SP - Stack Pointer
“G'[3] SL — Stack Limit
. G'[4] ' Ring dependent trap - P is stored here
.G;[S] Ring dependent trap - parameter is stored here
G'{6] Ring dependent trap service entry IAW |
c'[7] : -(may be used as 2nd word of IAW)
G'[31] Last word which can ke used as an index in RBY
G'[127] Last word which can be used as a pointer in PD
or IPD or'as a base in BX
é'[37777B] 'Last word which can be accaessad by D, I addressing
tL'[g] o i1st word of the return descriptor - P
L'[1} 2nd word of the return descriptor - L, STK, CPA
L[2] SYSPOP transfer addrésé
L'{31] Similar to G'[37]
L;{l27] Similar to G'[127]
L'[2¢47] Last word which can be addressed by L, LI
addressing |

4ggeuEs Start of monitor ring

b e g Aty o b e B8 e o S

Vioeny fn,«u N
'v/b b e e
j MICPU/M-4.4 a5

4936705 Start of utility ring, G for utility
43014n G may bo stored here .
4g3gien UCALL entry IAW

S Ycfojofcicfs Monitor ring starts again, G for mbnitor,

context block

667148 G may be stored here

6727528 tate is stored here if a fixed trap occurs
;,652764B Start of the SAVE area

| 6g4ggEn MCALL entry IAW |

76ﬁ4ﬁ¢28 Fixed trap entry
| 7777778 Maximum virtual addfess

e e P R T 023, B AR SN i e

S,
Foea s LE
e /' w» " s
MICPU/ 14 .4
A

~J

A "v.i

¥ SPL OPROGRAN 10 DEFINE R
BLL: fiell SPUECeC: tiCALeD: CGOTO Bllis
pLltle MNei3 SPEC-G? hLﬁR“G3 GOTo BLLYS

* OPR WITH NEGATIVE OPLERAND:

OPR GP« =GP:
NeOP $ BLIT1S5 SPECD3
MCAL«OP S BIT14+13 -
MEWG- 4530080 & R-403535148) 1F MCAL=1 ELSE
(NEWG= 6482088 & Re6U4000B)2 -
IR-0P $ BITISTHRU23: 1A8(RY: 6O0TO BLL1IZ
.

TENTSC(P)3 IR<POPYW 3 FOPC3 N+«D
HCAL <03 NEWG-G;
I1C) IF IMMERIATE=Ls GOTO BLL1Z

POP: POPU=CON
' SPEC«+13
' IAC(GY: T
»
‘BLL1: NEWPU=~CONTENTS(Q)3
BLLERRC(1) [IF NEWPW $ BITSS
NEWP+(NEWPW $ FL¥W IF NEWPY 5 BIT4=0
ELSE G+NEWPW $ FSRW)S
- BRD~CONTENTS(@+1) FTNﬁT 03
CLL«BRD % BITO3 STK«BRD $ BITIS
CPA-BRD % BI1T23
CPR=BRD & BIT3 1F ClLL=| CLSE UNSTH<BRD $ BIT3:
REL-BRD $ BIT43 FTN«DBRD $ BITS:
NEWL«E«BRD $ FE3
IF RING(NEWP)<RING(P) LDC:
NEWG-Gl 1413 RET=-13 _
ENDIF3 G

* .
* STAIN NEW LOCAL ENVIRONMENT
IF STK=1 D023
IF CLL=& DOs
IF UNSTK=83 SP«L3
ELST D03 SP=E3; NEWLeE.FES
_ ENDIF3
ELSE DO
SPeNEMGLIR21I+E3 STHKOVL)Y IF SP>=NEWGEI 333
NEYL «MNEUGL 213
ENDIF3
ELSE D03
JEVLeL IF NEWL=G3
ENDIFS
%
: RIMGCHECHINTWPY S
*
% CAPY ARCUMENTS
4

DLLERR{Z2Y IF N=CPA:

MNAT P

17 CPavl
FoR

- - P ot e e o s

e

CONTENTEING S
TViTE:

spac»s: pwsvc“ POpAMNAN- L2
ATYPECFTYRES ASTR=FP & FSTH: ARNDRCFP &

o ELSY DOs
SRH FePs APCONTENTSINAY)Z
ATYPE«AP § TYPES STP
AENDFe&AP & ENDF:
ENDIFS
o IF ATYPE=Z DO3
= JUHP IN ACTUAL ARGUHENT LIST
R«P3 IR=XR3 EANAYW):
LLERR(S)Y 1IF IMHMEDIATES
NAWe-R3
GOTO Lgs3
ELSE DOCs
BLLERR(2) IFf AENDF#FP & ENDF3
IF ATYPE#FTYPL DOUs

‘l\;

x

NOT CHECKED-
- IF ATYPE#14 DOj
BLLERR(3) IF FTYPE#142
FTIYPE-ATYPES
ENDIFS
ENDIF:
NAWPeNAYS
IF ASTR=3 OR ASTR=2
| NAY-NAYE1 1T ASTR
o IF FP $ FSTR=D Al
: AND ASTR=D DI
BLLERR(3) 1F FTIN=0; FTNATFe1s:
TEMP=NAYWS 1863
GOTO L1:
ENDIF;
ELSE DOs
BLLERR(2) IF FP § FSTR=0
ENDIF3
CHECK FOR ACTUAL ARG IN ACCUMULATOR
IF (AP AND 759377%7IB) 40 DO3
ReP; IR«XR3 EALHAWPY; ARGADR«G;
IF FP $ CADDR=1 DO;
IF IMMEDIATE=1 DO

DU3
2

.’
1]
X
')

B

e

‘x.

TESP-0P AND 37773 OR 1634543
ELLSE D03 T
RINCORESD

L ol i AL oAy IR Y N <,
% Al [RSEONS WARS i'\:{’.-i’.{l”cll\ilu! 17 NECESEAR

ENDIF:

« FiX UP SO THE COPY VALUD CGLE I

Lt FIYPE=12 FP
ELST DOs

TEGP=TEHP+1R7 17 READOALY® L OR

HOARGADRY 3 TEMP-ARCADRS
AN
&

ISIEISIeN &) i- :,]
IMCPU/i -4 | 98

* TYPES DISAGRER ERhCu U* ESS CMNE IS JOKER> JOXER IS CHECKED
FOR BELOW UNL !:.QS CADD OR FSTR:ARRAY- lxu' WHICH CASE

IT IS

B e e e e e ¢ s e . A A e e o e A i

e

Le:

L3:

Lae
o

ENDF

MICPU /M- .4 | o9
IF IMUSDIATE=! DO:
BLLERICS) IF FIYFPR: OR FP & Fotool:
ENDIF:
TEWP<(OF IF FTYPDv1 ELSE CONTEMTSLARAADLY S

ENDIR:
CL.DR«R3
CPYADR«{(FP AND 374780 00YL 1F FP<D
{FP AND 37777BYMNENGYS
GOTO ARRAY IF FP-$ FSTR=GS
COUNT= (1 IF FTYPE=1 OR FIY,E=9 ELSE
2 IF FTYPE=2 OR FTYPE=3 ELSE
4 IF FTYPE=4 OR FTYPE=S OR F
ELSE G070 STRIQG 1P FTYPE=
ELSE GOTCO LABEL IF FTYPE=GE
Ei.SE BLLERR(43);
U'J'TPQ‘C) IF(FTYPE=3 0 FTYPE=4
AND UNDBEFINE ED{(TEMP)3
R"’NE”P’ c \l)i';"gn"l:.__lu i COUNT«COUNT-1
IF COUNT#E DG
R+OLDR: eauez;
CPYADR-CPYADR™13
TEMP«CONTENTS(O)s GOTO L23
ENDIFS
ELSE DOs

BLLERR(S) IF FP 5 CADBR=! OR FP § F&

CPYADR-C(FP AND 3779B)+HEVL IF FP<p
{(FP AND 37777B)+MNEWGYS

IF TYPE=3 0O} TYPE=4 [O3
STF(CPYALDDR)

ELSE DOs

FLS

TYPE

1

.
>

CuU%T*(E T OFTYPE=1 OR FIYPE=C ELS

2 1F FTYPE=2 ELSE
4 IF FTYPE=S5 O FTYPE=6 &
BLLERR(A)Y >}

ReNEWP3

STORZ{(CPYADR> A)3

IF COouNT#1l DO3

STOREC(CPYADR+1» B):

IF COUNT#2 DO3
STORECCPYADR+2:, C
STORECCPYADR®Z> D)

ENDIF:

EMDIF:
EMDIFS
EnND1
N’é“*‘\{\’ +13

we B

EF“EF;

1

NTERRUPTCHECK ()3

GOTJd LA IF FP % ENDF=13

I

e

it

NZUPeNFTur13
E“sn\? s

A

RN DESCRIPTOR

§
t
~

=5

o A T < e

MICPU/bi-4,4 1100
TOPRS
AND RINGINEYRI>RING(R) S

ALY
SNDIFS

IF STK=1 DO;

ELSE DO3
ReP; GL21~
ENDIFS
ENDIF3
IF ticAL=2 DO
MENTERS PROTECT(4)3
SET'LOCK():
NDIF3
SR & TDFLAG=SR & PDFLAG=0 IF MCAL>D3
LeNEWL 3 C&h:hsz 0LDP°P, PelEYRS
IFf RET=1 D03
IF GLDpP>=685 DO
MERIT: UNPROTECT(45
RESET*LOCK(D:
XMON*TRAP() IF SR S RMONTS
ELSE DO
XUTIL"TRAPC() 1IF SR $ XUTILT:
ENDIFS
ENDIFS
PeP+1 IF FTN=! AMD FTNATF=G:

s EXIT FROM BLL
| GOTQO NEXT®INSTRUCTION:
*
STRING: COUNT~43 GOTO L2 IF MCAL=03
FORM«TEMP AND 14B6 OR 4373 OLDT+G:
FOR 1-0 BY 1 DO;
ReP3 RINGCHECK(TEMP):
BLLERR(S) IF OLDT § WA>TEWP § WA OR
OLDT $ WASTEMP $ HA AND
OLDT % CPOS>TENP § CPOSS
R-NEWPs $(CPYADR+IMeTEMP AND MOT 7436 OR
GOTO L3 IF I=33 Re~OLDRs OLDT~TEHP;
TEMP=CONTENTSCARGADRT 11
Ei\!DT‘”\Os

-
O
2
=Y
e

I+

5 FLY 1F TEMP S
Ps?‘:{i{‘\)13. x l“"o 5 FSR-'
K@) IF MCAL>GS

Bs Q@ 4MND N
=GONTEMTS
IF RRD 3 ?F‘” AND BRD S FSTH=G [0S
BRD=EE0 AHD NOT 4837 IF MIpL=0O2

i

BRD<BRD OR (L IF 5TH

D L e e I T

[.
p[gpu/wmﬁ.4 1oL

N B R B N n s R i s s LATE ge amn AANRLL T Tt L e e e s e e T S A ks 7 T i s b eyt

ELSQ D“'

SiO‘L(C\ 4JL“‘—-x+§?§‘!}—‘ED}; G‘}TG 1_2:

*
ARAAY S R*':UP' SCPYADRTEMPS
BLLERRCGY IF TREMP & I4T#32
1F MgaL=>C 0023
IR-(TENMNP 8 UBY IF TEMD $ LEB=0 ELSE TEMP § Uhg)s
IACARGADR*1Y: RINGCHICK(D)S
ENDIFS3
IR0 R+~ARGADR: I1A(ARGADR+1)>2
Bi.LERR{S) IF IMMZD:ATV 13
RINGCHECK(E) IF MCAL>G:
ReMNEVPS
S(CPYABR*1)J)«(B+(486 1F REARONLY=E HLSE 1
GOTO L3

Y
(&3]
o8
o
At
an

- P— - S B e RIS . S RN

s A 7 e Tl DL et ST RS eva e e mie L 3 e | R e s

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101

