-
bCC SPIL, Reference Manual sSpL/M-1.

 title prefix/class-number.revision

2

chegked : authors ; approval date [revision
oy Ponnds - L 11/3/69

date

checked classification
&f: y Butler W. Lampson Manual

Company Privatg

pages
69

L4

aPPrOVed.WIX - %@4/ U M“”\?) B~ distribution
- \

ABSTRACT and CONTENTS

Reference manual for the initial version of the Model I
System Programming Language. The syntax and semantics

of the language are defined. Nothing is said about the
command language for the processor, which is described in

CSED/W-12, SPLDS/W-17 and SPLEX/W-32.

TABLE OF CONTENTS

1. SCOPES AND PROGRAM FORMAT........ e 1
1.1 LEXTCAL FORMAT . .« vt ettt ee e et e eeee e e e e 2
1.2 SCOPES . « v ettt ettt e e e e e e e e e 3
2. DECLARATIONS. .« et vn ettt e e e e e ettt 6
2.1 NAMES . ettt ettt ee e et e 6
2.2 ATTRIBUTES. . ettt oee et ettt e e e et 6
2.3 ATTRIBUTE MODIFIERS . e v vt eumnseemme e, 6
2.4 DECLARATION STATEMENTS «vvvuueemmnnennnnnnenns 10
2.5 EQUIVALENCE. . ..t vuuteune e e et 12
2.6 INITIALIZATION. .« uu et ttneae e et e et eae e 13
3. CONSTANTS.... .o. vovu. .. e 16
3.1 INTEGER CONSTANTS . . . e evvvetumeetee e eaeeennnnn. 16
3.2 REAL CONSTANTS . ¢ v\ v et eue et tee e et eeee e eeeaeeenns 16
3.3 DOUBLE CONSTANTS . . .« evun eueeetteee e eaeeee . 17
3.4 TIMAGINARY CONSTANTS . « v v e e eeee s tsme e eeaeennnnn 17
3.5 STRING CONSTANTS . .« e e vneeeee e eeeieeeennns 18
3.6 TABEL CONSTANTS. . -t vveeeeee et et e, 18
3.7 CONSTANT EXPRESSTIONS. . . . «vttue e, 18
4. DATA FORMATS. .« vt e tteee e ettt e e et 19
5. FUNCTION DECLARATIONS . . .« et vuneetmeeeeeeensennnnnn, 22
5.1 FORMAL PARAMETERS . « v« v e vomeeeee e eteaeennnnn, 22
5.2 FRETURNS . -ttt e e e ee et e et e e et 23
5.3 SPECIAL ENTRY POINTS . e et vuneevmmeeumas oeaennnn. 23
6. ALLOCATION. . .t uu et e et e e e e ettt 27

bec

TABLE OF CONTENTS (Continued)

6.2 TLAYOUT OF CORE.......... . e e 28
6.3 ORIGINS . .o et ittt ettt et e e et ettt 30
6.4 FIXED ENVIRONMENTS . . .« vttt evttemreneennenneenns. 31
6.5 EQUIVALENCE. . .© v vttt tmn ettt ettt ennnn v 31
6.6 FIXED FIELDS . « v ot vt etsen tteetmeeeanann ae. 32
7. EXPRESSTIONS . .ttt vttt emte et teteteenenneenn. 33
7.1 PRECEDENCE OF OPERATORS v'verenrnnennennnn. ... 33
7.2 SYNTAX OF EXPRESSIONS . .t vvvvevenrenenenneneenenn. 35
7.3 TYPES OF OPERANDS .+« v tv v teteeetesmnennreaneennss 37
7.4 SEMANTICS OF EXPRESSTIONS. . vt vvenr et enennennennns 40
B, ARRAY S .t vttt et e e 44
9. FUNCTION CALLS AND RETURNS. ... 'vvrererenenennennnns 46
9.1 ACTUAL ARGUMENTS .« s v v oot e et et eete e et eeteenenns 46
9.2 RETURNS . o v o et eeee e et e e et e, 47
9.3 FAILURE EXITS .t vt ttteteniee tteteteeeeneannn. 47
10. STATEMENTS............ e e 48
10.1 EXPRESSIONS AS STATEMENTS. .+ v vt tvvevnrenneennean. 48
10.2 IF STATEMENTS . v v o vt ettt et tee et et eteaianenen 49
10.3 FOR STATEMENTS....... e e ... 50
10.4 ASSEMBLY LANGUAGE . + v et v v et teeenemnrneenennennen. 52
11, MACROS . ¢ ettt ettt ettt et e ettt e 54
12. INTRINSIC FUNCTIONS . « v v vt vmtoteenemnenraneenennen, 56
12.1 TYPE CONVERSION FUNCTIONS. .« : v evurennrenneeneenn. 59
12.2 STRING FUNCTIONS . + ettt v v een v emneennenneeanseannns 62
12.3 STORAGE ALLOCATI ON FUNCTIONS. .. v v v vurenneennnnnn. 65

12.4 MISCELLANEQOUS FUNCTIONS.ttt eneonnnnans 68

bcc

page

TABLE OF CONTENTS (Continued)

13. CURRENT GLITCHES . ¢ttt it ittt ettt et ee s tessesnnnnns

bec

p/e=n.r
SPL./M-1.2

1. Scopes and Program Format

An SPL program is organized in
with a PROGRAM or COMMON state
statement., It has a name whic
statement. Block names must Db

program. Thus the general for

program
block

common :block

program:block

block:head

allocation:statement

label

to blocks. A block begins
ment and ends with an END
h is given in its initial
e unique over the entire

mat of a program is:

Sblock:;

program:block / common:block;

"COMMON" identifier ";"

block:head end:statement ";";

"nen
I

"PROGRAM" identifier
block:head

$($(label ™

Il)
action:statement ";")

3
1

end:statement ";"

$ (include:statement ";")
$(allocation:statement ";")

$ (declare:statement ";");

fixed:statement /

origin:statement;

identifier;

page

p/e=n.r page
C C SPL/M-1.2 2

Thus, statements must occur in a block in the order:

PROGRAM or COMMON statement
include:statements
allocation:statements
declare:statements
action:statements

end:statement
A common:block must precede any blocks which INCLUDE it.

1.1 Lexical format

Every statement ends with a semi~colon.
Carriage returns and blanks are treated according to

the following rules:

1) inside string constants or character constants
blanks are treated like ordinary characters.
Carriage returns are illegal in string and
character constants (unless written with the '&'

escape convention) .,

2) elsewhere a string of carriage returns and blanks

is equivalent to a single blank.

3) a blank may appear anywhere except in the middle
of a token. Tokens include names, reserved words,

constants, special characters and the sequences
u<=u u>=n 11 oo 18 u//n]

To summarize these rules somewhat sloppily we say that carriage

bece Y1z |1

returns and blanks are ignored except in string constants,
names, and reserved words.
A comment has the form:
comment = <{carriage returny "*" {arbitrary

string of characters not including
carriage return) <{carriage return> /
n/%" {arbitrary string of characters
not including "*/" or carriage return>

("*/v / {carriage return));:;

The first form of comments is exactly equivalent to a
carriage return. The second form is equivalent to a blank
if it ends with "*/", a carriage return if it ends with a
carriage return; the difference is apparent only if it is

immediately followed by "*",

Note that a multi-line comment must have an * or /* at the .

start of each line.

1.2 Scopes

Each variable is declared in some block and is said to be
local to that block. The same identifier may refer to two
different variables which are local to different blocks.
The variable name together with the block name, however,
is sufficient to ideﬁtify the variable uniquely. A
variable is said to bg LOCAL in scope if it is local to a
program block, COMMON if it is local to a common block.

Function names (i.e. names which appear immediately after

p/e=n.r page
CC SPL/M-1.2 4

FUNCTION or ENTRY) are GLOBAL in scope, however.

A variable may be referenced only in a block in which it is
defined. Any variable is defined in the block to which it is
local. Suppose that block C includes COMMON blocks Bi
(i=1l,...,n) in that order. Then a variable defined in Bj

is also defined in C unless it is local to C or defined in
Bi,i>. A block includes B if B appears in the identifier:
list of an include:statement in the block.

include:statement = "INCLUDE" identifier:list;

identifier:1list identifier $("," identifier):

All GLOBAL variables are considered to be defined in a GLOBAL
COMMON block which is considered to be included in every block

which contains no include:statements.

The effect of this convention is that declarations in
COMMON blocks can be overridden by other..declaration nearer
the point of use. Excepﬁion: a MACRO name cannot be overridden.
Note that if B includes A and C includes B, then the variables
local to A are defined in C (unless variables of the same

name are loqal to B or C). A declaration overriding an INCLUDE
must occur before any reference to the variable involved.

See figure 1. for an illustration.

bec

p/e=n.r
SPL/M-1.2

page

Figure 1l: Determining Defined Variables

GLOBAL variables’

Defined: {F>P,u,<{G>V

/ |

A\

COMMON A;
DECLARE P,Q;

Defined: {F>U,<{G>V,<{A>P,Q

v

COMMON B;
DECLARE R, S;

Defined: <{F>P,U,<{c>V,{B>R,S

COMMON C;
INCLUDE A;
DECLARE M, N, P;
Defined: <{P>U,<{G>V,

COMMON D;
INCLUDE A;

DECLARE I, J,M;
Defined: <{F>y,<{CV,

<a>Q,<{oou, <{a>P,0,<D>
N,P I; J,M :
N
COMMON E;

"INCLUDE B,D;
» DECLARE J,R;
Defined: {F>U,<{c>V,{B>S,

<&a>p,0,{D>I,M,
il <{E>J,R
_ +
PROGRAM F; PROGRAM G
INCLUDE C,D; INCLUDE E;
DECLARE L; DECLARE J,K;
ENTRY P; ENTRY V;
ENTRY U; Defined: <{P>u,{G>V,J,K,<{B>S,
Defined: <{F>L,P,u,<{G>V, - {&>P,0,<{D>I,M, <E>R
<a>Q,<p>1,3,M,<{CON.

- <{F>P means the P local to F

BCC P/‘..'MSPL/M—]_ .2 ’ P°‘6'

2. Declarations

2.1 Names

A name is a sequence of not more than 16 characters starting
with a letter, each of which must be either alphanumeric or

an ' (apostrophe).

2.2 ' Attributes

Every name has three attributes: scope, type, and mode. Each

is chosen from a fixed set of alternatives:

scope = "COMMON" / "LOCAL" / "GLOBAL" ;:
type = ntype / "STRING" [length] :
ntype = integer / "REAL" / "DOUBLE" / "COMPLEX" /

"IABEL” / "LONG" / "LONGLONG" /

"FUNCTION" / "FIELD" / "ARRAY" /

"UNKNOWN" ;

integer = "INTEGER"” / "OCTAL" / "CHARACTER" /
"POINTER" ;

mode = "FUNCTION" / ["SIGNED"] "FIELD" [form] /

("ARRAY" / "ARRAYONE") [dimension]/

"SCALAR" ;

Note that FUNCTION ARRAY's and ARRAY FUNCTION's are both

’

possible,

BCC . | P/c-n.rSPL/M—-l .2 P“;‘

The type of scalar value determines its size: integer,
function and field are one word; long, real, array, and
label, two:; string, double, longlong, and complex, four.

An array is represented by a two-word descriptor, as is a
label scalar. A function scalar is represented by a pointer
to the two-word descriptor. A field scalar is either a
constant,)if its form is specified, or occupies a single
word. The four cases of integer are included to permit
intelligent printout of the valué during debugging and so
that the system can adjust the values of pointers when
objects are moved around. It is important to declare as
POINTER all integer variables which are to contain addresées
during execution if it is desired to continue execution after
modifying the program. The compiler recognizes only one type

of integer, and the others will not be mentioned again.

If a name haé mode ARRAY (or ARRAYONE; they are identical
except that the latter causes subscripts to start at 1

rather than @), subscripted references to it will be compiled
on the assumption that indirection through the descriptor
with the subscript in IR will produce the effective address.
It is also possible to subscript INTEGER SCALARS; such
references will add the value of the name to the subscript

to produce the effective address.

If a name is a field without a form, tailing (".", "$" or
"@") will cause indirection through the location allocated

to it. If it has a form, it is treated as a constant and

bec I G o

and the code compiled depends on whether it is full- or

part-word. If a field appears without tailing, it is
treated as an integer whose value is the field descriptor

if the field had a form, and the contents of the location
allocated to it otherwise. If a field is SIGNED, the top
bit will be copied into all the higher bit positions of a
24-bit word when the field is used to fetch a datum. Other-

wise, these bit positions (if any) will be filled with zeros.

2.3 Attribute Modifiers

The shapes and sizes of things are specified by modifiers:
(dimensions, forms and lengths) which have already appeared
in the syntax for attribute names. Throughout, the expres-
sions must evaluate to constants at compile time. This

means that all the operands must be constant. See "Constants"
below for a discussion of what operands are regarded as

constant.

2.3.1 Dimensions

dimension = n[» expr $("," expr)

[u o n [expr] [n’ n eXpr]] nj v,

Arrays of any dimensionality up to 7 are allowed. The
expression following the colon specifies the number of words
allocated to each element of the array; this makes it easy
to create tables with multi-word entfies. The size of an

element is limited to 64 words. If it is not specified, it

|;CC . | P/c-n.rSPL/M—l .2 ”;.

is taken to be the size of the scalar object with the same

attributes as the declared array. If an array is given an
element size different from the one implied by its type,
then subscripting it yields an expression of type UNKNOWN.

See "Expression" below for the implications of this.

The second expression following the colon tells where to
allocate the first word of the array. If it is absent,
the array is allocated using standard policies described

below under "Allocation.”

2.3.2 Length
length = "(” expr [”:” lexprl [", " exprll m)» ;

The string length is specified in bytes by the first expres-
sion. The second expression'gives the byte size, chosen from
6, 8, 12, and 24; 8 is the default value. The third expres-

sion tells where to allocate the first word of the string.

If an array or string lacks dimension or length, no space

is allocated and no descriptor created by the compiler. In
this case an array is assumed to take one subscript.

If these elements are present, space is assigned to the local
environment if the scope is LOCAL, and the descriptors are
initialized at function entry. If the scope is COMMON,

space is assigned in the proper common block and descriptors

compiled into this block. See "Allocation" for details.

hk;lr - Y page
CC SPL/M-1.2 10

2.3.3 Form

form = "(" word:displacement [":"
starting:bit ", " ending:bit]

|l) 1" ;

word:displace-

ment = expr;
starting:bit = expr;
ending:bit - expr;

A form specifies the word displacement and left-and right-
most bits of a field. If the bit numbers are omitted, @ and

23 are used. A field may not cross a word boundary.

2.4 Declaration Statements

A declaration consists of a list of names together with
specification of scope, type and mode, and possibly

of initialization and equivalence. Thus:

declare:clause = f[typel] [mode] item;
item = identifier [form / [dimension] [lengthl]]
[equivalence] [initialization];

declare:clause:
list = declare:clause $("," declare:clause);

declare: state-
ment = "“DECLARE" declare:clause:list /

macro:statement;

9&-5} page
CC SPL/M-1.2 11

equivalence = "=' identifier [subscript:list]/

("L'" / "G¢'") subscript:list)/ expression)

subscript:list = "[v expressibn $("," expression) "I";

initialization

nen (expression / "(" expression

$("," expression) ")")3

A declaration is processed from left to right. The attributes

are initialized as follows:

scope - is determined by whether the declaration

is in a program (LOCAL) or a COMMON block
type - INTEGER
mode - SCALAR

The values of the three attributes are called the state of

the declaration. Occurrence of attribute specifiers may change
the state. A name is given the attributes which are in the
state when it is encountéred, except that the form, dimension,
or length, if appropriate, may follow the name as indicated

in the syntax of item. FUNCTION, FIELD, and ARRAY are taken

as specifying mode unless immediately followed by a mode word,
in which case they specify type. Occurence of a type word

sets the mode to SCALAR; occurence of a mode word leaves the

type unchanged. UNKNOWN SCALARs are not allowed.

EXAMPLE :
DECLARE INTEGER A, B, STRING C, ARRAY D, E [5],

ARRAY [10] F, G (5:12);

.
4

e———

| p/c=n.r page
CC SPL/M-1.2 12

declares integer scalars A and B, string scalar C, string
arrays D, E, F, and G. The array D is not assigned any
storage, but E is assigned 5 elements and F and G get 10.
Except for G, no space is assigned for the string values and
all the strings have 8—bit bytes; each element of G is
assigned space for 5 bytes at 12 bits each. All these things

are local.

Certain constructions permitted by the above syntax are for-

bidden because no reasonable meanings can be attached to them.

1) Objects of type ARRAY or STRING with mode FUNCTION
or FIELD do not need dimensions and lengths, and

to give them as part of the item is an error.

2) A form may appear only if the mode is FIELD, a
dimension only if the mode is ARRAY, a length

only if the type is STRING.

2.5 Eguivalence

An equivalence has the following meaning: the identifier
following the =, called the object, must be previously de-
clared; if subscripts appear, it must be a dimensioned array
and the number of subscripts must match the number of dimen-
sions. The effect is to assign the same storage to the iden-
tifier preceding the =, called the subject, as has already
been assigned to the object. If the identifier in the object is

L' or G', the subject is assigned to the designated location in

the local or global environment respectively. If the subject is

s

p/c=n.r page
CC SPL/M-1.2 13

a dimensioned array or a string, its descriptor is assigned to
the same location as the object (to allocate the storage for
array or string valu=s, see above); otherwise the subject
itself is assigned to the same location as the object. No
account is taken of the possibility that the subject may
occupy more space than has been allocated for the object.

For some details and restrictions, see "Allocation".

2.6 Initialization

Initialization of SCALARs has the following meaning: if no
equivalence is present, the identifier being declared becomes
synonymous with the initialization quantity. For INTEGERs
which lie in [-2¢@@B, 1777B], no space is allocated; for all
other types, and for INTEGERs outside this range, space is
allocated to hold the constant value in RSGS { for COMMON
blocks) or CS‘(for PROGRAMs) . If an equivalence appears, the
object must be an absolute location (see "Allocation"), a
scalar or array element with scope = COMMON, or an element

of an initialized local array, and the initialization

quantity will be stored into the variable, wherever it may be.

For each type of SCALAR, the initialization gquantity must be
a constant of that type. A LONG or a LONGLONG may be

initialized with a string constant or with a list of integers;

p/e=n.r page
CC) SPL/M-1.2 14

this is the only way in introducing constants of these types
into an SPL program. An initialized STRING must not have

a length.

Numeric initialized variables, if not equivalenced, may be
re-initialized. This is promariiy useful for things like
defining fields, etc., using a compile-time counter. If

block A includes block B, re-initialization by a declara-
tion in A of a variable acquired from B has no effect on B

or any other block that includes B.

Initialization of FUNCTIONSs is done with a single name;
otherwise the ~comments above apply. Initialization of
FIEILDs is illegal; the way to do this is to specify the

form explicitly.

An ARRAY is initialized with a list of constants of the
appropriate type. (Elements of the list are separated by
commas and the list is enclosed in parentheses, as usual.)

A FIELD ARRAY may be initialized with constant FIELD SCALARS;
an ARRAY ARRAY may be initialized with names of arrays which

have been declared with dimensions. The elements of the list

go into successive elements of the array, starting with the
first one. For multi-dimensional arrays, the last subscript

varies most rapidly, just as the array is actually stored.

I p/e=n.r page
CC SPL/M~-1.2 15

A special feature allows initialization, at a later time,
of further elements of an array some of whose elements
have already been initialized. If X is a declared,

initialized array, then the appearance of

X subscript:list initialization

as a declare:clause will cause the expression(s) in the
initialization to be stored into elements of the array
starting at the one designated by the subscript:list. Of

course, all the subscripts must be constant.

‘ | P/e=n.r - page
CC SPL/M-1.2 16

3 Constants

For each type there is a syntax for constants representing

values of this type.

3.1 Integer Constants

integer:constant = simple:integer / character:constant;

i

simple:integer digit $(digit) ["B" [digit]];

If B appears, it causes the digits to be interpreted as octal;
otherwise they are taken to be decimal. If a digit n follows
the B, it is a scale factor, i.e., it is equivalent to n zeros

preceding the B.

character:constant (vg'n S4(pseudo:character)/

(”8‘"4/ "1y $3 (pseudo:character))

m.- 1 n,
7

pseudo:character = <character other than & or '>/

ll&u letter/ "E& " / n&lu / |&u|/
ll&ll 3$3 digit7

A character constant allows up to three 8-bit or four 6-bit
characters to be right-justified in a 24-bit word to make an
integer. Pseudo:characters permit quotes and control char-
acters to appear; the latter are specified by the letter whose

code is less by 100B.

3.2 Real Constants

simple:real:constant = digits "." $(digit) / "." digits;

exponent = "E'" sign digits;

' _ nk-nw l \ Page
CC SPL/M-1.2 17

sign —_ [u+u / u_lr];
real:constant = simple:real:constant [exponent] /
digits exponent;

digits = 1s$(digit);

The meaning of this should be ckvious; the given decimal
approximation to a real number is converted to the closest
approximation possible in the machine's 48-bit binary repre-

sentation.

3.3 Double Constants

double:constant = (simple:real:constant / digits) "D"

[u+u / ll__n] digits;

In this case the machine's 96-bit binary representation is
used. Note that D must appear in a double constant, and

that either . or E must appear in a real constant.

3.4 Imaginary Constants

imaginary:constant = (real:constant / digits) "I";

Complex constants may be constructed by arithmetic on real:
constants and imaginary:constants; such arithmetic is
performed at compile time, resulting in a single complex

constant in the object code.

—_———
b P/c-n.r page
CC SPL/M-1.2 18

3.5 String Constants

string:constant = ('e"”' / '8"' / '"') ¢ (pseudo:

character) '"';

The value is a string with the specified sequence of charac-
ters encoded in 8-bit (default case) or 6-bit bytes as speci-

fied.

3.6 Label Constants

label:constant = identifier;

The identifier must not appear in a DECLARE statement; it must
appear as a label exactly once in the function, i.e., at the

beginning of a statement and followed by a colon.

3.7 Constant Expressions

The compiler will evaluate any expression consisting entirely
of constants and standard functions and thus will treat it

like a single constant.

bec

p/e=n.y page
SPL/M-1.2 19

4. Data Formats

The formats of the various kinds of values (i.e. the binary

representations) are in greét part determined by the hard-

ware of the machine. We summarize them here for completeness,

and to specify a few conventions established by SPL. Refer

to the CPU manual for the exact word layouts.

Integers are 24-bit twos complement.

Longs are 48-bit quantities. No operations are defined

on them except general ones for moving and decompos-

ing any data object.

Longlongs are 96-bit, but otherwise identical to longs.

Reals are 48-bit: sign, 1ll-bit éXponent and 36-bit
fraction.

Double precision real numbers are 96-bit; the format is
identical to that for reals, except that the fraction
is 84-bit.

Complex numbers are 96-bit and consist of two reals.
The real part is the first, the imaginary, the
second.

Strings are four-word (96-bit) objects. Each word is

in the form of a hardware string descriptor:

Bits Function

g-1 =2, to specify a string descriptor

2-3 byte size: @=6-bit, 1=8-bit, 2=12-bit,
3=24-bit

4-5 byte number in word, counting from left

‘ ‘ p/e-n.r page
Cc . | SPL/M-1.2 20

6-23 wofd address

The four words are used as follows:

g start of string
1: reader pointer
2: writer pointer
3: | end of string

Labels use the hardware's BLL descriptor, which is too
complex to be described here. Functions are represented by

pointers to their BLL descriptors.
Fields use the hardware's field descriptor:

7g-1 =1, to specify a field descriptor
set for SIGNED field

3-7 length in bits

8-12 bit address of first bit

13-23 word displacement

Arrays use the hardware's array descriptor, which is a two

word object with the following form:

: g-1 ' =3, to specify an array descriptor
lower bound (ﬂ or 1) on subscript

set for marginal index deScriptors (see below)

LSRR ST S S N
w

N

large element bit

‘ p/e~n.r page
CC | | SPL/M-1.2 21

g : 5-6 or
5-1¢g multiplier (element size)
g :7-23 or
11-23 upper bound on subscript
1 } 6-23 address of first word of array

Arrays of dimension »1 are handled by marginal indexing;

see the discussion of arrays below.

Intrinsic functions will exist to decompose and construct

all these descriptors.

bcc p/‘:“"‘;PL/M—l .2 p;:Q

5. Function Declarations

The syntax is

function:statement ftype ("FUNCTION"/ "ENTRY")

identifier "(" [declare:clause:
ligt] ") ["," "FRETURN"] [function:
- location]:
ftype = ntype / "STRING";

function:location

"," ("MONITOR" / "UTILITY" / "pOP" /
"TRAP'ENTRY" / "FTRAP'ENTRY" /
"SP'ENTRY" / "SYSPOP") ["<«" expres-
sion];

For example

FUNCTION F (I, REAL J, STRING ARRAY K);
ENTRY and FUNCTION are synonyms.,
5.1 Formal Parameters

The declare:clause:list must not include lengths or forms.
It may include dimensions, but only the number of subscripts
is counted, not the values, and the subscripts may be null
(e.g. A[,] for a matrix). Arrays are assumed to have one

subscript if no dimension appears.

Any identifiers in the declare:clause:list which have not
already been declared are declared as though they hac¢ appeared

in a DECLARE statement with the same attributes. If any such

identifier has already been used, an error comment results.

For each identifier which has already been declared either:

p/e=n.r page
CC : ' SPL/M-1.2 23

1) the attributes specified for it in the function
declaration must exactly agree with the attributes

already declared for it, or

2) no attribute specifiers may precede it in the

declare:clause:list.,
Otherwise there will be an error comment.

The identifiers in the declére:clause:list constitute the
formal arguments in the order in which they are written.
When the function is called (see "function calls" below)

an equal number of actual parameters must be supplied, and
they must agree in type and mode. No automatic conversions

are done. The agreement is checked when the call occurs.
5.2 FRETURNs

The FRETURN clause must be included‘if the function returns
with FRETURN. In this case it must always be called with
a failure clause. If any function in a program block has a

FRETURN, the first one must.

5.3 Special Entry Points

The function:location specifies that the function is to be
entered in one of the system-defined transfer vectors at

the location specified by the expression. In the case of

p/e=n.r page
SPL/M-1.2 24

possibilities are:

POP

TRAP'ENTRY

SP'ENTRY

The remaining ones

FTRAP'ENTRY

MONITOR

UTILITY

POP, SPL will supply a location if none is specified. The

the function is to be callable as a POP

the function is to be called when the
specified (ring-dependent) hardware

trap occur.

the function is to be called when the
sub-process in which it runs is entered

at the specified entry point.
are of interest'only to system programmers:

the function is to be called when the

specified (fixed) trap occurs.

the function is to be called when the
specified MCALL is executed,
These two make sense only if the function

is in the monitor.

the function is to be called when the
specified UCALL is executed. This makes
sense only if the function is in a utility.
If any function in a program block has a
MONITOR or UTILITY function:location, the

first one must have it.

bec

p/e=n.r page
SPL/M-1.2 25

SYSPOP

Type of function

the function is to be called when the

specified syspop is executed.

The following tables summarize the treatment of the various

special kinds of entry points.

Call with Return with Put descriptor

Ordinary
MON ITOR
UTILITY
POP

TRAP'ENTRY

FTRAP'ENTRY

SYSPOP

SP'ENTRY

BLL BLL -

MCALL GRET MCALL TV
UCALL GRET UCALL TV
Pop BLL POP TV

Not applicable. A trap'entry is not really
a function. It does not have arguments.
The address of the first word of code
should be put into the TRAP TV. It is a
programming error to reference any local
variables or do a return.

As for TRAP'ENTRY, but put the address of
the first word into the FTRAP TV.

As for TRAP'ENTRY, but put the address of
the first word of code into the TRAP TV
at 20B + syspop number.

BLL BLL SP TV

Table 5.1 Summary of Function Call Conventions

_B—— p/e=n.r page
CC SPL/M-1.2 26

Location and contents
Name of TV of descriptor Contents of TV entry

MCALL 604000B; UB=MAXMCALL Absolute address of
: function descriptor.
Initialized to an
error function.

UCALL 403014B ;' UB=MAXUCALL As for MCALL.

POP G'[#]; UB=MAXPOP As for MCALL.

TRAP G'[6]; UB=11lB except Absolute address of
for user ring, where code. 1Initialized
UB=20B-+MAXSYSPOP to a trap routine.

FTRAP 604002R; UB=13B As for TRAP

SP G'[12B]; UB=MAXSP As for MCALL

All descriptors are normal IAWs with indirect addressing; they
point to ARRAY IAWs with LB=g, MULT=1, BASE=indexed indirect
source-relative pointer to the transfer veector, which is

allocated in code space at the discretion of the compiler.

The MAX symbols are, for the moment, built into the compiler
with the following values:

MCALL = 400B, UCALL = 400B, POP = 100B, SYSPOP = 100B, SP = 20B.

Table 5.2: Transfer Vectors

b/c-n.r page
CC SPL/M~-1.2 27

6. Allocation

SPL has a considerable amoﬁnt of machinery for controlling
the allocation of storage for programs and data. Much of
this machinery is of limited interest, but a few parts of
it are important to nearly all programmers. This section
discusses the topics of general interest first, before
going on to the others. The reader is advised to break

off when he encounters material of no relevance to his needs.

6.1 Ppermanency of Storage

Data in SPL is of two kinds: permanent and stacked.
Permanent data stays around for the life of a program, i.e.
the wvalue ofia pérmanent data item, once set, surﬁives until
explicitly changed by the program. All data declared in
COMMON blocks is permanent. Data declared in PROGRAM

blocks is permanent if the block includes a
fixed:statement = "FIXED" ["," "ORIGIN" expr];

The function of the ORIGIN clause is explained below. This
statement, if it is present, must appear between the include:
statement and the declare:statements of the block. The FIXED
program block may not be entered recursively (by function

calls) during execution. This error is not checked for.

If a program block is not FIXED, all the variables local to
it are stacked. This means that their values are undefined

when the block is entered (by a call to one of'its functions),

» ﬁp/c-n.r page
C C SPL/M-1.2 28

may become defined by the action of the program and disappear
when the function returns. The block may be entered recur-
sively, and the values of its local variables for each level

of recursion are completely distinct.

6.2 Layout of Core

The arrangement of memory relative to G (the global en-
vironment) is designed to group read-only things together
and on separate pages from writeable things, so that the
former can be protected by the hardware from modification.
Later improvements will permit small programs to be packed

together better.
Space is allocated in four main regions
G': WGS > <«RSGS:G'+40000B:CS ~> + OWGS » :377777B

WGS: Writeable global storage, starting at G. This area is
allocated by a general storage allocator in the compiler in a
piecemeal fashion: no attempt is made to keep related things
together. Here are put all the writeable variables which ap-
pear in common blocks, together with fixed local environments.
some of the first 128 words may also be used for field and ar-
ray descriptors, at the discretion of the compiler, except in
the monitor ring, where this will never be done (unless forced
by equivalences). The first few words, of course, are used for
objects whose location is fixed by the hardware, like the stack

descriptor.

R
b p/c=n.r page
CC SPL/M-1.2 29

The allocation strategy for this area may be modified by ORIGIN

statements; see below.

Collision of this area with RSGS is a fatal error in the initia
implementation. Later versions will cause it to overflow into
OWGS: Overflow writeable global storage, which is handled in

the same way.

The stack (where stacked data is stored) is allocated space at
the end of this area. 1Its size depends on the number of

non—-FIXED PROGRAM blocks entered but not exited.‘

RSGS: Read-only scalar global storage. Here are put the con-
stant scalars (e.g. array descriptors and initialized scalars)
from common blocks, as well as function descriptors. This area
is allocated by another incarnation of the general storage al-

location used for WGS and on the same piecemeal basis.

CS: Code storage. Space here is allocated by block. All the
code and constants generated by one program block, or all the
non-scalar constants (strings, arrays and dope) generated by
one common block, are collected together and allocated contin-
guously in that region. Transfer vectors also appear here. 1If
block A precedes block B lexically (in the source), then the

CS for A will precede the Cs for B.

—
: p/c=n.r page
CC , SPL/M-1.2 30

6.3 Origins

The origin:statement permits (most of the)storage of a block

to be allocated at a fixed place.
origin:statement = "ORIGIN" [expr];

The expression, whose value is called the origin of the block,
must evaluate to an integer at compile-time. The statement
must appear in the block after any include:statement and before

anything else.

If the block is a program block or a common block with no
writeable variables declared, the origin tells where to start
its space in CS. If the preceding block's space in CS extends
past the specified origin, an error is recorded and the state-
ment is ignored. This implies that origined blocks must appear
in order of increasing origins. Note that the scalar storage
of a common block is allocated in RSGS and is not affected by

origin:statements.

If the block is a common block with writeable storage, then the
origin tells when to start this storage. Two restrictions
apply
1) The block must have no requirements for CS.
2) All blocks with origined WGS must appear before any
non-origined blocks which require WGS, so that the
space taken by origined blocks can be properly

removed form the control of the storage allocator.

p/e=n.r page
CC SPL/M-1.2 31

All the WGS for an origined block is allocated together. A
subsequent block'may omit the expr from its origin:statement,
in which case its WGS is allocated immediately following that

of the preceding block.

6.4 Fixed Environments

The location of a fixed local environment may be specified by

the fixed:statement, thus:
FIXED, ORIGIN expr;

The origin clause tells where to put the environment. The pro-
grammer is responsible for the security of the area he chooses,
which is not checked by the compiler. In the absence of the
origin, the compiler will allocate the storage in WGS at its

discretion.

6.5 Eguivalence

An equivalence can be used to fix the location of a scalar or
an array desériptor by writing an integer-valued expression

for the object of the equivalence. Thus

DECLARE A = 40B, ARRAY B[30] = 41B;
allocates A at 40 and the descriptor for the array B at 41 and
42, The array itself is allocated according to the default
rules. Restriction: the value of the equivalence must be in
the range [G',G' +37777B]. An equivalence overrides all other
methods of storage allocation. If a variable V has been equi-

valenced to a constant, or is declared in a common block, then

p/c=n.r page
CC SPL/M-1.2 32

@V is a constant whose value is the address assigned to V.

6.6 TFixed Fields

Descriptors for part-word fields are normally allocated in the
first 128 words of the global environment by the compiler if
there is room. This allocation can be suppressed and the
field allocated in the function or common block like any other

constant by prefixing FIXED to [SIGNED] FIELD in the

declaration.

[P —————————

bcc

7. Expressions

p/c-n.r page
SPL/M-1.2 33

This section provides the following information about SPL
expressions:

approximate syntax, based on the precedence of the
operators

exact syntax
rules for types of operands
the semantics of the various operators

7.1 Precedence of Operators

Expressions are made up of operators and operands. The opera-

tors, in order of precedence, are

RETURN FRETURN
OR
AND

NOT (unary)

= # > 2; < <
< (on right)
MOD

+ -V' E'

FOR WHILE loops

IF ELSE conditionals

WHERE sequential evaluation
& sequential evaluation

function return

boolean "or"

boolean"and"

boolean'"not"
relations
assignment

modulo or remainder

add, subtract, logical or, logical

exclusive or

* / LSH RSH LCY multiply, divide, shift, cycle, logical
RCY A' and

* % exponentiate

+ - N' (unary) unary + -, logical not

bcc

p/c=n.r ' page
SPL/M-1.2 34

GOTO

<« (on left)
$ @

$ @ (unary)

1 0

The operands are

constants

names

transfer

field operations
indirection, reference

subscripting, function call

parenthesized expressions

bec

p/e=n.r ' page
SPL/M-1.2 35

7.2 Syntax of Expressions

expressions.

expression

forexp

forclause

ifexp
whrexp
catexp

retexp
alternation
conjunction
negation

relation

remainder

assignment

M

The above list of operators by precedence, while convenient
for quick reference, does not suffice to specify the syntax of
We therefore state the complete syntax; explana-

tions of the meaning of the operators follow:

forexp;

ifexp $ ("FOR" forclause / "WHILE"
ifexp) s

identifier "<" remainder ([","
alternation] "WHILE" ifexp / ["BY"

ifexp] ["TO" ifexpl)!

whrexp ["IF" whrexp ["ELSE" ifexp]];
catexp ["WHERE" whrexpl;

retexp $ ("&" retexp);

alternation / ("RETURN" / "FRETURN")
(alternation / "(" ifexp s("," ifexp)
"))

conjunction $ ("OR" conjunction) /
"GOTO" tailing;

negation $("AND" negation) ;

[wOT"] relation;

assignment [("=" / "#" / ">" / ">="/
gt/ "¢=") assignment]:

sum $("MOD" sum);

remainder / a:tailing "<" assignment;

P e o ——y—————

bec

p/c=n.r
SPL/M-1. 2

page
36

sum

term

factor
power
tailing

a:tailing

v:stailing
tail
indirection
reference

arrayref

function:call
a:primary

viprimary

term $((”+" / n__ N / llvln / "E,'"‘

term) ;

factor $((u¥‘|. / u/l- / a’lLSHu / uRSHu

"Lcy" / ‘RCY" / "A'") factor);
i i i " " »
[“+"/ *"=% / "N'"] power ;

tailingl " *" factor]:

a:tailing / v:tailing 3

indirection $(tail) / reference

S(".* field)
reference $(tail) ;

(\I.l! / \:$u / u@u) fleld H

1$ (*'s$"Y arrayref ;

["@"] arrayref / function:call

a:primary $(“[" expression $(",

expression) "1") ;
v:primary / <see p. 29> ;
identifier / "(" a:tailing ") "

constant / Y (" expression ")"

both a:primary and v:primary. The intention is that the

a-parsing be used if possible.

b

Note: this grammar is ambiguous because (A) can be parsed as

' p/c=n.r ' page
CC SPL/M-1.2 37

7.3 Types of Operands

The various operations have various requirements for the
types of operands permitted and the type of result produced.
The permitted combinations are summarized in the following

table, in which certain conventions are used.

type abbreviations: I integer
G long or longlong
R real
D double
C complex
S string
L label

U unknown

other abbreviations: F suffix means mode = FIELD
T suffix means mode = FUNCTION
Y suffix means mode = ARRAY
S suffix means mode = SCALAR
A means any type
N means I, R, D or C (i.e. number)
M means I, R or D

Where A, N or M is suffixed with a digit, different digits
imply that different types may appear. If the digits are the

same, or there is no digit, the types must be the same.

A partial ordering on the numberic types is defined: I<R<D,

R<C. Where two Ns or Ms appear, the lower is converted to

b p/c=n.r page
CC SPL/M-1.2 38

the higher before the operation is evaluated. If the result

is N or M, it has the higher type also. It is illegal to have
one D argument and one C argument. Where A appears, the mode
is free except as fixed by suffixes. 1In all other cases mode

= SCALAR.

- Constants receive special treatment. Any type N constant is
automatically converted to a higher type if that is required
for an assignment to be legal. This is not done for variables;

the explicit transfer functions described below must be used.

An object of type U may be used where A appears in the fol-
lowing table. It may also be used as one of the operands in
the lines marked *, in which case it is assumed to have the

type of the other.

Note the treatment of ARRAYs, FIELDS and FUNCTIONs of type
ARRAY, FIELD or FUNCTION. When such variables are applied

to subscripts, pointers or function arguments, they yield re-
sults of type UNKNOWN and mode given by their type. Normally
such results must be assigned to something of known type
before it can be used, because of the restrictions on the use
of type UNKNOWN; thus, for example, if we want A to be an

ARRAY of REAI, FUNCTIONs we would write
DECLARE FUNCTION ARRAY A, REAL FUNCTION RA;

RA < A[I];

RA(X,Y + 5);

@

—B—-——_ p/c~n.r page
CC SPL/M-1.2 39
ARG1 oPT ARG2 RESULT NOTES
A IF I ELSE A A The A's are required to be
the same only if the value
Al WHERE A2 Al of the IF is used.
Al & A2 A2
*IS OR IS Is
*IS AND IS IS
- NOT Is Is
*NS1,AS =,# NS2,AS Is
*MS1 <<=y >,y 2= MS2 IS
*A < A A
*MS1 MOD MS2 MS
*NS1 +,=, %,/ NS2 NS
*NS1 *k NS2 NS but see details below
*IS SHIFT, IS IS
A',E',V'
- . N' IS IS
- +, = NS NS
- GOTO LS -
IS . AF AS**
AS $ IF IS
IS @ IF IS
- S IS Us
- @ A IS
AY [Is..., Is] AS**
IS [Is] US
AT (A2, ..., An) AS**
*:; one operand may be U, and is assumed to have the type of
the other.

*%x¢ 1f A is ARRAY, FIELD or FUNCTION, the result is type U, mode A.

b C p/c=n.r page
C SPL/M-1.2 40

7.4 Semantics of Expressions

We now complete the discussion of operations with comments

on the evaluation of each one, together with some remarks
which may clarify the syntax and type conversion rules given
above. The operands are referenced by the symbols which stand

for them in the expression schemata on the left.

FOR,WHILE are discussed under "“statements"
below
Al IF I ELSE A2 evaluates I.1If it is # @, evalu-

ates Al and returns its value,
otherwise evaluates A2 and returns
its value, or @ if the ELSE is
missing.

Typical usage is

F(X) IF X < 4 ELSE G(X) IF X< 5
ELSE H(X);

Note that
X <Y IF Y < 3 ELSE Y+1

alters X only if Y < 3. Therefore
write

X <« (Y IF X < 3 ELSE Y+1)
if this is intended.

Al WHERE A2 evaluates A2, then evaluateg Al
and returns its value.

bec

p/e=n.r page
SPL/M-1.2 41

Al & A2

RETURN, FRETURN

I1 OR I2
I1 AND I2
NOT I

Al (=) 74-; >, >=) <) <=)A2

Al <« A2

M1 MOD M2

N1 (+,-,*,/) N2

I1(A',V',E')I2

11(LSH,RSH, ICY,RCY) I2

evaluates Al, then evaluates A2
and returns its value. Several
&'s may be strung together.

See "Function Calls" below

evaluates Il, returns 1 if it
is # @. Otherwise evaluates 12,
returns 1 if it is # @, otherwise

g.

evaluates Il, returns ¢ if it is
=@ . Otherwise evaluates I2, re-
turns @ if it is = @, otherwise 1.

evaluates I and returns 1 if I =
¥, otherwise (.

*evaluates Al and A2 and then
evaluates the relation. The value
is @ if the relation does not hold
1 if it does. Note that only =
and # are legal on non-M types.

evaluates A2 and stores the re-
sulting value into Al. They must
agree in type and mode except

for the special treatment of
constants, and that one may be of
type U. ‘

*evaluates M1l and M2, and returns
M1-FIX(M1/M2) *M2

*obvious

*compute the bitwise and, or or
exclusive-or of their operands

*these are 24-bit logical shifts
(shift in @s) or cycles

bec

p/c~n.r page
SPL/M-1.2 42

N1 ** N2

(+;_)N
N' I

GOTO L

A $ IF

I @1IF

*obvious, except that

I1 ¢ I2 is an error unless I2 is
positive. The error is not caught
until runtime if I2 is not constant

obvious
computes the bitwise (1l's) comple-
ment of I

sends control to the statement

labeled by A2. If this was passed
as a parameter, the correct environ:
ment is restored.

r

*evaluates I, takes it as an
absolute address A, and references
the bits of A + word:displacement
(AF), from starting:bit (AF) to
ending:bit (AF). The result may
appear on either side of an
assignment. If the field is
SIGNED, the starting bit is copied
into all the higher bit positions
when the result is used as a
value; otherwise these positions
are filled with zeros.

*references the bits of the value of
A specified by IF. The word
displacement of IF should not be
greater than the number of words
in the value of A. (4 at most if
A is a variable). Sign extension
is handled as for "." above.

*returns T, where T is the result
of

T < ¢
TSIF < I
i.e., the value of A positioned

in a word according to the field
IF.

bec

p/c=n.r page
SPL/M-1.2 43

SI

@A

IS[T]

AF(I)

undefined.

Ay [I,...

Al (A2, .

.,A2)

references the value addressed by
the value of I taken as a hardware
indirect word. Normally the top

6 bits of I should be off, since
the hardware uses them to select
the type of indirection rather
than to specify the address.

The value is of type U.

returns the address of the value
of A. It makes sense (and is
legal) only if A can appear on
the left of < or is a label con-
stant.

references the element of the array
A specified by the subscript I, as
described (under Array) below. If
the first operand is IS, only 1
subscript is allowed. This con-
struct is equivalent to (IS + I)
W@, where we have declared FIELD

wa (9)

returns the value of the function
Al after calling it with para-
meters A2, as described (under
Function Calls) below.

equivalent to I.AF

A * preceding the description means that the order of
evaluation of simple operands (see "Function Calls") is
Compound operands are always evaluated left-to-
'right if there are more than one. If the * is lacking, the

operands are always evaluated left-to-right.

p/e=n.r page
CC ' SPL/M-1.2 44

8. Arrays

Arrays of any dimensionality from 1 to 7 are allowed. If

the array has n dimensions, then a reference to it with n
ihteger subscripts yields a scalar of the same typé, unless
the type is ARRAY, FIELD or FUNCTION. In this case the type
of the result is UNKNOWN and its mode is the type of the
array. Thus, after declaring

INTEGER K, J, K, REAL ARRAY A[3, 4, 5]
we know that

A [J, J+1, R**2]
is a REAL SCALAR. It is also possible to write

A [I, J+1] |
which is an UNKNOWN ARRAY., If it is assigned to the REAL
ARRAY B, then

B [K**Z]
references thé same scalar referenced by the first example.
It is probably not useful to do anything with an UNKNOWN array

except to assign it to something.

Marginal indexing is used to access arrays. In the above ex-
ample, the value of A is a descriptor for an array with three
entries. Each entry of the array is a descriptor for an array
with four entries. Each entry of this array is a descriptor
for an array with five entries, each of which is a real number.
The figure illustrates. The 120 words allocated for the real
numbers are contiguous in storage and-in the order indicated.

Note that Fortran arrays vary the first subscript most rapidly

and are therefore incompatible.

l

represents a real number

p/c-n.r page
CC SPL/M-1.2 45
- aqQ,1]
Afl,1,1]
A[l,2]
A Af1]
[3] | 4 —»] 5 “///H
4 — 5
4 5
A
All,3]
A‘[lr4,]
al2]
\ o5 :
5 .
5 A[3,1]
5 (—.
Al3,2]
Al3] Af3,3]
| 5 |/
5 /
5
5
A[3,4]
A box: {n] |
represents a descriptor for an
array of size n.
Aagiﬁﬁle box: | | Al3,4,5]

pP/c=n.r page
CC ‘ | SPL/M~1.2 46

9, Function calls and returns

The syntax for a function call is:
a:primary " (" [expr $("," expr)] [stores]
[*//" failure:result ([stores]]”)" ;:
stores = ":" identifier S$("," identifi=r);
failure:result = ["GOTO"] identifier / ("RETURN" /

"FRETURN") [expr / expr:list] / "VALUE" expr :;

The a:primary must have mode=FUNCTION. The value of the
function is taken to be a SCALAR of type equal fo the type
of the a:primary, unless this type is ARRAY, FIELD or
FUNCTION. In this case the type of the result is UNKNOWN

and its mode is given by the type of the function.

9.1 Actual Arguments

The arguments immediately follow the function name. There
is no restriction on their number or type, except that an

initialized LOCAL label or string array may not be used.
F(); F(X); F(X,Y(1,2),Z2[3]1*%*5,W,Q);
are function calls with @, 1 and 5 arguments respectively.

Arguments are evaluated as follows. All the arguments which
are compound are evaluatéd, left to right, and their values
are saved, An argument is simple if it is one of the
following, compound otherwise:

constant

identifierx

identifier "[" identifier "]1"

identifier “." field

"$" identifier or "$" identifier "." full-woxrd
field

r—l—-—-————— T T
. p/c=n.r page
CC : SPL./M-1.2 47

Then the value of each argument is stored in the corresponding
formal argument of the function being called. No type
conversion is done; nonmatched types are a (run time) error.

Then control is passed to the function.

9.2 Returns
Return is done with an expression of the form

RETURN (expr, exXpr,...., expr) or RETURN expr or RETURN
The expression list is treated exactly like the actual
parameter list of a function call. The value of the first
expressién becomes the value of the function; it and sub-
sequent values are stored in the corresponding identi-
fiers following the ":" in the call, exactly as actual para-

meter values are stored in formal parameters.

9.3 Failure Exits

If a failure exit is provided following the "//" in the call,

a FRETURN will send control there. It may be a label, in
which case control goes there, a RETURN, in which case a
return is made from the function containing the failure

exit, or VALUE expression, in which case the value of the
expression becomes the value of the function. Just as for
RETURN, any number of values may be returned; they are stored
in the corresponding local:identifiers following the ":".

When a function has a failure exit the normal or success return

is with RETURN, exactly as for a function with no error exit.

BCC P/c-':l;L/M—l 2

page
48

10. Statements

block:

include:statement/allocation: statement
/declare:statement/action: statement

where

action:statement = "." assembler:statement/

endif:statement/

expression;

used as statements and take up IFs and FORs.

10.1 Expressions as Statements

for:statement/endfor:statement/

if:statement/elseif:statement/

Statements of the first three kinds must appear in the

the expression results in some change in the state of the

world; such an expression is called an action expregsion.

in fewer than n sets of parentheses.

(i.e. first on the list in the section on "Precedence of

The following statements can appear in the body of a program

prescribed order. Most ot these have already been discussed.

In this section we consider the restrictions on expressions

In order to catch some common errors in which the user inad-
vertently writes an expression statement which does nothing,

a set of rules is enforced. They insure that evaluation of

Here the principal operator is the one of lowest precedence

operators"), except that any operator enclosed in n sets of

parentheses is of higher precedence than any operator enclosed

bec

p/c=n.r
SPL/M-1.2

page
49

pressions

is missing

10.2 'IF statements

IF expression DO;
ELSEIF expression DO;
ELSE DO;

¢ s 0

ENDIF;

1) the principal operator is

a) <, GOTO, RETURN, FRETURN,

also be used in the following way:

Any number of ELSEIFs are allowed.

An expression is an action expression if:

b) WHERE, &, FOR, WHILE, IF

2) TIf it is in group (b) then

b) for FOR or WHILE the body (first operand)

is an action expression

¢) for IF/ELSE both of the consequents are

We have seen that IF can be used as an operator. It can

The ... may be replaced

or a function call

a) for WHERE or & both operands are action ex-

action expressions, or the second consequent

p/c-n.r page
CC SPL/M-1.2 50

by any sequence of statements balanced with respect to IFs

and FORs. The ELSE may be omitted. The meaning should

be obvious. The integer expressions after the IF and ELSEIFs
are evaluated in turn until a non-zero one is found. The
statements between it and the next ELSEIF, ELSE or ENDIF are
then executed, and control goes to the statement following the
ENDIF. The ELSE DO is equivalent to ELSEIF 1 DO. If none of
the expressions are non-zero, nothing is done. It is good
practice to indent the statements represented by ... uniformly

2 or 3 spaces.

10.3 FOR statements

The same thing can be done with FOR:
for:statement;
ENDFOR}

Here we have

for:statement = ("FOR" for:clause / "WHILE" expression) "DO";

for:clause = identifier "<«" (expressionl["BY" expression2]
["TO" expression3] / expressionl["," expression2]

"WHILE" expression3);

If the BY/TO form is used, the identifier must be of type M.
If BY is omitted, BY 1 is assumed. If TO is omitted the loop

can only terminate by an explicit transfer out.

The effect is that the statements represented by ... are exe-
cuted repeatedly for successive values of the controlled vari-
able. 1In the first case the variable starts at expressionl.

On each successive loop expression2 is added until the

A p/e=n.r page
CC , - SPL/M-1.2 51

variable passes beyond expression3. The definition of
"beyond" depends on the sign of expfessionz. If expres-
sionl is beyond expression3, the loop body will not be
executed at all. If the expressions are compound (see
"Function Calls") they are evaluated before the loop starts;

if simple, then each time around.

The‘second form initializes the éontrolled variable for
expressionl. Then it tests integer expression3. If it is
@, control passes beyond the ENDFOR. Otherwise the loop
body is executed, the value of expression2 (or expressionl
if expression2 is omitted) is assigned to the variable, and
the test is made again. The expressions are re-evaluated

each time around the loop.

A WHILE statement simply loops until the integer expression

is @, without modifying anything.

When FOR or WHILE is used as an operator exactly the same
facilities are provided. The first argument is evaluated
each time around the loop. The value is undefined. Thus

al1,Jl « g FOR I+1 TO N FOR J«1 TO M;

: p/c=n.r l ‘ page
C C SPL/M-1.2 52

10.4 Assembly Language

An assembler:statement consists of one or more machine instruc-

tions according to the following syntax:

assembler: statement = "." machine:instruction s$(',"
["."] machine:instruction);

machine: instruction = opcode [address];

opcode _ = identifier / simpleﬁinteger;

address ' = exXpression;

Sinc e opcodes appear in a restricted context, the symbols used
for opcodes in MICPU/M-4 (which are all recognized by SPL)

may be used freely for other purposes as well. If an opcode

is an identifier and not predefined, it must be an INTEGER
constant. Such opcodes, as well as opcodes which are written
as integers, are treated as follows: if no address appears, the
value of the opcode is placed directly in the compiled pro-
gram; if an address does appear, bits 18-23 of the opcode

value are placed in bits 3-8 of the instruction word and bit

17 of the value is placed in bit 9 (the programmed operator

bit).

Any expression may appear as an address as long as it is
logically equivalent to either a constant (of any type and
mode) or one of the addressing formats of the CPU. These
formats are described in detail in MICPU/M-4 and are listed
below, together with the usual way of generating them. Note

the existence of the four reserved symbols X', L', G', and R'.

bec

p/c=n.r
SPL/M-1.2

page
53

Addressing format

tailing.

PD

IPD

BX

BXD

M

IMX

SR

ISR

LR

ILR

P and I stand for INTEGER SCALAR quantities,

an ARRAY guantity.

is done on semantic, not syntactic, grounds,

rules are guite complex.

Normal syntax

G'I[N]
$G' [N]
X' [N]
P[N]
$P[N]
Al1]
($x') [T+N]
N

X'+N
R'[N]
$R'[N]
L'[N]

sL'[N]

Since the determination of the addressing format

the exact

In the above list, N stands for an INTEGER constant quantity,
and A stands for

BX or PD addressing may also result from

p/c=n.r page
- CC . SPL/M-1.2 54

11. Macros

The language allows a simple form of token-substitution
macro. A macro is defined by a
macro:statement = "MACRO" macro:name ["(" formal:list ")"J|

"«" macro:body;

macro:name = identifier g

formal:1list = [formal s$("," formal)] ;
formal = identifier ;

macro:body = compact:token:string?

compact:token:
string = <arbitrary string of tokens not in-’

cluding "; ">

'moken' is defined in section 1.1.

Once a macro:name has been defined (i.e. has appeared in a
macro:statement) it can only be used in a macro:call. A
macro:call may appear anywhere except in a string or charac-

ter constant. It is

macro:call = macro:name ["(" actual:list")"] ;
actual:list = [actuals(", " actual)]l
actual = balanced:token:string

balanced:token:
string = <compact:token:gstring balanced with

respect to parentheses, and not in-
cluding ", " except in parentheses,

Oor carriage returnd;

p/e=n.r page
CC : SPL/M-1.2 55

The actual:list must be present if and only if the formal:list

was present in the macro:statement, and must be of the same
length as the formal:list. The macro:call is replaced by the
macro:body, except that each occurrence of a formal in the
macro:body is replaced by the cofresponding actual. The

result is then scanned again for further macros.

Macros in a macro:body are expanded at definition time (unless
they have not yet been défined, in which case they are expand-
ed at call time according to the rescanning rulé stated

above) . If expanded at call time, their actuals must not include
any formals. Beware. This glitch will be fixed at some far

distant date.

Note that a macro is expanded strictly by token substitution:
there is no requirement that any of the token strings involved

make syntactic or semantic sense.

p/e=n.r page
CC ' SPL/M~1.2 56

12. Intrinsic Functions

Figure 12.1 lists all the intrinsic functions in SPL.

An intrinsic function is one which:

l1.) 1Is recognized by the compiler without the need
for any declaration.by the user; 4

2.) May have default argument values automatically
supplied by the compiler;

3.) Has the types of its arguments checked at com-

pile time;

4.) May compile into special open code.

In figure 12.1, default values for arguments which the user
is allowed to omit are given in parentheses after the
argument type. For ali functions which have freturns, a
routine which prints an error message and causes a sub-
process trap will be supplied. if the user fails to specify

a failure action.

The remainder of this section describes the intrinsic
functions in individual detail. Type letters with sub-
scripts will be used to refer to the arguments of a function:
e.g. the arguments of CNS will be referred to as I1’82’13’

and 14.

functions

T - - | p/c=n.r page
bcc SPL/M-1.2 57
NAME ARGUMENT TYPES RESULT TYPE FRETURN? OPEN CODE?
FIX R I X
ENTIER R I X
FLOAT I ‘R X
DFLOAT I D X
RE C R
M C R
CSN s,i(lﬂ) I, X
CSR s R, X
CSD S D, X
CNS I,S,I(¢9),I(19) S X
CRS R,S,I(§) s X
cDs D,S,I(9) s X
INCDES I, I I X
LNGDES I, I I X
‘ GCI S I X X
WCI . 1,8 I X X
GCD 'S I X X
WCD I,s I X X
SETUP S,I,I,I(8) s X
I = integer C = complex
R = real A = array
S = string D = double
Figure 12.1 List of intrinsic

Figure 12.1 (continued)

| p/c~n.r page
CC - SPL/M-1.2 58
NAME ARGUMENT TYPES RESULT TYPE FRETURN? OPEN CODE?
SETS S,I(d),I1(9) S X
SETR S,I(d) S X
SETW S,I(9) S X
LENGTH S I X
SCOPY S,S S X X
APPEND S,S S X X
GC S I X
STORINIT I,I I X
MAKE I,I(9) 1 X
SETZONE I I X
SETARRAY A I X
FREE I,I(9) , : - X
EXTZONE I,T - X
FREEZONE I,1(9) - X
BCOPY I,I,I(-1) - X
BSET I,I,I(-1) - X
I = integer C = complex
R = real A = array
S = string D = double

» _ P/c=n.r . P;GO
CC SPL/M~1.2 59

12.1. Type Conversion Functions

FIX(Rl)'copverts;Ri"to an integeréby truncation towards
- .zero. |
ENTIER(Rl) converts_Rl to the nearest integer.
FLOAT(Il) converts I, to single—precisioﬁ'floating point.

DFLOAT(Il) converts Il to double-precision floating point.

The four operators above are converted directly into machine
instfuctions. For details consult the part of the M1 CPU
manual (M1CPU/M-4) which deals with handling of floating

point numbers.

RE(Cl) gives the real part of Cl in single-precision

floating point,

IM(Ci) gives the imaginary part of Cl in single-precision

floating point.

CSN(Sl,Iz//F) expects to'find an integer as the begin-
ning of Sl,.with syntax ['+' / '='] 1$<{digit in base Iz>.
Digits above 9 are allowed if 12>1g: the next digit after
9 is A, and so on. I is £aken as 1 if not supplied. CSN
returns the integer, éhich it reads off the string, advan-

‘cing the reader pointer so that the next character read

is the non-digit which ends the integer, or

p/e=n.r page
CC . ‘ SPL/M-1.2 60

to the end of the string. CSN fails if Sl does not begin
with an integer in the proper format, leaving the reader

- pointer unchanged.

CSR(S//F) expects to find a.real number at the begin-
ning of Sl’ in any of the formats allowed by SPL for REAL
quantities. It returns a single-precision floating point
number. Otherwise the action is the same as for CSN.

CSD(Sl//F) is the same as CSR except that it returns
a double-precision floating point result, Either of SPL
REAL or DOUBLE syntax is acceptable; in the former case,

the number is accumulated in double precision.

CNS(Il,Sz,I3,I4//F) converts the value of I,to a
string of characters, which it appends to 82. The radix
is I,, assumed to be 19 if omitted. If bit O of I3is on,

I1 is converted unsigned (e.G. -2 will appear as 77777776

in radix 8); otherwise, a '~' precedes the converted ab-
solute value if I1 is negative. Biﬁs 18-23 of I3 give the
number of characters to generate: enough blanks are written
before the converted value to bring the total number of
characters written up to this many. If the converted

value does not fit into this many characters, it is turn-
cated on the left with no error indication. If the
character count is @, the converted value is neither

padded nor truncated. I, is taken as @ (signed, no for-

3
matting) if omitted. CNS fails only if there is insuf-

bcc ‘ ' ” SPL/M-1.2 ”;:L

ficient room to write the necessary number of characters

onto 82: in this case the writer pointer is unaffected.

CRS(Rl,Sz,I3//F) appends the converted value of

R, to 52. Failure as for CNS. I3 specifies the format

in some as yet unspecified way: I, = @, which is assumed

3
if 13 is omitted, results in some reasonable unformatted
‘conversion, v

CDS(D1’82’13//F) is exactly like CRS except that the

converted value is in SPL DOUBLE rather than REAL format.

v ‘ . p/c=n.r - page
bCC v : o SPL/M-1.2 62

12.2 string Functions

In this section the following abbreviations are used:
BP = beginning pointer, RP = reader pointer, Wp = writer
pointer, EP = end pointer. These correspond to the 4

words of an SPL string descriptor, in order.

INCDES(Ii,IZX assumes that Il is a character pointer
(hardware string indifect word), such as one of the 4
words in an SPL string descriptor. The value'is Il
incremented by 12 character positions. See M1CPU/M-4
for the exact specification of this operation, which is

done with the ASP instruction.

LNGDES (I ,12) assumes that I, and I, are both
- 1

character pointers. It returns the length of the string

which they bracket. See the CLS instruction in M1CPU/

M-4 for details,

GCI(Sl//F) fails if Sl is empty, i.e. RP = WP.

Otherwise it returns the character pointed to by RP and

then increments RP by one character position.

 WCI(I,,S,//F) Fails if s, is full, i.e. WP = EP.

Otherwise it writes Il at the character position pointed

to by WP and then increments WP. The value is I .
1

P/c~n.r page
CC SPL/M-1.2 63

GCD(Sl//F) fails if Sy is empty. Otherwise it decre-
ments WP and returns the character pointed to by the new
value.

WCD(Il,Sz//F) fails if S, is initialired, i.e. BP = RP.

2
Otherwise it decrements RP and writes Il at the character

position pointed to by the new value. The value of WCD is I-
SETUP(Sl,Iz,I3,I4) puts into S, a string descriptor for

a string of I. characters starting with the first character of

2

the word pointed to by I The character size is I assumed

3° 4’
8 if missing. The value of SETUP is the string descriptor

it creates. If I, is omitted, MAKE is called to assign space.

BP = RP = WP is the created string descriptor.

SETS(Sl,I 13) is exactly equivalent to SETW(Sl,I3)

2)

followed by SETR(Sl,I Y: see below. I, and I, are taken

2 2 3

as ¥ if omitted.

SETR(Si,Iz) sets S,'s RP to point I, characters beyond

1 2
BP. If 12<¢, it is taken as f@; if 12>L1\TGDES(BP,WP), it is

taken as this quantity; if I, is omitted, it is taken as (.
The effect is that the RP remains between the BP and the WP.

SETW(Sl,Iz) sets S, 's WP to point I, characters beyond

1 2
BP. There are four cases: 12<¢ leads to WP<RP<BP: gg;z
LNGDES (BP,RP) leads to WP<RP<INCDES (BP, 12)7 LNGDES (BP, RP)
g;szNGDES(BP,EP) leads to WPéINCDES(BP,IZ); and 12>LNGDES
(BP,EP) leads to WP<EP. Again, the effect is to guarantee

the correct order of BP, RP, WP, and EP.

' ‘ p/c-n.r page
CC SPL/M-1.2 64

LENGTH(Sl) gives the number of GCI's that can be done

on S without failing, i. e. LNGDES (RP,WP) .

GC(Si) returns the character pointed to by RP. This

is garbage if Sl is empty, but no check is made.

SCOPY(Sl,Sz//F) copies the string 82 into the string

S S, 1is not affected; for Sl, RP<BP and WP<INCDES

1° 2
(BP, LENGTH(SZ)). Failure only if there is not enough room

in Sl; no pointers are affected.

APPEND(Sl,Sz) appends the string 82 to the string Sl’

advancing Sl's WP by LENGTH(SZ). Failure as for SCOPY.

p/e=n.r page
CC : SPL/M-1.2 65

12.3 Storage Allocation Functions

There is a standard mechanism for allocating and releasing
arbitrary-sized'blocks of storage in arbitrary order called

the storage allocator. It is driven by the following

standard functions:

STORINIT (11,12) initializes the storage allocator
to use an area of storage beginning at Il and occupying 12
number of words for its machinations. It is not necessary
to call STORINIT; a standard area will be reserved if
STORINIT has not been called when the first request is made
for a block. The value of STORINIT is a pointer to the zone
just created; this pointer is also put into the predeclared

global pointer variables INFINITY'ZONE and CURRENT 'ZONE.

MAKE(Il,Iz) creates a block of storage of Ilwords
and returns a pointer to it. An extra cell is assigned by
the system; it immediately precedes the block and contains
the length in the bottom 18 bits and flags in the top 6.
The user should keep his hands off it, under penalty of
fouling up the operation of the allocator. Space is normally
allocated directly from the area specified by STORINIT

(or the standard default area); this area is called the

infinity zone. The user may set up zones of his ownj; for

example, if he wishes to create some fairly complex

temporary structure and then delete it in its entirety,

p/e=n.r page
CC . SPL/M-1.2 66

it is more efficient to create it in a separate zone

and then release the entire zone. 12; which is optional,
is a pointer to a zone; if it is omitted, the zone
péinted to by CURRENT'ZONE is used. CURRENT 'ZONE is

set by the function SETZONE(Il) which provides compati-
bility with the (hardware) storage allocator. A zone is

created by the function

SETARRAY(Al) which makes the space occupied by the

array A, into a new zone by setting up some machinery

2
inside it. CURRENT'ZONE is not set by this function.

Blocks are released by

FREE(Il,IZ) where the block pointer to by I1 must
fall within the zone optionally given by 12. When a
zone is full, i.e., a call on MAKE finds insufficient
space, an ovefflow function is executed. The address of
the descriptor for this function is in word 1 of the zone;
it is initialized to a system error routine when the zone is
created. The user, of course, may change it at any time.
The function receives the arguments of MAKE as its arguments.

Frequently the proper course of action is to acquire add-

itional space and attach it to the zone: this is done by:

e

R/§=n.r [page
CC S ' SPL/M-1.2 67

EXTZONE(Il,IZ) which adds all the space in the block
12 to the zone pointed to by Il. When a zone reaches the

end of its usefulness,'all the space occupied by the

zone must be released; the function

FREEZONE(Il,Iz).releases all the space (including
extfa extensiqns) occupied by the zone I1 into the zone
Iz. If the extensions were allocated out of more than
one zone, the user must release them individually with FREE;

the deséription of the data structures, which will appear

in the near future, should make this a simple task.

| p/c-n.r page
CC SPL/M-1.2 68

12.4 Miscellaneous Functions

BCOPY(Il,IZ,I3) copies I3 words starting at 12 to

I3 words starting at Il' Copying is done in the appropri-

ate direction (i.e. starting at the beginning or the end
of the block) to ensure that no information is lost. If

I, is omitted, I, .SIZE is used, where FIELD SIZE (-1:6,23);

3 2
this is where the storage allocator hides the block size.

The intention is that I3 should be omitted if the block

pointed to by I, was created with MAKE, since other objects

in SPL such as arrays and strings do not have this word.

BSET(Il,I2,I3) initiali»ed I_ words starting at 1,

3

to the value 12. If I3 is omitted, I,.SIZE is used as in

BCOPY.

BCC ' | P/c-;;L/M-l .2

page
69

13. Current Glitches

The following things do not work:

elements of an existing constant array

2) Multi-dimensional arrays

3) Deleting an entire block with the editor

complained about:

given

2) Intrinsic functions called with BLL

4) FIXED and ORIGIN statements

1) DECLARE name[subscript]<values to initialize further

The following things do not work properly, but are not

1) String arrays with both string length and array size

3) Multi-line string constants (new feature, not documented)

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69

