 title

BCC MICRO Reference and User Manual
fd
[+

MICRO/M-8

prefix/class-number.revision

checkexb ‘%%7
upprox [B
2‘7@/

l;?i y d authors . 9/2/69

approval date

revision date

classification
Bo Lewendal Manual

Jgﬂr é M distribution

Company Private| 50

pages

reference language for the BCC microprocessors.

ABSTRACT and CONTENTS

Reference and user manual for MICRO, the programming and

and semantics of the language are defined and explained.

An informative appendix is also included to aid the user in

generating microprograms.

The syntax

p/c=n.r
MICRO/M-8

page

Table of Contents

Introduction

Declarations

2.1 Macros

2.2 Register declarations

2.3 Special condition declarations
2.4 Branch condition declarations
2.5 Parameter declarations

2.6 Origin relocation

2.7 Labels

Instructions

3.1 Assighﬁent instructions

3.2 Memory operations

3.3 Branch instructions

3.4 Special condition instructions
3.5 Field assignment

Miscellaneous features

Operation of MICRO

Interface between MICRO and the simulator

Appendix

Page

[NoTN e o B

11
12
14
15
16
17
27
28
30
31
32
33
35

36

. p/c=n.r page
‘::‘:: MICRO/M-8 2

1.0 Introduction

MICRO is a special purpose programming language designed for
use in writing code for tﬁe BCC microprocessors. The language
is very machine dependent.. Therefore it is mandatory that

the prospective user have é good understanding of the
functional characteristics of the microprocessors. Such an
understanding may be acquired by reading conscientiously the

various hardware documents on the subject.

It is possible to write microcode by simply assigning
appropriate values to the various bits and fields of the
microprocessor word. This however, is hard to do and produces
very unreadable code. MICRO is designed to serve two
purposes. The first is that of providing a convenient way

of coding microprograms, and the second is that of providing
a readable reference language for the communication of

microprograms between mere people.

bec

—

p/c=n.r
MICRO/M-8

page

2.0 D&arations

The declaration logic of MICRO is present mainly for the con-
venience of the user.
RORG statements, is necessary for the coding of a program.

will proceed now to describe each type of declaration in detail.

None of it, except possibly the ORG and

We

p/c=n.r page

bc C MICRO/M-8 4

2.1 Macros

MICRO macros have the following capabilities and incapabilities:

1. Can be used anyplace except as a subset of a name.

2. Can have up to nine arguments.

3. Concatenation is allowed.

4. Constant expressions may be evaluated and converted to
strings during macro expansion.

5. Macros may expand to anything including strings repre-
senting more than one statement.

6. Nested and recursive macro calls are allowed so long as
the user makes sure that the uppermost call will be
finished. In other words, infinite recursion is not
detected.

7. There is no conditional macro expansion machinery.

8. There are no repeat statements as in NARP.

9. Macro arguments may be null, but the number of argu-
ments may not exceed the number specified implicitly by

the macro declaration.

2.1.1 The syntax of a macro declaration is:

macro = "MACRO" mname "<" $(string[arg]) ";"
string = $(-"3;" (character / "t;"))
arg = e no Nk M

mname = woxrd

2.1.2 The semantics is as follows:
1. The macro name must be alphanumeric and start with a

letter and may be of any reasonable length.

2. 1If the macro name was previously defined then the

p/c=n.r page
MICRO/M-8 5

2.1.3

macro:call=mname["("[cstring["$"]cstrings$ (", "cstring["$"]

cstring=$ (_ n; u/u’,n/u(u/u) u) (character/"'r H "/"1‘ , "/"'F ("/"T) n))

const=xconst $(("+"/"=-"/"xn/u/0yxconst)

previous defiﬁition is lost and a message to that
effect is eliéited..

A macro may expand to the null string.

(MACRO GOOMs<3)

"4 is an escape character allowing macros to expand to
several statements:

MACRO DOOM < statement t; statement ¢; statement;

An argument indicator (arg = "*" no "*") may not have
imbedded blanks. These are args: *1*, *4* 6 *9%_, These
are not args: * 3 *, *¥5 *, * 8*,

The number of arguments of a macro is defined as the
value of the largest digit of the args, or zero if thefe
are no args. The nunber of arguments of the following
macro is seven:

MACRO FOOM < XX*2*% XXX*7**7%; However, only the second
and seventh arguments are used during the expansion
process.

A macro may have ho arguments:

MACRO MO < MACRO;

The following macro declaration has the effect of des-
troying the macro declaration facility:

MACRO MACRO < FOOL;

The syntax of a macro call is:

cstring) ") "]

p/c-n.r page
CC MICRO/M-8 6

xconst=["-"](digitsdigit[("B"/"D")digit] /pname/"@"skname/

"k " /Iname)

pname=parameter as defined in section 2.5.
"@" skname=the address of the scratch pad register skname.

"k ig the value of the location counter. lname=label.

2.1.4 The semantics is as follows:

1. A macro call need not have any arguments and if it does
it may have missing arguments. "1" is again an escape
character.

Consider this macro: MACRO X <*1*ZAP*3%*;

X expands to "ZApP".

X() expands to "ZApP'".

X(WOV) expands to "WOVZAP".

X(,COW, A HORSE) expands to "ZAP A HORSE".

X(A,B,C,F) does not expand, but elicits

"TOO MANY MACRO ARGUMENTS" from the compiler.

X X(FIE ,BLAH,)X(,,PY) expands to "ZAP FIE ZAPX(,,PY)"

X(X) expands to "XZAP". o

X(X)X expands to "zAp ZAPX".

X(X*3,1),X) expands to "ZAP;ZAPX".

2. A constant expression (const) is a sequence of
constants (xconst) separated by any of the allowable
arithmetic operators ("+","=","*xn n/uy,

The first constant may be preceded by a minus sign.
Evaluation of the expression,is strictly from left

to right, and parentheses are not allowed.

. p/c=n.r | page
CC MICRO/M-8 7

3. The "s" opefﬁ£or éiénéigmfhe macro expander to look
for a constant expression which it then evaluates and

" converts to a string. A string of characters may be

interposed between the "$" and the constant expression
with the effect that the converted expression will be

appended to the string. Consider the following macros:

MACRO FARM<ADD (%1% ,%2%) **3%;
MACRO ADD<*1* PLUS *2%;

MACRO PLUS<+;

FARM expands to " + %",

FARM(7,8,9) expands to "7 + 8*%9",

FARM(7+9%9) expands to "748%9 | %",

Assume SOX=6 and LOX=3.

FARM(S$7+8%9,0,3) expands to "135 + g*3n,

FARM (BOX$SOX, LOX, $LOX) expands to "BOX6 + LOX*3".

FARM($BOX SOX,LOX,$LOX) expands to "BOX ¢ + TOX*3".

ADD (LOX$S0X, 3+$S0X/L0X) expands to "LOX6 + 3+2".

ADD (SLOXS$SOX, 3+$S0X/S1L0X) expands to "36 + 3+2".

ADD(SADD(3,6),$L0X) does not work because there is a
limitation in MICRO which does not allow a macro call
during the conversion of a constant expression to a
string.

ADD(ADD(3,6),$L0X) does work and expands to "3 + 6 + 3".

(s e et e e ———")

p/c=n.r page
| CC MICRO/M-8 8

2.2 Register declarations

Most of the microprocessor registers may be given symbolic
names. These registers are: M, Q, Z, RF to R6, SK@ to SK63,
SKZ, 0S, El, and E2. SKZ is, strictly, not a register but
that is beside the point. The upper registers M, Q, and Z

are usually not given symbolic names.

In addition to defining the symbolic name internally in MICRO,
the name is passed on to DDT so that the name may be used while

debugging with the simulator.
The syntax of a register definition is:
rdef = "DEFINE"'"REGISTER" prim "AS" rname";"

rname is the symbolic name to be associated with the prim
which may be one of the registers mentioned above or another

rname.
A convenient macro for defining registers is:
MACRO REG<DEFINE REGISTER *2% \AS *1* g

REG (SAVE,R5) would define "SAVE" as being the symbolic

name for holding register R5.

e .

p/c=n.r page

bCC | MICRO/M-8 9

2.3 Special condition declarations
Special conditions, of which there is a list in the appendix,
may be defined using the declaration given by the following

syntax:

sdef = "DEFINE" "SCONDITION" sname "<" const ","
n (u OpCOde Il) n [II’ n "NOVCY"] ll; n

sname = word

sname is the symbolic name for the special condition and const
is its value which may range from @ to 77B. opcode is a

NARP opcode which will be executed by the simulator when the
special condition in question is called in the program. It
may be null, though it is normally a subroutine call. The
optional part of the declaration ("," "NOVCY") is used to

tell the compiler that VCY should not be set for that special
condition. It normally is set. Here again the symbolic

name is passed on to the simulator.

Following is a convenient macro for special condition

declarations:
MACRO SC<DEFINE SCONDITION *1*<*2% (#%3%)%4%;

sc(JAM, 37B, SBRM SPAM) would define "JAM" as being the symbolic
name for special condition 37B. Subroutine "SPAM" would be
called when the simulator encounters the special condition.
Also, VCY is set. 1If we did not want VCY set, then the
following macro call would be used: SC(JAM,37B,SBRM SPAM, 1,

NOVCY) . However, in this case, one might as well say:

p/c=n.r page
CC MICRO/M-8 10
DEFINE SCONDITION JAM<37B, (SBRM SPAM),NOVCY.
There are a number of special conditions which are already
defined in MICRO. They are the left cycle operations, scratch-

pad address from Z flag, and the memory operations. A special

condition name may be redefined, but a message to that effect

will be output by MICRO.

v p/c=n.r page
CC MICRO/M-8 11

2.4 Branch condition declarations
Branch conditions are defined almost in the same way as
special conditions. A list of branch conditions is in the

appendix. The syntax is as follows:

bdef = "DEFINE" "BCONDITION" bname [", "bnamel] "<"
const u’] u(" opcode u) " [n’ 1" "NOVCY"] u; u
bname = 1$(-(","/";"/" ") character)

bnamel = word

The semantics is the same as that for special condition

declarations except for bname and bnamel.

bname may consist of any characters besides ",", ";", and " ".
This means that branch condition names such as "R@<=@g" are
possible. However, whenever such a non-alphanumeric name is
used the alphanumeric name bnamel must be supplied. Dbnamel

is then the name passed on to the simulator since it must

have an alphanumeric name.

A macro for defining branch conditions would look essentially
the same as the one for special conditions except for
the possibility of a second name. Redefining a branch

condition name again elicits a message from MICRO.

several branch conditions are defined internally in MICRO and

will be discussed in the section on branch instructions.

‘ p/c=n.r page
CC MICRO/M-8 12

2.5 Parameter definitions’
Parameters exist in MICRO solely for the convenience of the
coder. Of course, it is almost a necessary convenience if the

user's program is to be changed frequently.
The syntax of a parameter declaration is:
‘pdef - IIDEFINE n IIPARAMETER " pnal-ne Ilé_ " con St n ; n

A parameter pname may be used anyplace where a const may be

used. A parameter may be redefined as a parameter without

eliciting a message from the compiler. This is so in order
that computations involving constants may be done during

compile time. Examples follow:

MACRO PM<DEFINE PARAMETER *i*+*2*;

PM(RAP,) sets RAP to #

PM(RAP,RAP+1) increments RAP ; in fact

MACRO INC<PM(*1*,*1%*+1) allows one to say INC(RAP).
PM(RAP,@SKNAME+BASE) sets RAP to the sum of parameter

BASE and the address of scratch pad register SKNAME.

A good example of the use of parameters is the package designed
to implement field logic in MICRO. These macros were designed

by Bob Van Tuyl and are described in the appendix.
A constant, const, has the following syntax:

const = xXconst $(("+"/"="/"xn/v/") xconst)
xXconst = ["=-"](digitsdigit[("B"/"D") [digit]] / pname /

lname / "@" skname / "*")

4

‘ | Ip/c-n.r } page
CC MICRO/M-8 13

skname = rname / "SK@" / "SKl1" / ... / "SK63"

' _ . p/c=n.r page
C C : MICRO/M-8 14

2.6 Origin relocation

Normally, the location counter points‘to the word which is
being, or is about to be, assembled. Two commands exist in
MICRO which allow the user to modify the location counter:
ORG and RORG. The special symbol "*", incidentally, has as
its value the value of the location counter, and is treated

as a constant.

2.6.1 ORG statement
An ORG statement looks like: "ORG" const";".
It has the effect of setting the location counter to

the value of the constant const.

2.6.2 RORG statement
A RORG statement takes no argument. It simply resets
the location counter to the value it had before the
last ORG statement. The argument of an ORG statement
does not get stacked, so one may not have an ORG

statement between another ORG and a RORG statement.

e ———————

b p/c=n.r page
CC } MICRO/M-8 15

2.7 Labels
Labels, though they are a part of executable instructions, are
still declarations. A label declaration has the following
syntax:

ldef = [$(lname":")] inst'";"

lname = word

inst = executable instruction; to be defined later

Note that comments and other declarations may not be inserted
between the labels ahd the instruction. An instruction may
have any number of labels. Each of the labels becomes

defined as the value of the location counter and may thereafter

be used just as a constant.

only the last label of an instruction is output to the
simulator. It is possible to redefine a label, but of course

the compiler will output a message that this has been done.

p/c=n.r page

bCC | MICRO/M-8 16

3.9 Instructions

Each instruction of the user program,‘terminated by a semi-colon,
is scanned from left to right and compiled into bits of 9g-bit
microprocessor word. The location counter is incremented

after an instruction is compiled.

The syntax for an instruction is as follows:
inst = partial:exp $(","I partial:exp)
partial:exp = branch / memory:op / special:cond / assn /

field

Normally, the order of the partial expressions does not matter.
There are a few exceptions, however, and these will be covered
in the specific sections describing each of the five types

of partial expressions.

1 p/c=n.r

bcc MICRO/M-8

page

3.1 Assignment instructions

of partial expression. Its syntax is:
assn = [ref la] exp
la = n<_n[(nYn/an) ué_u]

ref = prim $(la prim)

exp = bool["ILCY" const/("LCH"/"LCL") (const/"z")/

[IINOT ||] prim]

the microprocessors.

be described also.

prim — "M"/"Q u/uZ "/"Rﬁ"/"Rl"/"R2 ||/"R3 "/"R4- "/"RS ||/||R6u/

uosu/uEln/uEz II/IISKgu/nSKlu/. . ./"SK63"/"SKZ "/rname

(Il+ll/ll_ll/ll : u) bOOl] [(u+u/u_u) const] ["MRG‘ "COl'lSt]

bool = ["NOT"] (prim/const)[("OR"/"AND"/"EQV"/"EOR")

Many of the combinations allowed by the above syntax are

These illegalities will be described

The assignment instruction is the main and most complex type

illegal from the viewpoint of the functional characteristics of

below. Of course, the meaning of the legal combinations will

b p/¢c=n.r page
CC MICRO/M-8 18

3.1.1 References and primaries
In order to be able to use the microprocessor registers
éffectively one should be aware of which busses they can be

loaded from or read onto. In addition, some registers can only

be read.

fhe M, Q, and Z registers may each and separately be loaded
from either or both of the two main busses (X and Y). Also,
the M register may be loaded from the main memory under

control of the centrél memory interface. The two boolean
boxes are used to generate any of the 16 possible logical func-
%ions of M and Q or Z and Q. The outputs of the boolean boxes
ﬁay be put through the adder, or the left boolean box output
ﬁay go through the cycler. In either case, the final output

%oes onto the X buss.

The holding registers R@ to R6 may be loaded from the X and/or
f buss. They may be read only onto the Y buss. The R@
?egister is loaded, but not read, independently of the other
?olding registers. Therefore, it is possible to load, at the
éame time, one of Rl to R6 and Rg. It is not possible to

read two holding registers.

The 0S, El, and E2 registers may only be read onto the Y
Buss. They cannot be loaded. The El and E2 registers are

sctually busses, not registers.

fhe scratch pad registers SK@ to SK63 may be loaded from the

X buss and. they may be read onto the Y buss. SKZ is not a

p/c=n.r page
bcc MICRO/M-8 19

é register, but signifies that the scratch pad address be
?aken from the Z register. Reading of loading the scratch
éad register takes 200 nsec. So VCY is automatically set by
%he compiler when the scratch pad is referenced.

In the definition of prim, rname is of course a symbolic name

|
of a register as discussed in section 2.2 on register

declarations.

A reference, ref, consists of a sequence of primaries

éeparated by assignment operators, la. The assignment operator
?exe" indicates that the expression exp is to be forced to go
énto the X buss. "<¥Y<«" is handled analogously. Each of the
primaries listed in the reference is to be loaded from either
&he X or Y buss. If the buss is not specified, then if there
is a choice of busses the X buss will be used. The only case
where there is a choice is when a constant is being referenced.

It is an error to try to use both the X and Y buss in a single

reference.

: ‘ p/c=n.r page
CC MICRO/M-8 20

3.1.2 Boolean Expressions.

A boolean expression, bool, may qonsiét of either a constant or
one of the 16 possible logical functions of either M and Q or

Q and Z. The possibilities are listed in the table which fol-
lows. The value associated with each possibility is the value
to which one must set BL or BR to'generate that particular

function.

bec

p/c=n.r page
MICRO/M-8 21

VALUE

7
198
11B
12B
13B
14B
15B
16B

17B

order the operands appear.

LEFT BOOL BOX (BL)

M AND Q
M EQV Q
Q

NOT M OR Q
M

M OR NOT Q
M OR Q

-1

g

NOT M AND NOT Q
NOT M AND Q

NOT M

M AND NOT Q
NOT Q

M EOR Q

NOT M OR NOT Q

thing as "Q OR M".

"M OR Qll’

RIGHT BOOL BOX (BR)

Z AND Q

Z EQV Q

Q

NOT 2 OR Q
zZ

Z OR NOT Q
Z OR Q

-1

g

NOT Z AND NOT Q
NOT Z AND Q

NOT Zz

Z AND NOT Q

NOT Q

Z EOR Z

NOT Z OR NOT Q

Tn the boolean function table above it does not matter in which

for example, is the same

p/c=n.r page

bCC MIC RO/M-8 22

3.1.3. Arithmetic expressions
There are two types of boolean expreséions (bool) . The first
type is a logical expression involving registers M, Q, or Z.
The second type is not an;expression, but is simply a primary
(excluding M, Q, and Z) or a constant.

Examples of type 1: M AND Q, Q, Q EOR Z.

Examples of type 2: R@, R5, 0S, E2, SK6, SKz, const.

Only the first type of boolean expression may be operated on
by the adder or the cycler. All arithmetic operations on
boolean expressions require that the two booleans not emanate

from the same boolean box.

"+" performs addition of two booleans. One may be added to
the resulting expression and a constant may be merged with
the final resulting expression.
Examples: M + Z, Q + Z + 1 MRG 4B7, M + Z + @ MRG 77B,
NOT M AND Q + Q EOR Z + 1 MRG 77B6.

Illegal: MORQ +%Z + 3, M +Q - 1.

""" does the same thing as "+" except that VCY is not set as

it normally is, It may be used only when it is known that
no carry will be generated. 1In other words, "." acts as a

merge under the right conditions.

"-" performs two's complement subtraction. One may be
subtracted from the resulting expression and a constant may be

merged with the final resulting expression.

pr—————

p/c=n.r page
‘::‘:: 4 MIC RO/M-8 23

Examples: 2% - M, Q - Z -1 MRG 3301B, M - Q MRG 10,
NOT Z OR Q - Q EQV M -1 MRG 4B7.

Illegal: MAND Q - %2 -3, M-Q+1.

Cycle operations require that the boolean expression emanate
from the left boolean box. In other words, only logical
expressions involving M and Q may be cycled. The cycler and

adder cannot be operated simultaneously.
Following is a description of the cycle operations.

bool "LCY" const: The cycle count, const, must be
#,1,2,3,4,8,12,16, or 2¢

bool "LCL" (const/"z"): The cycle count is taken from
the two low order bits of either the constant or
the Z register.

bool "LCH" (const/"z"): The cycle count is taken from
bits 19,2¢@, and 21 of either the constant or the

7 register.

After the cycle operation a constant may be merged with the
resulting expression, but nothing may be added.
Examples: M AND Q ILCY 8, M ILCY ¢, Q EOR M ICL Z,
M OR Q ILCL 15, NOT Q LCH Z, NOT M LCH 15,
NOT M AND NOT Q LCY 16 MRG 77B5.

Illegal: Q AND Z LCY 8, M ICY 15, Q LCH Z + 6.

Expressions involving type 2 booleans may only be of the
form: const/prim ["+" const] ["MRG" const]. If the

expression is a constant then the constant is gated onto the

p/c=n.r page

bCC MICRO/M-8 24

appropriate buss, or the X buss if no buss is specified (either
explicitly like "<¥<", or implicitly lvike “SK1 < const”). The
holding registers are the only non-upper registers which can
have a constant added to them, and this constant must be 1.
Any non-upper register may have a constant merged with it.
Examples: 6,7@B,4B7/3,SK3 MRG 77B,SKZ,R1,R2+1,R@F+1 MRG 6,

R6 MRG 3, OS MRG 3, E1l,E2 MRG 77B6,*.

Illegal: SK3+1,SK3+77B, 6 MRG 7, 0S+6, El+l MRG 7B7.

Bl p/c=n.r - page
CC MICRO/M-8 25

3.1.4 Assignments
An assignment assn may consist solely of an expression exp.
In this case the expression will be gated onto the appropriate

buss, but no register will be loaded from that buss..

If a reference, ref, and an assignment operator, la, are
present then each of the primaries of the reference will be

loaded from the buss onto which the expression was gated.

Following are numerous examples of assignments:
M< Q<2 <1
M < RL <« R <« NOT M AND Q + 1 MRG 77B
SKZ « MORQ - Q EOR Z -1
Q < SK63 < R6 + 1 MRG 4B7
M
Q AND NOT M + NOT Z + 1 MRG 7¢1B
R + 1
E2
7 < R@J < E1 MRG 1
63 + 1g@gB2 * 7
R5 <SK1¢
-1 MRG 1 (the - 1 comes from the boolean box)
M <« Z Rf <« M AND Q LCY 12
Rl < SK8 < Q LCH Z MRG 77B3

Q0 < Q LCL 23

Here are some illegal assignments:
M<« Q <« RF + 3

SK6 < Rg + 1

bec

p/c=n.r
MICRO/M~-8

page
26

Illegal assignments (continued)
Rl <« R2 « M + 2
El < 08 < M < 3
E2 + SK6
M+Q+2
Q « Q ICL 23 + 2
M + Z LCY 8 MRG 3
Z LCH Z
SK3 ICY 4

R < R5 <« SKZ <« R5 + 1

: p/c=n.r page
CC MICRO/M-8 27

3.2 Memory operations

The syntax for a memory operation is as follows:
memory:op = ("FETCH"/"PREFETCH"/"HFETCH"/"STORE"/
"PRESTORE"/"HSTORE"/"OFETCH"/“OHFETCH")

[assn] / "RESET"

For memory operations, M is the data register and R@ the
address register. The optional assignment after a memory
operation is intended to be the source of the address. The
compiler actually prefixes the assignment with "R@g<" so that
"FETCH SK3 <« M + Q" becomes "FETCH R@ <« SK3 < M + Q" and is
equivalent to "R@ <« SK3 <« M + Q, FETCH". "RESET" does not take aj

address, so it can't have an optional assignment.

Memory operations are special conditions. This means that no
other special condition may be used while accessing the
memory. Especially troublesome conflicts occur when one
tries to do a cycle operation or access the scratch pad with
address in the Z register.simultaneously with a memory

operation.

p/c=n.r page
CC ~ MICRO/M-8 28

3.3 Branch instructions
A branch instruction hasbthe syntax:
branch = ("GOTO"/"DGOTO") (assn/const) [cond]/("CALL/"DCALL")
const [cond]/("RETURN"/"DRETURN") [cond]
cond = "IF" bname / "ON" assn relop "@g"

u=n/u#n/(u>n/u<n) [u=u]

relop

A GOTO or DGOTO (deferred GOTO) can have either an assignment
or a constant as an argument. If the argument is an
assignment the branch'address is taken from the X buss, and
hence the assignment should use the X buss instead of the Y
buss. If the branch address is constant it is placed in field

B of the microprocessor instruction word.

A CALL or DCALL can have only a constant branch address while

a RETURN or DRETURN may have none at all.

An unconditional branch is one without the optional branch
condition cond. If cond is present, however, the branch will

occur if the branch condition is true.

The construct "IF" bname is used whenever the branch condition
bname has been declared using the declaration described in

section 2.4.

There are branch conditions predefined in MICRO for which

the construct "ON" assn relop "@" is used. These conditions

are:

X=¢) X#ﬁ,X>.Q, X<Q',X>=¢,X<=¢,Y<Q',

. pP/c=n.r page
CC MICRO/M~-8 29

and Y>= ¢, where X is the X buss, Y is the Y buss,

and M is the M register.

The compiler decides, after compiling the assn, what is being
tested and which relation the test consists of. The
appropriate branch condition is then automatically selected.

All branch conditions besides these ten must be declared.

Following are some typical branch instructions:
DEFINE BCONDITION R@>=@, RPGEZ <« 12B, (QCALL R@GEZF) ;
DEFINE BCONDITION ATT1SET < 36B, (QCALL ATT1SETF);
FOO: GOTO 10@B;
SAM: DGOTO SAM IF ATTI1SET;
CALL ZAP ON M < Q <« M OR Q LCY 4 MRG 3 >= f;

GOTO FOO IF R@>=(;

ZAP: DRETURN ON M + 1 MRG 6 < 3

GOTO ZAP ON M <~ M + 1 # (;

ECC | P/c-:/;rICRO/M—B

page
30

3.4 Special condition instructions

defined by the declaration discussed in section 2.3.

used in MICRO and which have already been described.

scratch pad from the Z register.

DEFINE SCONDITION POT < 15B, (QCALL POTF) ;
GOG: ALERT, DGOTO GOG;

GOTO GOG ON M < @, POT;

The following will not work:
M <« M ILCY 16, ALERT;
FETCH Z, POT;

SKZ <« M AND Q, ALERT;

the memory operations, cycle operations, and addressing the

DEFINE SCONDITION ALERT < 14B, (QCALL ALERTF) ;

A special condition instruction is defined simply as special:

cond = sname where sname is the name of a special condition as

There are a number of predefined special conditions which are

They are

Following are some examples of the use of special conditions:

. p/c=n.r page
CC MICRO/M-8 31

3.5 Field assignment
Sometimes the user finds himself in a situation where it is
not possible to code an instruction using the standard MICRO
language. In this case the user must resort to specifying the
actual bits and fields of the 90-bit instruction word. The
syntax for doing this is:
field = fname ["<'"const]
fname = ".MC"/".MCONT"/".DGO"/".B"/".IHR"/".TCX"/
", TCY"/" . TSPY" /" .THY"/" .TXW"/" . TYW"/
", TAX"/".LOC"/".SSP"/".TOSY"/".LR@"/
", LSpPX"/".vcy"/".MS"/" .RRN"/" .LRN"/" .LMX"/
"LIMY"/"LLQXM /" IQY /" LZX" /" . 1zY"/

".BL"/".BR"/".TElY"/".TE2Y"/".C"

As an example, the following two statements are equivalent:
Q <« Z « M EOR Q LCH Z MRG 77B3;
.BR <« 1¢B, .BL <« 1l6B, .MS < 12B, .C <« 77B3, .TCX, .LOX,

LZX;

A description of each field may be found in the appendix.

in the section on the operation of MICRO.

special conditions and branch conditions.

considered to be a comment and is completely ignored except

whole line up to the carriage-return-line-feed is output to

enable the user to write NARP code in MICRO. For example,

which are called when the simulator encounters user defined

: p/c-n.r page
CC MICRO/M-8 32
4. Miscellaneous features
4.1 Program
A program is defined by the following syntax equations:
program = $statement "END" ";"
statement = decl / [$ label] inst ";" /
k" §(-crlf character) crlf /
"@" $(-crlf character) crlf
A line whose first non-blank character is an asterisk "*" is

that it is output to the expanded file which will be mentioned

If "@" is the first (not first non-blank) character, then the

the object file except for the "@". The purpose of this is to

the user may wish to keep in his MICRO code the NARP subroutines

Ecc " MeRo/ s

page
33

5.8 Operation of MICRO

llGoll o

along with a listing of which bits are set.

declarations and macros.

The compiler for MICRO exists as a subsystem called MICRO.

optionally the expanded file. The object file is the file

This file is then mangled by Paul Heckel's macro infested

is a file onto which MICRO dumps the source code with all
macros expanded. Also, for each instruction, the compiled

value of each field of the microprocessor word is output

Micro may be dumped just like NARP in order to preserve

number of microwords compiled, execution time used, and
various statistics concerning tables in the compiler:

S = number of characters of string storage remaining, M =

If the subsystem is not on the drum it may be retrieved from
KDF file ()MICRO. The symbolics are on KDF files ()1MIC and

()2MIC and may be assembled using NARP, Starting location is

When called, MICRO asks for the source file, object file, and
onto which MICRO puts the NARP code representing the microcode.
NARP to produce a binary file which may then be loaded with

Paul's simulator. If the object file name is terminated by

comma instead of period, MICRO asks for the expanded file which

Unlike QSPL, MICRO does not have any confusing rubout logic.

At the end of compilation, MICRO outputs to the teletype the

number of words remaining in the macro table, H = number of

entries remaining in the symbol table, and K = largest scratch

bec

P/c=n.r
MICRO/M-8

page
34

pad address used.

| ' p/c=n.r page
CC MICRO/M-8 35

6.0 Interface between MICRO and the simulator
The code which MICRO produces must be assembled with a special
version of NARP which is cluttered up with numerous macros.

This program is called FNARP and is written by Paul Heckel.
To use FNARP do the following:

@() : FNARP.
SOURCE FILE: <object file produced by MICRO>.

OBJECT FILE: <binary file to be loaded with DDT>.

No errors should occur when using FNARP. If errors do occur,
then there is either a serious problem with MICRO or FNARP;
or else the errors are due to NARP code introduced by the user

via the "@" feature of MICRO.

The way in which the object file produced by FNARP is loaded
and run in the simulator is discussed in detail in a

separate document written by Paul Heckel.

If FNARP is not on the drum, it may be read from KDF file

(PIRTLE) FNARP.

bec

pP/c=n.r
MICRO/M-8

page
36

l‘

2.

7.0 Appendix

Syntax of MICRO

List of branch conditioﬁs'

List of special conditions

Bit assignment of microprocessor word
Summary of fields

Macros to implement field logic

né-nf ‘ page
CC MICRO/M-8 37

r

Al

Syntax of MICRO
program = $statement "END" "3 "
statement = decl / [$label] inst ";" /
nxn ¢(-crlf character) crlf /
"@" s(-crlf character) crlf
decl = macro / rdef / sdef / bdef / pdef /
"ORG" const / "RORG"
macro = "MACRO" mname "<" $(stringlarg]) ";"
string = $(-";" (character / "t;")) »
arg = *1% / *2% /[*3% / *4% [*x5% [/ kgk [/ xTx [*8%* / *9%
mname = word
rdef = "DEFINE" "REGISTER" prim "AS" rname ";"
rname = word
sdef = "DEFINE" "SCONDITION" sname "<" const ","
"(" opcode ")" ["," "NOVCY"] ";"
sname = word
bdef = "DEFINE" "BCONDITION" bname ["," bnamel] "<«

const n s n n(" OpCOde u) " [n, n "NOVCY"] u; "

bname = 1s$(-("," / "3;" / " ") character)

bnamel = word
opcode = $(-("(" / ")") character)
pdef = "DEFINE" "PARAMETER" pname "<'" const ";"

pname = word

label = $(lname ":")

lname = word

inst = partial:exp $("," partial:e#p)

partial:exp = branch / memory:op / special:cond /

assn / field

prenmon—

nk-ni) page
CC MICRO/M-8 38

branch = ("GOTO" / "DGOTO") (assn / const) [cond] /
("CALL" / "DCALL") const.[cond] /
("RETURN" / "DRETURN") [cond]

cond = "IF" bname / "ON" assn relop "@"

relop = "=" / "/ (">" / "<") (=]

memory:op = ("FETCH" / "PREFETCH" / "HFETCH" / "STORE" /
"PRESTORE" / "HSTORE" / "OFETCH" / "OHFETCH")
[assn] / "RESET"

special:cond = sname

assn = [ref la] exp

la = "« [("¥" /X))

ref = prim $(la prim)

prim = "M"/"Q"/"z"/"R@g"/"R1"/"R2"/"R3"/"R4"/"R5"/"R6"/
"os"/"E1"/"E2"/"SK@"/"SK1"/.../"SK63"/"SKZ"/rname

exp = bool ["LCY" const / ("LCH" / "LCL")(const / "2") /
("+" / "=" / "ty booll [("+" / "=") const]
["MRG" const]

bool = ["NOT"] (prim / const) [("OR" / "AND" / "EQV" /
"EOR") ["NOT"] prim]

field = fname ["<«" const]

fname = ".MC"/".MCONT"/".DGO"/".B"/".IHR"/".TCX"/
", TCY"/".TSPY"/" . THY" /" . TXW"/" .TYW"/
", TAX"/".LOC"/".SSp"/".TOSY"/".LRZ"/
", LSPX"/".vCY"/".MS"/".RRN"/".LRN"/" .LMX"/
vLIMY" /"L LX /" .LQY"/" Jdzxv/t.uzyt/
“.BL"/".BR"/".TElY"/".TEZY"/".C"

const = xconst S$(("+" / "=" /. %" / n/") xXconst)

1 p/c=n.r page

bCC MICRO/M-8 39

xconst = ["=-"] (digitsdigit[("B" / "D") digit] / pname /

lname / "@" skname / "*")

skname = rname / "SKg" / "SK1" / ... / "SK63"

word = letter $(letter / digit) A

macro:call = mname ["(" cstring ["$"] cstring $("," cstring
["$"] cstring) ")"]

cstring = $(-("3" / "," / "(" / ")")(character / "t;3;" /

L/ /)

bec

p/c=n.r page
MICRO/M-8 40

o
1%
2%
3%
4%
5%
6%
7%
1g*
11
12
13*
14
15
16
17
2g*
21
22%
23%
24

25

value

A2 List of branch conditions
The starred conditions are predefined in MICRO and need not

be defined by the user.

Condition
Never branch

Always branch
=g

K K X X X X X

< ¢

RF < @

RF >= @

X<=4

Not X AND 777777B = @
Not X AND 777777B # ¢
Z >= g

z< g

Always branch

Y AND 7 # &

BL = ¢

BL # ¢

Y even

Y odd

bcc

p/e=n.r
MICRO/M-8

page
41

26

27

3¢
31
32
33
34
35
36
37
4¢
41
42
43
44
45

46-77

value

Condition

Attention latch 1 not set, reset
Request strobe latch 1 = @ and request
strobe latch 2 = ¢

Protect # X

Il
=

Request strobe latch 2
Special flag A not set
Special flag A set
Attention latch 2 not set, reset
Attention latch 3 not set, reset
Attention latch 1 set, reset
Undefined

Undefined

Undefined

Local memory parity error =@, reset
Undefined

Central memory parity error =, reset
Breakpoint = 1

Undefined

bec

p/c=n.r ' page
MICRO/M-8 42

@*
1*
2%
3%
A
5%
6%
7%
1g*
11*
12*
13%
14
15
16
17
2¢
21
22
23
24

25

value

A3 List of special conditions
The starred conditions are predefined in MICRO and need not

be defined by the user.

condition (function)

No action

ICY 1

LCcY 2

LCcy 3

LCY 4

ICY 8

ICY 12

ILCY 16

LCY 2¢

LCL Z

ICH Z

SKZ (scratch pad address in 2)
ALERT

POT

PIN

Request strobe 1

Unprotect

Unusable

Load memory request priority field
Reset request strobe latch 1
Reset central memory request

Protect

bec

p/c=n.r
MICRO

page
43

26
27
3¢
31
32
33
34-37
4¢
41
42
43
44
45
46
47
50-57
69
61
62
63
64
65

66-77

Value

condition (function)

Reset dévice attached to I/O connector
Undefined

Set special flag A
Reset special flag A
Reset request strobe latch 2
Request strobe 2
Undefined

Reiease

Prestore

Store

Store and hold

Fetch

Fetch and hold
Undefined

Prefetch

Undefined

Set bank B

Set bank A

Clear map

Undefined

oddword £fetch

Ooddword fetch and hold

Undefined

L o - p/c=n.r ‘ page
bCC MICRO/M-8 44
A4 Bit assignment of microprocessor word

Bit Name Bit Name
) MC (@) 15 - B(7)
MC(1) 16 B(8)
2 MC(2) 17 B(9)
3 MC(3) 18 c(g)
4 MC (4) 19 c(l)
5 MC (5) 20 c(2)
6 MCONT (%) 21 Cc(3)
7 MCONT(1) 22 c(5)
8 B(¢) 23 c(6)
9 B(1) 24 c(7)
19 B(2) 25 c(8)
11 B(3) 26 c(9)
12 B(4) 27 c(1g)
13 B(5) 28 c(11)
14 B(6) 29 c(12)

1 P/c=n.r page
bCC MICRO/M-8 45
Bit Name Bit Name
30 Cc(12) 45 TSPY
31 c(13) 46 THY
32 c(14) 47 TXW
33 C(15) 48 TYW
34 c(1le) 49 TAX
35 c(17) 59 LOC
36 c(1é) 51 Ssp(9)
37 Cc(19) 52 SsP(1)
38 c(29) 53 SSP(2)
39 c(21) 54 SSP(3)
a9 Cc(22) 55 ssp(4)
41 c(23) 56 SSP(5)
42 IHR 57 TOSY
43 TCX 58 LRY
44 TCY 59 LSPX

p/c=n.r page
bCC MICRO/M-8 46
Bit Name Bit Name
60 MS (9) 75 LQY
61 MS (1) 76 LZX
62 MS(2) 77 LZY
63 MS(3) 78 BL(#)
64 MS (4) 79 BL(1)
65 MS(5) 8¢ BL(2)
66 RRN(ﬁ) 81 BL(3)
67 RRN (1) 82 BR(#)
68 RRN(2) 83 BR(1)
69 LRN (&) 84 BR(2)
79 LRN(1) 85 BR(3)
71 LRN(2) 86 VCY
72 LMX 87 DGO
73 LMY 88 TELY
74 LOX 89 TE2Y

bcc

p/c=n.r page
MICRO/M-8 47

A5

summary of fields

Field

MC

MCONT

IHR
TCX
TCY
TSPY

THY

TXW
TYW
TAX
LOC

sSSP

TOSY

LRY

LSPX

MS

RRN

Use

Branch condition field.

Instruction sequence control.

Branch address.

24 bit constant field.

Increment holding register output.

Gate constant field onto X buss.

Gate constant field onto Y buss.

Gate scratch pad register onto Y buss.
Gate holding register selected by RRN onto
Y buss.

Trahsfer X buss to holding register input.
Transfer Y buss to holding register input.
Gate adder output onto X buss.

Adder low order carry.

Select one of 64 scratch pad addresses to
be loaded or read.

Gate 0S register onto Y buss.

Load holding register R@ from X buss or

Y buss.

Loads scratch pad word addressed by SSP or
7 register from the X buss.

Special condition field.

Specifies one of 7 holding registers to be

read into the incrementer.

bec

p/c=-n.r page
MICRO/M-8 48

Field

LRN

LMX
LMY
LOX
LQY
LzZX
LZY
BL
BR
VCY
DGO
TELlY

TE2Y

Use

Specifies one of the holding registers R1-R6
to be loaded from the X or Y buss. R@ can-
not be specified in this way.

Load M from X buss.

Load M from Y buss.

Load Q from X buss.

Ioad Q from Y buss.

Load Z from X buss.

Load Z from Y buss.

Left boolean box control field.

Right boolean box control field.

Force 2@@ nsec. cycle.

Deferred conditional branch.

Transfer El buss to Y buss.

Transfer E2 buss to Y buss.

: p/c=n.r page
CC MICRO/M-8 49

A6 Macros to implement field logic

Bob Van Tuyl has written some macros designed to implement
pseudo-QSPL type fieid 0pérations., Thé way in which fields are
defined ahd the operafions one may do with them is described
below. To use the package, the ﬁser should put the contents

of KDF file (LEWENDAL) FIELD into his microprogram ahead of any

code which uses field logic.

One may define a field by saying:

DF (name, displacement, first bit, last bit)

Following are the available field operations:

Operation Result

DISP (name) Displacement of field.

MASK (name) Mask of field.

NMASK(name) Complement of mask of field.

SHFT (name) shift required to right-adjust field.
ONE (name)) value of one in field.

LDCY (name) Value of cycle to do on a load in order

to right-adjust field.

STCY (name) vValue of cycle to do on a store to
restore field from right-adjusted
position to proper position in word.

STUFF (name) M AND Q LCY LDCY(name)

Idea is to right adjust field.

NSTUFF (name) M AND NOT Q LCY LDCY(name).

page
50

B CC _ ' M-:;[CRO/M—s

be ﬂ,l,2,3,,4,8,12,l16, or 2¢- . S

Note that for STUFF and NSTUFF the value produced by LDCY must

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50

