 title

¥ ‘
bcc M1Cs Phase One Language Editor

prefix/class-number. revisiﬂ

CSED/M~ 12
checked 10 authors @M approval date irevision date
BCU’IMM 10/15/69
checked(f 11’(/" classification
L Peter_Deutsch Manual
L,/)ZA K %-(w_ distribution pages

R. K. Déve

Company Private| 20

: upp;ove% /
(L.
/ L4

facility. Syntax
be maintained for
until the phase 2

complete finished

ABSTRACT and CONTENTS

This document serves as a user manual for the phase 1 lan-

guage editor. The appendix documents the line input editing
and semantics appearing in this manual will
in house use and are not expected to change

version is released. Phase 2 will be a

system for external use.

p/e=n.r page
CSED/M-12 1

INTRODUCTION

The following pages aré concerned with the M1CS language
editor for SPL énd FORTRAN programs. This facility manifests
itself to the user as a collection of commands and concepts
in two flavors: basic and extended. The extended language
editor is-upward compatible to the basic version and provides
the éxperienced user with quick and convenient ways to do

complex editing.

Additionally, the aistinction of phase 1 and phase 2 is
necessary. The phése 1 language editor is aﬁ interim facility
to bé used in house ohly and will eventually be superceded

by phase 2. The primary objective of the following pages is
to document the phase 1 ianguage editor as it is implemented.
Phase 1 does not‘make a distiﬁction between basic and exten-
ded versions. The phase 2 basic version will be a subset of
what appears on the following pages, while the phase 2 extend-

ed version will be a superset.

p/e=n.r page
CSED/M-12 2

GENERAL CONCEPTS.

The basic difference between a language editor and a text
editor is in the way the material to be edited is viewed.
Usually, a text editor views its material as a collection of
characters. On the other‘hand, a language editor has a
higher level of understanding whicﬁ allows it to view its
matefial_aS‘a collection of tokens, where each token is a
collection of charactérs. In othet words, a £ext editor
mighttview "132+TEMPERATURE" as 15 characters, whereas a
language editor would view it as 3 tokens. A more sophis—'
ticated langﬁage editor would further recognize the 3 tokens

as a number, an operator, and a symbol.

The MI1CS lénguage editor views both SPL and FORTRAN programs
as collections of tokens. Fufthermore, it récognizes certain
tokens and stfuctural concepts. Structurally it is aware of
lines and blocks, where the defihition of block depends upon
the programming language. The tokens recognized include block
names, all FORTRAN labels, and SPL labels which appear as the

first token on a line.

The'purpose of this language editor is to provide a means for
creating ahd altering programs. Consequently, there are ways
to request editing actions to be performed as well as address
physically where they are to occur in the program. The basic
addressable quantity is a line. ' The language editor is

always aware of:a,"current line" and allows addressing of the

p/e=n.r
CSED/M-12

page

subsequent line to be expressed as relative to the current

line, relative to the current block, or absolute to the

entire program. A complete discussion appears in the

semantics section.

o g p/e=n.r page
CC A ‘ CSED/M~-12 4

SYNTAX:

The syntax appearing in this section is strictly for phase 1.
It is anticipatéd that phase 2 will be an upward compatible
extenéion. The character "¢" signifies the end of a line and
represents,aAcarriage—return—line—feed. Although the 14
commands éppear in fheif verbose férm, the language editof
willlrecqgnize anyvcontiguous subset of characters which
starts with the initial character. Thus, SUBSTITUTE meané
the same as SUBST, SUB, and S. The first character following

the command must be other than a letter or digit.

language:éditor:command‘=

"APPEND" [address] text

"CHANGE; [interval] text

"DELETE" [interval] z

"EDIT" [modes] [address] € line ¢
"INSERT" [address] text

"LIST" [modes] [inEervél] Z
"MODE" modespecs ¢

"NEXT"‘[modes] [integer] ¢

SN SR U - G

"PREVIOUS" [modes] [integer] ¢

"READ" fiie [address] ¢

"SUBSTITUTE" [modes] subspec [interval] ¢
wiiDo" g |

"VALUE" [address] ¢ ‘

— s e e

"WRITE" file [interval] Z ;

p/e=n.r page

CSED/M-12 5
modes modespecé R
modespecs 1$ (modespec) ;
modespec | "A" I "B" | "c" | "i" | "N" | integer ;
téxt ¢ $ (line Z) B |
["="]1 "[" interval "]" ¢ ;
BC <character céde 1428 = control B> ;
sign L
integer l$(digi£) ;
filé <a 940 file namey ;
line $ (character-¢) ;
interval address
address "," address ;
address head $(tail) _
[block] search $(tail) ;
head " | “
[block] 1label
[block] "#" integer
[block] "s$" ;
tail search
sign integer ;'
block "<" [name] ">" ;
search ["=-"1 tokén:search :

token:search

‘label

name

n/n [tokens—"/"] u/"
ll‘ * 0 ‘[Itokené-"*"] Wy n :
hame

’

letter $(letter | digit l "y ;

p/e=n.r page
CSED/M-12 6

subspec - u/n [tokéns-"/"] n/n [tokens-—"/"] "/"

"y [tokens—“*"] n*n’ [tokens-"'*"] MNgn

tokens token $ (token)

token <{defined by the language's syntax>

P/e=n.r page
CSED/M-12 7

SEMANTICS

APPEND:

CHANGE:

DELETE:

EDIT:

Appends the text after thé address. If no address
is specified, appends after the current.line. The
last line appended becomes the current line., If

no lines are supplied, the addressed line becomes

current.

Replaces the interval by the text. If no interval
is specified, replaces the current line. The.
last line of the text becomes the current lire.

If no lines are supplied, the first line of the
interval becomes current. The number of lines
changed wiil be printed if the interval consisted
of two addresses rather than one. CHANGEs may not
extend across block boundaries. The only way to
CHANGE the first line of a block is to CHANGE

the entire block.

Deletes the interval. If no interval is specified,
deletes the current line. The line before the in-

terval becomes current. The number of lines delet-

‘ed will be printed if the interval consisted of

two addresses rather than one. The only way to
delete the first line of a block is to delete the
entire block. Deletions may not extend across

block boundaries.

Uses the addressed line as the "old line" for the

line editor. Editing conventions for the line

_ p/e=n.r page
@ C : CSED/M-12 8

editor aré in the appendix; If no address is
specified, the current line is used. The EDITed
line beéomes current. Meaningful modes are "A",
prinﬁ the new line after EDITing; and "B", print
the old line before EDITing. Modes appearing
with the EDIT command are temporary and do not
disturb the perménent modes set by the MODE coﬁ—
- mand. For a complete discussion of modes, see the

semantics of the MODE command.

INSERT: Inserts the text before the specified line or
before the current line if no address. The last
line inserted becomes current. If no lines are

supplied the addressed line becomes current.

LIST: Prints the interval. If no interval, prints the
current line. The last line actﬁally printed
becomes current. "I", interpret, is the only
meaningful mode (see MODE Semantics). Modes
appearing with the LIST command are temporary and
do not disturb the permanent modes set by the

MODE command.

MODE: The editor exeéutes certain commands in different
ways depending on a set of internal state
variables éalled’modes. A permanent set of modes
are always in effect and can be set and reset by
the MODE command. The permanent modes can be

over-ruled forvthe duration of one command with

p/e=nr page
CSED/M~12 9

temporary modes as in EDIT, SUBSTITUTE, and LIST.

Basically, there are five modes:

1) A (after): if on, causes lines being affected
by EDIT and SUBSTITUTE to be printed after
the operation is complete.

2) B (before): if on, causes lines being affected
by EDIT and SUBSTITUTE to be printed before
the operation commences.

3) C (confirm): if on, causes lines being affected
by SUBSTITUTE to be printed and requests
confirmation prior to actual substitution.
Permission to SUBSTITUTE is granted by typiﬁg
"Y" (yes) and denied by typing "N" (no).

4) 1 (inte;pret): if on, control-L will print
as code 1548 (in phase 2 it will cause a page
eject) 3 otherwise, "control-L" prints as "&L". -

5) integer: the value of the integer determines
the maximum number‘of SUBSTITUTEs which can
‘occur. If more than this value are éttempted,

| abmessage will be printed which indicates the

SUBSTITUTE command was limited to this number.

One additional letter may appear with modes: "N".
When "N" is encountered, all alphabetic modes fol-
lowing it are reset. Initially, A, B, C, and I

are reset (off) .and the substitution limit is set
‘éa.‘.‘«'sio.: Thus, "MODE lg@INABC" sets the substitution

limit to 1¢¢@, sets Interpret, and resets Afﬁer,

. Before, and Confirm.

bee

p/e~n.r page
CSED/M-12 10

NEXT:

PREVIOUS:

READ:

SUBSTITUTE:

Prints the nexf N lines to the current line just
as LIST would, where N is the number following
the NEXT command. If N is omitted, the next line
is printed. The last line printed becomes the

current line.

Prints the previous N lines to the current line

just as LIST would, where N is the number following
the PREVIOUS command. If N is omitted, the pre-
vious line is printed. The last line printed

becomes the current line.

Reads the file and INSERTs it before the addressed
line. The last line read becomes the current line.
If no address is specified, the file is APPENDed

to the end of the entire program. . The file name
muét be either surrounded by single quotes or term-

inated by a blank or end of line.

Searchesg the interval for occurrences of the second

set of tokens and SUBSTITUTEs the first set of

tokens for each occurrence. If no interval is

specified, the curfent line is used. The last line
having a substitution made in it becomes the cur-
rent lin%f Note that the second set of tokens

will match regardless of spacing. That is,

/uC=-A/LAL+uCu/ will find a match in "X<A+.uCs ".

The first set of tokens is inserted exactly as

bee

p/c=n.r page
) CSED/M-12 11

UNDO:

VALUE:

.will not restore the state which existed two changes

stated. The réplacement in the example will result
in "X<uC-A3;". Simply stéﬁed, the first set of
tokens is inserted in the line as if it were a
string of characters. Comments may not appear in
the first set of tokens. If the first set of
tokens is null, the first set from the previous

SUBSTITUTE will be used.

This command will undo the deletion caused by

the last CHANGE, DELETE, and EDIT; provided no
commands affecting text have been executed since.
Thus, if a grievous mistake has been made, the
drudgery of restoring the old lines is alleviated.
Note, however, that the new line insertions made
by CHANGE and EDIT .are not undone and therefore
must be normally attended to. The'old lines will
be physically located, aé a group, following the
new lines. If is recommended that one not grow
too accustomed to this command, as its usefulness

will be compromised. Executing two UNDOs in a row

previous. The current line is left unchanged.

This command will print the editor address of
the specified line in two forms. For example,

"#4 = <>#57" would mean line #4 on the block

bec

p/c=n.r page
CSED/M-12 12

WRITE:

text:

interval:

address:

containing the line and line #57 of the whole
program. If no line is specified, the current
line is used. The addressed line becomes the

current line.

Writes the specified interval on the file. If
no interval is specified, the entire program is
written. The last line written will be the new

current line.

Basically, there are two ways of specifying text.
The first is just a series of lines entered from
the teletype under the control of the line editor,
The old line .is always the previous entered line
except for the first line, which has a null old
line. See the Appendix for a discussion of the
‘line editor. The second method for specifying
text allows one to use lines which are already

in the program. ‘The lines to use are specified
by the interval. Additionally, if the "=" is

present, the specified lines are deleted.

An interval specifies a group of one or more con-
tiguous lines. The second address must have an
absolute line numberowhich is not less than the
first.” A block specified in the first address
wiil be used for the second address if not

overridden.

" A line address is composed of a starting point

p/e~n.r page
CSED/M~12 13

head:

tail:

block:

search:

(head or seérch) possibly followed by a series of

line increments (tail).

This specifies a specific line. The current line
is referenced as ".". The appearance of a block
permits a line other than one in the current
block to be specified. "$" will address the last
line of the appropriate block. "#" followed by
an integer will select the line numbered as the
integer. The first line of a block is #1l. A

line may also be addressed by its label.

This takes the line specified by head and incre-
ments forward or backward accordingly. The sign-
ed integer increments that number of lines. The

search is explained below,

This defines the scope in which lines are addres-
sed. The presence of a name confines the line
selection to the block of the same name. If "<O"

appears, the selection is over the entire program.

Searches are normally forward unless the nom is
present, in which case, they are backward by
line. Associated with a search is a starting
point and a scope. The starting'point in the ad-
dress ;yntax i; the line adjacent to the current

line if either no block or the unnamed

block is specified; and the line adjacent to #1

p/c~-n.r page
CSED/M-12 14

token:search:

label:

if a specifié block is named. The search is
circular within the scb§e, looking at the first
line after the last line if thé search is
forward, and vice versa if backward.‘ The scope

is defined by the semantics of block, if block

"is present. Otherwise, the current block defines

the scope.

This will find the first occurance of the

specified set of tokens and address that line.

Spaces are ignored and SPL comments are illegal.

The only SPL labels recognized by the language
editor are those which appear as the first token

on a line followed by ":" on the same line.

p/c=n.r page
CSED/M-12 15

C |

QUIT

Typing QUIT while the language editor is in control will
function as a break facility in phase 1. This can be used
to safely terminate the current action. Actions which are

QUITable are:

1) LIST, PREVIOUS, NEXT, and WRITE: will termim te

after the line being processed when QUIT occurs.

2) APPEND, CHANGE, INSERT: will terminate after
the text line, being processed when QUIT occurs,

is completed.

3) SUBSTITUTE: will terminate after the substi-
tution, being processed when QUIT occurs, is

completed.

4) search: will terminate after the line, being
searched when QUIT occurs, is found not to

contain the searched for item.

?iﬁéf:éi:

p/e=n.r
CSED/M~-12

page
16

RESTRICTIONS

1)
2)

3)
4)

5)

6)

7)

with block boundaries.

You cannot DELETE lines from more than one block

at a time.
You cannot
you DELETE
You cannot
You cannot
at a time.
You cannot
you CHANGE

You cannot

These are itemized as follows:

Unfortunately, there are currently some problems associated

DELETE the first line of a block unless

the entire block.

EDIT the first line of a block.

CHANGE lines from more than one block

CHANGE the first line of a block unless

the entire block.

introduce text which has SPL COMMON,

PROGRAM, or END in it unless it will go in between

already existing blocks--at the very end, or at the

very beginning. This applies to APPEND, CHANGE,

INSERT, and READ.

You cannot SUBSTITUTE a string which has SPL COMMON,

PROGRAM, or END in them for anything,.

Eé;"~—-*—- 4 p/e=n.r page
@C - ' CSED/M-12 17

APPENDIX

LINE EDITOR CONCEPTS -

The line editor is the ihput interface between the teletype
and M1CS. When one of the MI1CS sﬁbsystems needs a line of
teletype‘input, the line editor receives and retains control
until the user is done composing a new line, at which time
control and the entire new line are returned to theicontrolling

subsystem.

Instead of typing in all the characters, the user may compose
the new line by editing the "old line." The content of the
0ld line is determined by the controlling subsystem and is

' usually the previous new line redeived by that subsystem.

‘Both the new line and.éld 1ine'have character pointers
associated with them; initially these are set to the first
character position. As characters are typed in from the key-
‘board, both character pointers are advanced. Thus, if the
6id‘string initially has "ABCDE" in it, the new string
nothing, "XY2Z" is typed and the editing facility is used to
copy the next character from the old to the new string; the

resultant new string will contain "XYZD".

The user communicates with the editing facility by typing
control characters. In some instances, the editing facility
also listens to one character following a control character

(indicated by C below). The list below gives the different

p/e=n.r page
CSED/M~12 18

control characters and their resultant actions. A control

character is typed by depressing the CTRL key while typing

a normal character. Using control A as an example, control

characters are signified as A®, pNote that normal character

typing advances the pointers of both the old and new strings

except during insert mode (between EC brackets).

LINE EDITOR COMMANDS:

AC
BC

cC

DC

Backspace one chafacter in new sﬁring and print m".

Print CR-LF and finish.

Copy one characfer from old string to new string and print
copied character.‘

Copy rest of old 1ine into new line and finish, printing‘
copied characters aﬁd CR—LE.

Initiate and termiﬁate insert mode, print "<" or ">".
Characters typed after "<" and before ">" will not advance
thé old line character pointer.

No type version of D,

(Nothing)

Copy rest of old line into new line, printing copied
characters. Just like.DC exéept CR—LF is not printed and
line is not finished.

Insert spaces in _new line up to next tab stop, printing
them; advance old line that number of spaces. NOTE: if
current charécter_is in columh #4 and tabs are 5 & 10, I€

will insert 5 spaces. The first tab is set at 8 and there-

- p/e=n.r page
CC . CSED/M-12 19

JC

RC

LC

NC

yUc

vCe

0occ

pPCc

after at five space increments (8, 13, 18, 23...63, 68).
?uts CR-LF into new string and cdontinues to accept input
after printing CR-LF.

(Nothing)

(Nothing)

Print CR-LF and finish.

Backspace one character in both old & new sﬁring and
print "™ ",

Copy characters up to C in old line into new line,
printing; if the very next character is g,'the following
one is used to terminate the copy.

Skip over characters in old iinebug to‘g_printing oy 1
for eacﬁ character; if very next character is C, the
following one is used to terminate the skip.

Restart line anew, printing "<", kReset old and new
string character pointers.

Retype unaligned by printing LF, rest of old line,

CR, LF, all of new line; continue to accept input.

Skip one character in old line, print "%".

Retype aligned (like R®) - Note, control characters
printed by the "&C" convention will count as 1 charac-~
ter; thus, the number of characters unaligned indicates
the number of control characters in the line.

Copy, to next tab, characters from the old line into the
new line —-- just like I€ only print copied characters
instead of spaces. |

Take C literally unless it is less than 100g in which

p/e=n.r
CSED/M~12

page
20

WwCE

XCC

YC

zC

case add 1004, print C, advanceiold line character

pointer by 1.

Backspace new line to first blank preceding a non-blank.

Thus, "ABC DEF WC" will end up as "ABC " as will

"ABC DWC",

Skip through C - like p€.

Concatenate new and old strings into old string and

re-edit, print CR-LF.

Copy through C, like OF,

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

