. title

prefix/class-number.revision
C C PROCESS MEMORY ,§YSTEM PMS/M-19
check

o) ; | / : I authors

approval date [revision date

Z 1/21/170
rcheck / B classification
P _/ﬁ \ | Manual

approved ->" /7" /Z JZ\ | distribution pages

Company Privatg 51

ABSTRACT and CONTENTS

This document describes the software part of the Model 500,
Phase I, memory management system. It gives detailed

descriptions of the MCALLs on this part of the Monitor.

-b » p/e~n.r page
CC PMS/M- 19 1

Page

I Introduction ,ceieerenrnonenneooosoons .3
Model 5@@ Memory System3
Page NamMesS vveeereoeenenenononesesnnons .4
Processes ,........ TR 7
ContexXt BloCKS ... iiiiinnnnnoneeeosssans ..9

T The Process Memory Systemco0c000 10
The Process Memory Table ...cvveiivennneens 10

The Active Page Tabie e e 18

The ProCess MaP ... ivcvitveeetoeetassenossas 21

III The MCALLS ...vtvetvveoensns e 22
ACQPMT (MCALL 5@)e v e eeieeesonnscenns 24

NPPMT (MCALL 51)........ e .25

RNPMT (MCALL 52). . vvvevescnnnenans . .27

CLRPMT (MCALL 53)u v vvvennnnnnnnnns 28
DELPMT (MCALL 54)..cvveeeeenas e 29

SPMTAL (MCALL 55)¢cvseveeencucaeanns 30

SPMTCL (MCALL 56)...... e e ..31

SPMTRO (MCALL 57). e e ..32
READPMT (MCALL 58).......... e 33

PPDWS (MCALL 65)...cuvu.nn e ...34

PPCWS (MCALL 66). .. .cuvueeeenenan ...36

DPDWS (MCALL 67) ¢ veeceeensnncnenns .38

DPCWS (MCALL 68)...vveverenanons ...39
READ'LWS (MCALL 7@)¢eevueeans e ...40
SET'LWS (MCALL 71)c.veveneens . . .41

BCC - | o PMS/M~ 19

page

IV

VI

Page

System Maintenance of Core Working Sets42
Use HistOries i vveuu ittt enasnseensssnanns .43
Automatic Deletion of Pages from CWS 45
Correction of CWS Overfloweovieeeeneens 45
System Handling of Page-Not-In-Map Traps48
Figures

Format of @ PMT ENELY +vvvvvn i nnennnnnnnns ..49
Format of an APT Entry ceeesa eee00.50

Format of the Process Mapeeeviveeenecans 51

p/e=n.r page
CC ' PMS /M~ 19 3

I

Introduction

Model 50@ Memory System

The memory System of Model 50@ will consist of 256K words
of core, 6 million words of drum, and 150 million words

of disk. The Model 5@0@ System super-imposes a page
structure on this storage space. All three levels of
storage are sub-divided into 2K-word blocks, called pages.
Pages are units of information as well as units of storage
space. When we speak of pages of code, pages of data,
etc., we mean an amount of code, data, etc., that may be
stored in a page of storage. This is just to say that
"page" is used in a manner completely analogous to that

in which "byte" and "word" are used. When we use "page"
to refer to a unit of storage space, we speak of "core
pages", "drum pages", and "disk pages" depending on

which of the three levels of memory we are referring to.
Storage pages have an "origin" as well as an extent

(2048 words). Pages of core are 2048 word blocks

starting at an address which is congruent to @ modulo
2048, sSimilarly, drum and disk pages have fixed "starting
addresses" built into the hardware. They are a little
different from core pages in that we don't speak of word

addresses in connection with these storage devices,

W | p/e=-n.r oM /M- 19 pa:e

Page Names

Pages of storage have "names, " which are functions of
their addresses in whichever storage device they reside.
Thus the first 2@48 words of core (real core locations
g - 37778) are called fcore-page @, " the second 2048
words are called "core page 1", and so on. Pages of
drum and disk storage space are named in an analogous

manner.

Pages of information are also assigned names, called
Unique Names. These names are just 48-bit quantities
which are assigned to the page when it is created and
attached to it throughout its existence in the system.
The binding of pages to their Unique Names is built into
the storage system's hardware to the extent that when-—
ever a page is written on the drum or disk, its Unique
Name is written into a special 48 bit header called the
Class Code. There is no hardware analogue of the class
code in core storage, but the machinery which transfers
pages into and out of core maintains the correspondence
between pages and their Unique Names while they are in
core. When it reads a page into core from the drum or
disk it also reads the page's Unigue Name (from the
Class Code field on the drum or disk) and saves it in

a table in core. Then when the page is written back

out the Unique Name is written as the class code of the

drum or disk page into which the page is written.

Two tables which reside permanently in core keep track
of what information pages are stored on all pages of the

two "higher" levels of storage (core and drum). These
tables are called, respectively, the Core Hash Table (CHT)
and the Drum Hash Table (DHT). There is no analogous
record of the contents of disk pages, though consideration
has been given to the implementation of a Disk Hash Table
in a later system. CHT and DHT are maintained and used
by the processor (called the AMC) which transfers pages
between the three levels of storage. They are hashed on

Unique Name and give, for each page entered in them, the

current core/drum page on which the information is stored.

CHT is used in addition by the Map Loaders in the CPUs
to find the core page addresses ('"names") of information
pages to which references are directed by programs run-
ning on the CPUs. As this indicates, the use of Unique
Names as page addresses is built into the system at a
very basic level. In fact, the associative addressing
structure provided by these names and the Core and Drum
Hash Tables is used in all normal page addressing, even
at the level of the basic (software implemented) oper-
ating system. Of course, provision is made for by-
passing this structure and reading or writing pages

specified by their core, drum, or disk address only,

PMS/M-19

page

the system,

but this facility is not used in the normal operation of

p/e~n.r page
CC | - PMS/M-19 7

Processes

The set of algorithms ana‘data structures which allow
the Model 5@0@ to run as a time sharing system are dis-
tributed over a number of independent processors and
pieces of software. These entities are called collec-
tively the Model 5@@ Operating System. They conspire
together to divide the computing facilities of the sys-
tem among its users. Tﬁe fundamental unit of whatnot
in terms of which the operating system does its work

is called a "process".

A permanent record of the processes belonging to a user
of the system is kept in the user's file directory.

When a user creates a process (for example, by performing
some standard system ENTER procedure) a new entry is

made in his file directory. When he destroys the pro-
cess (by, for example, some sort of LOGOUT procedure),
the entry is deleted. Processes which are being actively
scheduled and run in the time sharing system are also
kept track of in a table called the Process Table (PRT),
which is permanently resident in core. Processes with
entries in PRT are said to be "active." Those not in
PRT (but still recorded in a file directory) are called
"dormant" processes. A process may be changed from

active to dormant and vice-versa at the explicit request

'B’EE’ penr

PMS/M-19

page

when more are allocated.

of a user who controls it. In addition the Operating

System may make a process dormant when it has exhausted

the system resources allocated to it and re-activate it

P/e-n.r page

BCC | | PMS/M~19 9

Context Blocks

To define a process for the operating system requires

a good deal of information. This information is called
the "state" of the process. When a process is dormant,
its state is defined by its entry in its owner's file
directory. Such an entry contains the symbolic name

of the process, information for controlling access to

the process, and the Unique Name of a special page of the
process called its Context Block. This special page
contains the information needed to introduce (or re-
intr&duce) the process into the operating system's.job

stream, that is, to activate the process.

When a process is active, its state is more complex.

Some information about it is kept in tables, such as the
Process Table and the character I/0 line tables, which
are resident in core. Information which is needed only
when the process is itself in core (or being swapped in
or out) is kept in the Context Block page. This page can
be thought of as providing temporary storage for the
operating system in certain of ité functions with respect

to the process.

‘ | pe=-a.r page
CC pMs/M~-19 | 10

IT1

The Process Memory System

The Process Memory Table

One kind of information the operating system requires
about an active process is a list of the Unique Names of
all the pages which'belong to the process. These names
(together with a mapping of the process' address space
into them) are needed by the CPU so that it may find the
pages to which the process directs references when
actually executing instructions. These page names are
also required by the Auxiliary Memory Controller (AMC)
so that it can identify the pages which it needs to swap

into core preparatory to running the procecss.

The page names, and some additional information about

the pages, are kept in a table called the Process Memory
Table (PMT) in the Context Block. These tables begin in

a standard place (loc. 3¢ﬁ8) in each process' Context
Block for the convenience of the various parts of the
operating system which must reference them. They will
initially have foom for 128 page names, but later versions
of the system may allow for up to 255. That is, the limit
of 255 is built into the system in a number of places,

but the current 128 page limit is imposed by only the

software part of the system.

p/e~n.r page
‘::(::' PMS/M—lg 11

The operating system software which looks after PMT

is called the Process Memory System, which this document
is intended to describe. We begin by giving explanations
of the contents of entries in PMT. Refer to Figure

1 for a picture of a PMT entry.
UNIQUE NAME:

These two words hold the Unique Name of a page of
information. This is the same Unique Name as is written
with the page on the disk and drum and kept in the Core
Hash Table when the page is in core. It is used by the
CPU's map loader when it looks up the page in CHT and by

the Swapper when it is swapping the process in or out.

DISK ADDRESS:

This field holds the address at which the disk copy of

the page is stored. It is the address which will actually
be sent to the disk TSU (Transfer Sub-Unit) when it is
required to read the page into core or to write it on

the disk. We have to keep such addresses around because
there is no provision at the TSU level for addressing
pages by their Unique Names. However, the system does

not depend on this disk address being correct. When the

transfer of a page to or from the disk begins, the con-

p/c~n.r page
C C PMS/M~-19 12

tents of the Class Code field of the addressed page is
checked for equality with the Unique Name of the page

of information it is desired to transfer. If this check
fails the transfer is aborted and a "Class Code Error"
is reported to the process for which the transfer was
being done. A page's Unique Name and Disk Address

.are called together its "Real Name,"

This is as good a time as any to reveal an ugly fact
about the Drum Hash Table. First we note that the

Core Hash Table is a table entered by hashing the

Unique Name of a page and containing for each entry

the Real Name of a page and the absolute address of the
core page in which the page is currently stored.

Ideally the Drum Hash Table would be completely analo-
gous and each entry would contain a Real‘Name and a
drum page address of the current drum copy of the page.
This implementation was rot possible, simply because

of the amount of core storage which such a table would
require. Instead, DHT entries contain only the Disk
Address word of the Real Name. Except for the loss in
elegance this seldom causes any problems. It just means
that in certain cases we have to do an otherwise unec-
cessary read from the drum to compare a Class Code with a

Unigue Name.

p/c=n.r page
CC PMS/M-19 13

So, the Disk Address word in PMT entries is used to find
the page whose Unigque Name appeafs in the entry both on
the disk and on the drum, but in neither case is it
considered the final authority in the matter since we
always make the comparison'between Class Code and

Unique Name.

ACCESS LOCK:

CONTROL LOCK:

The operating system provides for sub-dividing processes
among up to 8vseparate programs. This part of the sys-
tem is entirely software and is described in the docu-
ment MISPS/M-7. Programs coexisting in a process are
called sub-procesées of the process. In order that this
sub-division be useful it‘is necessary that sub-processes
be able to protect themselves from ether sub-processes.
In particular, they must be able to protect their memory
from accidental or malicious acéess by programs which
they don't trust. For example, a debugger cannot

in general hope to be a success if it is freely acces-
sible by the programs it is trying to debug. Since the
process' and therefore the sub-processes' memory is
represented by PMT entires, this means that we must have
some way of allowing sub-processes to control access to
PMT entries. This is implemented as follows. Each
sub-process has a KEY and a NAME. When a sub-process

acquires a PMT entry, its NAME is put into the entry's

» - p/e=n.r page
CC PMS/M-19 14

ACCESS and CONTROL LOCKs. Then whenever a sub-process
requests that some operation be berformed on the PMT
entry, its’KEY is compared With one of these LOCKs.

If the two fields have no bits in common, the operation
is not allowed. Most operations on PMT entries require
a KEY which fits the entry's CONTROL LOCK. The one
operation of putting the entry into a map requires only

a KEY which fits the ACCESS LOCK.
FP (FILE PAGE):

With a few exceptions, all pages in the system are

either pages of files or pages of "private memory."

These two kinds of pages are quite different. Private
memory pages have ﬁo existence outside of the process

to which they belong, in the sense that there is no way
by which other processes may get at them or even find

out that they exist. File pages on the other hand are
recorded (that is, their Unique>Names are recorded)

in the File Directories of the user's to whom they belong.
Access to them is carefully controlled by the Basic

File SYstem's protection mechanism and as a result they
can be shared between processes. The Basic File System
contains an MCALL by which a sub-process can put the
Unique Name of a file page into a PMT entry in its process.
When this is done, the entry's FP flag is set for the
convenience of other MCALLs (see below) which must be

able to distinguish between pages which are pages of

- p/e=n.r page
c C PMS/M-19 15

files and pages which are private memory pages. Note:
The use of the first 2 bits of the Unique Name to in-
dicate page type makes the FP flag redundant for this
purpose, but it is still required because of the exis-
tence of the privileged MCALL.which allows an arbitrary

Real Name to be put into PMT.
NC (NO CHARGE) :

The operating system limits the number of pages which

a process may have on the drum at one time. Basically,
the process is charged for every page that it has in ité
Drum Working Set (discussed below). In certain cases
many processes will have common pages, such as the code
pages of the BASIC énd FORTRAN systems, in their Drum
Working Sets, and in fhese cases we don't want to charge
each process for the use of these pages. We avoid this
by setting the NC bit in PMT when the process places

such a page. Pages marked with ﬁc will not be counted in

computing the size of the process' Drum Working Set.
RO (READ ONLY):

When a process places file pages in PMT, the Basic File
System sets the read-only status obtained when the file
was opened into this bit in the PMT entries. This is

to insure that the protection on the page provided by

F— p/c=n.r page
C C PMS /M~ 19 16

the file system is not relaxed when the page appears in
PMT. The RO bit in PMT is actually used by the CPU to

trap stores into the page.
RF (REFERENCE FLAG) :

The system trys to make sure that the pages in the Core
and Drum Working Sets of a process are the ones that the
procéss is referencing most fregquently. In order to do
this, it must somehow be kept informed as to what pages
the process is referencing. The CPU's Map Loader pro-
vides this information by setting the RF flag in PMT

whenever it loads the corresponding page into its map.
SF (SCHEDULED FLAG) :

When a program causes the Map Loader to load a page into
the CPU's map, the Map Loader looks the page up in the
Core Hash Table using the Unique Name in the appropriate
PMT entry. Now it is possible fhat the page is in core
for some other process but not supposed to be available
to the process in which the program is running. Giving
the program access to the page under these conditions
will in general lead to chaos, since the core storage
management system depends on knowing how many processes
have access to the pages in core. The SF bit is used

to prevent this illegal access. It is set by the core

p/e=-n.r page
C C PMS /M- 19 17

management system if the process is authorized to access
the page, and the CPU will trap if it is asked to load

a page with SF = ¢ into its map.
CCE (CLASS CODE ERROR) :

When the pages of a process' Core Working Set are being
read into core the Unique Names in PMT are compared with
the Class Codes on the pages read. If the comparison
fails, the read is aborted and the CCE flag in the PMT
entry is set. The SF bit is of course reset. If the ’
process tries to reference the page it will get a trap
from the CPU, at which time CCE can be tested to

determine the source of the problem.

This completes the description of PMT itsélf. Before
we go on to describe the MCALLs with which a program
can do things to PMTrwe must describe two important sets
of pointers into the table. These are the Process Map
(PRMAP), used by the CPU's Map Loader, and the Core

Working Set, (CWS) used by the Swapper.

p/e=n.r page
CC | | PMS /M- 19 18

The Active Page Table

When it is time to bring a process into core so that it
may execute instructions on a CPU, a request is sent

to the Swapper to bring in the pages the process needs
in order to run. The Swapper is given a pointer to

the process' entry in PRT. In the PRT entry the Swapper
"finds the Real Name of the process' Context Block.

It brings this page into core. In the Context Block is
a table, called the Active Page Table (APT),‘which
contains pointers into the Process Memory Table, Entries
in APT are marked as to whether the pages they point to
are to bé swapped in or not. The set of pages which are
marked to be swapped in is called the Core Working Set
(CWS) of the process. The Swapper scans APT and reads
all CWS pages into core. When these reads are completed
the process is said to be loaded and is available to be

run on a CPU,

Figure 2 gives the format of an entry in APT. We now

explain the various fields shown in the figure.
USE HISTORY:

This field is used by the system to keep a history of
references the process directs to the page the entry

points to. It is updated periodically from the RF

p/c=n.r page
CC PMS/M~19 19

flag in PMT and used by the routines (described below)

which maintain the Core Working Set.
PAGE LOCK:

It is possible to lock pagesvinto core, that ié , to
exempt them from the algorithms which cause dirty pages
to be written back on the drﬁm and pages not in any

Core Working Set to be released from core. The operating
system can lock pages directly by turning on bits in the
pages' entries in the Core Hash Table. Certain pri-
vileged User Programs will also need to insure that

pageé are kept in core. The Monitor will provide an
MCALL which can be used to do this. When a process
executes this MCALL, the PAGE LOCK field of its CWS entry
for the page will be set to a code identifying the lock
bit in CHT for which the process is responsible.

Details will be supplied at a later date.

KEEP:

LOCK:

These fields are intended to allow a program to designate
elements of its Core Working Set as more important

than others. No operations on them will be implemented
in this current version of the Process Memory System,

however.

p/e=n.r page
CC : PMS/M- 19 20

DWS:

In addition to the Core Working Set there is another
subset of APT called the Drum Working Set. It is the set
of pages which are being kept on the drum for the
process. It is a super-set of the Core Working Set and
is maintained entirely by the software parts of the
operating system. The DWS bit in an APT entry is set

if the page pointed to is in the process' Drum Working

Set. The Drum Working Set is called DWS for short.
CWS:

This is the bit the Swapper uses to determine whether an
APT entry points to-a page to be swapped in. It is set
if the page is to be swapped in (i.e., is in the

process' Core Working Set) and reset if it isn't.
PMT INDEX:

This is an index into the Process Memory Table and

points to a Real Name of a page.

p/c=n.r page
CC pMS/M-19 | 21

The Process Map

At 1ocation'2¢¢8 in each process' Context Block is
stored the process' Process Map (PRMAP). This is in
the form of 128 12-bit bytes and is shown in Figure 3.

Each byte of PRMAP contains two pieces of information.
RO:

This bit being set marks the page as Read Only for the
process. Its value is loaded into the CPU's physical

map by the Map Loader when the process makes its

first reference to the page in its address space to which

the byte corresponds.
PMT INDEX:

This index into PMT is used by the Map Loaders in the

CPU's to find a Unique Name with which to hash into CHT.

There are no MCALLs by which a program may directly read
or write the Process Map. It effectively refers to
PRMAP, however, when it modifies its sub-process map by
the operations described in the document on the Sub-

process System (MISPS/M-7).

p/c-n.r page
CC PMS /M- 19 22

ITT

The MCALLs

The following pages describe the MCALLs by which
programs can explicitly modify and examine the
memory system of the process in chich they are
running. Most of the calls are for performing opera-

tions on the process' PMT and APT.
A PMT entry is free if its CONTROL LOCK is zero.
A PMT entry is empty if its DISK ADDRESS is zero.

A sub-process controls a PMT entry if the bit-wise
AND of the sub-process' KEY with the CONTROL LOCK

of the entry is non-zero

A sub-process has access to a PMT entry if the bit-
wise AND of its KEY with the ACCESS LOCK of the entry

is non-zero, or if it controls the entry.

NPMTE is the maximum number of entries which a
Process Memory Table can contain. The value of this

parameter is 128.
Associated with a process' Core Working Set are three
"lengths":

LCWS - the number of pages currently in the

Core Working Set,

BCC ' e PMS/M-19

page
23

OLCWS - the value of LCWS at which "Core Working

Set Overflow" will occur,

MLCWS - the maximum wvalue to which OLCWS may be

set.

ICWS is maintained by the Process Memory System,

being incremented when a page is added to CWS and
decremented when one is removed. OLCWS can be set
by one of the MCALLS to any value between LCWS and
MLCWS. MLCWS will be a parameter with value 32 in

Phase I.

Three exactly analogous lengths are associated with
each process' Drum Working Set. They are called
LDWS, OLDWS, and MUDWS. The Phase I value for MLDWS

is 64,

A process Core Working Set is full if LCWS = OLCWS.

Its Drum Working set is full if IDWS = OLDWS.

PMT[PMTX] is cleared and then its CONTROL IOCK and

the index of the first one found is assigned to PMTX.

ACCESS LOCK fields are set to the NAME of the calling

sub-process. PMTX is returned as the MCALL's value.

p/e=n.r page
ECC , PMS/M-19 24
ACQPMT - Acquire and Initialize a PMT:Entry
Declaration:
’FUNCTION ACQPMT(PMTX) , FRETURN, MONITOR <~ 50
Success Return:
RETURN PMTX ;
Failure Returns:
(1) FRETURN('PMI', 11¢) unless
(a) 1< PMTX < NPMTE, or
(b) PMTX = -1
(2) FRETURN('PMO', 118) if PMTX = -1 and there are no
free‘PMT entries.
(3) FRETURN('PMA', 119) if PMTX # -1 and PMT[PMTX] is
not free.
Action:
If PMTX = -1, PMT is searched for a free entry and

bec

p/c=n.r

page

PMS /M- 19 25

NPPMT - Create a Private Memory Page and Put its Real Name

into PMT

Declaration:

FUNCTION NPPMT(PMTX), FRETURN, MONITOR < 51;

success

Return:

RETURN;

Failure
(1)
(2)

(3)
(4)

(5)

(6)

Action:

Returns:

FRETURN('PMI', 11¢) unless 1 < PMTX < NPMTE.

FRETURN('PMC', 121) unless PMT[PMTX] is controlled

by the calling sub-process.

FRETURN('PMF', 122) unless PMT[PMTX] is empty.

FRETURN('DWF', 123) if the process' Drum Working Set

is full’and the calling sub-process does
Default DWS Overflow (DDWSO) selected in
BIT word. .

FRETURN('CWF', 124) if the process' Core
is full and the calling sub-process does
Default CWS Overflow (DCWSO) selected in
BIT word.

FRETURN('KSE', 125) if the process' disk

exhausted.

not have

its STATUS

Working Set

not have

its STATUS

space is

A private memory page is created and its Unique Name

and Disk Address are put into the appropriate fields of

PMT [PMTX] . The page is put into the Core and

Working Sets of the process.

Drum

The SF bit in PMT[PMTX] is

bcc

p/c=n.r

PMS /M- 19

page
26

NPPMT (continued)

set and the other status bits of the entry are cleared.

l

n&:na page
CC PMS,/M-19 27

RNPMT - Put Specified Real Name into a PMT Entry

Declaration:
FUNCTION RNPMT(PMTX, Long UN, Integer DKA), FRETURN,
MONITOR < 523
Success Return:
RETURN:
Failure Returns:
(1) FRETURN('STS', 127) unless the calling subprocess
has the privileged System Diagnostic status (SD).
(2) FRETURN('PMI', 11¢) unless 1 < PMTX < NPMTE.
(3) FRﬁTURN('PMC', 121) unless the calling sub-process
controls PMT[PMTX] .
(4) FRETURN('PMF', 122) unless PMT[PMTX] is empty.
Action:
The Unique Name, UN, and Disk Address, DKA, are simply
copied into the appropriate fields of PMT[PMTX]. The

status bit FP is set and the other status bits are cleared.

page
28

BCC P/c-";MS/M— 19

CLRPMT- Release Page from PMT Entry

Declaration:

FUNCTION CLRPMT(PMTX), FRETURN, MONITOR <« 533
sSuccess Return:

RETURN;

Failure Returns:

controls PMT[PMTX] .

Action:

and ACCESS IOCK fields, which are not changed.

(1) FRETURN('PMI', 11@) unless 1 < PMTX < NPMTE.

The page whose Real Name appears in PMT [PMTX] is
released from the Core and Drum Working Sets of the
process. If the page is a private memory page, (i.e.,
if FP = @) it is also "released" from the disk, with

the effect that it ceases to exist in the system.

(2) FRETURN('PMC', 121) unless the calling sub-process

PMT entry is cleared, with the exception of the CONTROL

PEE—————————

bCC | ”/“""PMS /M-19

page
29

DELPMT - Release PMT Entry

Declaration:

FUNCTION DELPMT (PMTX), FRETURN, MONITOR<— 54;
Success Return:

RETURN;
Failure Returns:

(1) FRETURN('PMI', 110) unless 1< PMTXS NPMTE.

controls PMT [PMTX].

Action:

and the process map, are deleted at this time.

the page from the process' CWS and DWS and destroys it

the PMT entry by clearing its ACCESS LOCK and CONTROL

(2) FRETURN('PMC', 121) unless the calling sub-process

The MCALL does exactly what CLRPMT does -- releases

if it is a private memory page -- and in addition frees

LOCK. All pointers to PMT[PMTX], from sub-process maps

PSS

ak-nﬁ page
CC PMS/M-19 30

SPMTAL - Set the ACCESS LOCK of a PMT Entry

‘Declaration:
FUNCTION SPMTATL (PMTX, AL), FRETURN, MONITOR<-55;
Success Return:
RETURN;
Failure Returns:
('1) FRETURN ('PMI', 11f) unless 1< PMTX <NPMTE.
(2) FRETURN('PMC', 121) unless
(a) the calling sub-process controls PMT[PMTX], or
(b) the calling sub-process has access to PMT[PMTX]
and the exclusive.or of AL with the ACCESS
LOCK of PMT[PMTX] contains no bits which are
not set in the calling sub-process' KEY.
Action:

AL is set into the ACCESS LOCK field of PMT[PMTX].

bce " e e 19

page
31

SPMTCL - Set the CONTROL LOCK of an SPT Entry

Declaration: 4

FUNCTION SPMTCL(PMTX, CL), FRETURN, MONITOR<56;
Success Return:

RETURN;
Failure Returns:

(1) FRETURN('PMI', 11¢) unless 1< PMTXNPMTE.

controls PMT[PMTX] .

process.

Action:

If CL is @, the PMT entry is released with DELPMT.

(2) FRETURN('PMC', 121) unless the calling sub-process

the CONTROL LOCK of PMT[PMTX] contains any bits

which are not set in the KEY of the calling sub-

(3) FRETURN('SPC', 134) if the exclusive or of CL with,

CL is set into the CONTROL LOCK field of PMT[PMTX].

e e teepes———

b p/c=n.r " paée
CC PMS/M-19 32

SPMTRO - Set the Read Only Bit in a PMT Entry

Declaration:
FUNCTION SPMTRO (PMTX, RO), FRETURN, MONITOR<-57;
Success Return:
RETURN;
Failure Returns:
(1) FRETURN('PMI', 11¢) unless 1< PMTXX NPMTE.
(2) FRETURN('PMC', 121) unless the calling sub-
process controls PMT [PMTX].
(3) FRETURN('FPR', 135) if FP and RO are set in
PMT [PMTX] and the offered RO is {.
Action:
The value of RO is copied into the PMT entry's

RO field.

bec

p/c=n.r

PMS/M-19

paée
33

READPMT - Read a PMT Entry

Declaration:

FUNCTION READPMT (PMTX, ARRAY PMTE), FRETURN, MONITOR<-58;

Success Return:
RETURN ;

Failure Returns:

(1) FRETURN('PMI', 11§) unless 1< PMTX < NPMTE.

Action:

Five words are copied into the caller's array.

The first four are the four words of PMT[PMTX].

fifth is the APT entry which points to PMT[PMTX] if

there is such an entry, or @ if there isn't.

The

et s———y

bcc

p/c=n.r
PMS/M—19

page
34

PPDWS -

Success
Failure
(1)

(2)

(3)
(4)

Action:

thus

transferred from the disk to the drum.

Put Page in Drum Working Set.

Declaration:

FUNCTION PPDWS (PMTX), FRETURN, MONITOR<-65;

Return:

RETURN;

Returns:

FRETURN ('PMI', 11¢) unless 1X PMTX SNPMTE.

FRETURN ('PMC', 121) unless the calling sub-process

controls PMT[PMTX] or has access to it.-

FRETURN ('PME', 128) if PMT[PMTX] is empty.

FRETURN ('DWF', 134) if the process' Drum Working

set is full and the calling sub-process doesn't
have DDWSO (Default action on Drum Working Set

Overflow) set in its SPT entry.

The page whose Real Name appears in PMT[PMTX] is

in the process' Active Page Table and the APT entry

created is initialized according to
UH< -1
DWS< 1

PMT< PMTX

Set no action is taken.

PMTX is entered

If the page is already in the process' Drum Working

bcc

p/c-n.r

PMS/M-19

page
35

PPDWS - Continued

If the process'

room for the new entry.

this document.

calling sub-process has DDWSO set in its SPT entry,

Drum Working Set is full and the

system will delete some page from DWS in order to make
The algorithm the system uses to

choose the page to be deleted is described elsewhere in

the

p/c=n.r
PMS /M- 19

bec|

page
36

PPCWS -

Success

Failure

(1)

(2)

(3)
(4)

(5)

Action:

drum,

page

Put Page in Core Working Set .

Declaration:

FUNCTION PPCWS (PMTX), FRETURN, MONITOR < 66;

Return:

RETURN;

Returns:

FRETURN('PMI', 11¢) unless 1 ¢ PMTX < NPMTE;

FRETURN('PMC', 121) unless the calling sub-process

controls PMTIpPMTX] or has access to it.
FRETURN('PME', 128) if PMT [pMTX] is empty.
FRETURN('DWF', 134) if the process' Drum Working
Set is full and the calling sub-process doesn't
have DDWSO (Default action on Drum Working Set
Overflow) set in its SPT Entry.

FRETURN('CWF', 132) if the process' Core Working
Set is full and the calling sub-process doesn't
have DCWSO (Defaﬁlt action on Core Working Set

Overflow) set in its SPT Entry.

The page named by pMTiPMTX] is transferred to the

if necessary, using PPDWS. The iCWS bit in the

resulting APT entry is then set, with the effect that

the next time the process is read in by the AMC the

will be swapped in as part of it. Note that this

p/c=n.r page

I:’(::‘:: PMS/M-19 37

PPCWS - Continued

means that PPCWS does not cause the page to become avail-
able "immediately"”. A page fault will still occur if the
page is referenced before the next time the process is
swapped in.

If the process' Core Working Set is full, some page

will be removed from it to make room for the new page.

BCC e PMS/M-19

page
38

DPDWS - Delete Page from Drum Working Set

Declaration:

FUNCTION DPDWS(PMTX), FRETURN, MONITOR < 67;

Success Return:

DMT[PMTX] was not in DWS.

Failure Returns:
(1) FRETURN('PMI', 11¢) unless
(a) 1 £ puTx { NPMTE, or

(b) PMTX = -1,

PMT[PMTX] .

Action:

Overflow condition.

sub-process neither controls nor has access to

is deleted and the SF bit in PMT[PMTX] is cleared.

RETURN PMTX'; where PMTX' will be the PMT index of the

page deleted or -1 if the page named by

(2) FRETURN('PMC', 121) if PMTX # -1 and the calling

(3) FRETURN('DWE', 159) if PMTX = -1 and the process'

Drum Working Set is empty (which is very unlikely).

The page named by PMT[PMTX] is released from the

process' Core and Drum Working Sets., Its entry in APT

If the calling sub-process supplies -1 as the value
of PMTX, the system chooses a page to delete according

to the same rules used to correct the Drum Working Set

v p/c=n.r page

DPCWS - Delete Page from Core Working Set

Declaration:
FUNCTION DPCWS (PMTX), FRETURN, MONITOR < 68;
Success Return:

RETURN PMTX'; where PMTX' will be the PMT index of the
page deleted or -1 if the page named by
puTlpMTX] wasn't in cws.

Failure Returns: |

(1) FRETURN('PMI', 110) uﬁless
(a) 1 ¢ PMTX ¢ NPMTE, or
(b) PMTX = -1.

(2) FRETURN('PMC', 121) if PMTX # -1 and the calling
sub-process neither controls nor has access to
pmtlpMTXI .

(3) FRETURN('CWE', 158) if PMTX = -1 and the process'
Core Working Set is empty.

Action:

The page whose Real Name appears in purlpmrx] is
released from the Core Working Set' of the process. The CWS
bit in its APT entry and the SF bit in the PMT entry are
reset. The page becomes unavailable to the process
immediately.

If PMTX = -1, the system chooses a page to delete,

using its DCWSO algorithm.

bec

p/c-n.r
PMS/M-19

page
40

Declaration:

Success Return:

Failure Return:

Action:

CODE
@ or 'cws'
1 or 'OCW'
2 or 'MCW'
3 or 'DWs'
4 or 'oDw'
5 or 'MDW'

set

(1) FRETURN('ARG',

READ'IWS - Read Length of Working Set

FUNCTION READ'LWS(CODE),FRETURN, MONITOR<7d;

RETURN LNGTH; where LNGTH is that one of 6 working
"lengths" selected by CODE as

described below.

191) wunless Code has an acceptable

value. (See Below).

Code is used to select one of 6 possible working
set length according to the scheme given below. The

selected length is the value of the MCALL.

Length
LCWS
OLCWS
MLCWS
LDWS
OLDWS
MLDWS

bec

p/e=n.r page
PMS/M~-19 41

SET'LWS - Set

Declaration:

FUNCTION

RETURN;

the

(a)

(b)

Action:

to LNGTH.

Overflow Length of Working Set

SET' LWS (CODE, LNGTH) , FRETURN, MONITOR<71;

Success Return:

Failure Returns:

(1) FRETURN('ARG', 191) unless CODE has one of

4 values. 1, 4, 'OCW', 'ODW’'.

(2) FRETURN('WSL', 192) if

CODE = 1 or 'OCW', and LNGTH doesn't satisfy
Lcws < LNGTH { MLCWS, or
CODE = 4 or 'ODW', and LNGTH doesn't satisfy

LDWS ¢ LNGTH { MLDWS.

If the value of CODE is 1 or 'OCW', OLCWS is set

If the value of CODE is 4 or 'ODW', OLDWS

is set to LNGTH,.

bee

p/e=n.r page
PMS/M~19 42

Iv

System Maintenance of Core Working Sets

A process that knows what it's doing can use the above

operations to insure that its Core Working Set contains

the pages it is currently referencing and no others.

Not all processes will be clever enough or industrious

enough to do this, however, so the basic system will

incorporate procedures for automatically maintaining

Core Working Sets in a reasonable state. The appli-

cation of these procedures to a process' CWS can be

controlled by the process' currently active sub-

process through setting and re-setting the DCWSO

bit in the sub-process' STATUS BIT word.

If CWS maintenance is left entirely to the basic system

it will be handled as follows:

(1)

(2)

(3)

(4)

Pages will be added to CWS when a CPU refer-
ence genérates a Page Not in Core (PNIC)

trap, i.e., when page faults occur.

A use history will be kept for each page which
appears in CWS.

When the use history of a page in CWS indi-
cates that the page is no longer being used
by the process, the page will be removed

from CWS.

If CWS is full when a page fault occurs, the
use histories will be used to select a current

entry in CWS for deletion.

p/-n.r page
CC PMS/M-19 43

A.

Use Histories

Use histories for the members of CWS are kept in the
8-bit UH fields of CWS entries. These fields tell
us about references to pages during the last 8

times the process ran on the CPU. The left most
bit (bit @) records references during the most
recent time, bit 1 records those during the next
most recent, and so on. Figure 2 gives a sample CWS
entry with an interpretation of its USE HISTORY

field.

When a page is first put in CWS its UH field is ini-
tialized to all ones. The effect of this is to assure
new entries preferential treatment by the algorithm
which chooses an entry to delete when a CWS overflow
occurs. The UH fields are updated periodically as

follows:

(1) Each UH field is shifted 1 bit right, the
contents of the right most bit (i.e., the
most ancient historical information) being
discarded.

(2) The RF (Reference Flag) bits in the PMT
entries pointed to by the CWS entries are

copied into the now vacant left most bit

BCC v PMS /M- 19

page
44

UH.

time the Swapper reads the process in.

positions of the UH fields. The RF bits

point to PMT entries with SF = ¢. The pages pointed

that they had not been referenced. A process which

its need for them will not infrequently have such

entries in CWS when it is dismissed, since pages are

in PMT are reset after they are recorded in

Steps (1) and (2) are not perfomed on CWS entries which

to by such entries are not even in core (as far as the

process in concerned) and it would be misleading to note

adds pages to its Core Working Set in anticipation of

brought in not when they are added to CWS but the next

3 p/e=n.r page
CC : pMS /M- 19 45

The record-keeping operations just outlined are perform-
ed by the system regardless of thé state of the CWS
maintenance strategy flag, DCWSO. Setting or resetting
DCWSO enables or disables the system machinery for
automatically removing "unused" pages from CWS and for

automatically correcting the CWS overflow condition.

Automatic Deletion of Pages From CWS

This gets invoked immediately after all CWS USE HISTORY
fields have been brought up to date preparatory to
dismissing the process. It scans CWS, looking for entries
with the first (i.e., left-most) N bits clear, where N

is an as yet unspecified integer between 1 and 8. An
entry which meets this condition is deleted from CWS

if its KEEP and LOCK fieldé are both clear. This
quaiification, KEEP = LOCK = ¢, allows a process to use
the system's maintenance strategy in general but except

special pages from it.

Correction of CWS Overflow

Overflow of the Core Working Set occurs when a process
attempts to add a new page to CWS and CWS already
contains the maximum number of entries it is allowed

to hold. 1If DCWSO is set when this happens, the system
will choose some current member of CWS and delete it

to make room for the new page.

' p/e-n.r page
CC | : PMS /M- 19 46

The system will consider for deletion the elements of
CWS which have been referenced least recently. It uses
the USE HISTORY fields to identify these elements,
first extending the fields by pre-fixing to them the

RF flags from the PMT entries with which they corres-
pond. It scans these extended use histories for a
maximally long string of leading zeroes. If two or
more entries have this same maximum number, say M, of
leading zeroes it attempts to differentiate them by
looking for maximally long sequences of zeroes starting
at bit positioﬁ M+2. It will continue this until either
a single entry is isolated or UH is exhausted. 1In the
latter case the first entry encountered in the final
scan will be deletea. This sounds complicated, but it
is fortunately exactly equivalent to selecting the
first entry in CWS whose extended UH field, considered

as a number, is minimal.

CWS entries with LOCK = 1 will not be deleted. An
entry with KEEP = 1 will be deleted only if there are
no entries with KEEP = LOCK = (. It should never happen

that the entire CWS is LOCKed.

The procedure just described will always be used to
correct a CWS overflow which occurs in Monitor Mode,

regardless of the s~tting DCWSO. This is necessary

p/e~n.r page
CC | PMS,/M~ 19 47

since it would not be possible in general to continue
a Monitor function after giving control to the user to
handle the overflow. For the same reason PNIC traps which

occur in Monitor Mode will not be sent to the user.

p/c=n.r page
CC PMS /M- 19 48

V System Handling of Page-Not-In-Map Traps

When a process makes a reference to a page for which
no PMT index appears in the process' PRMAP, a Page-
Not-In-Map (PNIM) trap occurs. The action taken by
the operating system in such a case depends on the
value of the flag DPNIM in the Sub-Process Table
entry for the currently running program. If DPNIM

is reset, the system will send a trap to the program.
That is, it will call the program at a special "trap"
entry point, passing it the information that a PNIM

trap has occurred and the address to which the trapped

reference was made.

If DPNIM is set, ﬁhe system's "Default PNIM Strategy"
is invoked. This strategy is to create a new page for
the program just as if a call on NPPMT had been made,
put the PMT index returned by NPPMT into the empty
byte in PRMAP, and return contfol to the trapped

instruction.

PNIM traps which occur while the program is executing
in the Monitor are always handled with the default

strategy.

p/e=n.r

PMS/M-19

page
49

Format of an Entry in a Process Memory Table

Figure 1

[23
] UNIQUE NAME
[(Ul 23
l «
g1 : Zé
2| F DISK ADDRESS (DKA)
Pl Q
o Il 3 L1213 4)15 23
R| R ACCESS S| C CONTROL
3 OIF LOCK (AL) F| C LOCK (CL)
E
FP - File Page
NC - No Charge
RO - Read-Only
RF ~ Reference Flag
SF - Scheduled Flag
CCE - Class Code Error

bec

p/e=n.r
PMS /M- 19

page
50

Format of an Entry in an Active Page Table

t=] L1 2]1 3[14|15]16 23

PAGE DICl Kl L

@ USE HISTORY (UH)] LOCK W W El O PMT INDEX
(PGL) | S| S| E} C (PMT)
Pl K
An Example of an APT Entry

12345618 91@1112131415161718192ﬂ212223
1121001 1|000091|1ij0oo1ooolol

has made
the
the
the
the

the

Nor is it KEPT or LOCKed in the working sets.

references to the page during

last
last
last
last

last

interval,

ihterval but 1,
interval but 3,
interval but 6, and
interval but 7.

Figure 2

The entry tells us that the page whose Real Name

Sets. The page is not locked in core for this process.

appears in PMT[69] is in the process' Drum and Core Working

The process

bec

p/e=n.r
PMS/M-19

page
51

loc. 2778

loc. 2008

The Process

Map in a Context Block

Byte 126 Byte 127
Byte 96 Byte 97
Byte 94 Byte 95
Byte 64 Byte 65
Byte 62 Byte 63
"Byte ¢ | Byte 1

11

PMT Index

gl 3| 4
R ;::>*(:j
O ~

Figure 3

>

Format of a Byte in PRMAP

Monitor Ring
(32 bytes)

Utility Ring
(32 bytes)

User Ring
(64 bytes)

	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

