 title 7 prefix/class-number.revisi

BCC ‘ THE REMOTE PROCESSOR ASSEMBLER RPASS/M-21

/

che 4 K’ authors approval date [revision date
| a :@E/U.) Ve Judeth Behling 7/22/70
checke \

Company Privatg 14

 |classification
Paul Heckel Manual |
approvad - » 7 5/\/{ / ~ . distribution pages
227 JeA

ABSTRACT and CONTENTS

This document describes the Remote Processor Assembly
program (RPASS). It also describes the method of generating

files loadable by the DCC and listings of the programs.

A description of the DCC loaders is also given.




S p/c=n.r page
CC RPASS/M-21 1

Introduction

RPASS, the Remote Processor Assembler, is a version of NARP
that has NARP macro facilities and directives and an instruct-
ion set alien to the 940, but indigenous to the RPU. New
directives (macros) have been added to facilitate the writing

of RPU programs,

RPASS is a NARP save File that produces a binary file that is
loaded into the dump file RLOAD. In this dump file, a
reformating program is executed to produce a core image of

a program to be executed. This can then be simulated or

put on a file for loading into the DCC by executing the

appropriate routine.

RPASS Programs

RPASS Programs should begin with the directive RPASS, and

terminate with the directive ENDRP.

Opcode Format

The RPU opcodes are listed in the Appendix to this document,
and described fully in the document RPU/S-33. The addressing

type is implicit in the opcode suffix:

No suffix Direct

T Indirect

S Scratch Pad

C Constant (non-relocatable

immediate addressing)

A Address (relocatable
immediate addressing)




P/“ﬂ.r page
CC RPASS/M~-21 2

The distinction between the last two types of addressing is
necessary for relocatable progréms (this will be explained in
the next section). A reference to a relocatable symbol such as
an address for an immediate oéerand must be followed by an A,
e.g.,
LACA *+2
A non-relocatable immediate address must have a C suffixed, thus
LACC 3
This problem is not present with direct or indirect addressing
which is always relocatable, or with scratchpad addressing which
is never relocatable. Extended opcodes do not have suffixes.
Their format is OP I,J. (Note that the second argument is the
one that gets changed.) Certain opcodes such as SKNL that do
not exist in the RPU have been added. SKNL I,J for example is
SKL, J,I. These opcodes are SKNL, SKGE, SKNG, SKLE. AIX1l, AIA,
AIX4, AIX5, AIX6 and AIX7 have been added. For example, AIX1 N

is IX1 N,1.

Addressability

The addressing of opcodes for the RPU is not entirely straight-
forward because of the small (6 bit plus sign) address field.
Normally, in an assembler, the first argument specifies an
expression to go into the address field, and a second argument
specifies a number that goes into the tag field. This cannot
easily be done for RPU programs because of the small

address size. Thus RPASS attempts to aid the user.




pP/e~n.r page
CC o RPASS/M-21 3

In order to give a clearer idea of what is happening, the
method of address determination is discussed in more

detail than is necessary to use the addressing features.

When the binary output file of RPASS is loaded into RLOAD

the 14 bit address field contains the absolute address

of the instruction with one exception: Non-relocatable loads
have the high order address bit set (generated by a C

rather than an A suffix). A fix-up routine called .FIXUP
massages the program. Each instruction is modified

depending on the address already in the instruction.

All scratchpad addresses and instructions that use an index
register other than zero are checked to ensure that they
are in the range of 0 to 63. (One exception is mentioned

shortly) .

All direct and indirect addresses are checked to see
whether they are within 63 locations of the instruction
that references them. If the address is in that range,
and no index register has been used, the address is
replaced with a relative address, and the index register
is set to 2, the program counter. Non-relocatable
immediate addresses in the range of -63 to +63 are left
alone. Addresses in the range of 0 to 63 and -63 to 1
are left alone. Addresses at GEN7i63 are referenced

relative to index register 7 if the GEN7 macro is used.




p/e=n.r page
CC RPASS/M-21 4

Read on.

Addresses of those instructions that do not fall in the
specified ranges are changed to direct if immediate, and
indirect if direct:; and they are given an address relative
to index register 7. .FIXUP will fill words starting at
location GEN7 with the addresses, and at the end of the
fix-up, print out the number of such words generated.
These are known as generated words. Whenever a new word
is added, the old generated words are searched to see if
one with the appropriate value exists already. Thus the
user need not concern himself with the magnitude of constants
and the relative distahce of addresses, EXCEPT that they

are truncated to 13 bits.

Branches are slightly different from the other opcodes
although the unthinking user might not be aware of it.

The normal branch, BRU, and BSL are really immediate
instructions, and BRUI and BSLI the branch indirect
instructions really direct. This is because BRU, which
loads index register 2 with the address of the instruction,

ig immediate. All branches are treated as relocatable.

Another minor case worthy of mention is that of out of
range (<63 or >-63) operands that are indexed by index
register 1. The indirect word is generated with its

index bit set.




P/e=n.r page
CC RPASS/M-21 5

This scheme of addreés recalculation allows the user to use
RPASS in either of the following ways (and he should
specify which in his comments) :

1. As a straightforward assembler. Indexing by all
registers except for 2 is explicitly specified,
and any indirect words with relocatable values
created by the fix-up routine are considered as
errors. The program is relocatable in that any
files of it that are generated can be loaded at
any place in the DCC. Such a program would
normally be either a small test program or a
relocatable piece of a larger program that has a
communication region of indirect words in an
absolute location.

2. The normal method utilizing RPASS is to let RPASS
and FIX generate literals and indirect words as
needed. The resulting program is not relocatable,

however.

Words in the GEN7 block may be generated via either method.
The distinguishing point is whether any relocatable words
will be referenced: thus the number of references to

relocatable words is listed separately by .FIXUP.

If generated words are used, the user must use the macro
L7GEN7 to load index register 7 with the location of GEN7

before any such symbols are referenced.




R p/e=n.r page
CC - RPASS/M-21 6

Verboten NARP Features

The user of RPASS should not use * (asterisk), = (equal sign)
or any directives that have mysteriously disappeared from

the NARP Symbol Table.

Assembling with RPASS

RPASS is used to produce a binary file just as one would use
NARP. This file is then loaded into RLOAD and .FIXUP;G is
executed to reformat the instructions. After this, the
assembled program is sitting in core. A listing of the
program may be obtained by executing .LISTC;G which will
request the text file generated by NARP. The resulting
output file lists not only the symbolics and the value of

the core locations but also the DCODT "symbolics".

Simulating an RPU Program

An RPU program can be simulated by saving core from 24000
to 34000 and then putting this in the memory space of the
file DDUMP which contains the microcode for the DCC
programs. Control can be transferred to the simulator by
saying MAINLOOP;G. Although no formal breakpoint mechanism
exists, the user may remember from the Interactive Micro-
processor Simulator Document (PIG/M-13) that the simulator
stops when the address of the memory operand is equal to

the contents of MEMTRAP,

Generating Loadable Files

The RPASS and ENDRP macros output definitions of symbols so




p/e=n.r page
CC RPASS/M-21 7

that the first and last locations of the program are in the
cells FIRST and ILAST. The bounds of loadable images of

the program which are determined by values of these
variables are output by programs that generate loadable

files.

DCODT Paper Tapes

A tape loadable by a standalone DCC can be generated by
transferring control to .PTAPE;G. The symbolic file thus
produced can be given a label with LABEL;G and punched

with .PUNCH;G. This paper tape has some null characters
following the loading address so that the operator can

stop the tape and type in another address for the program

to be loaded at if the program is relocatable. The starting

address as specified by ENDRP is put in scratchpad 2.

Microcode Loadable Files

A microcode loadable file can be generated by doing .MLOAD;G.
The file generated contains all of the necessary characters
from the first LRC to the character that causes the SBRB to
fail. The firmware restriction on the amount of core that
can be loaded is removed by generating as many LRC's as

needed.

The DCC Loader/Unloader

Appendix 2 describes a relocatable loader that runs in the

DCC, is normally used for loading programs, and whose

operation is similar to the Microcoded Bootstrap Loader.




Ple=n.r page
BCC ‘ RPASS/M-21 8

Methods for specifying the loading of scratchpads, selective
loading of core, and unloading of core and scratchpad have
not yet been implemented. The user can, however, generate

a loadable core image over any one interval in the same

way he generates an LRC loadable file except he executes a

.DLOAD; G.

RPU Loadable Files

An RPU loader exists which loads paper tapes into a
standalone DCC running an RPU program called RPUL. The
advantage of this program over PTAPE is the fact that the
load tape is much more compact. This program is used just

like PTAPE by saying BTAPE;G

Other RPASS Features

With the exception of labels, all of the DCC microcode
symbols exist in the RPASS symbol table as do several
macros useful for constructing DCC tables. These macros

will be described in a future document.




bec

p/e=n.r page
RPASS/M~21 9

RPASS Directives

FID:

DF2:

IND:

INDB:

RPASS:

ENDRP:

RINGP:

RINGB:

L7GEN7:

The following directives, which are actually macros may be

used by an RPU programmer:

Define field descriptor. The first three
operands are as in QSPL: displacement, first
bit, last bit followed by the index register
number.

Define field descriptor. The arguments are the
name of a DCC field, and an index register.
Define indirect word. The first operand spec-
ifying the address, is followed by an optional
second argument indicating indexing (1) .
Define indirect word with a byte address has
three operands: The address, O or 1 to spec-
ify the left and right bytes in the word, and
1 or 0 for or against indexing by register 1.
Must begin each RPASS assembly. It is followed
by an optional Origin.

Must end each RPASS assembly. It is followed
by an optional start location.

Two word pointer to the end of a ring buffer
specified by its argument.

Ring buffer of length N characters where N is
its argument.

Expands to four RPU instructions to load

index register with a pointer to GEN7B.




C C p/‘-n.’ page
B rpASS/M-21 | 10

GEN7B: Sets aside a block for generafed words of length

specifiable by its argument.
CHARS: The N arguments, each an octal bytes less than
400B, are put into a block of core two per word.
WORD: The argument must be a defined expression and

is treated as a non-relocatable 16 bit quantity.




CC P/C-n.r Pog.
B RPASS/M-21 11

Appendix 1 List of all of the Addressable Opcodes

LXR ILXRI ILXRS IXRA IXRC

LDA LDAT LDAS LDAA LDAC
LRL LRLI IRLS IRLA LRIC
BRU BRUI BRUS
LR5 LR5T LR5S LR5A LR5C
LR6 LR6T LR6S LR6A LR6C
LR7 LR7I LR7S LR7A LR7C
STA STAI STAS
ADM ADMI ADMS
ISZ ISzT Iszs
BSL BSLI BLSL
STL STLI STLS

Pseudo Opcodes

ATX1 AIA AIX4 AIX5 ATIX6 ATX7

Extended Opcodes

ATR SUB OR AND EOR SKE SKNE SKG SKL SKA
SKNA ISG DSL LIB ILRB ACTT LLRB SBRB GOML LCY

POT PIN MBLK COPY SBRB1 PRO

Pseudo Extended Opcodes

SKNG SKNL SKLE SKGE




p/e=n.r page
CC RPASS/M-21 12

APPENDIX 2

The DCC ILoader/Unloader

The DCC Loader/Unloader is a program of about 70 RPU instructs
ions which is loadable anyplace in the DCC. It allows the

user to load and unload both core and scratchpad.

The format for commands to the loader is first a character
specifying the command then the characters of the command
itself. The characters used by the loader are in the range
of @ to 377 and include no control characters. Needless to
say, the transmission of these characters to the DCC requires
shiftl be inserted by the core image generator, but this
inaestheticism has been removed by the time the characters
get to the loader, and will not therefore be discussed in

describing the loader.

The command characters are context dependent; the first
character input is assumed to specify the coﬁmand, and the
number of characters in the command is determined by the
command. The first character following a command is there-
fore assumed to be the first character of the next command.
Any character not recognizable as a command character is
echoed back to the CPU. Loader commands are:

Load desc, core, extra.

The load command character, (@) is followed by 4 characters
that specify a ring buffer descriptor for loading core.

These are followed by the core image and then a final




c p/e=n.r page
C RPASS/M-21 13

character which causes SBRB to fail signalling the end of

the load.

UNLOAD desc

The UNLOAD command (1) which is similar in format to the
LOAD command causes a copy of the specified core to be sent

to the CPU from the DCC.

Load scratchpad, scratchpad number, and value

This command (2) is followed by one character indicating the
scratch pad number, and then two more indicating the value

to which it should be set.

Unload scratchpad, scratchpad number

This command (3) will send the value of the specified scratch

pad to the CPU.

Wait

Wait (4) is a command that will cause the load to do nothing
until the specified number of characters are in the load
buffer, and then to protect so that it can service all of
the requests in the buffer without being interfupted for any
reason. When the process blocks, it unprotects. This
feature allows several interdependent variables to be set at

the same time.




p/c=n.r
CC RPASS/M-21

page
14

APPENDIX 3

The RPU Loader

It can be used to load a program by:
2s/ 7390
76G
After the tape is loaded 2S will contain the transfer

location.

in 73¢3 and then:
28/ 7304

76G

The unloader can be used to dump a (patched) version of
the contents of core by putting the beginning and ending

unload location in 73%1 and 73¢2, the transfer location

RPUL is a RPU loader/unloader that runs on a standalone DCC.




	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14

