 title prefix/class-number.revision

BCC THE REMOTE CONCENTRATOR DESIGN RC/S-23
cHe ,

authors , approval date [revision date

12/11/4.9

classitication

cke

C?;%Laoéi_‘ Paul Heczel : | specification

approved - , A ' distribution pages
;KEQDV ;ﬁ;;A/(/ LA/’(company private 32

ABSTRACT and CONTENTS

This document describes the Remote'Concentrator for the Phase
Two CHIO. It includes a description of the algorithms the
Remote Concentrator uses and the opcodes for the Processing

Unit in the Remote Concentrator.

The interface with the communications system (high speed line

to the CHIO) is not described however.

E p/e~n.r page
CC ‘ RC/S-23
Contents
Page

‘Design of the Remote Concentrator................ o1
The CHIO Interface Task (CHIT)coveeenanns 3
High Speed Input Device Tasks.............coauveenn 5
High Speed Output Device Tasks..............coceen 6
Teletype Interrupt-Task (TINT)cueeinanenenns 7
Abnormal Teletype Condition Task (ATCT) 8
Line Recognition.......oeer e enenroeeneanannaces 9
Character Echoing and Line Resynchronization...... 12
Loading and Storing Programs in the Remote

CONCEN LAt ¢« v e ¢ v oo vt oo v oo s oo onoessasssoasons 14
Messages sent to the CHIO on the Input Control

TANE 4 v e ot e oo no s s sosssssssanssssasasonsesss .. 15
Communications with the CHIO e e oo v oenennrnnenenens 18
Appendix I, The Remote Processor Unit...ooveveenna. 19

Instruction Format....ceeeeveeesas e e... 19

Machine RegisSterSveueeeeoonnasssnnon ce.. 21

The Extended Opcodeé.... ceseaarena e 24
Appendix II, Data Format...... ettt e e Al

Ring Buffer Pointer........cccovvmenonnenn ee.. Al

Local Device Table Entries..........e... Cere e A2

Task State Table.......oeteeeeeoaroscccessonss A3

Waiting Task Mask.........c... e e s A4

bec " re/smes i

Design of the Remote Concentrator

The Remote Concentrator is a 16 bit microprocessor that is

connection to a 16 bit memory. It runs several tasks:

1,2,3) High Speed line interfaces
4) Model 37 teletype
5) Model 35/33 teletype
6) 1IBM Selectric
7) Teletype special condition task

8...n) Special devices (line printer, card reader, etc.)
The maximum number of tasks that it handles is 32.

The Remote Concentrator normally is executing one of these
tasks when an interrupt comes in. When this happens the
two words of interrupt bits are merged into a two word
Waiting Task Word (WIW). A bit is set in the WIW for each
task requiring attention. If thé running task is an
interruptable one and it is of a lower priority than the
new task, the task being executed is stopped and its state
is saved. There is a task table which is indexed by the
task number. It gives the location of the subroutine to be
called when the task is activated. It also keeps the state
of the task. This table has two bits, one that says the
task is micro-coded, and a second that says the task is non
interruptable. The state of the new task is loaded and it
is called. The new task will run until it either blocks or

it is interrupted (if interruptable) by a higher priority

ECC p/“:::/ S-23 P;’.

task.

When a process blocks,fhe bit in the Waiting Task Word
associated with the process is turned off, the state is stored,
and the task of highest priority.according to the Waiting
Task Word is called in the same manner that this task is

called.

The above method of dispatching on a task is reasonably
efficient, and it allows a microcoded process to be replaced
by an RPU process. However, it allows an infinitely looping
program to prevent any lower priority task from being
executed. This is unfortunate but the number of such un-
debugged tasks should be quite small. Initially such a task
can be run as a low priority task if there is the possibility
of this error. There are other possible errors as well.

The system is.neither fool proof nor knave proof. However,

a good programmer has a minimal chance of affecting other

tasks with his errors.

Getting the RC out of an infinite loop in a non-interruptable

task requires manual intervention.

bec Tz s

The CHIO Interface Task (CHIT)

The task that interfaces with the 4800 baud line performs

a rather compliéated function with two possible end results.
It either gets a character to be placed into a specified
line in the Remote Concentrator; or it must get a character
from an available line in the Remote Concentrator to send
to the CHIO. It will get or receive these characters from
the CHIO in a manner to be described in a forthcoming docu-

ment. The details are not necessary here.

Tf this task has a character for the nth line it will index
into the local line table (see appendix II for table format) .
If the specified device is a teletype or 2741 it will store
the charaéter in the abproPriate field and set a bit saying
that the character is there. 1(The CHIO will not send
characters to.a device faster than the device can accept

them.)

Tf the device is a high speed device the table entry contains
a ring buffer descriptor that specifies a ring buffer to
store the character into (see the SBRB instruction). The
process associated with this task is awakened by setting

the bit in the WIW..

If an input word is needed for the CHIO, CHIT finds the
next line with a character for the CHIO by linearly searching

the local device table (starting with the line following

ye-n.r age
BCC i 11c/s—23 ’ :1

the line where the last character was found). It will get
one character from this line and output it. When next
called it will start with the next line to look for a

character.

There is one CHIO interface task for each high speed line
to the CHIO. There may be as many as three such lines,

therefore as many as three such tasks.

ECC (ORI

High Speed Input Device Tasks

If there is input from a high speed device this will be
reported by the‘appropriate interrupt bits being set. The
task associated with this is called to service the device.

It will read characters from the device and should write

them in the ring buffer associéted with the line. This task
will continue to run until it blocks. (It may be interrupted

temporarily to run a higher priority task).

The CHIO interface task will read the characters from that

line and send them to the CHIO.

BCC p/c-".I;C/S—zy, che

High Speed Output Device Tasks

Whenever a character is‘put in a high speed output line ring
buffer, a bit is set in the Waiting Task Word, causing the
output task to be called. This task will read characters

from the buffer and output them on the specified’device.

To give an interesting example of how this might work,
consider interfacing with a line printer. Assume the printer
task cannot output characters to the printer until it has
received a whole line image, and when it has the whole line
image it must output the characters at a rate of one
character every 500 microseconds. This task will get
awakened each time a new character is placed in its buffer.
It can then check the éharacter to see if it is a carriage
return. When it receives thisvit goes into another mode
outputing a character on the line printer and then blocking.
When the printer is ready for another character it sets an
interrupt which reactivates the prodess. In actual
practice a simpler algorithm could be used; but this seems
to be a good example showing how output from a high speed

device can work.

BCC P/c.:(':/S— 23 ng.

Teletype Interrupt Task (TINT)

The teletype interruptvtask for the remote concentrator
is similar to the subr;utines that handle the teletypes
on the Phase 1 CHIO. There is one primary difference.
For each low speed device there is an oscillator running
at seven times the bit rate for the device. Each (oscillator)
cycle an oscillator will triéger the interrupt associated

with the device. This will cause the specified teletype

task to be called.

When the Teletype Interrupt Task (TINT) is called, it

will scan the bits for an input character in the same

way that the Phase 1 CHIO does its bit scanning. (see
IHTWD/S-). When it has a character to be input,it‘stores
it in the local line table aﬁd sets IHC. (see Appendix II).
CHIT will come along, and finding the bit set will send

the character to the CHIO. Similarly character output is

the same as in the Phase 1 CHIO.

There are several tasks related to teletypes, that the CHIO
must perform that it does not do in the Phase 1 CHIO; but
all of these are done by the Abnormal Teletype Condition

Task.

bec -

Abnormal Teletype Condition Task (ATCT)

There is one task which is called whenever an abnormal
teletype condition occurs. Examples of this are a carrier
going off or a line's needing to be dialed. If any data
set detects an abnormal condition it sets the appropriate
interrupt so that the abnormal teletype condition task
will be called. This task will then execute the appro-
priate PINs to find out what the problem is. It will

then send an indication of the problem to the CPU.

One of the local lines, called the input control line,

is reserved for control information from the CHIO to

the remote concentrator. If any characters are put

in this buffer the Abnormal Teletype Condition Task is
also called. One of its functions is to dial a number of

the gelected line. (see page 137)

The Abnormal Teletype Condition Task, on a command from

the input control line, will hang up a teletype line.

When a call comes in on a (n unused) line the Abnormal
Teletype Condition Task will send the information to the
CHIO (and a CPU program) on the output control line indi-
cating this. The CHIO will then set the line to some new
value by sending another request to the ATCT setting the

device type. ATCT also handles line recognition.

bec /e "

Line Recognition

1)

2)

3)

4)

5)

All devices will come in on the same telephone lines. The
algorithm for determining the device type is implemented

with a CPU program.

When a line into the Remote Concentrator is called
the Abnormal Teletype Condition task will send the

line number to the CPU.

The CPU program will send a request to the Remote
Concentrator asking it to answer the line, set the
unknown device type bit, and set the NCIP bit in each

of the device entries for the specified teletype.

The bit scanning subroutine will independently exa-
mine the input stream as if it came from three dif-
ferent devices. When the bit scanning’subroutine
receives a character it notes that the unknown

device type bit is set, and therefore will not

send the character in on the input line as would be

the normal case, but it will send the character in on
the input control line with an indication of the device

type assumed and the line number.

The user (because he has been brainwashed by market-

ing) will type a carriage return.

The CPU program will receive several messages from the

ECC P/Ml';C/S- 23

page
10

input control line, one of which will say that a

device of a specified type has'input the character
Carriage Return. The CPU will then know what the
device type is, and set the device type correctly

in the Remote Concentrator}‘

6) 1If the Device is a 2741 the CPU program will type ou

either:

TYPE %
@IDU :
or:

ULA: &

TYPE %

The user, mystified by one of these messages, will
hopefully type a percent sign, in respdnse to the
comprehensible half to identify the device type.

The CPU might have to reassign the device type

as there are two completely different 2741 character
sets and they both have the same code for carriage

return.

The user knows that to get into the system he calls a
certain number and then hits the carriage return once or
twice. He should then find that the computer recognizes
his device and types out a message asking him to log onto

the system. Only in the case of the 2741 is any further

typing necessary.

t

I ;CC m-lgc’/s-23

page
11

high level decisions are made by the CPU program.

The discipline proposed has been designed to be reasonably

general, allowing the algorithm to bé changed. All of the

ECC Y e 523 Free

Character Echoing and Line Resynchronization

If a line is in local echo mode when the CHIO Interface
Task takes a character from the line to send to the CHIO
the CHIO Interface Tasgsk will determine if the character
should be echoed, and echo it if needed. It will also

reset Local Echo Mode if the character is a break charac-

ter.

The CHIO can reset local echo mode by sending a resume
echo character to the appropriate line. Whenever a
Character is sent to the CHIO from the Remote Concentrator,
LVB is set to N (a specific constant). Whenever a new
block comes from the CHIC,LVB is decremented by 1 until

it reaches zero. If LVB is zero when the Resume Echo
Character is received, LEM is set. The reason that this
algorithm works will be described in the forthcoming

document on CHIO/ Remote Concentrator Communications.

A precise description of the algorithm for local echoing
of characters (which is identical to the Phase 1 system)
follows:
1) Send the character to the CHIO. If LEM is off
terminate, and reset LVB to N; Terminate
2) If the character is a non echoable character,
terminate
3) Otherwise, get the character type from the

Character Type Table (same as in Phase 1) and

I ;CC | P/hzzg/s- 23

page
13

add the type to the break strategy. If the
result is less than 4 echo'the character and
terminate

4) Otherwise, turn off LEM.

5) If the EBC bit<is_on,‘echo the character

Because the CHIO has the same information it will know

precisely what happened.

ferent subroutine if some other echoing strategy is

required.

Called by the CHIT its calling address is taken from the

character type table. It could be replaced with a dif-

The procedure just described is performed by a RPU program.

p/e=n.r page
CC RC/S-23 14

Loading and Storigg,Programslin the Remote Concentrator

Programs and data can be loaded into the remote concentrator
in three diffefent ways. There is a control character which
if seen by the communications system will cause the Remote
Concentrator to be loaded (see fdrthcoming document) .

This is normally used for Initial Program load. Second,

one of the ring buffer descriptors can be used to point to
the palace in core that a program should be loaded, and
characters can be sent to the Pseudo device associated with

this buffer.

The third method is to send a request to the Abnormal
Teletype Task to load a field or Ring Buffer Descriptor.
The section on Control Line Messages will give details of
this method. All of these mefhods can be used for either
loading the Remote Corc entrator or fetching its contents

so that a CPU program can look at it.

| P/c~n.r page
CC RC/S-23 15

Messages sent to the CHIO on the Input Control Line

The Abnormal Teletype Condition Task (and possibly other
tasks) may send information to the CHIO on the Input Control
line. A CPU process associated with the line will process

the message.

Messages are sent in the M1 character set. (This is a matter
of convenience as it allows me to say that a message
beginning with the character A means .. rather than a

message beginning with a 40B means.)

Some messages are followed by a character which is inter-
preted as a line number. This means that the character
following is equal to 40B plus the line number. (a max of

224 lines 112 input and 112 output.)
The messages that can be input to the CHIO/CPU are:

1) A line; The specified line is ringing.
2) B line; The specified line dropped its carrier

3) C line; The specified line's carrier on signal

turned on.
4) D line; The specified line hung up:;

5) E line char; The specified line is in an unknown
device type mode. The Remote Concentrator,
assuming it was a model 37, interpreted the
specified character as the character that was

input.

6) F line char; Same as E except a Model 35 is assumed.

bec

p/e=n.r page
RC/S-23 16

7)
8)

9)

10)

1)
2)

3)

4)

5)

7)

G line Char; Same as E except that a 2741 is assumed.

H line; The specified line answered the phone
(the computer calling out)

I line field VALl VAL2; Value is the value of the
specified field for the specified line.

J scratch VALl VAL2; specifies the value of a
scratchpad register.

Similarly messages can be directed to the Abnormal Teletype
Condition Task by sending a message of the same form to

the output control line. The specified messages are:

A line; Answer the phone on the specified line
B line; Hang up the phone on the specified line

C line Ng N1 N2 N3 N4 N5; the automatic dialing
device will interpret the seven low order bits
as a two digit number, for N1 to N5. This
specifies a ten digit number of dial. N@ is

the number of digits to be sent to the automatic
Dialer.

D line; Put the specified line in unknown device

type mode.

E field line, VALl VAL2; Index into a field table
to get a field descriptor and store the gpecified

value into the specified line.

F field line; Send the value of the specified
field to the CHIO/CPU.

G line dl...d8; The descriptor in the line is
loaded with the 4 words specified by the 8
characters. Note that if the specified line is

an input line the Remote Concentrator will start

bec

p/c=n.r
RC/S-23

page
17

8)

9)

sending characters specified by the line to the

CHIO (the buffer is not empty) .

H scratch VALl VAL2, the specified scratchpad is

loaded

I scratch; Return value of specified scratchpad

register.

BCC " /s

page
18

Communications with the CHIO

AN

document and find out.

How does it find and correct errors? How does it encode

the lines that the characters are sent to? How does

How does the Remote Concentrator communicate with the CHIO?

resynching for Echo work? Tune in to next week's exciting

' p/e=n.r page
Cc RC/S=-23 19

APPENDIX T

THE REMOTE PROCESSOR UNIT

Instruction Format

Each instruction consists of 16 bits divided into four fields,
the opcode field, the tag field, the index register field

and the address field:

op TAG XREG + ADDR
4 2 3 7

The first stage of the address computation is the adding of
the 16 bit byte address specified by XREG to a signed 7 bit
word address in the instruction (ADDR) shifted left one

to form a 16 bit Preliminary Address. This may be
interpreted as a byte address, or the left 15 bits may be

interpreted as a word address.

The tag field specified 4 types of addressing: indirect,

direct, immediate, and scratchpad.

Direct Addressing (0): The Preliminary Address is the

Effective Address of the instruction.

Immediate Addressing (l): The Preliminary Address is
treated as the contents of the Effective Address of the

instruction.

p/e=n.r page
CC RC/S-23 20

Scratchpad Addressing (2): The word part of the Prelin-

ary Address is the scratch pad number being addressed.

Indirect Addressing (3): The word part of the Preliminary

Address is the address of an indirect word.

An indirect word may be of the foilowing format:

X ADDRESS

1 1 14

The first bit must be a zero, the second bit maybe a
one to specify indexing by the index register #l. The

address field specifies a 14 bit byte address.

Alternatively the format may be as follows to specify

a field:
LAST - DISPLACE- FIRST
1 | xrREG | BIT MENT BIT

1 3 4 4 4

The displacement (4 bits, no sign) is added to the speci-
fied index register to specify the word to be addressed.
The beginning and end bits of the address field is specified

by the first bit and last bit fields in the indirect word.

bec

p/e~n.r
RC/S-23

page
21

Machine Registers

0)
1)
2)
3)
4)
3)
6)
7)

addresses,

a word address,

constitute the state of a RPU process.

Z register always contains zero

Index register
Program counter
Accumulatof
Link

XR5

XR6

XR7

of an instruction.

Machine Instructions

LXR (1):
BRY (2):
ILAC (3):
LRL (4):
LR5 (5):
LR6 (6):

LR7 (7):

Load index register

Branch (load program counter)
Load accumulator

Load return link

Load LR5

Load LR6

Load LR7

This machine has 8 addressable index registers, which

The addresses contained in these registers are byte
Since the address field of an instruction is
it is shifted left one to add it into

the index register to compute the effective address

bec s o

STA

IDB

STB

IS4

The specified register is loaded with the contents of the
effective address of the instruction.. The low order

(byte) bit of the effective address is ignored.

(10): Store
The contents of the accumulator is put into location
specified by the effective address. The low order

(byte) bit of the effective address is ignored.

(11): Load byte.
The addressed byte is loaded into the right half of
the accumulator, the left half of the accumulator is

cleared.

(12): Store byte.
The right half of the accumulator is stored in the

byte addressed by the effective address.

(13): Add to Memory.

The contents of the accumulator is added to the
specified memory location. (The low order (byte)
bit in the effective address for this instruction is

ignored.)

(14): Increment and skip if zero.
The contents of the effective address is increased
by 1 and if the result is zero the next instruction

is skipped.

| ;CC P/c-r:g/s—m

page
23

BSL (15): Branch and Save Link,

STI, (16): Store Link.

by the effective address.

Spare (17): Not yet defined.

EXT (#): Extended opcode Set.

The location counter plus 1 is put into the Return
Link (XR4) and the next instruction is taken from

the location specified by the effective address.

The link register is stored in the location specified

bee

p/e=n.r page
RC/S-23 24

The Extended Opcodes

The opcodes in the extended set are of the form:

EXOP

The effective address of extended opcodes in ignored.

Thus there are 64 possible extended opcodes, each of which

specifies 2 registers: - an I register and a J register.

ADD (4):
The contents of the I regiéter

of the J register.

SUB (1):

The cantents of the I register

contents of the J register.

XCH (2):
The contents of the I register

of the J register.

COPY (3):

The contents of the I register

OR ILiogical Or (4):
The contents of the I register

J register

is

is

is

is

is

added to the contents

subtracted from the

swapped with the contents

copied into the J register.

Logically Ored into the

BCC | "/"}:;/S_ 23 ”;;

EOR Exclusive or (6):
The contents of the I register is Exciusively Ored into the

J register

SKE (7), SKNE (10), SKG (11), SKNG (12), SKL (13), SKNL
(14): these six instructions will‘compare the I register
with the J register and skip if the I register is equal to,
not equal to, greater than, not greater than, less than, or

not less than the J register. Neither register is changed.

SKM (15), SKNM (16): Skip Masked, Skip Not Masked

SKM will logically AND the I register with the J regisfer
and skip of the result is not zero. SKNM is identical
except that it will skip if the result is zero. Neither

register is changed.

ISG (17): 1Increment and skip if greater
The I register is incremented by 1 and then compared with
the J register. If the new I register is greater than

the J register the instruction skips.

DSL (20): Decrement and Skip if Less
The I register is decremented by 1 and the instruction skips

if the new I register is less than the J register.

IWSL (21): Increment word and skip if greater
The I register is incremented by two and if the result is
less than the J register it will skip. The low order

(byte) bits are assumed zero in this comparison.

ECC P/‘-F:.C:/S—ZB e

DWSKL (22): Decrement word and skip if less
The I register is decremented by 2 and if the result is
less than the J register it will skip. The low order byte

bits are assumed zero for the comparison.

SWB (23): Swap Bytes.
The left byte of the I register is swapped with the right

byte of the J register.

LLB (24): Load Left Byte
The left byte of the J register is put into the right
hand byte of the I register, the high order bits being

cleared.

LRB (25): ILoad Right Byte
The right byte of the J register is loaded into the right

byte of the I register, the high order bits being cleared.

BLK (26): Block
control goes back to the microprocessor which saves the
state. When the microprocessor resumes control it will

commence at the next location,

ILBRB (27): Load Byte from Ring Buffer

The I register specifies a pointer to a ring buffer descrip-
tor (diagram in Appendix II). A ring buffer descriptor

is a 4 word entry each entry being a byte pointer, the first

word points to the beginning of the buffer, and the last

p/e=n.r page
CC RC/S-23 27

to the end of the ring buffer. The second word points to
the read pointer, and the third word fo the write pointer.

If the read pointer is the same as the write pointer
then the buffer is either full or empty.

There is a buffer empty bit in the four word table that
is set if the buffer is empty. This serves to remove the
ambiguity and allows a test for emptiness by referencing
one word.

IBRB is equivalent to a NOP (execute the next instruc-
tion) if the empty bit is set. Otherwise it loads a byte and
skips the next instruction. To load a byte the read pointer
is compared to the end buffer pointer, and if they are equal
the read pointer is replaced with the beginning buffer
pointer. The read poihter is then incremented and the byte
pointed to is loaded into the right half of the J register
(the left half being cleared). If the read pointer and

write pointer are equal, the buffer empty bit is set.

SBRB (30): Store Byte in Ring Buffer
Tf the buffer is full the instruction is a NOP, otherwise
the right byte of the J register is stored, the write pointer

is incremented, and the next instruction is skipped.

The I register points to a ring buffer descriptor. The
write pointer is compared to the end buffer pointer, and,

if they are equal, tentatively replaced with the beginning

C p/e=n.r page
BC RC/5-23 28

buffer pointer, and compared with the read pointer. If

the result of the comparison is equality and the buffer empty
bit is not set, the pointer is not stored and the next
instruction is executed. Otherwise the new pointer is
incremented and stored, the buffer empty bit is reset and

the right half of the J register is stored in the byte now

being pointed to. The next instruction is skipped.

POT (31): Output
The device specified by the J register is selected. The

word in the I register is output to this device.

PIN (32): Input
The input from the device selected by the J register is put

in the accumulator.

bec

p/e=-n.r
RC/S-23

page
Al

Ring Buffer Pointer

empty bitJ

APPENDIX II
DATA FORMATS

(set if .
buffer

Begin Buffer. Pointer

empty)

Read Pointer

Write Pointer

End Buffer Pointer

Flag Bits:
THC:
OHC:
IHCC:

LEM:

ICB has a character

OCB has a character

ICB has a control character
Local echo mode

Break strategy (2 bits)
Echo break character

Unknown device type

C p/e=n.r page
C RC/S-23 A2
Local Device Table Entries
TYPE Char. being output Low
Char. being input Speed
Next output v Last 1input
character (OCB) character Devices
LVB Flag bits
TYPE ¢ .
High
Ring buffer descriptor pointer
, Speed
Process number _
- Devices
LVB Flag bits

bec

p/c=n.r
RC/S-23

page
A3

Task State Table (indexed by task number) *8

m%crocoded task

X-Reg.

Program Couhter

Accumulator

Return

LR5

LR6

LR7

v <}-process not
interrupt-
able

ECC ore-23 Pese

Waiting task mask (WTM)

bit 1 . . . bit 16

bit 17 . . . bit 32

th
f the Nth bit is on the N task is running or is waiting

to run.

The local device bit table and the character type table are

the same as the Phase 1 tables.

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	A-1
	A-2
	A-3
	A-4

